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Abstract 

Baculoviruses are a large, diverse, and an ecologically-important group of entomopathogens. The 

ac78 gene of the prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus 

(AcMNPV), is one of the 38 genes conserved among all baculoviruses sequenced to date. 

Previous studies show that Ac78 is essential for optimal production of occlusion-derived virions 

(ODVs) and budded virions (BVs), which are two virion types produced during baculovirus 

infection. However, the biochemical mechanism by which Ac78 is involved in these processes 

remains unknown. The AcMNPV sulfhydryl oxidase ac92 is a conserved gene, and its product, 

Ac92, is ODV and BV envelope-associated. Recently, the Ac78 and Ac92 homologs in 

Helicoverpa armigera nucleopolyhedrovirus (HearNPV) were reported to interact and co-localize 

to the site of BV and ODV formation. To investigate the relationship between Ac78 and Ac92, 

we determined their localization in the presence and absence of AcMNPV infection, performed 

co-immunoprecipitations to assess interaction relationships, and provided an updated report of 

Ac78 and Ac92 homology with other proteins. We concluded that in the absence of viral 

infection, Ac78 and Ac92 localized perinuclearly in the cytoplasm and that localization of Ac92 

was not affected by Ac78. During AcMNPV infection, Ac78 and Ac92 co-localized within the 

nucleus and surrounding virus replication and assembly sites (ring zone). Co-

immunoprecipitation experiments showed that at least two differentially-tagged Ac78 proteins 

were part of a complex in the presence of other AcMNPV proteins. Ac78 did not associate with 

Ac92 during AcMNPV infection. Our characterization of the relationship between Ac78 and the 

AcMNPV sulfhydryl oxidase is a preliminary step in a broader effort to elucidate important 

biochemical pathways underlying the poorly described structural changes in capsid proteins and 

other proteins involved in virion stability, folding, and infectivity.  



  

In a separate project, the same approach was applied in a different virus system to determine the 

relationship between the small accessory protein C and the measles virus (MeV) replication 

complex. Co-immunoprecipitation experiments showed that during MeV infection, C associated 

with large protein (L) and phosphoprotein (P), which comprise the MeV replication complex, 

and nucleoprotein (N), which encapsidates the RNA genome. Expression constructs for full-

length MeV L were generated, and L was successfully expressed following transfection. 

Subsequent co-immunoprecipitation experiments showed that C did not precipitate with L, P, nor 

N when transfected in isolation from MeV infection, indicating that another factor resulting from 

MeV infection is necessary for the association of C with the MeV replication complex. The 

results of this investigation are an important step in elucidating a biochemical mechanism 

underlying the function of C as a quality control factor in MeV replication. MeV has been 

attenuated and is a highly effective vaccine against pathogenic MeV and an active subject of 

clinical research as an oncolytic agent for treating a number of human cancers.   

Taken together, the investigations of Ac78 and C and their respective relationships with the 

AcMNPV sulfhydryl oxidase and the MeV replication complex adds knowledge of biochemical 

mechanisms underlying the important functions of small accessory proteins containing less than 

200 amino acids as mediators in viral replication processes of two different viral systems.  
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Preface 

This master’s thesis report, “Defining a baculoviral oxidoreductase pathway”, adds to our 

understanding of the mechanism by which the small, 12.5 kDa, baculoviral-encoded protein, 

Ac78, is involved in the production of virions. This report has been written to partially fulfill the 

graduation requirements of the MS program in Biology at Kansas State University (KSU). I was 

engaged in this research from October 2016 – July 2018 as part of the joint BS/MS program in 

the Division of Biology and in writing this thesis report from May 2018 – July 2018.   

Work that I performed early in the undergraduate portion of my studies led to my interest in the 

work presented in this master’s thesis report. I began my undergraduate research experience in 

the lab of Dr. Stefan Rothenburg immediately upon entering KSU as a first-year undergraduate 

student in September 2013. The Rothenburg lab studies evolutionary arms races between viruses 

and its hosts using poxviruses as a model. I was influenced by a paper that shows that myxoma 

virus (MYXV), a poxvirus and natural rabbit pathogen that cannot establish an active infection in 

humans, exhibits significant oncolytic activities in some human cancers (Lun, et al., 2005). Not 

all human cancers, however, are sensitive to the oncolytic effects of MYXV. Our lab 

hypothesized that the lack of inhibition of the antiviral human protein kinase R (PKR) by 

MYXV’s endogenous inhibitor gene of PKR, M156R, could explain why some cancers that 

exhibit high PKR activity are resistant to oncolysis by MYXV. The question that I focused my 

first undergraduate research project to address was: does the incorporation of more effective 

inhibitors of human PKR in MYXV lead to enhanced oncolytic activities in cells that express 

high levels of PKR? To answer this question, I assisted a graduate student in the lab in 

generating two recombinant MYXVs by replacing M156R with its orthologs from racoon or deer 

poxvirus, which exhibit intermediate and strong levels of human PKR inhibition, respectively. I 
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tested whether recombinant MYXVs exhibit increased replication levels compared to wild type 

MYXV (wt-MYXV) in four different human cancer cell lines. I subsequently optimized 

experiments to systematically test whether there is a correlation between PKR expression and 

MYXV sensitivity. The relocation of the Rothenburg lab to the University of California, Davis 

cut my involvement in this project short at the end of my third year at KSU. However, this 

project is being continued by current students.  

Studying MYXV led to my concurrent interest in squirrel fibroma virus (SQFV), a previously 

uncharacterized poxvirus that is closely related to MYXV. I worked on a collaborative 

investigation in which I assisted in characterizing the host-range of SQFV, determining the 

phylogenetic relatedness of SQFV with other poxvirus species, and annotating the SQFV 

genome. Genome annotation uncovered numerous interesting features, including that SQFV 

contains the longest inverted terminal repeat sequence (19.5 kb) of any known poxvirus and 

evidence for a recombination event that occurred between an ancestral virus and a distantly-

related poxvirus.  A manuscript for which I am a co-author is currently being drafted with 

Rothenberg lab members in collaboration with the laboratory of Nels Elde at the University of 

Utah. 

Characterizing the SQFV genome led me to seek a broader skillset in genomics in order to gain 

evolutionary insights. I completed a vigorous 14-week investigation in the arthropod genomics 

lab of Dr. Greg Ragland. My first project was a collaborative effort which explored the question 

of how genes are differentially expressed during dormancy developmental progression in two 

speciating populations of the agricultural apple maggot pest Rhagoletis pomonella. I identified 

and edited candidate genes of interest, presented a poster at two national scientific conferences, 

and assisted with writing a manuscript published in Journal of Experimental Biology of which I 
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am a co-author (Meyers et al., 2016). The results of this project showed that differences in the 

transcriptome contributed to adaptive differences in climate tolerance and food source among the 

two speciating populations. I also contributed to answering the question: what is the phenotypic 

response to overwintering of another invasive agricultural pest, the spotted winged fruit fly, 

Drosophilia suzukii? We found that both low temperature and short photoperiod resulted in 

reduced level of development. A manuscript for which I am co-author was published in Journal 

of Environmental Entomology (Everman et al., 2018).  

In addition to learning genetic and genomic approaches, I wanted to add to my virologist toolbox 

by gaining proficiency in biochemical approaches. My 10-week fellowship in the laboratory of 

Dr. Roberto Cattaneo provided this opportunity. My project aimed to determine the mechanism 

by which the measles virus (MeV)-encoded C protein interacts with the MeV replication 

complex. Such knowledge is important because the attenuated vaccine-strain MeV is a promising 

and active subject of oncolytic viral therapy research and numerous members of the 

Mononegavirales order to which MeV belongs are significant human pathogens. This work was 

performed during the undergraduate portion of the joint BS/MS program and uses a highly 

related approach to that of my master’s thesis work performed in the laboratory of my major 

professor, Dr. A. Lorena Passarelli. Thus, the results of my investigation of the interaction 

between C protein and MeV polymerase has been included as the third chapter in my master’s 

thesis report with permission and input from Drs. Roberto Cattaneo and Christian Pfaller of the 

Department of Molecular Medicine at Mayo Clinic.  

My work in the laboratory of Dr. A. Lorena Passarelli, which began at the start of my fourth year 

at KSU, was a continuation of my study of viral protein interactions. This work, which is the 

subject of the first two chapters of this thesis report, investigates the relationship between a 
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highly conserved baculoviral protein, Ac78, and the baculoviral sulfhydryl oxidase, Ac92. I am 

excited to share this work with the scientific community and the general public. Engaging in this 

work has developed my competencies as an independent researcher, which will be applied in 

years to come.  

 

I hope you enjoy reading, 

 

Adam J. Schieferecke  

Manhattan, KS, May 20, 2018 
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Chapter 1 - literature review 

 1.1 Baculoviruses 

Baculoviridae is a large, diverse, and an ecologically-important family of entomopathogens that 

naturally infect the larvae of over 600 species of lepidopteran, dipteran, and hymenopteran 

insects (Martignoni, 1981). Baculoviruses are organized into four genera: alphabaculoviruses, 

betabaculoviruses, deltabaculoviruses, and gammabaculoviruses. The four genera are demarcated 

by distinguishing features including phylogeny based on DNA sequences from various regions of 

the genome, predicted protein sequence similarities, DNA restriction profiles, and host range and 

specificity. Gammabaculoviruses infect the larvae of Hymenoptera, deltabaculoviruses infect the 

larvae of Diptera, and alphabaculoviruses and betabaculoviruses infect the larvae of Lepidoptera 

(ICTV, 2017). Alpha-, gamma-, and deltabaculoviruses are referred to as nucleopolyhedroviruses 

(NPVs), whereas the betabaculoviruses are refered to as granuloviruses reflecting differences in 

the occlusion body morphology and protein composition. The baculoviral genome is composed 

of circular, double-stranded DNA (dsDNA) that ranges from 80 to 180 kilobase pairs (kbp) in 

length. The name “baculovirus” is derived from the Latin word baculum and refers to the rod-

shaped nucleocapsids which encapsidate the baculoviral genome (Rohrmann, 2011). Alpha-, 

beta- and gamma-baculoviruses produce two different types of virions, which possess identical 

genetic information and nucleocapsid structures but are produced at different time points during 

the replication cycle and possess distinct envelope compositions according with different roles in 

the infection cycle. One type of virion, budded virus (BV), is used to spread the infection from 

cell-to-cell within the host. The other type of virion, occlusion-derived virus (ODV), is used to 

spread the infection from host-to-host through the outside environment. NPVs in which the 
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envelope of the ODV contains only one nucleocapsid are designated as a single NPV (SNPVs), 

and NPVs in which the ODV envelope contains two or more nucleocapsids are designated 

multiple NPVs (MNPVs).  

The baculovirus replication cycle begins when a larva ingests occlusion bodies, which dissolve 

in the alkaline environment of the midgut lumen and release ODV. The released ODV particles 

subsequently infect mature columnar epithelial cells, initiating primary infection in the midgut. 

Inside the cells, viral replication and virion assembly occurs in the nucleus. BVs are formed 

when newly assembled nucleocapsids egress from the nucleus, migrate through the cytoplasm, 

and bud from the plasma membrane. These progeny BVs then establish systemic infection 

throughout the rest of the host. Late during infection, ODV is produced and accumulated into 

occlusion bodies, which are crystalline matrixes composed of the polyhedrin protein in NPVs. 

Upon cell death, aggregated ODV inside occlusion bodies are released back into the 

environment, in which they remain infectious until a new host ingests them (Rohrmann, 2011).   

The study of baculoviruses has immense ecological, agricultural, economic, and scientific 

importance. Baculoviruses play a critical ecological role in many ecosystems by naturally 

regulating insect populations (Podgwaite, et al., 1981; Bonsall, 2004; Myers & Cory, 2015). This 

observation from nature led baculoviruses to be harnessed as biological pesticides to protect 

agricultural crops. Baculoviruses have proven success at managing a number of infamous pest 

populations such as the larvae of Galleria mellonella, Phthorimaea operculella, Spodoptera 

littoralis, which destroy honey bee hives, potatoes, and cotton, respectively. Additionally, there 

are several extant examples of baculoviruses being successfully implemented in the applied 

control of Lepidoptera and Hymenoptera forest pests (Moscardi, 1999; Summers, 2006; Beek & 

Davis, 2016). Presently, there are thirteen NPV pesticide formulations against Lepidoptera and 
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Coleoptera listed as approved for commercial use in the United States (Kalha et al., 2014; EPA, 

2016). While a large need exists, widespread use of NPV-based pesticides has been limited by 

large-scale production challenges and efficacy of killing target pests in the field. For example, 

ensuring the baculovirus suspension is delivered in a way that ensures the insects ingest the 

product and that the replication cycle of the baculovirus is faster than the reproduction cycle of 

the insect are particularly critical challenges to overcome when developing commercial 

baculoviral pesticide products. For this reason, acquiring increased understand of the underlying 

molecular mechanisms of baculoviral replication processes continues to be important. 

Additionally, baculoviruses are harnessed as protein expression systems in insect and 

mammalian cell systems. (Chen et al., 2011; Kost et al., 2005; Possee, 1997; Condreay, 2007). 

Such baculoviral protein expression systems are sold commercially by companies such as 

Thermo Fischer (Thermo Fischer, 2018). Further, baculoviruses have been used as effective 

models in the study of gene regulatory networks and whole genome evolution and have 

significantly expanded our knowledge of apoptosis (Herniou et al., 2001; Oliveira et al., 2013). 

Much of the current knowledge of MNPVs was acquired through the study of the prototype 

baculovirus AcMNPV originally isolated from the alfalfa looper moth Autographa californica 

(Vail et al., 1971). The naming of AcMNPV after the host species from which it was first 

isolated set precedent for the naming system of future baculoviruses. However, it later became 

known that AcMNPV infects many different Lepidopteran species beyond Autographa 

californica (Taha et al., 1995; Miller & Lu, 1997). The AcMNPV genome is approximately 134 

kbp long and contains 154 predicted open reading frames (ORFs) (Maghodia et al., 2014), 

including the 38 “core genes” conserved in the over 80 baculovirus genomes completely 

sequenced to date (Garavaglia et al., 2012; Javed et al., 2017). Because of their conservation, 
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each of these core genes is likely to play an essential role in the baculovirus replication cycle. 

Two of these core genes, Ac92 and Ac78, are discussed in greater detail in sections 1.4 and 1.5, 

respectively.   

 

 1.2 Disulfide bonds and sulfhydryl oxidation 

The disulfide bond is a prevalent type of covalent linkage between the thiol (SH) groups of two 

cysteine residues in proteins. Disulfide bonds are essential components of protein structures by 

providing structural covalent linkages between amino acid residues and by participating in 

biologically important oxidation-reduction (redox) reactions. Disulfide bonds exhibiting redox 

activity comprise intramolecular protein disulfides. These disulfide bonds play extremely 

important biological roles in activating and deactivating proteins and altering cellular 

localization of proteins based on redox changes in the environment.  Disulfide bonds are formed 

when the nucleophilic sulfur anion belonging to the side chain of one cysteine residue attacks the 

side chain of the other interacting cysteine. This nucleophilic attack releases two electrons that 

are transferred to another molecule, such as a flavin adenine dinucleotide (FAD) cofactor (Sevier 

et al., 2012). Because cysteine is the only amino acid that can participate in this reaction, its 

presence in proteins has immense functional consequences and has been found to be highly 

conserved throughout evolution (Jones et al., 1992; Gonnet et al., 1992). Cysteine residues are 

found in every sequenced life form to date. Approximately half of all cysteine residues 

participate in disulfide bonds (Rubinstein & Fiser, 2008), and these disulfide-bonded cysteines 

are the most conserved amino acids in proteins (Wong et al., 2010). In order for protein disulfide 

bond formation to occur, the interacting cysteine pair must be located in close enough physical 
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proximity to one another and the interaction environment must exhibit oxidizing conditions and a 

relatively high pH (Bechtel & Weerapana, 2017). Thus, locations in the cell that exhibit 

oxidizing and pH conditions conducive for disulfide bond formation must exist. 

In eukaryotes, the endoplasmic reticulum (ER) exhibits an oxidizing environment conducive to 

the loss of hydrogens from the sulfur atoms on thiol groups of cysteine residues and the 

subsequent formation of disulfide bonds with other oxidized cysteine residues. The formation of 

disulfide bonds in the ER is regulated by oxidoreductases that catalyze the reaction, such as 

members of the thioredoxin family and members of the protein disulfide isomerase (PDI) family 

that contain thioredoxin-like domains (Darby & Creighton, 1995; Hatahet et al., 2009; Sevier et 

al., 2002; Fiege et al., 2011).  Disulfide bonds are necessary for proteins to be able to maintain 

proper conformation under the highly oxidizing conditions commonly found in extracellular 

environments. Accordingly, disulfide bonds are commonly found in proteins bound for the 

secretory pathway. Because the cytosol and nucleus are highly reducing environments (Gilbert, 

1990) not conducive to the formation of disulfide linkages between cysteines, cytosolic and 

nuclear proteins in mesophilic organisms rarely contain structural disulfide bonds.  

In prokaryotes, disulfide bond formation is carried out in the oxidizing environment of the 

periplasm (Landeta et al., 2018). As in eukaryotes, disulfide bonds are not commonly found in 

cytosolic proteins but are common in secreted proteins. As with eukaryotic secretory proteins, 

prokaryotic secretory proteins require reinforcing covalent bonds in order to withstand the severe 

oxidizing extracellular environment. Adding disulfide bonds to secreted proteins on their way 

out of the cell provides this needed structural reinforcement. Disulfide bond formation in the 

periplasm is catalyzed by an oxidoreductase that belongs to the same thioredoxin superfamily as 

PDI called DsbA (Bardwell et al., 1991). A growing body of evidence shows the essential roles 
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of disulfide bonds in the stability of virulence factors of pathogenic bacteria. Consequently, the 

study of disulfide bonds in prokaryotic systems is currently an active area of research (Landeta et 

al., 2018) 

More recently, it has become known that eukaryotic disulfide bond formation occurs in the 

mitochondria as well. Mitochondria are derived from bacterial ancestors that permanently 

became cellular organelles through an endosymbiont event (Embley & Martin, 2006). 

Mitochondria contain their own genome and encode several proteins that are synthesized in the 

cytosol and transported back into their respective mitochondrial compartments. Because both the 

mitochondria and the cytosol are reducing environments of proteins, it was once assumed that 

the mitochondria did not carry out disulfide bond formation. However, it is now known that 

numerous proteins located in the mitochondrial intermembrane space (IMS), including the 

copper chaperon Cox17 involved in the biogenesis pathway of cytochrome oxidase (Glerum et 

al., 1996) and members of the translocase of the inner membrane (TIM) complex that chaperone 

hydrophobic proteins (Bauer et al., 2000; Stojanovski et al., 2008), contain disulfide-bonded 

cysteines. To carry out sulfhydryl oxidation in the mitochondrial intermembrane space (IMS), a 

folding-trap relay system composed of two essential components is utilized; Mia40 serves as an 

electron shuttling protein and is subsequently oxidized by the FAD-linked electron acceptor 

Erv1, which uses FAD to pass the electrons to molecular oxygen. (Deponte & Hell, 2009). It is 

now known that this system participates in the redox reactions of many different proteins that are 

present in the IMS (Wrobel et al., 2016).  

Redox reactions carried out by PDIs have net reactions that result in the exchange of one 

disulfide bond for another, whereas redox reactions carried out by sulfhydryl oxidases result in a 

net production of disulfide bonds. Sulfhydryl oxidases contain a flavin as an essential cofactor 
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(Argyrou & Blanchard, 2004) and at least one CXXC active site that accepts electrons through 

the reduction of oxygen into hydrogen peroxide (Hoober & Thorpe, 1999). Members of Plantae, 

Animalia, and Fungi have been found to contain cellular FAD-linked sulfhydryl oxidases (Fass, 

2008). Additionally, sulfhydryl oxidases are present in many of the nucleocytoplasmic large 

DNA viruses (NCLDVs) (Hakim & Faas, 2010) and every baculovirus sequenced to date (Figure 

2.1). Today sulfhydryl oxidases are classified into four major families: endoplasmic reticulum 

oxidases (Ero), qiescin sulfhydryl oxidases (QSOX), secreted sulfhydryl oxidases of fungi, and 

Erv.  

 

 1.3 Viral sulfhydryl oxidation 

Many of the large, complex DNA viruses, including NCLDVs and baculoviruses, encode their 

own Erv-family-like sulfhydryl oxidases in order to promote disulfide bond formation in the 

reducing environments of the cytoplasm and/or nucleus. Currently, NCLDVs include the seven 

taxonomic families Ascoviridae, Asfarviridae, Iridoviridae, Marseilleviridae, Mimiviridae, 

Phycodnaviridae, and Poxviridae (Gallot-Lavallée & Blanc, 2017). Studies of three molecularly 

characterized viral sulfhydryl oxidases, vaccinia virus E10R (Senkevich et al., 2000), African 

swine fever virus (ASFV) pB119L (Rodríguez et al., 2006), and mimivirus R596 (Hakim et al., 

2012), have revealed mechanisms by which viruses are able to co-opt processes involved in 

cellular protein synthesis to successfully carry out their own disulfide bond formation in the 

highly reducing environment of the cytoplasm.  

Vaccinia virus E10R was the first viral sulfhydryl oxidase characterized (Senkevich et al., 2000). 

The finding that a virus encodes its own functional sulfhydryl oxidase that allows it to control 
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redox processes in the cytoplasm was a huge discovery. Vaccinia virus is a prototype poxvirus 

that replicates in the cytoplasm of infected cells. Vaccinia virus sulfhydryl oxidase electron 

shuttling occurs through the FAD-linked sulfhydryl oxidase E10R forming a stable disulfide 

bond with the CXXXC motif of the oxidoreductase A2.5L, which then forms a transient 

disulfide-linked complex with G4L and the subsequent oxidation of structural components of the 

virion membrane (Senkevich et al., 2000; Senkevich et al., 2002). It is likely that this pathway 

occurs universally in poxviruses, as the involved proteins are highly conserved among 

poxviruses as well as several other NCLDVs (Saaranen & Ruddock, 2013).  

The ASFV FAD-linked sulfhydryl oxidase pB119L is a late protein required for the assembly of 

infectious virions and uses a very similar pathway for sulfhydryl oxidation as described for 

poxviruses. pB119L forms a disulfide interaction with the CXXC motif of the thiol 

oxidoreductase pA151R, which subsequently forms an interaction with the structural protein 

pE248R that has homology to vaccinia L1R structural protein (Rodríguez et al., 2006). This 

study showed that similarities to the mechanisms used by the vaccinia virus sulfhydryl oxidation 

pathway exist in other viral systems beyond poxviruses.  

The characterization of the mimivirus FAD-linked sulfhydryl oxidase R596 uncovered an 

enormous protein containing a major subunit in addition to a catalytic domain similar to that of 

other Erv family sulfhydryl oxidases (Hakim et al., 2012). Mimivirus revealed a novel 

mechanism of sulfhydryl oxidation in which the disulfide relay occurred between subunits within 

the R596 dimer. The complex structure of R596 has similarities to those of cellular QSOXs in 

addition to viral Erv family sulfhydryl oxidases; cellular QSOX orthologs contain a thioredoxin 

fold in a different domain of the same protein as the Erv-family sulfhydryl oxidase active site. 
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Further, the massive sulfhydryl oxidase gene of mimivirus was shown to be highly conserved 

among the other sequenced giant viruses (Hakim et al., 2012).  

Viral sulfhydryl oxidases play an essential role in the replication cycles of a number of large, 

complex viruses. Aside from being intrinsically fascinating, the vigorous pursuit to increase 

understanding of the underlying biochemical functions and mechanisms of viral sulfhydryl 

oxidases and disulfide bond formation elucidates valuable information that can potentially be 

targeted in the development of novel antiviral therapies and viral vectors for gene delivery.  

 

 1.4 Ac92: the baculoviral sulfhydryl oxidase 

The conserved baculoviral gene ac92 encodes an Erv family FAD-linked sulfhydryl oxidase that 

is conserved in all known baculoviruses to date (Long et al., 2009; Wu and Passarelli, 2010; 

Figure 2.1). The functionality of the baculoviral sulfhydryl oxidase may be conserved or partially 

conserved in some baculoviruses. For example, the Ac92 homolog Tn79 of Trichoplusia ni 

nucleopolyhedrovirus was able to serve as a partially functional sulfhydryl oxidase when the 

endogenous ac92 was knocked out of AcMNPV and replaced with tn79 (Clem et al., 2014). 

Ac92 contains a CXXC active site and associated FAD cofactor arrangement that is highly 

similar to the CXXC site and FAD cofactor arrangement of other Erv family sulfhydryl oxidases 

widely found in a range of eukaryotic species and NCLDVs (Hakim et al., 2011). However, a 

majority of the experimentally-derived structure of Ac92 is highly divergent from other Erv 

family sulfhydryl oxidases (Fass, 2008; Hakim and Fass, 2010; Hakim et al., 2011). For 

example, Ac92 contains complex structural arrangements in additional domains that are not 

homologous to any other known protein. Moreover, while cellular Erv family sulfhydryl 
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oxidases contain an additional CXXC motif flanking the Erv region (Faas, 2007), P33 family 

sulfhydryl oxidases contain only one CXXC motif.  

Ac92 is known to be essential for the formation of infectious BV and multiply enveloped ODV 

(Nie et al., 2011; Wu and Passarelli, 2010). Viruses with a deletion of in ac92 exhibit similar 

phenotypes to viruses in which the two cysteines in the CXXC active site are mutated to alanines 

(Wu and Passarelli, 2010). The results of these studies confirm the essential function of Ac92 

sulfhydryl oxidation in the assembly of mature infectious AcMNPV virions. Although Ac92 

sulfhydryl oxidation is essential for the production of ODV and BV, the substrate or substrates 

targeted by Ac92 during baculovirus infection remain unknown. The non-active site domains of 

Ac92 are not thought to contain their own thiol redox active protein as in cellular and mimivirus 

Erv family sulfhydryl oxidases (Hakim et al., 2011). Thus, a different viral or cellular protein 

with oxidoreductase activity must serve this purpose. Ac92 was first noticed when it was found 

to interact with human P53 (Prikhod’ko et al., 1999). Ac92 was also shown to interact with the 

Spodoptera frugiperda P53 (SfP53) (Wu et al., 2014). However, this study was unable to identify 

any functional implications that the Ac92-P53 interaction may have in viral replication 

processes. In NCLDVs such as poxviruses, the major components of the redox pathway are 

encoded within the viral genome. It is possible that baculoviruses also evolved to encode all of 

the major components of their redox pathway within their genome, and that these components 

are waiting to be characterized. One baculoviral protein was reported to interact with the P33 

homolog; the Ac92 homolog in Helicoverpa armigera nucleopolyhedrovirus was shown to 

interact with the Ac78 homolog (Huang et al., 2014). The authors of this study hypothesized that 

Ac78 may work in a redox process with Ac92. However, unlike the thiol oxidoreductases that 

interact with the poxviral sulfhydryl oxidases, Ac78 does not contain a CXXC motif required for 
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disulfide bond formation. If the baculoviral sulfhydryl oxidase system is similar to the poxvirus 

system and encodes all components of its redox chain in the genome, then it is likely that the 

oxidoreductase component responsible for the shuttling of electrons from Ac92 to viral 

membrane motifs would contain a CXXC motif. 

 

 1.5 Ac78: an essential baculoviral accessory protein  

The baculoviral gene ac78 is among the 38 core genes conserved among all sequenced 

baculoviral species to date (Garavaglia et al., 2014; Javed et al., 2017). The conservation of Ac78 

among all known baculovirus species indicates an essential role in the viral replication cycle. 

Ac78 is associated with the envelope of ODV (Tao et al., 2013; Li et. Al, 2014). When ac78 was 

deleted from AcMNPV, viral DNA replication appeared to be unaffected, nucleocapsids were 

confined to the nucleus, occlusion bodies lacked ODV, and BV and ODV were not produced 

(Tao et al., 2013) or produced in very low levels (Li et. Al, 2014). A study in which the Ac78 

homolog Bm64 in Bombyx mori nucleopolyhedrovirus was disrupted corroborated with the 

conclusion that Ac78 is essential in baculoviral infection cycle. When Bm64 was knocked out, 

few infectious BVs were produced, and although ODV and occlusion bodies formed, the ODV 

could not establish infection in a new host (Chen et al., 2015). An Ac78 homolog was 

additionally shown to be ODV envelope-associated in a third baculovirus species, HearNPV 

(Hou et al., 2013). Neither Ac78 nor any of its tested homologs appear to affect viral DNA 

replication.  

While it is clear that Ac78 plays an important function in the AcMNPV replication cycle, the 

biochemical mechanism by which Ac78 is involved in the production of virions remains 
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unknown. Ac78 was recently reported to interact with Vps4, the key regulator for recycling the 

endosomal sorting complex required for transport III (ESCRT-III) (Yue et al., 2017). It had 

previously been shown that Vps4 is required for optimal infection by AcMNPV. Additionally, 

Ac78 was recently shown to associate with the N-ethylmaleimide-sensitive factor (NSF). NSF is 

the key regulator of the soluble NSF attachment protein receptor (SNARE) system, which 

mediates fusion of transport vesicles with target membranes in cells.  Together, these recent 

findings suggest Ac78 could play a role in baculoviral entry and egress.  

Ac78 has been reported to contain a motif that was originally characterized in the baculovirus 

protein ODV-E66 as an internuclear membrane signaling motif that functions as an N-terminal 

localization signal of proteins to the intranuclear ring zone and the ODV envelope (Li et al., 

2014). An 18-amino acid long hydrophobic sequence within this predicted signaling motif serves 

as a transmembrane motif, which are conserved as primarily hydrophobic residues in 79 other 

Ac78 orthologs (Figure 2.2). It has been reported that amino acid residues located in the 

conserved N-terminal regions (sites 2-25) and C-terminal regions (sites 64-88) are important for 

the function of Ac78. When the middle lysine of the IPLKL motif was deleted in HearNPV, the 

function of Ac78 and the interaction with P33 were disrupted. The N-terminal region of Ac78 

has homology with C-terminal residues in an oxidoreductase of Danaus plexippus (Zhan et al., 

2011; Li et al., 2014). Likewise, the C-terminal FRF C-terminal motif was found to have 

homology with the N-terminal residues of cytochrome c oxidase from Pseudomonas stutzeri 

(Buschmann et al., 2010; Li et al., 2014) However, Ac78 and some of its orthologs do not 

contain a single cysteine, and every Ac78 ortholog does not contain the CXXC active site. 

Because of the conservation of baculoviral core genes, one can predict that homologs play 

similar functional roles in different systems. However, it has yet to be shown whether any key 

https://www.sciencedirect.com/topics/medicine-and-dentistry/pseudomonas-stutzeri
https://www.sciencedirect.com/science/article/pii/S0168170214002974?via%3Dihub#bib0030
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differences arising from the evolution of ac78 lead to slightly altered functional roles, and it is 

thus worthwhile to study the function of Ac78 in different baculoviral systems. 
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Chapter 2 - Defining the relationship between a baculoviral 

sulfhydryl oxidase and a potential accessory protein 

 2.1 Introduction  

Baculoviridae is a large, diverse, and an ecologically-important family of entomopathogens that 

naturally infect the larvae of over 600 species of lepidopteran, dipteran, and hymenopteran 

insects (Martignoni, 1981). Baculoviral genomes are circular, double-stranded DNA (dsDNA) 

and range from 80 to 180 kilobase pairs (kbp) in length (Rohrmann, 2008). The genome is 

packaged in rod-shaped nucleocapsids surrounded by an outer lipid envelope (Akermann & 

Smirnoff, 1983; Federici, 1986). Two types of baculoviral virions are produced at different 

stages of the replication cycle: BV, which spreads the infection from cell-to-cell within the host, 

and ODV, which is highly stable in the outside environment and used to spread infection from 

host-to-host. While in the environment, ODV are found in occlusion bodies, which are 

crystalline matrixes composed of a protein called polyhedrin in nucleopolyhedroviruses (NPVs). 

Aggregated within the highly stable occlusion bodies, ODV can remain infectious in the 

environment for long periods of time. The baculovirus replication cycle begins when the host 

ingests occlusion bodies, which dissolve in the midgut, releasing ODV that infects midgut 

epithelial cells. Subsequently, BV buds out of the basal side of the infected cell and establishes 

systemic infection throughout the host. Late in infection, ODV is produced and aggregated into 

occlusion bodies. Upon cell death, occlusion bodies are released back into the environment until 

ingested by a new host individual. 
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AcMNPV is the prototype baculovirus originally described as a pathogen of the alfalfa looper 

moth (Autographa californica) in the 1970s (Vail et al., 1971). AcMNPV contains 38 core genes 

(Garavaglia et al., 2012; Javed et al., 2017) that are conserved among all of the 88 baculoviruses 

sequenced to date. This conservation indicates an essential role of each of the core genes in the 

viral replication cycle. One such core gene is ac78 (Figure 2.1). Ac78 is associated with the 

envelope in ODV. When ac78 was deleted from AcMNPV, viral DNA replication appeared to be 

unaffected; however, nucleocapsids were confined to the nucleus, and BV and ODV-embedded 

occlusion bodies were not produced or produced in very low levels (Tao et al., 2013; Li et al., 

2014). While it is clear that Ac78 plays an important function in the AcMNPV replication cycle, 

the biochemical mechanism by which Ac78 is involved in the production of virions has not 

previously been shown. One focus of this thesis project was to fill this knowledge gap by 

elucidating the molecular mechanism by which Ac78 is essential in the production of virions.  

Another essential conserved gene in baculoviruses is ac92, which is a flavin adenine dinucleotide 

(FAD)-linked sulfhydryl oxidase gene that is conserved in all known baculoviruses to date but 

not commonly found in other virus families (Long et al., 2009; Wu & Passarelli, 2010). Ac92 is 

present in the envelope of BVs and ODVs and its function is essential for the viral replication 

cycle. Published results from the laboratory of Dr. Lorena Passarelli show that both deletion of 

ac92 from AcMNPV or mutation of the cysteine residues to alanines in the active site of Ac92 is 

essential for viral replication (Wu & Passarelli, 2010) and results in phenotypic changes that are 

strikingly similar to that of AcMNPVs lacking ac78 (Tao et al., 2013; Li et al., 2014). When 

ac92 was deleted from AcMNPV, viral DNA replication was unaffected, infectious BV was not 

produced, and the ODV consisted of singly-enveloped virions instead of the multiply-enveloped 

nucleocapsids normally found in AcMNPV (Wu & Passarelli, 2010).  Recently, the Ac78 and 
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Ac92 homologs in Helicoverpa armigera nucleopolyhedrovirus (HearNPV) were reported to 

interact and co-localize to the site of BV and ODV formation (Huang et al., 2014). 

To investigate the relationship between Ac78 and Ac92, we determined their localization in the 

presence and absence of AcMNPV infection, performed co-immunoprecipitation to assess 

interaction relationships, and provided an updated report of Ac78 and Ac92 homology with other 

proteins. We concluded that in the absence of viral infection, Ac78 and Ac92 localized 

perinuclearly in the cytoplasm and that localization of Ac92 was not affected by the exogenous 

presence (pAc78HA-transfected) or absence of ac78. During AcMNPV infection, Ac78 and Ac92 

co-localized within the nucleus and surrounding virus replication and assembly sites (ring zone). 

Co-immunoprecipitation experiments showed that at least two differentially-tagged Ac78 

proteins were part of a complex in the presence of other AcMNPV proteins. Ac78 did not 

associate with Ac92 during AcMNPV infection.  Ac78 did not immunoprecipitate with Ac92 at 

late timepoints during AcMNPV infection. Our characterization of the relationship between 

Ac78 and the AcMNPV sulfhydryl oxidase is a preliminary step in a broader effort to elucidate 

important biochemical pathways underlying the poorly described structural changes in capsid 

proteins and other proteins involved in virion stability, folding, and infectivity. 
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 2.2 Materials and methods  

Viruses and cell lines 

The Sf9 insect cell line, clonal isolate 9 from IPLB-Sf21-AE cells, is derived from the fall 

armyworm Spodoptera frugiperda. The Sf9 cell line was purchased from ATCC and cultured at 

27°C in TC-100 medium from Invitrogen supplemented with 10% fetal bovine serum (Atlanta 

Biologicals), penicillin G (60 μg/ml), streptomycin sulfate (200 μg/ml), and amphotericin B (0.5 

μg/ml). 

The repair bacmid containing Ac92 with an eGFP fusion protein expressed under the IE1 

promoter, vAc92GFP, was constructed as previously described (Wu et al., 2013). 

The bacmid containing AcMNPV expressing the polyhedron gene, AcMNPV-PH, was 

constructed as previously described (Wu et al., 2013). 

The repair bacmid in which AcMNPV with endogenous Ac92 knocked out and replaced with C-

terminally-Flag-tagged Ac92, vAc92FLAG, was constructed as previously described (Wu et al., 

2013).  

 

Construction of plasmids 

Plasmid pAc78HA, an expression construct for Ac78 containing a C-terminal hemagglutinin 

(HA) tag expressed under the Drosophila heat shock promoter (hsp70), which drives protein 

expression in cells after exposure to heat shock conditions (42°C), was constructed. AcMNPV-

PH bacmid DNA was used as a template for PCR with a forward primer containing Bsu36I 

restriction site (5'-CCGGCCTAAGGATGAATTTGGACGTGCCCTAC-3') and a reverse primer 

containing the HA sequence and the Bsu36I restriction site (5'-

GGCCCCTAAGGTTATGCATAATCCGGAACATCATACGGATAATCAAATTTATTAAA-
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3'). The PCR product was purified, digested with Bsu36I (New England BioLabs, Ipswich, MA), 

and purified again. A plasmid containing the GFP open reading frame expressed under the hsp70 

promoter was digested using Bsu36I to remove the GFP fragment, concurrently digested with 

Bsu36I and dephosphorylated with Shrimp Alkaline Phosphatase (New England Biolabs, 

Ipswich, MA), and gel purified (Qiagen,Valencia, CA). The digested purified PCR product was 

ligated with the Bsu36I-linearized phsp70 vector. The construct was then ligated with the 

digested PCR insert to yield the final construct pAc78HA.  Ligation products were transformed 

into XL1 Blue competent cells (Stratagene, La Jolla, CA), and bacteria were plated on LB-

ampicillin-agar plates and incubated at 37°C for 14 to 20 hours. Single colonies were selected 

and grown in 2 mL LB-ampicillin, and plasmids were extracted using a plasmid minikit 

(Qiagen,Valencia, CA) and analyzed by restriction endonuclease digestion and electrophoresis. 

Three clones containing the expected insert size were subjected to Sanger sequencing using a 

forward primer located in the hsp70 promoter (5'-

CTGCAACAACTGAAATCAACCAAGAAGTC-3'), and one clone containing a single insert 

was selected for further experiments.  

Plasmid pAc78FLAG, an expression construct for Ac78 containing a C-terminal Flag tag 

expressed under the Drosophilia hsp70 promoter, was constructed. The plasmid pAc78HA was 

used as a template for PCR with a forward primer containing a Bsu36I restriction site (5'-

CCGGCCTAAGGATGAATTTGGACGTGCCCTAC-3') and a reverse primer containing the 

Flag sequence and a Bsu36I restriction site (5'-

GGCCCCTAAGGTTACTTGTCGTCATCGTCTTTGTAGTCATCAAATTTATTAAA-3'). The 

PCR product was purified, digested with Bsu36I (New England BioLabs, Ipswich, MA), and 

purified again. The Bsu36I-digested, purified PCR product was ligated with the Bsu36I-
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linearized phsp70 vector, and an individual clone containing the proper insert sequence was 

obtained using the same methods described above for the cloning of pAc78HA.  

The plasmid containing Ac92 with an enhanced GFP fusion protein expressed under the IE1 

promoter, pAc92GFP, was constructed as previously described (Wu et al., 2013). 

 

Plasmid or bacmid DNA transfections 

To transfect plasmid or bacmid DNA, DNAs were mixed with a non-commercial liposome 

reagent and added to Sf9 cells as previously described (Crouch and Passarelli, 2002). Cells were 

incubated with the DNA/liposome mixture in unsupplemented Grace’s Insect Medium (Thermo 

Fischer Scientific, Waltham, MA) at 27°C for 5 hours and then washed twice with 

unsupplemented Grace’s media, followed by addition of TC-100 media containing 10% fetal 

bovine serum (designated as the zero-time point) and incubation at 27°C. 

 

Immunofluorescence 

Immunofluorescence allowed us to visualize and quantify the localization of Ac78 and Ac92 in 

Sf9 cells in the presence and absence of AcMNPV infection. The plasmids pAc78HA and 

pAc92GFP and the viruses vAc92GFP and AcMNPV-PH were utilized for this purpose. An 

amount of 2.5 µL of the indicated plasmid, bacmid, or combinations thereof were co-transfected 

using the methods described above into 1 x 106 Sf9 cells seeded onto cover slips in 35 mm dishes 

24 hours before transfection. At the indicated time points, the supernatant was removed and the 

cells were washed twice with PBS, pH 6.2 (Potter and Miller, 1980), fixed in Formalde-Fresh 

4% formaldehyde solution (Fisher Scientific, Waltham, MA) for 10 minutes at room temperature 

(RT), and washed for 5 minutes in PBS three times. Fixed cells were permeabilized in 0.3% 
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Triton X-100 (Sigma-Aldrich, St. Louis, MO) in PBS for 10 min at RT, washed for 5 minutes in 

PBS three times, blocked in 5% BSA in PBS for 1 hour at RT, and incubated overnight at 4°C in 

anti-HA.11 antibody (BioLegend, San Diego, CA) at a concentration of 1:1000 in PBS 

containing 1% BSA in order to bind HA-tagged Ac78. Cells were washed for 5 minutes in PBS 

three times, followed by incubation with Alexa Fluor 633-conjugated anti-mouse IgG antibody 

(Thermo Fisher, Waltham, MA) in the dark for 1 hour at RT. Cells were washed for 5 minutes in 

PBS three times and then incubated with 1:70,000 dilution of SYTOX Orange (Thermo Fisher, 

Waltham, MA) in PBS in the dark for 10 minutes at RT. The cells were washed for 5 minutes in 

PBS three times, and coverslips were mounted on a glass slide and stored at 4°C in the dark until 

examined with a Carl Zeiss LSM 5 Pascal Laser Scanning Confocal Microscope. 

 

Co-immunoprecipitation assays  

A co-immunoprecipitation technique (as described in Lehiy et al., 2013) allowed us to test 

whether Ac78 physically associated with itself in the presence or absence of AcMNPV and 

whether Ac78 associated with Ac92 in the presence of AcMNPV.  Two plasmids containing the 

following genes expressed under the hsp70 promoter were constructed as described above: 

pAc78HA and pAc78FLAG. Additionally, an AcMNPV containing Flag-tagged Ac92 

(vAc92FLAG) was utilized. An amount of 2.5 µL of the indicated plasmids was co-transfected 

into Sf9 cells. At 20 hours post transfection (h.p.t.), 50 ug/mL of MG-132 was added to 

uninfected samples to block degradation of the desired proteins through the 26S proteasome, and 

30 minutes after the addition of MG-132, cells were heat shocked for 30 minutes at 42°C in 

order to drive expression under the heat shock promoter. Alternatively, transfected cells were 

infected at a multiplicity of infection (MOI) of 5 plaque forming units (PFU)/mL with 
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vAc92FLAG or AcMNPV-PH at 18 h.p.t. At 24 h.p.t. or 48 hours post-infection (h.p.i.), 

transfected and/or infected cells were pelleted at 2000 xg for 3 min and lysed with NP-40 IP/lysis 

buffer (50 mM Tris–HCl, pH 8.0; 150 mM NaCl; 1 mM EDTA; 1% NP-40) and two cycles of 

freeze-thawing. The lysate was clarified by centrifugation at 10,000 xg for 5 minutes and 

precleared by adding 50 μ l of a 50% slurry of protein G beads (Sigma), followed by incubation 

at 4°C for 1 hour with rolling. The supernatant was then transferred to a new microcentrifuge 

tube and mixed with anti-Flag antibody. After incubation at 4°C for 3 hours with rolling, 50 μl of 

a 50% slurry of protein G beads was added to the mixture and incubated for another 1 hour at 

4°C with rolling. The beads were collected by centrifugation and washed five times with IP/lysis 

buffer for 15 min each. Following addition of 25 μl of 2x Protein Loading Buffer (PLB, 0.25 M 

Tris–Cl, pH 6.8, 4% SDS, 20% glycerol, 2% 2-mercaptoethanol and 0.02% bromophenol blue), 

the samples were heated at 100°C for 5 min. Samples were immediately analyzed by 

immunoblotting or stored at −80°C until use. 

 

Immunoblotting  

Cells were collected and washed with PBS, pH 6.2 (Potter and Miller, 1980), resuspended in 

PBS with an equal volume of 2X PLB, and incubated at 100 C for 5 min. Protein samples were 

resolved by SDS-14% PAGE, transferred onto a PVDF membrane (Millipore-Sigma), and 

probed with one of the following primary antibodies: anti-HA.11 monoclonal mouse IgG 

antibody (BioLegend, San Diego, CA) or anti-FLAG mouse monoclonal antibody (Sigma 

Aldrich, St. Louis, MO), followed by incubation with anti-mouse horse radish peroxidase-

conjugated secondary antibodies (Cell Signaling, Danvers, MA). Blots were developed using 
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SuperSignal West Pico Chemiluminescent substrate (Thermo Fisher, Waltham, MA) and 

exposed on an Azure Biosystems C600 imaging machine.   

 

 2.3 Results 

2.3.1 Comprehensive sequence comparison of 80 baculoviral FAD-linked sulfhydryl 

oxidases 

In order to gain insight into the function of Ac78, we entered the AcMNPV Ac92 protein 

sequence into NCBI BLAST to obtain the sequences of 79 of its baculovirus homologs and 

performed multiple sequence alignment using Clustal Omega software (Figure 2.1). The results 

showed highly conserved amino acid residues clustered throughout the full-length amino acid 

sequence. The active sites in the Erv-family sulfhydryl oxidase motif were highly conserved 

among all groups of baculoviruses; our results showed that 100% of the Ac92 orthologs analyzed 

contained the CXXC motif at the amino terminus of the proteins. A sequence that is predicted to 

contribute to the binding of the FAD and consists of a tryptophan, three histidine, and two 

asparagine amino acid residues (WX3HXnHXmHNX2N) was 100% conserved in all analyzed 

baculoviruses, with the exception of a Y being present at the site of the last H in CuniNPV. 

BLAST searches using the full-length Ac92 protein sequence did not result in cellular or viral 

protein hits from outside of baculoviruses.   

 

2.3.2 Sequence comparison of Ac78 and its orthologs 

In order to gain insight into the function of Ac78, we entered the AcMNPV Ac92 protein 

sequence into NCBI BLAST to obtain the sequences of 79 of its homologs and performed 

sequence alignment using Clustal Omega software (Figure 2.2). Our results showed the 
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conservation of the two recognized motifs of Ac78, an IPLKL motif and a putative fumarate 

reductase flavoprotein (FRF) C-terminal motif (Huang et al., 2014), among its homologs in 

previously- and newly-sequenced baculovirus species and strains. The IPLKL motif, which is 

known to function as a peroxisome signaling site in plants (Raychaudhuri & Tipton, 2002), was 

found to be highly conserved among all four baculoviral groups. It was recently reported by 

Huang et al., 2014 that the middle lysine in the IPLKL motif was essential for Ac78 function in 

the production of virions. Interestingly, our multiple sequence alignment showed three 

baculoviruses for which an arginine was present at the middle lysine site. The FRF C-terminal 

motif, which has been implemented in redox signaling in some nonviral systems, was found to 

be highly conserved among the alphabaculoviruses and two recently-discovered viruses that have 

yet to be assigned to a group. Our multiple sequence alignment showed that the FRF C-terminal 

motif of the betabculoviruses is highly conserved among the betabaculoviruses but with different 

amino acid residues from the alphabaculoviruses. The motif diverges even further in 

gammabaculoviruses and the fully-sequenced deltabaculovirus (CuniNPV). Additionally, Ac78 

and its homologs contain a transmembrane motif (amino acids 61-83 of Ac78). However, the 

specific identity of the amino acids is not conserved at the transmembrane motif site other than 

containing an increased number of the nine hydrophic amino acids. The authors of Huang et al., 

2014 proposed a hypothesis that Ac78 may act together with the sulfhydryl oxidase during redox 

processes. Our alignment shows that Ac78 does not contain two cysteine residues in close 

proximity to one another (CXXC). Roughly half of the alphabaculoviruses contain a single 

cysteine in the FRF C-terminal motif and no additional cysteines throughout the protein 

sequence. While the presence of this single cysteine indicates that the Ac78 orthologs could 

potentially participate in intermolecular disulfide bonding, the lack of a CXXC active site 
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indicates that Ac78 nor its orthologs likely serve as oxidoreductases with Ac92. It is possible that 

Ac78 may instead be a downstream substrate of an Ac92-catalyzed oxidoreduction pathway.  

 

2.3.3 Ac78 and Ac92 may contain predicted cytoplasmic and nuclear localization 

signals 

It has previously been reported that Ac92 localizes perinuclearly in the cytoplasm in the absence 

of other AcMNPV proteins but localizes within the nucleus and around the viral DNA replication 

area (ring zone) during AcMNPV infection (Nie et al., 2011; Wu et al., 2013). These findings 

suggest that another AcMNPV protein is necessary for the localization of Ac92 to the nucleus. 

However, the protein(s) responsible for the nuclear localization of Ac92 have not been identified. 

We hypothesized that one function of Ac78 may be to localize Ac92 to the nucleus. To gather 

more insight, we performed an in silico search for nuclear localization sequences in Ac78 and 

Ac92 using cNLS Mapper software (Kosugi et al., 2009). The cNLS mapper predicts nuclear 

localization sequences (NLSs) specific to the importin α/β pathway by calculating NLS scores 

with four NLS profiles, each of which represents a contribution of every amino acid residue at 

every position within an NLS class to the entire NLS activity. Extensive amino acid replacement 

analysis in budding yeast was used to give positive or negative contribution scores to each amino 

acid residue, which additively or independently contributes to the overall nuclear localization 

activity of the sequence. This led to four NLS classifications: exclusive nuclear localization, 

partial nuclear localization, nuclear and cytoplasmic localization, and exclusive cytoplasmic 

localization. Results from this search showed that Ac92 and Ac78 contained predicted NLS 

sequences with scores of 3.6 and 3.7, respectively. A GUS-VFP reporter protein fused to an NLS 

with a score of 3-5 localized to both the nucleus and the cytoplasm. Thus, both Ac78 and Ac92 
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contained sequences predicted by the cNLS mapper to have both cytoplasmic and nuclear 

localization. The cNLS Mapper predicted moderate bipartite nuclear localization sequences with 

a similar score in Ac78 and Ac92 homologs, including those found in HearNPV.  

It should be emphasized that the cNLS mapper prediction is based on the importin α/β nuclear 

import pathway in budding yeast. While the importin α/β nuclear import pathway is highly 

conserved among eukaryotes, the prediction of the cNLS mapper based on yeast may not be as 

effective in our insect species.  

 

2.3.4 Ac78 did not affect the cellular localization of Ac92 and partially co-localized 

with Ac92 in Sf9 cells 

To determine the localization of Ac78 and whether Ac78 affects the localization of Ac92 in the 

absence of other viral proteins in insect cells, we performed immunofluorescence experiments in 

Sf9 cells transfected with plasmids pAc78HA, visualized with an anti-HA.11 mouse primary 

antibody and Alexa Fluor 633-conjugated anti-mouse secondary antibody, and pAc92GFP, 

visualized through its eGFP fusion tag. SYTOX Orange nuclear stain was used to visualize DNA 

in the nucleus, where viral DNA replicates. In the absence of other viral proteins, Ac92 produced 

from pAc92GFP localized mainly in a punctate staining pattern perinuclear with some additional 

diffuse staining throughout the rest of the cytoplasm of pAc92GFP-transfected cells. Ac78 

produced from pAc78HA localized as a diffused uniform ring perinuclear in the cytoplasm with 

some additional diffuse staining throughout the rest of the cytoplasm of pAc78HA-transfected 

cells. The staining patterns of neither Ac78 nor Ac92 changed in pAc92GFP/pAc78HA co-

transfected cells, and some areas of co-localization were observed (Figure 2.4).  
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We additionally determined localization of Ac78 in the presence of AcMNPV infection and 

corroborated results of the localization of Ac92 in the presence of AcMNPV infection utilizing 

the plasmid pAc78-HA and viral DNA from AcMNPV-PH or vAc92GFP.  In cells co-

transfected with pAc78HA and vAc92-GFP, Ac92 and Ac78 co-localized in the nucleus around 

the viral DNA replication center (ring zone). Similar localization pattern was observed when 

pAc78HA was co-transfected with untagged AcMNPV-PH and when vAc92GFP was transfected 

individually into insect cells.  

 

2.3.5 Co-immunoprecipitation of Ac78 and Ac92 

Co-immunoprecipitations were used to test whether Ac78 and Ac92 associate during AcMNPV 

infection. Our results showed that HA-tagged Ac78 expressed from the plasmid pAc78HA and 

FLAG-tagged Ac92 expressed from the virus vAc92FLAG did not precipitate when infected 

cells were collected at 48 h.p.i., lysed, immunoprecipitated on IgG beads using an anti-FLAG 

antibody, and analyzed with Western Blot analysis. These results indicated that Ac78 did not 

associate with Ac92 during AcMNPV infection under the conditions tested. 

We additionally sought to determine whether more than one Ac78 molecule associates in a 

complex in the presence or absence of other AcMNPV proteins. Our results show that in the 

presence of AcMNPV proteins, HA-tagged Ac78 expressed from the plasmid pAc78HA co-

precipitated with FLAG-tagged Ac78 expressed from the plasmid pAc78FLAG. In the absence 

of other AcMNPV proteins, pAc78HA and pAc78FLAG did not co-precipitate. These results 

indicate that at least two differentially-tagged Ac78 proteins were part of a complex in the 

presence of other AcMNPV proteins.  
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 2.4 Conclusions 

From our updated sequence alignments of Ac92 and its homologs, we concluded that Ac92 is 

highly conserved among baculoviral genomes and remains a core gene when including a number 

of newly sequenced baculovirus genomes. To date, 100% of the Ac92 orthologs conserved the 

CXXC motif at the amino terminus of the proteins. A motif that is predicted to contribute to the 

binding of the FAD and consists of a tryptophan, three histidine, and two asparagine amino acid 

residues (WX3HXnHXmHNX2N) is also 100% conserved in all analyzed baculovirus Ac92 

sequences, with the exception of a Y being present at the site of the last H in the deltabaculovirus 

(CuniNPV). 

From our updated multiple sequence alignment of Ac78 and its homologs, we concluded that the 

IPLKL and FRF C-terminal motifs are highly conserved among 80 sequenced baculovirus 

genomic sequences analyzed. We conclude that three baculoviruses in which the key lysine of 

the IPLKL motif was mutated to an arginine. Our alignments showed that three Ac78 sequences 

did not have the middle lysine in the IPLKL motif.  The FRF C-terminal motif is additionally 

conserved among the betabaculoviruses, but the betabaculoviruses contain a number of 

differences from the alphabaculoviruses. Our BLAST results show that the full-length sequence 

of Ac78 and its orthologs remain unique to baculoviruses.  

From our immunofluorescence experiments, we concluded that Ac78 and Ac92 localized 

perinuclearly in the cytoplasm of transfected insect cells in the absence of other AcMNPV 

proteins. From the results that Ac92GFP localization was the same in the presence (pAc78HA-

transfected) or absence of ac78, we additionally concluded that the localization of Ac92 in the 

absence of other viral proteins in not affected by Ac78. We conclude that Ac92 and Ac78 co-



34 

localized within the nucleus and around the viral DNA replication area (ring zone) during 

AcMNPV infection. Our results corroborate previous reports of the localization of Ac78 and its 

homologs (Li et al., 2014; Huang et al., 2014) and Ac92 and its homologs (Prikhod’ko et al., 

1999; Wu et al., 2013; Huang et al., 2014) during viral infection. Since both Ac78HA and 

Ac92GFP were mainly cytoplasmic in pAc78HA- or pAc92GFP-transfected cells and mainly nuclear 

in infected cells, we conclude that additional factors resulting from AcMNPV infection are 

necessary for the trafficking of Ac78 and Ac92 into the nucleus.  

From our co-immunoprecipitation experiments, we conclude that at least two differentially-

tagged Ac78 proteins were part of a complex in the presence of other AcMNPV proteins. We 

propose possible models for a protein complex that contains at least two Ac78 molecules (Table 

2.2). Contrary to results reported in the HearNPV system (Huang et al., 2014) we concluded 

from out immunoprecipitation results that Ac78 did not associate with Ac92 during AcMNPV 

infection. However, additional methods such as yeast-two-hybrid assays will be necessary to 

confirm this result. 

Overall, we conclude that our characterization of the relationship between Ac78 and the 

AcMNPV sulfhydryl oxidase is a preliminary step in a broader effort to elucidate important 

biochemical pathways underlying the poorly described structural changes in capsid proteins and 

other proteins involved in virion stability, folding, and infectivity.  

 

 2.5 Discussion 

Overall, the Ac92 amino acid sequence was highly conserved among baculovirus sequences of 

all groups. The noncatalytic regions are highly divergent from other viral and cellular sulfhydryl 
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oxidases. However, the active site of the Ac92 Erv family sulfhydryl oxidase region contains 

amino acid sequences shared by other sulfhydryl oxidases in cellular and viral systems. In 

particular, our results showed that 100% of the baculoviral sulfhydryl oxidases analyzed 

contained the CXXC motif at the amino terminus of the amino acid sequence. This CXXC motif 

is known form a helix and corresponds to the active site disulfide implemented in redox 

reactions. A motif that is predicted to contribute to the binding of the active site for the FAD and 

consists of a tryptophan, three histidine, and two asparagine amino acid residues 

(WX3HXnHXmHNX2N) was conserved in over 80% of analyzed baculoviruses. Additional highly 

conserved amino acid residue sites were clustered throughout the full-length amino acid 

sequence. While full-length Ac92 is unique to baculoviruses, its Erv-family active site is found 

in other viral and cellular proteins.  One hypothesis is that Ac78 may be required for the 

oxidation of substrates. 

The high conservation of the IPLKL motif of Ac78 homologs indicates an essential function. It is 

known that the IPLKL motif is involved in peroxisome signaling in plants (Raychaudhuri & 

Tipton, 2002). One hypothesis is that the IPLKL motif is essential for the signaling of Ac78 to 

localize to the necessary sites of action during infection. The FRF motif has been shown to play a 

role in redox processes in non-viral systems (Fritz et al., 2002; Mattevi et al., 1999). One 

hypothesis proposed by the authors of Huang et al., 2014 is that Ac78 may have enzymatic 

functions in redox processes along with the sulfhydryl oxidase. The results of our multiple 

sequence alignment showed that Ac78 and its homologs do not contain two cysteine residues in 

close proximity of one another (i.e., a CXXC motif). Further, AcMNPV and ~1/3 of its orthologs 

do not contain any cysteine residue.  
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Our results that Ac78 and Ac92 localized within the nucleus and surrounding virus replication 

and assembly sites (ring zone) during AcMNPV infection suggested that both proteins may play 

structural roles in the production of new virions. This finding was in-line with a previous report 

that Ac92 localizes in a punctate staining pattern in the cytoplasm around the outside of the 

nucleus (Wu et al., 2014) and provided new information regarding the localization of Ac78 that 

further supports a direct involvement of Ac78 in BV and ODV formation and provides one 

additional step in explaining why AcMNPVs that lack Ac78 have nonexistent or severely 

impaired BV and ODV formation.  The co-localization of Ac78 and Ac92 in the presence of 

AcMNPV meant that the two proteins may or may not require other products or factors resulting 

from viral infection to co-localize. To gain insight on nuclear localization of Ac78 and Ac92, we 

searched for nuclear localization sequences (NLS) within the Ac78 and Ac92 amino acid 

sequences. Results from this search suggested that Ac92 and Ac78 contain sequences that may 

predict both cytoplasmic and nuclear localization. Because the nuclear cNLS mapper is based on 

the importin α/β pathway in budding yeast, this prediction may or may not hold in insectile 

systems. In the absence of AcMNPV infection, our results showed that p-Ac92GFP-transfected 

cells exhibited punctate staining pattern perinuclear with some additional diffuse staining 

throughout the rest of the cytoplasm. Likewise, pAc78HA-transfected cells exhibited punctate 

staining pattern perinuclear with some additional diffuse staining throughout the rest of the 

cytoplasm. The staining patterns of neither Ac78 nor Ac92 changed in pAc92GFP/pAc78HA co-

transfected cells, and some areas of co-localization were observed. This partial co-localization is 

likely due to the fact that the two proteins localize to those areas and not due to their presence 

influencing one another. Additionally, these results indicate that additional factors resulting from 

viral infection are required to localize Ac78 and Ac92 to the nucleus. This could be due to 
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another viral protein shuttling them to the nucleus, changes to the cellular environment of the 

host resulting from baculoviral modulation of host proteins and gene expression, or a 

combination of both.  

We hypothesized that Ac78 and Ac92 may interact during AcMNPV infection due to 1. the prior 

knowledge that infection of insect cells with AcMNPV lacking Ac92 results in similar 

phenotypes to infection with AcMNPV lacking Ac78, 2. our recently-obtained results that Ac78 

and Ac92 co-localized at the site of viral replication and virion formation during AcMNPV 

infection, and 3. the report that Ac78 and Ac92 homologs of the baculovirus HearNPV interacted 

in yeast-two-hybrid assays. Because of the conservation of ac78 and ac92 between AcMNPV 

and HearNPV, we reasoned that Ac78 and Ac92 may have the same function(s) in the two 

different systems. Thus, the preliminary finding reported here that Ac78 did not associate with 

Ac92 during AcMNPV infection was not expected. Several possibilities may explain this result. 

The first possibility is that an inherent limitation of transfection experiments did not allow for the 

detection of the Ac78-Ac92 complex. It is possible that Ac78 and Ac92 do not interact in the 

reducing environment of the cytoplasm and instead only interact within the nucleus during a 

specific time during viral infection. The nucleus is not lysed with the detergent NP-40 commonly 

used for co-immunoprecipitation applications. Thus, a complex in which Ac78 and Ac92 are a 

part of may not be detectable using NP-40 buffer. It is additionally possible that Ac78 and Ac92 

form a weak or transient interaction during viral infection and that this interaction is disrupted or 

does not occur at the time points at which the lysates were collected for the experiments. Other 

techniques, such as yeast-two-hybrid assays, would be necessary for determining whether Ac78 

and Ac92 interact in the absence of other intermediate viral proteins. A second, less likely 

possibility is that Ac78 and Ac92 do not interact in the AcMNPV system. AcMNPV is a type I 
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alphabaculovirus, whereas HearNPV is a type II baculovirus. Type I and type II 

alphabaculoviruses differ in having additional and absent genes from one another. Thus, it is 

highly unlikely but still possible that Ac78, despite being a core gene, may have slightly different 

function in the AcMNPV system.  

Our result that two differentially tagged Ac78 proteins co-precipitated in the presence of 

AcMNPV infection but not when transfected in isolation of AcMNPV infection indicates that at 

least two different Ac78 molecules were part of a complex in the presence of other AcMNPV 

proteins. Several scenarios could explain this result (Table 2.2). One scenario is that another viral 

protein is responsible for bridging two or more Ac78 molecules together. Alternatively, a cellular 

protein could be modulated by viral infection, such as by phosphorylation or methylation, and 

undergo conformational changes to permit two or more Ac78 molecules to interact. A third 

possibility is that a complex of viral and cellular proteins form of which two or more molecules 

of Ac78 are part of. Overall, this work is a first step in determining a physical model of the 

complex that these two important proteins may form 

 

 2.6 Future direction 

The co-immunoprecipitation results that Ac78 and Ac92 did not associate during AcMNPV 

infection is contrary to previously reported in another baculoviral system (Huang et al., 2014). 

Testing the interaction of Ac78 and Ac92 using yeast-two-hybrid assays and FRET analysis is a 

necessary further step in order to corroborate the results shown in our co-immunoprecipitation 

assays. If it is confirmed that Ac78 does not interact with Ac92 in AcMNPV, then it is possible 

that Ac78 may interact with another protein located upstream or downstream in an 

oxidoreduction chain and the search for substrates of Ac92 sulfhydryl oxidation would continue.  
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The laboratory of Dr. Lorena Passarelli has already identified and produced constructs of 

additional late viral components that contain candidates that could potentially be substrates of 

Ac92. We could test whether the most promising of these potential substrates co-localize with 

Ac78 and Ac92 using the same methods described in Aim 1. In addition, we have a set of 

overlapping AcMNPV clones that represent the entire genome. These can be transfected singly 

or in combinations to determine if a specific region of the AcMNPV genome encodes a protein 

that co-localizes or co-immunoprecipitates with Ac92.  The identification of an Ac78 interaction 

with another viral substrate would open the door for us to elucidate the biochemical mechanism 

of Ac78 with another substrate while still being in-line with the previous studies that show that 

deleting ac78 results in a similar result as deleting ac92. 

Additionally, our conclusion that an additional factor or factors resulting from AcMNPV 

infection is/are required for the localization of Ac92 to the nucleus warrants further investigation. 

Combinations of other late genes can be tested in our established immunofluorescence 

experiments in order to identify the specific factors necessary for the localization of Ac78 and 

Ac92 to the nucleus during viral infection.  

The biochemical mechanisms underlying baculoviral capsid assembly are still largely undefined. 

Our characterization of the relationship between Ac78 and the AcMNPV sulfhydryl oxidase is a 

preliminary step in a broader effort to elucidate important biochemical pathways underlying the 

poorly described structural changes in capsid proteins and other proteins involved in virion 

stability, folding, and infectivity.  
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 2.7 Significance 

The study the mechanisms underlying baculoviral capsid assembly have immense ecological, 

agricultural, economic, and scientific importance. Baculoviruses play a critical ecological role in 

many ecosystems by naturally regulating insect populations (Podgwaite, et al., 1981; Bonsall, 

2004; Myers & Cory, 2015) This observation from nature led baculoviruses to be harnessed as 

biological pesticides to protect agricultural crops. Baculoviruses have shown proven success at 

managing a number of infamous pest populations such as the larvae of Galleria mellonella, 

Phthorimaea operculella, Spodoptera littoralis, which destroy honey bee hives, potatoes, and 

cotton, respectively. Additionally, baculovirus-based pesticides have been applied to control 

Lepidoptera and Hymenoptera forest pests (Moscardi, 1999; Summers, 2006; Beek & Davis, 

2016). Presently, there are thirteen NPV pesticide formulations against Lepidoptera and 

Coleoptera listed as approved for commercial use in the United States (Kalha et al., 2014; EPA, 

2016). While a large need exists for effective and environmentally-friendly pesticides, 

widespread use of NPV-based pesticides has been limited by large-scale production challenges 

and efficacy of killing target pests in the field. One such barrier being addressed in other current 

studies is to increase the speed of action of the virus (i.e., alter how quickly AcMNPV kills its 

host and spreads to other insects) (Shim et al., 2013). Understanding the specific requirements 

necessary for the optimal function of the AcMNPV sulfhydryl oxidase (i.e. Ac92) and its 

potential cofactors (i.e., potentially Ac78) is relevant in ensuring optimal production of structural 

proteins necessary to increase the AcMNPV speed of action. Moreover, baculoviruses can be 

used as expression systems for proteins (Condreay et al., 2007) and vectors for gene delivery 

(Makkonen et al., 2015). Understanding capsid structure is relevant in developing ideal vectors 

tailored for gene delivery in the different biological environments of specific target tissues.  
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Describing the potential biochemical mechanisms of Ac78 and Ac92 could increase our 

understanding of the cofactors necessary for this viral sulfhydryl oxidase, which is vital to 

stabilizing the structures of many AcMNPV proteins and contributes to the overall structural 

properties of virions. Based on the high sequence conservation of Ac92, it is likely that key 

players in oxidoreductase pathways are similar in other baculoviral systems. Knowledge of the 

biochemical mechanisms of sulfhydryl oxidation in AcMNPV and the potential uses of this 

knowledge as explained above would likely be applied in other baculoviral systems. It is also 

possible that the conserved baculoviral sulfhydryl oxidase system could have similarities to other 

viral and cellular sulfhydryl oxidase systems yet to be discovered.  
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Clustal Omega multiple alignment of 80 sequenced Ac92 homologs in baculoviruses. The 

AcMNPV Ac92 protein query sequence was used as the input to NCBI BLAST against the 

sequences of 79 of its homologs in other baculovirus species and strains. Amino acid sites that 

are highly conserved are shaded in the sequence alignment. Conservation is additionally shown 

graphically and numerically below each amino acid residue (for example, 3 = 30% conservation 

of the specific amino acid residue site, and + = 100% conservation). Below the conservation 

information, a quality score of the alignment is depicted graphically. A consensus of the most 

commonly-occurring amino acid residue at each site second from the bottom. The bottom row, 

“occupancy”, graphically depicts sites at which any amino acid is present in all homologs. 

(A) Multiple sequence alignment of the first 144 amino acids of Ac92 homologs.  

(B) Multiple sequence alignment of amino acids 150-299 of Ac92 homologs.  

(C)Multiple sequence alignment of amino acids 300-420 of Ac92 homologs.  

 
  

Figure 2.1 Comprehensive multiple sequence alignment of 80 baculoviral FAD-linked 
sulfhydryl oxidases 
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Figure 2.2 
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Clustal Omega multiple alignment of 80 sequenced Ac78 homologs in baculoviruses. The 

AcMNPV Ac78 protein sequence was used as the input to NCBI BLAST against the sequences 

of 79 of its homologs in other baculovirus species and strains. Amino acid sites that are highly 

conserved are shaded in the sequence alignment. Conservation is additionally shown graphically 

and numerically below each amino acid residue site of the sequence alignment (for example, 3 = 

30% conservation of the specific amino acid residue site, and + = 100% conservation). Below the 

conservation information, a quality score of the alignment is depicted graphically. A consensus 

of the most commonly-occurring amino acid residue at each site second from the bottom. The 

bottom row, “occupancy”, graphically depicts sites at which any amino acid is present in all 

homologs. 

(A) Multiple sequence alignment of the first 132 amino acids of Ac78 homologs. The highly 

conserved IPLKL motif is located from amino acid residues 101-108 of the multiple sequence 

alignment. Additionally, Ac78 and its homologs contain a transmembrane motif (sites 61-83 of 

AcMNPV Ac78), despite a lack of conservation of specific amino acid residues at this site.  

(B) Multiple sequence alignment of amino acids 130-255 of Ac78 homologs. The FRF C-

terminal motif is located between amino acid residue sites 187-254 of this multiple sequence 

alignment.   

Figure 2.2 Comprehensive sequence alignment of Ac78 homologs 
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Figure 2.3  
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The Ac92 protein query sequence (A) or Ac78 protein query sequence (B) was entered into 

cNLS Mapper software, which predicts nuclear localization sequences (NLSs) specific to the 

importin α/β pathway by calculating NLS scores with four NLS categories. The NLS categories 

were generated using extensive amino acid replacement analysis in budding yeast to give 

positive or negative contribution scores to each amino acid residue, which contributes to the 

overall nuclear localization activity of the sequence. Because the importin α/β nuclear import 

pathway is highly conserved among eukaryotes, the prediction of the cNLS mapper based on 

yeast may still yield valuable information but may not be as effective in other species. Ac92 and 

Ac78 contained predicted NLS sequences with scores of 3.6 and 3.7, respectively. A GUS-GFP 

reporter protein fused to an NLS with a score of 3-5 localized to both the nucleus and the 

cytoplasm. Thus, both Ac78 and Ac92 contained sequences predicted by the cNLS mapper to 

have both cytoplasmic and nuclear localization.  

 

 
  
 
  

Figure 2.3 - Ac78 and Ac92 predict nuclear and cytoplasmic localization regions 
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Figure 2.4 
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Figure 2.4 
  

Sample Percent of cells in which 
Ac78 localized perinuclearly 
in cytoplasm in evenly-
distributed fashion 

Percent of cells in 
which Ac78 was 
found on plasma 
membrane 

Percent of cells in which 
Ac92 localized 
perinuclearly in cytoplasm 
in punctate fashion 

pAc78-HA  
24 h.p.t.  

60.9% (n=69) 89.9% (n=69) 00.0% (n=69) 

pAc92-GFP  
24 h.p.t. 

00.0% (n=77) 00.0% (n=77) 79.2% (n=77) 

pAc78-HA + 
pAc92-GFP  
24 h.p.t. 

62.5% (n=48) 93.8% (n=48) 70.8% (n=48) 

Sample Percent of cells in which 
Ac78 localized in 
intranuclear ring zone 

Percent of cells in 
which Ac78 was 
found on plasma 
membrane 

Percent of cells in which 
Ac92 localized in 
intranuclear ring zone 

pAc78-HA + 
vAc92-GFP  
48 h.p.t. 

96.0% (n=50) 32.0% (n=50) 92.0% (n=50) 

pAc78-HA + 
AcMNPV  
48 h.p.t. 

100.0% (n=31) 83.9% (n=31) NA 

vAc92-GFP  
48 h.p.t. 

00.0% (n=45) 00.0% (n=45) 100% (n=45) 

pAc78-HA + 
vAc92-GFP  
72 h.p.t. 

100.0% (n=44) 18.2% (n=44) 100% (n=44) 

pAc78-HA + 
AcMNPV  
72 h.p.t. 

100.0% (n=57) 28.1% (n=57) NA 

vAc92-GFP  
48 h.p.t. 

00.0% (n=58) 00.0% (n=58) 100.0% (n=58) 

C 
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Localization of Ac92 and Ac78 by immunofluorescence staining. Sf9 cells were transfected with 

the indicated viral (AcMNPV-Ac92-PH) or plasmid (pAc78HA or pAc92GFP) DNA, and Ac92 

and Ac78 localization were examined by confocal microscopy. SYTOX Orange was used to 

stain nuclei of the cells (blue). Ac78 was detected by anti-HA antisera (red). Ac92 contained a 

GFP fusion tag.  

(A) Ac92 localization was not affected by Ac78. Ac92 was expressed as a C-terminal EGFP 

fusion under hsp70 promoter, and its localization detected by visualizing GFP (green). 

(B) Localization of Ac92 and Ac78 in the presence of baculovirus infection. Ac92 was expressed 

as a C-terminal EGFP fusion in a polyhedrin+ AcMNPV, and its localization was detected by 

visualizing GFP (green). The merge shows a merge of the SYTOX Orange, Ac78HA, and 

Ac92GFP images. The bright field merge includes the bright field image in the merged images. 

Arrows indicate occlusion bodies in the nucleus of infected cells.  

(C) The images shown in parts (A) and (B) of this report were representative of the majority of 

cells analyzed. The percent of analyzed cells for which the indicated observations were observed 

are recorded in (C). A minimum of 2 biological replicates were performed for each condition.   

Figure 2.4 - Localization of Ac78 and Ac92 in the presence and absence of AcMNPV infection 
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Figure 2.5 
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*Nonspecific band  
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Sf9 cells were cotransfected with the indicated plasmids (pAc78HA, pAc78FLAG) or infected 

with the indicated virus (vAc92FLAG or AcMNPV) as indicated above each lane. At 24 h p.t. or 

48 h p.i., cells were collected and lysed for immunoprecipitation using the antibodies indicated 

as “IP” to the left. Transferred proteins were probed with the antibodies indicated as “WB” to the 

left. Input = input cell lysates; IgG control = control immunoprecipitation with mouse IgG; IP = 

immunoprecipitation with the antibody indicated to the left. Plasmid names: pAc78HA = 

phsp70-Ac78HA; pAc78FLAG = phsp70-Ac78FLAG. Virus names: AcMNPV = wildtype 

AcMNPV L1 strain; vAc92FLAG = rescue virus containing GFP and C-terminally-tagged Ac92-

FLAG.   

(A) Co-immunoprecipitation of pAc78HA with vAc92FLAG 

(B) Co-immunoprecipitation of Ac78HA and Ac78FLAG in the presence or absence of other 

AcMNPV proteins.  

  

Figure 2.5 - Co-immunoprecipitation of Ac78 and Ac92 
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Figure 2.6 
 

 

 
 

  



61 

The result that at least two differentially-tagged Ac78 molecules associated during AcMNPV 

infection but not in the absence of other AcMNPV proteins indicates that one of several 

possibilities may have occurred. One possibility is that Ac78 complexed with a cellular protein 

that was modulated during AcMNPV infection. For example, a cellular protein could have 

experienced a conformational change such as phosphorylation or methylation by an AcMNPV 

protein during infection that allowed for its association with Ac78. Alternatively, expression of 

the cellular protein may have been upregulated during AcMNPV infection. A second possibility 

is that Ac78 associates with other AcMNPV protein(s). A third possibility is that Ac78 associates 

with a complex of other viral and cellular proteins that does not form in the absence of AcMNPV 

infection.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2.6 - Possible models of Ac78 physical interaction 
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Table 2.1 
 
 

 

Virus 
abbreviation  

Virus name 

AcMNPV Autographa californica 
nucleopolyhedrovirus 

AdhoNPV Adoxophyes honmai 
nucleopolyhedrovirus 

AdorNPV Adoxophyes orana 
nucleopolyhedrovirus 

AgipMNPV Agrotis ipsilon multiple 
nucleopolyhedrovirus 

AgseNPV-A Agrotis segetum 
nucleopolyhedrovirus A 

AgseNPV-B Agrotis segetum 
nucleopolyhedrovirus B 

ApNPV Antheraea pernyi 
nucleopolyhedrovirus 

AgMNPV Anticarsia gemmatalis 
multiple 
nucleopolyhedrovirus 

ApciNPV Apocheima cinerarium 
nucleopolyhedrovirus 

BomaNPV Bombyx mandarina 
nucleopolyhedrovirus 

BmNPV Bombyx mori 
nucleopolyhedrovirus 

BusuNPV Buzura suppressaria 
nucleopolyhedrovirus 

CapoNPV Catopsilia pomona 
nucleopolyhedrovirus 

CfDEFMNPV Choristoneura 
fumiferana DEF 
multiple 
nucleopolyhedrovirus 

CdMNPV Choristoneura 
fumiferana multiple 
nucleopolyhedrovirus 

ChmuNPV Choristoneura murinana 
nucleopolyhedrovirus 

ChroNPV Choristoneura rosaceana 
nucleopolyhedrovirus 

Virus 
abbreviation  

Virus name 

ChchNPV Chrysodeixis chalcites 
nucleopolyhedrovirus 

ClbiNPV Clanis bilineata 
nucleopolyhedrovirus 

CoveMNPV Condylorrhiza 
vestigialis MNPV 

DapuNPV Dasychira pudibunda 
nucleopolyhedrovirus 

DekiNPV Dendrolimus kikuchii 
nucleopolyhedrovirus 

EcobNPV Ectropis obliqua 
nucleopolyhedrovirus 

EppoNPV Epiphyas postvittana 
nucleopolyhedrovirus 

EupsNPV Euproctis 
pseudoconspersa 
nucleopolyhedrovirus 

HearNPV-Aus Helicoverpa armigera 
nucleopolyhedrovirus 
strain Australia 

HearNPV-G4 Helicoverpa armigera 
nucleopolyhedrovirus 
G4 

HearNPV Helicoverpa armigera 
nucleopolyhedrovirus 

HezeNPV Helicoverpa zea single 
nucleopolyhedrovirus 

HycuNPV Hyphantria cunea 
nucleopolyhedrovirus 

LafiNPV Lambdina fiscellaria 
nucleopolyhedrovirus 

LeseNPV Leucania separata 
nucleopolyhedrovirus 

LoMNPV Lonomia obliqua 
multiple 
nucleopolyhedrovirus 

LaxyMNPV Lymantria xylina 
nucleopolyhedrovirus 
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Virus 
abbreviation  

Virus name 

LydiMNPV Lymantria dispar 
multiple 
nucleopolyhedrovirus 

MabrMNPV Mamestra brassicae 
multiple 
nucleopolyhedrovirus 

MacoNPV-A Mamestra configurata 
nucleopolyhedrovirus A 

MacoNPV-B Mamestra configurata 
nucleopolyhedrovirus B 

MvNPV Maruca vitrata 
nucleopolyhedrovirus 

OrleNPV Orgyia leucostigma 
nucleopolyhedrovirus 

OpMNPV Orgyia pseudotsugata 
multiple 
nucleopolyhedrovirus 

OxocNPV Oxyplax ochracea 
nucleopolyhedrovirus 

PespNPV Peridroma 
alphabaculovirus 

PlxyMNPV Plutella xylostella 
multiple 
nucleopolyhedrovirus 

PiSNPV Pseudoplusia includens 
SNPV IE 

RoMNPV Rachiplusia ou MNPV 
SeMNPV Spodoptera exigua 

multiple 
nucleopolyhedrovirus 

SfMNPV Spodoptera frugiperda 
multiple 
nucleopolyhedrovirus 

SpliMNPV Spodoptera littoralis 
nucleopolyhedrovirus 

SlNPV Spodoptera litura 
nucleopolyhedrovirus 

SlNPV-II Spodoptera litura 
nucleopolyhedrovirus II 

SujuNPV Sucra jujuba 
nucleopolyhedrovirus 

ThorNPV Thysanoplusia 
orichalcea 
nucleopolyhedrovirus 

Virus 
abbreviation  

Virus name 

TnNPV Trichoplusia ni single 
nucleopolyhedrovirus 

AdorGV Adoxophyes orana 
granulovirus 

AgseGV Agrotis segetum 
granulovirus 

PrGV Pieris rapae 
granulovirus 

ChfuGV Choristoneura 
fumiferana granulovirus 

ClanGV Clostera anachoreta 
granulovirus 

ClasGV-B Clostera anastomosis 
granulovirus B 

CmGV Cnaphalocrocis 
medinalis granulovirus 

ClGV Cryptophlebia leucotreta 
granulovirus 

CpGV Cydia pomonella 
granulovirus 

DsGV Diatraea saccharalis 
granulovirus 

ErelGV Erinnyis ello 
granulovirus 

HearGV Helicoverpa armigera 
granulovirus 

MlGV Mocis latipes 
granulovirus 

PhopGV Phthorimaea operculella 
granulovirus 

PiGV Plodia interpunctella 
granulovirus 

PlxyGV Plutella xylostella 
granulovirus 

PsunGV Pseudalatia unipuncta 
granulovirus 

SfGV Spodoptera frugiperda 
granulovirus 

SlGV Spodoptera litura 
granulovirus 

TnNPV Trichoplusia ni single 
nucleopolyhedrovirus 
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Virus 
abbreviation  

Virus name 

XcGV Xestia c-nigrum 
granulovirus 

NeabNPV Neodiprion abietis 
nucleopolyhedrovirus 

NeleNPV Neodiprion lecontei 
nucleopolyhedrovirus 

NeseNPV Neodiprion sertifer 
nucleopolyhedrovirus 

CuniNPV Culex nigripalpus 
nucleopolyhedrovirus 

PeluNPV Perigonia lusca single 
nucleopolyhedrovirus 

UpNPV Urbanus proteus 
nucleopolyhedrovirus 
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Table 2.1 – Table of baculovirus abbreviations used in Figures 2.1 and 2.2 
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Chapter 3 - Interaction of C protein with the measles virus 

replication complex 

 
 3.1 Introduction 

 3.1.1 An overview of measles virus 

Measles virus (MeV) is human-specific pathogen belonging to the Morbilivirus genus, 

Paramyxovirinae subfamily, Paramyxoviridae family, and Mononegavirales order (ICTV, 

2017). MeV and other closely related viruses are actively being researched due to their 

significant impacts as pathogens of humans and economically important livestock and pets. For 

example, rinderpest virus, another Morbilivirus and causative agent of a highly fatal disease in 

even-toed ungulates, threatened the human food supply since the origin of herding but became 

the second pathogen in history to be eradicated in 2011 (World Health Organization, 2011). 

Canine distemper virus, which causes a lethal disease in the respiratory system of puppies and 

dogs and threatens pets of the some 48% of U.S. households that own canines, recently expanded 

its host range into nonhuman primates (APPA, 2017; Sakai, 2013). MeV has infected humans for 

millennia and is the causative agent of the disease called measles. The first century Persian 

physician Rhazes first demarcated Measles from other diseases in “A Treatise Smallpox and 

Measles” (Rāzī & Greenhill, 1847). Measles has the potential to be lethal and includes 

symptoms of rash, malaise, anorexia, coryzva, and conjunctivitis. Prior to the development of the 

Edmonston-strain MeV attenuated vaccine in 1963, a vast majority of humans contracted MeV 

during childhood (Hendriks & Blume, 2013). It is reported that 97% of people who receive two 

doses containing MeV-Edm are protected from Measles, and vaccination strategies against MeV 

A 

B 
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have been highly effective when implemented properly (CDC, 2017). Although MeV is capable 

of entering the cells of humans, nonhuman primates, and some rodents, an active infection can 

only be established in humans (Zhu et al., 1997; Van et al., 1995). Because there are no other 

known reservoirs of MeV, MeV is an ideal target for eradication (WHO, 2006). In addition to 

serving as a vaccine against wild type MeV, vaccine-strain MeVs have oncolytic tendencies in 

some human cancers and are active subjects of numerous clinical trials (Msaouel et al., 2018).  

Like all other members of Mononegavirales, MeV contains a negative-sense, single-stranded 

RNA genome. The MeV genome is non-segmented, 15,894 nucleotides (nt) in length, and 

encodes six individual genes that encode eight protein products: 1. nucleoprotein (N), 2. 

phosphoprotein (P), V protein, and C protein, 3. matrix protein (M), 4. fusion protein (F), 5. 

hemagglutinin (H), and 6. large RNP-dependent RNA polymerase (L) (Figure 3.1A; Lamb & 

Parks, 2013; Griffin, 2013; Horikami, 1995).  MeV enters cells of the immune, epithelial, and 

respiratory systems via binding of H to specific receptors: signaling activation lymphocyte 

molecule (SLAM) expressed on immune cells, CD46 expressed on epithelia, and Nectin-4. Upon 

binding to the receptor, H undergoes a conformational change that allows F to trigger fusion 

between the virion and cell membranes (Malvoisin and Wild, 1993). In the cytoplasm, L and P 

serve functions involved in the replication of the MeV genome, which is encapsidated by N. 

During assembly of new viral particles, M functions in the assembly of new MeV particles by 

linking ribonucleoproteins with envelope proteins. C and V are encoded by alternative open 

reading frames of the P gene and have known functions in modulation of the host innate immune 

defense (Audsley & Moseley, 2013; Parks & Alexander-Miller, 2013; Chambers & Takimoto, 

2009).  
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 3.1.2 Measles virus replication complex and C protein 

MeV replication occurs in the cytoplasm of infected cells. The ribonucleoprotein (RNP)-

dependent RNA polymerase complex consists of the catalytic subunit, L, which interacts with its 

cofactor, P. The template consists of a viral negative-sense genomic RNA encapsidated by N, 

which together form a helical RNP structure. Replication begins at the 3’ end of the template, 

where the replication complex associates with the template and P interacts with N (Figure 3.1C). 

The product of replication is a complementary nascent RNA, which is co-transcriptionally 

encapsidated with N (Longhi, 2009). The MeV replication complex is able to use both genomic 

or antigenomic RNA as a template for replication. Genomic (negative-sense) RNA serves as a 

template for the generation of full-length antigenomic (positive-sense) RNA strands and capped 

and polyadenylated mRNAs. Processed mRNAs can then be translated into protein using the host 

translational machinery, and full-length positive-sense antigenomic RNAs can be used as the 

templates for generating new negative-sense genomes (Rima & Duprex, 2009).  

Replication by the MeV replication complex is error-prone and occasionally defective genomes 

are produced. The laboratory of Dr. Roberto Cattaneo previously showed that MeV-Edm and 

wild-type MeV (MeV-wt) strains lacking C generated 10 times more 5′ copy-back defective 

interfering RNAs (DI-RNAs), which are potent inducers of innate immune response including 

induction of PKR and interferon (IFN) (Pfaller et al., 2014; Holland et al., 1980). Additionally, 

there is evidence that C requires L to localize to the site of viral infection with the known 

components of the MeV replication complex: N, P, and L (Cattaneo Lab unpublished data; Ito et 

al., 2013). These observations suggest that C may function as a quality control factor in MeV 

replication by serving as a stabilizing component of members of the replication complex. 

However, a mechanism by which C may interact with the MeV replication complex has yet to be 
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shown. In order to gain insight into the biochemical mechanism by which C is involved in MeV 

replication, we performed co-immunoprecipitation experiments between C and N, P, and L.  

Co-immunoprecipitation experiments showed that during MeV infection, C associated with large 

protein (L) and phosphoprotein (P), which comprise the MeV replication complex, and 

nucleoprotein (N), which encapsidates the RNA genome. Expression constructs for full-length 

MeV L were generated, and L was successfully expressed following transfection. Subsequent co-

immunoprecipitation experiments showed that C did not precipitate with L, P, nor N when 

transfected in isolation from MeV infection, indicating that another factor resulting from MeV 

infection is necessary for the association of C with the MeV replication complex. The results of 

this investigation are an important step in elucidating a biochemical mechanism underlying the 

function of C as a quality control factor in MeV replication. MeV has been attenuated and is a 

highly effective vaccine against pathogenic MeV and an active subject of clinical research as an 

oncolytic agent for treating a number of human cancers.   

 

 3.2 Materials and methods 

Virus and cells 

A MeV containing FLAG-tagged C and HA-tagged L (MeV-vac2-2tags) was generated using 

methods as recently described (Ma et al., 2018). Briefly, the Moraten vaccine strain MeV (MeV-

vac2) (Pfaller et al. 2015) was modified by the knockout of endogenous C from the P/V/C gene, 

insertion of a gene encoding FLAG-tagged C between H and L genes, and the addition of an HA 

tag to the L gene (Figure 3.1B). 



7 

The 293T cells used in all transfection experiments are from clone 293T/17 purchased from 

ATCC (catalog number CRL-11268).  

 

Plasmid cloning 

Expression constructs for full-length L with an HA tag at the N-terminus (pCAGGS-HAL) and a 

full-length L with an HA tag at the C-terminus (pCAGGS-LHA) were cloned into the pCAGGS 

vector provided by Friedemann Weber (described in Niwa et al., 1991). The HAL insert for 

pCAGGS-HAL was PCR-amplified from pCG-HAL plasmid using a forward primer containing 

NotI (5'- ATCTGGCGGCCGCGCCACCATGTACCCATACGATGTTCCAG -3') and reverse 

primer containing BamHI (5'-GATCG GGATCC TTAGTCCTTAATCAGGGCACTG-3'). The 

LHA insert for pCAGGS-LHA was PCR-amplified from the pCG-LHA plasmid using a forward 

primer containing NotI (5'-ATCTGGCGGCCGCGCCACCATGGACTCGCTATCTGTCAAC-

3') and a reverse primer containing BamHI (5'-

GATCGGGATCCTTAAGCGTAATCTGGAACATC-3'). The respective PCR products were 

purified (PCR purification kit; Qiagen, Valencia, CA), digested with NotI and BamHI (New 

England BioLabs, Ipswich, MA), purified again, and then ligated with the NotI/BamHI-

linearized pCAGGS vector. Ligation products were transformed into OneShot TOP10 cells (Life 

Technologies, Carlsbad, CA), and the bacteria were plated on LB-ampicillin agar plates and 

incubated at 37°C for 14 to 20 hours. Single colonies were picked and resuspended in 10 µl H2O, 

and 5 µl of the suspension was subjected to colony PCR using a forward primer, which binds to 

the backbone upstream of the L insert (5’-TACAGCTCCTGGGCAACG-3') and a reverse primer 

which binds within the L open reading frame (5'-CTGTAAGCGTGAGGGAC-3') and a 2X PCR 

master mix (Promega, Madison, WI). Clones with individual inserts, as analyzed by 1% agarose 
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gel electrophoresis, were selected and grown in 2 ml LB-ampicillin, and plasmids were extracted 

using a plasmid minikit (Qiagen,Valencia, CA). Sequences were determined by Sanger 

sequencing using the same forward primer which binds to the backbone upstream of L (5'-

TACAGCTCCTGGGCAACG-3') and a reverse primer which binds to the backbone downstream 

of the L insert (5'-GCCAGAAGTCAGATGCTC-3'). 

An expression construct encoding FLAG-tagged C (pCAGGS CFLAG) was cloned into the 

pCAGGS vector. The CFLAG insert sequence was amplified from the pCR3-CFLAG template using 

a forward primer containing NotI restriction site (5'-

ATCTGGCGGCCGCGCCACCATGCATAGGAGGCACCTTGTGG-3') and a reverse primer 

containing BamHI restriction site (5'-CGATCGGATCCTTAGCTCTGGGTGTATAGCCTTG-

3'). The PCR product was purified, digested with NotI and BamHI, purified again, and then 

ligated with the NotI/BamHI-linearized pCAGGS vector. Ligation, bacterial growth, colony 

PCR, and sequence verification were performed using the same methods (and primers) described 

above for the cloning of pCAGGS-HAL and pCAGGS-LHA.  

The plasmid expressing untagged N cloned into the pCAGGS vector (pCAGGS-N) was provided 

by Veronika von Messling (described in Schneider et al., 2003).  

The plasmid expressing an untagged P gene (C knockout) cloned into the pCAGGS vector 

(pCAGGS-P) was generated by Christian Pfaller (unpublished data).  

 

Transfection and infection assays 

Transfections were performed in 293T cells with Lipofectamine 3000 and the methods described 

in the instructions from the manufacturer. Briefly, the plasmid DNA was mixed with 

Lipiofectamine 3000 and diluted in Opti-MEM. The mixture was allowed to incubate for 45 
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minutes with gentle mixing every 15 minutes before addition onto 293T cells. 293T cells were 

transfected with the individual or indicated combinations of plasmid. Amounts for each plasmid: 

2 µg each of pCAGGS-N, pCAGGS-P, or pCAGGS-L, or 3 µg of pCAGGS-CFLAG, pCAGGS 

empty vector: up to a total of 8 µg for each transfection reaction. After 4 hours of incubation at 

37°C, the unsupplemented media was replaced with DMEM supplemented with 10% Fetal 

Bovine Serum (FBS). Alternatively, cells were infected with MeV-vac2-2tags at an MOI of 0.1 

TCID50 by allowing cells to rock for 1 hour at room temperature (RT) and then incubating at 

37°C for 48 hours.  

 

Co-immunoprecipitations assays 

Cells were transfected as described above with the indicated combinations of plasmids 

expressing Flag-, HA-, or untagged genes or infected with MeV-vac2-2tags at an MOI of 0.1 

TCID50. At time points of 24 hours post-transfection (h.p.t.) or 48 hours post infection (h.p.i.), 

cells in a 35-mm dish were harvested using IP/lysis buffer (50 mM Tris, pH7.5; 150 mM NaCl; 2 

mM EDTA; 1 mM Na3VO4; 0.5% NP-40) and freeze-thawed twice. The lysates were mixed with 

anti-FLAG affinity gel to pull down CFLAG. After incubation at 4°C for 3 hours with rolling, the 

beads were collected by centrifugation and washed five times with IP/lysis buffer for 15 min 

each. Following addition of 25 μl of 2X urea sample buffer (200 mM Tris–HCl, pH 6.8; 8M 

Urea; 5% (w/v) SDS; 0.1 mM EDTA; 0.03% (w/v) Bromphenol blue; 1.4% (w/v) DTT), the 

samples were heated and shook at 99°C for 10 min. Samples were immediately analyzed by 

Western blotting. 

 

 



10 

Immunoblotting  

Protein samples were resolved by SDS-8% PAGE (L-containing samples) or SDS-14% PAGE 

(C-containing samples), transferred onto a PVDF membrane (Millipore-Sigma), and probed with 

one of the following primary antibodies: anti-N505 1:5000 (Toth et al. J Virol 2009), anti-P254 

1:5000 (Toth et al. J Virol 2009), anti-C2 1:5000 (Devaux et al. J Virol 2004), anti-L2170 1:1000 

(unpublished), anti-FLAG M2 1:5000 (Sigma-Aldrich, St Louis, MO), or anti-HA 1:1000 

(Sigma-Aldrich, St Louis, MO), followed by incubation with 1:25,000 dilution of anti-rabbit 

HRP or anti-mouse HRP (Jackson Immunoresearch, West Grove, PA). Blots were developed 

using SuperSignal West Pico Chemiluminescent substrate (Thermo Fisher, Waltham, MA) and 

exposed on Advansta LucentBlue x-ray film.  

 

 3.3 Results 

 3.3.1 Co-immunoprecipitation of C, N, and P in the presence or absence of MeV  

To test whether C interacts with the MeV replication complex, we transfected 293T cells with 

pCAGGS expression vectors for N, P, and CFLAG and tested whether N or P co-

immunoprecipitated with C independent of MeV infection. We hypothesized that C interacts 

with one of the members of the MeV replication complex: N, P, or L. Our results showed that in 

the absence of MeV infection, neither N nor P supplied in isolation of other MeV proteins co-

precipitated with CFLAG (Figure 3.2). Alternatively, we infected 293T cells with a MeV 

containing a FLAG-tagged C protein and an N-terminally HA-tagged L (MeV-vac2-2tags). 

Based on our hypothesis that C interacts with one of the members of the MeV replication 

complex and prior knowledge that L interacts with P and that P interacts with N, we 

hypothesized that C would co-precipitate with both N and P during MeV infection. Our results 
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showed that in MeV-vac2-2tags infection, N, P, and the N-P complex co-precipitated with 

CFLAG. These results indicated that C is indeed a part of the MeV replication complex, but that C 

requires an additional protein produced during MeV infection beyond N and P in order to 

associate with the complex.  

 

 3.3.2 Co-immunoprecipitation of C and L in the presence of MeV 

We tested whether CFLAG co-immunoprecipitated with HAL in the presence of MeV infection. 

Our results showed that HAL co-precipitated with CFLAG during MeV infection as detected with 

antibodies against HA or L (Figure 3.2C,D).  We attempted to test whether CFLAG precipitated 

with HAL in the absence of MeV infection by co-transfecting the pCAGGS-CFLAG construct with 

the pCR3- HAL. However, HAL was not expressed at detectable levels in the input after multiple 

experimental attempts.  

 

3.3.3 Cloning and expression of L 

At slightly under 250 kDa, L is challenging to express from a plasmid vector independent of the 

virus due to its large size. Because our preexisting expression constructs for L (pCR3-HAL and 

pCG-LHA) did not express in our system and another preexisting expression construct for L 

(pCG-HAL) did not reliably express in our system, we cloned two new expression constructs for 

L (pCAGGS-HAL and pCAGGS-LHA) in attempt to increase L expression. We reasoned that the 

pCAGGS vector may better express a large insert like full-length L due to previous experience in 

designing and expressing other MeV genes. Such expression construct could be used to test the 

interaction between C and L in the absence of other MeV proteins. pCAGGS-HAL and pCAGGS-

LHA were cloned as described in the methods above and successfully expressed when 
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individually transfected into 293T cells (Figure 3.4B). Expression of pCAGGS-HAL was noted in 

all lanes when Western blotting using HA, with highest expression detected in samples in which 

the cells were most confluent.  

 

 3.4 Conclusions 

From our results, we concluded that C associated with L, P, and N of the MeV replication 

complex during MeV infection. We concluded that C did not precipitate with N or P when 

expressed in 293T cells in the absence of viral infection and additional methods are required to 

characterize the association between C and the MeV replication complex. We designed and 

cloned constructs of HA-tagged L and concluded that full-length L can be expressed after 

transfection in 293T cells. We developed a model of MeV L based on the structure of the 

homologous VSV L, which aided in the design of truncated L constructs. Based on our results, 

we propose an updated model of the MeV replication complex, in which C physically associates 

with the complex.  

 

 3.5 Discussion  

Although the pCR3-CFLAG construct successfully expressed C in our transfected cells, we cloned 

CFLAG into the pCAGGS vector in order to normalize its expression to that of pCAGGS-N, 

pCAGGS-P, p-CAGGS-HAL, or pCAGGS-LHA. Based on previous experience, the pCAGGS 

vector was superior to other vectors in expressing MeV proteins in our 293T cell transfection 

system.  

The findings that C co-precipitated with L, N, and P during MeV infection but not with N, P, or 

the N-P complex independent of MeV infection indicate that C physically associates with the 
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MeV replication complex. However, these results do not show specifically which protein or 

proteins associated with the MeV replication complex to which C may bind. Thus, determining 

the specific protein(s) in the replication complex and characterizing the C interaction site 

warrants further investigation. Based on the interaction of C with the replication complex during 

infection, we hypothesize that C interacts with one of the viral components of the replication 

complex, N, P, or L. Future directions of this work involve testing this hypothesis by utilizing 

protein complement assays to test whether a direct interaction of C with L, P, N, or combinations 

thereof exists and using Förster resonance energy transfer (FRET) to show the physical distance 

between these proteins in cells. Our results showed that that N and P did not precipitate with C 

when co-expressed in the absence of MeV infection (Figure 3.2). Further, preliminary 

experiments carried out later in 2017 indicated that C and full-length L did not co-precipitate 

when co-expressed in isolation of MeV (Cattaneo Lab unpublished data). The results that none 

of the known components of the MeV replication complex co-precipitated with C when 

expressed in isolation of MeV infection indicates that viral infection provides an additional 

factor that is not provided when proteins are expressed from transfected plasmids. For example, 

viral and cellular protein changes induced by other viral genes may be necessary for the 

interacting members of the replication complex to be in a conformation that allows for the 

association of C. While the transfection and co-immunoprecipitation approach provided valuable 

information by proving that C associates with the MeV replication complex, the approach was 

unable to determine the precise member with which C interacts. Nonetheless, the results of these 

co-immunoprecipitation experiments provided important progress in elucidating a biochemical 

mechanism underlying the function of C as a quality control factor in MeV replication.  
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The fundamental knowledge that C associates with the MeV replication complex provides an 

additional tool that could potentially be exploited in the rational design of modified MeV vectors 

for oncolytic virotherapy. It has been shown that both vaccine and wild-type MeV strains lacking 

C generate increased numbers of DI-RNAs, which activate innate antiviral immune response 

pathways, including activation of protein kinase R and interferons (Pfaller et al., 2014; Pfaller et 

al., 2015). Vaccine-strains MeV-Edm and MeV-vac2 are active subjects of research and 

development as oncolytic viruses to selectively eliminate a number of human cancers due to 

proven safety in humans and innate oncolytic tendencies (Msaouel et al., 2018). Thus, it is 

possible that future characterization of the C interaction site could serve as a target for improving 

the oncolytic potency of MeV. For example, one could hypothesize that residues in the 

interaction site could be mutated to disrupt the MeV replication complex-C interaction, 

decreasing the fidelity of replication and leading to the generation of additional DI-RNAs. These 

DI-RNAs would activate cellular stress and innate immune responses of infected cells, leading to 

the natural destruction of cancer cells selectively infected with the oncolytic MeV strain. 

Moreover, this work adds to our understanding of an important cofactor required for optimal 

MeV replication, which is also encoded by other closely-related viruses. Because a number of 

extant and emerging pathogens of humans and animals exist within the Paramyxoviridae family, 

this increased biochemical understanding of viral replication could potentially aid in the 

development of novel antiviral therapies.   

Our investigation between MeV and C are an important step in elucidating a biochemical 

mechanism underlying the function of the small accessory protein C as a quality control factor in 

MeV replication. In a different viral system, our characterization of the relationship between the 

small accessory protein Ac78 and the AcMNPV sulfhydryl oxidase is a preliminary step in a 
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broader effort to elucidate important biochemical pathways underlying the poorly described 

structural changes in capsid proteins and other proteins involved in virion stability, folding, and 

infectivity. Taken together, the investigations of Ac78 and C and their respective relationships 

with the AcMNPV sulfhydryl oxidase and the MeV replication complex adds knowledge of 

biochemical mechanisms underlying the important functions of small accessory proteins 

containing less than 200 amino acids in viral replication processes of two different viral systems.  
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(A) Schematic representation of the MeV genome. In the standard MeV, C protein is expressed 

from the P/V/C gene.  

(B) Our modified virus MeV-vac2-2tags expresses both a FLAG-tagged C (CFLAG) from an 

additional gene between H and L genes and an HA-tagged L protein (HAL). The endogenous C 

was deleted from this virus.  

(C) The MeV ssRNA genome is encapsidated by N. L and P form the viral RNA-dependent 

RNA polymerase, which extracts the RNA molecule from the nucleocapsid stepwise during 

synthesis. P walks the polymerase along the nucleocapsid lattice, while L confers all catalytic 

functions. The template and nascent ssRNA strands are immediately separated and encapsidated 

with N. Additionally depicted is our preexisting hypothesis that C physically associates with this 

replication complex and serves as an important quality control factor. 

  

Figure 3.1 - MeV genome organization and schematic representation of the viral 
replication complex 
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Figure 3.2 
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Figure 3.2: C co-immunoprecipitated with L, N, and P during MeV infection but did not 
associate with N, P, or the N+P complex in the absence of MeV infection 
(A) C co-immunoprecipitated with P in the presence of MeV infection but did not co-

immunoprecipitate with P or the N+P complex in the absence of MeV infection. Western blot 

analysis of lysates from 293T cells infected with MeV-vac2-2tags or transfected with the 

indicated combinations of expression vectors for N, P, and CFLAG. CFLAG was precipitated using 

anti-FLAG affinity gel. An antibody raised against full-length P was used for detection in 

Western Blot analysis.  

(B) C co-immunoprecipitated with N in the presence of MeV infection but did not co-

immunoprecipitate with N or the N+P complex in the absence of MeV infection. An antibody 

raised against full-length N was used for detection in Western Blot analysis. 

(C & D) C co-immunoprecipitated with L in the presence of MeV infection. Lysates from 293T 

cells infected with MeV-vac2-2tags or transfected with HAL (pCR3-HAL) or HAL+CFLAG plasmids. 

CFLAG was precipitated using anti-FLAG affinity gel. C was detected using an anti-FLAG 

antibody, and L was detected using anti-HA antibody (C) or anti-L antibody (D). 
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Figure 3.3 
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 (A) Lysates from 293T cells transfected with different plasmid constructs of HA-tagged L 

cloned into the pCG or pCR3 vectors and detected by Western blotting and anti-HA. Two L-

specific bands were detected in pCG-HAL: one band at the expected size for L of slightly smaller 

than 250 kDa and one band slightly larger than 150 kDa. Non-specific bands were present just 

below 100 kDa. No L was expressed from pCR3 vector.  

(B) Lysates from 293T cells infected with MeV-vac2-2tags or transfected with HA-tagged L 

cloned into the pCAGGS vector. Expression of pCAGGS-HAL was noted in all lanes, with 

highest expression occurring in samples in which the cells were most confluent. Detected with 

anti-HA. 

Figure 3.3 - L can be transiently expressed via transfection of 293T cells 
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