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Vortex dynamics in thin elliptic ferromagnetic nanodisks
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Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a

pure vortex state and for a situation with thermal fluctuations. The system is analyzed using numerical

simulations of the Landau–Lifshitz–Gilbert (LLG) equations, including the demagnetization field

calculated with a Green’s function approach for thin film problems. At finite temperature the

thermalized dynamics is found using a second order Heun algorithm for a magnetic Langevin

equation based on the LLG equations. The vortex state is stable only within a limited range of

ellipticity, outside of which a quasi-single-domain becomes the preferred minimum energy state. A

vortex is found to move in an elliptical potential, whose force constants along the principal axes are

determined numerically. The eccentricity of vortex motion is directly related to the force constants.

Elliptical vortex motion is produced spontaneously by thermal fluctuations. The vortex position and

velocity distributions in thermal equilibrium are Boltzmann distributions. The results show that vortex

motion in elliptical disks can be described by a Thiele equation. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4932353]

1. Introduction: Vortex dynamics in thin nanodisks

The magnetic vortex state in a thin nanodisk is an

intriguing stable yet dynamic state,1,2 for appropriate disk

radius a and thickness L. It attracts attention for application

as an oscillator3,4 and for data storage.5 The vortex state has

been mostly studied in nanodisks6,7 with a circular perimeter

due to the high symmetry, often made from Permalloy-79.

Thin film magnetic nanodots of elliptical shape have

been studied for their magnetization reversal properties8 and

as elements for artificial spin ice arrays.9 In this article the

changes expected for vortex dynamics in a disk of elliptical

perimeter are considered. Especially, it is important to

consider how the deviation from perfect circular symmetry

affects the time dynamics of a vortex. A second related goal

is to determine the limits of stability of the vortex state when

subjected to the non-circular boundary of an elliptical

nanodisk.

A vortex state can be the ground state when centered in

a circular disk, in contrast to either a quasi-single-domain

state or some multi-domain state. A vortex is characterized

by a curling of the nearly planar magnetization around a

localized core region centered at point R, where the magnet-

ization points perpendicular to the plane of the disk. This

structure gives the vortex a topological charge or gyrovector

G that interacts with applied forces and is essential in deter-

mining the dynamics.10,11 If produced away from the disk

center, a central force F¼ –kFR, where kF is a force

constant, acts on the vortex.12 This force is due to combined

effects of exchange interactions and demagnetization effects

that generate magnetic pole density on the disk edge. When

interacting with the gyrovector, the force leads to a periodic

orbital motion of the vortex core around the disk center

known as gyrotropic motion,13,14 that can be excited by

pulsed magnetic field.15 The motion has been described in

terms of the Thiele equation,10,11 which predicts the gyro-

tropic frequency as xG ¼ kF=G. In circular disks, different

predictions12,16–18 for kF result in xG roughly proportional to

L/a.13,19

For an elliptical disk, the breaking of the circular sym-

metry can be expected to modify the potential experienced

by the vortex into one that has different force constants kx

and ky along the two principal axes of the ellipse. Of course,

for an ellipse of high enough eccentricity, the quasi-single-

domain state will be preferred over a vortex state. The goal

here is to study how the gyrotropic frequency is determined

by the eccentricity, and as a part of that, to determine the

changes in the force constants with ellipse shape. A byprod-

uct is that the stability limit of the vortex state with ellipse

shape will emerge.

A Lagrange-constrained micromagnetics simulation12 is

used here to determine quasi-static vortex force constants, as

determined naturally from the microscopic exchange interac-

tions and the demagnetization field energy. A constraint is

used to hold a vortex with a desired core position R, from

which calculation of the total microscopic energy gives a

vortex effective potential U(R). Knowledge of this effective

potential is used in the Thiele equation for analysis of vortex

core motion theoretically. The vortex motion also is studied

by simulations of the microscopic time dynamics via micro-

magnetics20,21 either for zero temperature, solved by fourth

order Runge–Kutta (RK4) integration, or for finite tempera-

ture, using a Langevin equation for the magnetization

dynamics, solved by a second order Heun algorithm. At

finite temperature, the gyrotropic motion is spontaneously

generated22 just due to thermal fluctuations, further analyzed

in earlier work.16 The results of these studies provide support

for using the Thiele equation in vortex analysis in non-

circular disks. Further, effects are calculated as functions of

ellipse shape and size, and some asymptotic rules are found

for large disk size and moderate eccentricity.

The system energetics and calculational techniques

are described in Sec. 2. Results for force constants from

quasi-static vortex structures are found in Sec. 3. The
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modifications to Thiele dynamics, and gyrotropic frequen-

cies for an elliptical disk are discussed in Sec. 4. Thermally

generated vortex gyrotropic motion is considered in Sec. 5,

and the main conclusions of these studies are summarized in

Sec. 6.

2. Elliptic nanodisk magnetic system

The magnetic system is a thin elliptical disk of magnetic

material such as Permalloy with saturation magnetization

Ms, deposited on a nonmagnetic substrate. The disk has

height L (along z-axis) perpendicular to the substrate. The

perimeter of the disk in the xy-plane is assumed to be an

ellipse with semi-major axis a and semi-minor axis b,

defined by the equation

x2

a2
þ y2

b2
¼ 1: (1)

The volume of magnetic material in the disk is V¼pabL.

Instead of the eccentricity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

p
to characterize the

shape, we find that the ellipticity or geometric aspect ratio is

more relevant for this problem, defined by

e ¼ b=a � 1: (2)

The goals of this study include finding how the vortex gyro-

tropic frequency xG is affected by the elliptical shape of the

nanodisk, as characterized by ellipticity. An important aspect

of this study is to determine the effective potential U(R) in

which a vortex in the nanodisk moves. This requires a deter-

mination of the energy for placing a vortex with its core at

different positions R. The energy as determined by the local

magnetization M(r) will be used to describe the magnetiza-

tion dynamics, and as well, to find the vortex effective poten-

tial U(R).

2.1. Energetics

The microscopic energetics is assumed to be dominated

by exchange energy and demagnetization energy (or equiva-

lently, magnetostatic energy). The continuum Ham-iltonian

for the system is taken as

H ¼
ð

dV Arm � rm� 1

2
l0HM �M

� �
; (3)

where A is the exchange stiffness (around 13 pJ/m for

Permalloy), M is the spatially varying magnetization within

the disk, and m is the magnetization scaled by the saturation

value

m ¼M=Ms: (4)

In addition, the Hamiltonian includes the permeability of

free space l0 on the interactions of the demagnetization field

HM that is itself generated by M. There is no external

applied field considered here.

It is assumed that locally the magnetization stays satu-

rated with jM(r)j ¼Ms, however, its direction changes over

a length scale kex known as the exchange length. Equating

the exchange energy term (of order A=k2
ex) with the demag-

netization energy term (of order ð1=2Þl0M2
s , because also

HM is of order Ms) leads to the definition of the exchange

length

kex ¼
ffiffiffiffiffiffiffiffiffiffiffi

2A

l0M2
s

s
: (5)

Exchange is dominant over lengths less than kex. Any signifi-

cant variations in the direction of the magnetization take

place over distances greater than kex.

While exchange interactions are considered local, the

demagnetization field is determined by the global configura-

tion of M. From Gauss’ Law for magnetism, $�B¼ 0, with

magnetic induction B ¼ l0ðHM þMÞ, the demagnetization

field satisfies

$ �HM ¼ �$ �M: (6)

This is solved formally by introducing a scalar potential UM

such that HM ¼ �$UM, which then gives a Poisson equation

for the magnetistatics problem

�r2UM ¼ qM; qM � �$ �M: (7)

Thus, the instantaneous magnetization distribution deter-

mines the demagnetization field HM via an effective mag-

netic charge density qM.

2.2. Thin film demagnetization field

For a very thin magnet with L� a and L� b, demag-

netization energy leads to a natural tendency to keep M

nearly within the plane of the film.23 Further, there is little

variation in M through the thickness of the film. For this sit-

uation, an effective two-dimensional (2D) Green’s function

approach can be used,24 leading to a 2D magnetostatics

problem for H
M. This is done by averaging all responses

over the z-coordinate through the thickness of the magnetic

film. This was implemented in our previous studies16 on vor-

tex dynamics in circular nanodisks, where effective 2D

Green’s functions give the demagnetization field compo-

nents (a¼ x, y, z) by convolutions

HM
a ðrÞ ¼

ð
d2r0

X
b¼x;y;z

Gabðr� r0ÞMbðr0Þ: (8)

The nonzero elements of the Green’s function matrix are

Gxx;Gyy;Gzz and Gxy ¼ Gyx. The problem is separated: HM
z

perpendicular to the plane is determined solely by Mz while

HM
x and HM

y are determined only by in-plane components Mx

and My. Because the z-dependence has been averaged over,

r and r0 are 2D position vectors. Letting ~r ¼ r� r0 be a

2D displacement, the out-of-plane Green’s function for

~r ¼ j~rj > 0 is

Gzz ~rð Þ ¼ 1

2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 þ L2

p � 1

~r

 !
: (9)

Primarily, Gzz generates the field due to magnetic poles

(rM ¼ 6ẑ �M) on the top and bottom surfaces of the mag-

netic film. The other components of Gab generate the fields

due to variations in M over the xy plane and also the
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magnetic pole charges on the perimeter of the ellipse (with

thickness L). For ~r > 0, these components are

Gxx ~rð Þ ¼ L

2p~r4

~x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 þ L2

p � ~y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 þ L2

p
þ ~r

 !
; (10)

Gxy ~rð Þ ¼ L

2p~r4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 þ L2

p
þ ~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~r2 þ L2
p

þ ~r

~x~yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 þ L2

p (11)

with swapping ~x and ~y displacements to obtain Gyy and Gyx.

At large distances, these are the field of a point dipole in the

xy-plane. Whether finding the vortex potential or evolving

time dynamics, the field HM has a strong influence on the

energetics, and its calculation is the most time-consuming

part of the numerics.

2.3. The 2D micromagnetics approach

We use a micromagnetics20,21,25 calculation for the mag-

netization Mðri; tÞ ! Msm̂iðtÞ, where the 2D system is parti-

tioned into cells i at positions ri. A single layer of cells of

height L in the z-direction (perpendicular to the film) and

square cross section acell � acell in the xy-plane are used. See

Fig. 1 for a typical partitioning of a nanodisk with a vortex

present into cells. The cells are set symmetrically within the

ellipse, Eq. (1). In some cell labeled i there is a time-

dependent unit magnetization m̂i (t), such that the magnetic

moment is li ¼ La2
cellMsm̂i. Then, discretization of the con-

tinuum Hamiltonian (3) leads to the 2D micromagnetics

Hamiltonian in a form16

H ¼ �J
X

i;jð Þ
m̂i � m̂j þ

a2
cell

2k2
ex

X
i

~H
M

i � m̂i

" #
; (12)

where i,j label micromagnetics cells, and the exchange con-

stant between nearest-neighbor cells is

J ¼ 2AL: (13)

The demagnetization field enters scaled by the saturation

magnetization of the medium

~H
M

i ¼ HM
i =Ms: (14)

The factor involving exchange length indicates how

exchange effects become more dominant for large exchange

length. For the assumptions of the micromagnetics approach

to be valid, one should have adequately small cell size,

acell < kex, making the demagnetization term a perturbation

on the exchange term.

The Green’s matrix Gab also must be discretized on the

lattice of cells. The contribution to the HM field at position r

from a source cell at ri is proportional to Gabðr� riÞa2
cell,

including the area a2
cell of the source cell. The elements of

Gab become singular at ~r ! 0, as for any Green’s operator

for a serf-interaction. That derivation, however, did not

account correctly for ~r ¼ 0 because it was assumed that the

field was measured outside the source cell. A given cell can

also produce a finite averaged demagnetization field within

itself, however, so the point ~r ¼ 0 needs to be treated cor-

rectly. We do this12,16 by using the Green’s function compo-

nents averaged over a circle whose area is equivalent to the

cell area a2
cell. The components of Gab at the origin ~r ¼ 0 are

replaced by their values averaged over the circle of radius r0,

such that pr2
0 ¼ a2

cell. This gives

Gzz 0ð Þ ¼ hGzzi0 ¼ �
1

La2
cell

Lþ r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2

0

q� �
: (15)

This is the same as Gzzð0Þ ¼ �Nz=a2
cell, where Nz is the lon-

gitudinal demagnetization factor of a cylinder that gives the

internal field due to surface magnetic charges at its ends.

The factor of cell area a2
cell cancels out when the integral (8)

is converted to a sum. In a similar way, averaging the trans-

verse components of Gab over a circle of radius r0 leads to

setting Gxy(0)¼Gyx(0)¼ 0 and

Gxx 0ð Þ ¼ Gyy 0ð Þ ¼ hGxxi0 ¼ �
1

2La2
cell

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2

0

q
� r0

� �
:

(16)

This is the same as Gxxð0Þ ¼ �Nx=a2
cell and Gyyð0Þ

¼ �Ny=a2
cell, where Nx¼Ny is the transverse demagnetiza-

tion factor for a cylinder. For long thin circular cylinders, the

formula gives the expected value Nx¼Ny � 1/2. One can see

that the requirement Nx þ Ny þ Nz¼ 1 is then reflected in

the relation

Gxx 0ð Þ þ Gyy 0ð Þ þ Gzz 0ð Þ ¼ 1

a2
cell

: (17)

With the Green’s matrix defined on a square grid, the calcu-

lation of H
M can be accelerated by the use of a fast Fourier

FIG. 1. Vortex structures at times (a) s¼ 2050 and (b) s¼ 3250, for a disk

with a¼ 60 nm, e¼ 0.5, and L¼ 10 nm. The cell size is acell¼ 2 nm. Arrows

show only the projection of (mx
i ;m

y
i ) on the page. Green line (red open)

arrows indicate positive (negative) values of mz
i . The core appears as a hole

in this projection. Exchange, in-plane and out-of-plane demagnetization

energies are ex, ddx, and ddz, respectively. The vortex was initiated at

(0,16 nm) from the disk center with Lagrange-constrained relaxation. It has

been evolved forward in time via RK4 with damping a¼ 0.02 turned off at

s¼ 1600. The gyrotropic motion is clockwise.
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transform (FFT) approach,26 replacing the convolution inte-

gral in real space with a product in reciprocal space. Thus,

we choose a N�M grid with a binary size 2n � 2m, where n
and m are integers such that 2ð2aÞ � Nacell and

2ð2bÞ � Macell. This ensures that the computation grid is at

least twice the size of the ellipse along both axes. That is

necessary to avoid the wraparound problem of the FFT, so

that the simulation gives the demagnetization field of an iso-

lated nanodisk, without interaction effects due to aliasing.

The FFT of Gab can be done once at the start of the calcula-

tions, but then FFT’s of the magnetization configuration are

continually carried out at every step of the simulations. The

(x,y) coordinate system is then set up with the origin at the

center of the ellipse, and the x-axis along the semi-major

axis (a), and they-axis along the semi-minor axis (b).

2.4. Dynamics

Each cell has a magnetic moment li ¼ lm̂i, where the

magnitude is l ¼ La2
cellMs. With the definition of the

Hamiltonian (12), each cell’s dynamics is governed by a

Landau–Lifshitz–Gilbert torque equation,27,28 including a

dimensionless damping parameter a

dli

dt
¼ cli � Bi �

a
l

li � cli � Bið Þ: (18)

c is the gyromagnetic ratio and Bi is the effective magnetic

field acting on the cell, obtained from

Bi ¼ �
dH
dli

: (19)

It is convenient to define a unit of magnetic induction B0 and

dimensionless field bi ¼ Bi=B0 and corresponding dimen-

sionless time s by

B0 ¼
J

l
¼ 2AL

La2
cellMs

¼ k2
ex

a2
cell

l0Ms; s ¼ cB0t : (20)

Then the dynamics follows an equation in dimensionless

quantities

dm̂i

ds
¼ m̂i � bi � am̂i � m̂i � bið Þ; (21)

where the dimensionless field is

bi ¼
Bi

B0

¼
X
j2z ið Þ

m̂j þ
a2

cell

k2
ex

~H
M

i

2
: (22)

The first term involves a sum only over the nearest neighbors

z(i) of site i; the second term shows how the demagnetization

field effect depends on the cell size. These fields are used to

determine the quasi-static vortex properties, such as force

constants in the vortex effective potential. The LLG equation

in the form (21) is also used here to get gyrotropic frequen-

cies for pure vortex states at zero temperature, solving it by a

fourth order Runge–Kutta integrator.

For time dynamics at nonzero temperature, thermal fluc-

tuations can be included by changing to a corresponding

Langevin equation based on the Landau–Lifshitz–Gilbert

equation,16 by including a damping term with parameter a

and stochastic magnetic inductions bs caused by

temperature. Suppressing the cell index i for simplicity, the

Langevin-LLG equation for one cell is

dm̂

ds
¼ m̂ � bþ bsð Þ � am̂ � m̂ � bþ bsð Þ½ 	: (23)

The net dynamics is a combination of the deterministic

motion due to b modified by the stochastic effects due to bs.

The strength of these stochastic fields is determined through

the fluctuation-dissipation theorem, which can be stated as

hbk
s ðsÞbk0

s ðs0Þi ¼ 2aT dkk0dðs� s0Þ: (24)

Indices kk0 refer to Cartesian components, which appear in a

Kronecker delta function on the RHS. The Dirac delta func-

tion dðs� s0Þ shows the instantaneous time correlation of

the fields. Their amplitudes are ultimately related to the

strength of damping and the dimensionless temperature T
defined as

T � kBT

J
¼ kBT

2AL
; (25)

where kB is Boltzmann’s constant. The stochastic fields must

be generated to satisfy (24). For numerical solution of these

Langevin-LLG equations, that is accomplished by solving

them with a second order Heun method,29,30 see further

details in Ref. 16. Essentially, the second order Heun method

is the same as a predictor-corrector method where the predic-

tor stage is an Euler step and the corrector stage is the trape-

zoid rule. The same random fields bs used in the predictor

step, generated by a random number generator, are re-used

in the corrector step. The fluctuation-dissipation theorem

(24) is implemented by choosing random fields with a

variance rs that depends on the time step Ds, according to

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aT Ds
p

: (26)

That is, in the equations integrated over one time step, an

individual stochastic field component bx
s is effectively

replaced by a random number of variance rs by doingðsþDs

s
dsbx

sðsÞ ! rsr; (27)

where r is a uniformly random number of zero mean and

unit variance. The usual uniform deviate from 0 to 1 from a

random number generator has a variance of 1=
ffiffiffi
2
p

. We used

the generator31 mzran 13 to produce uniform deviates from 0

to 1, shifted them to the range �0.5 to þ0.5, and finally

rescaled by
ffiffiffiffiffi
12
p

rs to get stochastic fields of the correct

distribution.

Simulations were done by supposing that Permalloy is

the medium, with values A¼ 13 pJ/m, Ms¼ 860 kA/m, which

results in exchange length kex � 5.3 nm. For most simula-

tions we used cell size parameter acell¼ 2.0 nm. Then with

gyromagnetic ratio c � 1.76� 1011 T�1 s�1, one has field

strengths l0Ms¼ 1.08 T and B0¼ 7.59 T. The time unit is

then t0 � ðcB0Þ�1 � 0:750 ps, which also implies a fre-

quency unit f0 ¼ t�1
0 ¼ 1:336 THz.

3. Relaxed vortex structure calculations

Determination of the vortex potential U(R) requires a

precise static solution of the Hamiltonian (3) or equivalently,
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one with zero time derivatives as determined from the zero-

temperature limit of (23), putting all bs¼ 0. A pure isolated

vortex structure is also important for initiation of dynamics

simulations. Here an approach for generating a pure vortex

structure, such as those in Fig. 1, without the presence of

spin waves, is summarized.

The magnetization can be described by an in-plane angle

u(r) and out-of-plane angle h(r),

m̂ðrÞ ¼ ðcos hðrÞ cos uðrÞ; cos hðrÞ sin uðrÞ; sin hðrÞÞ:
(28)

For a vortex state whose core is centered at R¼ (X, Y), the

in-plane angle is approximately

u rð Þ ¼ q tan�1 y� Y

x� X
; (29)

where q¼þ1 is the vorticity. For the numerical studies here,

we start with this in-plane structure and let the out-of-plane

structure develop naturally by a relaxation procedure with a

constraint on the desired vortex core position.12 In this “spin

alignment” relaxation procedure, each cell’s m̂i is iteratively

redirected32 to the direction of its effective field bi, until the

changes are insignificant. Once all m̂i are aligned with the

corresponding bi, the time derivatives will be zero and the

configuration will be static. However, to enforce a desired

position, fictitious extra fields are added to bi, in the core

region by a Lagrange undetermined multipliers technique.

The details of the La-grange relaxation procedure are given

in Ref. 12. The undetermined fields become determined in

the procedure, which requires a similar constraint for unit

length of each m̂i. The fictitious fields in the core region pro-

duce torques that secure the vortex without changing its in-

ternal structure significantly. While this relaxation proceeds,

the out-of-plane structure in h(r) develops, if one initiates

the configuration with some small random z-components in

the magnetization field.

3.1. Vortex gyrotropic motion

At the vortex core, the relaxed configuration has

mzðX; YÞ � 61, and mz diminishes with radius away from

the core. The two signs are energetically equivalent polariza-

tions p¼61 of the core, and due to the slight randomness in

initial conditions, either one may result. The vortex

dynamics is then strongly influenced by the product of qp,

which enters into the so-called gyrovector (a type of topo-

logical charge)

G ¼ Gẑ ¼ 2ppq
m0

c
ẑ: (30)

The factor 2ppq¼62p is the solid angle of the unit sphere

covered by the magnetization profile, and m0¼ l/a2
cell¼ LMs

is the magnetic moment per unit area in the film. The gyro-

vector is known to be important for vortex dynamics,

because it enters in the Thiele equation for describing the

motion of the core, according to

FþG� V ¼ 0; V ¼ _R; (31)

where the dot on R indicates time derivative, such that V is

the cortex core velocity. The force F is the negative gradient

of the total vortex energy with respect to vortex core posi-

tion, i.e.,

F ¼ �$UðRÞ: (32)

Here any damping or intrinsic vortex mass is not included.

Primarily, we are concerned with the determination of U(R)

for the elliptic system and analyzing whether the vortex

motion can be described by a Thiele equation. This can be

fairly generally expected, however, the Thiele equation

dynamics is expected whenever the vortex structure is nearly

fixed in shape while it translates to different positions.

In the case of a circular nanodisk, the force on a vortex

is essentially a restoring force that points towards the disk

center, with a force constant kF

F ¼ �kFR: (33)

This then corresponds to a circularly symmetric parabolic

potential (near the center of the disk),

U Rð Þ ¼ 1

2
kFR2 ¼ 1

2
kF X2 þ Y2ð Þ: (34)

The force constant has been estimated by various methods,

including the rigid vortex approximation,18 the two-vortex

model,17,18 and numerical simulations.12,16 Regardless of the

method, this potential then predicts a uniform circular

motion of the vortex core, at instantaneous velocity

V ¼ G� F

G2
¼ xG � R: (35)

The rotational angular frequency is

xG ¼ �
kF

G
ẑ: (36)

Thus, a vortex with positive gyrovector (pq¼þ1, G point-

ing along þẑ) will rotate in the clockwise sense in the

xy-plane, and one with negative gyrovector (pq¼�1) rotates

in the counterclockwise sense. It is important to see how this

uniform circular motion is modified for elliptical nanodisks.

3.2. Vortex potential in elliptical disks

For an elliptical nanodisk with perimeter from (1),

relaxed vortex structures were generated by the spin align-

ment algorithm,12 using a Lagrange constraint to enforce dif-

ferent vortex core locations R¼ (X, Y). R near the origin

(the center of the disk) is of most interest. The results of

those studies for different aspect ratios s and semi-major

axes a indicate that the vortex effective potential is close to

quadratic near the disk center, and can be approximated by

U Rð Þ ¼ U0 þ
1

2
kxX2 þ kyY2
� �

: (37)

The constant U0 is the total energy for the vortex centered in

the disk. Due to the distortion of the disk compared to a cir-

cular disk, there are nonequal force constants kx and ky for

the two semi-major axis directions. We restrict the studies to

situations with a 
 b or e � 1; the long axis of the ellipse is

along the x-axis. Then, there is a lower energy cost for dis-

placement of the vortex in the long direction of the ellipse,
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and kx � ky. The force constants were estimated by fitting to

(37), after finding the total system energy for a centrally

located vortex, R¼ 0, and for small displacements

R¼ (2acell, 0) and R¼ (0, 2acell), where acell¼ 2.0 nm was

the cell size. Calculations were done for two different film

thicknesses, L¼ 5.0 nm and L¼ 10 nm. Generally, the force

constants increase approximately as L2, similar to the L-de-

pendence for circular nanodisks.

The energies of relaxed vortex configurations were cal-

culated in units of J¼ 2AL, and with displacements in units

of cell size acell, in earlier work16 values of kF for circular

disks were initially calculated in units of A/acell. That unit

depends on cell size. Instead, results for force constants are

quoted here in a more natural unit of A=kex ¼ 1
2
l0M2

s kex,

which combines both the exchange and demagnetization

energy scales.

Force constant results for L¼ 5.0 nm and various a, as

functions of the ellipticity or aspect ratio e¼ b/a, are shown

in Fig. 2. Further results at twice the thickness, L¼ 10.0 nm,

are displayed in Fig. 3. The shapes of the curves are very

similar to those for L¼ 5.0 nm, however, the force constants

are larger, approximately in proportion to L2. At the circular

limit e¼ 1, one has kx¼ ky and these values decrease with

increasing nanoparticle radius, approximately as a�1. As e
becomes less than 1, the longitudinal force constant kx

decreases while the transverse force constant ky increases.

However, once e reaches some lower limit, depending on a,

the vortex state becomes unstable, as would be the case even

for circular disks of very small size. Obviously, the limit as

e! 0 will lead to a needle-like nanodisk, whose ground

state will be a quasi-single-domain state, once the aspect ra-

tio is high enough. In the region where the vortex state is

destabilized, ky reaches either a maximum value, or even

turns over and in the case of smaller disks (especially

a¼ 30 nm), it is possible for ky to become less than kx.

The fact that ky is greater than kx is understandable in

terms of the energetics of magnetic pole density generated

on the perimeter of the ellipse. When the vortex is displaced

along the semi-major axis (x axis), extra pole density rM ¼
n̂ �M primarily appears along the long edges at y � 6b. The

pole strength is weak, because M will be able to align paral-

lel to these long edges. In the opposite case of vortex

displacement along the semi-minor axis (y axis), the pole

density will appear primarily at the pointed ends at x � 6a.

Because there is a larger curvature there, it is more difficult

for M to remain parallel to the perimeter at these ends, lead-

ing to a larger pole density. Also, the greater proximity of

the vortex to the edges at y � 6b leads to greater energy

effects for a displacement in the y direction. In either case,

the energy should be proportional to the demagnetization

field integrated over nanodisk volume, however, the weaker

poles for displacement of the vortex along the long axis

makes kx less than ky. In the plots, one sees that kx appears to

extrapolate towards a value of zero as e! 0, consistent with

these arguments.

The dependence of kx and ky on ellipticity can be further

analyzed by first looking at how these force constants influ-

ence the vortex gyrotropic motion. This is done initially

from the theoretical view of applying the Thiele equation to

the vortex dynamics.

4. Thiele equation dynamics for elliptic nanodisks

Here it is assumed that the vortex motion obeys the

Thiele equation, using the potential (37) as determined from

kx and ky. The orbital frequency, trajectory, and other basic

properties are of most interest.

First, it is interesting to note that the motion is not the

same as for a 2D harmonic oscillator with nonequal force

constants, because the x and y motions are not independent.

With gyrovector G ¼ Gẑ, the components of the Thiele

equation (31), using the force from potential (37) give

Fx ¼ �kxX ¼ �ðG� VÞx ¼ G _Y ;

Fy ¼ �kyY ¼ �ðG� VÞy ¼ �G _X:
(38)

The components can be easily separated, and each follows

the same second order differential equation, namely,

€X ¼ � kxky

G2
X; €Y ¼ � kxky

G2
Y: (39)

One can see that the geometric mean of the force constants

will determine the gyrotropic frequency. However, it is best

to maintain the coupling of components and express the first

order equations in matrix form

FIG. 2. Vortex force constants along the semi-major axis (kx, solid circles)

and along the semi-minor axis (ky, open circles) for different sized ellipses

with thickness L¼ 5.0 nm, organized by semi-major axis a, plotted versus

ellipticity ratio e¼ b/a.

FIG. 3. Vortex force constants versus ellipticity ratio e¼ b/a as in Fig. 1, but

for film thickness L¼ 10.0 nm. Note that larger thickness leads to higher

force constants, roughly proportional to L2.
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d

dt

X
Y

� �
¼ 0 ky=G
�kx=G 0

� �
X
Y

� �
: (40)

Then letting the 2� 2 matrix on the RHS be called.4, the so-

lution is written formally as

XðtÞ
YðtÞ

� �
¼ eAt X0

Y0

� �
; (41)

where the initial position is R(0)¼ (X0,Y0). Expansion of the

exponential is simple because the square of A is

A2 ¼ � kxky

G2
I; (42)

where I is the 2� 2 identity matrix. At this point one can

define the gyrotropic frequency

xG ¼ �
ffiffiffiffiffiffiffiffi
kxky

p
G

: (43)

The negative square root has been used, such that a vortex

with G in the positive ẑ direction has a negative frequency,

corresponding to its clockwise movement in the xy-plane.

Then the time development proceeds from

eAt ¼ I cos xGtþ A

xG
sin xGt: (44)

Thus, the vortex motion is found to be elliptical

X tð Þ ¼ X0 cos xGtþ Y0

ky

GxG
sin xGt;

Y tð Þ ¼ Y0 cos xGt� X0

kx

GxG
sin xGt:

(45)

Differentiation gives the vortex core velocity

_X tð Þ ¼ �xGX0 sin xGtþ kyY0

G
cos xGt;

_Y tð Þ ¼ �xGY0 sin xGt� kxX0

G
sin xGt:

(46)

One can then verify that the motion follows the Equation

(35) just as for circular nanodisks, namely,

Vx ¼
1

G2
G� Fð Þx ¼

ky

G
Y;

Vy ¼
1

G2
G� Fð Þy ¼

kx

G
X:

(47)

4.1. Transforming to circular coordinates

The last results might be expected, especially since the

elliptical system can be thought of as a distortion of a circu-

lar system by rescaling the axes. Conversely, consider the

distortion of the elliptical system back to an equivalent

circular system.

The potential can be symmetrized with respect to semi-

major and semi-minor axes in the sense that

U Rð Þ ¼ 1

2

ffiffiffiffi
kx

p
X

	 
2

þ
ffiffiffiffi
ky

p
Y

	 
2
� �

¼ 1

2

ffiffiffiffiffiffiffiffi
kxky

p ffiffiffiffi
kx

ky

s
X2 þ

ffiffiffiffi
ky

kx

r
Y2

0
@

1
A: (48)

This suggests the definition of the energetic ellipticity e

e �
ffiffiffiffi
kx

ky

s
; (49)

as well as the geometric average of the force constants

�k �
ffiffiffiffiffiffiffiffi
kxky

p
: (50)

Then the potential is

U Rð Þ ¼ 1

2
�k eX2 þ 1

e
Y2

� �
: (51)

One can see that e also relates to the ellipticity of the vortex

core motion, from the solution obtained above, for example,

with Y0¼ 0

Ymax

Xmax

¼ kx

GjxGj
¼

ffiffiffiffi
kx

ky

s
¼ e: (52)

The solution for vortex core position can be expressed in

a similar symmetrized way, first scaling X by
ffiffiffiffi
kx

p
and Y

by
ffiffiffiffi
ky

p
ffiffiffiffi
kx

p
XðtÞ ¼

ffiffiffiffi
kx

p
X0 cos xGt�

ffiffiffiffi
ky

p
Y0 sin xGt;ffiffiffiffi

ky

p
YðtÞ ¼

ffiffiffiffi
ky

p
Y0 cos xGtþ

ffiffiffiffi
kx

p
X0 sin xGt:

(53)

Note that the change in sign on the second terms (compared

to Eq. (45)) is due to using Equation (43) for gyrotropic fre-

quency. However, the potential in the form (51) can be

expressed in a circular coordinate p defined as follows

U qð Þ ¼
1

2
�kq2; q � ffiffiffi

e
p

X;
1ffiffiffi
e
p Y

� �
: (54)

Thus, this shows the scaling needed on X and Y. Then the so-

lution (45) can be expressed in these circular coordinates as

a uniform circular motion, e.g.,

ffiffiffi
e
p

X tð Þ ¼
ffiffiffi
e
p

X0 cos xGt� 1ffiffiffi
e
p Y0 sin xGt;

1ffiffiffi
e
p Y tð Þ ¼ 1ffiffiffi

e
p Y0 cos xGtþ

ffiffiffi
e
p

X0 sin xGt:

(55)

With initial position q ¼ ðqx0; qy0Þ ¼ ð
ffiffiffi
e
p

X0; Y0=
ffiffiffi
e
p Þ, this is

qxðtÞ ¼ qx0 cos xGt� qy0 sin xGt ¼ q cosðu0 þxGtÞ;
qyðtÞ ¼ qy0 cos xGtþ qx0 sin xGt ¼ q sinðu0 þxGtÞ:

(56)

The radius is conserved at q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

x0 þ q2
y0

q
, while u0 is the

initial angle to the x-axis

tan u0 ¼
qy0

qx0

¼ 1

e

Y0

X0

: (57)

Then the time-dependent angle to the x-axis simply increases

linearly in time

uðtÞ ¼ u0 þ xGt: (58)

Note that the angular position of the vortex core in the origi-

nal coordinates, h ¼ tan�1ðY=XÞ is related to u also by the

energetic ellipticity
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tan h tð Þ ¼ Y

X
¼

ffiffiffi
e
p

qy

1ffiffiffi
e
p qx

¼ e tan u tð Þ: (59)

For the core velocity V ¼ ð _X; _YÞ, one finds for the gyro-

tropic motion

V ¼ xG �
1

e
Y; eX

� �
¼ xG �

1ffiffiffi
e
p qy;

ffiffiffi
e
p

qx

� �
: (60)

The corresponding expression for the time derivative of q
carries a greater simplicity

_qx ¼
ffiffiffi
e
p _X ¼ �xGqy; _qy ¼

1ffiffiffi
e
p _Y ¼ xGqx ; (61)

which is equivalent to the expected expression for uniform

circular motion

_q ¼ ð _qx; _qyÞ ¼ xG � q: (62)

This is based on the assumption that the vector angular ve-

locity is xG ¼ xGẑ. Therefore the motion is equivalent to

that for circular nanodisks, once transformed into these cir-

cular coordinates.

4.2. Further analysis of force constants

In light of the above results expected from the Thiele

equation dynamics, it makes sense to further analyze the

force constants found from the vortex relaxation algorithm.

In particular, we now see that �k ¼
ffiffiffiffiffiffiffiffi
kxky

p
directly determines

the gyrotropic frequency, while e ¼
ffiffiffiffiffiffiffiffiffiffiffi
kx=ky

p
determines the

shape of the path followed by the vortex core.

Based on the force constant results for L¼ 5.0 nm and

L¼ 10.0 nm, �k has been calculated and the results plotted

versus aspect ratio e are shown in Fig. 4. �k is found to scale

with the reciprocal of the semi-major axis, hence, the results

for �ka versus s are displayed. Especially for large a, there

appears to be an asymptotic limit in the functional depend-

ence, �kðeÞ. For the smaller ellipses (a � 60 nm), the scaling

of �k as 1/a is not present. In addition to this dependence on

the size of the xy perimeter, it is also observed that �k
increases almost as fast as L2. Of course, the vortex gyro-

tropic frequency xG should be directly proportional to �k,

hence Fig. 3 should also give a sense of the dependence of

xG on the nanodisk shape. But note that the magnitude of

the gyrovector depends on film thickness

G ¼ 2ppqLMs=c: (63)

The dependence of G on film thickness cannot be ignored

when considering gyrotropic frequencies.

Next, the calculated values of energetic ellipticity e ¼ffiffiffiffiffiffiffiffiffiffiffi
kx=ky

p
are shown in Fig. 5 for L¼ 5.0 nm and in Fig. 6 for

L¼ 10.0 nm, as functions of e. The results for different semi-

major axis sizes tend to fall close to the same linear relation

e ¼ e; or

ffiffiffiffi
kx

ky

s
¼ b

a
; (64)

which is shown as a dashed line. The matching to this

approximate fit is best for the largest elliptical particles, and

especially when e approaches unity. Thus, there is some sim-

plicity in the force constants, provided the system is far from

the stability limit of the vortex state. This requires, however,

reasonably large sized nanodisks and/or a strong quasi-2D

aspect with both L� a and L� b.

4.3. Gyrotropic frequencies from simulations

For some selected shapes of elliptic nanoparticles, the

gyrotropic vortex motion was simulated based on the mag-

netization dynamics, as it evolves according to the zero tem-

perature LLG equations (21). For these studies the time

evolution was found using RK4 with time step Ds¼ 0.04,

starting from an initial state with vortex core at desired

position by the Lagrange constrained relaxation method. An

initial 4.0 nm displacement from the disk center was used.

An example of vortex structure and motion with a large

initial displacement for showing structural details is shown

in Fig. 0. The damping constant a¼ 0.02 was used for

further relaxing the structure over close to one period of the

motion, and then set to zero. The period tG was determined

from five or more subsequent revolutions, from which esti-

mates of the gyrotropic frequencies fG¼ 1/tG or xG¼ 2pfG
were made. These could be analyzed in light of the force

constants �k calculated on the same system, assuming the

motion follows the Thiele equation dynamics.

FIG. 4. The geometric mean of force constants, �k ¼
ffiffiffiffiffiffiffiffi
kxky

p
, scaled by semi-

major axis a, in units of the exchange stiffness A, versus geometric elliptic-

ity e ¼ b=a.

FIG. 5. The energetic ellipticity for L¼ 5.0 nm, as calculated from the

square root of the ratio of forces constants, e ¼
ffiffiffiffiffiffiffiffiffiffiffi
kx=ky

p
versus geometric

ellipticity e¼ b/a.
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The vortex period could be determined either from

observing oscillations of the components of total system

magnetization, or from the trajectory of the vortex core.

For analysis of the trajectory followed by the vortex

core, an algorithm is needed to locate the core position

(X(t),Y(t)) precisely. The core is the point with maximum

magnitude of out-of-plane magnetization around which the

magnetization has a nonzero rotation. This was done by first

locating the computation cell containing the vorticity center,

where j$� $uj ¼ 2p is a nonzero rotation of m̂ around the

cell. Then, neighboring cells out to a distance of rkex were

used to further refine the position estimate by weighting their

position contributions with ðmz
i Þ

2
, giving a better estimate of

the location where mz is maximum. It is found that this pro-

cedure is adept at locating the core even in the presence of

thermal fluctuations.16 It is applied for that purpose in the

next section.

From the expression (62) for G and the definition of the

exchange length, the gyrotropic frequency magnitude can be

expressed in a form using kex as the physical length scale,

and A/kex as the unit for force constants

jxGj ¼
�k

G
¼ l0

4p
cMs

� �
�k
kex

A

� �
kex

L

� �
: (65)

This displays a natural SI unit of angular frequency, x0 �
ðl0cMsÞ=4p (the same as cMs in CGS units). Results for the

frequencies in these units, found from simulations, are

shown in Fig. 6, as functions of the ellipticity parameter

e¼ b/a. The curves for xG(e) show an increase with decreas-

ing e as e deviates away from unity, similar to the curves of
�kðeÞ. When the vortex state begins to reach its limit of stabil-

ity, xG(e) makes a much faster drop with decreasing e.
To check whether expression (64) applies to these

results, and to show the dependence of xG on film thickness,

the frequencies divided by dimensionless force constants are

plotted in Fig. 8, again versus e. Data at different semimajor

axes a¼ 30 nm, 60 nm and 120 nm are found to collapse

onto the straight dotted lines corresponding to expression

(64) for the selected values of thickness L. This shows that

the calculations of force constants can be used to predict

gyrotropic frequencies, in conjunction with use of the Thiele

theory even for elliptic disks.

5. Thermal equilibrium statistics

In this section the spatial distribution of a vortex in a

nanodot in thermal equilibrium is considered. The analysis is

based on supposing that the dynamics is following the

Thiele equation, but with thermal fluctuations. To proceed, it

is important to verify the canonical coordinates for the

motion of the vortex core. Based on that, the Boltzmann dis-

tribution can be applied to the vortex statistics.

5.1. Vortex Lagrangian dynamics

Generalizing the Lagrangian for a vortex in a circular

nanodisk16 to the case of the elliptical potential U(R), it is

possible to show that an appropriate Lagrangian for the core

motion is16

L ¼ � 1

2
G X _Y � Y _Xð Þ � 1

2
kxX2 þ kyY2
� �

: (66)

Gyrotropic motion is similar to that of a charge q moving in a

magnetic field, where the effective vector potential A¼ (G

�R)/2¼ (–GY, GX)/2 generates the gyrovector by G ¼ $
�A. Then, the first term in L is �A � V, just as a term �qA � V

FIG. 6. The energetic ellipticity for L¼ 10 nm, as defined from the square

root of the ratio of forces constants, e ¼
ffiffiffiffiffiffiffiffiffiffiffi
kx=ky

p
, versus geometric elliptic-

ity e¼ b/a.

FIG. 8. Vortex gyrotropic angular frequencies from zero-temperature simu-

lations divided by force constants �k from Lagrange constrained vortex relax-

ation, as a function of ellipticity e¼ b/a. The frequency unit is x0 � of

ellipticity e¼ b/a. The frequency unit is x0 � ðl0cMsÞ=4p, the force con-

stant unit is k0 � a=kex. Dashed lines are the theoretical result (64) based on

the Thiele equation dynamics, where xG=�k / kex=L.

FIG. 7. Vortex gyrotropic angular frequencies calculated from simulations

of zero-temperature dynamics, for the indicated nanodisk sizes. The fre-

quency unit is x0 � ðl0cMsÞ=4p (about 15.1 GHz for Permalloy).
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appears in the Lagrangian for a nonrelativistic charge. Then the

Lagrangian is

L ¼ �A � V� U; (67)

when the anisotropic potential (37) is included. Its Euler-

Lagrange equations correctly give the dynamics equations

(38) found in Sec. 4.

In this symmetric choice of gauge, the momentum con-

jugate to core position R is

P ¼ @L

@V
¼ �A ¼ 1

2
GY;�GXð Þ: (68)

Then the Lagrangian can be written as L ¼ P � V� U.

However, the Hamiltonian is desired for statistical mechan-

ics. It is obtained by the transformation

H ¼ P � V� L ¼ U ¼ 1

2
kxX2 þ kyY2
� �

: (69)

This shows that the Thiele equation dynamics is derived

purely from the potential. Note that alternatively the Landau

gauge can be used33 with a nonsymmetric momentum of

one component, Px¼GY, which leads to the identical

Hamiltonian, independent of the choice of gauge.

As Hamiltonian (69) has no momentum present, as writ-

ten, it does not lead to correct dynamic equations of motion,

based on the usual Hamilton equations of motion

_P ¼ � @H

@R
; _X ¼ @H

@P
: (70)

This is because the connection (68) between momentum and

coordinate makes them dependent. To get a Hamiltonian

whose dynamics leads back to the Thiele equations, it is nec-

essary to rewrite H not as purely a potential term, but as half

potential energy involving R and half kinetic energy involv-

ing P. Then H must be written

H ¼ 1

4
kxX2 þ kyY2
� �

þ 1

4

2

G

� �2

kxP2
y þ kyP2

x

	 

; (71)

which does lead back to the correct Thiele equation.

Although this resembles the Hamiltonian of a 2D harmonic

oscillator, it bears repetition that the constraint P¼ –A

¼ –(G�R)/2, between coordinate and momentum means

that the vortex phase space is collapsed to only two dimen-

sions, rather than four. Therefore, for the purposes of statisti-

cal equilibrium calculations, the mean thermal energy in

vortex motions will be only kBT, because there are only

two independent quadratic variables in H, each receiving on

average (kBT)/2 of energy.

5.2. Vortex core radial distribution

In thermal equilibrium, the distribution for vortex core

position or velocity should be determined by a Boltzmann

factor, exp(–bH), where b¼ (kBT)�1 is the inverse reduced

temperature and kB is Boltzmann’s constant. The vortex core

Hamiltonian H can be expressed either purely as potential

energy, Eq. (69) or in terms of equal parts potential energy

and kinetic energy, Eq. (71), or even in a third form with

only a kinetic energy term. This is a somewhat unusual

freedom and allows one to find either the distribution in real

space or in velocity space.

In the effective circular coordinates q defined in (54)

then the Hamiltonian expressed purely with potential energy

is very simple and circularly symmetric

H ¼ U qð Þ ¼
1

2
�kq2: (72)

The probability for the vortex core to be found in some range

dq near the radius q is proportional to

p qð Þdq � 2pq dq e�bH ¼ 2pq dq e�
1
2
b�kq2

: (73)

Making this a unit normalized probability distribution, the

result is

p qð Þ ¼ b�kq e�
1
2
b�kq2

: (74)

This circularly symmetric form is best for comparison with

simulations, because we have the value of e ¼
ffiffiffiffiffiffiffiffiffiffiffi
kx=ky

p
avail-

able that is necessary to get results into the circular coordi-

nates. From equipartition one can arrive at the root-mean-

square radius

hHi ¼ kBT ) qrms ¼
ffiffiffiffiffiffi
2

b�k

r
: (75)

In addition, the mean radius and the most probable radius

(where p(q) is maximum) are

hqi ¼
ffiffiffiffiffiffiffiffi
p

2b�k

r
; qmax ¼

ffiffiffiffiffiffi
1

b�k

r
: (76)

Simulations of the Langevin LLG equations were carried out

to calculate some typical thermalized dynamics for a vortex

in thermal equilibrium. The initial state is taken as a relaxed

vortex at the center of a nanodisk. Using damping parameter

a¼ 0.02, the integration was carried out to final dimensionless

time s¼ 2.5� 105 by the second order Heun algorithm29,30

with time step Ds¼ 0.01. Depending on the gyrotropic peri-

ods this is a fairly large number of vortex revolutions. Even

starting from the potential energy minimum, thermal fluctua-

tions can initiate the gyrotropic motion spontaneously.22

The result is a noisy gyrotropic orbital motion; examples in

circular nanodisks were given in Ref. 16.

Distributions of the vortex core position away from the

nanodisk center are shown in Fig. 9 for a¼ 60 nm and in

Fig. 10 for a¼ 120 nm, both with e¼ 0.5. The data are com-

pared with the theoretical expression (74), applying the

appropriate values of �k from the Lagrange-relaxed vortex

calculations. There is a good agreement here between theory

and simulations, being better for larger L and smaller a. Of

course, at larger L the gyrotropic period tG is shorter, and

averaging out to a fixed time is then done over more revolu-

tions, leading to smaller errors. In addition, the system with

larger a also has longer periods, hence its errors are greater,

and averaging to a longer time would give a better fit

to theory. The deviation between theory and simulation in

Fig. 9 for L¼ 10 nm is typical for these simulations over a

limited number of vortex periods, where on occasion for

many periods, the vortex may move with noticably larger or
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smaller radius than normal from the disk center. This can be

seen in Fig. 11, where both X(s) and p(s) are shown for the

case of a¼ 120 nm, e¼ 0.5, L¼ 10 nm.

The distribution in the original coordinates (X,Y) will

certainly be elliptic, with the same ellipticity parameter e.

The normalized probability distribution in (X,Y) is found as

p X; Yð Þ ¼
ffiffiffiffiffiffiffi
bkx

2p

r
e�

1
2
bkxX2

ffiffiffiffiffiffiffi
bky

2p

r
e�

1
2
bkyY2

; (77)

that is, a Gaussian in each coordinate, with variances inver-

sely proportional to the corresponding force constants

rx ¼
1ffiffiffiffiffiffiffi
bkx

p ; ry ¼
1ffiffiffiffiffiffiffi
bky

p : (78)

Of course, the distributions in X separately from Y have zero

mean, which makes them less useful than the distribution for

q, with its peak at a finite value of q.

An example of the vortex core distribution along the

semi-major axes of a nanodisk are shown in Fig. 12 for

a¼ 120 nm, e¼ 0.5 and thickness L¼ 10 nm. The simulation

data are compared to the theoretical expression (76) by using

the appropriate kx and ky force constants from La-grange-

relaxed vortex simulations. The greater value of ky relative

to kx then leads to the expected narrower distribution in Y
compared to X.

5.3. Vortex core speed distribution

The result for p(q) can also be mapped into a distribu-

tion for velocity, using the circular coordinate q and its

velocity q. With velocity magnitude denoted u, then

u ¼ j _qj ¼ jxGjq: (79)

Therefore, the distribution g(u) in speed u is easily obtained

by a rescaling of the distribution p(q) in radius. Applying

conserved probabilities

pðqÞdq ¼ gðuÞdu ¼ gðuÞjxGjdq; (80)

FIG. 10. Vortex core position radial distributions at T¼ 300 K for semi-

major axis a¼ 120 nm, e¼ 0.5 for two disk thicknesses. Symbols are from

Langevin LLG simulations out to dimensionless time s¼ 2.5� 105. Solid

curves are the theoretical expression (73) with �k ¼ 2.667� 10�4 N/m for

L¼ 5.0 nm and �k ¼ 9.174� 10�4 N/m for L¼ 10 nm, from relaxed vortex

calculations. The T¼ 0 gyrotropic periods were sG � 4770 for L¼ 5.0 nm

and sG � 2760 for L¼ 10 nm. The q(s) used to produce the curve for

L¼ 10 nm is displayed in Fig. 11.

FIG. 11. Vortex core motion for thermalized dynamics at T¼ 300 K for

semi-major axis a¼ 120 nm, e¼ 0.5, thickness L¼ 10 nm. Graphs of X(s)

and Y(s) are very similar, but of different amplitudes. The resulting equiva-

lent circular radius q(s) was used to produce the corresponding probability

p(q) in Fig. 10.

FIG. 12. Vortex core linear distributions along the major axes at T¼ 300 K

for semi-major axis a¼ 120 nm, e¼ 0.5, thickness L¼ 10 nm. Symbols are

from Langevin LLG simulations to time s¼ 2.5� 105. Solid curves are

from theoretical expression (77) with kx¼ 4.696� 10�4 N/m and

ky¼ 1.792� 10�3 N/m, from relaxed vortex calculations.

FIG. 9. Vortex core position radial distributions at T¼ 300 K for semi-major

axis a¼ 60 nm, e¼ 0.5 for two disk thicknesses. Symbols are from Langevin

LLG simulations out to dimensionless time s¼ 2.5� 105. Solid curves are

the theoretical expression (73) with �k ¼ 4.299� 10�4 N/m for L¼ 5.0 nm

and �k ¼ 1.676� 10�3 N/m for L¼ 10 nm, from relaxed vortex calculations.

The T¼ 0 gyrotropic periods were sG � 2970 for L¼ 5.0 nm and sG � 1500

for L¼ 10 nm.
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then the normalized speed distribution can be obtained from

gðuÞ ¼ jxGj�1pðu=jxGjÞ: (81)

This results in

g uð Þ ¼ b�k

x2
G

ue�
1
2
b�ku2=x2

G : (82)

However, using relations (43) and (50) for the frequency,

this is expressed more directly from the force constants and

the gyrovector

g uð Þ ¼ bG2

�k
ue�

1
2
bG2u2=�k : (83)

Alternatively, the speed distribution is

g uð Þ ¼ 2u

u2
rms

e�u2=u2
rms : (84)

The rms speed used in the second form has been defined

from the rms radius, e.g.,

urms ¼ jxGjqrms ¼

ffiffiffiffiffiffiffiffiffi
2�k

bG2

s
: (85)

This speed distribution might be compared with one for par-

ticles with kinetic energy (mGu2)/2, where mG is an effective

mass for gyrotropic motion. Then comparing the exponent in

the first expression for g(u) leads to a result

mG ¼
G2

�k
: (86)

G increases linearly with thickness L, while �k is roughly pro-

portional to L2, so this mass is nearly independent of the film

thickness. mG depends on the nanodisk size primarily

through the dependence of �k on the nanoparticle area pab.

However, the expected value for typical nanodisks will be

extremely small (on the order of 10�23–10�22 kg). This mass

represents the inertia of the vortex in response to the applied

forces, as mediated by the effects caused by the gyrovector.

Certainly it is unusual in that it depends inversely on the

force constant.

6. Conclusions

A combination of Lagrange-constrained vortex relaxa-

tion and time development of the LLG equations have been

used to study single vortex dynamics in elliptically shaped

magnetic nanodisks. The results have been analyzed in view

of using the Thiele equation for the motion of the vortex

core, where the core position R acts as a collective coordi-

nate. Even the vortex relaxation results are interpreted by

using R as the coordinate for the vortex effective potential

U(R). The vortex potential is approximately parabolic along

the two principal axis directions, but only for displacements

not approaching the edge of the nanodisk. A vortex moving

very close to an edge will be strongly perturbed by its image

vortex outside the system, an effect34 not considered here

that softens the potential in that region.

The force constants kx and ky in U(R) have been deter-

mined for some different disk sizes and ellipticities e¼ b/a,

using the Lagrange-constrained spin-alignment relaxation

procedure, holding the vortex in different positions to esti-

mate the potential. Three interesting results emerge here: (1)

There is a lower limit of e below which the vortex solution is

unstable towards the preferred formation of a quasi-single-

domain state. For increasing semi-major axis a, this lower

limit on e becomes lower. (2) Starting from the circular limit,

e¼ 1, and moving towards lower values, kx diminishes and is

roughly proportional to e, while ky increases and is roughly

dependent on e�1, see Figs. 2 and 3. These are not precises

statements, however, they hold more closely for larger semi-

major axis a and over a wider range of e. (3) As a result,

the asymptotic dependence of the energetic ellipticity

e ¼
ffiffiffiffiffiffiffiffiffiffiffi
kx=ky

p
on e for large a is linear, e � e, see Figs. 5

and 6. This then shows that vortex orbits at large a will have

the same shape as the perimeter of the ellipse. These asymp-

totic results hold only weakly for smaller elliptical nano-

disks, and only in the region e closer to 1.

Concerning vortex dynamics in elliptical nanodisks,

micromagnetic simulations have been used to determine the

time evolution of the whole disk’s magnetizaton, starting

from a Lagrange-relaxed initial vortex. The vortex motion

seen in micromagnetics simulation has been compared with

the core motion expected from the Thiele equation. These

results agree well, using the force constants kx,ky, from the

static relaxed vortex calculations to make the comparison.

The vortex gyrotropic frequency is predicted to be

xG ¼ ��k=G, where �k ¼
ffiffiffiffiffiffiffiffi
kxky

p
is the geometric mean of

force constants. At zero temperature, this is confirmed in the

micromagnetics, see Fig. 8. The gyrotropic frequencies xG

obtained from micromagnetics, Figure 7, have a rather weak

dependence on e until the vortex stability limit is reached.

The frequencies do increase approximately linearly with film

thickness L, and for larger a, we also find xG / a�1, again

only away from the stability limit. The behavior of �k with e
and a, L, Fig. 3, can be used to predict gyrotropic frequen-

cies, when included with the gyrovector G / L.

An effective circular coordinate q has been introduced,

in which the vortex gyrotropic motion becomes uniform

circular motion. This coordinate is more convenient for deter-

mination of the vortex core position distribution in thermal

equilibrium. Longer simulations of the Langevin-LLG equa-

tions were used to get statistics for the vortex position over

many orbits in equilibrium. Provided a large enough number

of revolutions has been observed, one finds that indeed the

distribution of vortex core position can be described with a

Boltzmann distribution. Again, to make the proper compari-

son, the force constants kx, ky are needed. The force constant
�k determines the radial distribution p(q); larger �k naturally

implies a smaller width. The force constants kx and ky deter-

mine the distributions of core position along the principal

axes of the nanodisk, and again, the distribution widths

decrease with increasing force constants. Thus, the determi-

nation of the effective vortex potential and its force constants

is seen to be the most important element needed for under-

standing the dynamics in a noncircular magnetic nanodisk.
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