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Ill

NOMENCLATURE

Symbols Mechanical

x, yz = rectangular co-ordinates

K = a constant

G = shearing modulus of elasticity

M = torque

P = differential pressure

S = slope

T = tension

V = volume

x = shearing stress

= stress function

B = angle of twist of the shaft per unit length

A = cross section area

J = polar second movement of circular section

r = radius of circle

a = (d
2
/3x

2 )+ (a
2
/a y

2
)

Electrical

C = capacity per square inch across insulation

E = instantaneous potential applied

E = maximum potential applied

E' = rms value of potential applied

i ,i = current in paper in x and y directions per inch of width

n = frequency of a-c voltage



IV

q
= charge per unit area of paper

R = resistance across semiconducting layer, per square inch

t = time

,!,
= potential at point in paper

p
= resistance of paper per square



INTRODUCTION

The solution for the torsion problem for a circular section is very

simple and is well known. The maximum shear stress ^
cm

can be calculated

by the simple formula
|3J*

2M
T = «T

cm ftr°

and the torsional rigidity (M/0) can be calculated by

(
M

}
_ MGr

4

'0' ~ 2
c

The torsion analysis of bars of other cross sections is mathematically more

difficult. Cross sections other than the circular have been solved by the

well known "soap film" ["3*1 and plastic film M
J

which are based on the

membrane analogy. This is an analogy which gives a valuable means to vis-

ualize the torsion properties of different cross sections.

The method described here was first suggested theoretically by Edamston

f5~! and then by Swannell Til. This is an electrical analogy for the solu-
L J L -

tion of Poission' s equation which is both quick, cheap and easy to carry out

experimentally.

THEORY OF TORSION

Saint-Venant in 1055 formulated the general torsion problem for a bar

or a shaft of uniform cross-section |2 . He developed the following dif-

ferential equation known as the equation of compatibility:

* Refer to bibliography,



^| + J^| = _2G0 (1)

3x 3y

The function ^ is a stress function. If * satisfies the above differ-

ential equation along with the appropriate boundary conditions, then the

shear stresses are given by the following equations.

- -
+ f (2)

yz 3x

x = -& (3)
xz 3y

Where t is the shearing stress in y-z plane and x is the shearing
yz xz

stress in xz-plane.

The stress function * is constant on the boundary for zero surface

stresses. Since this constant does not affect the stresses, it is set

equal to zero. With zero $ on the boundary, it is found that the torque

on the section is given by

M = 2j$A
® dA (4)

where M = torque applied to bar

A = cross section area of bar.

Equation (1) may be written as

A
2

<1> = -2G9 (5)

where 2
to

_ j£* £±
2 2

3x 3y

The right hand side of equation (5) is a constant. Once the integral values

of <*> are known, a surface "torsion hill" may be visualized in which *

is the height of the torsion hill. Fig. 1 shows typical hills for simple



sections. From these mathematical abstractions the torsion properties

of a section can be derived. The necessary torque is twice the volume

of the hill above the base. The shear due to this torque at any point

in the cross section is equal to the maximum slope of the hill at that

point and acts in the direction parallel to the contour line at that

point. If only one value of -G0 is found by equation (5), all other

cases may be obtained by simple proportions.

Zero Slope & Stress
Parabolic

vol = l/2 ^max

max slope

Y.

mnx. si q p(2

Poi nt of max. Stress

(A) Circular section (B) Square section

Fig. 1

PRANDTL'S MEMBRANE ANALOGY

Prandtl noted in 1903 that the equation for the deflection of a

membrane subjected to a uniform pressure differential was of the same

mathematical form as that for the stress function ®, Mj. This makes it

possible to solve torsion problems approximately, using the membrane analogy.

The deflection equation for a membrane is as follows^

2 2
a z jo. p

,2 a 2 "T
3x 9y

where z = deflection of the membrane above x-y plane

P = differential pressure on the membrane

T = tension in the membrane.

(6)



The above equation is obtained by considering the static deflection of

a membrane due to a uniform differential pressure P. The deflection of

the membrane is considered to be zero on the boundary of the region.

If a membrane of the same geometrical shape as the bar's cross-

section is deflected so that P/T 2GQ and the deflection at the boundary

is zero then z fc . The shearing stresses % and * may be found by
yz xy

substituting z for <D in equations (2) and (3)

- + la.
yz ox

(7)

8z
T
xy ~ 8y

The shear stress in any other direction is proportional to the slope

of the membrane in a direction normal to the direction of the shear stress

("2 ].* It is therefore seen that a membrane deflected through an opening

in a flat plate by a differential pressure provides a convenient analogy

of torsion.

When using the membrane analogy, it is inconvenient to determine P/T.

This can be avoided, however, by having a circular opening in the plate

together with the opening representing the cross section for which the

stresses are to be determined. Since the same membrane is used for both

openings, the same P/T value applies to both and the following equation 4 ,

*- = K ^ (8)
T
c

S
c

- = K I (9)

v (M/e)
and c _ c /mi

v (M7e7
(10)

* Page 7-8



where M = torque applied to the base

x = shear stress at any point

K = constant

V = volume enclosed by the membrane in the x-y plane

S = slope of the membrane at any point in the direction normal to

the shear stress at that point

8 = angle twist of the shaft per unit length

m/g = torsional rigidity

subscript c indicates values for the circular section.

The solution of the circular shaft is well known. The maximum

shear stress t occurs at the boundary and is given by
cm

x cm

2M

"ttR3 (11)

where R = outside radius of circular cross section

and torsional rigidity (—) = is found to be

A = Mjy*l
°

(12)
e
c

*

These equations for the circular section taken as reference, make

it possible to determine the constant K. The maximum slope (at boundary)

of the circular membrane and the volume under the membrane V are
c

measured and substituted in equation (8). The results combined

with equation (10) yield:

_ eR_ s
rmK

2 -f
2- (13)

c

After measuring the membrane slope at any point of interest and

the volume under the"hill" for any other section, the shear stress t

is obtained by substituting (13) into (9).
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v

Thus t = £ (§) M = -^ (^) (|) (14)

nR cm

The torsional rigidity of the known section is obtained by substituting

(12) into (10)

(§> = *££— (|) (15)

c

ELECTRICAL ANALOGIES

D. C. Analogy

For simplicity an analogy based on d. c. potential will first be

considered (Fig. 3). In this method, the layer between the resistance

paper and the metal base is a "Semiconducting" layer which allows d. c.

current to leak away from the paper into the metal base. This method is

of limited practical use since such a semiconducting layer is very diffi-

cult to get and is very expensive.

The resistance properties of the paper are assumed uniform in all

directions in its plane, and is taken as p ohms/square. See Fig. 4-A.

We find the current flowing in a given direction in terms of C and

the potential gradient in that direction by considering a strip of a

unit height and width (Fig. 4-C). The potential increase between AB and CD

is 8i|)/6x • 6x and resistance p b x. Thus

. _ Potential drop _ — Otji
t
bx .

- d\h /_
x resistance 8x * P&x " 9x

Now a unit square (Fig. 5-D) is considered and net current flowing into

the square across the four edges. Let the current across PQ be i , then

the current flowing across RS is i + 8i /fix. Hence the net inflow in the

x-direction is Oij/Sx which is equal to (d%/ty )/p from the above.



Metallic Base

Sensitive 0. C. Voltmeter or

Potentiometer
\

Fig. 3— D-C form of apparatus

Plan View of Torsion Hill

Inner Edge Outlines
Section to Be Investigat

Sj ii-f>r Pa i n f

Equipotential Contour
Lines From Which
Torsion Constants
May be Found

Low Frequency

Fig. 2 — Layout of apparatus
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.2. /. 2,
Similarly the net inflow in the y direction is (9 \|>/8y )/p

and the total inflow is obtained by adding the above two

1 [ aVax2
+ oWy ]

(16)

this can be written as ^ t|j/p where & is the operator "del." Equation

(6) can be derived more elegantly by vector notation as follows.

Let a rectangular vol element dv with dimensions d x, d y and dz

be located at a point where co-ordinates are x, y, z. Consider the two

faces of area dxdy. The current entering the lower face. Vertical sec-

tion i dxdy where i is the current density in z direction,
z z

Current leaving the upper face is

(I + -£ dZ) dxdy
z az '

Net current flow out of the given element through

the faces parallel to x-y plane is

81 aI
(I + -t

2
- dZ ) dxdy - I dxdy _ ° z

z 8Z J z - in direction of Z

dxdydZ 8Z

. _ I- grad $ « {Jt
* —^ di)<*xdY

therefore

and

therefore

x p 8X

*
=i

ftz p 8Z

• _ M
y 8Y

ei l o,
8Z~ " p" 8Z

2

>
/

A

1 1« dxly

•Similarly from the y-z and x-z planes are

l & and i A
P 8x

2 P 8?



10

Hence the net current out of a vol dv

P L " 2 ,2 , 2 J
K 8x 8y 8z

= + l ^
P

If there is no leakage from the top or the bottom of the paper then

A it = o. This is Laplace's equation. Thus the measurement of potentials

gives a solution of this equation.

On the other hand if there is a semiconducting layer between the paper

and a base of uniform Potential E, then there is a Potential Drop of

(E - ij,) at any given point causing current leak across the layer. For

the method to be accurate E must be high compared to > so that the

leakage P.O. may be taken as uniform (and equal to E) all over the sheet.

If the resistance across unit area of the semiconducting sheet is,R f

the current leakage into the paper is E/R per unit area and thus

& + | = (17)
P K

A. C. Analogy

Now we can turn back to the actual method, where the a.c. potential

is applied and the conducting layer is replaced by an insulator. The

quantities i and ^ are functions of time and there will be a leakage current

across the insulating layer, which will act as the dielectric of a capacitor

formed by the resistance paper and the metal base. If q is the charge per

unit area of this plate capacitor, then q = C E and the current per unit

area following into the paper from the base is

i = d q / d t = «-J-J (18)
d t
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Here again the variations in the resistance paper potential are assumed

to be small compared to E.

If the applied potential frequency is n we have

E = E sin 2tt nt
m

differentiating with respect to time

d E
-r— = 2rrnE cos 2nn t
d t m
dE

But 1 = c —
dt

i = C2nnE cos 2nnt
m

and
| = C 2TrnE cos 2rrnt
n m

Putting this value in equation (17) we get

*- + C 2nn E cos. 2nnt =
o m

2
or A * + p C 2nn E cos 2nnt =

m

A2
i|> = -p C 2irn E cos 2n nt (19)

r m

The right hand side of equation (19) is uniform over the sheet but is a

function of time fll. Hence the value of \|> is also a function of time

i.e. are sinusoidal but out of phase with the applied potential E. A

voltmeter reading rms values therefore gives a solution

^ = -2tt np CE' (20)

where E' is the rms voltage.

We have already shown that

2
^ ® = -2 G° from equation (5)

if 2G0 = 2nn p C E" then there is an exact analogy between <t> and \|> |l ].
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All the values of the electrical constants are not required if a

parallel experiment with a circular section is carried out on the same

sheet using the same frequency. and potential. In this case the values

of r|> found correspond to the same angle of twist for both sections, and

the test section may be compared to the circular.

DESCRIPTION OF METHOD

Fig. 2 is a photograph of a typical lay out shown diagrammatically in

Fig. 3. There are three layers, the bottom being metallic and of high

electrical conductivity, the middle an insulating layer and top layer of

resistance paper. The outline of the shape to be investigated is painted

on the resistance paper with silver paint to form a conducting boundary of

neglegible resistance. An A.C. voltage is applied between the bottom layer

and the silver boundary and the potentials in the resistance paper are

found at different points by means of probe and a sensitive vacuum tube

voltmeter. These potentials contain all the information for the solution

of the torsion problem if the electrical constants are known. Since these

constants change with different set ups it is necessary to simultaneously

determine measurements for a circular section, on the same sheet. The

torsion properties of circular sections are known, so the electrical con-

stants can be cancelled from the equations.

For accuracy the variation in potential in the paper should be small

compared to the over all voltage. In other words the impedance of the

capacitor formed by the resistance paper and the bottom sheet should be

compared to the resistance paper.
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RESULTS AND CALCULATIONS

Circular Section

Table 1 shows all the potential readings taken along the different

sections. Fig. 6 shows the experimental points for the average of all

points equidistante from the boundary. Table 1 shows that the experi-

mental points lie very close to the theoretical curve, which can easily

be shown to be a parabola. If \\\ is the central value and K is the radius
' m

of the circle, then assuming the simple geometrical properties of a

parabola

u _ 1 2
,

c 2. ' max 1

= | x tt x (4 in)
2

x 7.2 (Unit.)
3

= 181 (Units)
3

Maximum Shear Stress t = slope at the edqe = "u
max = ——

A
—'— = 3.6

max '
J —rj— 4

Square Section

Visualization of the shape of a soap film covering a square hole** and

subjected to a slight pressure on one side shows that the maximum slope

occurs at the center of each edge; readings were taken along the center

line inter-secting the middle of an edge. Fig. 3 shows all the experimental

points taken at the center line. In Table 2 all the points taken at dif-

ferent parts of the section

* Taken from Fig. 6.

•• See Fig. 1.
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The value of the torsion "hill" was found* by dividing the whole

section into small squares (.3"x.3") and taking the potential reading

at the center of the small squares. Readings were required to take

only l/4 of the section. The slope was determined by the graph (Fig. 7),

Dimensionless expressions relating maximum stress, and torque may be

determined using equation (14). Analytical results are available for

these expressions, and are given in Table 3.

x D
3 2D3 V S

m _ c _m
M " R

3
S

V

cm

D = Length of the side of square

3
T
m
D

. 2 x (8.4)
3

° 1 x 4.6 x 181

M
(4)

3
(326 units) 3.60

= 4.18

Dimensionless expression containing torsional rigidity (1^9) may be

determined using equation (15)

M _ n r
4
V

4 46GD* 2 D
H
V
c

_ tt x (4) x 326 __ AU dimensionless
2 x (814) x 181

* See Table 2.
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DISCUSSION AND CONCLUSIONS

The resistance paper can be obtained in rolls, and is commercially

known as teledeltos paper.

The silver paint should be painted thickly. In order to get a smooth

inner edge a crow pen was used for painting the silver paint. A thin

aluminum foil was embedded in the paint (see photograph Fig. 2).

The base sheet used was one-quarter inch aluminum, 20 by 30 inches.

Aluminum was used because it was easy to get and was very cheap. Consider-

able difficulty was experienced to get a good sandwich. First, domestic

contact paper was used as an insulating layer but it was very difficult

to obtain a flat surface. So in the final layout a thin cardboard was

used. This was stuck to the plate and the resistance paper with rubber ce-

ment. Considerable care is needed to get a satisfactory assembly, as the

whole experiment depends on the uniformity of the thin insulating layer.

The A.C. voltage and frequency may be varied within wide limits and

it is not required to know them as long as they are constant. The values

used were about 300 to 250 cps , provided by the oscillator and the voltages

in the paper were found to be of the order of l/lOO of the supply

voltage. The whole analogy is based upon the assumption that the varia-

tion in the potential in the paper be small compared to the applied

voltage. The above values were more than ample to ensure the theoretical

accuracy of the analogy. The silver paint was earthed and the potential

readings were taken on a tube voltmeter. It was found necessary to use

shielded wire to avoid stray voltage. A regular probe was used. Light

contact only with the paper was found necessary.
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Accuracy within a few percent was obtained. It may again be

emphasized that the accuracy of both d.c. and a.c. methods depends

on the potential variation across the plate being small compared to

overall voltage.
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Table 1. ^ (volts x 1000) vs distance (in) for

circular section.

Distance : Exp erimental points •
•

Average!
•

Theoretical:

A-B (IN) : I : II : III : IV : points :

0.00 0.00 0.00 0.00 0.00 0.00 ——

—

0.25 1.05 1.05 1.05 1.05 1.05

0.50 1.90 1.90 1.90 1.95 1.91 1.81

1.00 3.25 3.25 3.25 3.30 3.26 3.2

1.50 4.35 4.40 4.35 4.40 4.375 4.38

2.00 5.25 5.40 5.25 5.40 5.37 5.40

2.50 6.00 6.10 6.10 6.10 6.10 6.10

3.00 6.60 6.60 6.60 6.70 6.60 6.60

3.50 7.00 7.00 7.1 7.1 7.05 7.04

4.00 7.20 7.20 7.2 7.2 7.20 7.20

4.50 7.00 7.00 7.1 7.0 7.05 7.04

5.00 6.662 6.62 6.664 6.6 6.66 6.60

5.50 6.11 6.11 6.10 6.00 6.10 6.10

6.00 5.45 5.35 5.40 5.35 5.38 5.40

6.50 4.50 4.50 4.5 4.35 4.50 4.38

7.00 3.25 3.25 3.25 3.225 3.25 3.20

7.50 1.95 2.00 2.00 1.95 1.98 1.81

7.75 1.06 1.06 1.06 1.06 1.06

8.00 0.00 0.00 0.00 0.00 0.00 —

-
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Table 4(a). Experimental and theoretical values for maximum shear stress,

: S V : Experimental : Theoretical : % Error

:

m
: T D3/M : T L)3/m

m m

Circle 3.6 181

Square 4.6 326 4.18 4.80 12.8%

Table 4(b). Experimental and Theoretical values for torsional rigidity.

: S V : Experimental : Theoretical : % Error
: units : M/e GL>4 : M/e GO 4 :

Circle- 3.6 181

Square 4.6 326 1.44 1.41 +2.13
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APPENDIX II

Extension to Hollow Sections

The electrical analogy method can easily be extended to sections

containing one or more holes, by painting silver paint over the area

occupied by the holes, thus forming areas of constant potential.

The potentials of these areas automatically assume the correct value

required by the analogy.

The current from any one of these areas flowing into the base sheet

is AC. 2n n E cos 2tt nt where A is the area of the "hole."
m

The current in the paper flowing through the boundary is

M .1.r* ds
ox

Jids = P

where ds and n refer to directions along the normal to the boundary.

rM ri

-8x + AQ 2tt n E cos 2n nt =

C-r^ ds = -AC 2tt P E
(

in rms values
*5x

The required boundary value of
-ty

is that which satisfies the equation

fjjA ds = -A 2G9
•3x

There is a direct analogy between x and p

-A2G6 = -AC. 2n n P E' rms value

Hence the value of \|> at the boundary is automatically correct.
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This is an electrical analogy for the solution of torsion

problems using a.c. current which is cheap, very quick and easy

to operate experimentally. Accuracy within a few percent can be

obtained. Values for a square section are calculated taking

circular cross section as a reference and are compared to the

theoretical values and the percentage error is determined. This

method has advantages over the soap film method because the

electrical quantities are much easier to read. There is a

similar analogy using d.c. current but it is not as practical

because semiconducting layer in sheet form is difficult to get

and is very expensive.


