A PROBLEM IN DEPLETED POURIER SERTES

by

EDISON OFPER

B. S., Kansaa State Teachers College, Emporia, 1936

A THES IS
submitted in partial fulfillment of the
requiremente for the degree of

MASTER OF SCEENGE

KANSAS STATE COLIEGE
OF AGRICULTURE AND APPLIED SCIENCE

1938

TABLE OF COMTENTS

Ineronuction 1
CONVEROENCE OF $\sum(\cos n x) / a^{2}$ 2
SUMMATION OF COMPLETE SERIES 5
SUMLATION OF $\sum(\cos n x) / n^{2}$, DEPLETED BY $S I X$ 10
SUMMATIOA OF $\sum(\cos n x) / n^{2}$, DEPLETED BY P 14
COMCLUS ION 18
ACKHOMLEDGMENT 18

InTRODUCTION

If a series $\sum_{n=1}^{\infty} A_{n}$ cos $n u$ has all the terma present for n ranging fron one to infinity, it is called a complete Yourier cosine series. If all terme divisible by p_{1} are missing, it is called a depleted series; if all terms divisible by p_{1} and p_{2} are missing, it is called a doubly depleted series, ttc. If p is the product of the k prime numbers $p_{1}, p_{2}, \ldots, p_{2}$, we say the series is depleted by p. The problem under consideration is to determine the function that can be expressed by $\sum_{n=1}^{\infty}(\cos n x) / n^{2}$ when this serles has been depleted by p.

CONVERGENCE OF $\sum(\cos \mathrm{nx}) / \mathrm{n}^{2}$

A standard notation for an infinite series is

$$
u_{2}+u_{2}+u_{3}+\ldots=\sum_{n=1}^{\infty} v_{n}=\sum u_{n}
$$

The nth partial sum of the series is

$$
s_{n}=u_{2}+u_{2}+u_{3}+\cdots+u_{n}
$$

The sum of an infinite series is defined as the ilmit, as n increases indeinitely, of the sum of the ilirstn terms:

$$
S=\lim _{n \rightarrow \infty} S_{n}
$$

provided the limit exists.
If $\sum u_{n}$ has a sum $S_{\text {, }}$ 1.e. if S_{n} approoches a limit When n increases, the serles is said to be convergent, or to converge to the value S ; if the limit does not exist, the series is divergent.

A series mey diverge because S_{n} increases indefinitely as n increases; or it may diverge becaume S_{n} increases and decreases alternately, or oscillates, without approaching any limit. In the latter case the series is called oscil1atory.

A necessary condition for convergence is that the general term approach zero as its limit;

$$
\lim _{n \rightarrow \infty} u_{n}=0
$$

If in $\sum u_{n}, u_{n}$ is a function of n, we have the Integrail test for convergence or divergence of the series:

If the function $f(n)$ is defined not only for positive integral values, but for all positive values of n, and if $f(n)$ never increases with n, then the series $\sum u_{n}$ converges or diverges according as the integral $\int_{1}^{\infty} f(n) d n$ does or does not exist.

If $\sum u_{n}$ be a series of positive terms to be tested then by the Comparison Test:
(a) If a series $\sum a_{n}$ of positive temps, known to be convergent, can be found such that $u_{n} \leqq a_{n}$, the series to be tested is convergent.
(b) If a series $\sum b_{n}$ of positive terms, known to be divergent, can be found such that $u_{n} \geqq b_{n}$, the series to be tested is diverbent.

The p-series, $\sum 1 / n$, is convergent for $p>1$ and divergent for $p \leqq 1$. This can be shown by use of the Integral Test in the following way:

$$
1 / 1^{p}+1 / 2^{p}+\cdots+1 / n^{p}+\ldots=\sum 1 / n^{p}
$$

The general term is I / n^{p} :

$$
\left.\int_{1}^{\infty} d n / n^{p}=\int_{1}^{\infty}-p_{d n}=n^{2-p} /(1-p)\right]_{1}^{\infty}
$$

Since this is a finite result for $p>1$, the series is convergent. For $p \leqq 1$, the integral falls to exist; therefore it is divergent.

TO test the series
$(\cos \pi) / 1^{2}+(\cos 2 \pi) / 2^{2}+\cdots+(\cos n x) / n^{2}+\cdots$
compare with the series

$$
1 / 1^{2}+1 / 2^{2}+1 / 3^{2}+\cdots+1 / n^{2}+\cdots
$$

which is proved above to be convergent. Since

$$
(\cos n x) / n^{2} \leqq 1 / n^{2}
$$

for all values of n, the series $\sum(\cos n x) / n^{2}$ converges.
If each terai of the series is a function of a real variable x for a closed interval $a \leqq x \leqq b$, we can write the ser les

$$
u_{1}(x)+u_{2}(x)+u_{3}(x)+\ldots=\sum u_{n}(x) ;
$$

and its nth partial sura is $S_{n}(x)$.
The series $\sum u_{n}(x)$ is uniformly convergent over the interval (a, b) if there is a convergent series of positive constant terms, $\sum a_{n}$ say, such that $\left|u_{n}(x)\right| \leqq a_{n}$ for all values of n and x. Therefore the series

$$
\sum(\cos n x) / n^{2}=(\cos x) / 1^{2}+(\cos 2 x) / 2^{2}+\cdots
$$

is uniformly convergent over any interval.

SUMMATION OF COMPLETE SERIES

The sumation of the complete aeries

$$
\sum(\cos n x) / n^{2}=(\cos x) / 1^{2}+(\cos 2 \pi) / 2^{2}+(\cos 3 x) / 3^{2}+\ldots
$$

oan be attained by expanding each term around $x=\pi$ by means of Taylor's Series and summing the double series thas formed. Taylor's Series gives us:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+f^{\prime}(a)(x-a)^{2} / 2!+\ldots
$$

where $f(x)$ is expanded in powers of $(x-a)$ in the vicinity of $x=$ a.

To Ind the sum of $\sum(\cos n x) / n^{2}$ over the interval $0 \leqq x \leqq 2 \pi$, we shail choose the mid-point $x=\pi$ around which to expand the function.

$$
\begin{array}{ll}
f(x)=(\cos n x) / n^{2} & f(\pi)=(-1) / n^{2} \\
f^{\prime}(x)=-(\sin n x) / n & f^{\prime}(\pi)=0 \\
f^{\prime \prime}(x)=-\cos n x & f^{\prime \prime}(\pi)=(-1)^{n-1} \\
f^{\prime \prime}(x)=n \sin n x & f^{\prime \prime \prime}(\pi)=0 \\
f^{\prime V}(x)=n^{2} \cos n x & f^{\prime V}(M)=(-1)^{n / n^{2}} \\
f^{\prime V}(x)=-n^{3} \sin n x & f^{V}(\pi)=0 \\
: &
\end{array}
$$

From the above we find $(\cos n x) / n^{2}=(-1)^{n} / n^{2}+(-1)^{n-1}(x-\pi)^{2} / 2!+(-1)^{n} n^{2}(x-\pi)^{4} / 4:+\ldots ;$
hence

$$
\begin{aligned}
& \sum(\text { cos } n x) / n^{2}=\sum(-1)^{n} / n^{2}+(x-\pi)^{2} / 2!\sum(-1)^{n-1} \\
&+(x-n)^{4} / 4: \sum(-1)^{n} n^{2}+(x-\pi)^{6} / 6: \sum(-1)^{n-1} n^{4}+\cdots
\end{aligned}
$$

Therefore \sum (eos $\left.n x\right) / n^{2}$ expands into on infinite set of infinite series commonly called a double series.

$$
\begin{aligned}
& \sum(\cos n x) / n^{2}=\left[-1 / 3^{2}+1 / 2^{2}-1 / 3^{2}+1 / 4^{2}-1 / 5^{2}+\cdots\right] \\
& +(x-\pi)^{2} / 2:[2-1+1-1+1-1+\cdots] \\
& +(x-\pi)^{4} / 4:[-1+4-9+16-25+\cdots] \\
& +(x-\pi)^{6} / 6![1-26+81-256+\cdots] \\
& +(-1)^{3}(x-\pi)^{2(3+1)} /(28+2):\left[1-2^{28}+3^{28} \cdots \cdot \cdot\right]
\end{aligned}
$$

Where is equal to $0,1,2,3, \ldots$.
THy the formula $B_{5}=(2 r)!/\left(2^{2 r-1} \pi^{2 r}\right) \sum 1 / n^{2 r}$, we can find the $\sum 1 / n^{2}$ by letting $r=1$ and knowing that $B_{2}=1 / 6$, where B_{1} is the first Bernoulli number.

$$
1 / 6=1 / \pi^{2} \sum 1 / n^{2}, \text { or } \sum 1 / n^{2}=\pi^{2} / 6
$$

Since the series

$$
-1+1 / 4-1 / 9+1 / 16-1 / 25+\ldots=-1 / n^{2}+2 / 2^{2} n^{2}
$$

then

$$
\sum(-1) / n^{2}=-\sum 1 / n^{2}+1 / 2 \sum 1 / n^{2}=-\pi^{2} / 6+\pi^{2} / 12=-\pi^{2 / 12}
$$

Some divergent series are summable. By letting $e^{-x}\left(u_{0}+u_{2} x+u_{2} x^{2} / 2!+u_{3} x^{3} / 3!+\ldots\right)=e^{-x} u(x)$ and assumeWee Bromilch, Theory of Infinite Series, Art. 93.

Ing that the coefficients u_{n} are such that the series $u(x)$ converges for all values of x, we may give the following definition for a aumable divergent series:

Provided that the integral $\int_{0}^{\infty} e^{-x} u(x) d x$ is convergent, we may agree to associate its value with the series $\sum u_{n}$, if this series is not convergent; this integral may then be called the "swan" of the series; and the series may be called fumble. The sum may be denoted ty the symbol?

$$
e_{0}^{\infty} e_{n}^{\infty}
$$

min definition ia due to morel and is regarded es the fundamental definition.
whither, if G is any rector independent of n,

$$
\oint_{0}^{\infty} u_{n}=c \int_{0}^{\rho_{n}}
$$

Now, in the series $1-1+1-1+1$-....

$$
u(x)=1-x+x^{2} / 2!-x^{3} / 3!+\ldots=e^{-x}
$$

and so

$$
\int_{0}^{\infty} e^{-x u}(x) d x=\int_{0}^{\infty} e^{-2 x} d x=1 / 2
$$

By letting
and

$$
c=1+\cos \theta+\cos 2 \theta+\cos 3 \theta+\ldots
$$

we obtain $c+1 S=1+e^{10}+e^{210}+e^{310}+\ldots$

Wee Bromilch, Theory of Infinite Series, Art. 102.
from which wo see that the associated function is
or

$$
\begin{aligned}
& u(x)=1+\pi e^{1 \theta}+x^{2} 21 \theta / 2!+\ldots=e^{x \theta^{1} \theta}, \\
& u(x)=e^{x(\cos \theta+1 \sin \theta)}
\end{aligned}
$$

Hence, provided that θ is not zero or multiple of 2π. we find the gum

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x} u(x) d x & =\int_{0}^{\infty} e^{-x(1-\cos \theta-1 \sin \theta) d x=1 /(1-\cos \theta-1 \sin \theta)} \\
& =1 / 2(1+1 \cot \theta / 2) .
\end{aligned}
$$

Therefore, the real part $c=1+\cos \theta+\cos 2 \theta+\ldots=1 / 2$.
According to Bromwich", we may differentiate the seriea found for $e^{\oint_{c o s}^{\infty} n \theta \text { and } \rho^{\infty} \operatorname{Sin}^{\infty} n \theta \text { as often as we please, }}$ provided that θ is not a multiple of 2% Hence we find

$$
e_{1}^{6} e^{2} \cos n \theta=0, \text { and } e_{n}^{2 s-1} \sin n \theta=0
$$

raking $\theta=\pi$ in the first equation, we find the result:

$$
1^{2 s}-2^{2 s}+5^{2 s}-4^{28}+\ldots=0
$$

Since the series $\sum(\cos n x) / n^{2}$ is uniformiy convergent for all values of x, we shall expect, as is the case, that each series in the double series is sunmable. Therefore $\sum(\cos n x) / n^{2}=-\pi^{2 / 12}+(x-\pi)^{2} /(2!\cdot 2)+(x-\pi) 4 / 4!(0)+0$.

$$
\sum(\cos n x) / n^{2}=(x-\pi)^{2 / 4}-\pi^{2} / 12=1 / 12\left[3(x-\pi)^{2}-\pi^{2}\right]
$$

where $0 \leqq x \leqq 2 \pi$; or by taking any interval of length 2π; we mey write

$$
\sum(\cos n x) / n^{2}=1 / 12\left\{3[x-(2 x+1) \pi]^{2}-\pi^{2}\right\}
$$

where $2 k \pi \leqq x \leqq 2(k+1) \pi$, and $k=0,1,2,3, \ldots$.
Wee Bromich, Theory of Infinite Series, Art. 109 and 110.
$y_{\phi}=\sum(\cos n \phi x) /(n \phi)^{2}$ is aeries composed of all the terms of the complete series $\sum(\cos n x) / n^{2}$ divisible by ϕ. This series may be summed in the following way:

$$
\begin{aligned}
& \sum(\cos n \phi x) /(n \phi)^{2}=1 / \beta^{2} \sum(\cos m) / n^{2}, \text { where } u=\phi x . \\
& \sum(\cos n \phi x) /(n \phi)^{2}=1 /\left(12 \phi^{2}\right)\left\{3[u-(2 k+1) \pi]^{2}-\pi^{2}\right\} \\
& \text { or } \sum(\cos n \phi x) /(n \phi)^{2}=1 /\left(12 \phi^{2}\right)\left\{3\left[(x-(2 k+1) \pi]^{2}-\pi^{2}\right\}\right. \\
& \text { where } 2 k \pi / \phi \leq x \leq 2(k+1) \pi / \phi, \text { and } k=1,2,3, \ldots .
\end{aligned}
$$

SUMMATION OF $\sum(\cos n \mathrm{x}) / \mathrm{n}^{2}$, DEPLETED BY SIX

By depleting a series by sone number p, in this case 6 , it is meant to omit all terms of the complete series divisable by any of the prime factors of p. In the series $y=\sum(\cos n x) / n^{2}$, depleted by $6=(\cos x) / 1^{2}+(\cos 5 x) / 5^{2}$ $+(\cos 7 x) / 7^{2}+(\cos 22 x) / 11^{2}+(\cos 25 x) / 23^{2}+\ldots$, we have

$$
y=y_{1}-y_{2}-y_{3}+y_{6}
$$

where $y_{1}=(\cos x) / 1^{2}+(\cos 2 x) / 2^{2}+(\cos 3 x) / 3^{2}+\cdots$,

$$
y_{2}=(\cos 2 x) / 2^{2}+(\cos 4 x) / 4^{2}+(\cos 6 x) / 6^{2}+\cdots
$$

$$
=1 / 2^{2} \sum(\cos m u) / n^{2} \text {, where } u=2 x \text {, }
$$

$$
y_{3}=(\cos 3 x) / 3^{2}+(\cos 6 x) / 6^{2}+(\cos 9 x) 9^{2}+\cdots
$$

$$
=1 / 3^{2} \sum(\cos n u) / n^{2} \text {, where } u=3 x \text {, and }
$$

$$
y_{6}=(\cos 6 x) / 6^{2}+(\cos 12 x) / 12^{2}+(\cos 18 x) / 18^{2}+\ldots
$$

$$
=1 / 6^{2} \sum(\cos n u) / n^{2}, \text { where } u=6 x
$$

Since
$y_{\phi}=\sum(\cos n \phi x) /(n \phi)^{2}=1 /\left(12 \phi^{2}\right)\left\{3[\phi x-(2 x+1) \pi]^{2}-\pi^{2}\right\}$ where $2 k \pi / \phi \leqq x \leqq 2(k+1) \pi / \beta$, the summation of the above series can be written.

$$
\begin{gathered}
y_{2}=1 /(4 \cdot 12)\left\{3[2 x-(2 k+1) \pi]^{2}-\pi^{2}\right\} \\
\text { when } k \pi \leqq x \leqq(k+1) \pi \\
y_{3}=1 /(9 \cdot 12)\left\{3[3 x-(2 k+1) \pi] 2-\pi^{2}\right\} \\
\text { when } 2 k \pi / 3 \leqq x \leqq 2(k+1) \pi / 3
\end{gathered}
$$

And

$$
\begin{gathered}
y_{6}=1 /(36 \cdot 12)\left\{3[6 x-(2 k+1) \pi]^{2}-\pi^{2}\right\}, \\
\text { when } k \pi / 3 \leqq x \leqq(k+1) \pi / 3
\end{gathered}
$$

Let ∇_{6} be the interval part of $\nabla / 6$, and r_{6} the remainder; then $\nabla=6 \nabla_{6}+r_{6}$.

By making these substitutions for k, we arrive at the summation of the depleted series.

$$
\begin{aligned}
y & =y_{1}-y_{2}-y_{3}+y_{6} \\
& =1 / 12\left\{3\left[x-\left(2 v_{6}+1\right) \pi\right]^{2}-\pi^{2}\right\} \\
& -1 / 48\left\{3\left[2 x-\left(2 \nabla_{3}+1\right) \pi\right]^{2}-\pi^{2}\right\} \\
& -1 / 108\left\{3\left[3 x-\left(2 v_{2}+1\right) \pi\right]^{2}-\pi^{2}\right\} \\
& +1 / 432\left\{3[6 x-(2 v+1) \pi]^{2}-\pi^{2}\right\} \\
& \text { where } v \pi / 3 \leqq x \leq(v+1) \pi / 3 .
\end{aligned}
$$

After expanding and collecting, we get

$$
\begin{aligned}
y=\Delta \pi x+A_{1} \pi^{2}, \text { where } \\
A=-\nabla_{6}+\nabla_{3} / 2+\nabla_{2} / 3-\nabla / 6-1 / 6, \text { and } \\
A_{1}=\nabla_{6}\left(\nabla_{6}+1\right)-\nabla_{3}\left(\nabla_{3}+1\right) / 4-\nabla_{2}\left(\nabla_{2}+1\right) / 9-v(v+1) / 36+1 / 9 \\
\text { when } v \pi / 3 \leqq x \leqq(v+1) \pi / 3 .
\end{aligned}
$$

But $v_{6}=\left(v-r_{6}\right) / 6, v_{3}=\left(v-r_{3}\right) / 3$, and $\nabla_{2}=\left(v-r_{2}\right) / 2$; therePore, by substitution, we get
and

$$
A=\left(r_{6}-r_{3}-r_{2}-1\right) / 6
$$

-here

$$
A_{1}=-A \nabla / 3+B
$$

$$
B=\left[r_{6}\left(r_{6}-6\right)-r_{3}\left(r_{3}-3\right)-r_{2}\left(r_{2}-2\right)+4\right] / 36
$$

A has at most six different values, and B has at most six different values.
$y=A \pi x-A_{1} \pi^{2}$ is a series of straight lines which can be represented by \& Fourier series depleted by six.

By using different values of v we can find the remaindoers r_{6}, r_{3}, and r_{2} and, therefore, values of A, B, and A_{1}, from which we can write the equations for the $s i x$ regions in the interval from $x=0$ to $x=2 \pi$.

v	0	1	2	3	4	5
r_{6}	0	1	2	3	4	5
r_{3}	0	1	2	0	1	2
r_{2}	0	1	0	1	0	1
A	$-1 / 6$	$-1 / 3$	$-2 / 6$	$2 / 6$	$1 / 3$	$1 / 6$
B	$1 / 9$	$1 / 18$	$-1 / 18$	$-1 / 9$	$-1 / 18$	$1 / 18$
A_{1}	$1 / 9$	$1 / 6$	$1 / 18$	$-5 / 18$	$-1 / 2$	$-2 / 9$

$$
\text { For } \begin{aligned}
v=0, & y=(-\pi / 6) x+\pi^{2} / 9, & 0 \leqq x \leqq \pi / 3 . \\
v=1, & y=(-\pi / 3) x+\pi^{2} / 6, & \pi / 3 \leqq x \leqq 2 \pi / 3 \\
v=2, & y=(-\pi / 6) x+\pi^{2} / 18, & 2 \pi / 3 \leqq x \leqq \pi \\
v=3, & y=(\pi / 6) x-5 \pi^{2} / 18, & \pi \leqq x \leqq 4 \pi / 3 . \\
v=4, & y=(\pi / 3) x-\pi^{2} / 2, & 4 \pi / 3 \leqq x \leqq 5 \pi / 3 . \\
v=5, & y=(\pi / 6) x-2 \pi^{2} / 9, & 5 \pi / 3 \leqq x \leqq 2 \pi
\end{aligned}
$$

From the inequality $\nabla M / 3 \leqq x \leqq(v+1) \pi / 3$, we cen
determine v. For instance, let $x=200^{\circ}$:

$$
\begin{aligned}
& v / 3<200^{\circ}<(v+1) \pi / 3 \\
& v<500 \% / 180^{\circ}<\nabla+2
\end{aligned}
$$

$$
\begin{aligned}
& \nabla<3 I / 3<\nabla+1 \\
& \text { Therefore, } \nabla=3 \\
& \text { Since the cosine sunction has a period of } 2 \pi
\end{aligned}
$$ equations will suffico for all values of x if properly seleoted.

SUMMATION OR $\sum(\cos n x) / n^{2}$, DEPLETED BY P

First we shall solve for the sumption of the series when depleted by p where p is a prime number or is taken alone. With this condition in mind
$y=\sum(\cos n x) / n^{2}$, depleted by $p=y_{1}-y_{p}$.
From equations derived in part three, it is obvious that

$$
y_{1}=1 / 12\left\{3\left[x-\left(2 v_{p}+1\right) \pi\right]^{2}-\pi^{2}\right\}
$$

and $\quad y_{p}=1 /\left(12 p^{2}\right)\left\{3[p x-(2 v+1) \pi]^{2}-\pi^{2}\right\}$.
Then $y=1 / 12\left\{3\left[z-\left(2 \nabla_{p}+1\right) \pi\right]^{2}-\pi^{2}\right\}-1 / 12 p^{2}\{3[p x$
$\left.-(2 v+1) \pi]^{2}-\pi^{2}\right\}$
$=\left[(2 v+1) / 2 p-\left(2 v_{p}+1\right) / 2\right] \pi x-\left[(2 v p+1)^{2} / 4\right.$
$\left.-(2 v+1)^{2} / 4 p^{2}+\left(1-p^{2}\right) / 12 p^{2}\right] \pi^{2}$
$=A \pi x+A \pi^{2}$
where $A-(2 v+1) / 2 p-v_{p}-1 / 2$,
and $A_{1}=\left(2 v_{p}+1\right)^{2} / 4-(2 v+1)^{2} / 4 p^{2}-\left(1-p^{2}\right) / 12 p^{2}$.
Since $\nabla_{p}=\left(\nabla-r_{p}\right) / p$, where v_{p} is the integral part of ∇ / p and r_{p} the remainder, by substituting this value for v_{p} we
get

$$
y=\Lambda \pi x+\Lambda_{2} \pi^{2}
$$

when
$A=r_{p} / p-1 / 2$,
and
$A=-2 A v / p+B$
where
$B=r_{p}\left(r_{p}-p\right) / p^{2}+\left(p^{2}-1\right) / 6 p^{2}$, when $2 v \pi / p \leqq x \leqq 2(v+1) \pi / p$.

How let us consider the case $y=\sum(\cos n x) n^{2}$, depleted by p, where p_{1} and p_{2} are the prime factors of p, and $p \equiv p_{2} p_{2}$.
Here $y=y_{1}-J_{p_{2}}-J_{p_{2}}+J_{p}$

$$
\begin{aligned}
& =1 / 12\left\{3\left[x-\left(2 v_{p}+1\right) \pi\right]^{2}-\pi^{2}\right\}-1 / 12 p_{1}^{2}\left\{3 \left[p_{1} x\right.\right. \\
& \left.\left.-\left(2 v_{p}+1\right) \pi\right]^{2}-\pi^{2}\right\}-1 / 12 p_{2}^{2}\left\{3\left[p_{2} x-\left(2 v_{p_{1}}+1\right) \pi\right]^{2}-\pi^{2}\right\} \\
& +1 / 12 p^{2}\left\{3[p x-(2 v+1) \pi]^{2}-\pi^{2}\right\} \\
& \text { when 2vN/p} \leq x \leq 2(v+1) \pi / p .
\end{aligned}
$$

By simplifying and substituting $\left(v-r_{p}\right) / p$ for ∇_{p}, $\left(v-r_{p_{1}}\right) / p_{1}$ for $v_{p_{2}}$, and $\left(v-r_{p_{2}}\right) / p_{2}$ for $v_{p_{2}}$, we get

$$
y=A \pi x+A_{2} \pi^{2}
$$

where
and

$$
A=\left(p_{p-r} p_{1}-r_{p_{2}}\right) / p+\left(p_{1}+p_{2}-p-1\right) / 2 p
$$

when

$$
A_{1}=-2 A v / p+B
$$

$$
B=1 / p^{2}\left[r_{p}\left(r_{p}-p\right)-r_{p_{2}}\left(r_{p_{1}}-p_{1}\right)-r_{p_{2}}\left(r_{p_{2}}-p_{2}\right]\right.
$$

$$
+1 / 6 p^{2}\left[p^{2}-p_{1}^{2}-p_{2}^{2}+1\right]
$$

in the interval $2 v \pi / p \leqq x \leqq 2(v+1) \pi / p$.

We shall take one more case before generalizing in the number of prime factors of p. That is $y=\sum($ cos $n x) / n^{2}$ Where p_{1}, p_{2}, and p_{3} are the three prime factors of $p_{\text {, }}$ and $p=P_{1} P_{2} p_{3}$. With an increasing number of prime factors of p, the problem rapidly increases in complexity.

$$
y=\Sigma_{1}-y_{p_{2}}-\Psi_{p_{2}}-\Sigma_{p_{2}}+y_{p_{2} p_{2}}+\Sigma_{p_{2} p_{3}}+\Sigma_{p_{2} p_{3}}-y_{p}
$$

$$
y=A \pi x+A_{1} \pi^{2}
$$

where $\left.A=1 / p_{1} p_{p}-r_{p_{1} P_{2}}-r_{p_{1} P_{3}}-r_{p_{2} p_{3}}+r_{p_{1}}+r_{p_{2}}+r_{p_{3}}\right)$

$$
+1 / 2 p\left(p_{1} p_{2}+p_{2} p_{3}+p_{2} p_{3}-p_{1}-p_{2}-p_{3}-p_{2}+1\right)_{1}
$$

and

$$
A_{1}=-2 A v / p+B
$$

$$
\text { where } B=1 / p^{2}\left[r_{p}\left(r_{p}-p\right)-r_{p_{1} p_{2}}\left(p_{p_{1}} p_{2}-p_{1} p_{2}\right)\right.
$$

$$
-r_{p_{1} p_{3}}\left(r_{p_{1} p_{5}}-p_{1} p_{3}\right)-r_{p_{2} p_{3}}\left(r_{p_{2} p_{3}}-p_{2} p_{3}\right)
$$

$$
\left.+r_{p_{1}}\left(r_{p_{1}}-p_{1}\right)+r_{p_{2}}\left(r_{p_{2}}-p_{2}\right)+r_{p_{3}}\left(r_{p_{3}}-p_{3}\right)\right]
$$

$$
+1 / 6 p^{2}\left[p^{2}-p_{1}^{2} p_{2}^{2}-p_{1}^{2} p_{3}^{2}-p_{2}^{2} p_{3}^{2}+p_{1}^{2}+p_{2}^{2}+p_{5}^{2}-1\right]
$$

$$
\text { when } 2 v \pi / p \leqq x \leq 2(v+1) \pi / \mathrm{p}
$$

$$
\begin{aligned}
& y=1 / 12\left\{3\left[x-\left(2 v_{p}+1\right) \pi\right]^{2}-\pi^{2}\right\}-1 / 12 p_{1}^{2}\left\{3 \left[p_{1} x\right.\right. \\
& \left.\left.-\left(2 v_{p_{2 p 3}}+1\right)\right]^{2}-\pi^{2}\right\}-1 / 12 p_{2}^{2}\left\{5\left[p_{2} x-\left(2 v_{p_{1} p_{3}}+1\right) \pi\right]^{2}-\pi^{2}\right\} \\
& -1 / 1 \Sigma p_{3}^{2}\left\{5\left[p_{3} x-\left(2 v_{p_{1}} p_{2}+1\right) \pi\right]^{2}-\pi^{2}\right\}+1 /\left(12 p_{1}^{2} p_{2}^{2}\right)\left\{3 \left[p_{1} p_{2} x\right.\right. \\
& \left.\left.-\left(2 v_{p_{3}}+1\right) \pi\right]^{2}-\pi^{2}\right\}+1 /\left(12 p_{1}^{2} p_{3}^{2}\right)\left\{3\left[p_{1} p_{3} x-\left(2 v_{p_{2}}+1\right) \pi\right]^{2}-\pi^{2}\right\} \\
& +1 /\left(12 p_{2}^{2} p_{3}^{2}\right)\left\{\left[\left[p_{2} p_{3} x-\left(2 v_{p_{1}}+1\right) \pi\right]^{2}-\pi^{2}\right\}-1 / 12 p^{2}\{s[p x\right. \\
& \left.-(2 v+1) \pi]^{2}-\pi^{2}\right\} \\
& \text { Since } v=\left(v-r_{p}\right) / p, v_{p_{1}}=\left(v-r_{p_{2}}\right) / p_{1}, v_{p_{2}}=\left(v-p_{p_{2}}\right) / p_{2} \text {, } \\
& v_{p_{2} p_{2}}=\left(v-p_{p_{1} p_{2}}\right) / p_{1} p_{2}, v_{p_{1} p_{3}}=\left(v-r_{p_{1} p_{3}}\right) / p_{1} p_{3} \text {, and } \\
& v_{p_{2} p_{3}}=\left(v-r_{p_{2 P 3}}\right) / p_{2} P_{3} \text {, we may substitute these values and } \\
& \text { simplify to attain }
\end{aligned}
$$

With the results of these three particular cases of depleted series we can write from mathematical induction a general solution for the sumption of the series $\sum(\cos n x) / n^{2}$ depleted by any number p which was a pinite number k of prime factors $p_{1}, p_{2}, p_{3}, \ldots, p_{1}, \ldots, p_{k}$, and $p=p_{2} p_{2} p_{3} \cdots p_{k}$.
$\sum(\cos n x) / n^{2}$, depleted by $p=A m+A_{1} r^{2}$ where

$$
\begin{aligned}
A & =1 / p\left[r_{q_{k}}-\sum r_{q_{k-1}}+\sum r_{q_{k-2}} \cdots+(-1)^{k-1} \sum r_{q_{1}}\right] \\
& +1 / 2 p\left[\sum q_{q_{k-1}}-\sum q_{q_{k-2}}+\cdots+(-1)^{k} \sum q_{1} \infty+(-1)^{k-1}\right]
\end{aligned}
$$

and $A_{1}=-2 A \nabla / p+B$ where

$$
\begin{aligned}
B & =1 / p^{2}\left[r_{q_{k}}\left(r_{q_{k}}-q_{1 k}\right)-\sum r_{q_{1 k-1}}\left(r_{q_{2 k-1}}-q_{1 k-1}\right)+\sum r_{q_{1 k-2}}\left(r_{q_{k-2}}\right.\right. \\
& \left.\left.-q_{k-2}\right)-\cdots+(-1)^{k-1} \sum r_{q_{1}}\left(r_{q_{1}}-q_{2}\right)\right]+1 / 6 p^{2}\left[q_{k}^{2}-\sum q_{k-1}^{2}\right. \\
& \left.+\sum q_{k-2}^{2}-\cdots+(-1)^{k-1} \sum q_{1}^{2}+(-1)^{k}\right]
\end{aligned}
$$

$$
\text { when } 2 v \pi / p \leqq x \leqq 2(v+1) \pi / p
$$

Here q_{m} is the products of the numbers in the combineLions of the k prime factors of p taken m of them at a time, and in $\sum r_{q_{n}}\left(r_{q_{m}}-q_{m}\right)$ the same value of q_{m} is used in all three positions simultaneously.

CONCLUSION

$f(x)=A N_{x}+A_{2} \pi^{2}$, a series of straight lines, is a function which can be expressed by $\sum(\cos n \pi) / n^{2}$ when depleted by p.

ACKNOW LEDOMEMT

The author wishes to take this opportunity to express a sincere epprecietion to professor W. T. Stretto for his helpful suggestions in the development of this problem.

