A USER-ORIENTED TRANSACTION DEFINITION FACILITY
FOR A RELATIONAL DATABASE SYSTEM

by

C. STEVEN ROUSH

B. S., Kansas State University, Manhattan, Kansas, 1972

- ek A e e e .

A MASTER’S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1979

Approved by:

ACKNOWLEDGEMENTS

I want to thank Dr.
on track and NCR, Inc.

SF(’E" '{;1{/!»
LD

Ab&Y
Ko
479
R5¥
¢. A

Fred Maryanski for keeping my work
for funding this project.

TABLE OF CONTENTS

INTRODUCTION. =+ +« o s « ¢ « o o s o
THE DESIGN., + o « « &« s + & & + » =
IMPLEMENTATION AND TESTING.
EVALUATION AND CONCLUSIONS.

du g N

REFERENCES.: « & « s o s o s ¢ o 2 o s

BIBLIOGRAPHY. « &+ o ¢ s o o 5 o o o s »

APPENDICIES

SYNTAX OF THE OUTPUT OF TDF « + .+ + «
EXAMPLES OF INTERACTION WITH TDF

AND THE RESULTING CUTPUT. . .+ « « +
A LISTING OF TDF. & + « & o o s & &« » o

LIST OF FIGURES

A TRANSACTION PRESENTED AS A HEIRARCHY.
SNAP SYSTEM FLOWCHART . « « ¢ + o o =«
A DATABASE OF TWO RELATIONS . « « « « o
THE DATA STRUCTURES . ¢ &+ s ¢« + + e s o
THE PROGRAM STRUCTURE . .« . + &« o + o

17
32

37

38

39

41
47

1.3
20
25

ii

1. INRODUCTION

Software has become the major obstacle preventing users
from reaching their automation gocals. According to Boehm’s
projections, software now accounts for approximately 80% of
every dollar invested in computing, or about 20 billion
dollars annually(l]. Further, both Boehm([2] and Myersa{3]
quote projected software growth figures of 15 to 25%
annually. It is not clear how these growth rates can be
attained.

Myers states that productivity increases will only
average 3 to 7% during the period from 1955 to 1985[4], and
Boehm estimates that during the ten years before 1985
improved productivity and increased numbers of programmers
together can only account for a software growth rate of 12
to 17%[S]. Mills, however makes these estimates seem
optimistic. He notes that software maintenance already
requires about 75% of the total software effort, and that
"unless radical methods are found, maintenance will go even
higher in its demands and will wvery nearly stifle
development®[6] .,

There are other problems with current software
production techniques which must also be noted. Software
has a reputation for being delivered late and being
unreliable when " it is delivered(7], Finally, because
current programmer productivity appears to be between 600
and 60C0 instructions per man-year[8], it is very difficult

for software systems to keep pace with the changing needs of

the users.

For these reasons, a large effort is being made to help
reduce the problems of software development. Structured
design, structured programming, new language design, program
proving, project management techniques and database
management systems have all evolved with the intention of
improving the quality of software. This report will discuss
work done in the database management area that may
eventually help reduce the effort required to create and
maintain a body of software, thus helping to enhance the
utility of the computer.

Specifically, the report discusses the design and
implementation of a subsystem of a user«oriented database
management system which is wunder development. The goal of
this prototype system, which 1is named SNAP, is to allow
transactions, both retrieval and maintenance, to be defined
by people who are not computer professionals, and entire
systems of transactions to be defined by these same people
with professional assistance required only during the
precess of identifying the interrelationships between the
data items in the system. Though far from complete, the
prototype database system does currently allow a trained
professional to define transactions which would probably
satisfy many of the user reguirements to retrieve (display)
their data,

The subsystem described by this report is named the

Transaction Definition Facility (TDF). 1Its goal is to

interact with the user to define his transactions in terms
which do not require knowledge of the internal structure of
the database (the schema), and to produce programs to
actually perform those transactions.

SNAP s design has been based on two assumptions. The
first is that users of a relaticonal database in third normal
form (3NF) require less knowledge of the database schema to
successfully perform transactions than users of databases
which have not been so rigorously defined. 1Instead, the
database management system can rely on the axioms which are
known to apply to relations in 3NF to supplement a user s
commands. The second assumption is that a user’s database
transactions are heirarchical in nature. That 1is, that
transactions are composed of “lines” which represent various
levels of detail or nesting, but those levels of detail
never partially overlap. This is analagous to the concept of
blocks in a block structured language., Figure l. presents

an example of a three level transaction,

Figure 1. A transaction presented as a heirarchy.
For each division in the company,
list its name
phone=-no
mail-location
and
For each department in that division,
list its name
phone=no
mail-location
and
For each employee in that department,
list his/her n ‘me
salary
job=title
From these assumptions a technique has been derived to
create a schema in 3NF without requiring Xxnowledge of
database systems, except when identifying the relationships
between data items. The process involves putting the data
items involved in each transaction into a hierarchy, with
each line in the transaction being a node, and identifying
the keys or determinants of each line, From ¢this
information, the system can develop the 3NF schema.
The schema creation system has been previously
implemented[9] and produces input to the Transaction
Definition Facility. Figure 2 presents the system flowchart

for the present SNAP system, including TDF.

The following chapters will discuss the design,
implementation, and testing of TDF; will present several
examples of its output; and will offer conclusions about the

use of the system and peossible future work.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

USER >
INTERFACE 1 '
.

DATA

EDITOR
i —
' -
| :

USER
INTERFACE

2
i Ao
l -
|
FUNCT IONAL

DEPENDENCY
GENERATOR

FUNCT IONAL
DEPENDENCY
ANALYZER §

Figure 2

SNAP System Flowchart

2. THE DESIGN

The design phase of any programming proiject is usually
the most important to the project’s success. This chapter
will discuss the techniques used to design TDF and will

present the results of this design.

The goal of the Transaction Definition Facility is to
allow the user to define his transactions without help from
computing professionals or knowledge of a computer
language. The problems involved in attaining this goal were
split informally into two groups: those which primarily
involved human engineering questions and those which
required the development of algorithms., It was agreed that
this implementation would not address the human engineering
problems but would concentrate on trying to develocp
solutions for the second class of preblems,

It was alsoc agreed that the magnitude of these problems
would inhibjit the investigation of all the problems in the
time available. Therefore, it was decided to try to design
and implement the system in stages.

There was no specification of output, input, or internal
processes by the Grantors or the project manager, as long as
the previously discussed goals and restrictions were met.
Therefore, one of the first tasks was to decide on a model
for the output. The model had to be complete, it had to
cover most or all of the transactions possible. This

resulted in a decision to base the ocutput on an existing

7
relational language, instead of trying to design and preove a
new language. This decision was enforced by the ease of
creating correct syntax for an existing language. SEQUEL 2
was chosen for the model because its syntax and semantics
were well suited to the needs of the system[10].

The next step was to perform a selective design. This
consisted of a top-down design which was not complete in
either breadth or depth. Instead, a pruning technigque was
used to reduce design time. The first design level defined
four mutually exclusive functions which could apply to a
transaction. They are the basic database functions add,
delete, update, and retrieve. It was decided to pursue only
the retrieval function, because it seemed to present the
most problems in the area of database navigation, and it was
felt that most of the problems encountered in designing the
other three functions would alsc apply to retrieval. It
must be noted that for this purpose, retrieval does not
include formatting the retrieved data, It was decided that
the problema of formatting could be handled after the
retrieval was defined and were o¢f a human engineering
nature.

Using the SEQUEL model, retrieval was further divided
into five non-exclusive processes which .would be performed
on each line, Collectively they would produce one SEQUEL

statement for the line. These five are defined as follows:

* Identification of data elements to be displayed

* Identification of formulae to derive temporary items

* Identification of sorting information

* Identification of data selection conditions

* Determination as to whether duplicate tuples should be

displayed

While these processes are sufficient ¢to define SEQUEL
statements, additional processes are needed to meet the goal
of allowing vusers to define their own transactions. As
stated earlier, the primary method of reaching this goal has
been to allow the user to define transactions without having
knowledge of the schema. All specification of transactions
is done without identifying the relations inveolved. The
following processes were defined to allow this capability:

* Identification of a primary relation

* Identification of navigation paths
* Tdentification of source relations of all elements

involved

The next step in the design process was to specify the
desired coverage for TDF and to identify a subset of SEQUEL
sufficient to attain that c¢overage. The two are dependent
on each other and on the set of concepts to be presented ¢to

the user as his tools to define transactions. Appendix 1

9

presents the syntax of the output of TDF, which is not a

proper subset of SEQUEL as some modifications have heen
made,

While some concepts, like sorting and identifying

displayed elements, are easy to understand and to present to

the user, two concepts were identified which do not seem to

fit easily into the TDF/SNAP design. They are:

Navigation paths based on general joins

If navigation paths can be assumed to stem only from
natural joins, given one operand, the other operand and
the operator can ke identified without user
interaction. Otherwise, the user would have to specify
both operands and the operator, which would seem to
conflict with the goals of the system., It appears that
few real-life retrievals are affected by this
assumption,

Relationships between tuples of the same relation.

The original version of the existing system could
not handle intra-relation joins, but attempts are being
made to correct this. These relationships are handled
as special cases by SEQUEL, but are even harder to deal
with if the wuser is unable to explicitly discuss
entity=-attribute relationships, Unfortunately, this
situation is common in real-life: managers manage

managers, and parts are made from other parts.

10

IDENTIFICATION OF A PRIMARY RELATION

To facilitate identifying navigation paths and the
potential of creating duplicate tuples, the concept of a
primary relation was developed. It is based on the belief
that every element in a 1line c¢could be covered or
"reached” by starting with the keys to a single “primary’
relation. Tﬁis can be egquated to the idea of every tree
having a single root. The process of identifying the
primary relation requires no interaction with the user,
but relies entirely on the user’s earlier interaction
with the Functional Dependency Generator{FDGEN), the
relations derived from this interaction, and the axioms
that apply to relations in 3NF. During testing of the TDF
it was discovered that some situations could actually
regquire multiple primary relations. This does not seem
to limit the potential usefulness of SNAP or TDF because
the primary relation concept is not essential to TDF but
merely facilitates other processes, additionally it
appears that the primary relation algorithm can be easily
modified to deal with multiple primary relations,

Unfortunately, time did not allow these changes to be

made to the system,

IDENTIFICATION OF DATA ELEMENTS TO BE DISPLAYED
Because the original 1lines of each transaction

included data elements which were not to be displayed,

11

but were involved in computations, data selection, or

navigation; it is necessary to identify those that are to

be displayed. This is done by listing all of the elements

involved in the 1line and asking the user to identify

those which are to be displyed.

IDENTIFICATION OF NAVIGATION PATHS

A navigation path is a relationship between data

elements in two tuples, of the same or different

relations, which can be represented by a join operation.

For example, DEPT=-NAME would be the basis for a

navigation path between the “Department’ relation and the
‘Employee’ relation given in Figure 3.
A database of two relations,

Figure 3.

Department:

DEPT~NAME PHONE=NO DIVISION~-NAME
Perscnnel 2331 General Sys.
Finance 7105 Administration
Data Pro. 4655 General Ssys.
Employee:
EMP~NUMBER EMP=NAME DEPT-NAME
B62468 Codd Finance
594786 Holmes Personnel
121342 Smith Finance

12
The process of identifying navigation paths appears
to be one of the keys to creating a truly user=-oriented
system. In keeping with the original goal of insulating
the user from knowledge of the achema, it was decided to
try to identify navigation paths internally, without user
involvement, except for cases where multiple paths
between two relations were possible. In those
situations, correct paths would be identified by the user
in terms of the data elements involved, instead of the
relations.
There are two basic relationship types which can
require a navigation path to be established.
l, If the data elements listed in <the line are not all

in the same tuple, paths must be created to link the

relations containing the elements. This includes
elements to bhe displayed, elements involved in
calculations and elements involved in data
selection.

2. If a line is not at the highest level of the report,
there is a relationship between the line and its most
recent predecessor at a higher 1level which must be

indicated thru a navigation path.

IDENTIPICATION OF DERIVATION OF TEMPORARY (DERIVED) ITEMS
DPata items which are not to be stored in the database are

identified in cne of the existing programs in the system,

13
FDGEN, and this information is passed on to TDF. Because
defining a method of specifying calculations is felt to
be a human engineering problem, TDF merely asks the user
to specify those data elements which are involved in the
calculation, without specifying any operations.

Two types of temporary data were identified, and they
have to be treated slightly differently. One is the
common calculation of the form:

A := function (B, ¢, D, ...}, where each element is

atomic
At present, TDF will handle this type by requesting that
each item needed to derive a gjiven temporary element be
identified.

The second case will be described informally as
grouping-type computations. Totals, averages, maximums,
and counts all fit in this class. There are two types of
data jitems involved in computing a grouping-type data
item:

l) The item(s) to grouped (totaled, counted, etc)

2) The item(s) needed to specify when to “break”’ the

calculatjion
There are two problems related to defining
grouping-type elements. The first is the human

angineering problem of asking the user to accept this
type of calculation and to specify each item to be
grouped and it“s “break” or “control’ jtems. The second

stems from the fact that the elements being grouped do

14
net occur at the same level in the heirarchy as the
temporary item which they are used to compute, Though
this problem is recognized, and changes are being made to
correctly handle it throughout the system, it is not

correctly handled by TDF,

IDENTIFICATION OF SORTING INFORMATION
Sorting information is gathered by asking the user if
the elements actually displayed should be presented in a
sorted order. If the answer is affirmative, these
elements are listed and the wuser is asked to indicate
sort keys in major to minor order, noting whether in

ascending or descending order.

IDENTIFICATION OF DATA SELECTION CONDITIONS

To allow users to define both queries and reports, it
must be possible to add data selection criteria to the
transaction. To do this, the user i= asked if the system
should retrieve every instance of the elements listed, or
if it should first apply additional data selection
criteria. If additional criteria are requested, they must
he of the same form as conditions or booleans of
conventional languages. There were two problems in this
process, the first is the human engineering problem of

specifying compound conditions in an easy to understand

15
manner. Currently TDF requires all conditions in a
compound condition to be AND ed.

The second problem involves specifying the source of
the elements in the selection criteria. While one operand
of the condition must involve element{s) in the line, the
other operand may come from anywhere, and may change
value at any time. In other words, the second operand may
come from a terminal, a temporary or permanent relation,
or its value may be a constant and it may vary with
arbitrary frequency. Though this is an important issue,
it is not central to the prototype system. Therefore in
the prototype the second operand is to always come from a

terminal, and at the frequency of once per execution of

that SEQUEL statement.

IDENTIFICATION OF WHETEHER DUPLICATE TUPLES SHOULD BE
DISPLAYED

If the displayed items do not include all the keys of

the primary relation, it is possible to display duplicate

tuples. Therefore, the system asks the user if duplicates

should be displayed, or only unique tuples.

CONCLUSION
As currently designed, TDF allows a user to define a

significant subset of passible retrieval transactions

16

without ever having to reference any schema~dependent
information. Five simple interactive processes are
sufficient to perform the transaction definition, as long as
the database is in 3NF. Additionally, there are no known
problems which would prevent the design from being extended
to cover the maintenance functions, in addition to
retrieval,

TDF was not designed using the design methodologies which
are currently popular. Though a top~down process was used,
it was not completed. Instead, the implementation effort was
begun as soon as the basic processes were jidentified. There
are several reasons for this:

* This was a research project, its goals were open—-ended.
* There were inflexible time constraints
* The implementor is biased against long design efforts if
the goal is not well defined
Most of the problems with the design were in the area of
finding a primary relation. Though the problems inveolving
primary relations appear ¢to be understood and partially

corrected, there is no proof of the concept.

17

3. IMPLEMENTATION AND TESTING

It is hard to put faith in untested ideas, Similarly, it
is hard to put faith in wuntested designs, Because the
design of TDF could not rely on previous work; design,
implementation, and testing were performed iteratively, in
an attempt to guide the design effort. This chapter will

discuss both implementation and testing of TDF.

ENVIRONMENT

TDF was implemented in COBOL on an NCR 8230 computer,
under the IMOS III operating system, This version of COBOL
is a large subset of the full language with extensions for
string and boolean handling{ll]. Because both of these
extensions were used, it would not be a simple task to port
this program to another machine, though it probably could be
done without too much effort if the second machine”s version
of COBOL allowed use of subroutines in some language which
could provide the boclean and string facilities.

The program is approximately 1850 1lines long and was
implemented in five weeks. This effort was aided by the
following environmental factors:

* the hardware was almost never down

* there was little contention for the machine by other
users

* the compiler and operating system were reliable, and

unchanging

18

* the on-line environment promoted guick detection and
correction of errors

* the author was experienced in COBOL

while these factors hindered it:

* gseveral compiler errors were encountered

* the IMOS editor seemed awkward to use

* IMOS lacked desired facilities (eg. no parameterization
of control strings)

* the COBOL compiler was deficient in several areas (egq.
no cross reference)

* COBOL is unsuited to the application

THE IMPLEMENTATION TECHNIQUE

Though the process of staged design did cause problems
and probably more than 500 lines of working code had to be
discarded or altered to meet changing needs, the
implementation effort did benefit from this technique.
Testing began during the first week and continued in
parallel with design and c¢oding. This allowed code to be
tested while gtill “fresh”® and debugging code to be
installed incrementally. Most of this debugging code was
left in the program and c¢an be turned on or off by the
user.

Additionally, the testing process kept the des ign
process on track by early identification of problems and

guidance as to solutions. Finally, it not only kept the

19
implementor appraised as to the exact state of the project,
but also provided quick gratification and therefore

encouragement,

THE PROGRAM

THE DATA STRUCTURES

The original set of data structures seemed to suit
the original design quite well, However, as socn as the
design was extended to handle temporary data items, this
was no longer true. Existing data structures were
modifjed and new ones created, but the result is
unfortunately much 1less manageable or comprehensible.
Much of the problem was caused by the iterative
design/implementation technique, but COBOL s limitations
in this area must also be recognized. A third factor was
the undue concern for efficiency by the implementor which

resulted in such design-dependent data structures.

The following data structures which are important to

the implementation are presented in Figure 4.

DATA~DICTIONARY
The purpose of the data dictionary is to link data

items to relations. It contains a entry for each data

20

F13VL INTW3ITI INIT

%

318Y1L AYvHOdWaL

I

100d NOTLIVSNYUL

34N30N415 eleq 3yj

¥ ounbl 4

ANYNOLLOIG YLYQ

378v1L 3NIT

0

1004 NOILY3Y

378YL NOILY13Y

21
item in the data base and is built from the relation
tile. Bach entry contains:

* The data item”s name

* A bit string indicating the relations to which it is
key

* A bit string indicating the relations within which it

found as a non*key

TEMPORARY TABLE
The temporary table is used to store the names of all
temporary (derived) data items in the transaction. It is
used with the data dictionary to guarantee that

unidentified data items cannot be referenced.

RELATION-TABLE
The purpose of the relaticn table 1is ¢to link
relations to their data items., This is accomplished by
linking together several data structures. The relation
table contains one entry per relation. Each entry
contains a pointer to a s8string of pointers in the
relation pool, which in turn point to the data
dictionary. Each entry also contains:
* A count of items in the key
* A count of items not in the key
* several temporary fields which are used by other

processes for line-dependent information

22
RELATION=-PCOL

The purpose of the relation poocl 1is to finish the
link between relations and their constituent data items.
Bach relation is represented by a string of entries
within the pool, one entry per data item. Entries for a
relation”s keys preceed the entries for its non-keys.
Each entry contains a pointer to the corresponding data

dictionary entry.

LINE-~TABLE
The line table is very similar to the relation table,
except each entry represents one line in the current
transaction. Each entry points to the transaction pool
which represents all data items in a transaction.
Additionally, it contains:
* A level number, indicating the 1line“s level in the
transaction
®* an accurrence number, indicating the occurrence of
that level

* A count of candidate keys of the line

TRANSACTION-PCOL
The transaction pool is similar to the relation pool.
It has one entry per data {item in each line in the
transaction. Each entry contains:
* A number which indicates if the item is a possible

determinant of the 1line, or if the item is a

23

temporary iltem
* A pointer to a data dictionary entry or an entry in
the temporary table, depending on whether it is a

temporary item or not

LINE~ELEMENT-TABLE
The line item table is the central data structure in
the actual definition of the ¢transaction at the line
level. As each step of the process is performed, the
system gathers more information about the line. This
information is then transformed into the output of the
system, in the form of executable commands. There is a
table entry for each 1tem in the data base which is
necessary to create the line. Each entry contains:
* A pointer to the item’s name, 4in either the data
dictionary or the temporary table
* A flag which indicates 1f the data item is a
determinant of the line
* A flag to indicate data items added to the line by
the system
* A flag to indicate data items to be displayed
* A flag to indicate data items to be retrieved
* A flag to indicate temporary data items
* The identifier of the data item”s source relation
* The identifier of any second relation which |is

involved in a natural join, based on this data item

24
THE PROCESSES
The interactive processes identified in the design
are basically quite simple in function and in
implementation, Each presents one or two questions and
stores the answers, with no manipulation of the answer of
any consequence. The non-interactive processes are much
more complex, These processes are really intended to
replace human interaction by deriving the answers to
schema-related questions from other sources. 1In some
circumstances, this requires extensive work, whether it
is being performed by a human or the machine.

Figure 5 displays the structure of the program.

GET=RELATIONS=BUILD-DATA~DICTIONARY

This process builds the data dictionary, relation
table, and relation pool from the relations file built by
the FDANALYZER. This is basically an initialization step
which requires no 4interaction and is not key to the
achievement of the program’s goals. The hashing
technigue used 1in building the data dicticnary is not
sophisticated but has not caused any problems during
testing. The other two data 8structures are built in a

sequential manner.

HANDLE~TRANSACTIONS
This process reads the file created Dby the

FDGENERATOR which identifies the report name, each line

25

aiing SNV SINIW3IT3 NCILV13d
ISV 133738 AY1dSId AYYWINYd
TI¥/3NDINN ating AYTINAQI aNId

S3NIT aiing YId3LIYD SNOT1Y13Y J1avL
J1NdHOD ISnv1d NOIL1J373S 3o4N0s INIW3TI-INIT
INTHd 140S Y1vd AdT1N3AI aiting

SNOILJVSNYYL AYYNOILIIO Y1VQ

: airng
A7ANVH SNOILYI3Y 139

24n30n415 wedabodd ayj

40t G 94nbl 4

26

in the report, the levels of the lines, the data items in
each line, and whether each item is a temporary item or a
possible determinant of the line, The line table and
transaction pool are built from this information and the

DEFINE-NEXT-LINE process is performed for each line.

DEFINE-NEXT~LINE
The only duty of this process is to invoke the other
processes which perform the tasks needed to define a
transaction. Each execution of this process is
independent of the results of all others and results in

one output statement.

BUILD=-LINE-ELEMENT-TABLE
The building of the 1line item table is started by
this process. All of the items inveolved are identified,
temporary items are flagged and their inputs listed., and
jtems arez added to establish needed links to higher level

lines in the transaction.

FIND=-PRIMARY~-RELATION
This is the longest and most complex routine in T7TDF.
Its task is to find the primary relation for a
transaction. The primary relation is later used to
determine navigation paths. The basic steps involved in
identifying the primary relation are as follows:

* Determine a reasonable set of candidate determinants

27

of the line

* Eliminate items not marked as possible
determinants by the user

* Eliminate items not key to any relation

* Tdentify iteﬁs which only appear in relatjions as
keys

* Eliminate items which never appear in a
concatenated key with the above items

* Determine a set of candidate relations

* Start with every relation with any candidate
determinant in its key

* Eliminate those relations without fully covered
keys

* Eliminate any candidate relation which can be
covered by another

* The remaining relation is the primary relation

The algorithm will stop at several intermediate
points if only one candidate relation remains, As noted
earlier, it was discovered that in some circumstances no
single relation can cover the rest. It appears that only
minor changes would be required to handle the sjituation

of multiple primary relations,

28

IDENTIFY=SOURCE~RELATIONS

TDF must take responsibility for identifying the
source relation 6f every item involved in the line., Once
a primary relation has been identified, This can be done
easily, except in those instances where an item appears
in multiple relations in a non~key role and the keys of
two or more of those relations can be covered from the
items originally listed as being in the line.

At present, this situation cannot be handled by TDF;
however it appears to be uncommon, at least in testing.

The following algorithm is used:

Repeat for each data item involved in the line
If item is in primary relation
Use primary relation
Elsge
If item appears in only one relation as non=key
Use that relation
Else
Move all relaticons in which it appears as
non=key to candidate list
Repeat for each candidate
If all keys of that relation are not in
the line
Eliminate relation from candidacy
Endif
Endloop
If only one candidate is left
Use that relation
Else
Error, source relation is indeterminable
Endif
Endif
Endif
Endloop

SENTENCES IN THE
LAST PARAGRAPH OF
PAGE 29 APPEAR TO
BE CUT OF ON THE
RIGHT SIDE BUT
THEY ARE NOT.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

29

IDENTIFY=-DISPLAY-ELEMENTS
The items in the 1line which are actually to be

displayed are identified by asking the user about each
item individually. This information is then stored in the

line item table.

DATA=~SELECTION-CRITERIA
Data selection criteria are identified
interactively. At present, the user only identifiles one
operand and the operator for each condition. The operand
identified must come from the set of items listed in the
line, while the other operand is restricted to being a

value input from a terminal during execution of the

transaction.

BUILD=SELECT~CLAUSE
This process builds the SELECT clause from data
gathered by the previous processes and stored in the line
item table. It 1s primarily an exercise in string

handl ing and requires no user invclvement.

SORT-CLAUSE-BUILD
The sort clause is built by asking the user to identi
any sort keys in major to minor sequence and to note

whether each should be presented in ascending or

30

descending order.

UNRIQUE=-ALL-~CLAUSE-BUILD
If the entire key of the primary relation i3 not to
be displayed, the user is asked if duplicate lines should

be retrieved.

PRINT~-COMPUTE-LINES
A set of clauses identifying each temporary item and
the items from which they are derived, is added to the
other clauses already output. This requires printing

lines which were built earlier and stored,

TESTING

The testing effort required that input files be
supplied from the FDGEN and FDANALYZER programs. Because
these programs were not modified to produce these files
until after testing of TDF was to begin the input files had
to be hand built. This was not a significant problem and
did not delay the implementation.

Testing started as scon as there was enough ccde to
build the data dictionary and continued as each routine was

added or changed. Every test involved the entire program,

31
not just the most recently changed routine, helping to
guarantee that all the routines continued to work as the

design was enlarged or modified.

CONCLUSIONS

Data structures and processes together determine a
program, The data structures used by TDF became a
hinderance by the end of the implementation. If TDF is ever
enhanced or modified, new data structures should be
considered.

One of the major goals of this project was to show that
algorithms to identify navigation paths and source
relations could be developed. The implementation effort
did show this, in addition to verifying that the model
chosen was attainable, at least for a restricted

environment.

32

4., EVALUATION AND CONCLUSIONS

The goal of this effort was to design and implement a
transaction definition facility for the SNAP system tO
allow wusers to define database transactions without
requiring knowledge of the structure of the database.
Within the constrained environment of database retrievals
only, TDF does handle a wide variety of transactions.

There are two important criterila that should be used to
evaluate TDF:

* How easy is it to understand and use
* How well it covers all pocssible transactions

Neither of these questions can be answered at present.

USABILITY

Though TDF seems very simplistic in its interaction,
the designer is the poorest Jjudge of such matters. To
better evaluate its usability, experiments 1like those
described by Shneiderman([l2] and Reisner[l13] should be
conducted, Until such experiments are made, the examples

in Appendix 2 will have to stand as the only testimony to

TDF s usability.

COVERAGE
Wwithout a method of classifying the functions required

to cover all transactons, it is difficult to identify or
describe the limitations of TDF. However in the ‘following

areas, limitations have been recognized and can be

33

discussed:

*

TDF,

1.

Grouping-type calculations
Totals, counts, maximums, etc are not handled by TDF.
It appears that this limitation can be overcome, though
possibly in an awkward manner.
Data selection criteria
TDF does not allow general c¢onditiocnal expressions to
be specified as it does not use the “OR" operator.
Though this operator can be easily added, there are
human engineering considerations as to how to give this
capability to the user.
Generality of calculations
TDF does not allow calculations ¢to be completely
defined, as it only accepts operands, not operators.
When this facility is completed, some provision must be
made for conditional operators within expressions. In
other words, it must allow the equivalent of the
following:

IF X = A

THEN Y := B;

ELSE Y := C;

While the previocusly discussed problems dealt only with
there are other problems with the system as a whole;
The user is required to identify all transactions and
all the data items involved in each transaction before

starting to use SNAP,

34
There is no way to store commonly used calculations in
the system
There is no way to modify or display the definition of
a transaction
The system does not allow the user to refer to objects
(relations) only data items (attributes)
The system does not let the user check his actions by
presenting a paraphrased version of the transacticon

definition.

The following proposals for a new version of SNAP would

eliminate or reduce the problems listed above:

1.

Transactions would be split into two categories

a. Data retrieval only

b. Maintenance = add, update or delete transactions

Transactions would be completely defined, one at a
time

Maintenance transactions would have to be defined
before retrieval transactions which accessed those
elements

-Relationships between data items would not have to be
defined for retrieval transactions

Transaction definition would be an iterative process,
with the system helping the user to identify all
elements involved in stages

The user would be asked to name certain relations

35
after they had been defined by the system

7. During the process of defining a transaction, a
paraphrased version would be presented to the user by
the system

8. The only output of the definition process would be a
log of the guestions and answers used to define a
transaction.

9. Transactions would be executed by translating the log
for that transaction into an executable program and
checking that program for correctness before
executing

10, Definitions of temporary data items could be defined
once and reused each time a transaction needed that
calculation

11. Transactions could be defined at any time, as long as

previous restrictions were maintained

While this proposal still is far short of defining a
complete application system, it does ¢try to build a

framework for a truely usable environment.

CONCLUSION

A facility to define retrieval transactions for a

36

relational database system has been defined and
implemented. This facility {TDF) alliows users to
interactively define transactions without knowledge of the
database’s schema, or even the database model used. During
the interaction, the user must supply only five types of
information:

* Which items are to be displayed

* How to calculate derived data items

* What criteria to use to¢ restrict the volume of data

retrieved

* How to sort retrieved data

* Whether duplicate tuples should be retrieved
All other information is supplied by TDF.

If this work can be extended as expected, it may well
be possible to build full systems which can be used without
programming or computer knowledge. But even if such
systems cannot be developed quickly, the ability to provide
these same capabilities to computer programmers would help
eliminate many of the current problems in software
production and increase programmer productivity and

software quality.

lo,

11.

2.2

13.

37
REFERENCES

Boehm, B. W., "Software Engineering®, IEEE Transactions
¢n Computers, Vol, C-25, No. 12, Dec, 1976, page 1227,

Boehm, page 1226,

Myers, W., "The Need for Software Engineering”,
Computer, Vol. 11, No. 2, Feb, 1978, page 12,

Myers, page 13.
Boehm, page 1226.

Mills, H, D., "Software Development®™, IEEE Transactions
on Software Engineering, Vol. SE-2, No. 4, Dec. 1 '
page 267,

Zelkowitz, M. V,, "perspectives on Software
Engineering®, Computing Surveys, Vol. 10, No. 2, June
1978, page 197.

Brooks, F. P., "The Mythical Man=-Month", Datamation,
Vol. 20, No. 12, Dec. 1974, page 50.

Maryanski, F., J., et al., "Automatic Generation of
Third Normal Form Relations®™, Technical Report No. CS
77-21, Computer Science Department, Kansas State
University, Manhattan, Kansas, 19377.

Chamberlin, D. D,., et al, “SEQUEL 2, A Unified Approach
to Data Definition, Manipulation, and Control”™, IBM
Journal of Research and Development, Vol. 4, No. 6,
Nov. 1976, pp. 560~=575,

NCR Corporation, NCR IMOS CCBOL Student Text,
EP-9823-00, Dayton, Ohio, 1978,

Shneiderman, B., "Improving the Human Factors Aspect of
Database Interactions®, ACM Transactions on Database
Systems, Vol., 3, No. 4, Dec. 1978, pp. 417-439,

Reisner, P., "Use of Psycholocgical Experimentation as
an aid to Development of a Query Language®", IEEE Trans.

on Software Engineering, Vol. SE-3, No. 3, May 1977,
pp. 218-229,

38
BIBLIOGRAPHY
Boehm, B. W., "Software Engineering”, IEEE Transactions on

Computers, Vol, ¢-25, No, 12, Dec. 1976, pp.
1226=-1241.

Brooks, F. P., "The Mythical Man-Month", Datamation, Vol.
20, No. 12, Dec. 1974, pp. 44-52.

Chamberlin, D. D., et al, "SEQUEL 2, A Unified Approach to
Data Definition, Manipulation, and Control™, IBM

Journal of Research and Development, Vol. 4, No. 6§,
Nov. 1976, pp. 560~-575,

Maryanski, F. J., et al., "Automatic Generation of Third
Normal Form Relations®, Technical Report No. CS 77=-21,
Computer Science Department, Kansas State University,
Manhattan, Kansas, 1977,

Mills, H. D., "Software Development”, IEEE Transactions on

Software Engineering, Vol., SE-2, No. 4, Dec. 1976, pp.
265=2713,

Myers, W., "The Need for Software Engineering®, Computer,
Vol. 11, No. 2, Feb. 1978, pp. 12-26,

NCR Corporation, NCR IMOS COBOL Student Text, EP-9823-00,
Dayton, Ohioc, 1978,

Reisner, P., "Use of Psychological Experimentation as an
Aid to Development of a Query Language", IEEE Trans, on

Software Engineering, Vol. SE=-3, No. 3, May 1977, pp.
218-229,

Shneiderman, B., "Improving the Human Factors Aspect of
Database Interactions", ACM Transactions on Database
Systems, Vol. 3, No. 4, Dec. 1978, pp. 417~-439,

Zelkowitz, M. V., "Perspectives on Software Engineering”,
Computing Surveys, Vol. 10, No. 2, June 1978, pp.
197=-216,

APPENDIX 1
SYNTAX OF THE OUTPUT OF TDF

39

statement
query

query=-block
select-clause
select=expr-list
from=-list
boolean
predicate

compar-op

var-name

relation=name
parm=-name
current-name
db~name
temp-name
accept-list

accept=-clause

e

.0

as

an
as

e - Ty " o0

A 1

Uoem N B B OB W= o= vmem e flow foom foom o= 1

40

[accept-1list] query

query=block [ORDER BY
ord~spec=~list] [UNIQUE]
select=~clause FROM from=list [WHERE
boolean])

SELECT (ALL) select-expr-list

SELECT (NEXT) select=-expr-list
var-name

select-expr=1ist var—name
relation=name

from=list relation-name

predicate

predicate AND boolean

var—name compar—-op parm-name

var-name compar~op current-name

-

<

>

<>

db=name

temp=name

R !! number

PARAMETER=number

CURRENT (var—name)

relation=~name.name

name

accept=clause

accept=list accept=clause

ACCEPT parm—name FROM CRT

APPENDIX 2
EXAMPLES OF INTERACTIOR WITH TDF
AND THE RESULTING OUTPUT

41

The Relations:
{Keys are marked by “**#*°)
RELATION NO, 01
DIVNAME L
DIV-MGR
RELATION NO, 02
JOBNO hw
JOBNAME
SKILL=-GRP
SAL-GROUP
INS-CODE
RELATION NO,., 03
INS=CODE hw
INSe
COVER-HOSP
COVER=DENT
COVER=LIFE
COVER=MMED
RELATION NO, 04
EMPNO ok
EMPNAME
SAL
DEPTNAME
JOBNO
RELATION NOC, 05
DEPTNAME an
DEPT-MGR
DIVNAME

Transaction No. 1

The Problem Statement:

Print the name and salary of every employee with a
salary greater than the value input from the user’s

terminal.
The Original Input to USERINTERFACE:
Report name: R2
Line 1!: EMPNO EMPNAME SAL
The Leog of User Interaction with TDF:

TDF: STARTING NEW TRANSACTION (REPORT)
TDF: TRANSACTION=-NAME: R2

TDF : EMPNO EMPNAME SAL
TDF: WHICH DO YOU WANT TO DISPLAY

TDF: Y - YES, THIS ITEM

TDF: N - NOT, THIS ITEM

TDF: A = ALL OF THE REST OF THE ITEMS

TDF: S = STOP, NONE OF THE REST OF THE ITEMS
TDF: EMPNO

USER: N

TDF: EMPNAME

USER: A

TDF : DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY
TDF: OCCURRENCE OF THE DATA FOR THIS LINE? (Y/N)
TDF: (“N° IF THERE IS ADDITIONAL SELECTION CRITERIA)
USER: N

TDF: OF THESE ELEMENTS IN THE LINE:

TDF : EMPNO EMPNAME SAL

TDF: WHICH IS INVOLVED IN THIS CONDITION?

USER: SAL

TDF: PLEASE ENTER CONDITION OPERATOR (=, <, >, ETC)
USER: >

TDF: FOR NOW, THE °“RIGHT=HAND SIDE® WILL COME FRCM
TDF: THE CRT

TDF: OF THESE ELEMENTS IN THE LINE:

TDF: EMPNO EMPNAME SAL

TDF: WHICH IS INVOLVED IN THIS CONDITION?

USER:

TDF; EM PNAME SAL

TDF : DO YOU WANT THIS LINE SORTED? (¥Y/N)

USER: Y

TDF: ENTER SORT KEYS MAJOR TO MINOR

TDF: EMPNAME

USER: Y

TDF: ASCENDING OR DESCENDING? {A/D)

USER: A

TDF: ARE THERE ANY MORE SORT KEYS? (¥Y/N)

USER: N

TDF: DO YOU WANT TO DISPLAY ALL VALID RECORDS,

TDF : OR JUST THOSE THAT ARE UNIQUE? {(A/U)
USER: A

The SEQUEL Output by TDF:

TRANSACTION NAME: R2

ACCEPT PARAMETER-G1l FROM CRT
SELECT (ALL)

RO4 . EMPNAME

RO4,SAL
FROM

RO4
WHERE

R0O4,.3AL > PARAMETER-01l
ORDERED BY

RO4.EMPNAME ASCENDING

43

44

Transaction No. 2

The Problem Statement:

Print the name and manager of every division, and for
each division
list the names and managers of every department in that
division, and
for every department, list the name and salary of every
employee
in that department with a jobname equal to the value input
by the user
at his terminal.
Present the division data ordered by division name, the
department
data by department name, and the employee data by employee
name,

The Original Input to USERINTERFACE:

Report name: EMPLOYEES

Line 1l: DIVNAME PHONE=NO MAIL-STOP
Line 2: DEPTNAME MAIL-STOP PHONE~NO
Line 3: EMPNQO EMPNAME SAL JOBNAME

The Log of User Interaction with TDF:

TDF: STARTING NEW TRANSACTION {REPORT)

TDF: TRANSACTION~NAME: EMPLOYEES
TDF : DIVNAME DIV-MGR

TDF: WHICH DO YOU WANT TO DISPLAY

TDF: Y - YES, THIS ITEM

TDF : N = NOT, THIS ITEM

TDF: A = ALL OF THE REST OF THE ITEMS

TDF: S = STOP, NONE OF THE REST OF THE ITEMS
TDF: DIVNAME

USER: A

TDF: DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY
TDF : OCCURRENCE OF THE DATA FOR THIS LINE? (¥Y/N)
TDF: ("N° IF THERE IS ADDITIONAL SELECTION CRITERIA)
USER: Y

TDF: DIVNAME DIV=MGR

TDF: DO YOU WANT THIS LINE SORTED? (Y/N)

USER: Y

TDF: ENTER SORT KEYS MAJOR TO MINOR

TDF: DIVNAME

USER: Y

TDF : ASCENDING OR DESCENDING? (A/D)

USER: A

TDF: ARE THERE ANY MORE SORT KEYS? (Y¥/N)

USER: N

TDF :
TDF:
TDF:
TDF:
TDP:
TDF:
TDF:
USER:
TDF:
TDF ¢
TDF:
USER:
TDF:
TDF:
USER:
TDF:
TDF:
USER:
TDF :
USER:
TDF:
USER:
TDF:
TDF:
TDF:
TDF:
TDF:
TDF:
TDF :
USER:
TDF :
USER:
TDF:
TDF:
TDF:
USER:
TDF:
TDF:
TDF:
USER:
TDF:
USER:
TDF:
USER:
TDF:
TDF:
TDF :
TDF:
TDF:
USER:
TDF:
TDOF:
USER:
TDF:

45

DEPTNAME DEPT-MGR

WHICH DO YOU WANT TO DISPLAY

Y - YES, THIS ITEM

N = NGT, THIS ITEM

A = ALL OF THE REST OF THE ITEMS

S = STOP, NONE OF THE REST OF THE ITEMS
DEPTNAME
A
DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY
OCCURRENCE OF THE DATA FOR THIS LINE? (Y/N)
("N" IF THERE IS ADDITIONAL SELECTION CRITERIA)
Y

DEPTNAME DEPT-MGR
DO YOU WANT THIS LINE SORTED? (Y/N)
Y
ENTER SORT KEYS MAJOR TO MINOR
DEPTNAME
Y
ASCENDING OR DESCENDING? {A/D)
A
ARE THERE ANY MORE SORT KEYS? (Y/N)
N
EMPNO EMPNAME SAL JOBNAME

WHICH DO YOU WANT TO DISPLAY

Y - YES, THIS ITEM

N = NOT, THIS ITEM

A = ALL OF THE REST OF THE ITEMS

S =- STOP, NONE OF THE REST OF THE ITEMS
EMPNO
N
EMPNAME
A
DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY
OCCURRENCE OF THE DATA FOR THIS LINE? (Y/N)
(“N° IF THERE 1S ADDITICNAL SELECTION CRITERIA)
N
OF THESE ELEMENTS IN THE LINE:

EMPNO EMPNAME SAL JOBNAME
WHICH IS INVOLVED IN THIS CONDITION?
JOBNAM
NOT IN THE LINE, TRY AGAIN
JOBNAME

PLEASE ENTER CONDITION OPERATOR (=, <, >, ETC)

FOR NOW, THE “RIGHT-HAND SIDE" WILL COME FROM
THE CRT
OF THESE ELEMENTS IN THE LINE:

EMPNO EMPNAME SAL JOBNAME
WHICH IS INVOLVED IN THIS CONDITION?

EMPNAME SAL JOBNAME
DO YDOU WANT THIS LINE SORTED? (Y/N)

v

ENTER SORT KEYS MAJOR TO MINOR

46

TDF: EMPNAME
USER: Y

TDF: ASCENDING OR DESCENDING? {A/D)

USER: A

TDF: ARE THERE ANY MORE SORT KEYS? (Y/N)

USER: N

TDF: DO YOU WANT TO DISPLAY ALL VALID RECORDS,

TDF ; OR JUST THOSE THAT ARE UNIQUE? (a/U)
USER: A

The SEQUEL Produced by TDF:

TRANSACTION=~NAME: EMPLOYEES

SELECT (NEXT)

ROl .DIVNAME

ROl .DIV=MGR
FROM

rRO1
ORDERED BY

RO1.DIVNAME ASCENDING
SELECT (NEXT)

ROS5.DEPTNAME

RO5,DEPT=MGR

ROS .DIVNAME
FROM

ROS
WHERE

ROS.DIVNAME = CURRENT(RO1l.DIVNAME)
ORDERED BY

ROS .DEPTNAME ASCENDING
ACCEPT PARAMETER~-01l FROM CRT
SELECT (ALL)

RO4, EMPNAME

RO4.SAL

R0 2, JOBNAME

RO4 .DEPTNAME
FROM

RO2 RO4
WHERE

R02.JOBNO = R04.JOBNO

AND RO4.DEPTNAME = CURRENT (R0S5.DEPTNAME)
AND RO2,.JOBNAME = PARAMETER=-01

ORDERED BY

RO4.EMPNAME ASCENDING

APPENDIX 23
A LISTING OF TDF

47

48

IDENTIFICATION DIVISION.
PROGRAM=-ID. TDF.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. NCR~IMOS,
OBJECT=-COMPUTER. NCR=IMOS.
INPUT-OUTPUT SECTION.
FILE=CONTROL.

SELECT PRINT-FILE ASSIGN TO PRINTER

ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.
SELECT NAMETABLE
ASSIGN DISC.
SELECT RELATION-FILE
ASSIGN DISsC.
DATA DIVISION,
FILE SECTION.
FD PRINT-FILE BLOCK CONTAINS 1 RECORDS
LABEL RECORDS ARE OMITTED.

01 PRINT-REC PIC X(132).
FD NAMETABLE

BLOCK CONTAINS 34 RECORDS

LABEL RECORD STANDARD,
01 NAMETABLE=REC PIC X(15).
FD RELATION-FILE

BLOCK CONTAINS 51 RECORDS

LABEL RECORD STANDARD,
01 RELATION-REC PIC X(10).
WORKING=STORAGE SECTION,
01 DATA-DICTIONARY.

02 DD=-MAX PIC 999 COMP VALUE 255,
02 DDX=HOLD PIC 999 COMP.
02 DD=ENTRY OCCURS 255 INDEXED DDX.
03 DD=NAME PIC X(10),.
03 DD=-HASH=ST PIC 9 COMP.
03 DD~RELAT-KEY PIC 1(56) BIT.
03 DD-RELAT=NON PIC 1(56) BIT.
03 DD=-COVERED PIC X.
01 RELATION-TABLE.
02 REL=-MAX PIC 99 COMP VALUE 56,
02 REL-~LAST PIC 99 COMP.
02 RELX=-HOLD INDEX.
02 RELATION~ENTRY OCCURS 56 INDEXED RELX.
03 REL-1ST INDEX.
03 REL-LHS PIC 99 COMP.
03 REL-RHS PIC 99 COMP,
03 REL-USED PIC 99,
03 REL=-CANDIDATE PIC X.
03 REL-NAVIGATION~COUNTER PIC 99.
03 FILLER PIC X.

*e&EkLeTEEL NOTE: THIS FILLER USED TO FIX COMPILER PROBLEM.
01 RELATION=-POOL.

02 RPX=HOLD PIC 9999 COMP.

02 RP=ELEM=-ID INDEX OCCURS 1200

0l

0l

01

0l

01

0l

REL=REC.
02 SIZE-REC.
03 EBLEM-LHS PIC 99.
03 ELEM=RHS PIC 99,
03 FILLER PIC X(6),
02 ELEM=REC REDEFPINES SIZE-REC,
03 ELEM-NAME PIC X (10},
02 ELEM=REC=R REDEFINES SIZE-REC.
03 ELEM=-CHARL PIC X.
¢3 FPILER PIC X(9).
TR=-POOL.
02 TRX-BOLD INDEX.
02 TR~ENTRY OCCURS 200 INDEXED TRX.
03 TR-ID INDEX.
03 TR-KEY~-FLAG PIC X.
03 TR-FLAG PIC X.
LINE-TABLE.
02 LNX-HOLD PIC 99 cCoOMP,
02 LINE-ENTRY OCCURS 10 INDEXED LNX.
03 LINE-LINK,
04 LINE-LEVEL PIC X,
04 LINE=-OCCUR PIC X.
04 FILLER PIC X.
03 LINE=-1ST INDEX.
03 LINE-STOP INDEX.,
03 LINE=-NO=-DETERMINANTS PIC %99 COMP.
03 LINE-PRIMARY~RELATION PIC 99,
03 FILLER PIC XX.
THIS FILLER IS USED TO AVOID COMPILER BUG
TRANS=REC.
02 TRANS-NAME PIC X(10).
02 TRANS-LEVEL PIC 9.
02 TRANS-LINK PIC XXX.
02 TRANS=KEY~FLAG PIC X.
LINE-ELEMENTS=-TABLE.
02 LEX~-HOLD PIC 99 COMP.
02 LE-MAX PIC 99 COMP VALUE 70.
02 LE=END-IN-DD PIC 99 COMP,
02 LE-LAST PIC 99 COMP.
02 LE-ENTRIES OCCURS 70 INDEXED LEX.
03 LE-ID INDEX.
03 LE=-KEY-FLAG PIC X.
03 LE~ORIGIONAL PIC X,
03 LE-FUNCTION PIC X,
03 LE<~PROCESS PIC X,
03 LE~SORT PIC X.
03 LE=-TEMPORARY PIC X.
03 LE=-RELATION PIC 99 COMP,
03 LE-NAV-RELATION BFIC 99 CoOMP,
WHERE~STACK.
02 WS=MAX PIC 99 COMP VALUE 99.
02 WS-LAST PIC 99 COMP.
02 WHERE=STACK=~ENTRIES OCCURS 99 INDEXED WSX.

INDEXED RPX,

1

01

01

o1

01

01

01

0l
01
01

50

WHERE=STACK~-REL INDEX.
TEMP=-TABLE.
02 TT=-MAX PIC 99 COMP VALUE 40,
02 TTP=-LAST PIC 92 cCoMP,
02 TT-ENTRY OCCURS 40 INDEXED TTX.
TT=-NAME PIC X(10).
ADDED~ELEMENT-LIST.
02 AD-MAX PIC 99 COMP VALUE 20.
02 AD-LAST PIC 99 COMP.
02 AD-ENTRY OCCURS 20 INDEXED ADX.
03 ADDED-ID INDEX.
DISPLAY-LINE=-DATA.
02 DISP-LINE-ENTRY QCCURS 6.
FILLER PIC X(3).
DISP-LINE=-NAME PIC X{10).
PR=DD1.
02 PR=-DDX PIC 2zZ.
02 PFPILLER PIC X VALUE SPACES.
02 PR=DD-HASH-ST PIC 9,
02 FILLER PIC X VALUE SPACES.
02 PR=-DD-=-NAME PIC X(12).
02 PR-DD=-KEY PIC X(56).
02 FILLER PIC X{2) VALUE SPACES.
02 PR-~DD=NON PIC X(56).
HEADL,
02 HEAD=DATE PIC X(8).
02 FILLER PIC X {40) VALUE SPACES.
02 FILLER PIC X(50)
VALUE “TRANSACTION DEFINITION FACILITY",
02 FILLER PIC X(26) VALUE SPACES.
02 PFILLER PIC X(5) VALUE "“PAGE ".
02 HEAD=PAGE=NO PIC Z2Z,
HEAD2,
02 FILLER PIC X(132) VALUE SPACES.
HEAD-DD1.
02 FILLER PIC X(40)
VALUE " ID H NAME KEY RELATIONS".
02 FILLER PIC X{36) VALUE SPACES.
02 PILLER PIC X(18)
VALUE "NON-KEY RELATIONS".
RESERVED FOR FUTURE GOODIES
COMPUTE=POOL PIC X(250).
WHERE=-POOL PIC X{250).
ANS,
02 ANSS,
03 ANSA4.
04 ANS3,
05 ANS2.
06 ANSl PIC X.
06 FILLER PIC X,
05 PILLER PIC X.
04 FILLER PIC X.
03 FILLER PIC X.
02 FILLER PIC X(5).

01

01

77
01
0l

01

WORK~DATE.
02 WORK-YR
02 WORK=MO
02 WORK-DA
DD=-HASH=NAME.
02 DD=-HASH-N1
02 DD-HASH=N2
PAGE-NO
BC=CONVERT-B
BC=-CONVERT~C.
02 ONE-CHAR

PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC

COUNTERS~BOQOLS~3SUBSCRIPTS=ETC,

02 ONE-BIT

02 BC=CONVERT=-WORK
02 BOOL-PRIMARY

02 BOOL-RELATION
02 BOOL-CANDIDATES
02 B-AND

02 B-OR

02 BOOL3

02 BOOL=-ALL-~1
VALUE

PIC
PIC
PIC
PIC
PIC
PIC
BPIC
PIC
PIC

99,
99,

99,

9(12) COMP=5,
9(12) COMP-5,
999,

1(56) BIT.

X OCCURS 56
INDEXED ©OX.
1(56) BIT.
1(58) BIT.
1(56) BIT.
1(56) BIT.
1(56) BIT.
1{56) BIT.
1(56) BIT.
1(56) BIT,
1(56) BIT

B*111131112111111111112121)1111112121111231131121".

02 B-WORKO
02 B=-WORK1
02 B-WORK2
02 RELATION=BOOL

02 FUNCTION

02 BLANKS

02 LNMAX

02 PRINT-LINE
02 NO-OF

02 LAST-LEVEL
02 LHS

02 RHS

02 DOM~CTR

02 DEBUG-RTNS=SW

02 DD=-SLOW

02 TR~SLOW

02 PR=SLOW

02 DI-SLOW

02 DD+-PRINT=SW

02 R=PRINT=SW

02 TRANS=~PRINT=-SW
02 MSG

02 GROUP=-FUNCTIOCN
02 GROUP=ELEMENT

02 GROUP-CONTROL

02 LINES~LEFT

02 EOF-REL

02 DUMMY

02 TEMP~-STRING

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

1(56) BIT.
1(56) BIT.
1(56) BIT.

1(56) BIT
VALUE B"10000000Q".

x(10).

X(132) VALUE SPACES.
999 cowMmpP.

x{132).

99 COMP.

x.

93 CoMP.

99 coMP.

9999 coMP,

X.

X VALUE "N",
X VALUE "N".
X VALUE “N".
X VALUE "N",
X VALUE "N".
X VALUE "N".
X VALUE "N".
X(79).

X(7).

X(10).

X(10).

99 COMP.

X.

X-

X({80).

51

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

02
02
02
02
02

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

SEQL-LINE
FULL~NAME

A=D

FN1

FN2

FROM=CLAUSE
WHERE-“CLAUSE
FROM=-NEXT
WHERE=POINTER
EQOF~TRANS
PRIMARY=RELATION
LEFT=-HAND-SIDE
REL~NO

NUM

QUOTIENT

REMAINS

DIV

DISPLAY=-NUM
NO=DETERMINANTS
CANDIDATES=LEFT
COM-PTR
WHERE=PTR
PTR=LAST
ELEMENT=COUNT
LAST=CANDIDATE
CANDIDATES=NC~OF-KEYS
REL~-SS

ssl

PARM
MORE-RESTRICTIONS
ALL=IN-LINE
DD-HASHED=-OK
DD=-HASHED=IN=ERR
DD=HASHED=BAD
DD=-HASH=TEMP
DD=-HASH=~DIST

TRANSACTION-NAME
TEST=NAME
NEXT=LINE
ELEM-ID
FOUND=SQURCE
FOUND~IT
DEAD=END
FOUND=NEXT
ABSENT

REPEAT
COVERED-KEYS
CANDIDATE-REACHED
AND=SW
PRINT=-WHERE
GOOD~CANDIDATE
GOT-KEY
GOOD~RESPONSE

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(80).
X(30).
X(ls6).
X(30).
X(30).
X(130).
X(130).

999 COMP.
999 COMP.

X

x.
9.,
9(14)
9(14)
9(14)
9(14)
9(14).
9,
99,
9999
9999
9999
99,

99 COMP.

COMP.
COMP.,
COMP.
COMP.

COMP.
COMP.
COMP.

99 comMP,

PIC 39,

92 COMP.
999 COMP.

99,
X.
X.
X.
X.
99,
999,
9999

COMP

VALUE ZERO.

Xx(10).
X(l0).

99 COMP.

999,

E
¢ * = ¢ * & 3 8 & s & @

P K M XX XK

52

01

02 LAST~RESPONSE PIC X.

02 MORE-SORT-KEYS PIC X.

02 DISP-ALL-KEYS PIC X.

02 ALL-UNIQUE Pigc X.

02 TEMPORARY=-NAME PIC X(l0).

02 ELEMENT=NAME PIC X(10).

CONSTANTS.

02 A-YES PIC X VALUE "Y",
02 A~-NO PIC X VALUE "N",
02 C~DISPLAY PIC X VALUE "D".
02 C~NAVIGATION PIC X VALUE °"N"“.
02 BOOL-1 PIC 1(8) BIT

VALUE B"10000000%,

PROCEDURE DIVISION.
THE=-BEGINNING.

OPEN OQUTPUT
PRINT=FILE
INPUT
NAMETABLE
RELATION-FILE.

DISPLAY " ANY DEBUGGING THIS TIME? (Y/nN)™

ACCEPT DEBUG~RTNS-SW.
IF DEBUG-RTNS=SW = A-YES
DISPLAY " SLOW DOWN DATA DICTIONARY ?
ACCEPT DD-SLOW
DISPLAY " SLOW DOWN TRANSACTION RTNS?
ACCEPT TR-SLOW
DISPLAY * SLOW DOWN PRIMARY RELATION?
ACCEPT PR-SLOW
DISPLAY " SLOW DOWN DISPLAY? (Y/N) "
ACCEPT DI-SLOW
DISPLAY *PRINT DATA DICTIONARY? (Y/N)"
ACCEPT DD-PRINT=-SW
DISPLAY "PRINT RELATIONS? (Y/N)*
ACCEPT R—=PRINT=-SW
DISPLAY "PRINT TRANSACTIONS? (Y¥/N)*
ACCEPT TRANS=PRINT=SW.
ACCEPT WORK-DATE FROM DATE.
STRING WORK=MO "/"™ WORK=DA "/" WORK-YR
DELIMITED SIZE
INTO HEAD=DATE.
MOVE 1 TO PAGE-NO.
MOVE 0 TO LINES-LEFT,
MOVE 1 TO NEXT-LINE.
PERFORM INIT=DATA-DICT
VARYING DDX FROM 1 BY 1 UNTIL DDX >
PERFORM DD-HASHED=INIT.
MOVE A=-NO TO EOF~REL.
SET RPX TO 1,
PERFORM GET-=REL-~REC.
PERFORM GET-RELATIONS=BUILD=-DATA-DICT
VARYING RELX FROM 1 BY 1 UNTIL
RELX > REL-MAX OR EOF=-REL = A-YES.
SET RELX DOWN BY 1.

(Y/N)"
{Y/N}"

(Yy/nN)*"

DD=-MAX,

53

SET REL-LAST TO RELX.,
IF DD~PRINT=-SW = A-YES
PERFORM PRINT<DATA-DICT.

»

START ON “NAME TABLE”

MOVE A~-NO TO EOF=TRANS

MOVE SPACES TO TRANS=REC.

PERFORM GET-TRANS=REC.

PERFORM HANDLE~TRANSACTIONS
UNTIL EOF~TRANS = A-YES,

DISPLAY "::::sssrsrzssssetrtsresssosessrssassessess™
" GOODBY ™.
CLOSE
PRINT~FILE
NAMETABLE
RELATION=FILE.
STOP RUN,

INIT=DATA~DICT.
MOVE SPACES TO DD-NAME (DDX) .
MOVE ZERO TO DD=HASH-ST(DDX),.
MOVE ZERO TO DD-RELAT-KEY({DDX).
MOVE ZERO TO DD-RELAT=-NON(DDX),.
MOVE A=-NO TO DD-COVERED(DDX) .
GET-RELATIONS=BUILD=DATA~DICT.
IF DD=-SLOW = A-~YES
DISPLAY "STARTED NEXT RELATION®.
IF R=-PRINT-~SW = A~YES
MOVE 2 TO NO=OF
SET REL~NO TO RELX
STRING * RELATION NO. "
DELIMITED SIZE
INTO PRINT~LINE
PERFORM PRINT-RTN,
SET REL=-IST(RELX) TO RPEX.

REL=NO BLANKS

54

MOVE ELEM-LHS
MOVE ELEM~LHS
MOVE ELEM=~RHS
MOVE ELEM~RHS
MOVE A-YES TO

TO REL-LHS (RELX).
TO LHS.

TO REL-=RHS (RELX).
TO RHS.
LEFT=-HAND=SIDE.

PERFORM HANDLE=DOMAIN
VARYING DOM~CTR FROM 1 BY 1
UNTIL DOM~CTR > LHS.
MOVE A=NO TO LEFT-HAND=-SIDE.
' %...sSTARTING RIGHT HAND SIDE
PERFORM HANDLE-DOMAIN
VARYING DOM=CTR FROM 1 BY 1
UNTIL DOM=CTR > RHS.
SHIFT RELATION=-BOOL RICGHT 1.
PERFORM GET-REL=-REC,
* GETTING NEXT “SIZE-REC”
HANDLE=DOMAIN,
MOVE DOM=CTR TO DISPLAY~NUM,
PERFORM GET~REL-REC.

NON=KEYS*"

55

IF ELEM-CHARl NOT = ":*
PERFORM RBUILD=ELEMENT-ENTRY
ELSE
SUBTRACT 1 FROM REL-RHS (RELX).
BUILD~-ELEMENT-ENTRY.
PERFORM DD=HASH=-TABLE-CHECK~BUILD.
SET RP~ELEM-ID (RPX) TO DDX,
IF LEFT-HAND=SIDE = A~YES
*LEFT,..KEXY"
COMPUTE DD=-RELAT-KEY(DDX) =
DD=-RELAT~KEY(DDX) OR RELATION-BOOL
ELSE
"RIGHT. .. .NON=KEY"
COMPUTE DD=-RELAT=NON(DDX) =
DD=RELAT=NON (DDX) OR RELATION=-BOOL.
IF R~PRINT=SW = A-YES
IF LEFT-HAND~SIDE = A-YES
STRING DD=NAME (DDX) = **#w praNKS
DELIMITED SIZE
INTO PRINT-LINE
PERFORM PRINT=RTN
ELSE
MOVE DD=NAME (DDX)} TO PRINT=LINE
PERFORM PRINT-RTN.
SET RPX UP BY 1.
IF DD=-SLOW = A~YES ACCEPT DUMMY,
GET-REL~REC.
READ RELATION-FILE INTO REL=-REC
AT END MOVE A~YES TO EOF-REL.
IF DD=SLOW = A-YES
DISPLAY "REL-REC =" REL-REC.
DD-HASH-TABLE~CHECK=BUILD.
IF DD~SLOW = A~-YES
DISPLAY "STARTING DD-HASH BUILD".
MOVE ELEM~NAME TO DD=-HASH-NAME.
PERFORM DD~-HASH-COCMPUTATION.
MOVE A~YES TO DD~HASHED=-OK.
PERFORM DD-HASH=-1ST-TRY.
IF DD-HASHED=OK = A=NO
PERFORM DD=HASH=-RETRY
UNTIL DD=-HASHED=OK = A=YES
IF DDX = DD=MAX
PERFORM DD~HASH-ERROR.
DD=HASH-1ST~TRY,
IF DD-SLOW = A-YES
DISPLAY "DD-HASH....lST TRY",
IF DD-~HASH-ST(DDX} = ZERO
MOVE DD-HASH-NAME TO DD~NAME(DDX)
MOVE 1 TO DD=HASH=-ST{DDX)
ELSE IF DD-NAME(DDX) NOT = DD-HASH~NAME
MOVE 2 TO DD=HASH=ST{DDX)
MOVE A=NO TC DD=-HASHED=OX,
DD-~HASH~RETRY,
IF DD=SLOW = A-YES

DISPLAY "DD-HASH....RETRY".
SET DDX UP BY 1,
IF DD~SLOW = A=YES

DISPLAY

"NOW COMPARING:" DD=-HASH-NAME DD=NAME (DDX).

IF DD=-HASH-~ST(DDX) = ZERO
MOVE A-YES TC DD=-HASHED=OK
MOVE DD=HASH=NAME TO DD=NAME (DDX)
MOVE 1 TO DD=-HASH=ST(DDX)
ADD 1 TO DD=HASHED=BAD
ADD DD~HASH-TEMP TO DD=HASH-DIST
MOVE 1 TO DD=HASH=TEMP
ELSE IF DD~NAME (DDX) = DD=HASH=NAME
MOVE A=YES TO DD=HASHED=OK
ELSE
ADD 1 TO DD-HASH-TEMP.
W
DD=HASHED=-INIT.
MOVE 231 TO DIV DISPLAY-NUM,
MOVE ZERO TO DD-HASH-DIST,
MOVE 1 TO DD=HASH=TEMP.
IF DEBUG-RTNS~SW = A~YES
DISPLAY "DIV = * LINE 0 POSITION 0 ERASE
DISPLAY=NUM LINE 0 POSITION 7
"DO YOU WANT TO CHANGE IT" LINE 0 POSITION
ACCEPT ANS1
IF ANS]l = »Y*
DISPLAY "ENTER DIV"
ACCEPT DISPLAY=NUM
MOVE DISPLAY-NUM TO DIV,
DD~HASH=COMPUTATION.
IF DD-~SLOW = A=YES
DISPLAY "START DD=-HASH COMPUTATION".
ADD DD=-HASH~N1l, DD-HASH-N2 GIVING NUM.
DIVIDE NUM BY DIV GIVING QUOTIENT
REMAINDER REMAINS.
ADD 1 TO REMAINS.
IF DD~SLOW = A=YES OR TR=SLOW = A~YES
MOVE REMAINS TO DISPLAY=NUM

DISPLAY "DDX = *® DISPLAY=NUM.
SET DDX TO REMAINS,
DD~HASH=-IT.

MOVE A=NO TO DD-HASHED=OK.
MOVE A-NO TO DD=-HASHED=IN-ERR.
PERFORM DD-~HASH=COMPUTATION.
PERFORM DD~HASH~SEARCH

UNTIL DD-HASHED-OK = A-YES

OR DD=HASHED<IN-ERR = A-YES.
DD-HASH=SEARCH,

IF DD-HASH=ST(DDX} = ZERO

MOVE A~YES TO DD-HASHED=IN=-ERR
ELSE

IF DD=NAME (DDX) = DD=-HASH-NAME

MOVE A-~YES TO DD-HASHED=CK

20

57

ELSE
IF DD-HASH-ST(DDX) = 2
SET DDX UP BY 1
ELSE
MOVE A=-YES TO DD~HASHED~IN=-ERR.
DD-HAS H-ERROR,
DISPLAY "DD-HASHING ERROR ... NAME =", DD=HASH-NAME.
PERFORM PRINT=-DATA-DICT,
ACCEPT DUMMY,
PRINT=-DATA-DICT.
MOVE HEAD~DD1 TO HEAD2Z2.
MOVE 0 TO LINES-LEFT.
PERFORM PRINT-DD=-LINE
VARYING DDX FROM 1 BY 1
UNTIL DDX > DD-MAX.
MOVE SPACES TO HEAD2,
MOVE 0 TO LINES~LEFPT.
PRINT-DD-LINE,
IF DD-HASH-ST(DDX) NOT = ZERO
SET ELEM=ID TO DDX
MOVE ELEM~ID TO PR~DDX
MOVE DD=NAME (DDX) TO PR=DD-NAME
MOVE DD=-HASH=ST(DDX) TO PR=DD=-HASH=ST
MOVE DD=-RELAT=NON (DDX) TO BC=-CONVERT=B
PERFORM BOOL-TO~CHAR
MOVE BC=CONVERT-C TO PR=DD-=NON
MOVE DD=-RELAT-KEY{(DDX) TO BC~CONVERT-B
PERFORM BOOL-~TO-CHAR
MOVE BC=-CONVERT-C TO PR-DD-KEY
MOVE PR=-DD1 TO PRINT-LINE
PERFORM PRINT=-RTN.
BOOL=-TO~CHAR.
MOVE SPACES TO BC=CONVERT~C
PERFORM CONVERT-1
VARYING OX FROM 1 BY 1 UNTIL OX > REL=LAST.
CONVERT-1.
COMPUTE BC-CONVERT-WORK = BC-CONVERT=B AND BOOL~1.
IF BC~CONVERT=-WORK = ZERO
MOVE ®*." TO ONE-CHAR (0OX)
ELSE
MOVE "1" TO ONE-CHAR({OX).
SHIFT BC=CONVERT-B LEFT 1,
PRINT=-RTN.
IF LINES=LEFT = {
IF PAGE=NO > 1
WRITE PRINT<REC FROM BLANKS
AFTER ADVANCING PAGE
PERFORM HEADING+=RTN
ELSE
PERFORM HEADING=-RTN.
WRITE PRINT=-REC FROM PRINT-LINE
AFTER ADVANCING NO=-OF LINES.
SUBTRACT NO=QF FROM LINES-LEFT.
MOVE 1 TO NO-OF.

HEADING=RTN.
MOVE PAGE=-NO TO HEAD-PAGE=NO,
WRITE PRINT-REC FROM HEAD1l AFTER ADVANCING
WRITE PRINT~REC FROM HEADZ AFTER ADVANCING
MOVE 2 TO NO=OF,
MOVE 56 TO LINES-=LEFT.
ADD 1 TO PAGE=NO.

[d
.

58

59

*

n PROCESS THE NEXT TRANSACTION
*

HANDLE=-TRANSACTIONS.
DISPLAY " STARTING NEW TRANSACTION (REPORT) *
MOVE TRANS~NAME TO TRANSACTION=NAME.
MOVE SPACES TO TEMP-STRING.
STRING " TRANSACTION=-NAME: "
TRANSACTION=NAME
DELIMITED SIZE
INTO TEMP=-STRING.
DISPLAY TEMP-=STRING.
MOVE TEMP=STRING TO PRINT-LINE.
MOVE 2 TO NO=-OF,
PERFORM PRINT=RTN.
SET TRX TO 1.
MOVE ZERO TO TT-LAST.
PERFORM GET-TRANS=REC.
PERFORM BUILD=TRANS~TABLE
VARYING LNX FROM 1 BY 1
UNTIL TRANS~LEVEL = ZERO OR EOF=-TRANS = A-YES,
SET LNMAX TO LNX.
SUBTRACT 1 FROM LNMAX.
IF TR-SLOW = A-YES
MOVE LNMAX TO DISPLAY-NUM
DISPLAY ™ LNMAX = ™ DISPLAY=NUM.
PERFORM TRANS-DEF=START.
BUILD-TRANS-TABLE.
IF TR-SLOW = A-YES
DISPLAY * HEY!! LINK HAS CHANGED......".
MOVE TRANS=LINK TO LINE-LINK(LNX).
SET LINE=-1ST{LNX) TO TRX.
SET DISPLAY=-NUM TO TRX
IF TR=-SLOW = A=-YES
DISPLAY “LINE-1ST() = " DISPLAY=NUM,
MOVE ZERO TO NO=-DETERMINANTS.
PERFORM BUILD=-TRANS-ENTRY
UNTIL TRANS=LINK NOT = LINE-LINK(LNX)
OR TRANS-LEVEL = ZERO OR EOF-TRANS = A-YES.
SET LINE-STOP{(LNX) TO TRX.
MOVE NO=DETERMINANTS TO LINE=NO-DETERMINANTS (LNX).
IF TR=-SLOW = A~YES
SET DISPLAY=NUM TO TRX
DISPLAY T"LINE=STOP() =" DISPLAY=-NUM
DISPLAY *"# OF DETERMINANTS =" NO~DETERMINANTS.
BUILD=-TRANS=ENTRY.
IF TRANS-KEY=-FLAG = "3*
MOVE TRANS=NAME TO TEMPORARY=NAME
PERFORM TEMP=-TABLE-=ENTRY=RTN
SET TR~ID{TRX) TO TTX
ELSE
MOVE TRANS~NAME TQ DD~HASH=-NAME
PERFORM DD=HASH~IT
IF DD-HASHED=-IN-ERR = A-YES

PERFORM DD~HASH=ERROR
ELSE
SET TR-ID(TRX) TO DDX,.
IF TR=-SLOW = A-YES
SET DISPLAY-NUM TO TRX
DISPLAY "TRX =" DISPLAY~NUM
DISPLAY "NAME=" TRANS~NAME.
MOVE TRANS—-KEY~FLAG TO TR-KEY-FLAG (TRX).
IF TRANS=KEY-FLAG = "1°"
ADD 1 TO NO-DETERMINANTS.
SET TRX UP BY 1.
PERFORM GET-TRANS~REC.
GET=TRANS-REC,
IF TRANS<-PRINT=SW = A~YES
STRING " " TRANS~REC
DELIMITED SIZE
INTO PRINT-LINE
PERFORM PRINT-RTN,
READ NAMETABLE INTO TRANS=REC
AT END MOVE A-YES TO EOF-TRANS,
IF TR=SLOW = A-YES
DISPLAY " TRANS~REC = " TRANS=REC
ACCEPT DUMMY,
TEMP-TABLE-~ENTRY=RTN.
ADD 1 TO TT-LAST.
SET TTX TO TT-LAST.
MOVE TEMPORARY=-NAME TO TT=NAME (TTX).
IF TR~SLOW = A-YES

BLANKS

STRING “..TEMPORARY DATA.. *DATA NAME = *

TEMPORARY-NAME BLANKS
DELIMITED SIZE
INTO MSG
DISPLAY MSG.
RETRIEVE~ELEMENT=DATA.
IF LE-TEMPORARY(LEX) = "3*
MOVE TT=NAME (TTX) TO TEMPORARY-NAME.

60

* START TO DEFINE THIS TRANSACTION

»

TRANS~DEF=START.

* DISPLAY "WHAT KIND OF TRANSACTION IS THIS?"
» "DISPLAY, UPDATE, DELETE, OR ADD",

® ACCEPT ANS

* IF ANS2 = "DI™

* PERFORM DISPLAY-DEF

® ELSE

* DISPLAY "SORRY, NOT YET IMPLEMENTED",

w

*

PERFORM DISPLAY-DEF,.

*

DISPLAY-DEF.
MOVE "DISPLAY"™ TO FUNCTION,.
IF DI-SLOW = A=-YES
DISPLAY® * % #* & % % # % % = % % ® % & % % ww

*DISPLAY"

ek * * * * * * ¥ * * * * * ¥ *F * * * ¥ * o * "'.
SET TRX TO 1
PERFORM DEFINE-NEXT-LINE

VARYING LNX FROM 1 BY 1

UNTIL LNX > LNMAX,

DEFINE NEXT LINE (WHICH DISPLAYED, RESTRICTION,ETC)
PROCESS DISPLAY TRANSACTIONS
(THE ONLY TYPE PRESENTLY HANDLED)

* % % % =

DEFINE=-NEXT=~LINE.
MOVE 1 TO COM=PTR.
PERFORM BUILD-LINE-ELEM-TABLE,
PERFORM FIND=PRIMARY-RELATION.
PERFORM IDENTIFY-SOURCE-RELATIONS.
PERFORM IDENTIFY-DISPLAY-ELEMENTS.
PERFORM DATA-SELECTION=-CRITERIA.
PERFORM BUILD=SELECT=CLAUSE.
PERFORM SORT=CLAUSE=-BUILD.
PERFORM UNIQUE-ALL-CLAUSE=-BUILD,.
PERFORM PRINT-COMPUTE-LINES.
MOVE 3 TQO NO-OF,
BUILD-LINE~ELEM~TABRLE.
SET LEX TO 1.
SET TRX TO LINE-1ST(LNX)
PERFORM BUILD=LINE=DD=~ELEMENTS
VARYING TRX FROM TRX BY 1
UNTIL TRX = LINE=«STOP (LNX).
SET TRX TO LINE=-1ST(LNX)
IF DI-SLOW = A=-YES
DISPLAY " END OF NON=-TEMPORARY ORIGIONALS *
SET DISPLAY=-NUM TO LEX
DISPLAY ™ LEX =" DISPLAY=NUM.

PERFORM BUILD-LINE=ADDED-~ELEMENTS
VARYING TRX FROM TRX BY 1
UNTIL TRX = LINE=STOP (LNX).
PERFORM ADD-MULTI-LEVEL~-KEYS,
SET LEX DOWN BY 1.
SET LE-END-IN-DD TO LEX.
IF DI-SLOW = A~-YES
DISPLAY * END OF NON=-TEMPORARY NON-CRIGIONALS"
SET DISPLAY=NUM TO LEX
DISPLAY " LEX =" DISPLAY-NUM.
SET LEX UP BY 1.
SET TRX TO LINE-1ST(LNX)
PERFORM BUILD-LINE-TEMP-ELEMENTS
VARYING TRX FROM TRX BY 1
UNTIL TRX = LINE=STOP(LNX).
SET LEX DOWN BY 1,

SET LE-LAST TO LEX.
IF DI=-SLOW = A-YES
DISPLAY * END OF TEMPORARIES®

SET DISPLAY-NUM TO LEX
DISPLAY ™ LEX =" DISPLAY~-NUM.
BUILD=-LINE=-DD~ELEMENTS.
IF TR=KEY~FLAG{TRX) NOT = =3*
PERFORM BUILD-LINE=-ORIG-ELEMENTS
IF DI-SLOW = A-YES
SET DDX TO TR-ID{(TRX)
DISPLAY " LINE ELEMENT ID FOR"™ DD-NAME(DDX).
BUILD=-LINE=-ORIG=-ELEMENTS.
SET LE-ID(LEX) TO TR=-ID{TRX).
IF TR=KEY~FLAG (TRX} = ®“1"
MOVE A=YES TO LE=-KEY~-FLAG(LEX)
ELSE
MOVE A=NO TO LE-KEY~FLAG(LEX).
IF TR~KEY-FLAG(TRX) = "3»
MOVE A-YES TO LE-TEMPORARY{LEX)
ELSE
MOVE A~NO TO LE«TEMPORARY(LEX).
MOVE A=-NO TO LE-=-PROCESS({LEX).
MOVE A=NO TO LE=-FUNCTION(LEX).
MOVE A-YES TO LE~ORIGIONAL(LEX).
MOVE A-NO TO LE-SORT(LEX).
MOVE ZERO TO LE~NAV~RELATION{LEX).
SET LEX UP BY 1.
BUILD=-LINE=TEMP-ELEMENTS.
IF TR=-KEY=«FLAG(TRX) = "3"
PERFORM BUILD~LINE~ORIG-ELEMENTS,
BUILD-LINE~ADDED=-ELEMENTS. -
IF TR-KEY=-FLAG{TRX} = "23"
PERFORM HANDLE=-TEMP-DATA
PERFORM BUILD=-LINE-ADDED-ELEMENTS=-1
VARYING ADX FROM 1 BRY 1
UNTIL ADX > AD-LAST.
BUILD-LINE-ADDED-ELEMENTS=-1.
SET LE-ID(LEX) TO ADDED-ID (ADX).

* % » % ¥ *

MOVE A-=NO
MOVE A-~-NO
MOVE A-NO
MOVE A=NO
MOVE A-NO
MOVE A=NO
MOVE ZERO

TO
TO
TO
TO
TC
TO
TO

IF DI-SLOW =
SET DDX TO LE-ID(LEX)
DISPLAY

SET LEX UP BY 1,

FOLLOW=NAVIGATION=PATHS.

IF PR~SLOW = A=-YES

DISPLAY
"< NAVIGATION PATHS TO FIND PRIMARY RELATION »>",

SET WSX TO WS~LAST.

SUBTRACT 1 FROM WS=LAST.

SET RELX TO WHERE~STACK=-REL (WSX}.

IF REL-USED (RELX) = 1
MOVE 2 TO REL-USED(RELX)

SET RPX TO REL=1ST(RELX)
MOVE A=-NO TO DEAD=END
PERFORM FOLLOW=A=-PATH

FOLLCW=A~PATH

VA
UN

63

LE~“KEY~-FLAG{(LEX).
LE~-TEMPORARY{LEX) .
LE=PROCESS{LEX).
LE~FUNCTION(LEX).
LE~ORIGIONAL (LEX) .
LE=SORT (LEX),
LE-NAV<RELATION{LEX),
A~YES

" LINE ELEMENT ID FOR®™ DD~NAME (DDX).

RYING REL-SS FROM 1 1BY 1
TIL REL=SS > REL~LHS (RELX)
OR DEAD-END = A-YES,.

SET DDX TQ RP=-ELEM-ID (RPX).
IF PR=-SLOW = A-YES
SET REL-NO TO RELX

STRIN

MOVE "0O*

G []
oD
DE

STARTING FROM R" REL-NO " NAME: *
=NAME (DDX)} BLANKS
LIMITED SIZE

INTO MSG
DISPLAY MSG.
PERFORM BUILD=-A-PATH.
SET RPX UP BY 1.
NOT=IN=-PRIMARY-RELATION.
SUBTRACT 1 FROM LINE-NO-DETERMINANTS (LNX)
TO LE=KEY=-FLAG(LEX).

ADD ELEMENTS TO THIS LINE TO ESTABLISH NAVIGATION TO
THE XKEYS OF PRECEEDING LOWER~-LEVEL LINES

ADD-MULTI-LEVEL-KEYS,
IF TR=SLOW = A=-YES AND LINE-LEVEL(LNX) NOT = *1°*

DISPL

AY

"GQOING TO ADD KEYS FROM PREVIQUS LINE".

IF LINE=-LEVEL(LNX) NOT = *1%

SET LNX-~HOLD TO LNX

PERFORM ADD-NEXT=LEVEL-KEYS
UNTIL LINE-LEVEL({LNX) = "1*"

SET LNX

TO LNX-HOLD.,

64

IF TR-SLOW = A-YES
DISPLAY "ADDED KEYS OF PREVIOUS PRIMARY RELATION"®.
ADD-NEXT~LEVEL~KEYS.
MOVE LINE-LEVEL{LNX) TO LAST-LEVEL.
PERFORM FIND=-NEXT-LEVEL
VARYING LNX FROM LNX BY ~-1
UNTIL LINE=-LEVEL (LNX) < LAST-LEVEL.
SET RELX TO LINE=-PRIMARY-RELATION (LNX).
SET REL=-NO TO RELX.
SET RPX TO REL-1ST (RELX).
PERFORM ADD=~NEXT=XEY-IF=~ABSENT REL~LHS (RELX) TIMES.
FIND~NEXT~LEVEL.
* THIS IS A NULL PARAGRAPH, BUT DON’T DELETE IT
ADD=NEXT-KEY~IF~ABSENT.
MOVE A=-YES TO ABSENT.
SET LEX~HOLD TO LEX.
PERFORM LOOK-FOR=-IN-LINE
VARYING LEX FROM 1 BY 1
UNTIL LEX = LEX~HOLD OR ABSENT = A=NO.
SET LEX TO LEX~-HOLD.
IF ABSENT = A-YES
PERFORM ADD-NEXT-KEY,
SET RPX UP BY 1.
LOOK=-FOR-IN-LINE,
IF LE~ID{LEX) = RP~ELEM=ID({RPX)
MOVE REL=NO TO LE~NAV=-RELATION (LEX)
MOVE A=NO TO ABSENT.
ADD~NEXT=KEY,
SET LE-ID(LEX) TO RP-ELEM~ID(RPX).
MOVE A=-NO TO LE-TEMPORARY (LEX).
MOVE A=~YES TO LE-PROCESS (LEX).
MOVE A=NO TO LE-FUNCTION{LEX).
MGVE A=~NO TO LE=-ORIGIONAL(LEX).
MOVE A=-NO TO LE-SORT{LEX).
MOVE REL=NO TO LE-NAV-RELATION(LEX).
IF DI-SLCW = A-YES
SET DDX TO LE=-ID(LEX)
DISPLAY " LINE ELEMENT ID FOR" DD-NAME{DDX).
SET LEX UP BY 1.
SET RPX UP BY 1.

*

65

* PROCESS TEMPORARY (COMPUTED) DATA

L]

* % B % & % % % R BN

HANDLE=TEMP?~DATA.
MOVE ZERO TO AD-LAST.
SET ADX TO 1.
SET ADX DOWN BY 1,
SET TTX TO TR=ID(TRX).
STRING "COMPUTE " TT-NAME(TTX) * PFROM *
DELIMITED SIZE
INTO COMPUTE~POOL
POINTER COM~PTR.
STRING " IS <" DELIMITED SIZE
TT-NAME (TTX) DELIMITED SPACES
"> A GROUPING-TYPE ELEMENT" BLANKS
DELIMITED SIZE
INTO MSG
DISPLAY MSG.
DISPLAY "(IE, IS IT A TOTAL, MAX, MIN, COUNT COR AVG)?"
ACCEPT ANS1.
IF ANSlI = A-YES
PERFORM HANDLE-TEMP-GROUPING=TYPE
ELSE
PERFORM HANDLE-TEMP=CALC,
STRING "**
DELIMITED SIZE
INTO COMPUTE=POOL
POINTER CCM=PTR.
HANDLE-TEMP=GROUPING~TYPE.
DISPLAY "PLEASE ENTER THE TYPE."
ACCEPT GROUP=-FUNCTION
STRING HAT IS IT A " DELIMITED SIZE
GROUP=FUNCTION DELIMITED SPACES
" OF" BLANKS DELIMITED SIZE
INTO MSG
DISPLAY MS5G
MOVE A=-NO TO GOOD~RESPONSE.
PERFORM ACCEPT+ELEMENT ~NAME
UNTIL GCOD-RESPONSE = A-YES
MOVE DD=-HASH=NAME TO GROUP-ELEMENT
STRING DD+<HASH-NAME "~ *
DELIMITED SIZE
INTO COMPUTE=POOL
POINTER CCM=PTR.
SET ADX TO 1
SET ADDED-ID(ADX} TO DDX
DISPLAY "WHICH ELEMENT IS THE CONTROLZ"
DISPLAY " {(IE, WHICH ELEMENT SHOULD CAUSE A BREAK?)".
MOVE A~NO TO GOOD<RESPONSE
PERFORM ACCEPT-ELEMENT~NAME
UNTIL GOOD-RESPONSE = A~YES
OR DD=HASH=-NAME = SPACES
IF DD-~HASH-NAME NOT = SPACES
MOVE DD=HASH=-NAME TQC GROUP~CCNTROL

STRING DD=HASH-NAME " "
DELIMITED SIZE
INTO COMPUTE-POOL
POINTER COM~=PTR
SET ADX TO 2
SET ADDED-ID(ADX) TO DDX.
HANDLE-TEMP=CALC.
DISPLAY "PLEASE ENTER NAMES OF EACH ELEMENT INVOLVED"®
STRING * IN COMPUTING <" DELIMITED SIZE
TT~NAME (TTX) DELIMITED SPACES

nyw BLANKS DELIMITED SIZE
INTO MSG

DISPLAY MSG.
MOVE A«NO TO LAST-RESPONSE.
PERFORM ACCEPT=ALL-ELEMENT=-NAMES
UNTIL LAST=-RESPONSE = A-YES.
ACCEPT-ALL-ELEMENT=NAMES.
MOVE A<NO TO GOOD-RESPONSE
PERFORM ACCEPT<-ELEMENT=NAME
UNTIL GOOD=RESPONSE = A-YES.
IF DD=HASH=-NAME NOT = SPACES
STRING DD-HASH-NAME * *
DELIMITED SIZE
INTO COMPUTE~POOL
POINTER COM=PTR
SET ADX UP BY 1
SET ADDED=-ID (ADX} TO DDX.
ACCEPT=ELEMENT~NAME.
ACCEPT DD~HASH~NAME
IF DD-HASH-NAME = SPACES
MOVE A~YES TO LAST-RESPONSE

MOVE A=-YES TO GOOD~RESPONSE
ELSE

PERFORM DD~HASH~-IT
IF DD=-HASHED~OK = A~NO
DISPLAY "NOT IN DATABASE"
ELSE
SET TRX=HOLD TO TRX
SET TRX TO LINE=1ST (LNX)
PERFORM CHECK=LINE
VARYING TRX FROM TRX BY 1
UNTIL TRX = LINE=-STOP (LNX)

OR GOOD~RESPONSE = A-YES
SET TRX TN T2X-HOLD

IF GOOD~RESPONSE = A~NO

DISPLAY "NOT IN THE LINE, TRY AGAIN",
CHECK-LINE.

IF TR-KEY-FLAG(TRX) NOT = "3v
SET DDX TO TR=ID{TRX)
IF DD-HASH=-NAME = DD~NAME (DDX)
MOVE A=-YES TO GOODD=-RESPONSE.

66

67

IDENTIFY=-SOURCE~RELATIONS.
PERFORM IDENTIFY=NEXT-SOURCE
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE~END=IN-DD,
IDENTIFY=NEXT=SOURCE.
IF DI-SLOW = A~YES
DISPLAY " STARTING TO BUILD PULL=-NAMES"
SET DISPLAY=-NUM TO LEX
DISPLAY "LEX =" DISPLAY=NUM
PERFORM GET-LINE-ELEM=NAME
DISPLAY "ELEMENT~NAME ="
ELEMENT-NAME
ACCEPT DUMMY.
SET DDX TO LE-ID(LEX)
COMPUTE B~WORKO = BOOL~PRIMARY AND DD=RELAT=KEY(DDX)
IF B=WORKO = ZERO
PERFORM SFW=1
ELSE
MOVE PRIMARY-RELATION TO REL=NO
MOVE REL=NO TO LE~RELATION (LEX).

IDENTIFY=-DISPLAY~ELEMENTS.
PERFORM LINE~-DISPLAY.
DISPLAY *"WHICH DO YOU WANT TO DISPLAY"
" Y = YES, THIS ITEM"
L N = NOT, THIS ITEM"
" A = ALL OF THE REST OF THE ITEMS"
L S = STOP, NONE OF THE REST OF THE ITEMS".
ADD 1 TO NEXT-LINE.
MOVE SPACES TO ANS.
PERFORM ELEMENT-QUESTION
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE=LAST.
MOVE SPACES TO ANSI.
LINE-DISPLAY.
SET LEX TO 1.
IF DI~SLOW = A-YES
MOVE LE-LAST TO DISPLAY~NUM
DISPLAY "STARTING DISPLAY LIST.+s.. LE=LAST ="
DISPLAY=NUM
ACCEPT DUMMY,
PERFORM ONE-LINE
UNTIL LEX > LE-LAST.
ONE-LINE,
MOVE SPACES TO DISPLAY-LINE-DATA.
MOVE 1 TO Ssl.
PERFORM LINE=SETUP
UNTIL SS1 » 6 OR LEX > LE-LAST.
DISPLAY DISPLAY-LINE-DATA.
LINE=SETUP.
PERFORM GET-=LINE-ELEM=NAME
IF LE=-ORIGIONAL({LEX) = A~YES
MOVE ELEMENT=NAME TO DISP-LINE~NAME (SsSl)
ADD 1 TO ss1i.
IF TR-SLOW = A-YES

SET DISPLAY-NUM TO LEX
DISPLAY "LEX =" DISPLAY~NUM

DISPLAY T“ELEMENT-NAME =" ELEMENT-NAME,

SET LEX UP BY 1.
ELEMENT-QUESTION.

IF DI-SLOW = A-=YES
DISPLAY " QUESTION TIME!!!!
SET DISPLAY~-NUM TO LEX
DISPLAY "LEX =" DISPLAY~-NUM
PERFORM GET-LINE-ELEM=NAME
DISPLAY "ELEMENT=NAME =" ELEMENT=NAME
ACCEPT DUMMY.

PERFORM GET=LINE-ELEM-NAME

IF ANS1 NOT = "5*" AND ANS1 ROT = "A™
DISPLAY ELEMENT=-NAME
ACCEPT ANS1,

IF ANS1l = “"Y* OR ANS1l = "“A"
MOVE A=-YES TO LE=-FUNCTION(LEX)
MOVE A~YES TO LE-PROCESS(LEX).

68

* %% »

FIND THE RELATION WHICH COVERS ALL OTHER RELATIONS

INVOLVED 1IN THE LINE

FIND=-PRIMARY-RELATION.

* % % % ¥ ¥

IF PR=~SLOW = A=YES
DISPLAY"™ "
» PRIMARY RELATION ",
MOVE A=NO TO FOUND~-IT,
PERFORM FIND-PRIMARY=-0,
IF FOUND-IT = A-NO
PERFORM FIND=PRIMARY-3,

MOVE PRIMARY~-RELATICN TO LINE~PRIMARY=-RELATION(LNX),

TF PR-SLOW = A-YES
MOVE BOOL-PRIMARY TO BC=CONVERT-B
PERFORM BOOL-TO-CHAR
DISPLAY * BOOL-PRIMARY =" BC-CONVERT=C
MOVE PRIMARY-RELATION TO DISPLAY-=NUM

DISPLAY "!1l1tt1tit!l FANFARE fittliltrrgien~
*THE PRIMARY RELATION IS....."
DISPLAY=NUM

ACCEPT DUMMY.

FIND=-PRIMARY=-0,

MOVE BOOL-ALL=-1l TO B=AND.
MOVE ZEROS TO B-OR
MOVE ZERO TO ONE~-BIT.
PERFORM FIND=-PRIMARY-1l
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE-<END-=IN-DD.
IF PR=-SLOW = A=YES
MOVE B=-AND TO BC<«CONVERT-B
PERFORM BOOL-TO~CHAR
DISPLAY " B=AND =" BC=CONVERT=C
MOVE B«OR TO BC=CONVERT=B
PERFORM BOOL-TO~CHAR
DISPLAY ® B=0OR =" BC=CONVERT-C.

IF B=AND NOT = ZERO, THE PRIMARY RELATION IS
REPRESENTED BY ONE OF THOSE BITS, AND IT CAN
BE DISCOVERED WITHOUT FOLLOWING
NAVIGATICN RCUTES.
IF B=AND NOT = ZERO
MOVE BOOL=-1 TC ONE-BI?T
PERFORM FIND-PRIMARY-2
VARYING 8S1 FROM 1 BY 1
UNTIL SS1 > REL-LAST OR FOUND~IT = A~YES.,
FIND=-PRIMARY~-1,

IF PR=-SLOW = A=YES
DISPLAY * COMPUTING B=AND & B=OR".

SET DDX TO LE-ID(LEX).

IF PR=-SLOW = A-YES
SET DISPLAY=NUM TO DDX
DISPLAY "DDX =" DISPLAY-NUM DD-NAME (DDX).

69

* % * »

o % »

70

NOW ELIMINATE SUPERFLUQOUS DETERMINATES, THOSE
WHICH ARE NOT IN THE KEY OF ANY RELATION,.

IF LE-KEY-FPLAG(LEX) = A-YES AND
DD=-RELAT-KEY(DDX) = ZERO
PERFORM NOT-IN=-PRIMARY-RELATION.

FIND THE COVERAGE OF THOSE REAL DETERMINATES AND
OTHERS INVOLVED IN TRANSITIVE DEPENDENCIES.

IF LE-KEY~-FLAG(LEX) = A-YES

COMPUTE B=AND = HB=-AND AND DD=RELAT-KEY (DDX)

COMPUTE B~OR = B=0OR OR DD=-RELAT=KEY(DDX).
IF PR-SLOW = A-YES

MOVE DD=-RELAT~KEY{DDX) TO BC=CONVERT-B

PERFORM BOOL-TO-CHAR

DISPLAY " DD-RELAT-KEY(DDX) =" BC=CONVERT=C

MOVE B~AND TO BC=-CONVERT=-B

PERFORM BOOL-=-TO-CHAR

DISPLAY " B=AND =" BC=-CONVERT~C

MOVE B=OR TO BC=CONVERT-B

PERFORM BOOL-=TO-=CHAR

DISPLAY " B~OR =" BC~CONVERT=C

ACCEPT DUMMY.

FIND=PRIMARY=-2,

% % % % ¥

STARTING FROM A LIST OF CANDIDATE RELATIONS, EACH
WITH A SET OF KEYS WHICH INCLUDES ALL OF THE ACTUAL
DETERMINANTS OF THE LINE, THE PRIMARY RELATION CAN
BE FOUND BY SIMPLY COMPARING % OF KEY3S TO THE # OF
DETERMINANTS COF THE LINE.

COMPUTE B=-WORKO = ONE-BIT AND B=AND.
IF B=-WORK(NOT = ZERO
SET RELX TO Ss1
IF REL-LHS (RELX) = LINE=-NO=-DETERMINANTS (LNX)
MOVE A~-YES TO FOUND-IT
MOVE SS1 TO PRIMARY-RELATION
MOVE B~WORK(TO BOOL-=PRIMARY.
SHIFT ONE=-BIT RIGHT 1.
IF PR=SLOW = A=YES
DISPLAY "LOOKING FOR THE RIGHT # DETERMIMINANTS™
MOVE B=WORKO0 TO BC-=CONVERT-B
PERFORM BOOL-TO-CHAR
DISPLAY " B=WORK0O =" BC=CONVERT=C
MOVE B=AND TO BC-CONVERT=B
PERFORM BOOL=TO=CHAR
DISPLAY " B=AND =" BC=CONVERT-C
MOVE REL=LHS (RELX) TO DISPLAY=NUM
DISPLAY "REL-LHS = " DISPLAY=NUM
MOVE LINE=NO=DETERMINANTS(LNX) TO DISPLAY=NUM
DISPLAY “LINE-NO~DETERM. =" DISPLAY=-NUM
DISPLAY *"FOUND=IT =" FOUND-IT

71

ACCEPT DUMMY.
FIND=-PRIMARY=-3,

START THE PROCESS OF ELIMINATING SUPPOSED
DETERMINANTS WHICH ARE ACTUALLY INVOLVED THROUGH
TRANSITIVE DEPENDENCIES.

* % % % %

PERFORM FIND=-PRIMARY=-4
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE-END=IN-DD.
PERFORM FIND~PRIMARY=-S
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE=~END-IN-DD.
PERFORM FIND-PRIMARY=0.
IF FOUND=IT = A-=NO
MOVE ZERO TO CANDIDATES=-LEFT
MOVE BOOL-1 TO B-WORKO
PERFORM FIND~PRIMARY=~6
VARYING RELX FROM 1 BY 1
UNTIL RELX > REL-LAST
1F CANDIDATES=-LEFT > 1
PERFORM PIND=-PRIMARY-9,
IF PR-SLOW = A-YES
MOVE B=WORKO TO BC~CONVERT~S
PERFORM BOOL-TO~CHAR
DISPLAY " B=WORK(=" BC=CONVERT-C.
PIND=-PRIMARY~4.

ANY SUPPOSED DETERMINANT WHICH DOESN"T APPEAR IN
ANY RELATION AS A NON-KEY, MUST INDEED BE PART OF
THE ACTUAL DETERMINANT OF THE LINE

% % & ¥

IF LE-REY-FLAG(LEX) = A-YES
PERFORM GET-LINE=-ELEM=NAME
IF DD-RELAT=NOWN(DDX)} = ZERO
COMPUTE B=OR = B-OR AND DD~RELAT-KEY(DDX).
FIND=PRIMARY=~S5.

ELIMINATE THOSE SUPPOSED DETERMINANTS WHICH NEVER
APPEAR IN THE KEY OF A RELATION WHICH HAS THOSE
ELEMENTS IN ITS KEY WHICH WERE IDENTIFIED AS BEING
IN THE ACTUAL DETERMINANT OF THE LINE

* % % * % ¥

IF LE-KEY-FLAG(LEX) = A-YES
PERFORM GET-LINE~ELEM=NAME
COMPUTE B=~WORK0O = B=OR AND DD~RELAT-KEY(DDX)
IF B=WORKO = ZERO
PERFORM NOT=IN=-PRIMARY-RELATION.
FIND~PRIMARY~6,

ELIMINATE THOSE CANDIDATE RELATIONS WHICH INCLUPE
IN THEIR KEY, ELEMENTS WHICH AREN"T IN THE LINE'S
DETERMINANTS

"N E R

* %

MOVE A=-NO TO REL-CANDIDATE (RELX).
COMPUTE B=-WORKl = B=-WORKO AND B=OR.
1F B=WORK1l NOT = ZERO

MOVE A=-YES TO GOOD-CANDIDATE
SET RPX TO REL=-1ST(RELX)
PERFORM FIND-~PRIMARY-7
VARYING SS1 FROM 1 BY 1
UNTIL SS1 > REL~LHS (RELX)
OR GOOD~CANDIDATE = A-=NO
IF GOOD-=CANDIDATE = A-YES
MOVE A~YES TO REL-CANDIDATE {RELX)
ADD 1 TO CANDIDATES-LEFT
IF CANDIDATES~LEFT = 1
MOVE B-WORKO TO BOOL=PRIMARY

SET PRIMARY-RELATION TO RELX.
SHIFT B=WORKO RIGHT 1.

FIND=PRIMARY=7,

LOOK FOR EACH OF THE ELEMENTS OF THIS RELATION"S KEY
IN THE LINE®S DETERMINANTS

* % % ®

MOVE A-NO TO GOOD=CANDIDATE.
PERFORM FIND-PRIMARY-8
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE-END=IN-~DD
OR GOOD=-CANDIDATE= A-~YES.
SET RPX UP BY 1,

FIND=-PRIMARY-8,
*

*

CHECK THIS DETERMINANT AGAINST AN ELEMENT IN A KEY
*

IF LE-KEY-FLAG(LEX) = A-YES
IF LE~ID(LEX) = RP=ELEM=ID (RPX)

MOVE A-YES TO GOOD=~CANDIDATE.
IF PR=SLOW = A~YES

SET DISPLAY-NUM TO RELX
SET DDX TO RP=ELEM=I1D (RPX)
STRING "RELATION # = " DISPLAY-NUM

" RELATION KEY: " DD=NAME {DDX)
BLANKS

DELIMITED SIZE

INTO MSG

DISPLAY MSG

PERFORM GET<-LINE-ELEM~NAME

STRING * DETERMINANT NAME: * DD=~NAME (DDX)
el GOOD-~CANDIDATE: " GOOD«CANDIDATE
BLANKS
DELIMITED SIZE
INTO MSG

DISPLAY MSG.

FIND=PRIMARY=9,

BITE THE BULLET = START TO FOLLOW NAVIGATION PATHS

72

73

IF PR=-SLOW = A~YES
DISPLAY "** NAYVIGATION FOR PRIMARY RELATION *w»
MOVE BOOL-1 TO B=WORKO.
MOVE ZERO TO LAST-CANDIDATE.
PERFORM FIND=PRIMARY~1l1l
VARYING RELX FROM 1 BY 1
UNTIL RELX > REL-LAST OR CANDIDATES-LEFT = 1,
SET RELX DOWN BY 1.
SET PRIMARY-RELATION TO RELX.
SHIFT B-WORKO LEFT 1.
MOVE B-~WORK(TO BOOL-PRIMARY.
FIND=-PRIMARY-11,
*

* ONCE PER RELATION
*
IF PR-SLOW = A-YES
SET REL-NO TC RELX
STRING ",.,....STARTING RELATION R" REL=NO
BLANKS
DELIMITED SIZE
INTO MSG
DISPLAY MSG
ACCEPT DUMMY.
SHIFT B=-WORKO RIGHT 1.
IF REL=-CANDIDATE (RELX) = A-~YES
PERFORM INIT-DD~COVERED
VARYING DDX FROM 1 BY 1
UNTIL DDX > DD=MAX
SET RPX TO REL~1S5T(RELX)
ADD REL~LHS {RELX} REL-RHS (RELX)
GIVING ELEMENT=-COUNT
PERFORM MARK=ELEMENTS=-COVERED
ELEMENT=-COUNT TIMES
SET RELX-HOLD TO RELX
PERFORM ZERO-RELATION=~TEMPS
VARYING RELX FROM 1 BY 1
UNTIL RELX > REL-LAST
MOVE A=-YES TO REPEAT
PERFORM FIND=PRIMARY-12
UNTIL REPEAT = A-NO
SET RELX TO RELX=HOLD,
FIND=-PRIMARY=-12,
MOVE A=NC TO REPEAT.
PERFORM FIND=-PRIMARY=13
VARYING RELX FROM 1 BY 1
UNTIL RELX = RELX=HOLD.
SET RELX UP BY 1.
PERFORM FIND=-PRIMARY=-13
VARYING RELX FROM RELX BY 1
UNTIL RELX > REL=~LAST.
P IND~PRIMARY=-13.
IF REL-USED(RELX) = ZERO
PERFORM FIND=-PRIMARY=13A,
FIND=PRIMARY=13A.

74

IF PR-SLOW = A-YES
DISPLAY “"TRYING TO COVER NEXT RELATION"

SET DISPLAY=-NUM TO RELX
STRING "RELATION # = " DISPLAY-NUM

" CANDIDATE = " REL=~CANDIDATE{RELX)
- CANDIDATES LEFT = ® CANDIDATES-LEFT
BLANKS

DELIMITED SIZE

INTO MSG

DISPLAY MSG.
SET RPX TO REL-1ST(RELX).
MOVE A-YES TO COVERED-KEYS.
PERFORM FIND=-PRIMARY=-14
VARYING S51 FROM 1 BY 1
UNTIL $S1 > REL-LHES(RELX)
OR COVERED=KEYS = A-NO,
IF COVERED=KEYS = A=YES
SET RPX TO REL-1ST(RELX)
ADD REL-LHS(RELX) REL-RHS (RELX)
GIVING ELEMENT~COUNT
PERFORM MARK=-ELEMENTS=-COVERED
ELEMENT~=COUNT TIMES
MOVE A~YES TO REPEAT
MOVE 1 TO REL-USED(RELX)
IF REL-CANDIDATE(RELX) = A-YES
MOVE A=NO TO REL-CANDIDATE (RELX)
SUBTRACT 1 FROM CANDIDATES-LEFT.
IF PR-SLOW = A-YES
DISPLAY "FINISHED"

STRING
CANDIDATE = " REL-=CANDIDATE (RELX)
" CANDIDATES LEFT = " CANDIDATES-LEFT
BLANKS
DELIMITED SIZE
INTO MSG

DISPLAY MSG,
FIND~PRIFMARY~14,
SET DDX T0O RP-ELEM=~ID{RPX)
IF DD=COVERED (DDX) = A-NO
MOVE A=NO TO COVERED=-KEYS.
SET RPX UP BY 1.
INIT-DD-COVERED.
MOVE A~NO TO DD=-COVERED(DDX).
MARK=ELEMENTS=COVERED.
SET DDX TO RP=ELEM~ID{(RPX).
MOVE A~YES TO DD~COVERED (DDX).
SET RPX UP BY 1,

IDENTIFY ADDITIONAL DATA SELECTION CRITERIA
[EG SALARY < 9000 OR JOBNAME = “PROGRAMMER’]

* &% %

DATA=SELECTION-CRITERIA.
MOVE 1 TO WHERE-PTR
DISPLAY
*DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY"
"OCCURRENCE QOF THE DATA FOR THIS LINE? (Y/N) "
"(°N" IF THERE IS SELECTION CRITERIA)".
ACCEPT ANS1,
IF ANS1l = A=NO
MOVE A=-YES TO MORE=-RESTRICTIONS
PERFORM GET=NEXT-RESTRICTION
VARYING PARM FROM 1 BY 1
UNTIL MORE=-RESTRICTIONS = A~NO.
GET~NEXT=-RESTRICTION.
DISPLAY "OF THESE ELEMENTS IN THE LINE:"
PERFORM LINE~DISPLAY.
DISPLAY "WHICH IS INVOLVED IN THIS CONDITION?".
MOVE A~NO TO GOOD=-RESPONSE.
PERFORM ACCEPT-DATA=-NAME
UNTIL GOOD=RESPONSE = A~YES.
IF TEST-NAME NOT = SPACES
PERFORM BUILD-~CONDITION
ELSE
MOVE A=NO TO MORE-RESTRICTIONS.
BUILD-CONDITION.
DISPLAY
"PLEASE ENTER CONDITION OPERATOR (=, <, >, ETC}"
ACCEPT ANS2.
DISPLAY
"FOR NCW, THE “RIGHT=-HAND SIDE" WILL COME FROM"
"THE CRT".
STRING “ACCEPT PARAMETER=" PARM " FROM CRT" BLANKS
DELIMITED SIZE
INTO PRINT-LINE.
PERFORM PRINT=RTN,
STRING FULL-NAME DELIMITED SPACE
" » DELIMITED SIZE
ANS2 DELIMITED SPACE
" ® DELIMITED SIZE
PARAMETER~" PARM "" DELIMITED SIZE
INTO WHERE=POOL
POINTER WHERE=PTR.
ACCEPT=DATA=NAME.
ACCEPT TEST=NAME
IF TEST-NAME = SPACES
MOVE A-YES TO LAST-RESPONSE
MOVE A=YES TO GOOD~=RESPONSE
ELSE
SET LEX=-HOLD TO LEX
PERFORM CHECK~LE-LINE
VARYING LEX FROM 1 BY 1

UNTIL LEX > LE-LAST
OR GOOD=-RESPONSE = A-YES
SET LEX TO LEX=-HOLD
IF GCOD-RESPONSE = A-NO
DISPLAY "NOT IN THE LINE, TRY AGAIN",
CHECK=LE~LINE.
PERFORM GET=LINE=-ELEM~NAME.
IF TEST~NAME = ELEMENT=NAME
MOVE A~YES TO GOOD-RESPONSE.
BUILD=-SELECT-CLAUSE.
IF DI-SLOW = A=YES
DISPLAY "HOORAY!!!! SELECT CLAUSE TIME"™.
ACCEPT DUMMY.
MOVE SPACES TO TEMP=-STRING.
MOVE SPACES TO SEQL-LINE.
IF LNX < LNMAX
AND LINE-LEVEL(LNX) < LINE=-LEVEL{LNX + 1)
MOVE "NEXT)"™ TO TEMP-STRING
ELSE
MOVE "ALL)" TO TEMP~-STRING.
DISPLAY "TEMP=-STRING =" TEMP=STRING.
STRING "SELECT (" DELIMITED SIZE
TEMP-STRING DELIMITED SPACE
INTO SEQL-LINE.
MOVE SEQL-LINE TO PRINT-LINE
PERFORM PRINT=RTN.
MOVE SPACES TO PRINT-LINE.
IF DI~SLOW = A-YES
DISPLAY " WAHOO " SEQL=-LINE.
PERFORM ZERO=RELATION-TEMPS
VARYING RELX FROM 1 BY 1
UNTIL RELX > REL~LAST.
PERFORM BUILD~SELECT-ENTRIES
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE=-END=IN-DD.
SET RELX TO PRIMARY-RELATION,.
MOVE 2 TO REL-USED(RELX).
MOVE "FROM " TO PRINT-LINE.
PERFORM PRINT-RTN.
MOVE SPACES TO FROM~CLAUSE.
MOVE 5 TO FROM=NEXT.
PERFORM BUILD=FROM=CLAUSE
VARYING RELX FROM 1 BY 1
UNTIL RELX > REL-LAST.
MOVE FROM~CLAUSE TO PRINT-LINE.
PERFORM PRINT=RTN,
SET WSX TO 1.
SET WSX DOWN BY 1,
PERFORM INIT=WHERE=STACK
VARYING RELX FROM 1 BY 1
UNTIL RELX > REL~LAST.
SET WS~LAST TO WSX.
MOVE A-NO TO AND=SW.
MOVE SPACES TO WHERE=-CLAUSE.

MOVE 5 TO WHERE-POINTER.

PERFORM BUILD=-NAVIGATION=-WHERE=CLAUSE
UNTIL WS=LAST = 0,

PERFORM BUILD-LEVEL=-NAV~WHERE=SEGMENTS
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE=-LAST.

PERFORM PRINT=SELECTION-WHERE=-SEGMENTS.

IF DI-SLOW = A~YES
ACCEPT DUMMY,

ZERO=RELATION=TEMPS.

MOVE ZERO TO REL=-USED(RELX).

MOVE ZERO TO REL~NAVIGATION=-COUNTER{RELX).
BUILD=-SELECT-ENTRIES,

IF DI-SLOW = A=-YES AND LE-PROCESS(LEX} = A-YES
DISPLAY "STARTING “BUILD=-SELECT=ENTRIES *
PERFORM GET<LINE=-ELEM+=NAME
DISPLAY "ELEMENT=NAME ="

ELEMENT=NAME,
IF LE-PROCESS (LEX) = A~YES
AND LE~TEMPORARY(LEX) = A=NO
SET RELX TO LE=-RELATION{LEX)
MOVE 1 TO REL-USED (RELX)
SET DDX TO LE-ID{LEX)
MOVE LE=-RELATION(LEX) TO REL=NO
PERFORM NAME=~CONCAT
STRING " * FULL=-NAME DELIMITED SIZE
INTO PRINT-LINE
PERFORM PRINT~RTN.
SPW=-1.
MOVE DD~RELAT=NON (DDX) TO BOOL-~CANDIDATES.
PERFORM ESTABLISH=ORIGIN.
SFW=2,

MOVE BOOL-1l TO B-WORKL.

IF DD=-RELAT=NON(DDX) NOT = ZERO
MOVE DD=-RELAT=-NON(DDX) TO BOOL=-CANDIDATES

ELSE
PERFORM FIND=PRES=SOURCE

VARYING SS1 FROM 1 BY 1
UNTIL SS1 = RELX
COMPUTE BOOL-CANDIDATES = B-WORK1l EXOR
DD=RELAT-KEY(DDX) .

IF DI~-SLOW = A=YES
SET DISPLAY=-NUM TO DDX
DISPLAY "DDX =" DISPLAY~NUM
DISPLAY "DD~NAME =" DD=NAME (DDX)

DISPLAY "REL=-NO:* REL=-NO

MOVE BOOL=CANDIDATES TO BC=~CONVERT=-B

PERFORM BOOL=-TO-CHAR

DISPLAY " BOOL=-CANDIDATES =" BC~CONVERT=C
MOVE DD-RELAT=NON(DDX) TO BC=CONVERT-B
PERFORM BOOL=TO=-CHAR

DISPLAY " DD=RELAT-=-NON (DDX) =" BC=CONVERT=C
MOVE DD=RELAT-KEY{DDX) TO BC=CONVERT-B

PERFORM BOOL-TO-CHAR

77

78

DISPLAY " DD=-RELAT=-KEY(DDX) =" BRC=CONVERT=C
MOVE B=WORKl TO BC=CONVERT~-B
PERFORM BOOL=TO=CHAR
DISPLAY " B=WORKl =" BC=CONVERT=C
MOVE B=WORK2 TO BC=CONVERT-B
PERFORM BOOL=TO=CHAR
DISPLAY " B=WORKZ =" BC=CONVERT-~C
ACCEPT DUMMY.
PERFORM ESTABLISH-=ORIGIN.
FIND=PRES=SOURCE.
SHIFT B-WORK1l RIGHT 1.
ESTABLISH=-ORIGIN.
MOVE A-NO TO FOUND=SOURCE.
MOVE BOOL=-1 TC B=WORKLl.
PERFORM ELIMINATE~EXTRANEOUS=SOURCES
VARYING RELX FROM 1 BY 1
UNTIL FOUND=SOURCE = A-YES OR RELX > REL-LAST.
MOVE BOOL-1 TO B=-WORK1,
PERFORM IDENTIFY~ITS=RELATION
VARYING RELX FROM 1 BY 1
UNTIL FOUND~SOURCE = A=-YES OR RELX > REL=LAST.
IF FOUND=SOURCE = A=-YES
PERFORM NAME=CONCAT
SET RELX TO REL-NO
MOVE REL-NO TO LE=-RELATION(LEX)
ELSE
PERFORM SOURCE-INDETERMINABLE.
ELIMINATE~E XTRANEOUS~SOURCES.
SET REL=-NO TO RELX.
IF DI~SLOW = A-YES
SET DISPLAY-NUM TO DDX
DISPLAY "DDX =" DISPLAY=-NUM
DISPLAY "DD-NAME =" DD-NAME (DDX).
COMPUTE B=WORK2 = BOOL~CANDIDATES AND B=-WORK1.
IF B=WORK2 NOT = ZERO
COMPUTE B=WORK2 = BOOL=CANDIDATES EXOR B=-WORKI1l
IF B=-WORK2 = ZERO
MOVE A=-YES TO FOUND=SOURCE
ELSE
PERFORM MULTIPLE~SOURCES.
SHIFT B=WORK1l RIGHT 1.
IDENTIFY~ITS~RELATION.
SET REL=NO TO RELX,.
IF DI-SLOW = A-YES
SET DISPLAY=-NUM TO DDX
DISPLAY "DDX =" DISPLAY=-NUM
DISPLAY "DD-NAME =" DD-NAME (DDX).
COMPUTE B=-WORK2 = BOOL-CANDIDATES AND B=-WORK1,
IF B=WORK2 NOT = ZERO
COMPUTE B-WORK2 = BOOL-~CANDIDATES EXOR B-WORKIl
IF B=-WORK2 = ZERO
MOVE A=-YES TO FOUND=SOURCE.
SHIFT B-WORK1l RIGHT 1.

NAME-CONCAT.

79

MOVE SPACES TO FULL-NAME.
STRING "R" REL=-NO "." DELIMITED SIZE

DD=NAME (DDX) DELIMITED SPACE
INTC FULL-NAME.
IF DI-SLOW = A~-YES
DISPLAY " NAME=CONCAT.....Q-NAME =" FULL=NAME
ACCEPT DUMMY,
MULTIPLE-SOURCES.
SET RPX~HOLD TO RPX.
SET DDX-HOLD TO DDX,.
MOVE A=~YES TO ALL-IN-LINE,
SET RPX TO REL-1ST(RELX).
PERFORM CHECK~KEYS REL~LHS (RELX) TIMES.
IF ALL=IN-LINE = A-NO
COMPUTE BOOL-~CANDIDATES =
BOOL~CANDIDATES EXOR B=WORK1l.
SET DDX TO DDX-HOLD,
SET RPX TO RPX-HOLD,
CHECK=KEYS,
SET LEX-HOLD TO LEX,.
MOVE A-YES TO ABSENT.
PERFORM COMPARE-LINE-TO-REL-POOL
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE~END-IN=DD OR ABSENT = A-=NO.
IF ABSENT = A~YES
MOVE A-NO TO ALL-IN-LINE.
SET LEX TO LEX=HOLD.
SET RPX UP BY 1.
IF DI-SLOW = A=YES
MOVE BOOL~CANDIDATES TO BC=CONVERT-B
PERFORM BOCL=TO=-CHAR
DISPLAY " BOOL~CANDIDATES =" BC=~CONVERT=C
MOVE B=WORK1l TO BC=CONVERT=-B
PERFORM BOOL-TO=-CHAR
DISPLAY " B=WORKl =" BC=CONVERT=C
ACCEPT DUMMY.
COMPARE~LINE-TQ=-REL=POOL.
IF LE-ID(LEX) = RP=~ELEM-ID(RPX)
MOVE A-=NO TO ABSENT.
IF DI-SLOW = A-YES
SET DDX TC LE~1D(LEX)
STRING "CHECKING FOR ELEMENT " DD=NAME (DDX)
“«~ IN RELATICN " REL-NQ * =
"ABSENT: " ABSENT
BLANKS
DELIMITED SIZE
INTO MSG
DISPLAY MSG.
SOURCE-INDETERMINABLE.
DISPLAY "HELP !!!! WE RE AT INDETERMINABLE=SOURCE".
SET DISPLAY=NUM TO DDX
DISPLAY "DDX =" DISPLAY-NUM
DISPLAY "DD~NAME =" DD=-NAME (DDX)
MOVE BOCOL~CANDIDATES TO BC=CONVERT-B

80

PERFORM BOOL=TO=-CHAR
DISPLAY ® BOOL=CANDIDATES =" BC=CONVERT-~C
MOVE DD=RELAT-=NON(DDX) TO BC=CONVERT=-B
PERFORM BOOL~TO=-CHAR
DISPLAY " DD-RELAT-NON(DDX) =" BC=CONVERT=C
MOVE B=AND TO BC=CONVERT-B
PERFORM BOQL=TO=-CHAR
DISPLAY " B=AND =" BC=~CONVERT=C
MOVE B=WORK1l TO BC=CONVERT=B
PERFORM BOOL-TO-CHAR
DISPLAY " B=WORK1l =" BC=CONVERT=C
MOVE B=WORK2 TO BC=-CONVERT=B
PERFORM BOOL-TO-CHAR
DISPLAY " B=WORK2 =" BC=CONVERT=C
ACCEPT DUMMY.
MOVE A~YES TO FOUND=SOURCE.
BUILD=FROM=CLAUSE.
SET REL-NO TO RELX.
IF REL-USED(RELX) > ZERO
STRING "R® REL~NO " n DELIMITED SIZE
INTO FROM=CLAUSE
POINTER FROM=NEXT.
INIT-WHERE=STACK.
IF REL-USED(RELX) = 1
SET WSX UP BY 1
SET WHERE~STACK-REL (WSX) TO RELX.
BUILD-NAVIGATION=-WHERE-CLAUSE.
MOVE A-~NO TO PRINT-WHERE.
IF DI-SLOW = A~-YES
DISPLAY "H+++++++NAVIGATION++++++++"
SET WSX TO WS-LAST.
SUBTRACT 1 FROM WS~-LAST.
SET RELX TO WHERE=-STACK=REL (WSX).
IF REL~USED(RELX) =1
MOVE 2 TO REL~USED{RELX)
SET RPX TO REL-1ST{RELX)
PERFORM NAV~FOR-RELATION
VARYING REL~SS FROM 1 BY 1
UNTIL REL~SS > REL~LHS(RELX).
* PERFORM PRINT-WHERE-=RTN.
PRINT-WHERE=-RTN,
IF PRINT-WHERE = A-YES
MOVE WHERE=CLAUSE TO PRINT-LINE
PERFORM PRINT=RTN
MOVE SPACES TO WHERE-CLAUSE
MOVE 5 TO WHERE~POINTER.
NAV=FOR=RELATION.
SET DDX TO RP=-ELEM~ID (RPX).
IF DI-SLOW = A-YES
DISPLAY "NAVIGATION KEY = " DD=-NAME(DDX).
SET REL=-NO TO RELX.
PERFORM NAME=-CONCAT.
MOVE FULL-=-NAME TO FN1l.
PERFORM BUILD=-A=PATH.

81

MOVE FULL=NAME TO FN2.
PERFORM BUILD-WHERE=-SEGMENT.
PERFORM PRINT-WHERE=RTN,
BUILD=WHERE=SEGMENT.
IF AND=S5W = A-YES
STRING ™ AND “ DELIMITED SIZE
INTO WHERE-CLAUSE
POINTER WHERE-=POINTER
ELSE
MOVE “WHERE" TO PRINT-LINE
PERFORM PRINT~RTN
MOVE A=-YES TO AND=3W,

STRING FN1 DELIMITED SPACE
" = " DELIMITED SIZE
FN2 DELIMITED SPACE
" " DELIMITED SIZE

INTQO WHERE=CLAUSE
POINTER WHERE=-POINTER.
MOVE A~YES TO PRINT-WHERE.
BUILD~A-PATH.
SET RELX=HOLD TO RELX.
PERFORM SFw=2.
IF FOUND=SOURCE = A-YES
PERFORM BUILD=PATH-LINK
ELSE
MOVE A=-YES TO DEAD=END.
BUILD=PATH~LINK.
SET RELX TO REL-=NO.
IF DI-SLOW = A-YES
DISPLAY " NEW RELATION =" REL=NO
ACCEPT DUMMY.
IF REL~-USED(RELX) = ZERO
ADD 1 TO REL=USED (RELX)
ADD 1 TO WS=LAST
SET WHERE=STACK~REL (WS-LAST) TO RELX.
IF REL-CANDIDATE (RELX) = A-YES
ADD 1 TO REL=NAVIGATION=COUNTER(RELX)
IF REL=NAVIGATION~COUNTER{RELX) =
CANDIDATES=NO=OF=KEYS
MOVE A-YES TO CANDIDATE=-REACHED,
IF PR=SLOW = A-YES
STRING "RELATION # = * REL=NO

" # OF KEYS = " CANDIDATES-NO=OF+~KEYS
" CANDIDATE REACHED =" CANDIDATE-REACHED
BLANKS

DELIMITED SIZE

INTO MSG

DISPLAY MSG.
SET RELX TO RELX=HOLD.
SET RPX UP BY 1.
BUILD-LEVEL~NAV~-WHERE=SEGMENTS,
1F LE~NAV-RELATION(LEX) NOT = ZEROQ
SET DDX TO LE=ID(LEX)
MOVE LE=-RELATION(LEX) TO REL-=NO

PERFORM NAME=-CONCAT
MOVE FULL~NAME TO FN1
MOVE LE=-NAV=RELATION{LEX) TO REL=-NO
PERFORM NAME=CONCAT
STRING "CURRENT (" DELIMITED SIZE
FULL=NAME DELIMITED SPACE
") " DELIMITED SIZE
INTO FN2
PERFORM BUILD~WHERE~SEGMENT
PERFORM PRINT~WHERE=RTN.
IF DI~SLOW = A-YES
DISPLAY “LEVEL NAVIGATION WHERE CLAUSE :"
WHERE=CLAUSE.
PRINT=-SELECTION~WHERE~SEGMENTS.
IF DI-SLOW = A~YES
DISPLAY WHERE=POOL.
MOVE WHERE-PTR TO PTR~LAST.
MOVE 1 TO WHERE-~PTR.
MOVE 5 TO WHERE=POINTER.
PERFORM PRINT=NEXT-WHERE=LINE
UNTIL WHERE=-PTR NOT < PTR-LAST.
PRINT-NEXT-WHERE-LINE,
MOVE SPACES TO WHERE~CLAUSE.
IF AND=SW = A=-YES
STRING ® AND " DELIMITED SIZE
INTO WHERE=CLAUSE
POINTER WHERE=POINTER
ELSE
MOVE "WHERE"®" TO PRINT~LINE
PERFORM PRINT=RTN
MOVE A-YES TO AND=SW.
MOVE SPACES TO TEMP=STRING.
UNSTRING WHERE=POOL
DELIMITED BY "*»
INTO TEMP-STRING
POINTER WHERE-~PTR.
STRING TEMP=STRING * "
DELIMITED SIZE
INTO WHERE=CLAUSE
POINTER WHERE~POINTER.,
MOVE A=-YES TO PRINT-WHERE.
PERFORM PRINT-WHERE=RTN.
SCRT~CLAUSE=BUILD.
PERFORM SORT=-LINE~DISPLAY.
DISPLAY "DO YOU WANT THIS LINE SORTED? (Y/N)"
ACCEPT ANSl
IF ANS1 = A-YES
MOVE A=YES TO MORE=SORT-KEYS
MOVE "“ORDERED BY" TO PRINT-LINE
PERFORM PRINT~RTN
DISPLAY * ENTER SORT KEYS MAJOR TO MINOR"
PERFORM GET-SORT-KEY
VARYING SS1 FROM 1 BY 1
UNTIL MORE=SORT=KEYS = A~NO.

SORT=LINE~-DISPLAY,
SET LEX TO 1,
IF DI-SLOW = A-YES
MOVE LE-~LAST TO DISPLAY=NUM

DISPLAY "STARTING DISPLAY LIST...s.
DISPLAY=NUM
ACCEPT DUMMY,
PERFORM ONE=SORT=LINE
UNTIL LEX > LE~LAST.
ONE~SORT=LINE.
MOVE SPACES TO DISPLAY~LINE=-DATA.
MOVE 1 TO ssl.
PERFORM SORT~LINE=~SETUP
UNTIL SS1 > 6 OR LEX > LE~LAST.
DISPLAY DISPLAY~LINE=-DATA.
SORT-LINE-SETUP,.
PERFCRM GET-LINE~ELEM-NAME
IF LE-ORIGIONAL{(LEX) = A~YES
AND LE~FUNCTION(LEX) = A-YES
MOVE ELEMENT=NAME TO DISP-~LINE~NAME
ADD 1 TO S§sl.
IF TR=-SLOW = A~YES
SET DISPLAY=-NUM TO LEX
DISPLAY "“LEX =" DISPLAY=NUM

LE=-LAST ="

{ssl)

DISPLAY T“ELEMENT=NAME =" ELEMENT=NAME.

SET LEX UP BY 1.
GET=SORT=KEY.
MOVE SPACES TO PRINT~LINE,
MOVE A=-NO TO GOT-KEY.
SET LEX TO 1.
SET LEX DOWN BY 1.
PERFORM SORT=DISP
UNTIL GOT=-KEY = A-YES,

MOVE A-YES TO LE=SORT(LEX).
DISPLAY "ASCENDING OR DESCENDING? (A/D
ACCEPT ANS1
IF ANS1l = ®A™

MOVE " ASCENDING®" TO A-D
ELSE

MOVE " DESCENDING" TO A-D.
PERFORM GET-LINE-ELEM=NAME
IF LE-TEMPORARY{LEX) = A=NO

MOVE LE~RELATION{LEX) TO REL-NO

)‘

STRING * R* REL-=NO "." DELIMITED SIZE

ELEMENT=NAME DELIMITED SPACES
A~D DELIMITED SIZE
INTO PRINT=LINE
ELSE
STRING * " DELIMITED SIZE
ELEMENT~NAME DELIMITED SPACES
A=-D DELIMITED SIZE
INTO PRINT~LINE,
PERFORM PRINT=RTN.
DISPLAY "ARE THERE ANY MORE SORT KE¥S?

(¥/N} "

83

84

ACCEPT MORE=-SORT=KEYS.
SORT=-DISP.

SET LEX UP BY 1.

IF LE-PROCESS(LEX) = A~YES AND LE-~SORT(LEX) = A~NO
PERFORM GET-LINE=ELEM=NAME
DISPLAY ELEMENT=NAME
ACCEPT GOT=-KEY.

UNIQUE=ALL~CLAUSE=BUILD.
MOVE A-YES TO DISP~ALL-KEYS.
PERFORM DISPLAY-KEYS~-TEST
VARYING LEX FROM 1 BY 1
UNTIL LEX > LE=END=IN=DD
OR DISP=-ALL-KEYS = A=-NO.
IF DISP=ALL=KEYS = A=NO
DISPLAY "DO YOU WANT TO DISPLAY ALL VALID RECORDS,"
" OR JUST THOSE THAT ARE UNIQUE? (a/u) "
ACCEPT ALL-UNIQUE
IF ALL=UNIQUE = "p-®
MOVE "“UNIQUE" TO PRINT~LINE
PERFORM PRINT=RTN.
DISPLAY=-XEYS~TEST.

IF LE=-PROCESS(LEX) NOT = A~YES
PERFORM GET=LINE=ELEM=NAME
COMPUTE B=WORKO = BOOL=PRIMARY

AND DD=RELAT=-KEY (DDX)
IF B=WORK0 NOT = ZERO
MOVE A=NO TO DISP=-ALL-KEYS.
GET~LINE=-ELEM=NAME,

IF LE-TEMPORARY (LEX) = A~YES
SET TTX TO LE-ID(LEX)

MOVE TT=NAME (TTX) TO ELEMENT=NAME
MOVE TT=NAME (TTX) TO FULL=NAME

ELSE
SET DDX TO LE~ID(LEX)

MOVE DD-NAME({DDX) TO ELEMENT=NAME

MOVE LE-RELATION({LEX) TO REL-=NO

PERFORM NAME=~CONCAT.
PRINT=-COMPUTE=-LINES.

IF DI-SLOW = A=YES
DISPLAY COMPUTE=POOL.

MOVE COM=PTR TO PTR-LAST.

MOVE 1 TO COM=-PTR.

PERFORM PRINT~NEXT=COMPUTE=-LINE

UNTIL COM=PTR NOT < PTR=LAST.
PRINT=NEXT=COMPUTE=~LINE.
MOVE SPACES TO PRINT=LINE,
UNSTRING COMPUTE=POOL
DELIMITED RY "#*»
INTO PRINT-LINE
POINTER COM=PTR.
PERFORM PRINT=RTN.

A USER~-CRIENTED TRANSACTION DEFINITION FACILITY
FOR A RELATIONAL DATABASE SYSTEM

by

C. STEVEN ROUSH

B. S., Kansas State University, Manhattan, Kansas, 1972

AN ABSTRACT OF A MASTER’S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1979

To continue the development of a prototype relatiocnal
database system, a transaction definition subsystem will be
designed and implemented. This subsystem will allow users of
the database system to define database transactions without
knowledge of the schema of the database or the database
model used.

The subsystem will not be complete, but will only
address the processes necessary for data retrieval and will
not pursue the functions needed to perform maintenance of
the database., The retrieval function will be interactively
defined in terms of five processes:

l. Identification of those data items to be retrieved,

2. Identification of methods needed to derive all data

items which are not stored in the database.

3. Identification of data retrieval criteria.

4. Identification of all sorting requirements.

5. Determination as to whether duplicate 1lines of data

{tuples) should be retrieved.

The subsystem will be implemented in COBOL and will

generate a version of SEQUEL as its ocutput.

