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Abstract

This report addresses some mathematical and statistical techniques of image process-

ing and their computational implementation. Fundamental theories have been presented,

applied and illustrated with examples. To make the report as self-contained as possible,

key terminologies have been defined and some classical results and theorems are stated, in

the most part, without proof. Some algorithms and techniques of image processing have

been described and substantiated with experimentation using MATLAB. Several ways of

estimating original images from noisy image data and their corresponding risks are dis-

cussed. Two image processing concepts selected to illustrate computational implementation

are: “Bayes classification” and “Wavelet denoising”. The discussion of the latter involves

introducing a specialized area of mathematics, namely, wavelets. A self-contained theory

for wavelets is built by first reviewing basic concepts of Fourier Analysis and then introduc-

ing Multi-resolution Analysis and wavelets. For a better understanding of Fourier Analysis

techniques in image processing, original solutions to some problems in Fourier Analysis have

been worked out. Finally, implementation of the above-mentioned concepts are illustrated

with examples and MATLAB codes.
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Chapter 1

Introduction

1.1 Images as matrices

A matrix is an array of finite discrete signals. Alternatively, we can consider it as a two

dimensional finite discrete signal. A camera measures light intensity with photoreceptors

that perform a uniform sampling over a grid that is supposed to be uniform and the output

is an array of picture elements, called pixels, usually, in a rectangular grid[8]. Thus, a

rectangular black-and-white image is a matrix where each entry represents an intensity of

gray at that spot and ranges from 0 to 255, 0 being the darkest spot and 255 being the

brightest spot. For example, consider a matrix A of size 12X12 randomly generated below

using the given MATLAB commands. The image of A generated by MATLAB is given in

Figure (1.1).
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>> A=uint8(255*rand(12,12))

A =

208 244 173 177 181 192 208 234 145 176 27 46

231 124 193 81 192 65 62 73 120 191 245 67

32 204 189 242 70 129 237 193 3 115 1 37

233 36 100 9 173 178 89 192 86 21 198 35

161 108 167 112 167 227 50 97 41 58 208 222

25 234 44 97 41 245 64 145 203 233 222 148

71 202 180 195 30 140 157 19 79 39 22 140

139 245 8 203 127 35 121 14 135 211 102 37

244 167 71 48 245 38 90 135 42 137 66 218

246 9 12 125 87 66 212 199 154 254 204 159

40 217 25 114 149 214 149 238 67 20 110 89

248 238 210 165 57 65 140 33 167 113 232 131

>> imshow(A)

A color image is a tensor product of three gray images which correspond to the decom-

positions of the original image into its three primary color components, namely, red, green

and blue. These three colors are linearly independent which means none can be obtained

by combining the other two. Furthermore, they generate a basis of the entire color space

which means any color shade can be obtained by combining the appropriate shades of these

three colors. Thus, the first gray image or the matrix in the tensor product corresponds to

the red color component of the color image. Its entries, ranging from 0 to 255, represents

red intensities of the pixels. Analogously, the other two matrices in the tensor product has
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Figure 1.1: Image of Matrix A.

as entries green and blue intensities of the pixels. This is illustrated in the color cube of

side length 255 given in Figure (1.2).

The purple image in Figure (1.3) (source: http://en.wikipedia.org/wiki/File:KSUWildcats-

logo.svg) is written by a tensor product of three matrices each of size 671X1024. In this

example, we generate a matrix corresponding to a given image using the following MATLAB

codes:

>> imshow(‘wildcat.jpg’)

>> W=imread(‘wildcat.jpg’);

size(W)

ans =

671 1024 3
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Figure 1.2: The color cube with axes three primary colors: red, green and blue.

>> RedofW=W(:,:,1);

>> GreenofW=W(:,:,2);

>> BlueofW=W(:,:,3);

>> size(RedofW)

ans =

671 1024
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>> imwrite(RedofW,‘redwildcat.jpg’)

>> imshow(‘redwildcat.jpg’)

>> imwrite(GreenofW,‘greenwildcat.jpg’)

>> imshow(‘greenwildcat.jpg’)

>> imwrite(BlueofW,‘bluewildcat.jpg’)

>> imshow(‘bluewildcat.jpg’)

Figure 1.3: Purple Wildcat (KSU logo).

The red, blue and green decompositions of Figure (1.3) are illustrated in Figure (1.4).

Note that in the figure, instead of intensity of true colors, gray shades corresponding to

them are displayed. Also, note the darkness of the second image and the brightness of the

third image indicating the fact that there is little green and a lot of blue in purple.

1.2 Objectives of image analysis

A great deal of information can be conveyed by images. Images, as we have seen, are

matrices. Consequently, important features of images can be identified and analyzed by
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Figure 1.4: Red, Green and Blue components of Purple Wildcat in Figure (1.3).

studying properties of matrices. Image analysis is a study of analyzing image features and

solving related problems via matrix computations or other more sophisticated mathematical

tools. Many theories beyond basic linear algebra have been developed to study image

features by studying their corresponding matrices or numerical data. Statistical concepts

come in useful in manipulating these data. Bayes decision theory, in particular, is widely

used in estimating and interpreting image data. Wavelets is another excellent tool of image

analysis to study localized features of images.

Image analysis is also called image processing. The objectives of image processing are

quite diverse, ranging from simply observing and identifying certain image features to trans-

forming images into various forms by modifying these features. Two concepts of image anal-

ysis that we will be discussing in this report in detail are “classification” and “denoising”.

Some other concepts of image processing are image compression, image restoration from

partial damage, image enhancement, edge detection, to name but a few.

Images can be viewed as a collection of regions identified as a number of predetermined

classes. However, these images or parts of them are not always clearly identifiable to the

naked eye. Image classification is, therefore, done with a view to identify image parts as

something familiar. Some special imageries, such as medical and satellite, often employs this
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technique of identification. The objective of image classification is to obtain a dependable

object recognition system which will classify all the locations into a number of identified

classes.

Images as we observe are often contaminated. One of the objectives of image analysis is

to remove this contamination. A noisy image can be processed to reduce its noise and obtain

an image which is close to its true form. There are various forms of noises that images come

into contact with. The most common one is white Gaussian noise which are additive white

dots following a normal distribution with mean zero and some fixed variance. The objective

of image denoising is to develop an effective scheme to remove the noise corruption in an

image which means removing as much noise as possible without having to compromise the

quality of the image too much.

1.3 Summary of methods for image analysis

One concept of image processing is to classify parts of an image into a previously chosen

set of classes. This process begins by listing a finite number of classes of interest in an

image. Then we try to find a way to identify each and every location of it as some class

or the other. For example, medical images might be studied by classifying them into bone,

muscle, metal, etc. and one might be interested to identify satellite images as snow, water,

settlement, vegetation, etc. One method of image classification is using a Bayes classifier.

We would like to be able to develop a class recognition system or a classification function

which, to every location of the image, assigns a class. In order to construct this classification

function, we first need to obtain decision functions to determine what class an object or a

location belongs to. Bayes classifier uses Bayes rule of conditional probability, namely,

P (x ∩ y) = P (x|y)P (y),

in constructing decision functions. A decision function is the probability of a location being

from a certain class and we assign some class to a location if the probability of that location
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coming from that class is greater than the probabilities of it coming from each one of the

rest of the classes. A recognition system for an image is built out of a random sample of

locations, called training pattern vectors, from each class and then combining means and

covariance structures of samples of these classes. Once a recognition system is developed,

any region of the image which are not so distinguishable visibly can be classified by using

it.

Images become corrupted with noise at every stage of its acquisition. One of the most

natural and widely studied image processing concepts is denoising which attempts to obtain

the true image or at least a close estimate of the true image from its noisy version. One

method of denoising is via wavelet thresholding where the wavelet coefficients of the image,

instead of the raw image, goes through the denoising process. Wavelet coefficients are ob-

tained by applying the wavelet transform to the image, also known as doing the wavelet

decomposition of an image. Wavelet transform is a localized analogue of Fourier transform.

Denoising the Fourier or Wavelet transform of an image is far more effective than denoising

the actual image because the whole point of doing the transform is to gather further infor-

mation on subtle properties and features of an image which are not readily available from

the image itself.

Fourier transform of images is done using sinusoidal waves of varying frequency which

are infinite in length or duration whereas wavelets are small localized waves so they have

varying frequency but finite duration. Wavelet transform provides powerful insight into an

image’s spatial and frequency characteristics whereas the Fourier transform reveals only an

image’s frequency attributes[3]. Fourier transform converts the spatial coordinate system

(x, y) of an image into the frequency coordinate system (u, v) where v and u are horizontal

and vertical frequency variables. The original image f(x, y) can be retrieved by means of

the inverse Fourier transform of F (u, v). An image of size M ×N is a set of values f(x, y),

for x = 0, 1, ...,M − 1 and y = 0, 1, ..., N − 1. The Fourier transform formula for this image
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is

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(ux/M+vy/N)

and the inverse Fourier transform formula for it is

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v)ei2π(ux/M+vy/N),

where F (u, v) are called Fourier coefficients of the image. Although f(x, y) is real, F (u, v)

is complex, so the image of the transform can be visualized by computing the spectrum

|F (u, v)| or the power spectrum P (u, v) = |F (u, v)|2. The Wavelet transform formula cannot

be expressed easily as in the Fourier transform. However, the idea of transform is the same.

Just like the sinusoidal waves obtained by expanding ei2π(ux/M+vy/N) into sines and cosines

in Fourier transform, we have, in Wavelet transform, these waves replaced by wavelets, say

φjk(x, y), which are scaled and dilated versions of a main wavelet φ(x, y). In this case, an

image f(x, y) is decomposed into a set of wavelet coefficients cjk

f(x, y) =
∑
j

∑
k

cjkφjk(x, y),

which is a reminiscent of the inverse Fourier transform formula and is called a reconstruction

formula for Wavelet transform.

We enter the wavelet domain by decomposing an image into a set of wavelet coefficients.

Then, the denoising process is performed in this domain following a scheme of thesholding

these coefficients and, finally, the denoised version of the same is constructed back again in

the spatial domain out of this new set of thresholded wavelet coefficients. This is explained

in the diagram in Figure (1.5).

A threshold is a fixed value such that all the coefficients that are larger in size than this

value are kept and the ones smaller than it are zeroed out. So, by thresholding wavelet

coefficients, we are simply removing coefficients smaller than the threshold by setting them

equal to zero. There are many schemes of thresholding. In this report, we will be discussing

three such schemes, namely, soft thresholding, hard thresholding and Bayes Shrink thresh-

olding. Soft and hard thresholding uses a global threshold that only depends on the variance

9



Figure 1.5: Diagram of image denoising.

of the noise. Wavelet transform, as will see in later chapters, will produce four different sets

of wavelet coefficients. Bayes Shrink thresholding uses three different threshold values for

three different sets of coefficients, namely, horizontal detail, vertical detail and diagonal

detail, keeping the fourth set of coefficients, called approximation coefficients, as is.

1.4 Organization of chapters

The purpose of this report is to provide a survey of two image processing techniques supple-

mented with a detailed theory and illustrated examples. The rest of the report is organized

as below.

Chapter 2 contains one of the two image processing techniques selected for exemplifi-

cation, namely, Bayes classification. The chapter begins with some statistical theories in

image processing and develops into the main discussion of this technique. Bayesian inference

as opposed to classical inference is introduced. Then some theory on Bayes estimator of

image data, associated risk and some measures of error follows. Finally, this chapter ends

with a detailed treatment of Bayes classifier which is a recognition system for identifying

classes in images. An example of the implementation of Bayes classification using MATLAB
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is presented along with the codes for computation.

Chapters 3, 4 and 5 are preliminaries to a detailed discussion with examples of image

denoising via wavelet thesholding at the end of chapter 6. Beside laying a foundation for

this discussion by building a required theory, we will also include other mathematical and

statistical theories. Wavelet theory is one of the major developments of Fourier Analysis

theory. Chapter 3 is devoted solely to a discussion of Fourier transform techniques. It also

includes original solutions to some selected problems in Mallat’s text [8]. Chapter 4 deals

with estimators in image denoising. Thesholding estimator is a denoised image estimator

and noise variance estimator is the parameter used to find a threshold value. Other estima-

tors that seem suitable for discussion are also thrown in. Chapter 5 is on Wavelet transform

which includes Multiresolution Analysis, a concept on which Fast Wavelet transform algo-

rithm is based. Fast wavelet transform algorithm is an implementation method of obtaining

wavelet decomposition of signals. Chapter 6 begins with an extension of Chapter 5 to a

two-dimensional case and in particular to the context of images. Then follows a discussion

of wavelet thresholding schemes and, finally, detailed worked-out examples of computational

implementation of these schemes. MATLAB codes used for computation and illustration of

denoised images are provided.
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Chapter 2

Elements of Statistics

This chapter deals with some elementary concepts in statistics that are used in image pro-

cessing.

2.1 Probability distribution of image data

In chapter 1, we saw that images are matrices. Alternatively, it is a two-dimensional integer-

valued discrete function, or more explicitly, a function of the form f : {1, 2, ...,M − 2,M −

1,M}×{1, 2, ..., N −2, N −1, N} → {0, 1, 2, ..., 253, 254, 255}. It should be noted, however,

that if f is a color image, it is a tensor product of three such functions f1, f2 and f3

corresponding to red, green and blue components of the image, or, in the matrix form,

a tensor product of three corresponding matrices. We can, for our convenience, visualize

this as three matrices stacked one on top of the other in the order red, green and blue from

bottom to top. This idea is further generalized with multi-spectral images which can capture

more than just RGB components, for example, it could have a fourth matrix at the top of

the stack corresponding to the infrared component of the image. Since a color image, or a

multi-spectral image, for that matter, is handled by handling each monochromatic image

one at a time and repeating the process to all such images in the tensor product, we can,

without loss of generality, talk of monochromatic images only whose corresponding matrices

are two-dimensional.
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A matrix of size M × N has M × N entries that directly correspond in the image

to the array of spots of possibly different brightness level called pixel values. Each entry

x thus has a probability density function (PDF) or a probability distribution which, in

turn, is a discrete function Px : {0, 1, 2, ..., 253, 254, 255} → [0, 1] such that
255∑
i=0

Px(i) = 1.

Then, the probability distribution of an image f will consist of probability distributions

of all the entries of its corresponding matrix, namely, {Px}x∈f . In the case of an image f

having a number of distinct classes, say, ωj, j = 1, 2, ...,W , for example, of landmass, sky,

water, snow, objects, scenery, etc., the probability distribution of f will be a collection of

conditional probability density functions {Pj(x|ωj)}, j = 1, 2, ...,W and class probabilities

P (ωj), j = 1, 2, ...,W which, if we omit, is understood as being P (ωj) = 1/W for each j,

i.e., each class occurring equally likely in the image.

2.2 Bayesian inference

Over the years, Bayesian inference has evolved as one of the popular tools to be used in

image processing. Below, we discuss briefly how Bayesian approach is different from the

classical frequentist approach, based on a reinterpretation of the following simple yet most

important formula.

Bayes’ Formula:

P (x|y) =
P (y ∩ x)

P (y)
=
P (y|x)P (x)

P (y)
.

where P (x|y) denotes the conditional probability distribution of x given y.

We know images are matrices. In Bayesian analysis, an image is a realization of a random

matrix whose probability distribution is known a priori. There could be several ways to

specify the prior probability distribution of an entry in a matrix or a spot in an image which

is a discrete function defined over the set of pixel values, i.e., {0, 1, 2, ..., 253, 254, 255}. For

complete specification, the prior distribution of a spot could have value 1 at a certain pixel

value and 0 at the rest of the pixel values. Or, for complete ignorance, the distribution
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could be uniform, i.e., having the constant value 1
255

at every pixel value. Or, there could

be assumptions and observations which might suggest us other prior distributions. For

example, a spot that is likely to be dark could have, as a prior, a binomial distribution

peaked near 0. The choice of the prior is one of the main problems in Bayesian image

analysis [12]and we will not be dealing with designing priors in this report, rather, we take

the prior distribution for an image data as given, usually, as a Gaussian distribution.

2.3 Frequentist vs. Bayesian

Statistics is required when we want to know about the characteristics, such as mean, vari-

ance, proportion, etc. of a certain population. These are called population parameters and

in order to know them, a sample data is collected and with the help of appropriate sample

statistics, inferences are made about these unknown population parameters. For example,

a sample proportion is a ready estimate of a population proportion. This approach is based

on the empirical view that probabilities are long-run relative frequencies. However, a null

hypothesis rejected at the 5% level is never to be interpreted as there being only 5% chance

that the hypothesis is true and a 95% C.I. (confidence interval) (U,L) for a parameter π has

a somewhat convoluted interpretation which is “If we had many samples and constructed a

95% C.I. from each sample, then about 95% of all the intervals would contain π. Hopefully,

our interval belongs to the larger set of intervals that all contain π.” [4] This interpretation

being quite convoluted, we look for a new approach in statistics which can provide us with an

interpretation that is more natural and straightforward and Bayesian Statistics is the solu-

tion. It allows us to make more natural interpretation in most contexts at the expense of not

being objective. It uses some prior beliefs or probabilities about the parameter and updates

them in light of a sample data. It pools together prior probabilities with the information

gathered from a sample data via likelihood function and computes posterior probabilities

using Bayes’ formula. Posterior distribution of the parameter is the conditional distribu-
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tion of the parameter given a sample data. The dependence of the posterior distribution

is relative on both the parameters of the prior distribution and the sample size of the data

and might be adjusted. For example, if a sample size is too small, prior probabilities have

to be quite reliable whereas if the sample is large and trustworthy then prior distribution

can be taken to be anything, for instance, a uniform distribution. In certain cases, Classical

inference is a special case of Bayesian inference corresponding to some conventional choice

of prior beliefs [5]. Unlike in classical approach, a 95% C.I. (U,L) for a parameter π can be

interpreted as “The probability of π lying in (U,L) is 0.95.” [4]

2.4 Bayes estimator

The Bayes principle supposes that images f are realizations of a random matrix F , say of

size M ×N , with a known prior distribution π. Image data are usually supposed to contain

additive white Gaussian noise W , a vector of length MN whose components identically

and independently follow the normal distribution with mean 0 and standard deviation σ2,

written W ∼ N(0, σ2IMN). Thus, the noisy data is

X[n1, n2] = F [n1, n2] +W [n1, n2].

The noise W [k1, k2] and the image F [n1, n2] are supposed to be independent for any 0 ≤

k1, n1 < M and 0 ≤ k2, n2 < N . By Bayes’ formula, the conditional distribution of F given

the observed data X, called the posterior distribution, is specified by the joint distribution

of F and W which is the product of the distributions of F and W .

Bayesian inference is to estimate F from the posterior distribution which is the updated

distribution in light of the data X. We denote the estimate of F by F̃ . The error of the

estimation is quantified as the loss function which can be the square Euclidean norm of the

difference, i.e., ‖F − F̃‖2.

Since F̃ is an estimate of F from X, we can construct a so-called decision operator D

on X specifying the estimator as F̃ = DX. Then the risk of the estimator is the expected
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loss with respect to the probability distribution of the noise W denoted by

r(D,F ) = EW{‖F −DX‖2}.

The Bayes risk is the expected risk with respect to the prior probability distribution π

of the image and is given by

r(D, π) = Eπ{r(D,F )} = EW,π{‖F − F̃‖2} =
M−1∑
n1=0

N−1∑
n2=0

EW,π{|F [n1, n2]− F̃ [n1, n2]|2}.

The Bayes estimator F̃ that yields the minimum Bayes risk is found by taking the

infimum of the Bayes risk over all linear and non-linear operators. The corresponding Bayes

decision estimator Dnl is the operator which achieves the minimum Bayes risk

rnl(π) = inf
D∈Onl

r(D, π)

and the Bayes estimator is F̃ = DnlX where Onl is the set of all linear and non-linear

operators from CMN to CMN .

We will record, in the simple case of dimension one, some theorems as well as their

proofs which are taken from Stephen Mallat’s book [8]. These theorems extend naturally

for images which are two-dimensional signals, in which case, the argument variables should

be understood as being two-dimensional vectors, for example, n = [n1, n2] and k = [k1, k2].

Theorem 1. [8]The Bayes estimator F̃ that yields the minimum Bayes risk rnl(π) is the

conditional expectation

F̃ [n] = E{F [n] | X[k] = x[k], 0 ≤ k < N}.

Proof [8]: For each n ∈ {0, 1, ..., N − 1}, let πn(y) be the probability distribution (CDF)

of y = F [n]. The risk is least with F̃ = DX where each F̃ [n] = DnX is such that

r(Dn, πn) = EW{|F [n] − F̃ [n]|2} is the minimum. This risk depends on the distribution

of W [n] = X[n]− F [n] which, in turn, depends on the conditional probability distribution

(CDF) Pn(x|y) of the data X = x, given F [n] = y:

r(Dn, πn) =

∫ ∫
(Dn(x)− y)2dPn(x|y)dπn(y).
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Let P (x) =
∫
Pn(x|y)dπn(y) be the marginal distribution of X and πn(y|x) be the posterior

distribution of F [n] given x, Bayes formula yields

r(Dn, πn) =

∫ [∫
(Dn(x)− y)2dπn(y|x)

]
dP (x).

The minimum of the above double integral is achieved by minimizing the inside integral of

the right hand side for each x which is attained when its first derivative vanishes:

∂

∂Dn(x)

∫
(Dn(x)− y)2dπn(y|x) = 0.

This yields

2

∫
(Dn(x)− y)2dπn(y|x) = 0

which implies that

Dn(x) =

∫
y dπn(y|x) = E{F [n]|X = x}.

Hence, DnX = E{F [n]|X}. �

The estimator F̃ = DX that achieves the linear minimum Bayes risk, namely,

rl(π) = inf
D∈Ol

r(D, π)

is called the Wiener estimator where Ol is the set of all linear operators from CN to CN .

Theorem 2. [8]Without loss of generality assume E(F [n]) = 0. A linear estimator F̃ is a

Wiener estimator if and only if

E{(F [n]− F̃ [n])X[k]} = 0, for 0 ≤ k, n < N. (0.1)

Proof [8]: A linear estimator F̃ = DX is a Weiner estimator if and only if for each

0 ≤ n < N , a linear estimation

F̃ [n] = DnX =
N−1∑
k=0

h[n, k]X[k]
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minimizes the risk

r(Dn, πn) = EW{|F [n]− F̃ [n]|2}

= E


(
F [n]−

N−1∑
k=0

h[n, k]X[k]

)2
 .

Its minimum is reached if and only if for each 0 ≤ k < N ,

∂r(Dn, πn)

∂h[n, k]
= 0

−2E

{(
F [n]−

N−1∑
k=0

h[n, k]X[k]

)
X[k]

}
= 0

E{(F [n]− F̃ [n])X[k]} = 0.

�

The equation (0.1) implies that F [n] − F̃ [n] and X[k] are non-correlated for any 0 ≤

k, n < N. Furthermore, since they are jointly Gaussian, they will be independent. In this

case, it can be verified that the Weiner estimator F̃ is the Bayes estimator.

2.5 Measures for error

After we get an estimator of the true image, we would like to measure how close we are. We

would like to measure the error, which somehow measures the difference between the true

image and an estimator. One measure of this error is the square Euclidean norm

‖F − F̃‖2 =
M∑

n1=1

N∑
n2=1

[F (n1, n2)− F̃ (n1, n2)]2,

which is fairly simple and accurate in most cases. Another not-so-common and not-very-

accurate measure could be the maximum absolute entrywise difference

Maxabs = arg max[|F (n1, n2)− F̃ (n1, n2)|].
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Mean square error (MSE) also gives a measure of this error which is defined as

MSE =
1

MN
‖F − F̃‖2 =

1

MN

M∑
n1=1

N∑
n2=1

[F (n1, n2)− F̃ (n1, n2)]2.

Two measures of the numerical value of the risk E{‖F−F̃‖2} that are most common in image

processing are Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR). These

are inversely proportional to the risk which means that a higher value of these measures in

decibels correspond to a lower risk.

SNR = 10log10

(
E{‖F‖}2

E{‖F − F̃‖}2

)
= 10log10


M∑

n1=1

N∑
n2=1

[F (n1, n2)]2

M∑
n1=1

N∑
n2=1

[F (n1, n2)− F̃ (n1, n2)]2



PSNR = 10log10

(
2552

E{‖F − F̃‖2}

)
= 10log10


2552

1
MN

M∑
n1=1

N∑
n2=1

[F (n1, n2)− F̃ (n1, n2)]2

 ,

where 255 comes from being the maximum possible pixel value for representation of 8 bits

per sample.

2.6 Bayes classifier

This section is devoted to illustrate another main concept of Bayesian inference in image

processing. One of the objectives in image analysis is to correctly identify natural classes of

images. For example, in satellite images, we may wish to classify image parts as water, urban

area, mountains, forest, pasture, sand, etc. We usually do this classification with multi-

channel images which have richer image data. Here, channels refer to different channels

of information available for each pixel. Gray or black-and-white images are single-channel
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images as there is only a scalar gray intensity value for each pixel. Color images, on the

other hand, are multi-channel images with red, green and blue intensity values for each pixel

which gives a three-dimensional pattern vector at each pixel. Multi-spectral images could

have even higher dimensional pattern vectors as these capture even more channels of pixel

information such as infra-red and ultra-violet intensities or frequencies which are not visible

to the human eye.

Let us now describe how classification of pattern vectors is done using the Bayes classifier.

Let x denote the n−dimensional pattern vector and let there be ωj, j = 1, 2, ..., k classes.

The probability of observing a random pattern vector x from the class ωj is given, using

Bayes’ rule, by

P (x ∩ ωj) = P (x|ωj)P (ωj),

where P (x|ωj) is the probability density function of the pattern vectors in class ωj, and

P (ωj) is the probability of occurrence of class ωj in the image. So, the decision functions

for the Bayes classifier will have to be of the form

dj(x) = P (ωj|x) ∝ P (x|ωj)P (ωj),

based on which, we make a decision

x ∈ ωj if dj(x) > di(x) for all i = 1, 2, ..., k, i 6= j. (0.2)

Then, we will have a recognition or classification function

class(x) = j if x ∈ ωj.

Ties of classes will be resolved arbitrarily.

Usually, we assume each class having a Gaussian PDF:

P (x|ωj) =
1

(2π)n/2|Cj|1/2
exp

(
−1

2
[(x−mj)

TC−1
j (x−mj)]

)
,

where Cj and mj are the covariance matrix and the mean vector of the pattern population of

class ωj, and |Cj| is the determinant of Cj. In practice, these parameters are not computed
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from the whole population, but from a sample X of patterns representative of the class

of interest. These patterns which are used for parameter estimation are called training

patterns. Once we have the parameter estimates of each class, we can classify any image or

its part - this is but a collection of pattern vectors with corresponding 2-D locations. These

patterns which are used for testing the performance of classification are called test patterns

or independent patterns.

Since ln is monotonic, the decision (0.2) is invariant under the ln transformation. So,

we can replace dj(x) by ln[dj(x)], thereby, using

dj(x) ∝ ln[P (x|ωj)P (ωj)]

= lnP (x|ωj) + lnP (ωj)

= −1

2
ln|Cj| −

1

2
[(x−mj)

TC−1
j (x−mj)] + lnP (ωj)−

n

2
ln(2π).

Since the last term is independent of the class, we can drop it and use

dj(x) ∝ lnP (ωj)−
1

2
ln|Cj| −

1

2
[(x−mj)

TC−1
j (x−mj)].

To compute the expression [(x−mj)
TC−1

j (x−mj)] which is called the Mahalanobis distance

between vector x and the mean vector mj of a collection Tj of training pattern vectors of

class ωj with covariance matrix Cj, we use the MATLAB function mahalanobis as below

>>mahalanobis(x,Cj,mj)

which is written as in page 487 of [3], where, in turn, mean vector and covariance matrix

are computed using the MATLAB function covmatrix as below

>>[Cj,mj]=covmatrix(Tj)

from page 476 of [3].

Finally, we classify a collection X of pattern vectors representing an image part by

computing the classification function d using the MATLAB function bayesgauss as below

>>d=bayesgauss(X,CA,MA,P)
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from page 493 of [3], where, in turn, CA and mA are computed as below

>>CA=cat(3,C1,C2,...,Ck);

>>mA=cat(2,m1,m2,...,mk);

>>P=[P(w1),P(w2),...,P(wk)];

where the built-in MATLAB function cat with argument 3 is a three dimensional concate-

nation of all the arguments followed by 3, which is a tensor product of these arguments or a

stacking of their corresponding matrices one on top of the other and the same function with

argument 2 is a two dimensional concatenation of all the arguments followed by 2, which is

adjoining the vectors side by side columnwise.

Now let us provide an example of how Bayesian classification of an image is done. This

will also illustrate how we can find training patterns Tj representing a certain class ωj.

We are using a satellite image in Figure (2.1) (source: http://images.smh.com.au/2009/03

/17/420880/Pyramids-Cairo-Satellite-600x400.jpg) having four distinct classes, namely, sand

(1), settlement(2), vegetation(3) and road(4).

Figure 2.1: A color image and its RGB components having four distinct classes, namely,
sand(1), settlement(2), vegetation(3) and road(4).

Below are given a few MATLAB commands for the work required to do the computation

of Bayes classifier.

22



>> P=imread(‘pyramids.jpg’);

>> P1=P(:,:,1);

>> subplot (2,2,1),imshow (P);title(‘Color image’);

>> subplot (2,2,2),imshow (P1);title (‘Red component’);

>> B1=roipoly(P);

>> B=B1+B2+B3+B4;

>> [X1,R1]=imstack2vectors(P,B1);

>> Y1=X1(1:2:end,:);%extracting training patterns out of X1

>> Z1=X1(2:2:end,:);%extracting independent test patterns out of X1

>> [C1,m1]=covmatrix(Y1);

>> CA=cat(3,C1,C2,C3,C4);

>> mA=cat(2,m1,m2,m3,m4);

>> dX1=bayesgauss(X1,CA,mA);

>> dY1=bayesgauss(Y1,CA,mA);

>> dZ1=bayesgauss(Z1,CA,mA);

>> lIY11=length(find(dY1==1));

>> lIY12=length(find(dY1==2));

>> lIX13=length(find(dX1==3));

>> lIY14=length(find(dY1==4));

>> lIZ11=length(find(dZ1==1));

>> Miss1=find(dX1~=1);

>> R1new=R1(Miss1,:);

>> B1new=B1;

>> for r=1:length(R1new)

>> B1new(R1new(r,1), R1new(r,2))=0;

>> end

>> Bnew=B1new+B2new+B3new+B4new;
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>> testB=roipoly(P);

>> [testX,testR]=imstack2vectors(P,testB);

>> dtestX=bayesgauss(testX,CA,mA);

>> dX=dtestX;

>> R=testR;

>> class1=find(dX==1);

>> Rnew=R(class1,:);

>> Bnew1=testB;

>> for r=1:length(Rnew)

>> Bnew1(Rnew(r,1), Rnew(r,2))=0;

>> end

>> newB=Bnew1+Bnew2+Bnew3+Bnew4;

>> imshow(newB);

The built-in MATLAB function “roipoly” displays the image of the argument and lets

us select from it a polygonal region of interest interactively using the mouse pointer. After

carefully selecting a region of interest from a class, we rearrange all the patterns in that

region in a column by using the MATLAB function “imstack2vectors” from page 575 of [3].

Then we obtain training patterns by deleting all even rows from this column and deleting

all odd rows from the same column will give us patterns of the same class independent to

the training patterns. Here, B1 is a region of interest we select from class sand(1). X1 is a

rearrangement in a column of those pattern vectors of P which lie in the region B1 and the

order of the arrangement is starting from top to bottom along the first column, the second

column, and so on. R1 is the column of coordinates of corresponding 2-D locations of these

pattern vectors. Next, we extract Y 1 which are odd rows of X1 to implement as training

patterns from class sand(1). Independent to these training patterns are Z1, the even rows

of X1, which will be used to test the performance of Y 1. Similarly, other polygonal regions
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of interest B2, B3 and B4 are selected patterns from classes settlement(2), vegetation(3)

and road(4) respectively.

How good a recognition system is depends on how good are the parameter estimates

of these classes. We can check for stability of these parameter estimates by examining the

recognition results obtained with the training and independent patterns for each class. The

results are summarized in Table (2.1).

Table 2.1: Summary of classification results of the recognition system
Training Patterns (Y )
Classified into

Actual class # of samples 1 2 3 4 Correctly classified
1 1658 1640 18 0 0 98.91%
2 1750 1 1712 31 6 97.83%
3 1777 0 36 1649 92 92.8%
4 564 0 9 28 527 93.44%

Independent Patterns (Z)
Classified into

Actual class # of samples 1 2 3 4 Correctly classified
1 1658 1641 17 0 0 98.97%
2 1750 4 1713 30 3 97.89%
3 1777 0 24 1660 93 93.42%
4 563 0 11 29 533 92.9%

Figure (2.2) displays the regions purposively selected from each class to build a clas-

sification recognition system and the same regions filled with black locations representing

misclassification of the system.

Since the percentage of training and independent patterns recognized correctly are

about the same, we can declare that our recognition system is quite operable and that

we can use it to classify any region of interest into the three regions, namely, sand(1),

settlement(2), vegetation(3) and road(4). For this we only need to apply the MATLAB

function “bayesgauss” to our region of interest X along with CA and mA which are covari-

ance and mean structures of the four classes in our recognition system. Figure (2.3) displays

the region of interest chosen to test the classification performance of the recognition system

we have built and the results, black dots indicating locations classified into a particular

class. The output is a column vector whose length is equal to the total number of input

patterns. Each pattern is classified into one of the four classes which is indicated by the
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Figure 2.2: (a)Regions selected from classes: sand(1), settlement(2), vegetation(3) and
road(4) for building a recognition system. (b)Black dots represent locations misclassified by
the system.

corresponding entry being either 1, 2, 3 or 4.
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Figure 2.3: (a)Mask region selected for classification, (b) Actual region obtained by apply-
ing the mask to the actual image, (c)Locations identified as “sand” marked by black dots,
(d)Locations identified as “settlement” marked by black dots, (e)Locations identified as “veg-
etation” marked by black dots and (f)Locations identified as “road” marked by black dots.
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Chapter 3

Elements of Fourier Analysis

This chapter provides the basics of Fourier Analysis that is needed to develop a theory of

image processing using wavelet methods.

3.1 Some basic concepts in Real Analysis

Basic real analysis is often assumed for the study of Fourier Analysis. Here we review some

basic definitions and standard results (without proofs) that we will later be referring to.

Definition 3 (Indicator function). The indicator function of an interval (a, b) ⊆ R is the

function

1(a,b)(x) =

{
1 if x ∈ (a, b)
0 if x /∈ (a, b).

Definition 4 (Dirac distribution). The Dirac distribution δ is the limit as n goes to∞ of a

sequence of probability distribution functions δn whose support is contained in (−1/n, 1/n).

It is not a function since δ(t) = 0 for all t 6= 0. However, it is a probability distribution and

has the total integral equal to 1. The most important property of the Dirac is the following:∫
R
δ(t)φ(t) dt = φ(0).

Definition 5 (Discrete Dirac). The discrete Dirac δ is the indicator function of the singleton

set {0}.
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Definition 6 (L(R)). A complex-valued function f(t) defined on R is said to be in L(R) if

it is absolutely integrable.i.e., ‖f‖ :=
∫

R |f(t)| dt <∞.

Definition 7 (L2(R)). A complex-valued function f(t) defined on R is said to be in L2(R)

and is called a finite energy analog signal if it is square integrable.i.e., ‖f‖ :=
∫

R |f(t)|2 dt <

∞.

Definition 8 (`(Z)). A complex-valued function f [n] defined on Z is said to be in `(Z) if

‖f‖ :=
+∞∑

n=−∞

|f [n]| <∞.

Definition 9 (`2(Z)). A complex-valued function f [n] defined on Z is said to be in `2(Z)

and is called a finite energy discrete signal if ‖f‖ :=
+∞∑

n=−∞

|f [n]|2 <∞.

Definition 10 (Convolution). Given two functions f, g ∈ L(R), their convolution is defined

to be

f ? g(x) =

∫
R
f(x− y)g(y) dy.

Likewise, given f, g ∈ `(Z), their convolution is defined to be

f ? g(x) =
+∞∑

n=−∞

f [n]g(x− n).

The convolution pools together regularity properties of both functions. Thus, the lack

of regularity of a function can be removed by convolving it with a regular function. Also,

convolving a function with itself makes it smoother.

Consider the constant function θ0 = 1[0,1) which is called the unit box window. θ0 ? θ0 is

a linear function

θ1(x) = θ0 ? θ0(x) =


x if x ∈ [0, 1]
2− x if x ∈ [1, 2]
0 if x /∈ (0, 2).

Convolving θ0 with itself m + 1 times, we get a box spline θm of degree m which is m − 1

times continuously differentiable.
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Definition 11 (Linear Independence). Let H be L2(R) or `2(Z). A collection of elements

{φn} ⊆ H is said to be linearly independent if no element can be obtained as a linear

combination of the rest.

Definition 12 (Basis). Let H be L2(R) or `2(Z). A collection B = {φn} of linearly in-

dependent elements of H is said to be a basis of V ⊆ H if every element in V can be

decomposed as some linear combination of these elements. Then V is said to be a subspace

of H generated by B.

Definition 13 (Orthonormal Basis). Let H be L2(R) or `2(Z). A basis {φn} of H is said

to be an orthonormal basis if 〈φm, φn〉 :=
∫

R φm(t)φ∗n(t) dt = δ[n−m], where φ∗n(t) denotes

the complex conjugate of φn(t),i.e., φ∗n(t) = a− ib if φn(t) = a+ ib.

Example 14. {ϕn(t)}n∈Z := {e2πitn}n∈Z is an orthonormal basis of L2(R).

Example 15. {Ek(t)}k∈Z := 1
b−a{e

2πikt/(b−a)}k∈Z is an orthonormal basis of L2([a, b]).

3.2 Fourier Transform

Fourier Analysis is the study of frequencies and is also called frequency analysis or harmonic

analysis. Frequencies occur everywhere in all applied sciences and, in particular, in the study

of natural images. In this section, we introduce some terminology as well as some results

relevant to the study of our report.

Definition 16 (Fourier Transform). Let f ∈ L2(R) be integrable. Then the (direct) Fourier

transform of f is defined to be

f̂(ω) :=

∫
R

f(t)e−iωt dt.

The Fourier transform is a tool to analyze a signal frequencywise. f̂(ω) is the correlation

of f(t) with a sinusoidal wave eiωt and thus gives the measure of how much of the frequency
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ω is in the signal f . In other words, f̂(ω) is the amplitude of the wave eiωt in the signal f .

Consequently, we can synthesize f back by summing over all the frequencies as follows:

f(t) =
1

2π

∫
R
f(ω)eiωt dω.

This is also a formula for the inverse Fourier transform.The inverse Fourier transform of f

is denoted by f̌ . Hence, f =
ˇ̂
f .

The two-dimensional Fourier transform is a natural extension of the one-dimensional

case.

Definition 17 (Two-dimensional Fourier Transform). Let f ∈ L2(R2) be integrable. Then

the two-dimensional Fourier transform of f is defined to be

f̂(ω1, ω2) :=

∫ +∞

−∞

∫ +∞

−∞
f(x1, x2)e−i(ω1x1+ω2x2) dx1 dx2.

Definition 18 (seperable function). A function f on R2 is said to be separable in rectangular

coordinates (x1, x2) if there exist functions f1 and f2 on R such that f(x1, x2) = f1(x1)f2(x2).

Some elementary properties of the Fourier transform are listed below. Note that (·)

represents the argument of f(·). Given f, g ∈ L2(R), b ∈ R and s > 0, we have

(i) f̂ + g = f̂ + ĝ.

(ii) b̂f = bf̂ .

(iii) ̂f(· − y)(ω) = e−iyωf̂(ω).

(iv) ̂e−iy·f(·)(ω) = f̂(ω − y).

(v) f̂(s·)(ω) = s−1f̂(s−1ω).

(vi) f̂ (p)(·)(ω) = d̂pf(·)
d(·)p (ω) = (iω)pf̂(ω).

(vii) f̂ ? g = f̂ ĝ.

(viii) Denoting f̄(x) = f(−x), we have ˆ̄f =
¯̂
f .
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(ix) Denoting by f ∗, the complex conjugate of f , we have f̂ ∗ =
¯̂
f
∗
.

(x) Denoting f̃ = f̄ ∗, the Hermitian conjugate of f , we have ̂̃f = f̂ ∗.

In particular, f̂ ? (f̃) = |f̂ |2.

(xi) (Plancherel’s Identity) ‖f‖ = 1
2π
‖f̂‖.

(xii) (Parseval’s Identity) 〈f, g〉 :=
∫

R f(t)g(t)∗ dt = 1
2π

∫
R f̂(t)ĝ(t)∗ dt =: 1

2π
〈f̂ , ĝ〉.

(xiii) If f ∈ L2(R2) is separable with f(x1, x2) = f1(x1)f2(x2), then its Fourier transform is

f̂(ω1, ω2) = f̂1(ω1)f̂2(ω2), where f̂1 and f̂2 are one-dimensional Fourier transforms of

f1 and f2.

There is an interesting interplay between global regularity and decay of the absolute

value of a signal and its Fourier transform. The following statements give some information

regarding this interplay.

Theorem 19. [8][Riemann-Lebesgue lemma] If f ∈ L2(R), then lim
ω→±∞

f̂(ω) = 0.

Theorem 20. [8]A function f is bounded and p times continuously differentiable with

bounded derivatives if ∫ +∞

−∞
|f̂(ω)|(1 + |ω|p) dω <∞.

The differentiability of a signal translates into the decay of its direct and inverse Fourier

transform. For example, consider the signal f(x) = e−|x|. The Fourier transform of f is

given by f̂(ω) = 1
1+ω2 . Since f̂(ω) is infinitely differentiable with all of its derivatives in

L(R), we have an exponential decay in f . On the other hand, since f is not differentiable

at 0, f̂(ω) is constrained to have only a second order polynomial decay.

The following theorem says that it is not possible to construct a function of compact

support whose Fourier transform has a compact support.

Theorem 21. [8]If f 6= 0 has a compact support then f̂ cannot be zero on a whole interval.

Similarly, if f̂ 6= 0 has a compact support then f cannot be zero on a whole interval.
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The state of a one-dimensional free particle is given by f ∈ L2(R). The probability den-

sity of the location of this particle is 1
‖f‖2 |f(t)|2. The probability density of the momentum

of this particle is 1
2π‖f‖2 |f̂(ω)|2.

Let u and ξ denote the average location and momentum of this particle which are given

by

u =
1

‖f‖2

∫ +∞

−∞
t|f(t)|2 dt

and

ξ =
1

2π‖f‖2

∫ +∞

−∞
ω|f̂(ω)|2 dω.

The temporal and frequency variances are then given by

σ2
t =

1

‖f‖2

∫ +∞

−∞
(t− u)2|f(t)|2 dt

and

σ2
ω =

1

2π‖f‖2

∫ +∞

−∞
(ω − ξ)2|f̂(ω)|2 dω

respectively.

Definition 22. [Heisenberg Uncerainty]The temporal variance and the frequency variance

of f ∈ L2(R) satisfy

σ2
t σ

2
ω ≥

1

4
.

Heisenberg Uncertainty principle states the underlying trade-off between time and fre-

quency localization. This is also clear from property (5.1) of the Fourier transform that

if we localize f by scaling it by 0 < s < 1, then f̂ gets scaled by 1/s, thereby losing in

frequency the localization we gained in time.

For the sake of convenience in computer application, we often descritize an analog signal.

This is done by uniformly sampling an analog signal f(t) at interval p and recording its

sample values {f(np)}n∈Z. The descritized version of f is the following weighted Dirac sum

fd(t) =
+∞∑

n=−∞

f(np)δ(t− np).
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The following theorem says that sampling an analog signal periodizes its Fourier trans-

form.

Theorem 23. [8] Let fd be the discrete signal obtained by sampling f at interval p. Then

its Fourier transform is given by

f̂d(ω) :=
1

p

+∞∑
n=−∞

f̂

(
ω − 2nπ

p

)
,

which is periodic with period 2π
p

.

In particular, by Theorem 23, the Fourier transform of any finite energy discrete signal

a[n] ∈ `2(Z) is 2π-periodic.

In practice, for example, in the case of an image data, a discrete signal f [n] is known

over a finite domain, say, 0 ≤ n < N. In order to apply the Fourier theory, we take the

following approach. We extend f [n] over all of Z with a periodization over N samples, i.e,

by redefining it by f [nmodN ]. The space of signals of period N is an Euclidean space of

dimension N . The inner product in this space is defined by

〈f, g〉 =
N−1∑
n=0

f [n]g∗[n].

Theorem 24. [8]The family {ek[n] := e(
i2πkn
N )}0≤k<N is an orthogonal basis of the space of

signals of period N .

Definition 25 (Discrete Fourier Transform). The discrete Fourier transform of a signal f

of period N is

f̂ [k] = 〈f, ek〉 =
N−1∑
n=0

f [n]e(
−i2πkn
N ).

Since ‖ek‖2 = N, an inverse discrete Fourier transform formula is

f [n] =
1

N

N−1∑
k=0

f̂ [k]e(
i2πkn
N ).
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Definition 26 (Circular convolution). The circular convolution of two signals f and h of

period N , which is again a signal of period N is

f ? h[n] =
N−1∑
p=0

f [p]h[n− p].

The following theorem establishes the periodicity of the Fourier transform of a sampled

two-dimensional signal.

Theorem 27. [8] Let fd be the discrete signal obtained by sampling f at interval p1 along

x1 and at interval p2 along x2. Then its Fourier transform is given by

f̂d(ω1, ω2) :=
1

p1p2

+∞∑
n1,n2=−∞

f̂

(
ω1 −

2n1π

p1

, ω2 −
2n2π

p2

)
,

which is periodic with period 2π
p1

along ω1 and period 2π
p2

along ω2.

Definition 28 (Filter). Modifying a function f with an operator L on L2(R) defined by

Lf = f ? h is called a frequency filtering of f . Both the operator L and the function h

are referred to as a filter. Also, h is alternatively called the impulse response function of

the filter and ĥ is called the transfer function of the filter. This operation filters out all

frequencies of f outside the support of the transfer function.

The following example illustrates an algorithm of discrete image filtering with the help

of separable finite impulse response filters.

Consider an image in a square grid of (2M + 1)2 pixels. Suppose the impulse response

h[n1, n2] of the filter L is separable:

h[n1, n2] = h1[n1]h2[n2].

Further, suppose h1 = h2 = (2M + 1)−11[−M,M ]. Then the two-dimensional convolution,

Lf [n1, n2] = f ? h[n1, n2] =
1

(2M + 1)2

M∑
p1=−M

M∑
p2=−M

f [n1 − p1, n2 − p2]h[p1, p2, ] (0.1)

after switching f and h on the right hand side, reduces to

Lf [n1, n2] =
1

(2M + 1)2

n1−M∑
p1=n1+M

n2−M∑
p2=n2+M

f [p1, p2]. (0.2)
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A direct calculation with (0.1) requires (2M + 1)2 additions per pixel point whereas with

the factorization (0.2), it only requires 2(2M + 1) additions per pixel.

3.3 Problems/Solutions

This section of the report includes solutions of some selected problems in Mallat’s book

[8]. The problems are selected in a way so that giving too many new definitions could be

avoided and the solutions are intended to present some basic analysis techniques before a

new Fourier analysis tool called wavelets is introduced in the next chapter.

Problem 1. (#3.4 p.85 in [8])Prove that if f ∈ L2(R) and
+∞∑

n=−∞

f(t− n) ∈ L2([0, 1]) then

+∞∑
n=−∞

f(t− n) =
+∞∑

k=−∞

f̂(2kπ)ei2πkt.

Solution. Since
+∞∑

n=−∞

f(t−n) ∈ L2([0, 1]) and, by Example (15), {e2πikt}k∈Z is an orthonor-

mal basis of L2([0, 1]), there exist coefficients ck such that

+∞∑
n=−∞

f(t− n) =
∑
k∈Z

cke
2πikt.

Taking the inner product with e2πijt, by orthonormality, the right hand side reduces to cj.

Thus,

cj =
+∞∑

n=−∞

∫ 1

0

f(t− n)e−2πijt dt

=
+∞∑

n=−∞

∫ 1−n

−n
f(u)e−2πij(n+u) du (by change of variable u = t− n)

=
+∞∑

n=−∞

∫ 1−n

−n
f(u)e−2πiju du

=

∫ +∞

−∞
f(u)e−2πiju du

= f̂(2πj).
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Now, substituting for the coefficients ck in the above expression for
+∞∑

n=−∞

f(t−n), we finish

the proof. �

Problem 2. (#3.16 p.86 in [8])Let h−1 be the inverse of h defined by h ? h−1[n] = δ[n].

(a) Prove that if h has a finite support then h−1 has a finite support if and only if h[n] =

cδ[n− p] for some c 6= 0 and p ∈ Z.

(b) Find a sufficient condition on ĥ(ω) for h−1 to be a stable filter.

Remark 29. The constant c in part (a) is missing in the text [8], which is a typo as h[n]

can be a multiple of a shifted δ.

Solution. Proof of (a):

First suppose h has a finite support and h[n] = δ[n− p] for some p ∈ Z. Taking the Fourier

transform of h[n] = δ[n − p] and h ? h−1[n] = δ[n] yields ĥ(ω) = 1 and ĥ(ω)ĥ−1(ω) = 1

respectively. This implies ĥ−1(ω) = 1. So, the inverse Fourier transform h−1 is supported at

a single point. Conversely, suppose {−N,−N + 1, ...,−1, 0, 1, ...N − 1, N} and {−M,−M +

1, ...,−1, 0, 1, ...M − 1,M} are finite supports of h and h−1 respectively. Taking the Fourier

transform of h ? h−1[n] = δ[n] yields ĥ(ω)ĥ−1(ω) = 1, which, for the finitely supported h

and h−1, is
N∑

j=−N

aje
−iωj

M∑
k=−M

bke
−iωk = 1, (2.1)

where aj = 〈h[j], e−iωj〉 and bk =
〈
h−1[k], e−iωk

〉
are Fourier coefficients of h and h−1 respec-

tively. Since h 6= 0,∃ p ∈ Z such that h[p] 6= 0. Then ap 6= 0, say, ap = c. Next we need to

invoke the following result which is easily proved by induction.

Result: If
∑N

j=−N aje
−iωj∑M

k=−M bke
−iωk = 1 for every ω and a0 = 1. Then b0 = 1, aj = 0

for every j 6= 0, and bk = 0 for every k 6= 0.

Using this result in (2.1) we must have bp = 1
c
, aj = 0 for every j 6= p, and bk = 0 for

every k 6= p. Hence, we get ĥ−1(ω) =
∑N

j=−N h[j]e−iωj = c, the inverse Fourier transform of

which is h[n] = cδ[n− p].
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Proof of (b):

Recall that a filter h−1 is said to be stable if |f?h−1[n]| is bounded for all bounded f [n]. Since

|f ? h−1[n]| ≤ sup
n∈Z
|f [n]|

+∞∑
k=−∞

|h−1[k]|, it is sufficient to get a condition so that h−1 ∈ `(Z).

Note

h−1[j] =

∫ π

−π

1

ĥ(ω)
eiωj dω =

∫ π

−π

1

ĥ(ω)
cos(ωj) dω + i

∫ π

−π

1

ĥ(ω)
sin(ωj) dω.

Assuming ĥ is even, the second integral vanishes. Integrating by parts yields

h−1[j] =
1

j

∫ π

−π
r(ω)sin(ωj) dω,

where r(ω) is the derivative of 1

ĥ(ω)
. Integrating by parts again, further assuming r(π) =

r(−π) = 0 so that the boundary terms vanish, we get

h−1[j] =
1

j

∫ π

−π
r(ω)sin(ωj) dω

≤ 1

j2

∫ π

−π
|r′(ω)| dω

≤ C

j2
,

where C comes from one more assumption that r is of bounded variation, which means

that there exists a constant C satisfying the last inequality. In particular, r is of bounded

variation if ĥ ∈ C2[−π, π]. Combining all these assumptions the sufficient conditions are:

ĥ ∈ C2[−π, π], ĥ > 0, ĥ even, and (ĥ)′(−π) = (ĥ)′(π) = 0. �

Problem 3. (#4.7 p.151 in [8]) Prove that a scaling function φ defined by

|φ̂(ω)|2 =

∫ +∞

ω

|ψ̂(ξ)|2

ξ
dξ,

where ψ is a real wavelet, i.e., a normalized zero-average real-valued finite energy function,

satisfies ‖φ‖ = 1.

Solution. Since ψ is real we have

ψ̂(ω)
∗

=

∫
R
{ψ(t)eiωt}∗ dt =

∫
R
ψ(t)e−iωt dt = ψ̂(−ω),
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which means |ψ̂(ω)| is even. Then, by definition above, |φ̂(ω)|2 is even. So,

‖φ̂‖2 = 2

∫ ∞
0

|φ̂(ω)|2 dω

= 2

∫ ∞
0

(∫ +∞

ω

|ψ̂(ξ)|2

ξ
dξ

)
dω

= 2

∫ ∞
0

(∫ +∞

1

|ψ̂(sω)|2 ds
s

)
dω (by change of variable ξ = sω)

= 2

∫ +∞

1

(∫ ∞
0

|ψ̂(sω)|2 dω
)
ds

s
(by Fubini)

=

∫ +∞

1

(
2

∫ ∞
0

|ψ̂(ξ)|2 dξ
s

)
ds

s
(by change of variable ξ = sω)

= ‖ψ̂‖2

∫ +∞

1

ds

s2

= ‖ψ̂‖2.

Note the use of Fubini’s theorem, which justifies the interchange of the order of integra-

tion. The use is valid, in our case, due to the absolute integrability of the double integral

in either order. By Plancherel (xi), this gives ‖φ‖ = ‖ψ‖. Since ψ is a wavelet, we have

‖ψ‖ = 1, and we get the result. �

Problem 4. (#5.9 p.201 in [8]) Let ĝ = 1[−ω0,ω0]. Prove that {hn,k(t)}(n,k)∈Z2 := {
√

π
ω0
gn,k(t)}(n,k)∈Z2 :=

{
√

π
ω0
g(t− 2πn

ω0
)eikω0t}(n,k)∈Z2 is an orthonormal basis of L2(R).

Remark 30. There is a typo in the problem. The normalizing factor
√

π
ω0

is missing in the

text [8]. This is the correct normalizing factor since

‖gn,k‖2 = ‖g‖2 =
1

2π
‖ĝ‖2 =

1

2π
2ω0 =

π

ω0

.

Solution. First, we begin with a definition.

Definition 31. Let H be L2(R) or `2(Z). A collection {φn} of elements of H is said to be

a frame of H if there exist constants 0 < A ≤ B <∞ such that for every f ∈ H,

A||f ||2 ≤
∑
|〈f, φn〉|2 ≤ B||f ||2.
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Then A and B are called frame bounds. If A = B, then the frame is said to be tight.

Next, we list some relevant results. Proofs of most of these results are omitted here and

can be found in [8].

Result 1. : Given a frame {φn} of H, there exists a dual frame {φ̃n} such that for every

f ∈ H,

f =
∑
〈f, φn〉φ̃n.

Thus, a frame completely characterizes a signal in H.

Result 2. : Let {φn} be a frame of H with bounds A and B. If A ≤ B ≤ 1, then the

frame consists of linearly independent elements. If A = B = 1, then the frame forms an

orthonormal basis of H.

Result 3. : {φn} is a frame with bounds A and B if and only if {φ̂n} is a frame with

bounds A and B.

Proof of Result (3): Let {φn} be a frame of L2(R) with bounds A and B and g ∈ L2(R).

There exists f ∈ L2(R) such that g = f̂ . Then we have

A||f ||2 ≤
∑
|〈f, φn〉|2 ≤ B||f ||2.

Then using Parseval (xii) and Plancherel (xi), we compute

A||f ||2 ≤
∑
|〈f, φn〉|2 ≤ B||f ||2

A

∫
|f(t)|2 dt ≤

∑∣∣∣∣∫ f(t)φ∗n(t) dt

∣∣∣∣2 ≤ B

∫
|f(t)|2 dt

A
1

2π

∫
|f̂(ω)|2 dω ≤

∑∣∣∣∣ 1

2π

∫
f̂(ω)φ̂∗n(ω) dω

∣∣∣∣2 ≤ B
1

2π

∫
|f̂(ω)|2 dω

A
1

2π

∫
|f̂(ω)|2 dω ≤ 1

2π

∑∣∣∣∣∫ f̂(ω)

(
1√
2π
φ̂∗n(ω)

)
dω

∣∣∣∣2 ≤ B
1

2π

∫
|f̂(ω)|2 dω

A

∫
|f̂(ω)|2 dω ≤

∑∣∣∣∣∫ f̂(ω)

(
1√
2π
φ̂∗n(ω)

)
dω

∣∣∣∣2 ≤ B

∫
|f̂(ω)|2 dω
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A||g||2 ≤
∑
|〈g, 1√

2π
φ̂n〉|2 ≤ B||g||2

Conversely, assume {φ̂n} is a frame of L2(R) with bounds A and B, and f ∈ L2(R). There

exists g ∈ L2(R) such that g = f̂ . Then we have

A||g||2 ≤
∑
|〈g, 1√

2π
φ̂n〉|2 ≤ B||g||2.

Now, the same computation as the last one, except, we start at the last line and go backward

to arrive at the first line, gives the converse result.

Now, we come back to the solution of our problem. Observe that, in light of Results

(3) and (2), all we need to do is prove that {Gn,k(ω)}(k,n)∈Z2 := { 1√
2π
ĥn,k(ω)}(k,n)∈Z2 =

{ 1√
2ω0
ĝn,k(ω)}(k,n)∈Z2 is a frame with bounds A = B = 1. Since {gn,k(t)}(k,n)∈Z2 = {g(t −

2πn
ω0

)eikω0t}(k,n)∈Z2 and ĝ(ω) = 1[−ω0,ω0](ω), using properties (iv) and (iii) of the Fourier trans-

form, we get ĝn,k(ω) = e
−2πinω
ω0 1[−ω0,ω0](ω − kω0). Now, for a f ∈ L2(R), we compute

∑
(n,k)∈Z2

〈f,Gn,k〉 〈f,Gn,k〉∗

=
∑

(n,k)∈Z2

〈
f,

1√
2ω0

ĝn,k(ω)

〉〈
f,

1√
2ω0

ĝn,k(ω)

〉∗
=

1

2ω0

∑
(n,k)∈Z2

(∫
R
f(ω)e

−2πinω
ω0 1[−ω0,ω0](ω − kω0) dω

)(∫
R
f(ω)e

−2πinω
ω0 1[−ω0,ω0](ω − kω0) dω

)∗

=
1

2ω0

∑
(n,k)∈Z2

(∫ ω0(−k+1)

ω0(−k−1)

f(ω)e
−2πinω
ω0 dω

)(∫ ω0(−k+1)

ω0(−k−1)

f(ω)e
−2πinω
ω0 dω

)∗
Next, for each k ∈ Z, define the interval Ik = [ω0(−k− 1), ω0(−k+ 1)] and observe that

these intervals all have length 2ω0, are disjoint except for a set of measure zero and cover

all of R. Thus, given a f ∈ L2(R), if we denote fk the restriction of f to Ik, we have

‖f‖2 =
∑
k∈Z

‖fk‖2
L2(Ik).

Now, using this result and the fact that the n-th Fourier coefficient of fk is given by the

formula

f̂k[n] =
1

2ω0

∫ ω0(−k+1)

ω0(−k−1)

f(ω)e
−2πinω
ω0 dω,
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we continue the earlier computation

∑
(n,k)∈Z2

〈f,Gn,k〉 〈f,Gn,k〉∗

=
1

2π

∑
(n,k)∈Z2

(∫ ω0(−k+1)

ω0(−k−1)

f(ω)e
−2πinω
ω0 dω

)(∫ ω0(−k+1)

ω0(−k−1)

f(ω)e
−2πinω
ω0 dω

)∗

=
(2ω0)2π

2ω0

∑
(n,k)∈Z2

f̂k[n]f̂k[n]
∗

= 2ω0

∑
(n,k)∈Z2

‖f̂k[n]‖2

= 2ω0
1

2ω0

∑
k∈Z

‖fk‖2
L2(Ik)

= ‖f‖2.

Thus, {Gn,k(ω)}(k,n)∈Z2 := { 1√
2π
ĥn,k(ω)}(k,n)∈Z2 is a frame with bounds A = B = 1. Invoking

Results (3) and (2), this completes the solution of our problem. �
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Chapter 4

Estimators in image denoising

In Chapter 2, we introduced Bayesian inference and the Bayes estimator in the context of

image data. In this chapter, we will describe a few more estimators that are commonly used

in image processing, especially, in image denoising.

4.1 Minimax estimator

Bayesian framework requires us to define the prior probability distribution of image data.

However, it may not be possible to have enough information to specify the probability

distribution itself but may be possible, instead, to specify a smaller set the data will belong

in. The minimax framework restricts the data to be in a prior set Θ and then tries to

minimize the maximum risk over Θ. Natural images as such are so diverse that there exists

no stochastic model for obtaining their probability distribution. However, for some images

satisfying certain regularity conditions, for example, having a bounded total variation, we

can reduce the size of the prior set Θ.

The goal is to estimate F ∈ Θ from the noisy data

X[n] = F [n] +W [n], 0 ≤ n < N

where W [n] is the white Gaussian noise having a normal distribution with mean 0 and

variance σ2, written W ∼ N(0, σ2I). The risk of an estimator F̃ = DX is r(D,F ) =
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E{‖DX − F‖2}. Not knowing the probability distribution of signals F ∈ Θ, we cannot

calculate the expected risk over Θ. The maximum risk is

r(D,Θ) = sup
F∈Θ

E{‖DX − F‖2}.

Minimizing this maximum risk over all linear and non-linear operators D, we get the mini-

max risk:

rnl(Θ) = inf
D∈Onl

r(D,Θ).

In practice, we like to get a simple operator D which is easy to implement and whose

maximum risk may not achieve the minimax risk but is close enough. For this purpose, we

compute the infimum over linear operators only and get the D which achieves the linear

minimax risk

rl(Θ) = inf
D∈Ol

r(D,Θ).

The following theorem shows that a minimax estimator is a Bayes estimator for a “least

favorable” prior distribution. The proof given here can be found in Mallat’s book [8].

Theorem 32 (Minimax). [8] For any subset Θ of CN

rl(Θ) = sup
π∈Θ∗

rl(π) and rnl(Θ) = sup
π∈Θ∗

rnl(π),

where Θ∗ is the set of all probability distributions of random vectors whose realizations are

in Θ.

Proof [8]: Let π ∈ Θ∗. Then

r(D, π) = EW,π{‖F −DX‖2} ≤ sup
F∈Θ

E{‖F −DX‖2} = r(D,Θ). (4.1)

Taking supremum over π ∈ Θ∗, we get

sup
π∈Θ∗

r(π) ≤ r(D,Θ).

Further, taking infimum over D ∈ O where either O = Onl or O = Ol, we get

sup
π∈Θ∗

r(π) ≤ r(Θ). (4.2)
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Next, we need to show the reverse inequality: supπ∈Θ∗ r(π) ≥ r(Θ).

Case I: Θ is finite, say, Θ = {fi}1≥i≥p. Define a risk set:

R = {(y1, ..., yp) ∈ Cp : ∃D ∈ O with yi = r(D, fi) for 1 ≥ i ≥ p},

which, by convexity of O, is convex in Cp. For any π = (π1, ..., πp) ∈ Θ∗, we have

r(D, π) =

p∑
i=1

πir(D, fi) =

p∑
i=1

πiyi.

The equation

p∑
i=1

πiyi = b is a hyperplane Pb in Cp. Now, finding the infimum b0 of all b for

which Pb intersects the risk set R, we obtain

b0 = inf
D∈O

r(D, π) = r(π).

On the other hand, let Qc = {(y1, ..., yp) ∈ Cp : yi ≤ c}. Then, finding the infimum c0 of

all c for which Qc intersects the risk set R, we obtain

c0 = inf
D∈O

sup
fi∈Θ

r(D, fi) = r(Θ).

We seek to prove that c0 ≤ b0. Let Q̃c0 be the interior of Qc0 . Now, since both Q̃c0 and R

are convex sets and Q̃c0 ∩ R = ∅, the hyperplane separation theorem says that there exists

a hyperplane of equation
p∑
i=1

τiyi = τ.y = b,

with τ.y ≤ b for y ∈ Q̃c0 and τ.y ≥ b for y ∈ R. Also, each τi ≥ 0, for if τj < 0 we will

have a contradiction by letting yj → −∞ with all the other coordinates fixed and finding

τ.y → +∞ for y ∈ Q̃c0 . Since ds
∑p

i=1 τi > 0 for any non-trivial case, we can without

loss of generality assume ds
∑p

i=1 τi = 1 after normalization which makes τ correspond to

a probability distribution. Since τ.y ≤ b, by letting y ∈ Q̃c0 converge to the corner point

(c0, ..., c0), we obtain that c0 < b. Further, since τ.y ≤ b, for all y ∈ R, we get

r(τ) = inf
D∈O

p∑
i=1

τir(D, fi) = inf
D∈O

p∑
i=1

τiyi ≥ b ≥ c0 = r(Θ).
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This yields supπ∈Θ∗ r(π) ≥ r(Θ).

Case II: Θ is infinite. When O = Ol or O = Onl for any prior π ∈ Θ∗, we know

from Theorems 1 and 2, that there exists a Bayes decision operator D ∈ O which attains

inf
D∈O

r(D, π). We can find a subset of operators and is compact for an appropriate topology.

When O = Ol, C can be the set of linear operators of norm smaller than 1. Since C belongs

to a finite dimensional space of linear operators, it is compact . Furthermore, the risk r(f,D)

is also continuous in this topology with respect to D ∈ C.

Let c < r(Θ). For any f ∈ Θ, set Sf = {D ∈ C : r(D, f) > c}. Since r(D, f) is

continuous, Sf is an open set. Since for each D ∈ C,there exists f ∈ Θ, with D ∈ Sf ,we

have C = ∪f∈ΘSf . By compactness of C, we get C = ∪pi=1Sfi . The minimum risk over

Θc = {fi}1≤i≤p satisfies r(Θc) = inf
D∈O

sup
1≤i≤p

r(D, fi) ≥ c. Now, for Θc which is a finite set, we

have from case I that there exists τc ∈ Θ∗c ⊆ Θ∗ such that r(τc) = r(Θc). Next, letting c go

to r(Θ), we get sup
π∈Θ∗

r(π) ≥ r(Θ). �

4.2 Diagonal estimator

Definition 33. [Covariance] The covariance between two random variables is defined by

Cov(X1, X2) = E{(X1 − E(X1))(X2 − E(X2))∗}.

First, we will establish a few definitions regarding a random vector Y of size N , which

is a finite one-dimensional signal. A natural and somewhat complicated extension of these

will give us their analogs for a random image of size N × N , which is a two-dimensional

discrete signal with period N .

Definition 34. [Covariance matrix] A covariance matrix of a random vector Y of size N is

the N ×N matrix with entries RY [n,m] = Cov(Y [n], Y [m]).

Definition 35. [Covariance operator] A covariance operator K on RN associated with a
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random vector Y of size N is defined by

Kh[n] =
N−1∑
m=0

RY [n,m]h[m], 0 ≤ N.

If h and g are two random vectors of size N ,

〈Kg, h〉 = Cov(〈Y, h〉 , 〈Y, g〉)

=
N−1∑
n=0

N−1∑
m=0

RY [n,m]g[m]h∗[n]

=
N−1∑
m=0

(
N−1∑
n=0

RY [n,m]h[n]

)∗
g[m]

= 〈g,K∗h〉

Thus, RY [n,m] = R∗Y [m,n] implies that the covariance operator K is self-adjoint. Moreover,

it is positive since

〈Kh, h〉 = E{| 〈Y, h〉 |2} ≥ 0.

Hence, appealing to a standard result in Linear Algebra, there exists an orthogonal basis

{gk}0≤k<N such that Kgk = σ2
kgk. Then K will be a diagonal matrix in this basis. This

basis is called a Karhunen-Loève basis of Y . The basis vectors gk are called the principal

directions. The eigenvalues are the variances σ2
k = 〈Kgk, gk〉 = E{| 〈Y, gk〉 |2}.

Definition 36. [Wide-sense stationary] Y is said to be wide-sense stationary if the corre-

lation between any two points depends only on the distance between these points, i.e.,

E(Y [n]Y ∗[m]) = R[n,m] = RY [n−m].

Then Kh[n] =
N−1∑
k=0

RY [n − k]h[k] is a convolution whose kernel RY [k] is defined for −N <

k < N .

Definition 37. [Circular stationary] A wide-sense stationary vector Y is called circular

stationary if RY [n] is N -periodic, i.e.,

RY [n] = RY [N + n], −N ≤ n ≤ 0.
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If y[n] is wide-sense stationary, a periodic extension of it on Z will be circular stationary.

Then the covariance operator K associated with it is a discrete circular convolution.

The eigenvalues of K which are called the power spectrum, are

σ2
k = R̂Y [k] =

N−1∑
n=0

RY [n]exp

(
−i2kπn
N

)
and the corresponding eigenvectors are

gk[n] =
1√
n
exp

(
i2kπn

N

)
, 0 ≤ k < N.

The following theorem provides us with a diagonal linear estimator in the case when the

covariance matrices of the signal F and of the noise W are diagonal in the same Karhunen-

Loève basis B = {gm}0≤m<N . Denote

XB[m] = 〈X, gm〉 , F̃B[m] =
〈
F̃ , gm

〉
,

FB[m] = 〈F, gm〉 , WB[m] = 〈W, gm〉 ,

β2
m = E{|FB[m]|2} and σ2

m = E{|WB[m]|2}.

Theorem 38. [Weiner][8] If there exists a Karhunen-Loève basis B = {gm}0≤m<N that

diagonalizes the covariance matrices of both F and W , then the Weiner estimator is

F̃ =
N−1∑
n=0

β2
m

β2
m + σ2

m

XB[m]gm

and the resulting minimum linear Bayes risk is

rl(π) =
N−1∑
n=0

β2
mσ

2
m

c+ σ2
m

.

4.3 Oracle estimator

A diagonal estimator of F is given by

F̃ = DX =
N−1∑
m=0

am(XB[m])XB[m]gm.
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and we must have |am| ≤ 1 to attenuate the noisy coefficients.

Recall that a diagonal estimator is linear when am(XB[m]) is constant. For an oracle

estimator, we restrict the value of am to be either 1 or 0.

An oracle estimator F is given by

F̃ = DX =
∑
m∈Λσ

XB[m]gm,

where Λσ = {0 ≤ m < N : |FB[m]| ≥ σ}. This estimator is impossible to implement since

am depends on the unknown signal f rather than on the observed signal X.

The resulting risk is

rpr(F ) = E{‖F − F̃‖2} =
N−1∑
m=0

min(|FB[m]|2, σ2).

4.4 Thresholding estimator

A thresholding estimator is a diagonal estimator where am are thresholding functions and

the coefficients am(XB[m])XB[m] of the basis elements gm are zeroed out if these coefficients

are less than a certain value T , called a threshold.

Thus, a thresholding estimator is given by

F̃ = DX =
N−1∑
m=0

ρT (XB[m])gm,

where ρT (x) is called the thresholding function.

A hard- or soft-thresholding estimator is F̃ = DX =
N−1∑
m=0

ρT (XB[m])gm, where

ρT (x) =

{
x if |x| > T
0 if |x| ≤ T.

for a hard thresholding and

ρT (x) =


x− T if x ≥ T
x+ T if x ≤ T
0 if |x| ≤ T.
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Figure 4.1: Soft and Hard thresholding with Threshold=1.

for a soft thresholding. This is visualized in Figure (4.1) (source:http://www.ceremade.

dauphine.fr/-peyre/numerical-tour/tours/denoising-wavelet-1d/index-02.png).

The risk of a thresholding estimator is

rth(F ) = r(D,F ) =
N−1∑
m=0

E{|FB[m]− ρT (XB[m])|2}.

When W is a white noise, WB is a vector of N independent Gaussian random variables

of variance σ2. Then the threshold is usually chosen to be T = σ
√

2 lnN. This is following

the principle that T must be chosen to be just above the maximum level of the noise and

that [1] the maximum amplitude of the noise has a very high probability of being just below

T = σ
√

2 lnN :

lim
N→∞

pr

(
T − σ ln lnN

lnN
≤ max

0≤m<N
|WB[m]| ≤ T

)
= 1.

Since a soft thresholding often produces a risk larger than a hard thresholding, we use a

threshold T = 1
2
σ
√

2 lnN with a soft-thresholding to obtain nearly the same risk.

Theorem 39. [8][Donoho, Johnstone] Let T = σ
√

2 lnN . The hard- or soft-thresholding

estimator risk rth(F ) satisfies for all N ≥ 4,

rth(F ) ≤ (2 lnN + 1)(σ2 + rpr(F )).
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The factor 2 lnN is optimal among diagonal estimators in B:

lim
N→∞

inf
D∈Od

sup
F∈CN

{E‖F − F̃‖2}
σ2 + rpr(F )

1

2 lnN
= 1,

where Od is the set of all linear or non-linear operators that are diagonal in B.

When the noise is not white, variance differs for each basis element and we have σB[m]2 =

E{|WB[m]2|}. We, however, still suppose that the noise W [n] has mean zero. In this case,

an oracle estimator is

F̃ = DX =
∑

m∈ΛσB

XB[m]gm,

where ΛσB = {0 ≤ m < N : |FB[m]| ≥ σB[m]} and its risk is

rpr(F ) = E{‖F − F̃‖2} =
N−1∑
m=0

min(|FB[m]|2, σB[m]2).

A hard- or soft-thresholding estimator in the case of a colored noise is given by

F̃ = DX =
N−1∑
m=0

ρTm(XB[m])gm,

where the threshold Tm varies as a function of m.

Theorem 40. [8][Donoho, Johnstone] A hard- or soft-thresholding estimator with Tm =

σB[m]
√

2 lnN for 0 ≤ m < N has a risk rth(F ) that satisfies, for any N ≥ 4,

rth(F ) ≤ (2 lnN + 1)
(
σ̄2 + rpr(F )

)
,

where σ̄2 = N−1

N−1∑
m=0

σB[m]2.
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Chapter 5

Wavelet Transform

5.1 Multiresolution Analysis (MRA)

We dedicate this section to understanding the most important concept of image processing

studied in our report, namely, Multiresolution Analysis. It is the basis of Fast Wavelet

transform algorithm, which is a computational method for obtaining wavelet decomposition

of signals. We begin with its abstract definition but eventually see how it is simplified when

it is completely characterized by some discrete filter.

Definition 41 (Riesz Basis). Let H be L2(R) or `2(Z). A basis {φn} of H is called a Riesz

basis if there exist constants 0 < A ≤ B <∞ such that for every f ∈ H,

A||f ||2 ≤
∑
|〈f, φn〉|2 ≤ B||f ||2.

A and B are called Riesz bounds of this basis.

Note that 〈f, φn〉 are decomposition coefficients of f . Hence,

f =
∑
〈f, φn〉φn.

Then

‖f‖2 := 〈f, f〉 =
∑
m

∑
n

〈f, φm〉〈f, φn〉〈φmφn〉.

If {φn} is an orthonormal basis then we get the equality

||f ||2 =
∑
|〈f, φn〉|2.
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Thus, a Riesz basis is weaker than an orthonormal basis. In other words, an orthonormal

basis is a Riesz basis with Riesz bounds A = B = 1.

Definition 42 (MRA). A sequence {Vj}j∈Z of closed subspaces of L2(R) is an MRA if the

following six properties hold:

∀(j, k) ∈ Z2, f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj, (4.1)

∀j ∈ Z, Vj+1 ⊆ Vj, (4.2)

∀j ∈ Z, f(t) ∈ Vj ⇔ f

(
t

2

)
∈ Vj+1, (4.3)

lim
j→+∞

Vj =
+∞⋂
j=−∞

Vj = {0}, (4.4)

lim
j→−∞

Vj = Closure

(
+∞⋃
j=−∞

Vj

)
= L2(R), (4.5)

and there exists θ such that {θ(t− n)}n∈Z is a Riesz basis of V0.

L2(R) is the space of analog finite energy signals. An MRA is a nested sequence of

subspaces of L2(R) satisfying a number of properties. These subspaces are approximations

of signals at dyadic resolution levels. For example, the orthogonal projection of f ∈ L2(R)

onto Vj, denoted by PVjf and computed by minimizing ‖f − fj‖ over all of fj ∈ Vj, is

the approximation of f at resolution 2−j. With this understanding, the properties in the

definition are only natural. Property (4.2) specifies that coarser resolution approximations

are included in finer resolution approximations. The intuition of properties (4.4) and (4.5)

is that reducing the resolution eventually loses the whole signal and, on the other hand,

increasing the resolution eventually recovers it wholly. Finally, properties (4.1) and (4.3)

puts the information on resolution in a dyadic setting by making sure all translations of

dyadic multiples are within the same resolution and by specifying that a transition from one

resolution to another is through a dyadic dilation. In fact, denoting θj,n(t) = 1√
2j
θ
(
t

2j
− n

)
,

the family {θj,n}n∈Z is a Riesz basis of Vj for all j ∈ Z. Note the inverse relation that the

scale 2j corresponds to the resolution 2−j.
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The following proposition sets the criterion for a θ ∈ H to form a Riesz basis of H.

Proposition 43. Let H be L2(R) or `2(Z). Then {θ(t−n)}n∈Z is a Riesz basis of H if and

only if there exist constants 0 < A ≤ B <∞ such that for every ω ∈ [−π, π],

A ≤
∑
|θ̂(ω + 2kπ)|2 ≤ B.

With the above proposition in mind, the abstract construction of an MRA boils down

to constructing a θ satisfying Proposition 43.

Once we have an MRA with a Riesz basis, we would like to go one better and construct

an MRA with an orthonormal basis. Just like the θ in an MRA with a Riesz basis, there is

a corresponding function φ in an MRA with an orthonormal basis which we call the scaling

function of the MRA.

Definition 44. [Scaling function] Let {Vj}j∈Z be an MRA with {θ(t − n)}n∈Z as a Riesz

basis of V0. A function φ whose Fourier transform satisfies

φ̂(ω) =
θ̂(ω)(∑+∞

k=−∞ |θ̂(ω + 2kπ)|2
)1/2

. (4.6)

is called the scaling function.

Definition (44) provides the recipe for the construction of the scaling function when we

have an MRA with a Riesz basis. Theorem 45 specifies φ as an orthonormal counterpart

of θ. In particular, {φ(t − n)}n∈Z is an orthonormal basis of V0. The proof is taken from

Stephen Mallat’s book [8].

Theorem 45. [8] Let {Vj}j∈Z be an MRA with a Riesz basis {θ(t− n)}n∈Z of V0 and φ be

the corresponding scaling function. Let us denote

φj,n(t) =
1√
2j
φ

(
t

2j
− n

)
.

The family {φj,n}n∈Z is an orthonormal basis of Vj for all j ∈ Z.
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Proof [8]: First note that φj,n is a dilated and shifted version of φ in such a way that the

L2-norm or the total energy is conserved. The indices j and n are scale and location param-

eters respectively. Figure (5.1) (source: www-ssc.igpp.ucla.edu/.../russell/ESS265/Ch8/)

illustrates this scaling phenomenon of a function.

Figure 5.1: The original function and its dilations and translations.

We begin with a φ ∈ V0 and find a condition for φ so that {φ(t − n)}n∈Z forms an

orthonormal basis of V0. Then, {φj,n}n∈Z, which are the scaled versions of {φ(t − n)}n∈Z,

will be an orthonormal basis of Vj for all j ∈ Z due to property (4.3) of an MRA and the

fact that scaling preserves orthonormality.
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Note that {φ(t− n)}n∈Z is an orthonormal basis of V0 if and only if

δ[p− n] = 〈φ(t− n), φ(t− p)〉

=

∫
R
φ(t− n)φ∗(t− p) dt

= φ ? (φ∗)(p− n).

Replacing (p−n) by n, we get φ?(φ∗)(n) = δ[n]. Using property (x), the Fourier transform of

φ ? (φ̃)(t), t ∈ R is |φ̂(ω)|2, where φ̃(t) = φ∗(−t). But by Theorem 23, the Fourier transform

of φ ? (φ̃)(n), n ∈ Z is periodic with period 1. So, we obtain

+∞∑
k=−∞

|φ̂(ω + 2kπ)|2 = 1, (4.7)

which is the necessary and sufficient condition for φ so that {φ(t − n)}n∈Z forms an or-

thonormal basis of Vj for all j ∈ Z. Now, since {θ(t− n)}n∈Z is a basis of V0, any φ ∈ V0 is

determined by its decomposition coefficients a[n] in terms of basis elements:

φ(t) =
+∞∑

n=−∞

a[n]θ(t− n).

Taking the Fourier transform of both sides and using property (vii) of the Fourier transform,

we obtain

φ̂(ω) = â(ω)θ̂(ω).

Now choosing

â(ω) =

(
+∞∑

k=−∞

|φ̂(ω + 2kπ)|2
)− 1

2

,

φ satisfies the necessary and sufficient condition (4.7) and we are done. �

The advantage of having an orthonormal basis instead of a Riesz basis is that it allows

us to go from one approximation space to the next more easily via a discrete filter h[n].

Since {φ(t − n)}n∈Z is an orthonormal basis of V0 and 2−1/2φ(t/2) ∈ V1 ⊆ V0, there exist

coefficients h[n] for us to have the representation

1√
2
φ

(
t

2

)
=

+∞∑
n=−∞

h[n]φ(t− n).
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Taking the Fourier transform of both sides yields

φ̂(ω) =
1√
2
ĥ
(ω

2

)
φ̂
(ω

2

)
. (4.8)

Also, by employing the orthonormality of {φ(t − n)}n∈Z in the above representation, we

obtain the following formula for h[n]:

h[n] = 〈2−1/2φ(t/2), φ(t− n)〉.

Since the transfer function ĥ(ω) is supported near the origin, h[n] is called the low-pass

filter of an MRA. We shall see later that h[n] is one of the fundamental computational tools

of Fast Wavelet Transform Algorithm.

The following key theorem lets us go from a scaling function to a low-pass filter and vice

versa. Its importance is clear as it makes possible the abstract construction of an MRA out

of a simple discrete filter satisfying certain properties.

The necessary part of Theorem 46 says that the low-pass filter obtained through a

scaling function must satisfy properties (4.9) and (4.10). The sufficiency part guarantees

that a discrete filter h[n] whose Fourier transform is regular enough and which, in addition

to the above two necessary properties, satisfies property (4.11) is a low-pass filter of an MRA

and the equation (4.12) provides a formula for the the scaling function φ of this MRA.

Theorem 46. [Mallat,Meyer[7][9][8]] Let φ ∈ L2(R) be an integrable scaling function. The

Fourier series of h[n] = 〈2−1/2φ(t/2), φ(t− n)〉 satisfies

∀ω ∈ R, |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, (4.9)

and

ĥ(0) =
√

2. (4.10)

Conversely, if ĥ(ω) is 2π periodic and continuously differentiable in a neighborhood of ω = 0,

if it satisfies (4.9) and (4.10) and if

inf
ω∈[−π/2,π/2]

|ĥ(ω)| > 0, (4.11)
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then

φ̂(ω) =
+∞∏
p=1

ĥ(2−pω)√
2

(4.12)

is the Fourier transform of a scaling function φ ∈ L2(R).

Definition 47 (Conjugate Mirror Filter). A discrete filter h[n] whose transfer function ĥ(w)

satisfies the condition

∀ω ∈ R, |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2,

is called a conjugate mirror filter.

We have seen that an MRA is a sequence of subspaces {Vj}j∈Z of L2(R) that are approx-

imations of signals at dyadic resolution levels 2−j. When we make approximations, we lose

details. Thus, details are complementary to approximations. Naturally, we should be able

to find a sequence of subspaces {Wj}j∈Z of L2(R) which provides the details of signals at

each dyadic resolution level. This is achieved in the following way. Vj, the approximations

of signals at resolution 2−j is a subspace of Vj−1, the approximations at a coarser resolution

2−j+1. Letting Wj be the orthogonal complement of Vj in Vj−1, the subspace Wj will pro-

vide details of signals that is lost by going from a finer resolution 2−j to a coarser resolution

2−j+1. Thus, we have

Vj−1 = Vj ⊕Wj, ∀j ∈ Z.

Let us stop for a moment and review what we have seen so far. First, we saw that a

scaling function φ ∈ V0 is the building block of an MRA whose dilations and translations

form an orthonormal basis of the approximation spaces Vj’s. Next, we saw that there is

a discrete filter h[n] associated to an MRA which can equivalently build an MRA and, in

particular, its corresponding scaling function. Finally, we have established Wj’s as detail

spaces of an MRA which are spaces complementary to approximation spaces. In order to

see where we are heading, let us now consider a hypothetical situation.

Just as we have the orthonormal basis {φj,n}n∈Z of Vj for all j ∈ Z generated by trans-

lating and dilating the scaling function φ ∈ V0, it would be nice to have a function ψ ∈ W0

58



which would generate an orthonormal basis {ψj,n}n∈Z of Wj for all j ∈ Z. And, like a conju-

gate mirror filter h[n] which completely specifies the scaling function φ, we would similarly

like to have a mirror filter g[n] which could specify ψ completely. Continuing this thought, if

we had such a ψ ∈ W0 in hand, the relation between the function ψ and the filter g[n] would

be established as follows. Scaling ψ by 2−1, we would have 2−1/2ψ(t/2) ∈ W1 ⊆ V0. Since

{φ(t − n)}n∈Z is an orthonormal basis of V0, there would exist decomposition coefficients

g[n] such that

1√
2
ψ

(
t

2

)
=

+∞∑
n=−∞

g[n]φ(t− n).

Using orthonormality of {φ(t − n)}n∈Z, we would get the following formula for the mirror

filter g[n] in terms of the orthonormal wavelet ψ.

g[n] =
〈
2−1/2ψ(t/2), φ(t− n)

〉
.

Theorem (48) below realizes the hypothetical situation we just described here and pro-

vides a formula to compute a function ψ, called the mother wavelet associated to an MRA,

whose dilations and translations will indeed form an orthonormal basis of the detail spaces.

The discrete filter g[n] obtained in this process is called the high-pass filter of the MRA since

its transfer function ĝ(ω) is supported away from the origin. The low-pass filter h[n] and the

high-pass filter g[n], as we shall see later, are going to be the two fundamental computational

tools of Fast Wavelet Transform Algorithm. Figure (5.2) (source: commons.wikimedia.org)

illustrates the transfer functions of low- and high-pass filters. The proof of the theorem is

adapted from the proof in Stephen Mallat’s text [8].

Theorem 48. [Mallat,Meyer[7][8][9]] Let φ be a scaling function and h the corresponding

conjugate mirror filter. Let ψ be the function having a Fourier transform

ψ̂(ω) =
1√
2
ĝ
(ω

2

)
φ̂
(ω

2

)
, (4.13)

with

ĝ(ω) = e−iωĥ∗(w + π). (4.14)
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Figure 5.2: The transfer functions of the low- and high-pass filters.

Let us denote

ψj,n(t) =
1√
2j
ψ

(
t− 2jn

2j

)
.

For any scale 2j, {ψj,n}n∈Z is an orthonormal basis of Wj. For all scales, {ψj,n}(j,n)∈Z2 is an

orthonormal basis of L2(R).

Proof [8]: First note that the theorem tells us how to construct an orthonormal wavelet

ψ, given an MRA with a scaling function φ and the corresponding conjugate mirror filter

h[n]. The following lemma sets necessary and sufficient conditions on ĝ, which is clearly

satisfied by ĝ given by the formula (4.14) in the theorem, so that {ψj,n}n∈Z constructed out

of ψ̂ given by the formula (4.13) in the theorem will be an orthonormal basis of Wj.

Lemma 49. The family {ψj,n}n∈Z is an orthonormal basis of Wj if and only if

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (4.15)

and

ĝ(ω)ĥ∗(ω) + ĝ(ω + π)ĥ∗(ω + π) = 0. (4.16)

Proof of the lemma: Since the result can be extended to arbitrary j with an appropriate

scaling, we only need to show that the conditions (4.15) and (4.16) hold if and only if

{ψ(t − n)}n∈Z is an orthonormal basis of W0, which, by the orthonormality criterion (4.7)
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is true if and only if

I(ω) =
+∞∑

k=−∞

|ψ̂(ω + 2kπ)|2 = 1. (4.17)

This is true for all ω. Hence, using (4.13), 2π-periodicity of ĝ(ω) and the orthonormal

criterion (4.7) for φ, we equivalently get (4.15):

2 =
+∞∑

k=−∞

|ĝ(ω + kπ)|2|φ̂(ω + kπ)|2

= |ĝ(ω)|2
+∞∑
p=−∞

|φ̂(ω + 2pπ)|2 + |ĝ(ω + π)|2
+∞∑
p=−∞

|φ̂(ω + π + 2pπ)|2

= |ĝ(ω)|2 + |ĝ(ω + π)|2.

W0 is orthogonal to V0 if and only if {φ(t − n)}n∈Z and {ψ(t − n)}n∈Z are orthogonal

families of vectors. This is true if and only if 〈ψ(t), φ(t− n)〉 = ψ ? (φ∗)(n) = 0, for all

n ∈ Z. Taking the fourier transform using property (x) and Theorem 23, we get ∀ω,
+∞∑

k=−∞

ψ̂(ω + 2kπ)φ̂∗(ω + 2kπ) = 0.

As before, by inserting expressions (4.13) for ψ̂ and (4.8) for φ̂ and using the orthonormality

criterion (4.7) for φ, we prove that the above condition is equivalent to (4.16). Now, the only

thing we need to verify is that V−1 = V0 ⊕W0. Given any a[n] ∈ `2(Z), define b[n] ∈ `2(Z)

and c[n] ∈ `2(Z) by

b̂(2ω) =
1

2
[â(ω)ĥ∗(ω) + â(ω + π)ĥ∗(ω + π)]

and

ĉ(2ω) =
1

2
[â(ω)ĝ∗(ω) + â(ω + π)ĝ∗(ω + π)].

Using (4.15), (4.16) and (4.9), we verify that

â
(ω

2

)
= b̂(ω)ĥ

(ω
2

)
+ ĉ(ω)ĝ

(ω
2

)
.

Due to the expressions (4.13) for ψ̂ and (4.8) for φ̂, this is equivalent to

1√
2
â
(ω

2

)
φ̂
(ω

2

)
= b̂(ω)φ̂(ω) + ĉ(ω)ψ̂(ω).
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Taking the inverse Fourier transform yields

+∞∑
n=−∞

a[n]
√

2φ(2[t− 2−1n]) =
+∞∑

n=−∞

b[n]
√

2φ(t− n) +
+∞∑

n=−∞

c[n]
√

2ψ(t− n).

Thus, we have expressed {
√

2φ(2t− n)}n∈Z, an orthonormal basis of V−1 in terms of {φ(t−

n)}n∈Z, an orthonormal basis of V0 and {ψ(t − n)}n∈Z, an orthonormal basis of W0, which

verifies V−1 = V0 ⊕W0. This proves the lemma.

Now, to complete the proof of the theorem, we need to show the collection of all or-

thonormal bases of Wj, j ∈ Z will make up an orthonormal basis of the whole L2(R). For

any j < l, Wj is orthogonal to Vj and since Wl ⊆ Vl−1 ⊆ Vj, Wj, j ∈ Z are orthogonal. Since

Vk−1 = Wk ⊕ Vk, we get for any j < l,

Vl = ⊕jk=l−1Wk ⊕ Vj.

Letting l go to −∞ and j go to +∞, we get

L2(R) = ⊕+∞
k=−∞Wk,

due to MRA properties (4.4) and (4.5). Hence the theorem is proved. �

Finally, it is noteworthy how the two conjugate mirror filters, fundamental computational

tools of the so-called Fast Wavelet Transform Algorithm which will be described shortly in

Section 5.2, are related with one another. Taking the inverse Fourier transform of (4.14),

we get the following:

g[n] = (−1)1−nh[1− n].

5.2 Wavelets

Recall that our theory of MRA began with just a scaling function φ satisfying certain

properties in hand. Then we went on to establish that an MRA can be built alternatively

from a low-pass filter h[n] or from another corresponding conjugate mirror filter g[n], called

the high-pass filter. Then we developed a formula to compute the mother wavelet function
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ψ associated with this MRA. We got various equations relating the scaling function φ, the

mother wavelet ψ, the low-pass filter h[n] and the high-pass filter g[n] with one another.

Definition 50. [Wavelet] A wavelet is a function ψ whose dilations and translations {ψj,n}

with dilation parameter −∞ < j <∞ and location parameter −∞ < n <∞ defined as

ψj,n(t) :=
1√
2j
ψ

(
t− 2jn

2j

)
form an orthonormal basis of L2(R).

Figure (5.3) (source: http://www.satmagazine.com/cgi-bin/display-image.cgi?1114554895)

illustrates some common wavelets.

Figure 5.3: Some common wavelets.

The function ψ obtained in Theorem 48 is thus a wavelet, called the mother wavelet of

the MRA. Note that if φ is a scaling funtion, then {φj,n}−∞<j,n<∞ also forms an orthonormal

basis of L2(R). Thus, the scaling function φ is alternatively called the father wavelet of the

MRA. A wavelet has two main properties, namely, it has a mean zero and it is localized.

So, it is zero everywhere except in a small domain where it has equal positive and negative

values for cancelation.

Summing up once again, an MRA is a nested sequence of approximation spaces {Vj}j∈Z

of the signal space L2(R) and that, complementary to these spaces, there are detail spaces

{Wj}j∈Z associated to an MRA. For each fixed j, we have {ψj,n}n∈Z (built by dilating and

translating the mother wavelet ψ) and {φj,n}n∈Z (built by dilating and translating the father
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wavelet or the scaling function φ) forming orthonormal bases of Vj and Wj respectively. We

further have that the spaces Vj and Wj are completely characterized by either one of the

mirror filters h[n] and g[n].

Fast Wavelet Transform Algorithm consists of a method of decomposing successively

each approximation PVjf into PVj+1
f ,a coarser approximation of f and PWj+1

f , the details

of f lost by switching from a finer resolution 2−j−1 to a coarser resolution 2−j and a reverse

method of reconstructing a finer approximation from a coarser approximation and the details

lost in between. Now since {φj,n}n∈Z and {ψj,n}n∈Z are orthonormal bases of Vj and Wj

respectively, Fast Wavelet Transform can be thought of as decomposing f into the wavelet

coefficients

aj[n] = 〈f, φj,n〉 and dj[n] = 〈f, ψj,n〉 .

Let F ∈ L2(R) be any signal. Then since {ψj,n}−∞<j,n<∞ forms an orthonormal basis of

L2(R), we will have

F =
∞∑

j=−∞

∞∑
n=−∞

〈F, ψj,n〉ψj,n (4.18)

ψj,n, a dilated and translated version of ψ is a wavelet profile with a scale parameter j and

a location parameter n. The equation (4.18) ensures that any signal F can be constructed

using infinitely many of these wavelet profiles ψj,n. The wavelet coefficient 〈F, ψj,n〉 is given

by

〈F, ψj,n〉 =

∫ +∞

−∞
F (t)ψ∗j,n(t) dt.

It measures the correlation between the signal F and the wavelet profile ψj,n which quan-

tifies the contribution of this profile in constructing the signal F . Another property of an

orthonormal basis is that if we fix a dilation, any two translated wavelet profiles are un-

correlated or orthogonal to each other. This can be explained in terms of correlation as

below.

〈ψj,n1 , ψj,n2〉 =

∫ +∞

−∞
ψj,n1(t)ψ

∗
j,n2

(t) dt = 0,

Let x̄[n] = x[−n] and x̌[n] denote a factor 2 upsampling of x[n] obtained by expanding
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by alternate zero insertions:

x̌[n] =

{
x[p] if n = 2p
0 if n = 2p+ 1.

Note the following Fourier transforms of upsampled and downsampled signals: The

Fourier transform of y[n] = x[2n] which is the signal x[n] downsampled by factor 2 is

ŷ(2ω) =
+∞∑

n=−∞

x[2n]e−i2nω =
1

2
(x̂(ω) + x̂(ω + π)) . (4.19)

The Fourier transform of y[n] = x̌[n] which is the signal x[n] upsampled by factor 2 is

ŷ(ω) =
+∞∑

n=−∞

x[n]e−i2nω = x̂(2ω). (4.20)

The following theorem shows that fast wavelet coefficients are calculated with a cascade

of discrete convolutions and factor 2 downsamplings.

Theorem 51. [Mallat[6][7][8]] At the decomposition,

aj+1[p] =
+∞∑

n=−∞

h[n− 2p]aj[n] = aj ? h̄[2p], (4.21)

dj+1[p] =
+∞∑

n=−∞

g[n− 2p]aj[n] = aj ? ḡ[2p]. (4.22)

At the reconstruction,

aj[p] =
+∞∑

n=−∞

h[p− 2n]aj+1[n] +
+∞∑

n=−∞

g[p− 2n]dj+1[n]

= ǎj+1 ? h[p] + ďj+1 ? g[p].

(4.23)

Proof [8]: Since φj+1,p ∈ Vj+1 ⊆ Vj and {φj,n}n∈Z is an orthonormal basis of Vj, we have

φj+1,p =
+∞∑

n=−∞

〈φj+1,p, φj,n〉φj,n. (4.24)
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With the change of variable s = 2−jt−2p, compute

〈φj+1,p, φj,n〉 =

∫ +∞

−∞

1√
2j+1

φ

(
t− 2j+1p

2j+1

)
1√
2j
φ∗
(
t− 2jn

2j

)
dt∫ +∞

−∞

1√
2
φ

(
t

2

)
φ∗ (t− n+ 2p) dt

=

〈
1√
2
φ

(
t

2

)
, φ (t− n+ 2p)

〉
= h[n− 2p].

Then (4.24) becomes

φj+1,p =
+∞∑

n=−∞

h[n− 2p]φj,n.

Now, computing the inner product of each side with f , we get

aj+1[p] =
+∞∑

n=−∞

h[n− 2p]aj[n] = aj ? h̄[2p].

Since ψj+1,p ∈ Wj+1 ⊆ Vj and {φj,n}n∈Z is an orthonormal basis of Vj, we have

ψj+1,p =
+∞∑

n=−∞

〈ψj+1,p, φj,n〉φj,n. (4.25)

With the change of variable s = 2−jt−2p, compute

〈ψj+1,p, φj,n〉 =

∫ +∞

−∞

1√
2j+1

ψ

(
t− 2j+1p

2j+1

)
1√
2j
φ∗
(
t− 2jn

2j

)
dt∫ +∞

−∞

1√
2
ψ

(
t

2

)
φ∗ (t− n+ 2p) dt

=

〈
1√
2
ψ

(
t

2

)
, φ (t− n+ 2p)

〉
= g[n− 2p].

Then (4.25) becomes

ψj+1,p =
+∞∑

n=−∞

g[n− 2p]φj,n.

Now, computing the inner product of each side with f , we get

dj+1[p] =
+∞∑

n=−∞

g[n− 2p]aj[n] = aj ? ḡ[2p].
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Since φj,p ∈ Vj and Vj = Vj+1 ⊕Wj+1, we have

φj,p =
+∞∑

n=−∞

〈φj,p, φj+1,n〉φj+1,n +
+∞∑

n=−∞

〈φj,p, ψj+1,n〉ψj+1,n

=
+∞∑

n=−∞

h[p− 2n]φj+1,n +
+∞∑

n=−∞

g[p− 2n]ψj+1,n.

Now, computing the inner product with f on both sides of this inequality, we get

aj[p] =
+∞∑

n=−∞

h[p− 2n]aj+1[n] +
+∞∑

n=−∞

g[p− 2n]dj+1[n] = ǎj+1 ? h[p] + ďj+1 ? g[p].

�

Figure (5.4) (source: http://www.ceremade.dauphine.fr/ peyre/wavelet-tour/) illustrates

the one-dimensional Fast Wavelet Transform Algorithm.

Figure 5.4: Decomposition and Reconstruction diagrams of the 1-D Fast Wavelet Transform
Algorithm.

Definition 52 (Filter Bank). A two-channel multirate filter bank consists of a low-pass filter

h̄[n] = h[−n] and a high-pass filter ḡ[n] = g[−n] which decomposes any given signal aj at
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resolution 2−j into approximation and detail coefficients at coarser resolution 2−j−1 as:

aj+1[n] = aj ? h̄[2n] and dj+1[n] = aj ? ḡ[2n]. (4.26)

A reconstructed signal ãj is obtained by a dual low-pass filter h̃ and a dual high-pass filter

g̃ as:

âj[n] = ǎj+1 ? h̃[n] + ďj+1 ? g̃[n]. (4.27)

We are after a perfect reconstruction filter bank, i.e., the one which guarantees ãj = aj.

The following theorem sets the criteria for this. Its proof is taken from Mallat’s book [8].

Theorem 53 (Vetterli[11][8]). The filter bank performs an exact reconstruction for any

input signal if and only if

ĥ∗(ω + π)ˆ̃h(ω) + ĝ∗(ω + π)ˆ̃g(ω) = 0, (4.28)

and

ĥ∗(ω)ˆ̃h(ω) + ĝ∗(ω)ˆ̃g(ω) = 2. (4.29)

Proof [8]: Since h and g are real, we have ˆ̄h(ω) = ĥ(−ω) = ĥ∗(ω) and ˆ̄g(ω) = ĝ(−ω) =

ĝ∗(ω). Now, using the Fourier transform property (vii) and (50) in (4.26), we get

aj+1(2ω) =
1

2

(
âj(ω)ĥ∗(ω) + âj(ω + π)ĥ∗(ω + π)

)
.

dj+1(2ω) =
1

2
(âj(ω)ĝ∗(ω) + âj(ω + π)ĝ∗(ω + π)) .

On the other hand, using (50) in (4.27) yields

ˆ̃aj(ω) = âj+1(2ω)ˆ̃h(ω) + d̂j+1(2ω)ˆ̃g(ω).

Hence

ˆ̃aj(ω) =
1

2

(
ĥ∗(ω)ˆ̃h(ω) + ĝ∗(ω)ˆ̃g(ω)

)
âj(ω) +

1

2

(
ĥ∗(ω + π)ˆ̃h(ω) + ĝ∗(ω + π)ˆ̃g(ω)

)
âj(ω + π).

For perfect reconstruction, i.e., to ensure ˆ̃aj(ω) = âj(ω), we must have

ĥ∗(ω + π)ˆ̃h(ω) + ĝ∗(ω + π)ˆ̃g(ω) = 0,
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and

ĥ∗(ω)ˆ̃h(ω) + ĝ∗(ω)ˆ̃g(ω) = 2

which are (4.28) and (4.29). �

The criteria in the above theorem can be written, in matrix form, as

[
ĥ(ω) ĝ(ω)

ĥ(ω + π) ĝ(ω + π)

]
×

[
ˆ̃h
∗
(ω)

ˆ̃g
∗
(ω)

]
=

[
2
0

]
Then [

ˆ̃h
∗
(ω)

ˆ̃g
∗
(ω)

]
=

[
ĥ(ω) ĝ(ω)

ĥ(ω + π) ĝ(ω + π)

]−1

×
[
2
0

]
=

2

4(ω)

[
ĝ(ω + π)

−ĥ(ω + π)

]
(4.30)

where

4(ω) = ĥ(ω)ĝ(ω + π)− ĥ(ω + π)ĝ(ω). (4.31)

The following theorem, proof of which has been taken from Mallat’s book [8], states the

criteria for perfect reconstruction in a different form.

Theorem 54 ([8]). Perfect reconstruction filters satisfy

ĥ∗(ω)ˆ̃h(ω) + ĥ∗(ω + π)ˆ̃h(ω + π) = 2. (4.32)

For finite impulse-response filters, there exist a ∈ R and l ∈ Z such that

ĝ(ω) = ae−i(2l+1)ω ˆ̃h
∗
(ω + π) and ˆ̃g(ω) = a−1e−i(2l+1)ωĥ∗(ω + π). (4.33)

Proof [8]: From (4.30), we have that

ˆ̃h
∗
(ω) =

2

4(ω)
ĝ(ω + π) and ˆ̃g

∗
(ω) =

2

4(ω)
ĥ(ω + π) (4.34)

Therefore,

ĝ(ω)ˆ̃g∗(ω) = −4(ω + π)

4(ω)
ˆ̃h
∗
(ω + π)ĥ(ω + π) = ˆ̃h

∗
(ω + π)ĥ(ω + π), (4.35)

since 4(ω+π) = −4(ω) by (4.31). Using (4.35) in (4.29) yields (4.32). If g and h are finite

impulse response filters, ĝ(ω) and ĥ(ω) are finite series in e±inω. By (4.31), 4(ω) then is
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a finite series e±inω. Further by (4.34), 4(ω)−1 is also a finite series. Consequently, 4(ω)

must be a single term. Since 4(ω + π) = −4(ω), the exponent n must be odd. Therefore,

there exist l ∈ Z and a ∈ R such that

4(ω) = −2ae−i(2l+1)ω.

Using this in (4.34), yields the remaining results of the theorem. �

The following theorem, whose proof is taken from Mallat’s book [8], constructs biorthog-

onal Riesz bases of l2(Z).

Definition 55 (Biorthogonal Bases). Two bases {h[n−2l], g[n−2l]}l∈Z and {h̃[n−2l], g̃[n−

2l]}l∈Z are said to be biorthogonal if we have for all n ∈ Z,〈
h̃[n], h[n− 2l]

〉
= δ[l] and

〈
h̃[n], h[n− 2l]

〉
= δ[l] (4.36)

and 〈
h̃[n], g[n− 2l]

〉
= 0 and 〈g̃[n], h[n− 2l]〉 = 0 (4.37)

Theorem 56. If h, g, h̃ and g̃ are perfect reconstruction filters, and their Fourier transforms

are bounded, then {h̃[n−2l], g̃[n−2l]}l∈Z and {h[n−2l], g[n−2l]}l∈Z are biorthogonal Riesz

bases of l2(Z).

Proof [8]: By (4.32), perfect reconstruction filters satisfy

1

2

(
ĥ∗(ω)ˆ̃h(ω) + ĥ∗(ω + π)ˆ̃h(ω + π)

)
= 1

and
1

2

(
ĝ∗(ω)ˆ̃g(ω) + ĝ∗(ω + π)ˆ̃g(ω + π)

)
= 1.

These, on taking the inverse Fourier transform, yield

h̄ ? h̃[2l] = δ[l] and ḡ ? g̃[2l] = δ[l].

That is,
∞∑

k=−∞

h̃[n]h̄[n− 2l] and
∞∑

k=−∞

g̃[n]ḡ[n− 2l],

70



which are exactly the conditions (4.36) for biorthogonality. Again by (4.28), perfect recon-

struction filters satisfy

1

2
ĝ∗(ω)ˆ̃h(ω) + ĝ∗(ω + π)ˆ̃h(ω + π) = 0

and
1

2
ĥ∗(ω)ˆ̃g(ω) + ĥ∗(ω + π)ˆ̃g(ω + π) = 0.

Taking the inverse Fourier transforms of these equations like before yield the conditions

(4.37) for biorthogonality. Since the Fourier transform of each filter is bounded, the existence

of Riesz bounds is easily verified. �
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Chapter 6

Wavelet Image Denoising

6.1 Separable Multiresolution Analysis or MRA

Since images are two-dimensional signals f(x1, x2), in order to do multiresolution analysis

of images, we need to have a two-dimensional MRA. This can be produced in the follow-

ing way out of a one-dimensional MRA that we have discussed in great detail in the last

chapter. Given any wavelet orthonormal basis {ψj,n}(j,n)∈Z2 of L2(R), we can construct

separable wavelet orthonormal bases {ψj1,n1(x1)ψj2,n2(x2)}(j1,n1,j2,n2)∈Z4 of L2(R2). Clearly,

ψj1,n1(x1)ψj2,n2(x2) provide information at scale 2j1 along x1 as well as at scale 2j2 along x2.

Definition 57 (Separable MRA). A separable two-dimensional MRA of L2(R2) is which

is a countable collection {V 2
j }j∈Z of tensor products V 2

j = Vj ⊗ Vj where {Vj}j∈Z is a one-

dimensional MRA of L2(R).

The space V 2
j consists of two-dimensional signals

f(x1, x2) =
∞∑

m=−∞

a[m]fm(x1)gm(x2) where fm ∈ Vj, gm ∈ Vj.

Next, we list two-dimensional versions of MRA theorems from last chapter. These results

are analogous to their one-dimensional counterparts and follow directly after using basic

properties of tensor products.
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Theorem 58. [8] There exists a scaling function φ such that{
φ2
j,n(x) := φj,n1(x1)φj,n2(x2) =

1

2j
φ

(
x1 − 2jn1

2j

)
φ

(
x2 − 2jn2

2j

)}
n=(n1,n2)∈Z2

is an orthonormal basis of V 2
j .

Let us denote by W 2
j the detail space which is the complement of the coarser resolution

approximation space V 2
j in V 2

j−1, i.e., V 2
j−1 = V 2

j ⊕W 2
j .

Theorem 59. [8]Let φ be a scaling function and ψ be the corresponding wavelet generating

a wavelet orthonormal basis of L2(R). We define three wavelets:

ψ1
j,n(x) := φj,n1(x1)ψj,n2(x2), ψ2

j,n(x) := ψj,n1(x1)φj,n2(x2), ψ3
j,n(x) := ψj,n1(x1)ψj,n2(x2),

and for 1 ≤ k ≤ 3 denote

ψkj,n(x) =
1

2j
ψk
(
x1 − 2jn1

2j
,
x2 − 2jn2

2j

)
.

The wavelet family

{ψ1
j,n, ψ

2
j,n, ψ

3
j,n}n=(n1,n2)∈Z2

is an orthonormal basis of W 2
j and

{ψ1
j,n, ψ

2
j,n, ψ

3
j,n}(j,n)=(j,n1,n2)∈Z3

is an orthonormal basis of L2(R2).

6.2 Two-dimensional Wavelet Transform

A Fast Wavelet Transform Algorithm in two dimensions is extended naturally from a one-

dimensional version discussed in Section 4.2. Let n = (n1, n2). For any given image f(x) :=

f(x1, x2), the decomposition of f at any resolution level 2−j (or, more commonly, at scale 2j

or just scale j, for short) will give us the approximation coefficient aj[n] =
〈
f, φ2

j,n

〉
and three

different detail coefficients, namely, horizontal detail coefficients d1
j [n] =

〈
f, ψ1

j,n

〉
vertical
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detail coefficients d2
j [n] =

〈
f, ψ2

j,n

〉
and diagonal detail coefficients d3

j [n] =
〈
f, ψ3

j,n

〉
where

φ2
j,n(x) := φj,n1(x1)φj,n2(x2), ψ1

j,n(x) := φj,n1(x1)ψj,n2(x2), ψ2
j,n(x) := φj,n1(x1)ψj,n2(x2) and

ψ3
j,n(x) := φj,n1(x1)ψj,n2(x2) are functions on R2 constructed from a scaling function φ and

its corresponding wavelet function ψ on R. These different coefficients aj[n], d1
j [n], d2

j [n] and

d3
j [n], upon reconstruction, generate three different frequency subband images, which are

denoted by LLk, LHk, HLk and HHk respectively, where k represents the number of steps

of decomposition from the original image. Note that if the original image is of the scale

2J , the first step decomposition subbands LL1, LH1, HL1 and HH1 correspond to wavelet

coefficients at scale 2J+1 or, simply, J + 1. The subband LL1 is exactly the approximation

image of f at resolution 2−J−1. The decomposition of LL1 at scale 1 will now be the

decomposition of f at scale J + 2. Thus, a J level decomposition of f will result in 3J +

1 different wavelet coefficients or their corresponding 3J + 1 different subbands. This is

illustrated in Figure (6.1).

Figure 6.1: Subbands of two-dimensional wavelet decomposition of an image.

Given a pair of one-dimensional filters y[m] and z[m], denote (yz)[n] = y[n1]z[n2]. Recall

the notation ȳ[m] = y[−m]. Also, note (yz)[2n] is the factor 2 subsampling or downsampling

of (yz)[n] which is half the size of (yz)[n], obtained by deleting the odd components in both

row and column of y[n] and recall the notation ˇ(yz)[n] for the factor 2 upsampling of (yz)[n]
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which is the image twice the size of (yz)[n] and which is obtained by inserting a row of zeros

and a column of zeros between pairs of consecutive rows and columns of (yz)[n].

Theorem 60. [8] Let h[m] and g[m] be the conjugate mirror filters associated to the wavelet

ψ. At the decomposition,

aj+1[n] = aj ? (h̄h̄)[2n],

d1
j+1[n] = aj ? (h̄ḡ)[2n],

d2
j+1[n] = aj ? (ḡh̄)[2n],

d3
j+1[n] = aj ? (ḡḡ)[2n].

And, at the reconstruction,

aj[n] = ǎj+1 ? (hh)[n] + ď1
j+1 ? (hg)[n] + ď2

j+1 ? (gh)[n] + ď3
j+1 ? (gg)[n].

6.3 MRA of L2[0, 1]

Images are two-dimensional finite discrete signals. Finite discrete signals are processed

using an MRA of L2[0, 1]. The extension of a one-dimensional MRA to a separable two-

dimensional MRA has been described in Section 6.1 and the one-dimensional fast wavelet

transform algorithm was extended to the two-dimensional case in Section 6.2. With this in

mind, we shall develop here a one-dimensional MRA of L2[0, 1] which will also extend to a

two-dimensional MRA of L2([0, 1] × [0, 1]), which will be the right MRA for images, in an

analogous way. Since an MRA is generated with dyadic scaling and translation, we must

have signals resized to some power of 2 by extending it with zero insertions. For example,

a discrete signal of size N = 2l will be a signal in L2[0, 1] when we refit it in [0, 1] with its

entries 1
N

distance apart. This distance is the original scale of the signal and its reciprocal

is the original resolution. Then the finest scale at which we can decompose this signal will

be 2/N = 21−l with coarsest resolution N/2 = 2l−1. Recall that a finer scale corresponds to

a larger size and coarser resolution.
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A wavelet basis of L2[0, 1] is obtained by transforming the wavelet basis of L2(R). The

wavelets whose supports are contained in [0, 1] remain unchanged but the boundary wavelets

whose supports overlap t = 0 and t = 1 are modified. We describe an MRA of L2[0, 1]

developed with the Daubechies wavelet ψ with p vanishing moments which means it is

orthogonal to all polynomials of degree p − 1 or smaller. Let φ be the Daubechies scaling

function φ associated to ψ. Since, according to Theorem 7.7 [8], the size of the support of

φ and ψ is 2p− 1, we translate φ and ψ so that their support is [−p+ 1, p]. The boundary

coefficients associated to boundary wavelets are 2p in number at all scales. So the maximum

scale 2J must not exceed (2p)−1. Then at a scale 2j ≤ (2p)−1, construct the following scaling

functions:

(a) support inside [0, 1]

φintj,n(t) = φj,n(t), p ≤ n < 2j − p.

(b) support overlapped to the left of t = 0

φintj,n(t) =
1√
2j
φleftn

(
t

2j

)
, 0 ≤ n < p.

(c) support overlapped to the right of t = 1

φintj,n(t) =
1√
2j
φright

2−j−1−n

(
t− 1

2j

)
, 0 ≤ n < p.

The boundary scaling functions φleftn and φleftn are constructed in such a way that {φintj,n}0≤n<2−j

forms an orthonormal basis of V int
j and {V int

j }−∞<j≤0 forms an MRA of L2[0, 1]. Construct-

ing the wavelet functions ψintj,n(t) analogously, we get {ψintj,n}0≤n<2−j as an orthonormal basis

of W int
j , the orthogonal complement of V int

j in V int
j−1. Hence, at any scale 2J ≤ (2p)−1, we

obtain

[{φintJ,n}0≤n<2−J , {ψintj,n}−∞<j≤J, 0≤n<2−j ]

as an orthonormal wavelet basis of L2[0, 1].
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6.4 Fast Wavelet Transform Algorithm

We will state without proofs the decomposition and reconstruction theorems of fast dis-

crete algorithm for an MRA of L2[0, 1]. This algorithm breaks down decomposition and

reconstruction formulas into various cases and replaces usual Daubechies filters h and g

by modified filters at the boundary. It is slightly more complicated to implement than

other simpler algorithms such as folding and periodic algorithms but requires less computa-

tions. Each decomposition or reconstruction of a signal of size N is performed with O(N)

operations.

Left boundary coefficient constants H left
n,l , Gleft

n,l , hleftn,m and gleftn,m satisfy the following equa-

tions in relation to the left boundary wavelets φleftn and ψleftn are supported in [0, p+ n].

2−1/2φleftn (2−1t) =

p−1∑
l=0

H left
n,l φ

left
l (t) +

p+2n∑
m=p

hleftn,mφ(t−m),

2−1/2ψleftn (2−1t) =

p−1∑
l=0

Gleft
n,l φ

left
l (t) +

p+2n∑
m=p

gleftn,mφ(t−m).

Right boundary coefficient constants Hright
n,l , Gright

n,l , hrightn,m and grightn,m satisfy similar equa-

tions in relation to the right boundary wavelets φrightn and ψrightn are supported in [−p−n, 0].

Theorem 61. [8][Cohen, Daubechies, Vial] If 0 ≤ k < p,

aj[k] =

p−1∑
l=0

H left
k,l aj−1[l] +

p+2k∑
m=p

hleftk,maj−1[m],

dj[k] =

p−1∑
l=0

Gleft
k,l aj−1[l] +

p+2k∑
m=p

gleftk,maj−1[m].

If p ≤ k < 2−j − p,

aj[k] =
∞∑

l=−∞

h[l − 2k]aj−1[l],

dj[k] =
∞∑

l=−∞

g[l − 2k]aj−1[l].
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If −p ≤ k < 0,

aj[2
−j + k] =

−1∑
l=−p

Hright
k,l aj−1[2−j+1 + l] +

−p−1∑
m=−p+2k+1

hrightk,m aj−1[2−j+1 +m],

dj[2
−j + k] =

−1∑
l=−p

Gright
k,l aj−1[2−j+1 + l] +

−p−1∑
m=−p+2k+1

grightk,m aj−1[2−j+1 +m],

This theorem provides a Fast wavelet transform algorithm to decompose the approxi-

mation coefficient aL at scale 2L into a finer (resolution) approximation coefficient aJ at a

coarser scale 2J and intermediary detail coefficients {dj}L<j≤J with O(N) operations.

Theorem 62. [8](Cohen, Daubechies, Vial) If 0 ≤ l ≤ p− 1,

aj−1[l] =

p−1∑
k=0

H left
k,l aj[k] +

p−1∑
k=0

Gleft
k,l dj[k].

If p ≤ l ≤ 3p− 2,

aj−1[l] =

p−1∑
k=(l−p)/2

hleftk,l aj[k] +
∞∑

k=−∞

h[l − 2k]aj[k]

+

p−1∑
k=(l−p)/2

gleftk,l dj[k] +
∞∑

k=−∞

g[l − 2k]dj[k].

If 3p− 1 ≤ l ≤ 2−j+1 − 3p,

aj−1[l] =
∞∑

k=−∞

h[l − 2k]aj[k] +
∞∑

k=−∞

g[l − 2k]dj[k].

If −p− 1 ≥ l ≥ −3p+ 1,

aj−1[2−j+1 + l] =

(l+p−1)/2∑
k=−p

hrightk,l aj[2
−j + k] +

∞∑
k=−∞

h[l − 2k]aj[2
−j + k]

+

(l+p−1)/2∑
k=−p

grightk,l dj[2
−j + k] +

∞∑
k=−∞

g[l − 2k]dj[2
−j + k].

If −1 ≥ l ≥ −p,

aj−1[2−j+1 + l] =
−1∑

k=−p

Hright
k,l aj[2

−j + k] +
−1∑

k=−p

Gright
k,l dj[2

−j + k].
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This theorem reconstructs the original coarser approximation coefficient aL at scale 2L

from [aJ , {dj}L<j≤J ] by performing an iteration of these formulas for L < j ≤ J with O(N)

operations.

Figure (6.2) (source: http://www.ceremade.dauphine.fr/ peyre/wavelet-tour/) illustrates

the one-dimensional Fast Wavelet Transform Algorithm.

Figure 6.2: Decomposition and Reconstruction diagrams of the 2-D Fast Wavelet Transform
Algorithm.

6.5 Noise Variance estimator

Let X[n] = F [n] +W [n], 0 ≤ n < N be the observed noisy signal where W [n] ∼ N(0, σ2IN

is a white noise with mean zero and variance σ2 and F [n] is the unknown true signal. When

F is piecewise smooth, a robust estimator of σ2 is calculated from the median of the finest

scale wavelet coefficients [2].

A signal F with N discrete samples has the original scale N−1 and the finest scale it

can be decomposed at is 2N−1 = 2l, say, with the corresponding finest resolution being
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2−l. The noisy signal X of size N is decomposed into N/2 wavelet coefficients at the finest

scale 2l. Thus, a robust estimator of σ2 is calculated from the median of these coefficients

{〈X,ψl,m〉}0≤m≤N/2. The median of these is the middle coefficient 〈X,ψl,N0〉 of rank N/4.

Also, we saw that if W is normally distributed with mean zero and variance σ2, then

〈W,ψl,m〉 are independent Gaussian random variables of variance σ2. If F is smooth over

the support of ψl,m, 〈F, ψl,m〉 is small and 〈X,ψl,m〉 ≈ 〈W,ψl,m〉. In order to estimate the

white noise variance we use the following fact:

Fact[8]: If M is the median of the absolute value of p independent Gaussian random

variables with mean zero and variance σ2
0, then one can show that E(M) ≈ 0.6745σ2

0.

Assuming F is smooth enough, we neglect the influence of F and have 〈X,ψl,m〉 ≈

〈W,ψl,m〉. Then the variance σ2 of the noise W is estimated from the median Mx of

{|〈X,ψl,m〉|}0≤m≤N/2 by computing σ̃ = Mx

0.6745
.

6.6 Wavelet Thresholding

Let X[n] = F [n] +W [n], n = (n1, n2), 0 ≤ n1, n2 <
√
N be the noisy image data where F [n]

is the true image and X[n] is the noisy image. The denoised image is an estimate of the

true image F [n]. The main idea of image denoising is to first obtain the noise details with

the help of noisy wavelet coefficients 〈X,ψj,n〉. But

〈X,ψj,n〉 = 〈F, ψj,n〉+ 〈W,ψj,n〉 .

The bigger coefficients come from wavelet profiles highly correlated to X[n] and are

dominated by true image details 〈F, ψj,n〉. Smaller coefficients, on the other hand, come

from poorly correlated profiles and are dominated by noise details 〈W,ψj,n〉. So, in order

to remove noise details, we need to remove the wavelet coefficients smaller than a threshold

value. The threshold value is to be chosen so that we have a good balance of retaining true

image details and losing noise details. Section 4.4 discussed that a good global threshold

value is T = σ
√

2 lnN .
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As discussed in Section 6.5, we estimate the noise variance from the observed noisy image

data. If the original scale of an image is 2J−1, we first calculate the median of the finest

scale diagonal detail coefficients d3
J [n] corresponding to the highest diagonal subband HH1.

Then the estimated noise variance is

σ̃ =
median(|d3

J [n]|)
0.6745

. (4.1)

Let us consider a square image for convenience which has equal horizontal and vertical

size. The support of this image is normalized to [0, 1] × [0, 1] with N samples spaced by

N−1 = 2L in either direction. Let the scale parameter which varies from 2L at the original

scale up to 21 at the coarsest scale be set at 2J < 1. After boundary modifications of discrete

wavelets ψkj,m[n] and φJ,m[n], suppose the wavelet basis for the decomposition at scale 2J is

B =
[
{ψkj,m[n]}1≤k≤3,L<j≤J,0≤m<2j , {φ2

J,m[n]}0≤m<2−J
]
.

A thresholding estimator in this wavelet basis can be written as

F̃ =
2−J∑
m=0

ρT
(〈
X,φ2

J,m

〉)
φ2
J,m +

J∑
j=L+1

2−j∑
m=0

ρT
(〈
X,ψ1

j,m

〉)
ψ1
j,m

+
J∑

j=L+1

2−j∑
m=0

ρT
(〈
X,ψ2

j,m

〉)
ψ2
j,m +

J∑
j=L+1

2−j∑
m=0

ρT
(〈
X,ψ3

j,m

〉)
ψ3
j,m,

where ρT is either a hard thresholding or a soft thresholding, displayed in Figure (4.1) in

Section (4.4).

To reconstruct a denoised image at original scale 2L = 1/N from the thresholding es-

timator, we reconstruct aL,m from [aJ,m, {dj,m}L<j≤J ] by performing an iteration of these

formulas for L < j ≤ J with O(N) operations and computing

F̃denoised =
2−L∑
m=0

aL,mφ
2
L,m =

N∑
m=0

〈
X,φ2

L,m

〉
φ2
L,m.

A global threshold, as we have seen in Section 4.4, is given by T = σ̃
√

2 lnN where the

noise variance estimate σ̃ is computed as in (4.1). However, for wavelet coefficients, there is
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usually room for improvement. For example, for images of size N2 = 5122 pixels, the univer-

sal threshold is T = σ̃
√

2 ln 5122 ≈ 5σ̃. But hard-thresholding estimators are computed by

choosing T = 3σ̃ because it increases the SNR value which, in turn, significantly improves

the visual quality of the image. For soft-thresholding estimators which tend to have a larger

risk, we choose T = 3σ̃/2 so that we could have nearly the same risk as hard-thresholding

estimators.

Global thresholding is a very simple scheme of denoising and it works effectively in most

cases. However, many other more complex algorithms of thresholding have been developed to

improve the denoising effect which can be both level-dependent and orientation-dependent.

Another threshold we would like to consider in this report is called Bayes Shrink which is an

orientation-dependent thresholding scheme proposed by B. Yu, S. G. Chang and M. Vetterli

in [10].

Bayes Shrink is a data-driven threshold computed in a Bayesian framework assuming the

generalized Gaussian distribution as the prior distribution of the wavelet coefficients. Bayes

Shrink thresholding scheme sets different thresholds for every subband, i.e., (TBS) actually

consists of three different threshold values for three different detail orientations, namely,

horizontal, vertical and diagonal. Let us now describe how to calculate Bayes threshold for

a fixed orientation. Suppose all the wavelet coefficients for a fixed orientation, say, vertical,

are given by {Vk}, k = 1, 2, ...,M . We have noisy image data as

X[n] = F [n] +W [n],

where F [n] is true image data and W [n] is noise data whose variance can be estimated as

explained in Section (6.5) and as computed in (4.1). Thus, we have

σ̂2
W =

median(|d3
J [n]|)

0.6745
,

where d3
J [n] are diagonal detail coefficients corresponding to the highest diagonal subband

HH1. The variance of the noisy image, on the other hand, can be estimated by

σ̂2
X =

1

M

M∑
k=1

V 2
k .
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Then, we compute

σ̂2
F =

√
max{(σ̂2

X − σ̂2
W ), 0}.

Then the Bayes Shrink threshold for this vertical orientation is computed by

TBS =

 max{|Vk|}, if σ̂F = 0
σ̂2
W

σ̂F
, otherwise.

Note that σ̂F = 0, we remove all the wavelet coefficients by setting the threshold as

the maximum coefficient. Also, it is to be expected that Bayes Shrink threshold should

produce better denoising results than the Global threshold schemes as it takes into account

the prior distribution of the wavelet coefficients and the variability of the coefficients due to

orientation. This will be verified by experimentation in Section 6.7 later.

6.7 Image denoising via wavelet transform

With all the required theory developed in previous sections, we will, in this section, exemplify

the computational implementation of image processing with actual images. For this purpose,

we are using the software “Wavelet Toolbox” available with MATLAB7.7.0 (R2008B). Some

built-in MATLAB codes as well as their results will be copied verbatim from the MATLAB

command window itself.

Based on the theory, we will begin with an original image. We have chosen “Lena” for

our illustration which is easily available on the web. Next we corrupt this image with some

noise. Some common noises are “Salt and pepper”, “Gaussian”, “Poisson” and “Speckle”.

These are done using the following MATLAB commands.

f=imread (‘lena.png’);

g1=imnoise (f,‘salt & pepper’,.05); %.05 is the noise density.

%and affects approximately .05*numel(I) pixels.

g2=imnoise (f,‘poisson’); %generates Poisson noise from
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%the data instead of adding artificial noise to the data.

g3=imnoise (f,‘speckle’,.04); %g3 = f+n*f, where n is uniformly

%distributed random noise with mean 0 and variance .04.

Some noisy images are displayed in Figure (6.3).

Figure 6.3: Original lena image and noisy images with additive “salt and pepper noise”
with noise density .05, “Poisson noise” generated from the image itself and multiplicative
“speckle noise” with uniform noise variance .04.

Since white Gaussian noise is the most common, we will illustrate our denoising pro-

cedure for an image corrupted with additive Gaussian noise with mean zero and variance

.01. Next thing is to obtain a global wavelet threshold which is obtained using the following

MATLAB command.

[thr,sorh,keepapp] = ddencmp (‘den’,‘wv’,x); %‘den’ means

%denoising and ‘wv’ means the filterbank is wavelets

In the output, “thr” gives a global positive threshold, “sorh” gives the default value

‘s’ which means soft thresholding and “keepapp” gives the default vale 1 which means the

approximation coefficients are kept, not thresholded. The other option for “sorh” is ‘h’ for

hard thresholding and the other option for “keepapp” is 0 for thresholding approximation
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coefficients. Since, as we will see, thresholding approximation coefficients removes important

features of an image, we always keep approximation coefficients and only threshold detail

coefficients.

We will also illustrate the denoising procedure using Bayes soft thresholding explained in

Section (6.6). Since it is a level dependent thresholding, unlike “thr” in global thresholding,

“bayesthr” is going to be a matrix of size 3 by the level of decomposition. All the columns

are equal and the three entries of each column give the thresholds for horizontal, vertical

and diagonal detail coefficients at each level respectively.

Next thing is to choose a filterbank of wavelets and the level of decomposition. In

MATLAB, we do this by specifying the mother wavelet ψ. Figure (5.3) gives examples

of some mother wavelets. We will observe the denoising process of the image of “Lena”

using a number of different wavelets, namely, Daubechies 4, Daubechies 1, Haar, Symmlet

4 and Biorthogonal 6.8. These have been selected from a vast pool of wavelets available

in MATLAB. Looking at the summary tables, we see that denoising results are almost the

same for these different wavelets. These wavelets have different shapes and sizes. Due to

these variations, they will capture different local features of the image. Since these subtle

local features vary from image to image, we cannot conclude superiority of one wavelet over

another in general. Thus, the use of different wavelets are more for illustration purposes

than for comparison purposes.

Note that the level of decomposition of an image depends on the original size or scale

of that image. For example, an image of size 512× 512 is at original scale 2−9. At decom-

position level 3, the approximated image is going to be at scale 2−6 which is already too

small to be seen clearly. The maximum decomposition level for this image is 8 at which the

approximated image is going to be at scale 2−1. The decomposition structure is illustrated

with the image “A.tif” using Haar wavelets at decomposition level 3 in Figure (6.4) gener-

ated by the following MATLAB commands. MATLAB functions such as “wave2gray” and

“wavefast” are not built-in MATLAB functions and have been taken from the book “Digital
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Image Processing using MATLAB” [3].

f=imread (‘A.tif’);

subplot (2,2,1),imshow (f);title(‘original image’);

x=g;

wavelet=‘haar’; %filterbank is Haar wavelets; other options,

% for example, are ‘db4’, ‘sym8’, ‘coif3’, ‘bior6.8’.

level=1; %level 2 decomposition

[c,s]=wavefast (f,level,wavelet);

subplot (2,2,2),wave2gray (c,s,8);title (‘ ‘‘Haar" Level 1’);

level=2;

[c,s]=wavefast (f,level,wavelet);

subplot (2,2,3),wave2gray (c,s,8);title (‘ ‘‘Haar" Level 2’);

level=3;

[c,s]=wavefast (f,level,wavelet);

subplot (2,2,4),wave2gray (c,s,8);title (‘ ‘‘Haar" Level 3’);

Figure 6.4: Original image and Level 1, 2 and 3 decomposed structures using Haar wavelets.

Once we obtain approximation and detail coefficients from the decomposition, we leave

the approximation coefficients alone and choosing a threshold type (either global soft thresh-
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old or global hard threshold or Bayes soft threshold), kill off noise by thresholding the detail

coefficients. Then a reconstruction out of these new detail coefficients and approximation

coefficients will produce a denoised image. MATLAB commands for this procedure is given

below.

>> f=imread (‘lena.png’);

>> g=imnoise (f,‘gaussian’,0,.01);

>> subplot (4,2,1),imshow (f);title(‘original image’);

>> subplot (4,2,2),imshow (g);title (‘noisy image’);

>> x=g;

>> [thr,sorh,keepapp] = ddencmp (‘den’,‘wv’,x);% ‘den’ means

% denoising and ‘wv’ means the filterbank is wavelets

>> wavelet=‘db4’; %filterbank is Daubechies 1 wavelets; other options,

% for example, are ‘haar’, ‘sym4’, ‘db1’, ‘bior6.8’.

>> level=1; %level 1 decomposition

>> thresholdtype=‘s’; %soft threshold; other option is ‘h’

>> keepapp=1; %approximation coefficients are kept, not thresholded;

% other option is 0

>> xdsk = wdencmp (‘gbl’,x,wavelet,level,thr,thresholdtype,keepapp);

>> xdsk=uint8 (xdsk);

>> subplot (3,2,3), imshow (xdsk);title(‘soft denoised, app. coeff. kept’);

>> [C,S]=wavedec2 (g,level,wavelet);

>> st=(S (1,1)^2)+1;

>> zer=length (st:1:length (C));

>> A=C (1:st-1);

>> B=zeros (1,zer);

>> bayesC=[A,B];

>> var=length (C)-S (size (S,1)-1,1)^2+1;
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>> sigmahat=median (abs (C (var:length (C))))/0.6745;

>> for jj=2:size (S,1)-1

% for the H detail coefficients

coefh=C (st:st+S (jj,1)^2-1);

thrHjj=bayes (coefh,sigmahat);

bayesC (st:st+S (jj,1)^2-1)=sthresh (coefh,thrHjj);

st=st+S (jj,1)^2;

% for the V detail coefficients

coefv=C (st:st+S (jj,1)^2-1);

thrVjj=bayes (coefv,sigmahat);

bayesC (st:st+S (jj,1)^2-1)=sthresh (coefv,thrVjj);

st=st+S (jj,1)^2;

% for Diag detail coefficients

coefd=C (st:st+S (jj,1)^2-1);

thrDjj=bayes (coefd,sigmahat);

bayesC (st:st+S (jj,1)^2-1)=sthresh (coefd,thrDjj);

st=st+S (jj,1)^2;

>> end

>> bayesthr=zeros(3,size(S,1)-2);

>> for jj=2:size (S,1)-1

bayesthr(1,jj-1)=thrHjj;

bayesthr(2,jj-1)=thrVjj;

bayesthr(3,jj-1)=thrDjj;

>> end

>> xb=waverec2 (bayesC,S,wavelet);

>> xb=uint8 (xb);

>> subplot (3,2,5), imshow (xb);title (‘Bayes soft denoised’);

88



Using different thresholds and different levels of decomposition, the denoising effect can

be compared. The comparison can be based on several versions of error between a noisy

image and its denoised version. We will do some comparison using maximum entrywise

difference (Maxabs), mean square error (MSE) and signal-to-noise ratio (SNR) which have

been discussed in Section (2.5) using the following MATLAB commands which, in turn,

uses previously written MATLAB functions “compare11.m” and “wpsnr.m” that computes

MSE and SNR respectively.

>> ff=im2double (f);

>> xddsk=im2double (xdsk);

>> maxabssk=max(max(abs(ff-xddsk)));

>> msesk=compare11 (ff,xddsk);

>> snrsk=wpsnr (ff,xddsk);

Table (6.1) summarizes the denoising results for Noisy Lena with Daubechies 4 wavelets

at decomposition level 1 obtained in Figure (6.5). The global threshold for hard and soft

thresholding is 133.3075 and Bayes Shrink thresholds for horizontal, vertical and diagonal

coefficients are 132.0946, 81.979 and 188.8918 respectively.

It is observed that by thresholding approximation coefficients we lose important features

of the image and significantly reduce the quality of the image. In fact, SNR values for

denoised images obtained by thresholding approximation coefficients are much less than the

noisy image itself.

Tables (6.2) and (6.3) below summarizes the denoising results for Noisy Lena with

Daubechies 4 wavelets at decomposition levels 2 and 3 obtained in Figures (6.6) and (6.7)

respectively. Since we have the same filterbank of Daubacies 4 wavelets, we have the same

global threshold and Bayes thresholds for decompositions at different levels.

From the summary tables, we can compare the denoising effects for different levels of

decomposition. Note that hard and soft global thresholding do not perform well with the

decomposition at level 3. This reflects the fact that thresholding the decomposed coefficients
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at level 3 removed some essential features of the image. However, Bayes soft thresholding

is consistently improving the quality of the denoised image with each higher level decompo-

sition.

Table 6.1: Summary of denoising results for Noisy Lena with Daubechies 4 at level 1
Soft threhold-
ing with app.
coeff. kept

Soft threshold-
ing all coeff.

Hard thresh-
olding with
app. coeff.
kept

Hard thresh-
olding all
coeff.

Bayes soft
thresholding

Maxabs 0.3216 0.5373 0.3373 0.4471 0.3098
MSE 0.0530 0.2548 0.0530 0.093 0.053
SNR 35.3768 17.9892 35.3768 28.2256 35.3771

Table 6.2: Summary of denoising results for Noisy Lena with Daubechies 4 at level 2
Soft threholding with
app. coeff. kept

Hard thresholding with
app. coeff. kept

Bayes soft thresholding

Maxabs 0.3804 0.3569 0.3255
MSE 0.0419 0.0411 0.0373
SNR 35.4222 35.6923 36.6216

Table 6.3: Summary of denoising results for Noisy Lena with Daubechies 4 at level 3
Soft threholding with
app. coeff. kept

Hard thresholding with
app. coeff. kept

Bayes soft thresholding

Maxabs 0.4588 0.4118 0.2824
MSE 0.049 0.0443 0.0347
SNR 32.9875 34.3918 37.6334

Table (6.4) summarizes the denoising results for Noisy Lena with Haar wavelets at decom-

position level 2 obtained in Figure (6.8). The global threshold for hard and soft thresholding

is 133.3075 and Bayes soft thresholds for horizontal, vertical and diagonal coefficients are

156.8834, 72.8668 and 120 respectively. Note that soft thresholding is not effective in this

case as it is reducing the SNR value of the noisy image. So, it verifies our description in

Section (6.6) computationally that soft thresholding is generally weaker than hard thresh-

olding and that we need to decrease the soft threshold in order to get the same denoising

effect as that of the hard threshold.

Table (6.5) summarizes the denoising results for Noisy Lena with Symmlet 4 wavelets

at decomposition level 2 obtained in Figure (6.9). The global threshold for hard and soft
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Table 6.4: Summary of denoising results for Noisy Lena with Haar at level 2
Soft threholding with
app. coeff. kept

Hard thresholding with
app. coeff. kept

Bayes soft thresholding

Maxabs 0.5294 0.5294 0.4431
MSE 0.0502 0.0486 0.0432
SNR 34.9354 35.4333 36.6617

thresholding is 133.3075 and Bayes soft thresholds for horizontal, vertical and diagonal

coefficients are 236.5832, 97.8961 and 120.0934 respectively.

Table 6.5: Summary of denoising results for Noisy Lena with Symmlet 4 at level 2
Soft threholding with
app. coeff. kept

Hard thresholding with
app. coeff. kept

Bayes soft thresholding

Maxabs 0.4275 0.3608 0.3059
MSE 0.0419 0.0411 0.373
SNR 35.4049 35.6728 36.5901

Table (6.6) summarizes the denoising results for Noisy Lena with Biorthogonal 6.8

wavelets at decomposition level 2 obtained in Figure (6.10). The global threshold for hard

and soft thresholding is 133.3075 and Bayes soft thresholds for horizontal, vertical and

diagonal coefficients are 61.4229, 52.5046 and 110.0743 respectively.

Table 6.6: Summary of denoising results for Noisy Lena with Biortho 6.8 at level 2
Soft threholding with
app. coeff. kept

Hard thresholding with
app. coeff. kept

Bayes soft thresholding

Maxabs 0.4157 0.3176 0.2824
MSE 0.0406 0.0399 0.0378
SNR 35.6836 35.8594 36.603

Summary tables of denoising results with different wavelets reveal that Bayes Shrink

thresholding performs consistently the best as it has the highest SNR value. Hard and soft

thresholding schemes set the same global threshold for all three different orientations of de-

tail, namely, horizontal, vertical and diagonal. On the other hand, Bayes Shrink thresholding

scheme is more sophisticated as it sets different thresholds for these different orientations.

Thus, Bayes Shrink thresholds work better than global hard and soft threholds.

Let us now look at denoising results for a different kind of image. Figure (6.11) shows

an image which comes from Affymetrix microarray for wheat (Molly genotype) at one day

after Hessian fly attack. We believe that the image we have observed is corrupted with
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noise and would like to denoise this image using the filterbank of Daubechies 4 wavelets at

decomposition levels 1, 2 and 3. Since we cannot know what the original image is, denoising

results are summarized with figures only.
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Figure 6.5: Original Lena, Noisy Lena(SNR=35.2193), and several denoised versions of it
with wavelets Daubechies 4 at level 1 (Global threshold=133.3075 and Bayes thresholds:
H=132.0946, V=81.979, D=188.8918): Soft-denoised keeping app. coeff.(SNR=35.3768),
Soft-denoised thresholding app. coeff.(SNR=17.9892), Hard-denoised keeping app. co-
eff.(SNR=35.3768), Hard-denoised thresholding app. coeff.(SNR=28.2256) and Bayes soft-
denoised (SNR=35.3771).
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Figure 6.6: Original image, noisy image(SNR=35.2193), and several denoised versions of it
with wavelets Daubechies 4 at level 2 (Global threshold=133.3075 and Bayes thresholds:
H=132.0946, V=81.979, D=188.8918): Soft-denoised keeping app. coeff.(SNR=35.4222),
Hard-denoised keeping app. coeff.(SNR=35.6923) and Bayes soft-denoised (SNR=36.6216).
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Figure 6.7: Original Lena, Noisy Lena(SNR=35.2193), and several denoised versions of it
with wavelets Daubechies 4 at level 3 (Global threshold=133.3075 and Bayes thresholds:
H=132.0946, V=81.979, D=188.8918): Soft-denoised keeping app. coeff.(SNR=32.9875),
Hard-denoised keeping app. coeff.(SNR=34.3918) and Bayes soft-denoised (SNR=37.6334).
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Figure 6.8: Original Lena, Noisy Lena(SNR=35.2193), and several denoised versions
of it with wavelets Haar at level 2 (Global threshold=133.3075 and Bayes thresholds:
H=156.8834, V=72.8668, D=120): Soft-denoised keeping app. coeff.(SNR=34.9354), Hard-
denoised keeping app. coeff.(SNR=35.4333) and Bayes soft-denoised (SNR=36.6617).
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Figure 6.9: Original Lena, Noisy Lena(SNR=35.2193), and several denoised versions of
it with wavelets Symmlet 4 at level 2 (Global threshold=133.3075 and Bayes thresholds:
H=236.5832, V=96.8961, D=120.0934): Soft-denoised keeping app. coeff.(SNR=35.4049),
Hard-denoised keeping app. coeff.(SNR=35.6728) and Bayes soft-denoised (SNR=36.5901).
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Figure 6.10: Original image, noisy image(SNR=35.2193), and several denoised ver-
sions of it with wavelets Biorthogonal 6.8 at level 2 (Global threshold=133.3075 and
Bayes thresholds: H=61.4229, V=52.5046, D=110.0743): Soft-denoised keeping app. co-
eff.(SNR=35.6836), Hard-denoised keeping app. coeff.(SNR=35.8594) and Bayes soft-
denoised (SNR=36.603).
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Figure 6.11: Image of Wheat (Molly genotype) at one day after Hessian fly attack

99



Figure 6.12: Several denoised versions of Wheat with wavelets Daubechies 4 at level 1
(Global threshold=23.8623 and Bayes thresholds: H=0.4710, V=0.4666, D=1.9850).
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Figure 6.13: Several denoised versions of Wheat with wavelets Daubechies 4 at level 2
(Global threshold=23.8623 and Bayes thresholds: H=0.4710, V=0.4666, D=1.9850).
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Figure 6.14: Several denoised versions of Wheat with wavelets Daubechies 4 at level 3
(Global threshold=23.8623 and Bayes thresholds: H=0.4710, V=0.4666, D=1.9850).
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Conclusion

The main work in this report has been to demonstrate an implementation of two image

processing techniques, namely, “Bayes classification” and “Wavelet denoising” along with

the related theories. Although examples of actual images being processed has been dealt

with in detail, a considerable amount of effort has also been put toward developing a self-

contained theory on these techniques.

Before Bayesian classification is exemplified, some theory on Bayesian statistics and

Bayesian estimator has been presented. Having developed some related theory as well as

other suitable concepts, Bayes classification method has been described and illustrated with

an example. A satellite image with four easily identifiable classes, namely, sand, settlement,

vegetation and road has been chosen for this purpose. Using some training samples of each

class from this image, a Bayes recognition system has been developed. This system is checked

for stability with independent samples and then applied to a randomly selected region of the

image for classification. The procedure for developing a Bayes recognition system as well

as the implementation of the system has been illustrated with plenty of figures. The results

of classification by the developed recognition system have been summarized in a table. All

necessary MATLAB codes that have been used to generate this illustrated example are

presented.

The other image processing technique that has been studied is image denoising via

wavelet thresholding. Since this technique dealt with wavelet theory, some background in

Fourier Analysis was deemed inevitable to describe what wavelets are and how they work. A

good amount of effort has been put toward a detailed review of some Fourier Analysis results

and their application in solving some selected problems in Stephen Mallat’s book titled “A

wavelet tour of signal processing - the sparse way”[8]. This book has been the primary source

of material as many statements, theorems, proofs as well as figures in this report have been
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taken from this book whose online source is http://www.ceremade.dauphine.fr/ peyre/wavelet-

tour/. After developing a wavelet theory required for our image denoising technique, imple-

mentation of this technique on noisy images using MATLAB has been described with several

illustrations. An original image of “Lena” has been used for this purpose. The original image

has been corrupted with some randomly generated Gaussian white noise. Three different

thresholding schemes, namely, soft threholding, hard thresholding and Bayes Shrink thresh-

olding has been selected for comparison. Among these three, it is seen that Bayes Shrink

thresholding consistently performs the best. This is expected since it takes into account

the prior distribution of wavelet coefficients and the variability of these coefficients in three

different orientations, namely, horizontal, vertical and diagonal, and assigns three different

thresholds accordingly as opposed to a common threshold for all the orientations in the

cases of Global soft and hard thresholding. Also, a number of different wavelets have been

used in the denoising process. We can already find a huge pool of commonly-used wavelets

in MATLAB which differ in shape and size. Due to this variation, different wavelets capture

different local features of an image. Since local features are subtle characteristics and they

vary from image to image, we do not gain any insight by comparing different wavelets. Thus,

the observation of the denoising effect that we have done using a number of select wavelets

is merely for the sake of illustration and not for comparing between these wavelets. How-

ever, we can compare the denoising results with Daubechies 4 wavelets for different levels of

decomposition. The results show that the higher the decomposition level, the better is the

denoising with Bayes Shrink thresholding scheme. This is due to the fact that more subtle

features of the image can be read by more wavelet coefficients at higher levels.
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