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1. INTRODUCTION

Ratio estimators have been used quite extensively in sajnple surveys,

not only as estimators of population ratios, but eis estimators of population

means and totals. In the latter case they involve the use of an extra

variable, correlated with the veiriable of interest. These ratio estimators,

although known to be bieised, have often been preferred over the traditional

unbiased mean per unit estimator, since it has been demonstrated that in a

great many situations the ratio estimator has a smaller variance. A major

drawback to the ratio estimator is the fact that it is biased, although in

large samples it has been demonstrated that the bias is negligible. In

very small samples, or even moderate samples from a stratified population,

no really convincing argument has been given for the negligibility of the

bias, since no exact expression for it is available. Several authors have

avoided this question of bias by developing methods which eliminate the

bias while retaining the essential properties of a ratio estimator.

This paper reviews the usual ratio estimator, giving optimiun conditions

for its use. The bias is approximated and limits for the bias are given,

€is well as cases that might arise in which the bias might become an

important factor. Methods are then considered which give rise to reduced

bias estimators, as well as unbiased ratio-type estimators. The latter

is divided into two major classes of development, (l) the elimination of

bieis through the use of commonly used sampling schemes, and (2) the

elimination of bias through the use of certain modifications of sanqpling

schemes making the usueil biased estimator unbiased.



2. THE BIASED RATIO ESTIMATOR

The classic estimator for a population mean, 7, or population total,

Y, has been the sample mean, y, and inflated sanqjle mean, N y, where N is

the finite population size. In the past qviarter of a century, the ratio

estimator, using a variable x correlated with the variable of interest

y to estimate population means and totals, has come into prominence,

especieaiy in surveys. The usual simple ratio estimator is

the ratio of the two sample means. Corresponding estimators of the pop-

vilation mean and total are; respectively,

and

\ = y/x • X
1

^1

where X is the population total of the x values. It is noted that

except for estimating the ratio, the population total of the x values

has to be known.

Although these estimators are known to be biased except in certain

situations, it is very common in practice, that they have a smaller variance

than those based on the mean per unit estimator,

y =

n

n

Cochran (2) explains, that for large samples, if the correlation coef-

ficient between y and x is greater than one half of the coefficient of

variation of x divided by the coefficient of variation of y, the ratio

estimate of Y has a smaller variance than the simple expansion method, N y.



This occurs very often in survey practice. One of the common uses of

ratio estimators is when x. is the value y. at some previous time,

and here the two coefficients of variation may be about equal. If the

coefficient of correlation is greater than 0.5, in this case, the ratio

estimate is superior.

Cochran (2) also applied the Gauss-Markov Theorem to show that if the

regression of y on x is a straight line through the origin, and the

variance of y about this line is proportional to x. , then the ratio

estimate is a minimum-variance unbiased estimator. It is also known that

in l«u:ge samples the distribution of R , the simple ratio estimator,

tends to a normal distribution, ajid since the bias is of order 1/n, the

bias tends to zero.

There are cases when the existence of a bias becomes an importajit

factor. Goodmam and Hartley (7) state there is one very important class

of surveys in which the bias may become of vital interest. This arises

when drawing small samples from a large number (k) of strata. It often

occurs in sampling, that the bias in each sample will be of the same sign,

therefore the bias in the estimate of the population total will be k

times the bias for a stratum total. Since the variance only multiplies

by k, the mean square error of the estimate of the popvilation total will

be of order of magnitude k , whereas if unbiased the order of magnitude

would be k. It is evident that an xmbiased ratio estimator in this case

would be of great adveintage. Lahiri (l8) emphasizes particularly the risk

involved in using the usual (biased) ratio-estimator in small samples from

many strata, so, since no such risk is involved in the unbiased ratio-type

estimators, it is easily seen that more extensive stratification is possible.



Devices for reducing ernd eliminating the bias have mostly been developed

since the early 1950 's. Although many of the estimators arrived at seem

very burdensome to calculate, this seems like an unimportant objection to

their use, since much survey work is being done by computers.

3. THE ALMOST UNBIASED RATIO-TYPE ESTIMATOR

3.1. Early Work

Since the bias in the usual ratio estimator

\ = y/x

is, essentially, the product of two random variables, the exact expression

for the bias cannot be obtained in a straightforward manner. The first

practical method proposed for finding the bias used a Taylor's series

expansion.

Ri - R = y/x - R = 2^^-^
X

= y - Rx
^
X ^ y - Rx ^

-
/'___J^___i

X X X X + (x - X)

X X

X X x'^

Cochran (2) used the above expression to find the leading term in the

bias , which is



iL^L^ (rV(x) - C(x,y))

where

V(x) is the population variance of x

C(x,y) is the population covariance of x and y.

These results were sometimes used to obtain checks on the size of the bias

in a specific sample by substituting sample values, but until 1951, no

serious thought was given to finding unbiased estimators of the ratio-type.

3.2. Koop's Estimator

Koop (IT) in 1951, found Taylor's theorem to be an unsatisfactory

method of expansion to find the bias of the simple ratio estimator since it

uses the fact that R is differentiable near (Y, X). Since R^ is not

continuous, it is therefore not differentiable. Koop (IT) obtained an

expression for the bias by using a binomial series expansion, then sub-

stituted sample values in the expression for the bias, reducing it to any

desired degree. The following estimator due to Koop is xinbiased to order

1/n^.

p -/- w rS^(^) !llil£lwN-n) w2.!l2^ ^03^^'^^ (n-n)(N-2n)
Rg = y/x - 1/n (^^ - _ _ j (^J- 1/n [-TZ^ 13 ] ^I^^

X X y y X X

3(n-l) (i£U})l ^ii^y'^^^ ^^\ N(N-n)(N-n-l)

^3^-2 " - -3 -' (n-l)(N-2)(N-3)

w 3 r!ol4^I:^ ^13^^*''\ (N-n)(N^-6Nn •>- N -t- 6n^;
- 1/n

I _4 - - -3 ^ (N-l)(N-2)(N-3)



where

„ n (x - x)

1=1

-.2

S%) - ^I
iy, - y)'

n-l

I (y, - y)'(x^ - x)^

„ , N k=l
^ ^

This formula was admitted by Koop to be a clupisey and crude method having

possibly large sampling errors. However, the method used to obtain this

estimate is of theoretical interest. Koops procedure was as follows:

where

n n

y/^ = h. I Ix
1 1

^

N N-n N N-n
= [h^ - I yj / [l\ - I yj

_ NX - (N-n)y'

NX - (N-n)x'

N-n

I yv

y' =
N-n



Koop (17) states the conditions that must be satisfied to expand

(1 -
(~f7~)

—
J

as a binomial series and shows the conditions are
X

satisfied. For an exact proof, see Koop (17) • He mentions another method

for finding the bias which involves writing

y/x = y/x (1 + ^-^) (1+^^^)"''

and finding its expected value by the expansion of the last term by a

binomial series. This expansion resulted in the same expression for the

bias as the previous method.

3.3. Quenouille's Estimator

Quenouille (25) in 1956, developed a method for reducing bias in a

large class of estimators. He considered the general problem of estimating

an vinknown parameter T, from a function t (x, , x_, .... x ) of a series of
n 1 2' ' n

observations taken in random order, the estimator can often be written as

a fvmction of the unbiased estimates of the cumulants, k. , k., ..., k .

1 2 m ,

Quenouille noted that the moments of the estimates of the c\imvilants are

power series in 1/n and therefore the bias in t could be expressed as

a power series in 1/n, if the following conditions hold:

(1) m is independent of n

(2) t can be exi)anded by a Taylor's series

(3) t is consistent
n

If the above conditions hold, then
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E(T3ias) = a. , + a^ , o + • • •

1/n 2/n''

If one considers an estimator t
'

,

n

where

f = nt - (n-l)t , ,n n n-1*

then

A. "t* fl.

^(^;^ = "^ - Vn^
- -^-y^ - •••

n

and therefore t' is unbiased to order l/n^^ See Quenouille (25) for

proof of this. Also t",
n

where .
'

n^ t ' - (n-1)^ t'
^.11 _ n n-1

n " 2 , - v2
n - (n-1)

is biased to order 1/n^ only, and so on. He also stated that any subset

of the observations may be used to correct for bias. Another result was

the estimator t

'

2p

*Pr^
= 2t - t

2p 2p p

which is free from bias to order l/n^.

Quenouille worried somewhat about loss of efficiency in a procedure

like this, but stated that if the average of all possible sets of n-1

observations, t^_-j^, is used in place of t _j^, little loss of efficiency

should result.



Durbin (6) in 1959, applied Quenouille's findings to ratio estimators,

finding that if the regression of y on x is linear and x is normal,

that Quenouille's device actually decreased the varieuice. The estimate

Durbin considered was

where

R is the simple ratio estimate from a sample of size n

R^, R^P eire the simple ratio estimates from the two halves

of the sample.

The following example from Deming {k) illvistrates its use.

Characteristic Seimple 1 Sample 2 Both

Total Rent $2720 $2350 $5070

Total number of delinquents 33 31 6k

Average rent $82.1l2 $75.81 $79.22

R = 2(79.22 - 1/2 (82.1+2 + 75.81)

= $79.33 .

Durbin (7) also considered the case where x has a gamma distribution

eind found that, although the variance is increased by using R , the mean

sqviare error is decreased. For proofs of these cases, see Durbin (6).

Kish, Namboodiri, and Pillai (15) also look at Quenouille's results

and were dissatisfied with it, saying the degree of reduction in bias didn't

warrent the increased cost in computation, sind that there were no practical

methods for estimating its variance.
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The general form for Quenouille's method as applied to ratio esti-

mates was discussed by Rao (32). This form is

where

R is the usual biased ratio estimator,

R. is the \isuaJ. ratio estimator omitting the j-th group,

g is the number of groups of equal size into which the

sample of size n is split.

This form with g=2, reduces to the estimator R„ considered by

Durbin. Rao, assuming the regression of y on x was linear and that

X was normally distributed, fovind the variance of R. for general g

-3
to order n . He showed that both the bias and the variance of Ri

were decreasing functions of g, and therefore the optimum choice for

g would be n. The estimate

n-1
n

R^ = nR, - ^^^^ y R,
,

may be preferred to others.

R is the estimate obtained by omitting the j-th observation.

Tin (38) compares Quenouille-based estimators with others, discussed

later in this paper, but also considers two extensions. One extension led

to the same resiilt previously considered by Rao,
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He states that as g is increased, the variance becomes smaller as Rao

proves assuming normality, but Tin also says it becomes more biased. He

also states a condition for the efficiency of R, to be greater than the

efficiency of R,. .

For

k

t
X

where

" > 12 (^)

k_ is the ij cumulajit of x and y. R, is less biased and more
ij

' k

_2
efficient than R if n is chosen between 2 and n k /X . For a dis-

cussion of this, see Tin (38).

Tin's other extension was to divide the sample into two halves; and

then divide each of these fiurther in two halves. He then obtains the

estimator

h = ^/3 R, - (R,, * R,2) * 1/12 (Rill - Rii2 * «121 * «122^

where

B. is the \isu£il ratio estimate

R^ is the usual ratio estimate ceLLculated from the J-th

half of the sample

R , is the usual ratio estimate calculated from the k-th

half of the j-th half of the sample.

This was shown by Tin to be less biased, but also less efficient than

both the simple ratio estimator and Durbins estimator. As Cochran (2)

mentions, these estimators derived from Quenouille's general method can not
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be expected to be of help when small saiaples are taken within strata,

of course this is when an unbiased or reduced bias estimator would be of

the most help. These estimators are usefvil however in another respect,

when taking only moderate samples from a population having wide variation

in the x variate.

3.^. Beale's Estimator

Beale (l) derived an asymptotic expansion for both the bias and the

variance of the simple ratio estimator in terms of the coefficient of

variation. Using this he obtained the following estimator

1 + (1 _ 1) s(x .y)
^n n'

R = R ^-^

*n N' -2
X

vhere

\ = y/x,

S(x,y) = sample covariance,

2
S (x) = sample variance of x.

This estimator removes the leading term in the bias euid also decreases its

asymptotic variance. Beale also mentioned that the extra cost is negligible

if one wanted to estimate the vcuriance, since the above quantities are needed

for this. This appeared to Tin (38), to be one of the better ratio-type

estimators, from the standpoint of degree of bias and efficiency.

Tin (38), in an effort to reduce the bias in the simple ratio estimate,

developed the following estimator
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h'h (^*(^-f' (%^-%^))
X y

where the symbols are defined as in R . This has the same general form

as Scale's estimator when neglecting terms of order l/n^. This estimator,

also less biased than the simple ratio estimator, is more efficient, a

surprising result to Tin. He proved that this is not true since, by con-

tinually decreasing the bias, there is a point when the estimator starts

becoming less efficient. Tin (38) also compared R^ and R^ above, with

R , Durbin's application of Quenouille's method to ratio estimates, and R^

,

the simple ratio estimate. Tin showed that Beale's estimator was the least

biased, followed by Tin's modified ratio estimator which was less biased

than Quenoville's method as applied by Durbin. A comparison between Durbins

estimator and the usual estimator has already shown Durbin's to be superior

in most cases. The variances were then compared and, to order 1/n^ or l/n^,

the modified ratio estimator Rg was the most efficient followed by Scale's

estimator and then Durbin's estimator. Tin also showed that there is little

difference in their approach to normality in large samples, but for small

samples (n=50) the modified ratio estimator appears to be the best in regard

to bias, efficiency, and approach to normality, followed by Beale's, Durbin's,

emd the simple ratio estimator in that order.

Another modification of R was obtained by Tin, by subtracting an

estimate of the bias, to obtain a less biased but also less efficient esti-

mator than R„. The estimator was

«9 " «1 (^ * (^- 1^
(Slx^. s!(|l) ^, _ 3(i Ij (Sfixljj)
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where the symbols are as defined previously.

An estimate of the variance of R^, R , R or Rq to order l/n, sup-

plied by Tin (37) is

.2, . J2.

X y X y

which does not involve much extra coniputation , since S^(x) and S(x,y) are

needed in the estimates, R_ and Rn.To
3.5. Jones Method For Correction of Bias

Jones (lU) wrote about a graphic procedure used by Tukey to get an

estimate of the bias and correct for it by using replicated samples. Since

the bias contains the factor l/n, it is obvious that as the sample size

increases the bias decreases rapidly. If it is inconvenient in some way,

or costly to take large samples, one may use the following procedure to get

an estimate of the ratio one would obtain by increasing indefinitely the

size of the sample. The procedure is as follows. Divide the sample into

g subsamples, calculate the simple ratio estimator for each of the g sub-

samples, and average them. Next combine the g subsamples in equal groups

of size m. obtaining g/m. groups for each choice of m. . Find the

average of the simple ratio estimator calculated for each of the g/m. groups.

To illustrate this part of the procedure, let us consider the case g=10.

Here the possible choices for m. , are m^ = 2, m^ = 5, m^ = 10, yielding

5,2, and 1 groups respectively. This gives i+1 average ratios. The

second step is to plot these on coordinate paper against the number of sub-

sample estimates used to compute the average. For g=10, the averages

would be plotted 10,5,2, and 1 unit away; respectively, where the length of
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the unit is inunaterial. The third step is to draw the line of best fit.

Extrapolation to zero gives a quick estimate, R , of the ratio one would

obtain by increasing indefinitely the size of the sample. This procedure

should also be useful when relationship between the bias ajid the reciprocal

of the sample size is not linear. An example of the use of this process

follows

.

A sample of size 50 was taken from a pop\xlation with Y=UO, X=80.

The sample was randomly divided into 10 subgroups, y/x was computed for

each of the 10 subgroups and their average found. The average for 5,2, and

1 subgroups were also found by combining the 10 subgroups. The following

results were obtained.

Table 1. Sample Data for Jone's Graphical Method

.506

»50U

.502

.500

MB

Average for 10 groups

M II c II

II II 2 "

II II
-J

II

- .501+8

- .1+980

- .5009

10

Fig. 1. Illustration of Jone's Method
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The resulting estimate of the ratio one woxxld obtain by increasing

the sample size indefinitely is .5000.

3.6. Murthey and Naiijamma's Estimator

Murthey and Nanjamma (2l) developed a technique to estimate the bias

of the simple ratio estimate. This was used to obtain an almost unbiased

estimate by using a correction factor. The simple ratio estimate is

Rj, = y/x .

Another biased estimate often vised is the average of the sum of ratios

n
R

i=l

1
"

^ = - I y./x. .

n n >,''i 1

This latter estimator is often used when a ratio estimator seems appropriate,

but the variance of y doesn't increase linearly with x.

Mxirthey and Nanjamma (2l), using a series expansion and neglecting

terms of degree greater than two, expressed the bias of R as

^1 " ~2 (^^^^^ - C(x,y))
,

€uid the bias of R as
n

^n-rj/'V^'-

where

B(y. /x ) is the bias of y./x,

,

1 1 'i' i»

V(x) is the population variance of x,

C(x,y) is the population covariance of x and y.
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n

The queuitity B, can be written,

n

* n 1=1

Therefore to the second degree of approximation

^n = " ^1'

and

^K - \) = \ - ^ = ("-i)\
'

.

So an unbiased estimate of the bias of R, to the second degree of ap-

proximation is

R - R,
_n 1

n-1

This is vised to correct R for its bias obtaining.

n R - R
1 n

R.
11 n-1 •

Another estimator, unbiased to the third degree of approximation is

2n R- n R^ 2 R
R = i. 2 n
"llA n-1 n-2 * (n-l)(n-2)

where the sample was split into two parts and

^2 ^ y^/^ + y2''^2 »

\ = y/x .

«n = ^ I^iZ-i .
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Unbiased Ratio-Type Estimator

The fact that the standard ratio estimators used are biased estimators

has led to the exploration and development of unbiased ratio-type estimators,

These estimators, though having the desirable properties of a ratio esti-

mator are unbiased. Research in this field can be classified into two broad

categories. The first, the development of an unbiased estimator through

the use of commonly used seunpling schemes, has been explored by Hartley and

Ross (195^), Robson (1957), Goodman and Hartley (1958), Mickey (1959),

Robson and Vithayasai (1961), and Williams (1961), among others. The second

class of development was concerned with developing and modifying certain

sampling schemes, so that under these schemes, the usual ratio estimator

becomes unbiased. Major contributions here have been Lahiri (1951),

Midyuno (1952), Horvety and Thompson (1952), Raj (195^), Mickey (1959),

Nanjamma, Murthey, and Sethi (1960), Williams (1961), and Pathak (1961*).

Both of these classes will be reviewed in this report with some compeu-isons

between these and the previously mentioned reduced-bias estimators,

k, THE UNBIASED ESTIMATOR (COMMONLY USED SAMPLING SCHEMES)

^4.1. Hartley and Ross's Estimator

The first developments in unbiased-ratio-type estimators employing com-

monly used sampling schemes were by Hartley and Ross (12) in 195't. In brief

they considered

R = -ly./x. ,n n ^"'1 1
•

one of the standard biased estimators, and connected it for bias by examining

the population covariance of y/x and x.
*
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Gov (y/x,x) = E{y/x'x) - E(y/x)E(x)

6uid so

E(y/x) = ^^ - Gov (y/x,x)
^^^'""^

E(x) E(x)

= Y/X - ^ Gov (y/x,x)
X

Since

E(R^) = E(y/x)

the bias in R is given by - - Gov (y/x,x), an exact expression. An vin-

X

bieised estimate of this covariance is

^^ hr, - -r)U, - -^) '^ (9 - -r -^)

Where

^i " ^i/^i

R connected for bias becomesn

^2 ~ \ —

^

(y - r x) .

^'^ '^ (n-l)N X

Hartley and Ross (12) gave an approximate variance, for leu-ge samples,

as

V(R^2) = i (V(y) + r2v(x) - 2RG (x,y))

where
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V(y) = population variance of y,

v(x) = popiilation standard deviation of x,

C(s,y) = popxxlation covariance of x and y,

R = Y/X . .

They state that this is also the approximate variance of R if terms up

to and including the quadratic are considered. Therefore they conclude

that while the bias is eliminated, the variance has not increased to any

degree. They also state that similar results for bias elimination in R-

may edso be applied. If this is done, we obtain

C(R x)
,

An exact formula for the variance of R ^ is given for any size sample

by Goodman and Hartley (7) if the finite population correction may be omitted,

as

V(R^2^ = -12 (^^y^ * ^p ^(^^ - 2R C(x,y) + ^ (V(r)V(x) + C(r,x)} '

nX

where

R is the population mean of the R. 's ,

V(r) is the population varisuice of the r. 's ,

C(r,x) is the popvilation covariance of r. and x. .

An exact formula obtained through using multivariate polykays was obtained

by Robson (3^).

Goodman euid Haxtley develop an extremely cmnbersome formula for an

unbiased estimate of the popvilation variance, (see Goodman and Hartley (7)).

In the same paper they developed a much simpler, also unbiased but with
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larger sampling error, estimate of the population variance by modifying the

sampling scheme. The procedure is as follows. First draw a reuidom sample

of m pairs (x. , y. ) without replacement, then replace the sample and

draw ajiother sample of m pairs. This method makes the two sample

independent, whereas the random splitting of a sample of size n=2m, into

two heLLves will not. If the two samples are identical, reject the second

and draw another. If n < < N, the two sanqjles will usually have no

elements in common. The estimator

is an xinbiased estimator of Y and an \inbiased estimate of the VEU*lance

of Y^ is

2 (!) - 2
s^(5.

) = r (Y. - Y, f
'"^

± d m

where

i

^"^
*i' ^i' ^i

^^® ^^® sample means from the i-th sample. The unbiased

estimate of the variance is based on only one degree of freedom, and if more

degrees of freedom are desired, k samples of size n/k could be drawn.

In stratified sampling the disadvantage of the one degree of freedom is

eliminated to a certain degree. The following example illustrates the use

of this method. In this example N=UOO and X=2. Two samples of size n=2

were drawn. ..
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X

1

2

1st Sample

y

3

6

r

3

3

*1 " •'•^ ^1 " ^'^ ^1 ' ^

2nd Sample

X y r

1» 8 2

1 2 2

^9 =2.5 yo = 5 ?o - 2

In an example like this, the finite popxilation corrections (^) and
N

\ji^i
- 2/Vju; can usually be replaced by 1.

Yr - 2(3) + 2(1*. 5 - 3(1.5)) = 6
lit,

1

Yj, = 2(2) + 2(5 - 2(2.5)) = h
11*2

Y =6iU=5

s2(Y ) = i (6-11)2 ^ ^ ^

^llt
^

This example was due to Goodman and Hartley (T).

Goodman and Hartley state that in large samples, where the approximate

formula for V(R^) is applicable, V(R^) will be smaller than V(E^^) in most

cases. Raj (30) showed that present comparisons are not valid for small

samples since the approximate variance formula definitely understates the

true variance. If x were symmetrical the understatement as a proportion

of the approximate variance exceeds three times the relative variance of

X with a higher underestimation if the distribution of x is negatively

skewed.
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Goodman and Hartley point out a special case where the variance of

the unbiased estimator is always smaller than the usual one. This is

when the conditional variance of r given x is decreasing with x,

i.e., the array variance of r decreases with increasing x in the

scatter diagram (x,r). For this kind of data, the unbiased ratio esti-

mator proposed by Hartley and Ross (12) is better than the simple ratio

method.

Olkin (23) estended Hartley and Ross's estimator to the case where

multi-auxiliary variables are used to increase precision. Considering

the case of p such auxiliary variables x,, Xp, ..., x , Olkin developed

the estimator '

«15
? - 7 ^ (N-l)n ,- ? - - .= > w.r.X. + ^7—TV (y - ) w.r.x.);
.^^ 111 N(n-l) ^ ^ .1 1 i"

an unbiased estimator of Y,

where

n
V /y

"^i = X ^i^^
i=l

and w. is chosen to minimize the variajice of R-ic* Common choices of w.

would be l/x.,y if the variajice of y increases with the square of x, or

1 if the veiriance of y appears to increase linearly with x. For a full

discussion of optimum choices of weights, see Raj (31).

k.2 Robson's Estimator

Robson (35), in 1957, applied the results of multivariate polykays

to obtain the previously mentioned exact variance formula for Heirtley and

Ross's unbiased estimator. He also obtained Hartley and Ross's estimator
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by using multivariate polykays. For a discussion of this see Robson (35).

In this same paper, Robson adjusted cinother standard biased ratio estimator

^^ which has greater precision than R, or R if the correlation is

X

negative between x and y, to obtain a corresponding unbiased estimator.

The bias of ^^-^
, an estimate of 7 is

X

E (^ - Y) = ^ (e(x y) - X Y) .

X X

= - Cov (x, y)
X

Therefore, an adjusted unbiased estimator of the ratio is

n

"16 ^^ - ^ • fell} J,<^
- ^> ^i

or

n

I \ y-

„ 1 rn(N-l) - - N-n i=l ^-
>

^16 =
^2 ^N(n-l)

""^ ~ N(n-l) n J *

Again using multivariate polykays, Robson (35) found for an unbiased esti-

mate of the variance of R-,/-. as the sample size becomes large,

2

s2 (R ^ = _iL S^(y) + S^(x) + 2 ^<^»y) + -^
(

S^(x) S^(y) * fs(x,y)l
^ l6' ^2-2 -2 - - n-1 ^ -2 -2nXy X xy xy

This was obtained by substituting the above sample estimates for population

values in the population variance.
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1*.3. Mickey's Estimator

Mickey (19) developed a method for producing a broad class of unbiased

ratio-type estimators, by using the fact that y - a(x-X) is an unbiased

estimator of Y for any choice of a. He also used the fact that for any

choice m of the n sampling units, the n-m remaining units can be con-

sidered a reuidom sample of n-m from the N-m units derived by omitting the

m given units. Mickey then chooses a as a function of the m selected

units and uses y - a(x-X) to get ein \inbiased estimate of the pop\ilation

of N-m xinits which leads to an unbiased estimate for the whole population

by utilizing the relationship between the two populations determined by

m, N, and the m selected units. Since y is a biased estimator, a(x-X)

is an estimate of the bias obtained by using the form of the biased esti-

mator to the subsample in estimating the sample mean, y. Mickey uses the

following formula to generate his estimators.

R = a(Z )X + T7^ fY(n) - a(Z )x(n)) - -7^ (Y(m) - a(Z^)X(m))
m m N(n-m; »• ^ ' m * N(n-m) ^ m ^

where

Z is the ordered set of observations on the first m seunple elements
m

1 < m < n, a(Z ) is a function of these observations to be determined, X(m),— m

Y(m) are the sums of the first m sample elements, X(n), Y(n) are the

sample totals. Particular estimators are generated by the choice of a(Z ),

and a general class of estimators is constructed by including all estimators .

of the form above applied to any permutation of the ordering of the ssunple,

weighted averages of such estimators, ajid estimators obtained from subsanples

of the given sample. A knowledge of the population one is sampling from
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helps in choosing fvinctions. When the variance in y increeises as the

square of x, Mickey's techniques lead to the estimator, R, pt Hartley and

Ross's estimator. When the variance increases linearly with x, Mickey's

estimator is

R ^ y(m)
^

(N-m)n ^- _ y(m) . -^

^^ x(m) N(n-m)X x(m)

where

y(m), x(m) are sample means of the first m observations. For

in=n-l, R^_ becomes

g (N-n^l)n (-_g -^

^® °-^ N(X) ^
°-^^

where

n nj^^^
Vl n /, -

J=l nx - X

Mickey goes on to develop another estimator for which he also develops

an easy formula to estimate its veuriance. Let R(m,n) denote an estimator R
m

based on a sample of size n. Suppose also there are k+1 integers

< m^ < ... m^, = n, and consider the k estimators

RCm^.m^), RCm^.m-), ..., R(mj^,n). The estimator Mickey developed was

1
^

^9 = k ^^^('"j' ""j+i^
•

He states an unbiased, non-negative estimator of the variance is
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2 , k
S %^=k(fciT I

^^^'"j' Vi^-S^

There is a great deal of flexibility since the R(m , m ) may be chosen as

Hartley and Ross's estimator, R _, R g, or other similar estimators. The

precision of R _ could be improved by averaging with respect to a remdom

sample or all possible orderings of the sample elements. To clarify the

previous discussion two examples will be considered.

Example 1. The first example involves a table constructed by Cochran (2, table

6.l). He gives values of x and y for 1+9 cities, where y is the

number of inhabitants of a city in 1930 and x is the corresponding ninnber

for 1920. The vinit of count is 1000 individuals. A random sample of

size 5 was selected and R _ was calculated using

N - i+1R(mj, mj^^) = R(i-l,i) = R(i-l) + ^^~^ (Y(i) - R(i-l)X(i))

and
k

R = 1 I R(J-1,J)
19 k J=l

where

j=i ^

X(i) =
f X

R(i) = Y(i)/X(i)

The five elements sampled in the order drawn were: (63,37), (58,50),

(80,76), (53, U5), and (113,121).
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Table 2. Illustration of Computations for Estimator R
19

Y(i) X(i) R(i-l) Y(i)-R(i-l)X(i)
N-i+l

N
R(i-l,i)

1 63 3T

2 121 87 1.7027

3 201 163 1.3908

k 251+ 208 1.2331

5 367 329 1.2212

-27.135

-25.700

-2.1+85

-3l».775

.9796 l.Ul«98

.9592 1.1518

.9388 1.2105

.918U .9116

R^^ = 1»^^?8 ^ 1.1518 ^ 1.210^ ^ .^116 ^ ^ .^QQ^

s2(R ) = (l.UU98)^ ^ •'•:;\-^ (.9116)^ -11(1.1809)^
19' T(3T

= .0119923

S(R^^) = .1095

Example 2. This time the popxilation is the entire I96 cities considered by

Cochran suid the sample is the k9 cities listed. Con5)utation can be les-

sened by using m equals some number larger thein 1. Choosing k«=U as

in the previous example, let nL=5, nig''^^' "3''31, in.=l»l, m =1*9. These

are strictly arbitrary.
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Table 3. Illustration of Computations for Estimator R
19

•1 m.
1

Y(m.) X(m.) Y(m.)-R(m^_^)X(m.)

R(m._^)

«-i-l
R(m^_^, m^)

N(m^-m. ^)

1 5 80U 691

2 19 3103 2522 1.163531 168.57^818 .096606 I.U9U78

3 31 kl3k 3368 1.2303736 10.103736 .075255 1.23687

k Ul 533U U306 1.233373 23.095862 .O8U18U 1.25000

5 Jt9 6262 5051+ 1.238737 1.1*23302 .098852 I.2399U

R^^ = 1.305397

s2(R^^) = (l.W8)^^...^^^(l.2399W^-Ml.305397? = .136881

U.U Robson and Vithayasai*s Estimator

Robson and Vithayasai (36) develop a more efficient estimator for certain

types of populations by using Hartley and Ross's correction for bias. The type

of population vinder consideration was when x and y could be expressed a^

the 8xm of k corresponding components , and when the components were more

highly correlated than x and y. In this case a componentwise ratio esti-

mator such as .

k

j=i J' J

is generally more efficient, although it is biased. By using Hartley and

Ross's estimator, Robson and Vithayasai obtained an imbiased componentwise

ratio-type estimator

J=l ^ (nj i)Xj -^ ^ ^
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where

r , X , y are the means of the k components,
J J

N is the population size of the J-th components,
J

X. is the population mean of the J-th component.

An example for its use from general sample survey theory is the ctise of cluster

sampling with post stratification, x representing the number of elements in a

cluster and y the cluster total for some measured character. If the

X elements in a randomly chosen cluster are partitioned into k strata of

size X., X known, then the above estimator may be much more efficient thcui
J J

the non-stratified estimator.

U,5. Willimas' Estimators

Willieuns (39) considered the generation of some unbiased ratio and

regression estimators, differentiating between the two as follows. He

classified sji estimator as a regression type if it was invariemt under

location and scale changes in x and if it underwent the same location and

scsLle changes in y. He classified an estimator as a ratio type if the above

properties hold for scale changes only.

The following procedure was considered by Williajns. First he selected

with equal probability one of £ill possible splits of the population into s

groups of size n/k, N = Sn/k. Second he selected at reindom without replace-

ment k of the groups from the s groups of that split, yielding a sample

of size n. Williams considered the conditional distribution for a particuleir

set of s groups, eventually deriving the unconditionally unbiased estimate

of R

"21
A 1=1
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where

X is the mean of the n/k units in the i-th group

b. is as yet unspecified function of the y and x of the i-th

group, to make R-^ a ratio estimator.

k
S = I h /k

i=l

This approach insures that R^^ is oa unbiased estimator for any choice of the

b,.

In practice a sample of size n is taken and split randomly into groups.

Willieuns states that this alao preserves the unbiasedness of the estimator.

For

n/k n/k

^ -
,1 Vii'l^i •

Williams gets

R22 = -

n/k

, , , k n/k n/k _ „ n
k //iJ^iJ ^/^

J=l

n/k

^ iiiV 2 ^
•

1=1W^
J=l

^J

For

b. = V /x = r .
i ^i' i i'
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R becomes

„ rx . 1 N(k-n) , —

v

X X

When k=n, R-^ is identical to Hartley and Ross's unbiased ratio estimator.

For

n/k
b = r = k/n I r

J=l
^'^

''ij
° ^ij^^ij

^ = ? = r I r..

^i=l^

Williams again gets Hartley sind Ross's estimator upon substitution into R ,

when averaged over all possible splits of the sample into groups of size n/k.

For clarification of Williams estimator a simple example follows.

A simple random sample of four pairs (y,,x. ) were drawn from a popu-

lation of size 100 with X = 2.0. The sample was split randomly in 2 groups;

(2,1) and (3,2) in the first group, (l,l) and (U,2) in the second. For R^j,

we have the following

^1-1^-^-^

^2 -1^=^-^

b>
-

'

h = '
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^22 " |U2.5+|(l.6+1.8)(2-1.5))+3|f • |((1.6)3+1.8(3))-^1.6+1.8)}

»|{(3.35) +3^(10.2) - (2.5)(1.7)}

= |(3.996) = 1.998 .

5. THE UNBIASED ESTIMATOR (MODIFICATION OF SAMPLING SCHEMES)

This section will be concerned with a presentation of various seunpling

schemes and modification of sampling schemes to make the ordineuiy simple

ratio estimators vinbiased. Theoretical results will be minimized to clarify

the actual methods in the following section.

5.I. Lahiri's Methods

Lahiri (l8) in 1951, showed if a sample was drawn with probability-

proportional to the sum of the x elements in the sample, the ordineiry ratio

estimate y/x was unbiased. An exact result would involve forming cumulative

totals for all possible sanrples of size n, an almost impossible task in

most cases. Lahiri then developed some procedures, which while yielding an

\mbiased estimator, involved procedures which greatly reduced the amoaint of

work in saiq)ling. The first was drawing a san^jle of size n, unit by unit,

when the largest x value is known. This involves sampling proportional

to the X values. To select the first unit in the sample, choose a random

value between eind x^^^^ , the largest value. Now choose at random one of

the units in the population. If it is greater than or equal to the random

value chosen, retain it; if not, reject it. In either case a new random.
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value is chosen, ajid a new unit is chosen from the population each time

until a sample of the desired size is chosen. This process results in a

sample of size n proportional to the x's. The unbiased estimator is

«2l* = «n = ^.I.V^ •

i=l

The variance of this estimator under this sampling scheme was given 'by

Raj (27) to be

and estimated by

s'(«2u^ = iTifcrr I (^i/^ - «2u)'
•

This sampling procedure can involve majiy rejections, which may be costly.

To reduce the number of rejections, Lahiri considered several alternative

schemes. The first involved using some large \mit x max. Now a unit is

chosen, say x, . If x, is larger than x max, keep it and look at

X /x max. = Q+R where Q is an integer. The unit is listed 1+Q times, the

first of size R, the rest of size x max. An alternative device may be

used if there eire a small number of extraordinarily large sizes and it con-

sists of dividing the population into two groups, one made up of the large

\inits, the second, the remaining units. A set of three random numbers is

utilized which:

(1) decides which group the selection is to be made from,

(2) fixes the unit which is. to be accepted or rejected on the basis
of three,

(3) chooses the random value between and x max.
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The second type of procedure Lediiri employed was to choose the entire

sample with probability proportional to the sum of the observations of

X in the sample, ^ x. . His practical method was to:

(1) choose a set of n elements at random (with or without replacement)

and find ^ x.

,

(2) choose a random value between and ^ x. = say V,

(3 now choose another sample and if
J]

x. for this sEimple is greater

than or equal to V, keep it. If ^ x. is less than V, replace it

eind begin the process anew. Find another random number V and

draw smother sample, until the sample satisfies the criterion.

The estimator used.by Lahiri in this case was

R25 " ^1 " ^/^ •

Raj (27) in his investigation of Lahiri 's procedure, derived the

variance of Rpj. as

J

•25' - ^ '
-«

I - I .1 I /A. I

where
J,'

denotes summation over eill possible seunples; (^y.) , (Jx.) are

totals of the J-th sample. He euLso obtained an unbiased estimate of the

variance as

n

2, , 2 UJ ^^i J^^=^
s^«25^ = «25

-

t:^ Tifer*^—7nI2
—

i^ G) CD
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5.2. Midzuno's Method

Midzuno (20) and Sen have independently given a simple procedure for

obtaining a sample with probability proportional to size, thereby making

the simple ratio estimate y/x unbiased. Their method involved the fol-

lowing procedure

(1) Select the first unit in the sample with probability proportionsJ.

to size as follows: Choose a random number between and the largest x value,

now choose a random x value. If it is greater than or eqvial to the random

number, keep it; otherwise, start the proced\ire again.

(2) Select the rest of the sample with equal probability without

replacement from the remaining units of the population.

The following proof showing that

is unbiased for this procedure is due to Cochran (2).

The probability that a san5)le of size n with a fixed value of ^ x. is

drawn is

P = ^

^n-l'

since the total of I x added over all simple random saiq)les of size n is

r^} X.
'

.

^n-l-*

- - ^^iFor the estimator y/x = —=

L
3_

E(y/x) =
I (P) (li.)

.all S Ix.
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where I represents a summing over all possible simple random samples
all s

E(y/x) = I Vi —
all s ("-^)X Ix.

^n-1' *- i

showing y/x is unbiased for this method of selection.

An unbiased estimate of the variance of R^^ was given by Nanjamma,

Murthey, and Sethi to be

hl^^Bi.^
Nn xX

i^J

They edso state that the efficiency of the unbiased estimate will be greater

—2 — <
than, or equeQ. to, or less them correlation coefficient of (y /x,x) — .

5.3. Nanjamma, Murthey, and Sethi's Methods

Nanjamma, Miirthey, and Sethi (22) in I960, modified many of the selection

procedures commonly used, equal probability sampling, varying probability

sampling, stratified sampling, and multi-stage seimpling to make the usual '

simple ratio estimator unbiased. The procedure is similar to other methods

considered previously, that is, selecting one unit with probability pro-

portional to size of the correlated x-variable and the remaining units ac-

cording to the original scheme of sampling. Variance estimators were given

by Nanjamma, Murthey and Sethi for some of the more in5)ortant sampling schemes.
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UNSTRATIFIED SAMPLING WITH EQUAL PROBABILITY AND WITH REPLACEMENT

(1) Select one vinit with probability proportional to size of the

X variate, using Lahiri's (l8) or Midzuno's (20) method.

(2) Select the rest of the sample with equal probability with

replacement.

Then

R27 " \ = y/^

is £ui unbiased estimate of R = y/x. The probability of getting a particular

san5)le was shown by Nanjamma, Miirthey and Sethi to be

P(S) = -^ '
^ ^

n" I L^I X

where L is the number of repititions of the i-th linit and v is the number

of distinct units in the sample. The estimated variance of Rp„ was given

to be

S2(R ) = r2 . -2 ii]

^' ^' n(n-l)x3^

UNSTRATIFIED SAMPLING WITH EQUAL PROBABILITY SYSTEMATICALLY

Here the authors considered each unit as made up of n sub-unit of the

i-th tinit having the size X./n where X. is the total of the i-th vinit. Now

a sub-unit is chosen with probability proportional to size of the x values.

The others are then determined by proceeding to select the remainder of the sample

systematically with the sub-unit selected first as the random start. The

probability of a particular sample s, is
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P(S) = x/x

euid an xuibiased estimator of the population ratio is

^28 ~ ^^^ '

Nanjamma, Murthey, and Sethi state that it is impossible to get an vinbiased

estimate of the population variance from a single sample.

VARYING PROBABILITY SAMPLING PROBABILITY PROPORTIONAL

TO SIZE WITH REPLACEMENT SCHEME

(1) Select first one unit with probability proportional to x and

replace it.

(2) Select the rest of the sample with probability proportional to

Z with replacement, where Z is some measure of size vinder consideration.

An unbiased estimate of R is then given by

1/n I yi/Pi

^29 " n

1/n I X /p
1

where

1=1
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VARYING PROBABILITY SAMPLING PROBABILITY PROPORTIONAL

TO SIZE WITHOUT REPLACEMENT SCHEME.

This is in general not a practical scheme since it involves very heavy

computations but two specied. cases were considered by Nanjamma, Murthey, and

Sethi. The first involves a sample of size two, the first element taken with

probability proportional to x, the second probability proportional, to Z, An

unbiased ratio estimate is given as

R-Q =

where

P^ = x^/X ,

p^ = yi' .

The second involved the first two steps above, and then drawing n-2 other

elements with equal probability, thus obtaining a ratio estimate

D y.-

n X. n

Kn^) (I pj)
i=i ^ ^i j=i ^

which is unbiased.
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6. CONCLUDING REMARKS

Since there has been little discussion in this report on extensions of

the ratio estimators considered to sampling schemes other than simple random

sampling, a brief list of the more important papers in certain areas of

sampling follows. The interested reader is referred to these articles.

In the area of two-stage and multi-stage sajnpling, unbiased ratio-type

estimators have been investigated by Nanjamma, Murthey, and Sethi (22),

Pathak (25), Raj (27), Raj (28), Raj (29), Sukhatme (37), and Williams (39).

Although many of the estimators can be directly applied to stratified

sampling schemes, for a more extensive discussion of these techniques see

Raj (27), and Williams (39). For a discussion of unbiased ratio-type

estimation applied to systematic ssunpling, see Nanjamma, Murthey, €ind

Sethi (22). Since this report has been concerned primarily with a single

variate correlated with the variate of interest, the reader is referred to

Olkin (23), Raj (31), and Williams C+O) for use of mult i-auxiliary information.

Although Tin (38) has made a fairly thorough comparative study of

several of the reduced-bias estimators, there seems to be little available

to the reader interested in a more extensive comparison involving the ususil

biased estimators, reduced-bias estimators, and both classes of unbiased

ratio-type estimators. One of the major reasons is that some of the V8a*iance

formulas involved are not known, and. some are only large sample approxi-

mations. Exact expressions for variances are usually mathematically cumber-

some and difficult to compare.

The following study involves three small populations (n=6) with samples

of size (n=k) taken from each. All possible samples were taken from each

pop\ilation, so the bias and variance could be found exactly for each

population.
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Table h. Computer Study One

Population 1. (0,2), (l,3), (2,5), (U,9), (Q.l^*), (9,15)i X = 8.0

Estimator Bias Variance M« • £«•

y 0.0000 1.1666 1.1666

h 0.0627 .1203 .12J42

R
n

0.8673 .2571 1.0033

^ 0.0195 .1152 .1156

h 0.1168 .IOU6 .1182

hi 0.2056 .1235 .1657

h2 0.0000 .2328 .2328

h^B 0.2166 3.5129 3.5598

h, 0.0000 3.U36U 3.U36U

^ .3216 .1217 .2251

^7.^19
0.0000 .0711 .0711

«22 0.0000 .0220 .0220
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Table 5. Computer Study Two

Population 2. (5,1), (1*,2), (',5), (10,8), (l2,ll), (l6,15); X = 7.0

Estimator Bias Variance M.S.E.

y 0.0000 2.0583 2.0583

R 0.1327 .5'+52 .5628

R U.5755 10.2863 31.2215
n

R O.02U8 .kkQQ .'5U9

R„ 0.1798 .2186 .2509

R 1.3it82 .327U 2.1U50

R 0.0000 2.592I+ 2.592il

R,^^ O.30U7 10.5797 10.6727

R 0.0000 10.2666 , 10.2666
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Table 6. Computer Study Three

Population 3. (0,0), (l,l), (U,2), (9,3), (l6,U), (25,5): X= 2.5

Estimator

y

^8

R
11

12

R

R

15B

15

R
22

Bias Variance

0.0000 7.9139

0.1893 1.6185

2.9166 1.8229

.0783 1.6311

.276U 1.7133

.7191 2.0253

0.0000 2.9167

.5833 22.1271

0.0000 21.5059

0.0000 1.8860

M. S .E

.

7.9139

I.65U3

IO.329U

1.6372

1.7897

2.5'*2U

2.9167

22Mil

21.5059

1.8860
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Ratio estimators have been used quite extensively in sample surveys,

not only as estimators of popiilation ratios, but as estimators of popiilation

means and totals. It has been demonstrated that in a great many situations

the ratio estimator has a smaller variance than the traditional mean per unit

estimator. A major drawback to the ratio estimator is the fact that it is

biased, although in large samples it has been demonstrated that the bias is

negligible. In very stoall samples, or even moderate samples from a

stratified population, no really convincing argument has been given for the

negligibility of the bias, since no exact expression for it is available.

Several authors have avoided this question of bias by developing methods

which eliminate the bias while retaining the essential properties of a ratio

estimator.

This report reviews the usual ratio estimator, giving optimum conditions

for its use. The bias is approximated and limits for the bias are given, as

well as cases that might arise in which the bias might become an important

factor. Methods are then considered which give rise to reduced bias esti-

mators, as well as unbiased ratio-type estimators. The reduced bias esti-

mators involve the use of expansions, approximations and a graphical method

to obtain reduced bias estimators. The latter estimators are divided into

two major classes of development, (l) the elimination of bias through the

use of commonly used sampling schemes, and (2) the elimination of bias

through the use of certain modifications of sampling schemes making the

usual biased estimator unbiased.

Finally a small computer survey is presented in which several of the

estimators are con5)eLred with respect to bias euad efficiency.


