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Abstract 

Quest for continuous improvement among the organizations and issue of missing data for 

data analysis are never ending. This thesis brings these two topics under one roof, i.e., to 

evaluate the productivity of organizations with sparse data. This study focuses on Data 

Envelopment Analysis (DEA) to determine the efficiency of 41 member clinics of Kansas 

Association of Medically Underserved (KAMU) with missing data. The primary focus of this 

thesis is to develop new reliable methods to determine the missing values and to execute DEA. 

DEA is a linear programming methodology to evaluate relative technical efficiency of 

homogenous Decision Making Units, using multiple inputs and outputs. Effectiveness of DEA 

depends on the quality and quantity of data being used. DEA outcomes are susceptible to missing 

data, thus, creating a need to supplement sparse data in a reliable manner. Determining missing 

values more precisely improves the robustness of DEA methodology. 

Three methods to determine the missing values are proposed in this thesis based on three 

different platforms. First method named as Average Ratio Method (ARM) uses average value, of 

all the ratios between two variables. Second method is based on a modified Fuzzy C-Means 

Clustering algorithm, which can handle missing data. The issues associated with this clustering 

algorithm are resolved to improve its effectiveness. Third method is based on interval approach. 

Missing values are replaced by interval ranges estimated by experts. Crisp efficiency scores are 

identified in similar lines to how DEA determines efficiency scores using the best set of weights. 

There exists no unique way to evaluate the effectiveness of these methods. Effectiveness 

of these methods is tested by choosing a complete dataset and assuming varying levels of data as 

missing. Best set of recovered missing values, based on the above methods, serves as a source to 

execute DEA. Results show that the DEA efficiency scores generated with recovered values are 

close within close proximity to the actual efficiency scores that would be generated with the 

complete data.  

As a summary, this thesis provides an effective and practical approach for replacing 

missing values needed for DEA. 
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Chapter 1 - INTRODUCTION 

This chapter introduces the motivation, research objectives and contributions to develop 

new effective methods to estimate missing values in a dataset and then to carry out Data 

Envelopment Analysis (DEA). The focus of this thesis is to determine the productivity of 41 

member clinics of Kansas Association of Medically Underserved (KAMU), using the available 

sparse data. Traditionally complete data should be available to carry out the Data Envelopment 

Analysis. Most of the real world cases will not be able to meet this requirement. This hinders the 

robustness of DEA methodology. The ability to estimate missing values precisely improves 

robustness of DEA methodology and also the accuracy of the results, since it is susceptible to 

missing data. This chapter also presents essential assumptions, overview of research results, and 

outline of this thesis. This research effort intersects with other research domains such as the 

concept of correlation, fuzzy clustering, and interval range to estimate missing values. Based on 

these domains three different approaches are proposed to estimate missing values. 

DEA is a linear programming methodology and also a non-parametric approach to 

evaluate relative technical efficiency of homogenous Decision Making Units (DMUs), using 

common multiple inputs and outputs. DMU can be defined as an organization or business 

process which consume resources and produce goods or services. DMU can be for-profit or a 

non-profit organization. This means a hospital, for-profit or non-profit, can be considered as a 

DMU since it consumes the resources such as medical staff (doctors and nurses) to treat patients, 

and generates revenue. 

DEA methodology determines the best set of weights for multiple inputs and outputs 

considered for each DMU, using linear programming methodology, to bestow the target DMU 

with best efficiency score. The efficiency score is calculated as the ratio of weighted sum of 

outputs to weighted sum of inputs. DEA is very suitable to be applied in healthcare since 

healthcare providers can be easily identified as DMUs. DEA effectively handles the multiple 

input and output parameters involved in a healthcare environment. DEA is a non-parametric 

methodology which does not require prior relationship or functional form between inputs and 

outputs. Literature review, Chapter 2, provides greater detailed information about DEA, 

advantages and disadvantages, and its application in healthcare. 
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This chapter is structured as follows. Section 1.1 represents the motivation for this 

research work which includes the alarming rise in healthcare expenditure and also the influence 

of missing data on outcomes of research endeavors. Section 1.2 portrays the research objectives 

and contributions, and brief introduction to the three different methods. The assumptions 

developed to ensure the effectiveness of results are presented in Section 1.3. The overview of 

research results and adopted procedures are revealed in Section 1.4. Finally outline of this thesis 

work is exposed in Section 1.5. 

 1.1 Motivation 

This section presents two important reasons to carry out this research. The first one is the 

alarming rise of healthcare costs. In order to reduce these costs we need to identify productivity 

levels, which provides the opportunity for continuous improvement. DEA methodology is widely 

recognized as an effective methodology to identify relative efficiency scores since its inception. 

The other reason is that DEA is vulnerable to missing values. In order to improve the robustness 

of this methodology we need to estimate the missing values more precisely. 

 1.1.1 Rise in Healthcare Expenditure 

As per the encyclopedia of public health (Kirch, 2008), healthcare is defined as the 

prevention, treatment, and management of illness and the protection of mental and physical well-

being through the services provided by the medical nursing, and allied health professions. 

Healthcare industry is considered as one of the largest industries in the world. It is also the fastest 

growing industry consuming almost 10% of the Gross Domestic Product (GDP) in most 

developed nations. The amount of public and private money spent on healthcare services in a 

country at a given time indicates the country‟s health expenditure. As per World Health 

Organization (WHO) the total expenditures on health by United States of America (USA) as a 

percentage of its GDP for the years 2003 to 2009 are 15.2%, 15.4%, 15.2%, 15.3%, 15.7%, 

15.2% and 16.2% respectively. The average health expenditure for other regions of the world 

was around 10% of their GDP by end of 2008. One can clearly identify health expenditure in 

USA as an outlier when compared to other regions of the world. 

Center for Medicare & Medicaid Services (CMS) is a United States federal agency which 

administers Medicare and Medicaid programs. As per CMS the National Health Expenditures 

(NHE) in billions of dollars for the years 2003 to 2009 are $1,772.2, $1,894.7, $2,021.0, 
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$2,152.1, $2,283.5, $2,391.4, and $2,486.3 respectively. If this situation continues then USA‟s 

health care expenditure is expected to increase much faster than the overall economy. The 

projected forecast summary of CMS signifies that the National Health Expenditure in United 

States is expected to reach $4.6 trillion, and which accounts for 19.8 percent of the GDP by the 

year 2020. 

The United Stated National Health Expenditures (NHE) in billions ($) and its share of 

GDP, as per the statistics of CMS are shown in Figures 1.1 and 1.2 respectively. 

 

 

Figure 1-1: National Health Expenditure (NHE) in Billions ($) from 1960 to 2009 

 

 

Figure 1-2: National Health Expenditure (NHE) as a share of GDP from 1960 to 2009 
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An alarming increased projection in health care expenditure has driven the administration 

in search of effective methods to reduce costs associated with healthcare. Organizations such as 

Agency for Healthcare Research and Quality (AHRQ), Center for Disease Control and 

Prevention (CDC), Institute for Healthcare Improvement (IHI), and National Association for 

Healthcare Quality (NAHQ) have taken initiatives to determine effective ways to deliver high 

quality healthcare at competitive cost through research findings. The following is a minute list of 

summaries of valuable research findings to reduce healthcare expenditure. 

 

Implementation of Lean: Lean system developed by Toyota to remove waste, activities 

or services which don‟t add value to the process, is an effective and adaptable approach to reduce 

waste and inefficiency in healthcare process also through lean redesign. The common forms of 

waste that usually occur in a manufacturing environment can also be observed in a healthcare 

environment. The most frequently used activities of lean are Value Stream Mapping, 5S, and 

Kaizen events to envision and eliminate wastes. A framework of factors that usually affect the 

implementation of lean process is developed. Reports suggest that lean was implemented in more 

than 50 locations at every geographic location in United States (AHRQ). 

  

Healthcare Information Technology: “Evidence on the Costs and Benefits of Health 

Information Technology”, published by the United States Congress in 2008 discusses benefits of 

Information Technology in Healthcare. Electronic Medical Record (EMR) is the most common 

IT package used by healthcare providers to deliver effective healthcare and to reduce the 

physical efforts of physicians, duplication, and medical transcription errors. Studies have 

estimated that $80 billion could be saved in net annual due to such technology, but the fact is that 

only 12% of physicians and 11% of hospitals have adopted it as of 2006. Adoption of such IT 

health systems can create both internal and external savings. Evidences also suggest that such IT 

health systems can improve productivity of nurses and physicians, and can reduce average length 

of patient stay in the hospital by 5%, through speeding up certain hospital functions. 

 

Benchmarking: Benchmarking is considered as the process of comparing the 

performance metrics of a particular process/product/service/organization with the best standards 

in that particular area. This helps in identifying the targets/projections/practices required to be 
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the best in that area. Benchmarking is viewed as a continuous improvement tool providing 

opportunity for organizations to be best in their class. The functional application of 

benchmarking is not limited to any particular industry. The early use of benchmarking in 

National Health Services (NHS) identified by Pantall (2001) can be dated back to 1960. He also 

provided particulars on how organizations such as IBM found benchmarking as an effective tool 

for sharing best practices with other organizations and how it evolved as an important tool within 

continuous improvement methodologies. Healthcare industry also considered benchmarking as a 

simultaneous opportunity to reduce expenditure and improve the quality of healthcare. For 

further discussion on different type of benchmarking techniques refer to Benson (1994). 

 

This thesis considers benchmarking as an effective tool to measure the performance of 41 

member clinics of Kansas Association for the Medically Underserved (KAMU), and to share the 

best practices. This thesis considers Data Envelopment Analysis (DEA), a relative technical 

efficiency measurement technique, to identify the benchmarks. Based on the results of DEA the 

clinics can be classified into three different groups. The first group consists of a group of super 

clinics that are very productive and efficient in using their resources. A second group consists of 

clinics that are quite effective and the third group contains clinics that consume more resources 

than other clinics and produce less outputs.  

KAMU is a non-profit organization founded in 1989 and was recognized as the Primary 

Care Association (PCA) of Kansas in 1991. As a PCA, it is charged with providing training, 

technical assistance and advocacy on behalf of federally funded Community Health Centers in 

Kansas. Its mission is to support and strengthen its member organizations through advocacy, 

education and communication (KAMU). More information about KAMU and preparing the data 

for Data Envelopment Analysis can be found in Chapter 3. 

 1.1.2 Missing Values in Healthcare 

Missing values occur when any required data value for any observation or variable is 

either not recorded or misplaced during transfer of data. The other type of absentness in data 

occurs when the individuals are reluctant to provide data. Either ways the missing values can 

greatly influence the results of research efforts. In most cases it is common to find data with 
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missing values. The missing values occur due to technical errors, i.e., breakdown of machine, 

human errors, i.e., fail to record or entry of data, natural calamities, i.e., bad weather. 

The nature of missing values can be classified into three different groups Missing 

Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at Random 

(MNAR), Little and Rubin (2002). Missing Completely At Random (MCAR) implies that data 

found to be missing does not follow any particular reference to either the data values present or 

missing. Items found to be missing has equal probability to be missing. Missing At Random 

(MAR) implies that data found to be missing can be random, but the nature of missing values can 

be attributed to a particular reason. If the missing data cannot be classified into above two 

groups, MCAR and MAR, then it belongs to Missing Not At Random. The values found to be 

missing are biased towards particular reason. For more detailed information on missing data and 

for statistical analysis with missing data refer to Little and Rubin (2002).  

Missing values are part of almost every domain and research work; healthcare and data 

envelopment analysis are no exceptions to them. Norris et al., (2000) identifies that missing 

values in clinical registry is a common phenomenon and can affect any research outcomes and 

analyses. Faris et al., (2002) compared 3 multiple imputation methods to enhance a clinical 

database with missing values. Graham (2009) reviews strategies based on strong statistical 

traditions, clearing the myths and misconceptions, to make missing data analysis methods useful 

in the real world. Most of the methods in literature are based on statistics to estimate missing 

values. 

Data Envelopment Analysis is easily susceptible to missing data since it depends on 

single dataset of chosen inputs and outputs, unlike statistical methods. The most common 

methods to deal with missing values such as list-wise deletion and pair-wise deletion cannot be 

applied to DEA, since it reduces the total number of DMUs to perform benchmark analysis and 

reduces the sample size. Efficiency scores of the DMUs in a group can be greatly influenced by 

reducing the number of DMUs; since DEA efficiency scores are relative to the DMUs in that 

group. In order to surmount the issues of adequate quantity of data for DEA the missing data 

needs to be estimated to the most possible accurate level.  

In this thesis we focus on development of new reliable methods to deal with missing 

values in DEA and thereby to improve robustness of this methodology. These methods are 

applicable to other analyses with missing values but they are specifically developed with a view 
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point for DEA. This thesis work provides an effective and practical approach for replacing 

missing values needed for a DEA analysis. The disadvantages of DEA with missing data can be 

compensated by taking proper care about the quality and quantity of data. 

 1.2 Research Objectives & Contributions 

 1.2.1 Research Objectives 

This main focus of this thesis is development of new reliable methods to handle Data 

Envelopment Analysis with missing data. The associated research objectives of this thesis are as 

follows:  

 Productivity measurement of 41 member clinics of Kansas Association for the 

Medically Underserved (KAMU) with sparse data. Determination of benchmarks 

among them for sharing best practices with other organizations. 

 Identify what areas need to be improved for each clinic, and provide quantitative 

guidelines to achieve the best standards. 

 Study of existing methods to handle the issue of missing data in DEA. 

 Development of new reliable methods to estimate the missing data and understanding 

the effect of these recovered values on DEA scores. 

 Illustration of the developed methods using example datasets. 

 Application of these developed methods on KAMU clinics. 

 Evaluating the effectiveness of these methods by comparing the results with those of 

existing methods. 

 Identification of the limitations for these methods so that they provide results with 

greater precision. 

 1.2.2 Research Contributions 

The research efforts for this thesis intersect with other research domains such as the 

concept of correlation, fuzzy clustering, and interval approach to estimate missing values. Based 

on these domains three different methods are proposed to estimate the missing values. The 

contributions made for these methods are as follows. 

First method named as Average Ratio Method (ARM) uses the average value of all the 

ratios between two variables. The precision to estimate the missing values depends on the 
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amount of correlation between two variables; greater the correlation greater the accuracy of 

results. The selection procedure for such variables and step by step procedure of this method will 

be addressed in Chapter 4. The advantages of this method are it is less computational, and 

produces better set of results when compared to other basic methods. The limitations of this 

method are it requires additional data with good correlation. Effectiveness of this method is 

tested by comparing it with other basic methods form the literature, using the example datasets 

provided in the literature works. 

Second method is based on the concept of modified fuzzy c-means clustering algorithm 

which can handle missing values, an existing algorithm. We identified that this particular 

algorithm developed by Hathaway and Bezdek (2001) is susceptible to two major issues. One, 

the missing values in the data needs to be substituted by some initial values prior to beginning of 

the algorithm. This particular algorithm is sensitive to such values chosen initially. Two, it is also 

susceptible to the number of clusters to be chosen. This research effort addresses these two major 

issues to improve the effectiveness of this algorithm. Greater details of the modified fuzzy c-

means clustering algorithm and description of research endeavors is presented in Chapter 5. 

The other major issue associated with the modified fuzzy c-means algorithm identified by 

Himmelspach and Conrad (2010) is cluster dispersion. Cluster dispersion reduces the likelihood 

of remote data objects being biased by cluster size. The three newly developed approaches which 

try to achieve similarity among the cluster sizes reducing the opportunity for formation of few 

large cluster groups will be discussed in Chapter 6. 

Third method is based on interval approach to handle the issue of missing values and to 

perform Data Envelopment Analysis. Missing values are replaced by interval ranges estimated 

by experts or based on statistical techniques, rest remains crisp. In most interval based DEA 

methods, the efficiency scores are expressed in terms of fuzzy environment but in this case the 

scores are expressed as crisp values. Crisp efficiency scores are identified in similar lines to how 

DEA determines efficiency scores of DMUs using the best set of weights. Intervals are split into 

crisp values based on linear interpolations, using common value of alpha. Best value of alpha, for 

interval ranges, will be one which endows most of the DMUs with best efficiency scores, further 

insight into this method will be presented in Chapter 7. 
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These approaches are demonstrated using the real and complete dataset of 22 KAMU 

clinics, assuming varying levels of data as missing. Insight to the identification procedure of 

complete dataset from the sparse dataset will be provided in Chapter 3. 

 1.3 Assumptions 

Apart from the basic assumptions of DEA which will be presented in the literature 

review, Chapter 2. This section presents some important hypothesis. The following are 

considered to be the basic assumptions to determine the productivity of KAMU clinics: 

 All the clinics are assumed to be within patients reach, in order to nullify the 

influence of geographic nature on performance measurement 

 All the clinics are assumed to be functioning for the same number of days and 

effectiveness of the technical and administrative staff is considered to be equivalent 

over all clinics 

 All the clinics are assumed to have similar kinds of services 

 

We have made these assumptions since they can be critical parameters for performance 

measurement and can be influential in predicting DEA results. Even though DEA has a potential 

ability to address these kinds of issues, they are not primary concerns to this thesis. Methods to 

effectively handle missing data to execute DEA are our primary objectives. The literature 

review, Chapter 2, guarantees on how these issues can be addressed. 

The productivity measurement study of 41 member clinics of KAMU does not try to 

justify or explain the differences between the clinics which can very well be justifiable. 

 1.4 Research Results 

This section presents an overview of the adopted procedures and research results which 

conveys the significance of this research work and effectiveness of the newly developed 

methods. 

There is no particular methodology to determine the effectiveness of methods which 

estimate the missing values. In real cases the missing value is never known, in order to estimate 

the effectiveness of these methods we have to assume known value as missing. The usefulness of 

the methods developed in this thesis are tested based on the real and complete dataset of 22 

clinics, chosen from the KAMU sparse data. Assuming varying levels of the data as missing for 
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different nature of missing values, the effectiveness of the methods presented in this thesis are 

judged. 

The percentages of missing values in the data are varied from 10% to 40%. The three 

different nature of missing values MCAR, MAR, and MNAR are considered to test the 

effectiveness. The effectiveness of these methods is tested based on the ability to recover the 

missing values within closeness to the assumed missing values (known and real). The difference 

between the real (assumed as missing) and recovered values (estimated using the methods) is 

determined using the Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation 

(MAD). The best set of recovered values serve as a source to carry out the Data Envelopment 

Analysis. In most cases the methods are able to estimate within close proximity. Few methods 

are also tested based on the data obtained from the literature.  

 1.5 Outline of Thesis 

Chapter 2 reviews all the important concepts that are germane to Data Envelopment 

Analysis. It describes the background, evolution of DEA, basic models of DEA. Assessment of 

strengths and limitations of DEA is carried out and then this chapter digs into the literature works 

on evaluation of efficiency measures in healthcare using DEA. 

Chapter 3 introduces the mission, objectives, and programs of Kansas Association for the 

Medically Underserved. It also provides an overview of the data provided by KAMU. This 

chapter primarily focuses on issues associated and measures need to be taken for preparing the 

data for Data Envelopment Analysis. The literature review at the end of the chapter addresses the 

methods to handle the missing data during Data Envelopment Analysis. 

Chapter 4 introduces the Average Ratio Method (ARM) methodology to determine the 

missing values. Greater details about this methodology, step by step procedure, its advantages, 

and limitations will be discusses in this chapter. The proposed methodology is used to evaluate 

the efficiency of 41 KAMU clinics with sparse data 

Chapter 5 presents a methodology based on fuzzy clustering concepts to execute Data 

Envelopment Analysis with sparse data. It provides an introduction to data clustering, then to 

fuzzy clustering concepts. The issues associated with the existing algorithm are eliminated to 

improve its effectiveness. These suggested approaches are demonstrated on a real and complete 

dataset of 22 KAMU clinics, assuming varying levels of missing data. 
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Chapter 6 presents a methodology to estimate missing values based on a modified fuzzy 

c-means clustering algorithm which takes cluster dispersion into account. The reasons behind the 

failure (does not converge) of existing cluster dispersion method are illustrated. New cluster 

dispersion approaches are proposed in this chapter. The newly developed clustering approaches 

are demonstrated on a real and complete dataset of 22 KAMU clinics, assuming varying levels of 

missing data. 

Chapter 7 presents an interval approach based methodology to handle the issue of 

missing values and to perform Data Envelopment Analysis. Missing values are replaced by 

interval ranges estimated by experts, rest remains crisp. The primary focus of this methodology 

is to determine the crisp efficiency scores out of interval ranges. This new approach is 

demonstrated on a real and complete dataset of 22 KAMU clinics, assuming varying levels of 

data as missing. 

Chapter 8 is the final chapter which contains the summary of the research efforts, its 

outcomes, and scope for future research. 
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Chapter 2 - LITERATURE REVIEW 

This chapter reviews all the important concepts that are germane to Data Envelopment 

Analysis (DEA). This includes basic definitions to understand the concept of productivity, 

different measures to evaluate productivity, and their advantages and disadvantages. Then this 

chapter describes the background and evolution of DEA, and graphically illustrates DEA 

methodology using an example. This chapter also introduces all the basic models of DEA, their 

significance, and variation between different models. There are several other models developed 

in DEA since its inception, other than the basic models, which are generally applied based on the 

requirements. Assessment of strengths and limitations of DEA is carried out and then this 

chapter digs into the literature works on evaluation of efficiency measures in healthcare using 

DEA. Summary of selected literature works are presented in the final section of this chapter. 

This chapter is structured as follows. Section 2.1 presents the basic concepts such as 

productivity, relative technical efficiency, production function and frontier, and economic returns 

to scale. Section 2.2 introduces the different efficiency measurement techniques by digging into 

the literature and also provides advantages and disadvantages for each method. Section 2.3 

graphically illustrates the methodology of DEA, while section 2.4 provides the complete details 

since inception of DEA. It also introduces the two basic methods of DEA, their formulation, 

primal and dual approach, input and output orientations. Section 2.5 introduces other important 

models of DEA and their specific usage. Strengths and limitations of DEA are presented in 

section 2.6. Finally literature review on application of DEA in healthcare and the need for 

efficiency measurement techniques is presented in Section 2.7 

 2.1 Basic Definitions 

 2.1.1 Productivity 

Prokopenko (1987), defined productivity as the efficient use of resources consumed for 

production of various goods and services. It develops the relationship between outputs produced 

to inputs consumed for the production. High value of productivity implies high capacity to 

achieve greater outputs with same quantity of inputs or to achieve the same volume of outputs 

with lesser quantity of inputs.  
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Productivity measures serve as a comparative tool helping employees at various levels of 

organizations to evaluate the effectiveness of process/products. Such measures can be either 

partial measure or total factor measures, which will be discussed in the coming sections. Farrell 

(1957) extended the concept of productivity to a more general concept called efficiency, which 

involves technical efficiency and allocative efficiency. 

 2.1.2 Technical Efficiency 

It is one of the two measures proposed by Farrell (1957) to measure the efficiency of a 

firm. It can be defined as the situation under which the firm cannot produce more amount of 

output for given available input resources and also the firm cannot produce same amount of 

output with less amount of available input resources. It can determine the amount of waste that 

can be eliminated without worsening any input or output. Mathematically technical efficiency of 

an organization is attained when the two following conditions are satisfied. 

1. When the optimal efficiency of an organization is 100% 

2.  When the input and output slacks of an organization are zero 

 2.1.3 Allocative Efficiency 

Farrell‟s second measure of efficiency is also known as Price Efficiency. Allocative 

efficiency is considered when information related to prices, cost minimization, and profit 

maximization is available. Allocative efficiency can be attained when the organization is 

technically efficient and is able to achieve it at a minimum total cost of production. It can be 

defined as a situation when price of goods or services are closer to the marginal value of the 

resources used for production.  

 

Overall Efficiency = Allocative Efficiency * Technical Efficiency 

Farrell‟s two efficiency measures, Technical and Allocative Efficiency, can together 

provide the overall economic efficiency. 
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 2.1.4 Production Function  

Farrell (1957) introduced the concept of efficient production function to provide a 

satisfactory measure of efficiency. Efficient production function is the maximum amount of 

output that can be obtained from any combination of inputs. The two possible options to 

construct the efficient production function are either based on a theoretical function or an 

empirical function. It is very difficult to develop a theoretical function for a typical complex firm 

like a manufacturing industry since some problems might be overlooked. As the complexity of 

the function increases, accuracy of the results decreases. On the other hand empirical function 

estimates the efficient production function based on the observation of inputs and outputs of a 

number of firms. Farrell justifies the use of empirical function by saying that “it is far better to 

compare performance with the best actually achieved than with some unattainable ideal.” 

 

 

 

Figure 2-1: Isoquant Diagram Figure 2-2: Production Frontier 

 

Farrell explains the concept of efficient production function using a simple example. 

Consider a firm using two inputs to produce a single output under the assumption of Constant 

Return to Scale (CRS). CRS means that outputs vary by the same proportion as inputs, further 

details will be discussed in the coming section. The example is represented by isoquant as shown 

in Figure 2.1. 

Isoquant curve represent all possible combinations for either inputs or outputs that define 

the production function at a constant level of outputs or inputs respectively. The Isoquant curve 

shown in Figure 2.1 represents the possible combinations of inputs for constant value of outputs. 

Such an Isoquant curve is known as input orientation. Isoquant curve  represents the set of 
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points which can produce the same quantity of output for different combinations of inputs. Each 

point on the Isoquant curve represents a production unit. Figure 2.2 represents each firm as a 

point and different firms are represented by the scatter plot.  

The two important assumption made by Farrell to make this possible are 

1. The isoquant is convex to the origin. It means that if two points are attainable in practice 

then so is their weighted average. 

2. The slope of the isoquant is nowhere positive. It is to ensure that an increased application 

of both inputs will not result in reduced output. 

Isoquant curve  represent various combinations of inputs consumed by an efficient 

firm to produce a unit output. Point  which lie on the Isoquant curve  represents an efficient 

firm. Point  represents an inefficient firm using the same proportion of inputs as firm . Both 

firms  and  produce same quantity of output, but firm  uses only fraction  for each 

factor consumed by . It can also be explained as firm  could produce  times more 

amount of output for same quantity of inputs. The ratio  is defined as the technical 

efficiency of firm . 

Observation of points  and  reveals that these points are technical efficient because 

they lie on the isoquant. The firm  is the optimal method of production but not . The cost of 

production at  will only be a fraction  of those at . The ratio  is defined as the 

price efficiency of the firm . This ratio can also be considered as the price efficiency of firm . 

As the firm  tries to reach its proportion of inputs as , in order to reach technical efficiency, 

its costs need to be reduced by the factor . 

The product of technical efficiency and price efficiency produces the overall efficiency 

of the firm. The ratio  is defined as the overall efficiency of the firm . Farrell (1957) 

outlined that technical efficiency measure success by producing maximum amount of output for 

the same amount of input. Price efficiency measure success by choosing optimal set of inputs to 

identify optimal method of production. 
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 2.1.5 Production Frontier 

Production frontier is a more general concept than production function. DEA is the 

outcome of linking Farrell‟s technical efficiency concept with production frontier. Production 

frontier represents the list of all efficient firms, which can attain maximum output level for a 

given input level. A firm is considered to be technically efficient if it lies on the production 

frontier. Firms lying outside the production frontier are considered to be inefficient. The points 

lying on the isoquant  represent efficient firms and points lying at a distance away from 

frontier represent inefficient firms as shown in Figure 2.2. 

 

  

Figure 2-3: CCR Production Frontier Figure 2-4: BCC Production Frontier 

 

Production frontiers developed in DEA are based on the non-stochastic methods. There 

exist methods to determine the productivity using the stochastic methods, which will be 

addressed in later sections. Production frontiers developed in DEA are not ideal frontiers. They 

are developed based on sample data provided by the firms. Characteristics of production frontiers 

can vary based on returns to scale (RTS), which will be discussed in the next section. Charnes, 

Cooper, and Rhodes (CCR) model assumes Constant Returns to Scale (CRS), so the production 

frontier will be linear. Banker, Charnes, and Cooper (BCC) model assumes Variable Returns to 

Scale (VRS), so its production frontier is formed by the convex hull. Inefficiency of the firm in 

both cases is determined by projecting the inefficient firm onto the frontier. More details about 

the CCR and BCC models will be presented in section 2.4. The production frontier for CCR and 

BCC models are shown in Figure 2.3 and 2.4 respectively. 

 2.1.6 Returns to Scale 

Returns to scale describes the change in output scale of production in long run for change 

in input levels. The different returns to scale are: 
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 2.1.6.1 Constant Returns to Scale (CRS) 

The first DEA model by Charnes, Cooper, and Rhodes (CCR) is based on the concept of 

constant return to scale. For the proportionate change in all inputs, if all outputs vary by the same 

proportion then the production function exhibits constant returns to scale, Coelli (2005). For 

example consider a firm producing single output using single input, say number of employees. 

The production is expected to double if the number of employees is doubled. Mathematically if 

all the inputs are scaled by an amount k > 1, then 

 

 2.1.6.2 Variable Returns to Scale (VRS) 

The DEA model by Banker, Charnes, and Cooper (BCC) is based on the concept of 

variable returns to scale. If for the proportionate changes in all inputs the output results vary by a 

different proportion, then the production function exhibits Variable Returns to Scale, Coelli 

(2005). Variable returns to scale can be further classified as Increasing Returns to Scale (IRS) 

and Decreasing Returns to Scale (DRS).  

 2.1.6.2a Increasing Returns to Scale (IRS) 

If the outputs vary by a proportion greater than the proportion of inputs then the 

production function exhibits IRS. Mathematically if all the inputs are scaled by an amount k > 1, 

then 

 

 2.1.6.2b Decreasing Returns to Scale (DRS) 

If the outputs vary by a proportion lesser than the proportion of inputs then the 

production function exhibits DRS. Mathematically if all the inputs are scaled by an amount k > 

1, then 

 

 2.2 Efficiency Measurement Techniques 

The efficiency measurement techniques can be generally classified into two groups 

Partial Productivity measures and Total Factor Productivity measures (TFP). Partial productivity 

measures develop a ratio between a single input and output. Average labor productivity is the 
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most commonly used partial productivity measure, which evaluates the output per worker 

employed. Other similar partial productivity measures are fuel productivity in power stations and 

land productivity in agriculture, Coelli (2005). The limitations of partial productivity measures 

are they can provide false information, since they fail to account the influence of other resources 

on productivity. Example, gain in productivity either due to machinery or management changes 

might be attributed to labor hours, Cooper et al., (2007). Total factor productivity measures take 

multiple inputs and outputs into account to determine productivity of a firm. The difficulties 

associated with total factor productivity measures are choice of inputs and outputs and 

assignment of weights. Initially there exists contrast between the usage of fixed weights and 

variable weights, chosen based on a best set, for each entity to be evaluated. DEA uses the 

concept of best set of weights to determine the efficiency scores. The following are different 

efficiency measurement techniques. 

 2.2.1 Ratio Analysis 

Ratio analysis is one of the most commonly used early techniques by analysts to evaluate 

performance of banks. It is a powerful tool for financial analysis. Ratios identify the relationship 

between two variables and helps in simplifying the information of financial statements. Any 

number of ratios can be designed to compare the performances between banks and its branches 

over a period of time, Siddiqui (2005). 

Ratio analysis seems to be simplistic in providing the information but the complexity of it 

increases as the number of ratios keeps increasing. The concept of unlimited number of ratios is 

often contradicting and confusing. This approach limits the productivity measure to single input 

and output; it cannot be extended to multiple inputs and outputs. It does not acquire the 

competence for identifying inefficient firms and predicting the projections required for their 

performance improvement, Paradi et al., (2004).  

 2.2.2 Indices of Efficiency 

Productivity measures based on single criterion were not satisfactory and efforts to 

identify the measures which consider multiple factors are persistent. Indices of efficiency is one 

such attempt to measure the efficiency by adding up different factors of a firm. The indices of 

efficiency sought to represent the dimensionless input quantities by weighted averages. The 

weighted average is equivalent to the valuation of inputs and price proportional to the weights. 
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This simplifies it to a cost comparison, if all the firms in the analysis choose the same set of 

prices. The difficulty arises in choosing a suitable set of weights; otherwise the choice of a set of 

prices should be subjective, Farrell (1957). 

 2.2.3 Regression Analysis 

Regression analysis is a statistical approach with capability to handle multiple inputs and 

outputs to estimate the relationship between variables. It identifies the average behavior among 

the variables and also identifies the inefficient units based on the distance from the central 

tendency of the units. 

 

 

Figure 2-5: Regression vs. Frontier 

 

However, it is unable to identify the potential efficient units and the relationship between 

them. It can seek the units suggesting the need for improvement. Also it cannot determine the 

required inefficiency area of the firm and the projections required to be efficient. The frontier 

analysis which will be discussed in the next section possesses these advantages compared to 

regression analysis; the difference between them is shown in Figure 2.5. 

Regression analysis is a complex process to assess the performance using multiple inputs 

and outputs. The advantage of regression analysis is it can account for random noises in the input 

and output levels of data, Thanassoulis (1993). 
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 2.2.4 Frontier Analysis 

Frontier analysis is a modern day efficiency measurement technique which measures the 

efficiency of firms based on the distance from the frontier formed by efficient firms. The frontier 

is developed empirically based on the dataset provided by firms, and we already discussed the 

issues associated with development of theoretical frontier. Frontier analysis not only estimates 

the efficiency scores of the production units but also the inefficiency associated with them. It 

provides projection scores, for multiple inputs and outputs considered, to improve the efficiency 

score of inefficient units. Frontier analysis provides the flexibility to determine efficiency score 

of firms under the assumption of alternative returns to scale such as constant, increasing, and 

decreasing.  

Frontier efficiency measurement techniques can be primarily classified into two groups 

known as parametric and non-parametric methods. Parametric methods require prior defined 

relationship between inputs and outputs. Non-parametric methods do not require prior 

relationship between inputs and outputs. The two most commonly used frontier based methods 

are Stochastic Frontier Analysis (SFA), and Data Envelopment Analysis (DEA). 

 2.2.4.1 Stochastic Frontiers Analysis (SFA) 

SFA is a parametric methodology which requires functional form to estimate the frontier. 

It distinguishes between inefficiency and random error by assuming that they have different 

distributions. Random error is usually modeled using a standard normal distribution with mean 

zero. Inefficiency is usually modeled using different distributions such as normal, exponential, 

and gamma. Technical efficiency is calculated using maximum likelihood estimation function, 

Berger and Humphrey (1997). SFA has not only been employed to study efficiency of hospitals, 

but also used to study nursing homes, primary care delivery and pharmacies, Hollingsworth 

(2003). SFA approach ranks the firm with lower costs for a given set of input prices (but the 

same output quantities) as more efficient than other firms, Paradi et al., (2004). 

 2.2.4.2 Data Envelopment Analysis (DEA) 

DEA is a linear programming methodology and also a non-parametric approach to 

evaluate relative technical efficiency of homogenous Decision Making Units (DMUs), using 

common multiple inputs and outputs. DMU can be defined as an organization or business 

process which consumes common resources and produces goods or services. DMU can be for-
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profit or a non-profit organization. DEA methodology determines the best set of weights for 

multiple inputs and outputs of each DMU, using linear programming methodology, to bestow the 

target DMU with best efficiency score. The efficiency score is calculated as the ratio of weighted 

sum of outputs to inputs. DEA is a non-parametric methodology which does not require prior 

relationship or functional form between inputs and outputs.  

 2.2.5 SFA vs. DEA 

SFA and DEA are two important methods based on frontier analysis, each of them having 

their own advantages and disadvantages when compared to the other. SFA is stochastic and 

parametric, whereas DEA is deterministic and non-parametric. SFA can account for noise in the 

data by separating inefficiency from random error where as DEA cannot separate it. Accuracy of 

the results of SFA depends on the functional form whereas DEA is non-parametric and does not 

require any functional forms.  

SFA runs single overall optimization principle for all the firms to estimate their 

inefficiencies. DEA runs separate optimization principle for each firm to estimate their 

inefficiencies. Bryce (2000) suggested that choice between these two methods depended on 

nature of the problem. SFA is more helpful to understand the future behavior of the entire 

population while DEA is used mostly to eliminate inefficiency of individual units specifically, 

Chilingerian and Sherman (2004).  

Hollingsworth (2003) reviewed application of parametric and non-parametric approaches 

in measuring efficiencies of healthcare units. He found that almost 50% of the studies are based 

on DEA alone; more than 80% of the studies used DEA either alone or in combination with 

some other methods, and only 12% studies used SFA. 

 2.3 Graphical Illustration 

This section illustrates the methodology of DEA graphically using a simple example. The 

graphical illustration with the help of a single input and single output provides a better view of 

DEA methodology. 

Consider a simple example of 10 clinics, with input as number of nurses and output as 

number of patients. The analysis shows the relationship between patients and nurses. Table 2.1 

shows the recorded data for input nurses and output patients, and relation between them. It also 

shows the efficiency scores determined using the CCR Input Oriented Model of DEA. 
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Table 2-1: Single Input and Output 

DMU (I) # of Nurses (O) # of Patients Patients/Nurse Efficiency Scores 

A 5 40 8.00 0.421 

B 8 30 3.75 0.197 

C 2 38 19.00 1.000 

D 4 49 12.25 0.645 

E 9 45 5.00 0.263 

F 7 38 5.43 0.286 

G 5 45 9.00 0.474 

H 6 26 4.33 0.228 

I 8 36 4.50 0.237 

J 3 38 12.67 0.667 

 

Representing the data recorded in Table 2.1on a graph by plotting number of nurses on 

horizontal axis and number of patients on vertical axis. The slope corresponds to the relationship 

between patients to nurses and this can be observed from Figure 2.6. 

 

 

Figure 2-6: Single Input and Single Output 

 

The clinic with highest slope forms the efficient frontier and rest of the clinics either lie 

either on this frontier or below the frontier. Clinics that lie on this frontier are termed as efficient 

and the one‟s that lie below the frontier are termed as inefficient. The efficient frontier envelops 

all the other points in the plane hence it obtained the name Data Envelopment Analysis. 
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Figure 2.6 shows that clinic C is efficient and it forms the frontier inefficient since it 

possess the highest slope. The other clinics such as J, D, A, G, and etc. lies below the frontier are 

termed as inefficient clinics. Inefficient clinics can be converted into efficient DMU in two ways, 

either by reducing the amount of inputs consumed or increasing the amount of outputs produced 

by the clinic. The inefficient clinic J can be converted to efficient, if it can reduce the number of 

nurses from 3 to 2 to treat 38 patients or if it can serve 19 more patients with 3 nurses. 

 2.4 Data Envelopment Analysis 

 2.4.1 Background 

The term Data Envelopment Analysis (DEA) was first brought into use by Charnes, 

Cooper, and Rhodes in 1978 to evaluate U.S public schools. Their research efforts, of Rhodes 

under the supervision of Cooper, to evaluate the educational programs for disadvantaged 

students in a series of large scale studies with support from the federal government is the origin 

of DEA, Cooper et al., (2004). Rhodes and Cooper started looking into Farrell‟s, 1957 work on 

“The Measurement of Productive Efficiency”. Charnes was brought in for this topic through his 

previous research association with Cooper. Charnes, Cooper, and Rhodes extended the germinal 

ideas of Farrell‟s research work to develop the basic DEA model. Farrell defined two measures 

of efficiency in his research work, one is Technical Efficiency, and the other is Allocative 

Efficiency, which were well defined in the previous sections. DEA can be termed as the 

extension of Farrell‟s Technical Efficiency using production function. 

 2.4.2 Terminology 

DEA  = Data Envelopment Analysis 

   = Decision Making Unit, which consume inputs & produce outputs 

  = DMU under evaluation or Test DMU 

   = Total number of DMUs under evaluation 

   = Total number of input variables 

  = Total number of output variables 

  = Optimal solution value 
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   = Input multiplier variable of ratio model,  

   = Output multiplier variable of ratio model,  

  = Represents input variables of ,  

  = Represents output variables of ,  

 2.4.3 Charnes-Cooper-Rhodes (CCR) Model 

CCR model named after Charnes, Cooper, and Rhodes is the first DEA model developed 

in 1978. CCR model is a fractional programming model which measures the relative technical 

efficiency of the firms based on multiple inputs and outputs. Efficiency is measured as the ratio 

of weighted sum of outputs to weighted sum of inputs, Charnes (1978). 

 

 

 

Consider a dataset of  DMUs which consume  inputs and produce outputs. Input and 

output data for  are represented as, , and  respectively, 

where . Efficiency of each DMU is evaluated relative to the constraint set of all  

DMUs, and needs  optimizations to evaluate the efficiency scores of all the DMUs. DMU under 

evaluation is represented by  The following is the fractional programming model based on 

the definition of efficiency. 

 

 

S.T      (1) 
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Charnes in 1978 converted the Fractional Programming problem model (1) into a linear 

programming problem model (2). We solve the linear programming problem to obtain values for 

input weights, and output weights,  as variables which need to 

satisfy the constraints set and to optimize the objective function. Constraint set restricts the ratio 

of weighted sum of outputs to inputs to not exceed unity for every DMU. Model (2) is also 

known as the multiplier approach due to use of input and output multiplier weights. 

 

 

S.T      (2) 

 

 

 

 

 

 

S.T     (3) 
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Model (3) represents the dual linear programming problem of primal model (2). Primal 

and Dual are transposition to each other. If primal is a maximization problem then dual will be a 

minimization problem. Dual is used to determine the amount of inefficiency of DMUs by 

projecting them onto the efficient frontier. In this case dual aims at minimization of inputs. 

Model (3) is also known as Envelopment approach, due to formation of envelop to evaluate the 

inefficiency of DMUs. 

Generally dual is referred to as primal and the primal is referred to as dual, in the case of 

DEA. Most people use the dual or the envelopment approach to determine the efficiency scores. 

Dual is less computational, as it contains  constraints, when compared to primal which 

contain  constraints. Envelopment model is more meaningful as it calculates the amount of 

slack associated with each input and output thereby providing recommendation to the 

management for improving the efficiency. 

DEA models can be subdivided into input and output orientated models. Input oriented 

model aims at minimizing the input consumed by the DMUs for the same target of output levels. 

While output oriented models aims at maximizing the outputs produced by the DMUs for the 

given amount of inputs consumed. Model (4) shows the formulation of input oriented CCR 

model and model (5) shows the formulation of output oriented CCR model, Charnes (1978). 

 

CCR Input Oriented (Multiplier Approach) CCR Output Oriented (Multiplier Approach) 

 
S.T                                                             (4) 

 

 
 

 

 
S.T                                                             (5) 
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 2.4.4 Banker-Charnes-Cooper (BCC) Model 

BCC model named after Banker, Charnes, and Cooper is an extension to CCR model 

which assumes variable returns to scale was introduced in 1984. The primary difference between 

the CCR and BCC models is , free variable, in the multiplier approach and , additional 

constraint, in the multiplier approach. BCC model production frontier is spanned by convex hull 

of existing DMUs. The frontier has piecewise linear and concave characteristics which leads to 

variable returns to scale characterizations, Banker (1984). A free variable  indicates decreasing 

returns to scale, negative free variable  indicated increasing returns to scale, and if the free 

variable  equals to zero then it indicated constant returns to scale, Cooper et al., (2007). 

The relationship between the CCR and BCC models is, BCC production set is a subset of 

CCR production set. This means if the DMU is CCR efficient then it is definitely BCC efficient 

also while the converse is not true. CCR models are models are selective in allocating efficiency 

scores; hence CCR efficiency score always less than or equal to BCC efficiency scores. 

 

Primal Dual 
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Similar to CCR model, BCC also possess the primal and dual models. The primary 

difference the CCR primal and BCC primal model is the free variable . While the primary 

difference between the CCR dual and BCC dual is the additional constraint . The 

primary and dual models of BCC are represented as Model (6) and (7) respectively. Each primal 



28 

 

and dual model can be sub divided into input oriented model and output oriented model. The 

input and output oriented BCC models based on the primal or multiplier approach are 

represented as Model (8) and (9) respectively. 

 

BCC Input Oriented (Multiplier Approach) BCC Output Oriented (Multiplier Approach) 

 
S.T                                                             (8) 
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 2.4.5 Additive Model 

The additive model was introduced by Charnes, Clark, Cooper, and Golany in 1985. 

Additive models possess the advantage of combining both input and output oriented models by 

treating input and output slacks directly in the objective function, Charnes et al., (1985). Hence it 

is also known as the non-oriented model. The additive model deals with the input excesses and 

output shortfalls directly and can also discriminate efficient and inefficient DMUs 

simultaneously. This model has the same production possibility set as BCC model, based on 

variable returns to scale. So both these models possess the similar constraint . The 

multiplier approach and envelopment approach are represented as model (10) and (11) 

respectively. As the BCC and Additive models are based on variable returns to scale, if a DMU 

is BCC efficient then it is Additive efficient also. 
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Additive Model  (Multiplier) Additive Model  (Envelopment) 
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 2.5 DEA Models for Special Cases 

Apart from the basic models of DEA such as CCR and BCC there exists several other 

models in DEA which are chosen based on specific requirement. The following are few of the 

important models which attracted the attention of many researchers due to their specific 

advantages. 

 2.5.1 Non-Discretionary Variables 

Non-Discretionary variables mean those which cannot be controlled at will. These are 

also called as exogenously fixed variables or uncontrolled variables as per DEA terminology. 

The basic assumption of DEA is that all the multiple inputs and outputs considered are 

controllable, so inefficiencies associated with each variable can be adjusted to achieve the 

desired efficiency. There exists some variables which are beyond the control of management and 

sometime human power, but these variables need to be considered. Examples for non-

discretionary variables are fertility of the farmlands, age of the store, local unemployment rate, 

growth of population and influence of weather. 

Banker and Morey (1986a), modified CCR input oriented envelopment model to include 

discretionary and non-discretionary variables as shown below: 
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The set of multiple inputs variables can be classified into discretionary and non-

discretionary variables. Discretionary input variables are represented as ID, non-discretionary 

input variables are represented as IN. Modifications made by Banker and Morey (1986a) for the 

treatment of non-discretionary variables are as follows: 

1. Slack variables associated with non-discretionary input variables are not introduced into 

the objective function. Hence inefficiencies associated with these variables do not 

influence the efficiency score of DMU under evaluation. 

2. θ, the measure of efficiency does not control the non-discretionary input variables. It only 

controls the discretionary input variables. 

 2.5.2 Categorical DMUs 

All the DMUs during DEA need to be homogenous. There might be times where the 

DMUs are not 100% homogenous. All the DMUs in the reference will not have the same kind of 

advantages and disadvantages when compared to other DMUs. At the same time it is not 

reasonable to compare the disadvantageous DMUs with advantageous DMUs. DEA structure 

with hierarchical category is required, such that DMUs with similar advantages are compared 

among themselves and also with more disadvantages (worst) DMUs. Whereas more 
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disadvantaged DMUs are compared among themselves. If these categories are not comparable 

then separate analysis is required. 

For example consider a set of hospitals. These hospitals which are based on population 

distribution around them can be classified into two categories, advantageous and 

disadvantageous. Hospitals in disadvantageous category are compared among themselves and 

not with the advantageous; whereas hospitals in advantageous category are compared among 

themselves as well as with the hospitals in disadvantageous category. 

Banker and Morey (1986b), modified version of the CCR input oriented envelopment 

model including categorical DMUs is shown below: 
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Determine the total number of possible categories such that each DMU can be assigned to 

a particular category. Let‟s say there exist „L‟ categories (1 ≤ f ≤ L), such that „1‟ represents the 

lowest level and „L‟ represent the highest level. DMUs in each category from (1 ≤ f ≤ L) are 

represented as K1, K2, …, KL. Each DMU can be assigned to only particular category and every 

DMU in the set should be assigned to some category. All DMU which belong to category 1 are 

evaluated with respect to units in K1, all DMUs in category 2 are evaluated with respect to units 

in K1 U K2. 

 2.5.3 Weight Based Models 

DEA calculates weights for multiple inputs and outputs to evaluate relative efficiency by 

maximizing the ratio of weighted sum of outputs to inputs. Restrictions on weights are non 

negativity, and efficiency of DMU should be less than unity. The flexibility of weights in DEA is 
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considered to be both advantageous and disadvantageous. The weights associated are sometimes 

beyond the scope of explanation. This led to the development of the weight restriction models, 

which confines selection of weights to a finite limit. 

Weight restricted models are application oriented. Formulation of initial weight 

restricting model happened when CCR model failed to choose the best site for locating a high 

energy physics lab. Thompson (1986) restricted input and output weights using Assurance 

Region model (AR). This led to a new era of weight restricted models in DEA.  

Assurance Region approach developed by Thompson (1986) imposes constraints based 

on ratio of relative magnitude of weights for input and output variables. The two ways in 

determining Assurance Region bounds are, using Analytical Hierarchy Process (AHP) to obtain 

expert suggestions for setting the bounds, and the second one is using economic information of 

price/unit cost. Dyson (1988) presents a rationale for limiting weights in DEA models with 

single input case, and regression analysis for determining the lower bounds. This cannot be 

applied as a general model for multiple inputs and outputs. Cone Ratio method developed by 

Charnes (1990) is a more general approach than Assurance Region approach. Convex cones are 

used to measure the efficiency of DMUs. The feasible regions of weights are reduced to be a 

polyhedral convex cone by using directional vectors carrying conditions specified by the 

decision maker. Roll (1991) assuming the extreme case, when no flexibility is allowed, 

determined the concept of Common Set of Weights (CSW), which is a usual approach in 

efficiency analysis. The common set of weights is determined by taking average of the upper and 

lower bound weights from unbounded DEA analysis. Roll (1993) proposes that the weight 

bounds can be chosen by carefully observing the resultant weight matrix of the unbounded DEA 

model. Possible consideration would be eliminating zero weights and finding average weights 

for each factor across all DMUs. 

 2.5.4 Super Efficiency Model 

Super efficiency model is introduced with the objective of providing tie-breaking method 

among the efficient DMUs and effective procedure for ranking DMUs. The process of excluding 

the DMU under evaluation from the solution set results in a new set of efficiency scores. 

Ranking of the super efficiency model is based on the new solution set. The model obtained by 

excluding the data of the decision making unit from the reference set of the envelopment model 
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to calculate the efficiency score is called as Super Efficiency Model. This model was proposed 

by Andersen and Petersen (1993). This model takes the form of CCR and avoids the convexity 

constraint condition of BCC model. 
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 2.6 Strengths and Weaknesses 

Data Envelopment Analysis is more advantageous when compared to other efficiency 

measurement techniques. 

 DEA is a Total Factor Productivity (TFP) approach since it has the capability to handle 

multiple inputs and outputs, unlike Ratio Analysis technique which is limited to single 

input and output. 

 DEA is a non-parametric approach for which relationship between inputs and outputs 

need not be defined, unlike a parametric approach where accuracy of defining the 

relationship between inputs and outputs could influence the results. 

 Units Invariance property of DEA models implies that final results are independent of 

unit measurement of inputs and outputs, provided the units are same for every DMU, 

Cooper et al., (2007). 

 Unlike the regression analysis models providing focus on mean values of the group, DEA 

measures the amount of efficiency and inefficiency associated with each individual unit. 

 DEA also calculates the required projections for transferring inefficient units to be 

efficient and provides information about the benchmarks used. 
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 Positivity condition (e >0) of DEA multipliers provides flexibility for each DMU to be 

evaluated as the best, Cooper et al., (2004). 

 Unlike the fixed weight models DEA is more advantageous with flexibility in choosing 

variable weights to represent each DMU in its best form.  

Like any other method DEA also has few weaknesses. 

 DEA is only capable of measuring relative technical efficiency and it cannot measure 

absolute efficiency. This implies that 100% technical efficient units are best among the 

peers but may not be 100% absolute efficient. 

 DEA is a frontier technique and is extremely sensitive to quality of the data and outliers 

present in the data which can greatly influence the estimation of frontier. 

 DEA efficiency results are dependent on data provided. Any addition of inputs and/or 

outputs and addition of new DMUs can influence existing efficiency scores. 

 The rule of thumb by Banker (1989) suggests that number of DMUs should be greater 

than or equal to the maximum of either the product value of inputs and outputs or thrice 

the sum of inputs and outputs. This limits the application of DEA to smaller sets. 

 

 

 2.7 Healthcare Efficiency Measurements using DEA 

Tracing the subject of the application of DEA in healthcare, Nunamaker (1983) was the 

pioneer who made a comparison between the cost saving estimates per patient day and efficiency 

scores of DEA models. 17 fairly homogenous hospitals in Wisconsin were selected for 

measuring the efficiency of nursing services over a two year period starting from 1978. Input 

measure is aggregation of all routine costs associated with inpatients and output measure is 

aggregation of patient days. The results represented fundamental differences between the two 

methodologies and differences in efficiency scores for different combinations of inputs and 

outputs. Nunamaker provided a glance of DEA application in healthcare and Sherman (1984) 

provided more strength through his satisfactory research findings. Sherman suggested DEA as a 

promising tool to evaluate hospital efficiency when compared to other approaches such as ratio 

analysis, and econometric regression analysis. When DEA was applied to a group of teaching 
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hospitals in Massachusetts; it was found that DEA provided better insight into location and 

nature of hospital inefficiencies, and identified two inefficient clinics that would not be identified 

with other efficiency approaches. Banker (1986) added strength to application of DEA in 

healthcare by comparing the DEA results with translog cost functions. Data of 114 hospitals in 

North Carolina for the fiscal year of 1978 was examined using four inputs and three outputs. 

Inferences suggested that efficiency scores of DEA were highly correlated to the actual capacity 

utilization estimated by hospitals than compared to results of translog estimates. DEA results 

estimate diverse set of behaviors under increasing and decreasing (variable returns to scale) 

production functions whereas translog functions estimate using constant returns to scale. 

The capability of DEA to handle multiple inputs and outputs, non-parametric nature, 

focus on each individual unit, and the ability to measure the efficiency score under variable 

returns to scale production functions provided break through for application of DEA to measure 

efficiency of healthcare units. The saga of successful application of DEA in healthcare continued 

and expanded to wider areas within a short period of time. Following is the list of few 

applications of DEA in wider areas of healthcare. Ozcan (1998) identified physician 

benchmarking in treatment of Otitis media using CCR model. Siddharthan (2000) used DEA to 

measure the relative technical efficiency of 164 Health Maintenance Organizations (HMOs) in 

United States. Healthcare utilization was measured using inpatient days, number of outpatients, 

emergency room visits as input measures and output measures are number of commercial, 

Medicaid, and Medicare life‟s covered in each plan. Nathanson (2003) used DEA to identify 

survival chances of Neurotrauma patients at an early stage during their stay in the Intensive Care 

Unit (ICU). Variables that influence death of the patient during his stay in ICU are considered as 

inputs. The efficiency score of the DEA results indicate the survival chance of the patients. 

Higher efficiency score indicates better chance of recovery. Nathanson compared the 

performance of DEA results against regression models. DEA results are more satisfactory as 

each patient efficiency level can be identified than focusing on mean values of the group. Basson 

(2006) performed Data Envelopment Analysis to evaluate operating room efficiency across 23 

Veteran Health Administration systems. The results conclude that DEA is capable of providing 

information more specifically about efficiency and inefficiency for each unit when compared to 

single ratio methods. Mukherjee (2010) analyzed the efficiency of Local Health Departments 

(LHD) operating in U.S based on 2005 data using DEA.  
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Taking a turn to consider the application of DEA in healthcare in geographic locations 

outside United States, it has been applied in many other countries to measure the efficiency of 

healthcare units. Garavaglia (2011) evaluated efficiency and quality care of 40 nursing homes in 

Italy over a three year period starting from 2005. A two stage DEA analysis procedure was used. 

Blank (2009) used DEA to identify the productivity of 69 Dutch hospitals based on data for the 

year 2000. This particular research work also employed a two stage process; efficiency scores 

are determined based on DEA models in the first stage and in the second stage bootstrapping 

techniques were used to identify the factors influencing the costs and inefficiencies in hospitals. 

Puenpatom (2008) used a two stage DEA approach to measure the efficiency of public hospitals 

in Thailand during the transition phase of implementing new health coverage. The research was 

able to identify increase in efficiency of larger public hospitals during the transition period.  

Hofmarcher (2002) preferred DEA models to measure the efficiency of Austrian 

hospitals, for the years 1994 to 1996, over regression models and fixed effects model. Helmig 

(2001) used DEA to measure the efficiency of public, welfare, and private hospitals in Germany 

for the years 1991 to 1996. Results suggest that overall efficiency of the hospitals over the period 

of time had increased. The research work also drew inferences about the influence of ownership 

on efficiency scores, as the results suggested that public and welfare hospitals are relatively more 

efficient than private hospitals. Bjorkgren (2001) used DEA to identify the nursing care 

efficiency of 64 long term care units in Finland based on four inputs and one output. In the 

second stage, statistical significance test were carried out to compare the efficiency scores. 

Hollingsworth (2001) expressed DEA as a potential tool to evaluate the efficiency of 49 

neonatal care services in U.K over regression analysis. The research work used the dataset 

published by O‟Neill, who determined the average costs using regression analysis. Results of 

DEA models suggested that there exists more potential scope for savings when compared to 

regression analysis, and significant technical inefficiencies due to economic returns to scale. 

Jacobs (2001) examined the efficiency of 232 U.K hospitals based on seven different measures 

to study the consistency and robustness of efficiency scores using Data Envelopment Analysis 

and Stochastic Frontier Analysis. The results suggested that both these methods possessed 

strengths and weakness, taking into account the random noise in data. If there was no random 

noise in the data both these methods provide consistent results.  
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Hollingsworth (1999) reviewed application of non-parametric approach in measuring 

efficiency of healthcare units with major focus on Data Envelopment Analysis. This work 

reviewed a total 91 published papers starting with Nunamaker (1983) to 1999. The statistics 

published by Hollingsworth (2003) shows the growth of DEA studies in healthcare over a period 

of time, percentage of studies using DEA methodology. The study finds that DEA tops the list 

when compared to other efficiency measurement studies and healthcare is the primary area. 

Hollingsworth (2003) reviewed 188 published papers identifying the application of 

parametric and non-parametric approaches in measuring efficiencies of healthcare units which is 

an extension to Hollingsworth 1999. The statistics suggested that almost 50% of the literature 

used DEA alone to identify the efficiency scores. 12% of the studies used Stochastic Frontier 

Analysis (SFA) and other parametric approaches; this leaves 88% of the studies which used DEA 

alone or combined with some other methods to measure the efficiency of healthcare units. These 

statistics indicated the significance of DEA for healthcare efficiency measurement, and for much 

more details refer to Hollingsworth 1999, 2003. 

Based on the Bibliography work done by Becker (2010) starting from the inception of 

DEA in 1978, the list of healthcare related journals and the number of published research articles 

in the field of DEA are presented in Appendix A. 
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Chapter 3 - PREPARING THE DATA 

 This chapter introduces the mission, objectives, and programs of Kansas Association for 

the Medically Underserved (KAMU). Overview of data provided by the KAMU for the 

determination of the productivity will be presented in this chapter. It also presents the list of 

member clinics whose productivity needs to be determined. Summary of the problems associated 

with the data and the measures need to be taken, to prepare the data for Data Envelopment 

Analysis will be addressed in this chapter.  

Important inputs and outputs required for the analysis will be identified and their 

significance will be presented in this chapter. Some of the issues such as classification of inputs 

and outputs, correlation between the variables, scaling the data, selection of DEA models, and 

missing data will be addressed. The measures to supplement them will also be addressed by 

providing insight to valuable literature works. This chapter also presents the literature review on 

DEA studies with missing data. The literature review addresses the methods to handle the 

missing data during Data Envelopment Analysis. 

This chapter is structured as follows. Section 3.1, introduces the history of KAMU as 

well as its mission and aims. Section 3.2, presents the overview of the data provided by the 

KAMU. Section 3.3, describes the significance of important variables from the view point of the 

KAMU clinics. Section 3.4, classifies the identified list of variables as inputs and outputs. It also 

presents the literature in this aspect to classify inputs and outputs more effectively. Section 3.5, 

provides the guidelines to choose the specific DEA model required. Section 3.6, highlights the 

influence of correlation on DEA outcomes, while section 3.7 highlights the influence of 

normalization on DEA outcomes. Section 3.8, presents the issue of missing data, core aspect of 

this thesis. Then section 3.9, digs into the literature works on DEA with missing data. Section 

3.10, introduces the software used to execute the various DEA models as are part of this thesis. 

 3.1 Introduction to KAMU 

Kansas Association for the Medically Underserved was founded in 1989 and 

incorporated as nonprofit organization in 1990. In 1991 KAMU was recognized as the Primary 

Care Association (PCA) of Kansas. KAMUs mission is to “support and strengthen its member 
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organizations through advocacy, education and communication”. It provides advocacy on behalf 

of Federally Funded or Locally Funded Community Health Centers in Kansas, education by 

providing training and technical assistance, and communication among the clinics for sharing 

beast practices and to improve the knowledge. Currently 42 organizations are member clinics of 

KAMU. Members include both public and private non-profit organizations. The main aim of 

these clinics is to “deliver primary health care services regardless of an individual's ability to 

pay”. Members range from Federally Qualified Community Health Centers (FQHCs) to the local 

county health departments. Membership is open to all organizations which can meet KAMU 

membership criteria, support it missions, and practice the aim. 

Currently there are 42 KAMU member clinics which include 14 Federally Qualified 

Health Centers (FQHC), 1 FQHC Look-Alike, 26 Primary Care Clinics; other member does not 

provide direct care but supports KAMU mission. The data provided by KAMU in 2008 include 

41 clinics, of which 19 Federally Qualified Health Centers (FQHC), 14 Primary Care Clinics, 7 

Free Clinics, and 1 Voucher Program. The list of all the current 42 member clinics under KAMU 

is shown in Appendix B. 

The association accomplishes its mission through a wide range of programs and activities 

that can be grouped into seven core functions: 

1) Maintaining and Strengthening the State's Safety Net Primary Care Clinics: KAMU 

provides training and technical assistance to health centers and primary care safety net 

clinics, as well as targeted assistance to new clinics and organizations with leadership or 

other significant changes. 

2) Surveillance: KAMU monitors state regulatory, administrative and legislative activities 

that affect the need for and availability of primary care services for the underserved. 

Facilitating activities to positively influence and impact outcomes that affect the 

underserved. 

3) Growth Assistance: KAMU assists existing organizations and communities to expand 

primary health care services for underserved populations consistent with their need. 

4) Workforce: KAMU helps member organizations with the development of recruitment 

and retention plans, partners with National Health Service Corps and State Loan 

Repayment offices, and works with academic medical, dental and other health profession 

schools to promote the placement of student interns in safety net clinics. 
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5) Liaison/Collaboration/Partnering: KAMU works collaboratively with local, state and 

federal officials and organizations involved in health policy. 

6) Clinical Quality: KAMU provides technical assistance to health centers and primary 

care safety net clinics on care management and clinical quality activities and programs, as 

well as emergency preparedness planning. 

7) Leveraging and Enhancing Revenues: KAMU works with private and public 

stakeholders to increase resources for operations and/or capital improvements to improve 

Kansans' access to quality primary health care services. 

 

KAMU offers a variety of programs to support member clinics in their work and to 

expand health care for the underserved in Kansas. 

 Clinical Programs provide access to resources and information that enhance patient care 

and clinical proficiency. Additionally, they provide opportunities and support that 

connect clinicians working in safety net clinics across the state. 

 Community Development is aimed at growing, strengthening and sustaining the primary 

health care safety net in Kansas. 

 Workforce Development programs help recruits and train professionals to work in the 

state‟s primary care safety net clinics. 

 Operational and Financial services are targeted to help KAMU members develop 

strategies to provide financial stability and increase operating efficiencies. 

 3.2 Introduction to KAMU Data 

The 41 clinics data provided by KAMU for Data Envelopment Analysis is the outcome of 

Clinic Reporting Tool (CRT) used by these clinics. The information collected by this tool is 

developed based on the requirements of the KAMU and KDHE, Kansas Department of Health 

and Environment. The primary objective of this tool is to reduce the multiple reporting burdens 

of the clinics. The clinics need to submit this data once in a year to KDHE. 

The data collected by the CRT is provided in an Excel File. Data in the spreadsheets is 

broadly classified into the following sections: List of Clinics, Expenses, Revenue, Staffing, 

Diagnosis, Patient Visits, and the List of Services offered by each clinic. Each section has data 

recorded for large number of variables, and the total number of variables in the dataset is 225. 
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Major issue associated with the data provided is, a large amount of it is missing. Certainly all the 

225 attributes are not required for the Data Envelopment Analysis. The relationship between the 

number of attributes required for the analysis and the number of the DMUs is presented below. 

This illustrates the requirement for total number of inputs and outputs. 

1. Number of DMUs should be equal or greater than the product of inputs and outputs 

or 

2. Number of DMUs should be equal or greater than 3 time the sum of inputs and outputs 

 

 

 

Based on this relationship the total number of inputs and outputs should not be more than 

13 attributes, one third of 41 DMUs. There is no particular restriction for choosing the number of 

inputs and outputs among the 13 variables. The list of important inputs and outputs required for 

the analysis based on the availability of the data from each section is presented in the Table 3.1. 

 

Table 3-1: List of Important Inputs and Outputs 

Expenses Revenue Staffing Patient Visits 

Medical Staff 

Lab X-Ray 

Other Medical 

Facility 

Administration 

Medicaid Charged 

Medicaid Collected 

Self Pay Charged 

Self Pay Collected 

State PC Collected 

Nurse Practitioner FTE 

Nurse Practitioner Enc 

Nurses FTE 

Administration FTE 

Patient Support FTE 

Total Users 

Uninsured Users 

Total Visits 

 

Examination of the KAMU data, regarding the missing values, confirms that there exist 

few clinics (DMUs) with high percentage of missing values. Elimination of such clinics from the 

analysis could reduce the effort to estimate missing values. There exist three such clinics in the 

dataset which does not have data for most of the variables presented in Table 3.1. There exist one 

more DMU which does not have any input data required for the analysis. Estimating all the 

inputs might affect DEA results. Excluding these four DMUs from the dataset, the total number 

of DMUs reduces from 41 to 37. The percentage of the data available for each of the variables 

presented in the Table 3.1 is shown below in Table 3.2 
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Table 3-2: Data Availability for Each Variable 

Key No Variables % Data Available 

V1 Medical Staff Expenses 89.19 

V2 Lab X-Ray Expenses 70.27 

V3 Other Medical Expenses 72.97 

V4 Facility Expenses 81.08 

V5 Administration Expenses 86.49 

V6 Medicaid Charged 67.57 

V7 Medicaid Collected 67.57 

V8 Self Pay Charged 86.49 

V9 Self Pay Collected 91.89 

V10 State PC Collected 75.68 

V11 Nurse Practitioner FTE 72.97 

V12 Nurse Practitioner Enc 62.16 

V13 Nurses FTE 78.38 

V14 Administration FTE 83.78 

V15 Patient Support FTE 70.27 

V16 Total Users 100.00 

V17 Uninsured Users 89.19 

V18 Total Visits 100.00 

 

Identifying the potential clinics with high percentage of available data and critical 

variables required for the analysis, the dataset is reduced from 41 clinics to 37 clinics and the 

number of variables is reduced from 225 to 18. Thus based on the primary analysis the dataset is 

reduced and simplified for the Data Envelopment Analysis. 

In order to evaluate the effectiveness of missing data estimation methods in the later 

chapters we need to identify a subset with complete data from the given dataset. Scrutinizing the 

given dataset we identified 22 clinics with 7 variables which possess complete data. This dataset 

will be introduced in the later chapters to evaluate the effectiveness of missing data estimation 

methods proposed in this thesis. 

 3.3 Description of Variables 

The previous identifies the list of important variables, and explains how the large dataset 

is simplified to perform the Data Envelopment Analysis. This section presents the description for 

the list of important variables identified in the previous section based on the user manual of 

Clinic Reporting Tool. 
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Medical Staff Expenses: 

Medical Staff Expenses includes all staff costs, including salaries and fringe benefits for 

personnel supported directly or under contract for medical care staff, except lab and x-ray staff.  

Lab X-Ray Expenses: 

Lab X-Ray Expenses includes all costs for lab and x-ray, including salaries and fringe 

benefits for personnel supported directly or under contract, for lab and x-ray staff. It also 

includes all other direct costs, but not limited to, supplies, equipment depreciation, related travel, 

contracted or voucher lab and x-ray services, etc.  

Other Medical Expenses: 

Other Medical Expenses includes all other direct costs for medical care including, but not 

limited to, supplies, equipment depreciation, related travel, etc.  

Facility Expenses: 

Facility Expenses include rent or depreciation, interest payments, utilities, security, 

grounds keeping, maintenance, janitorial services, and all other related costs. 

Administration Expenses: 

Administrative costs include the cost of all corporate administrative staff, billing and 

collections staff, medical records and intake staff, and the costs associated with them including, 

but not limited to, supplies, equipment depreciation, travel, etc. 

In addition other corporate costs example purchase of insurance, audits, Board of 

Director‟s costs, etc. The cost of all patient support services example medical records and intake 

are also included. 

Staffing: 

All paid staff should are considered as full-time equivalents (FTEs). A person who works 

20 hours per week (i.e., 50% time) is reported as “0.5 FTE.” Positions with less than a 40-hour 

base, especially clinicians, should be calculated on whatever they have as a base for that position. 

Similarly, an employee who works four months out of the year would be reported as “0.33 FTE”. 

All staff time should be allocated by function among the major service categories listed. 

For example, a full-time nurse who works solely in provision of direct medical services would be 

counted as 1.0 FTE under “Nurses”. If that nurse provided case management services for 10 

hours per week, and provided medical care services for the other 30 hours per week, time would 

be allocated 0.25 FTE to “Case Managers” and 0.75 FTE to “Nurses”. 
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Administration FTE: 

Executive director, medical director, physicians or nurses with corporate (not clinical) 

administrative responsibilities, secretaries, fiscal and billing personnel, all other support staff and 

staff with administrative responsibilities. Patient support staff is also a part of the administration 

staff whose primary responsibilities are patient intake and their medical records. 

Medicaid: 

Clinics should report the revenue generated through all services paid for by Medicaid, 

regardless of whether they are paid directly or through a fiscal intermediary or any Health 

Maintenance Organization (HMO).  

Self Pay: 

Clinics should report as the revenue generated through all services and charges where the 

responsible party is the patient, including charges for indigent care programs. This also includes 

the amount received for all the uncovered services and individual users without insurance.  

State Primary Care (PC) Collected: 

All the revenue received State and from the State Primary Care Grant should be reported 

as State PC Collected.  

 3.4 Classification of Inputs and Outputs 

The basic Data Envelopment Analysis model assumes that the status of each input and 

output is known in prior. However this is not possible under all cases, as the complexity of the 

analysis increases it becomes challenging to classify inputs and outputs. There are certain 

variables which can act as either input or output such variables are called as flexible measures. 

Let‟s consider an example provided by Cook and Zhu (2007) on how interns in hospitals should 

be considered for determining the productivity. Such a factor clearly constitutes an output 

measure for a hospital, being one form of training provided by the organization, but at the same 

time it is an important component of the hospital‟s total staff, hence is an input. Generally the 

decision on such flexible measures is left to the analyst. Still there exist methods on how to 

classify such measures as either input or output for more accurate analysis.  

Cook et al., (2006) presents a methodology for dealing with factors which can 

simultaneously act as input and output. Flexible factors can be classified into three groups such 

as input, output, and equilibrium. These are tested under constant, increasing, and decreasing 
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returns to scale, permitting them for allocations. Cook and Zhu (2007) proposed a new model for 

classifying a measure into an input or output by introducing a large positive number into the 

model. Later Toloo (2009) identified that such a measure can result in inaccurate efficiency 

score. A new model is developed by Hatefi et. al., (2009) to classify inputs and outputs based on 

Cobb-Douglas production function. 

Examination of the list of important variables presented in the Table 3.1 reveals that there 

exist no such flexible measures in this analysis. The procedure for classifying the inputs and 

outputs is completely based on the expert opinion and meticulous understanding of the nature of 

the variable. The outcome suggests that Expenses and Staffing variables should be treated as 

inputs, whereas Revenue and Patient Visit variables should be treated as outputs. The criterion 

behind this classification is also based on the basic concept of inputs and outputs. Inputs can be 

considered as resources utilized for the achieving the goals and objectives of the system. The 

response of the system to the inputs consumed can be defined as output to the system. Table 3.3 

presents the classified inputs and outputs. 

 

Table 3-3: List of Inputs and Outputs 

Inputs Outputs 

Medical Staff Expenses Medicaid Charged 

Lab X-Ray Expenses Medicaid Collected 

Other Medical Expenses Self Pay Charged 

Facility Expenses Self Pay Collected 

Administration Expenses State PC Collected 

Nurse Practitioner FTE Total Users 

Nurse Practitioner Enc Uninsured Users 

Nurses FTE Total Visits 

Administration FTE  

Patient Support FTE  

 

 3.5 Selection of DEA Models 

This section highlights the significance of choosing the appropriate models to perform the 

Data Envelopment Analysis more effectively. 

In the second chapter we had discussed that variables can be classified as Discretionary 

and Non-Discretionary variables. Discretionary variables can be controlled by the management 

and Non-Discretionary variables are beyond the control of the management. The inputs, 
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Expenses and Staffing, fall under the category of the Discretionary variables since they are 

controllable. The outputs, Revenue and Patient Visits, are not under the control of management 

hence they fall under the Non-Discretionary variables category. Application of the Non-

Discretionary models, discussed in the Chapter 2, will provide a better set of efficiency scores 

for the KAMU clinics. This can also be substituted by choosing appropriate input or output 

oriented basic DEA models. 

In chapter 2, we also come across the input oriented model, and output oriented model of 

DEA. We also discussed the significance of these models and when they need to be applied. 

Input oriented model aims at reducing the amount of inputs for the same value of outputs. 

Whereas output oriented model aims at increasing the amount of outputs for the same value of 

inputs. Based on the nature of these definitions and since only the inputs, Expenses and Staffing, 

are discretionary variables, input oriented models are considered to be as the best choice. Thus 

the projection scores obtained by the DEA can be implemented effectively for improving the 

productivity of the inefficient clinics. Table 3.4 shows the basic input oriented DEA models.  

 

Table 3-4: Input Oriented Models 

CCR Input Oriented Model  BCC Input Oriented Model  

 
S.T                                                             (1) 

 
 

 
 

 

 
S.T                                                             (2) 

 

 

 

 3.6 Influence of Correlation 

This particular section highlights the significance for checking the correlation between 

the inputs and outputs prior to the analysis. The presence of high correlation between the 

variables does not affect the efficiency scores or the final outcomes. Identification of such 
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variables could save the computational time, since one of the two variables can be excluded from 

the analysis. This can be explained with the help of an example. 

Consider a dataset of 10 DMUs with single input and single output shown in the Table 

3.5. The calculated efficiency scores using CCR and BCC input oriented models are also 

presented in the same Table. Now let‟s add new input variable to the dataset, such that the 

second input is obtained by multiplying a constant value to the first input. This shows that the 

correlation value between the first and second input is one. The calculated efficiency scores 

using CCR and BCC input oriented models after adding the additional variable are also presented 

in the same Table. Comparison of the efficiency scores before and after the additional variable 

shows that there exists no difference between them. 

 

Table 3-5: Influence of Correlation 

Dataset Efficiency Score before Additional 

Input Variable 

Efficiency Score after 

DMU (I) I1 (O) O1 CCR-I BCC-I CCR-I BCC-I 

E01 25 19 0.827 1.000 37.5 0.827 1.000 

E02 28 20 0.777 0.921 42 0.777 0.921 

E03 40 27 0.735 0.785 60 0.735 0.785 

E04 27 16 0.645 0.926 40.5 0.645 0.926 

E05 33 29 0.956 1.000 49.5 0.956 1.000 

E06 34 29 0.928 0.971 51 0.928 0.971 

E07 30 24 0.871 0.967 45 0.871 0.967 

E08 28 16 0.622 0.893 42 0.622 0.893 

E09 26 20 0.837 0.992 39 0.837 0.992 

E10 37 34 1.000 1.000 55.5 1.000 1.000 

 

This can also be explained mathematically. The concept of adding a new input or output 

variable to the dataset implies adding a new constraint to the linear programming structure of 

CCR and BCC models. The new constraint added is linearly dependent to one of the existing 

constraints. The presence of similar linear constraints in the linear programming problem does 

not influence the results. Hence addition of such new input or output variables to the data does 

not change DEA efficiency scores. 

From the above example the need for calculating correlation between the input and 

output variables can be identified. Sometime the correlation between the inputs and outputs can 
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be natural and sometimes it is accidental. Table 3.6 provides the correlation between the inputs 

and outputs identified based on the Key No provided in Table 3.2. 

 

Table 3-6: Correlation between the different inputs and outputs of KAMU data 

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 

V1 1.00 0.65 0.60 0.72 0.73 0.45 0.72 0.83 0.76 0.62 0.71 0.65 0.85 0.82 0.59 0.78 0.67 0.85 

V2 0.65 1.00 0.45 0.82 0.65 0.49 0.59 0.78 0.59 0.48 0.68 0.68 0.46 0.59 0.53 0.71 0.67 0.83 

V3 0.60 0.45 1.00 0.32 0.17 0.23 0.31 0.41 0.49 0.31 0.33 0.36 0.34 0.37 -0.05 0.53 0.46 0.60 

V4 0.72 0.82 0.32 1.00 0.79 0.53 0.66 0.80 0.62 0.33 0.66 0.54 0.56 0.72 0.69 0.73 0.66 0.83 

V5 0.73 0.65 0.17 0.79 1.00 0.52 0.81 0.83 0.61 0.54 0.69 0.68 0.55 0.87 0.77 0.74 0.63 0.80 

V6 0.45 0.49 0.23 0.53 0.52 1.00 0.90 0.48 0.30 0.16 0.48 0.41 0.47 0.57 0.44 0.52 0.21 0.61 

V7 0.72 0.59 0.31 0.66 0.81 0.90 1.00 0.79 0.41 0.37 0.53 0.49 0.66 0.76 0.60 0.73 0.57 0.80 

V8 0.83 0.78 0.41 0.80 0.83 0.48 0.79 1.00 0.79 0.58 0.79 0.76 0.61 0.84 0.57 0.91 0.88 0.91 

V9 0.76 0.59 0.49 0.62 0.61 0.30 0.41 0.79 1.00 0.59 0.87 0.83 0.47 0.72 0.47 0.77 0.69 0.76 

V10 0.62 0.48 0.31 0.33 0.54 0.16 0.37 0.58 0.59 1.00 0.67 0.84 0.48 0.52 0.37 0.50 0.44 0.55 

V11 0.71 0.68 0.33 0.66 0.69 0.48 0.53 0.79 0.87 0.67 1.00 0.93 0.45 0.71 0.61 0.77 0.65 0.80 

V12 0.65 0.68 0.36 0.54 0.68 0.41 0.49 0.76 0.83 0.84 0.93 1.00 0.41 0.68 0.48 0.75 0.64 0.76 

V13 0.85 0.46 0.34 0.56 0.55 0.47 0.66 0.61 0.47 0.48 0.45 0.41 1.00 0.69 0.57 0.61 0.46 0.59 

V14 0.82 0.59 0.37 0.72 0.87 0.57 0.76 0.84 0.72 0.52 0.71 0.68 0.69 1.00 0.61 0.81 0.68 0.82 

V15 0.59 0.53 -0.05 0.69 0.77 0.44 0.60 0.57 0.47 0.37 0.61 0.48 0.57 0.61 1.00 0.51 0.37 0.62 

V16 0.78 0.71 0.53 0.73 0.74 0.52 0.73 0.91 0.77 0.50 0.77 0.75 0.61 0.81 0.51 1.00 0.91 0.92 

V17 0.67 0.67 0.46 0.66 0.63 0.21 0.57 0.88 0.69 0.44 0.65 0.64 0.46 0.68 0.37 0.91 1.00 0.81 

V18 0.85 0.83 0.60 0.83 0.80 0.61 0.80 0.91 0.76 0.55 0.80 0.76 0.59 0.82 0.62 0.92 0.81 1.00 

 

If the correlation value between the variables is greater than 0.90 then one out of the two 

variables is dropped from the analysis. The correlation between Medicaid Charged (V6) and 

Medicaid Collected (V7) is greater than 0.90. Hence one out of them can be dropped from the 

analysis. Medicaid collected includes the bad debts, money failed to collect from patients due to 

economical conditions or other issues. These bad debts varies from clinic to clinic, hence it 

would be better be to drop variable Medicaid Collected (V7) from the analysis. 

Similarly based on the correlation between the variables and due to availability of the 

data some of the variables are dropped from the analysis. The final set of input and output 

variables identified for the analysis are shown in the Table 3.7. 

 

 

 

 



49 

 

Table 3-7: Final List of Inputs and Outputs 

Key No Input Variables Key No Output Variables 

I1 Medical Staff Expenses O1 Medicaid Charged 

I2 Facility Expenses O2 Self Pay Charged 

I3 Nurses F.T.E O3 Total Users 

I4 Administration F.T.E   

 3.7 Normalization 

DEA efficiency score is defined as the ratio of weighted sum of outputs to weighted sum 

of inputs. This signifies the importance of weights in DEA. Input and Output weights are 

outcomes of the linear programming methodology. DEA provides high value of weight to the 

most favorable input or output to bestow the target DMU with best efficiency scores. 

Assignment of these weights is influenced by the variations in the data. 

There exist large variations in the magnitudes of the inputs and outputs of the KAMU 

data. The expenditure and revenue values are in Millions ($), where as the Full Time 

Employment (FTE) is in Tens. Thus there exist large variations in the data. The variation in the 

magnitude of the data reflects in the magnitude of weights. Hence normalization is the better way 

to obtain the similar magnitude among the data. The efficiency scores of the DMUs will not be 

affected by the normalization process as the DEA models are unit invariant and independent 

scale transformations for the input and output variables are allowed, Cooper et al., (2007). 

 3.8 Missing Data 

The last but the most important obsession that need to be addressed for preparing the data 

is missing values. Traditionally Data Envelopment Analysis requires availability of complete 

data for each input and output to perform the analysis, with the data assumed to be positive for 

all DMUs. Most of the practical applications do not possess complete data for the analysis. This 

might be either due to human or technical error. In case of KAMU, the same Clinic Reporting 

Tool is used across all the clinics. The reason for the data to be missing can be interpreted as 

some of the clinics failed to record to these values or the loss of data due to technical issues. 

Whatever might be the reason for missing data, for carrying an effective Data Envelopment 

Analysis we need to estimate the missing data values precisely. The accuracy of the estimated 

data influences the efficiency scores.  
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In order to allow DEA analysis with missing data, minimal data requirements were 

defined. These requirements state that at least one DMU should have a complete set of inputs 

and outputs and each DMU should have at least one input and at least one output, Fare and 

Grosskopf (2002). The accuracy of the results depends on the quality and quantity of the data. 

The difficulty involved in replacing missing data values emanates from the fact that DEA is 

based on a single set of data for each attribute. The accuracy of the results directly depends on 

the quality and quantity of the data, since the efficiency scores are more sensitive to data errors, 

missing values, and data quality, Kuosmanen (2009). 

The following section addresses few common methods form the literature of DEA to 

handle missing values. 

 3.9 Literature Review of Methods to Treat Missing Data 

The classical assumption of DEA is availability of numerical data for each input and 

output, with the data assumed to be positive for all DMUs, Cooper et al., (2007). This particular 

assumption limits the applicability of the DEA methodology to real world problems which may 

contain missing values either due to human errors or technical problems. 

Since the problem of missing data is quite emphasized in DEA analysis, there have been 

different approaches reported in the literature for mitigating this problem. One such approach is 

the exclusion of DMU‟s with missing data from the DEA analysis, Kuosmanen (2002). This 

approach has an ill-effect on the efficiency score of the other participating DMUs and may 

disturb the statistical properties of the estimators. The exclusion of the DMUs decreases the 

production possibility set and increases the efficiency scores of the other units, and may even 

affect the ranking order of the DMUs being studied. An alternative mitigation approach is the use 

of dummy values such as zero for replacing the missing output values and a large number for 

replacing the missing input values. This approach can be accompanied by the use of weight 

restrictions to reduce the impact of the missing data, Kuosmanen (2009). Some other 

approximation techniques such as the use of average value for replacing the missing data are also 

reported in the literature; however replacing multiple missing values of a single input or output 

variable with a single static value affects the accuracy of the calculated efficiency scores. 

The other approaches for using DEA with missing values suggest interval based DEA 

models in which an interval range is estimated for each missing value. In this case the best 
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suitable missing value is identified within the interval range. Another approach is to predict the 

best possible and least possible efficiency scores, providing an efficiency score range for DMUs 

with missing data (Smirlis et al., 2006). Other sophisticated methods to deal with missing values 

are using fuzzy membership functions developed from observational data corresponding to the 

missing values (Kao and Liu, 2000). This concept is similar to replacing missing values by an 

interval but here each value possesses a membership grade. The bounds of the interval can be 

determined by using statistical, experimental techniques, or expert opinions. 

 3.10 Data Envelopment Analysis Software 

All the Data Envelopment Analysis models performed in this thesis are based on the 

software named DEA-Solver supplied along with the textbook “Data Envelopment Analysis, A 

Comprehensive Text with Models, Applications, References and DEA-Solver Software”, Second 

Edition by Cooper, W.W., Seiford, L.M., and Tone, K. This software uses Microsoft Excel as 

base platform for the operations. 
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Chapter 4 - AVERAGE RATIO METHOD 

This chapter introduces the Average Ratio Method (ARM) methodology to determine the 

missing values. This method is considered as a basic method to address the issue of missing 

values in DEA. It is based on the concept of correlation, and does not involve much 

mathematical computations. This chapter presents greater details about this methodology, step by 

step procedure, its advantages, and limitations. This particular methodology will be illustrated in 

greater detail using simple example. Effectiveness of this methodology will be evaluated by 

comparing the outcomes of ARM methodology with other basic methods in literature to replace 

the missing values. The proposed methodology is used to evaluate the efficiency of 41 KAMU 

clinics with sparse data, and identifies the level of utilization of the resources for providing better 

services. 

This chapter is structure as follows. Section 4.1, introduces the Average Ratio 

Methodology and the concepts behind it. Section 4.2, presents the step by step procedure of 

Average Ratio Methodology and the reason behind the name. Section 4.3, illustrates the step by 

step procedure of Average Ratio Methodology using an example dataset. Section 4.4, evaluates 

the effectiveness of DEA methodology using a dataset obtained from the literature. Section 4.5, 

once again illustrates the ARM to estimate the missing input and output value of KAMU data. 

Finally the DEA results for KAMU dataset will be presented in Section 4.6 and section 4.7, 

provides the conclusions. 

 4.1 Introduction to Methodology (ARM) 

There exist many basic methods in the literature to analyze DEA with sparse data. 

Replacing the missing values in a particular variable with their mean or median, are few 

examples. There are many other such basic methods which were discussed in the previous 

chapter, section 3.9. The common nature identified among the literature methods are, most of 

them depends on the historical data or statistical methods using the average values of a particular 

variable, or using the distribution of the data. The basic idea behind the development of this 

methodology is to use the relationship between the variables.  
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Correlation is one such common statistical technique which can determine the linear 

relationship between two variables. The degree of relationship between the two variables is 

directly proportional to the value of correlation. Consider two variables X and Y, then the 

correlation between them can be calculated as follows. 

 

 

 

The correlation value will always end up between -1.0 and +1.0. Correlation value of 

negative 1 implies the perfect negative correlation while a value of positive 1 implies the perfect 

positive correlation, and a value of zero implies the lack of correlation. If the correlation value is 

negative then, if one variable increases then other variable decreases and vice versa. If the 

correlation is positive then, if one variable increases then other variable also increases and vice 

versa. 

Consider an example dataset with height and weight of students being used for a 

particular data analysis. The relation between the two variables can be computed using the 

correlation function. If any particular data value, within these two variables, is missing then the 

based on the relation between them other can be estimated. Consider one more example dataset 

with Medical Staff Expenses, an important variable for the data analysis, which possess missing 

values. In order to estimate the missing values we need to identify a variable which possess good 

relation with Medical Staff Expenses. The amount of expenditure spent on the Medical Staff 

definitely has a direct relationship with number of medical staff employees (doctors and nurses). 

If a particular value is missing within the variable Medical Staff Expenses then based on the 

relationship, with Number of Medical Staff, it can be estimated. These examples provide insight 

that relationship between two variables can be used to estimate the missing values.  

In order to estimate the missing values based on the concept of correlation there are a list 

of few requirements that need to possess: 

Additional variables: other than the list of inputs and outputs being used for analysis we 

need data with additional variables to determine the missing values. In order to determine these 

missing values precisely we need additional variables to be highly correlated to the variables 
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with missing values. These additional variables with high correlation will not be a part of the 

analysis. They only support the process to determine the missing values. Correlation coefficient 

is used to estimate the relationship between the variables. Greater the value of correlation, 

greater the accuracy of results. The additional variable need to possess complete data or at least 

data corresponding to the missing data values in missing variable should be available. 

 4.2 Average Ratio Method (ARM) 

This particular section illustrates the step by step procedure of Average Ratio Method to 

determine the missing values. ARM is based on the concept of correlation between two 

variables, with one being input or output variable with missing values and the second being an 

additional variable with high correlation to the first. This methodology is named as Average 

Ratio Method, since the ratio values are calculated for all the corresponding pairs between these 

two variables. The average value of all such ratio is the key factor to determine the missing 

values. 

Consider a dataset of DMUs with  inputs and outputs. Let the input and output data 

variables for  be and respectively with missing values. 

Consider any input variable  or output variable  which 

posses single or multiple missing values. Step by step by procedure of Average Ratio Method 

(ARM) to estimate the missing values is stated below. 

 

1. Pick any one of the input or output variable which possess single or multiple missing 

values, let‟s say X1. 

2. Identify any other input or output or additional variable which satisfy the following 

characteristics, let‟s say X2. 

 It should possess complete data or at least no missing values corresponding to the 

DMUs with already existing missing values in X1. 

 There should be a high value of correlation between these two variables. 
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3. Considering the two attributes X1 and X2:  calculate the ratio for all the corresponding 

pairs between these two variables. Such a ratio can be calculated either as or 

. 

4. The average value of all such corresponding pairs is called as Average Ratio 

Value  

5. If the average ratio value is obtained by , then missing values in the attribute of 

 is replaced by multiplying the corresponding value of the variable  with the 

Average Ratio Value . 

6. If the average ratio value is obtained by , then missing values in the attribute of 

 is replaced by dividing the corresponding value of the variable  with the Average 

Ratio Value . 

7. We replace all the missing values in each of the input or output attributes by repeating the 

above process till all the missing values are replaced. 

 

Advantages: 

The Average Ratio Method possess following advantages: 

 Less computational intensive 

 Basic formulations of the DEA is not affected 

 Need not run the model multiple times, unlike the fuzzy and interval models 

 Determines unique values, multiple missing values are not replaced by a single average 

value 

 Ability to determine extreme missing values, unlike methods which focus on averages 

 Estimates crisp value for replacement of missing values, unlike an interval range 

 

Limitations: 

This methodology cannot be applied effectively if any additional variables with good 

correlation do not exist.  
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 4.3 Numerical Example 

This particular section explains the step by step procedure of ARM presented in the 

previous section more effectively using an example dataset. The example dataset considered 

possess few missing values to illustrate the ARM procedure.  

Consider a complete dataset of 10 DMUs consuming a single input  to produce a single 

output, .  represents the output variable with missing values. The output values of DMUs E 

and H, represented as  and  respectively, are assigned as missing values. Consider an 

additional variable  which possess good relationship with the output variable  and high 

value of correlation. The Table 4.1 presents the example dataset with the additional variable. 

 

Table 4-1: Numerical Example 

DMU I1 O
*

1  A1 

A 35 63 61 

B 45 67 72 

C 29 44 68 

D 26 86 89 

E 23 ? 50 

F 20 36 51 

G 26 50 62 

H 40 ? 62 

I 41 99 88 

J 10 58 73 

 

The correlation value between additional variable  and output variable  for the above 

dataset is 0.89. The ratio for all the pairs between the additional variable  and output variable 

 is calculated. The average value of all such ratios (ARV) is also calculated. The Table 4.2 

presents the calculation procedures. 

 

Table 4-2: Calculation of Average Ratio Value and Missing Values 

DMU O
*

1 A1 O
*

1/A1 Missing Values 

A 63 61 1.033  

B 67 72 0.931  

C 44 68 0.647  

D 86 89 0.966  
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E ? 50 0 EO1 = 0.876 x 50 = 44 

F 36 51 0.706  

G 50 62 0.806  

H ? 62 0 HO1 = 0.876 x 62 = 54 

I 99 88 1.125  

J 58 73 0.795  

 ARV     =  0.876  

 

Since the ratio values are calculated as  the missing values  and  are 

calculated as Average Ratio Value times the corresponding value of additional variable, . 

 4.4 Effectiveness of Average Ratio Method 

This particular section evaluates the effectiveness of the Average Ratio Method using one 

of the datasets from the literature studies. Table 4.3 represents the dataset of 5 DMUs consuming 

single input, X to produce two outputs Y1, Y2, considered from the literature, Kusomanen 

(2009). The numerical values, in Table 4.3, within brackets () represent the values assumed to be 

missing. These values will be determined based on the Average Ratio Method and the results are 

compared against the outcomes of the methodology adopted by Kusomanen (2009). 

 

Table 4-3: Dataset from the literature 

DMU X Y1 Y2 

A 1 15 45 

B 1 (20) 60 

C 1 35 40 

D 1 (45) 30 

E 1 50 10 

 

Kusomanen (2009) presents different methods to evaluate the data with missing values 

along with his research work. He identifies that replacing the missing input values by a large 

value and replacing the missing output values by zero will provide better efficiency score. He 

compared the obtained efficiency scores with other methods such as removing the DMUs or 

input and output variables with missing values. He found that efficiency scores obtained by his 

method are closer to the efficiency scores that would be obtained with actual data. 
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Table 4-4: Comparison of the Efficiency Scores for Different Approaches 

 Efficiency Indices 

DMU (I) TIDEAL (II) TDMU (III) TXY (IV) TUB (V) TARM 

A 0.75 1 0.75 0.89 0.8 

B 1 -- 1.00 1 1 

C 0.98 1 0.66 1 1 

D 1 -- 0.50 0.5 0.98 

E 1 1 0.17 1 1 

MAD  0.09 0.33 0.132 0.018 

MAPE  11.79 33.13 14.14 2.14 

 

TIDEAL represent ideal efficiency when the complete data is present, TDMU represent the 

efficiency score when DMUs with missing data is removed, TXY represent the efficiency score 

when missing input or output variables removed, and TUB represents the efficiency score 

obtained using Kusomanen (2009). The efficiency scores computed using the estimated dataset 

by ARM method, is represented as TARM. The Table 4.4 compares the calculated efficiency 

scores for the above dataset using the different approaches. The effectiveness of these methods is 

evaluated by calculating the Mean Absolute Deviation (MAD), and Mean Absolute Percentage 

Error (MAPE) between the actual and recovered efficiency scores. Calculated values are shown 

in Table 4.4. 

Comparison of the efficiency scores from Table 4.4 demonstrates that ARM method is 

the clear winner. ARM is more advantageous when compared to the other methods since the 

ARM efficiency scores are closer to actual efficiency scores. Whereas we are not eliminating any 

DMU or input and output variable due to missing values and we are providing the efficiency 

scores for all the observation with precisely estimated values. 

 4.5 Estimating Missing Values of KAMU dataset 

This section presents the final list of selected inputs and outputs with missing values. 

This section once again illustrates the Average Ratio Method by step by step procedure for 

determining the missing values for one input and one output variable. Missing values of other 

inputs and outputs are estimated on the same lines. Additional variables based on which the 

missing values of each input and output are replaced, and the correlation between them is also 

presented in this chapter. The complete dataset of inputs and outputs estimated based on the 

ARM is shown at the end of this section. 
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Final list of inputs and outputs identified after the preparing the dataset are presented 

below. 

 

Table 4-5: Final List of Inputs and Outputs 

Key No Input Variables Key No Output Variables 

I1 Medical Staff Expenses O1 Medicaid Charged 

I2 Facility Expenses O2 Self Pay Charged 

I3 Nurses F.T.E  O3 Total Users 

I4 Administration F.T.E   

 

The list of inputs and outputs with missing values is presented in Table 4.6 

 

Table 4-6: List of Inputs and Outputs with Missing Values 

Key No I1 I2 I3 I4 O1 O2 O3 

1 243466 44434 1 2 141318 180907 4303 

2 153403 72221 1 1 27547 44553 2517 

3 659744 70778 7.1 6.9 2424900 206302 6241 

4 923910 1290800 5.56 11.1 2320627 2112791 12327 

5 102752.8 28316.88 2.5 1 16620.01 17340 3982 

6 

 

81100 

  

277243 218994 2170 

7 439839 191703 1 3  77408 1206 

8 17500 29000 

 

2  15400 403 

9 5255 

   

  193 

10 

   

1.5   666 

11 1758133 465252 15.05 8.31 331613 1517362 8836 

12 116546 189773 2 3.5 100700 372400 3220 

13 941641 839882 2.41 8.91 257966 1832648 12532 

14 219960 62000 3 2   1565 

15 134771 130192 2.2 3  37580 1589 

16 265938 238043 2.4 4.43 68813 328460 1967 

17 151438 210638 2 1.5   1954 

20 1912377 1181758 10.78 14.49 1323691 3553475 20811 

21 151961 141439 

 

1.86  664125 3746 

22 471560 409398 4 0.75 137545 457770 4893 

23 504433 118085 3.6 3.7  44857 1616 

24 

 

72751 

  

 766705 3398 

25 97518 

 

1 0.5 50670 40837 1705 

26 190148 48000 

  

64131 339696 8012 

28 137520 

 

2 1.5 42937 63021 2731 
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29 513998 744343 3.03 10.7 153073 559788 5074 

31 

  

2 

 

7343 450734 3192 

32 172726 96835 

 

3  33903 646 

33 785527 889349 5.43 5.9 1585107 985674 6068 

34 1305490 1119579 12.98 10.9 768776 1330411 6738 

35 346756 104722 1 0.8 169647 180967 1262 

37 349051.6 111495.8 3 2 53404.83 58152.03 6063 

38 238915 158717 1 1.5   3193 

39 781415 508496 2 6 188309 1656490 6173 

40 861516 86678 2.5 3 70051 109446 3005 

41 498324 389730 1 

 

72429 88174 1533 

42 462062 426698 2 4.75 149784 588643 3564 

 

 4.5.1 Replacing Missing Input Values of Medical Staff Expenses 

This particular section elaborates the step by step procedure of ARM for replacing the 

missing values of input variable “Medical Staff Expenses”. 

 

Step 1: Identify all the additional variables that have the good correlation value with the 

input variable “Medical Staff Expenses”.  

Self Pay Charged, Nurses FTE, Administration FTE, and Total Visits are the variables 

that have good correlation values of 0.825, 0.845, 0.823, and 0.852 respectively with “Medical 

Staff Expenses”. Except the variable “Total Visits” all other variables are part of the analysis, 

hence the additional variable “Total Visits” is selected for the replacing the missing values. 

Step 2:  Find ratios for all the pairs between the variables “Medical Staff Expenses” and 

“Total Visits” and average value for all the ratios. The results are shown in Table 4.7. 

Step 3:  The missing values of the input variable “Medical Staff Expenses” are replaced 

by multiplying the Average Ratio Value with the corresponding values of the additional variable 

“Total Visits”. The recovered values are shown in Table 4.7. 

 

Table 4-7: Replacing Missing Values in Medical Staff Expenses 

Key No I1 Total Visits I1/Total Visits Recovered Complete Data 

1 243466 13308 18.295  243466.0 

2 153403 5366 28.588  153403.0 

3 659744 16110 40.952  659744.0 
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4 923910 38857 23.777  923910.0 

5 102752.8 5973 17.203  102752.8 

6 

 

5677  = 39.271 x 5677 222940.3 

7 439839 11404 38.569  439839.0 

8 17500 606 28.878  17500.0 

9 5255 420 12.512  5255.0 

10 

 

1377  = 39.271 x 1377 54075.9 

11 1758133 26012 67.589  1758133.0 

12 116546 7080 16.461  116546.0 

13 941641 32111 29.325  941641.0 

14 219960 7785 28.254  219960.0 

15 134771 3758 35.862  134771.0 

16 265938 5313 50.054  265938.0 

17 151438 4936 30.680  151438.0 

20 1912377 55556 34.423  1912377.0 

21 151961 8586 17.699  151961.0 

22 471560 9085 51.905  471560.0 

23 504433 8930 56.487  504433.0 

24 

 

8822  =39.271 x 8822 346446.9 

25 97518 4479 21.772  97518.0 

26 190148 8012 23.733  190148.0 

28 137520 5395 25.490  137520.0 

29 513998 12278 41.863  513998.0 

31 

 

8863  =39.271 x 8863 348057.0 

32 172726 4657 37.090  172726.0 

33 785527 31487 24.948  785527.0 

34 1305490 19281 67.709  1305490.0 

35 346756 2824 122.789  346756.0 

37 349051.6 16887 20.670  349051.6 

38 238915 6717 35.569  238915.0 

39 781415 25833 30.249  781415.0 

40 861516 18876 45.641  861516.0 

41 498324 3897 127.874  498324.0 

42 462062 10739 43.027  462062.0 

Average Ratio Value 39.271   

 

 4.5.2 Replacing the Missing Output Values of Self Pay Charged 

This particular section elaborates the step by step procedure of ARM for replacing the 

missing values of output variable “Self Pay Charged”. 
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Step 1: Identify all the additional variables that have the good correlation value with the 

variable “Self Pay Charged”.  

Total Users, Total Visits are the additional variables that have good correlation value of 

0.906, 0.908 respectively with “Self Pay Charged”. Since “Total Users” is part of the analysis the 

additional variable “Total Visits” is selected for replacing the missing values. 

Step 2:  Find ratios for all the pairs between the variables “Self Pay Charged” and “Total 

Visits” and average value for all the ratios. The results are shown in Table 4.8. 

Step 3:  The missing values of the output variable “Self Pay Charged” are replaced by 

multiplying the Average Ratio Value with the corresponding values of the additional variable 

“Total Visits”. The recovered values are shown in Table 4.8. 

 

Table 4-8: Replacing Missing Values in Self Pay Charged 

Key No O2 Total Visits O2/ Total Visits Recovered Complete Dataset 

1 180907 13308 13.594  180907 

2 44553 5366 8.303  44553 

3 206302 16110 12.806  206302 

4 2112791 38857 54.373  2112791 

5 17340 5973 2.903  17340 

6 218994 5677 38.576  218994 

7 77408 11404 6.788  77408 

8 15400 606 25.413  15400 

9 

 

420  = 36.51 x 420 15334.32 

10 

 

1377  = 36.51 x 1377 50274.67 

11 1517362 26012 58.333  1517362 

12 372400 7080 52.599  372400 

13 1832648 32111 57.072  1832648 

14 

 

7785  = 36.51 x 7785 284232.61 

15 37580 3758 10.000  37580 

16 328460 5313 61.822  328460 

17 

 

4936  = 36.51 x 4936 180214.79 

20 3553475 55556 63.962  3553475 

21 664125 8586 77.350  664125 

22 457770 9085 50.387  457770 

23 44857 8930 5.023  44857 

24 766705 8822 86.908  766705 

25 40837 4479 9.117  40837 
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26 339696 8012 42.398  339696 

28 63021 5395 11.681  63021 

29 559788 12278 45.593  559788 

31 450734 8863 50.856  450734 

32 33903 4657 7.280  33903 

33 985674 31487 31.304  985674 

34 1330411 19281 69.001  1330411 

35 180967 2824 64.082  180967 

37 58152.03 16887 3.444  58152.03 

38 

 

6717  = 36.51 x 6717 245239.62 

39 1656490 25833 64.123  1656490 

40 109446 18876 5.798  109446 

41 88174 3897 22.626  88174 

42 588643 10739 54.814  588643 

Average Ratio Value 36.510   

 

Missing values in other input and output variables are estimated based on the same lines. 

The list of additional variables and their correlation values are shown in the Table 4.9. 

 

Table 4-9: Corresponding Additional Variables for replacing Missing Values 

Key No Variable with Missing Values Additional Variable Correlation 

I1 Medical Staff Expenses Total Visits 0.852 

I2 Facility Expenses Total Visits 0.833 

I3 Nurses F.T.E Medical Staff Expenses 0.846 

I4 Administration F.T.E Administration Expenses 

Total Visits 

0.870 

0.818 

O1 Medicaid Charged Total Visits 0.610 

O2 Self Pay Charged Total Visits 0.908 

O3 Total Users No Missing Values 

 

The complete dataset of inputs and outputs obtained using the Average Ratio Method is 

shown in Table 4.10. The values in bold represent the data replaced using Average Ratio 

Method.  

 

Table 4-10: List of Input and Output Variables with Complete Data 

Key No I1 I2 I3 I4 O1 O2 O3 

1 243466.0 44434.0 1 2.00 141318.00 180907.00 4303 

2 153403.0 72221.0 1 1.00 27547.00 44553.00 2517 

3 659744.0 70778.0 7.1 6.90 2424900.00 206302.00 6241 
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4 923910.0 1290800.0 5.56 11.10 2320627.00 2112791.00 12327 

5 102752.8 28316.9 2.5 1.00 16620.01 17340.00 3982 

6 222940.3 81100.0 1.8 1.81 277243.00 218994.00 2170 

7 439839.0 191703.0 1 3.00 274650.90 77408.00 1206 

8 17500.0 29000.0 1 2.00 14594.74 15400.00 403 

9 5255.0 11134.8 1 0.50 10115.17 15334.32 193 

10 54075.9 36506.1 1 1.50 33163.30 50274.67 666 

11 1758133.0 465252.0 15.05 8.31 331613.00 1517362.00 8836 

12 116546.0 189773.0 2 3.50 100700.00 372400.00 3220 

13 941641.0 839882.0 2.41 8.91 257966.00 1832648.00 12532 

14 219960.0 62000.0 3 2.00 187491.87 284232.61 1565 

15 134771.0 130192.0 2.2 3.00 90506.67 37580.00 1589 

16 265938.0 238043.0 2.4 4.43 68813.00 328460.00 1967 

17 151438.0 210638.0 2 1.50 118877.31 180214.79 1954 

20 1912377.0 1181758.0 10.78 14.49 1323691.00 3553475.00 20811 

21 151961.0 141439.0 1.2 1.86 206782.94 664125.00 3746 

22 471560.0 409398.0 4 0.75 137545.00 457770.00 4893 

23 504433.0 118085.0 3.6 3.70 215067.75 44857.00 1616 

24 346446.9 72751.0 2.8 1.60 212466.70 766705.00 3398 

25 97518.0 118744.3 1 0.50 50670.00 40837.00 1705 

26 190148.0 48000.0 1.5 1.00 64131.00 339696.00 8012 

28 137520.0 143028.7 2 1.50 42937.00 63021.00 2731 

29 513998.0 744343.0 3.03 10.70 153073.00 559788.00 5074 

31 348057.0 234970.0 2 4.00 7343.00 450734.00 3192 

32 172726.0 96835.0 1.4 3.00 112157.95 33903.00 646 

33 785527.0 889349.0 5.43 5.90 1585107.00 985674.00 6068 

34 1305490.0 1119579.0 12.98 10.90 768776.00 1330411.00 6738 

35 346756.0 104722.0 1 0.80 169647.00 180967.00 1262 

37 349051.6 111495.8 3 2.00 53404.83 58152.03 6063 

38 238915.0 158717.0 1 1.50 161770.44 245239.62 3193 

39 781415.0 508496.0 2 6.00 188309.00 1656490.00 6173 

40 861516.0 86678.0 2.5 3.00 70051.00 109446.00 3005 

41 498324.0 389730.0 1 8.70 72429.00 88174.00 1533 

42 462062.0 426698.0 2 4.75 149784.00 588643.00 3564 

 

In the previous section we discussed the importance of the normalization of the data prior 

to Data Envelopment Analysis. The normalized data values of the complete data are presented in 

Table 4.11. The values in bold represent the data replaced using Average Ratio Method.  
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Table 4-11: Normalized Inputs and Outputs 

Key No I1 I2 I3 I4 O1 O2 O3 

1 0.127 0.034 0.066 0.138 0.058 0.051 0.207 

2 0.080 0.056 0.066 0.069 0.011 0.013 0.121 

3 0.345 0.055 0.472 0.476 1.000 0.058 0.300 

4 0.483 1.000 0.369 0.766 0.957 0.595 0.592 

5 0.054 0.022 0.166 0.069 0.007 0.005 0.191 

6 0.117 0.063 0.120 0.125 0.114 0.062 0.104 

7 0.230 0.149 0.066 0.207 0.113 0.022 0.058 

8 0.009 0.022 0.066 0.138 0.006 0.004 0.019 

9 0.003 0.009 0.066 0.035 0.004 0.004 0.009 

10 0.028 0.028 0.066 0.104 0.014 0.014 0.032 

11 0.919 0.360 1.000 0.573 0.137 0.427 0.425 

12 0.061 0.147 0.133 0.242 0.042 0.105 0.155 

13 0.492 0.651 0.160 0.615 0.106 0.516 0.602 

14 0.115 0.048 0.199 0.138 0.077 0.080 0.075 

15 0.070 0.101 0.146 0.207 0.037 0.011 0.076 

16 0.139 0.184 0.159 0.306 0.028 0.092 0.095 

17 0.079 0.163 0.133 0.104 0.049 0.051 0.094 

20 1.000 0.916 0.716 1.000 0.546 1.000 1.000 

21 0.079 0.110 0.080 0.128 0.085 0.187 0.180 

22 0.247 0.317 0.266 0.052 0.057 0.129 0.235 

23 0.264 0.091 0.239 0.255 0.089 0.013 0.078 

24 0.181 0.056 0.186 0.110 0.088 0.216 0.163 

25 0.051 0.092 0.066 0.035 0.021 0.011 0.082 

26 0.099 0.037 0.100 0.069 0.026 0.096 0.385 

28 0.072 0.111 0.133 0.104 0.018 0.018 0.131 

29 0.269 0.577 0.201 0.738 0.063 0.158 0.244 

31 0.182 0.182 0.133 0.276 0.003 0.127 0.153 

32 0.090 0.075 0.093 0.207 0.046 0.010 0.031 

33 0.411 0.689 0.361 0.407 0.654 0.277 0.292 

34 0.683 0.867 0.862 0.752 0.317 0.374 0.324 

35 0.181 0.081 0.066 0.055 0.070 0.051 0.061 

37 0.183 0.086 0.199 0.138 0.022 0.016 0.291 

38 0.125 0.123 0.066 0.104 0.067 0.069 0.153 

39 0.409 0.394 0.133 0.414 0.078 0.466 0.297 

40 0.450 0.067 0.166 0.207 0.029 0.031 0.144 

41 0.261 0.302 0.066 0.600 0.030 0.025 0.074 

42 0.242 0.331 0.133 0.328 0.062 0.166 0.171 
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 4.6 DEA Results 

This section presents the application of DEA methodologies discussed so far to the 

complete dataset obtained using Average Ratio Method. DEA methodology can be classified into 

two categories, Input model and Output model. The input oriented models aims at minimizing 

the input consumed by the DMUs for the same target of output levels, while the output oriented 

models maximize the outputs produced by the DMUs for the given amount of inputs consumed. 

As we discussed that input oriented model is more appropriate for analysis of KAMU dataset. 

The results are determined for input oriented model using CCR and BCC models, and are also 

compared against each other, shown in Table 4.12. 

 

Table 4-12: Efficiency Scores 

 

CCR Input Model BCC Input Model 

Key No DEA Score CCR Rank DEA Score BCC Rank 

1 1.000 1 1.000 1 

2 0.479 24 1.000 1 

3 1.000 1 1.000 1 

4 1.000 1 1.000 1 

5 0.920 12 1.000 1 

6 0.641 19 0.829 24 

7 0.681 17 1.000 1 

8 0.648 18 1.000 1 

9 1.000 1 1.000 1 

10 0.417 27 1.000 1 

11 0.394 32 0.830 23 

12 0.906 14 0.908 22 

13 1.000 1 1.000 1 

14 0.620 20 0.648 26 

15 0.401 29 0.491 31 

16 0.291 34 0.450 34 

17 0.485 23 0.624 27 

20 0.714 16 1.000 1 

21 1.000 1 1.000 1 

22 1.000 1 1.000 1 

23 0.217 37 0.370 37 

24 1.000 1 1.000 1 

25 0.609 21 1.000 1 

26 1.000 1 1.000 1 
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28 0.500 22 0.571 29 

29 0.399 30 0.420 35 

31 0.437 26 0.552 30 

32 0.251 36 0.751 25 

33 1.000 1 1.000 1 

34 0.398 31 0.460 32 

35 0.913 13 1.000 1 

37 0.415 28 0.452 33 

38 0.792 15 1.000 1 

39 1.000 1 1.000 1 

40 0.264 35 0.419 36 

41 0.358 33 1.000 1 

42 0.470 25 0.582 28 

 

The DEA score of 1 implies that the particular clinic (DMU) is efficient and such group 

of units forms the efficient frontier for estimating the relative efficiency of other DMUs. The 

DEA score for other DMUs are determined with respect to the frontier formed by efficient units. 

Lower score indicates their larger distance from the efficient frontier and need for improvement. 

The inefficiency of the DMU implies that there are few production units among the peers who 

could produce the same amount of outputs with a lesser consumption of inputs. 

Comparison between CCR and BCC efficiency scores reveals that CCR efficiency score 

are subset of BCC efficiency scores. If the DMU is CCR efficient then it is BCC efficient also 

while the converse is not true. 

 4.7 Conclusions  

The Kansas Association for the Medically Underserved (KAMU) provided us with the 

data to evaluate the performance of 41 clinics. Four of those clinics did not have sufficient data, 

which are even beyond the scope for estimation, for the DEA analysis. Thus only 37 clinics 

participated in the analysis. Seven most appropriate input and output variables are identified to 

execute the DEA methodology. These procedures are accomplished successfully by the end of 

previous chapter. 

The chapter performed the following steps to evaluate the performance of 41 clinics. 

1. Replacing missing data values 

2. Performing the analysis using a variety of DEA models 
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The primary issue associated with the data provided by KAMU is that that a large amount 

of data was sporadically missing, where each clinic collected a different subset of the data. This 

chapter proposes a new approach known as Average Ratio Method to determine the missing 

values based on the concept of correlation. Later the step by step procedure of this methodology 

is illustrated using an example dataset. The effectiveness of this methodology is evaluated by 

considering a dataset from the literature. The outcomes of the Average Ratio Method are 

compared against the outcomes of the literature. The comparison indicates ARM as the 

benchmark. Then the Average Ratio Methodology is used to determine the missing values of the 

KAMU data. DEA methodology is carried out based on the complete dataset achieved using 

Average Ratio Methodology. 

Among the DEA models, CCR (Input oriented formulation), BCC (Input oriented 

formulation) are used. The variety of models helps to analyze the consistency of the results as 

well as ranking of the top clinics. As the result the eleven most efficient clinics using both the 

CCR and BCC models are shown in Table 4.13. 

 

Table 4-13: Efficient Clinics 

Rank Clinic 

1 39 

1 1 

1 33 

1 3 

1 4 

1 26 

1 24 

1 22 

1 21 

1 9 

1 13 

 

The DEA methodology is more accurate in generating the benchmarks that each clinic 

needs to achieve, rather than the absolute ranking. We hope that the results presented in this 

report can be used to improve the operational aspects of KAMU clinics. 

Overall this chapter presents a comprehensive study of KAMU clinics using the DEA 

methodology. 
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Chapter 5 - DATA CLUSTERING 

This chapter presents a methodology based on fuzzy clustering concepts to execute Data 

Envelopment Analysis with sparse input and output data. This chapter thus provides an 

introduction to data clustering, then to fuzzy clustering concepts. The approach presented in this 

chapter is based on a modified fuzzy c-means clustering using Optimal Completion Strategy 

(OCS) algorithm. This particular existing algorithm is sensitive to the initial values chosen to 

substitute missing values and also to the selected number of clusters. Therefore, this chapter 

proposes an approach to estimate the missing values using the OCS algorithm, while considering 

the issue of initial values and cluster size. This approach is demonstrated on a real and complete 

dataset of 22 KAMU clinics, assuming varying levels of missing data. Values are also assumed 

as missing based on three common types of missing values. Results show the effect of the 

clustering based approach on the data recovered considering the amount and type of missing 

data. Moreover, this chapter shows the effect that the recovered data has on the DEA scores. 

This chapter is structured as follows. Section 5.1, provides introduction to data clustering, 

terminology, and the basic types of clustering. Section 5.2, introduces the fuzzy c-means 

clustering which provides the background to the methods that will be discussed in this chapter. 

Section 5.3 presents literature works in the field of clustering to handle missing values. Section 

5.4, illustrates the issues associated with the Optimal Completion Strategy (OCS) algorithm 

using an example data. Section 5.5 presents the improved version of OCS algorithm and its 

application to real and complete dataset of 22 KAMU clinics. Section 5.6 illustrates the effect of 

data recovered using clustering on DEA outcomes. Finally Section 5.7 provides the conclusions. 

 5.1 Introduction to Data Clustering 

Clustering is a process of classifying data items into specific groups or clusters based on 

the degree of similarity between the data items. Similarity measure and coefficients play an 

important role in cluster analysis, since they quantify the similarity or dissimilarity between any 

two data items. Clustering also holds the assumption for availability of complete numerical data. 

Dealing with missing values in clustering is discussed in section 5.3. More details regarding the 

clustering methodology, models, and applications can be found in Gan et al., (2007). Cluster 
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analysis has been applied to many fields such as health care systems Congdon (1997), Chacon 

and Luci (2003) and marketing Ray et al., (2005) are among many others. This section also 

presents the required terminology that will be used throughout this chapter. 

 

Notations: 

 = , where  represents the total number of observations 

  = , each observation possesses multiple attributes (d) 

 = Represents membership grade of  observation in  cluster 

      = Represents cluster centers of the c cluster (c x d matrix), where vk represent 

cluster k 

  = Denotes total number clusters where,  

 = Represent step value or iteration number in the clustering process 

           = , Represent a data set of  observations 

  =  observation with d- dimensional data vector, for   

        =  attribute of  observation, for ,   

  = Represent the set of values which are present in X 

  = Represent the set of values which are missing in X 

  = Represent set of entities (observations) with completely observed data (all d 

attributes) 

  = Distance from  observation to  cluster 

 

The interpretation of the similarity between the data items generally depends on the 

distance between them. Some of the common distance measures are Euclidean Distance, 

Manhattan Distance, Maximum Distance, Minkowski Distance, Mahalanobis Distance, and 

Average Distance. Most of these distance functions can be derived from Minkowski Distance, 

which can be stated as follows to obtain the distance between two observations X and Y. 

        (5.1) 

 

The Euclidean distance, Manhattan distance, and maximum distance are three specific 

cases of the Minkowski distance, where the Manhattan distance is defined by r = 1,  Euclidean 

distance by r = 2, and Maximum distance is calculated using r = ∞. 

Clustering algorithms can be broadly classified into hard clustering (crisp) and fuzzy 

clustering. Hard clustering assumes that each observation belongs to only one particular cluster 

group. Fuzzy clustering allows each observation to belong to more than one cluster with a certain 
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membership value. The following Table 5.1 represents the conditions for hard clustering and 

fuzzy clustering, Gan et al., (2007). 

 

Table 5-1: Conditions for Hard and Fuzzy clustering 

Hard Clustering (Crisp) Fuzzy Clustering 

 

 

 
(5.2) 

 

 

 

 
(5.3) 

 
 

Hard clustering algorithms can be further classified into Partitional and Hierarchical 

clustering algorithms, with Hierarchical approaches consisting of Divisive and Agglomerative 

approaches. 

 5.1.1 Hierarchical Clustering Algorithms 

Hierarchical clustering algorithms are the most commonly used and can be divided into 

agglomerative and divisive approaches. Agglomerative clustering is a bottom up approach that 

starts with every single object in its own single cluster, and then repeatedly merges the closest 

pair of clusters according to some similarity criteria until all of the data points join a single 

cluster. Divisive clustering or top-down approach starts with all the objects in one cluster and 

repeatedly splits large clusters into smaller ones. 

Agglomerative hierarchical methods include The Single Link method (Florek et al., 

1951), Complete Link method (Johnson, 1967), Ward‟s method (Ward Jr., 1963), Group 

Average, Weighted Group Average, Centroid and Median methods (Jain and Dubes, 1988). 

Divisive methods can be sub divided into two type, monothetic and polythetic which divides the 

data sets into groups based on single and multiple attributes respectively. The DIANA method 

presented in Kaufman and Rousseeuw (1990), DISMEA (Spath, 1980), and the Edwards and 

Cavalli-Sforza method (1965) are a few examples of divisive hierarchical clustering algorithms. 
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The disadvantages of both approaches are: (a) data points that have been incorrectly 

grouped at an early stage cannot be reallocated and (b) different similarity measures may lead to 

different results. 

 5.1.2 Partitional Clustering Algorithms 

Unlike the hierarchical clustering algorithms, partitional algorithms aim at classifying the 

clusters at once and are based on a criterion function. The algorithm proceeds by trying to 

optimize the criterion function which is generally a measure of dissimilarity and thus tries to 

assign the cluster groups. K-means clustering by MacQueen (1967) is a common example of 

partitional clustering algorithms, with a fixed number of clusters known a priori. The advantage 

of this methodology is its ease of implementation and efficiency, while a disadvantage is the 

difficulty in determining the number of clusters a priori. 

 5.2 Fuzzy C Means Clustering 

Fuzzy c-means (FCM) is a method of clustering which allows each entity to belong to 

two or more clusters. This method (developed by Dunn in 1973 and improved by Bezdek in 

1981) is frequently used in pattern recognition. It is based on minimization of the following 

objective function: 

 

   (5.4) 

The FCM allows each entity represented by an attribute vector to belong to every cluster 

with a fuzzy truth value (between 0 and 1). Following are the steps of the Fuzzy C-Mean 

Clustering algorithm (Bezdek, 1981): 

 

Step 1: Fix  and select a value for . Initialize  such that 

condition (5.5) is satisfied. Each step in the algorithm will be labeled as  where r = 0, 1, 2…….. 

     (5.5) 

 

Step 2: Calculate  fuzzy cluster centers  for each step using  and (5.6) 
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     (5.6) 

 

Step 3: Update the initial membership function from  to  using   and (5.7) 

       (5.7) 

 

Step 4:  If the difference between the updated and original membership matrix i.e., 

 then STOP; otherwise set  and return to step 2.  

 

Note that the FCM algorithm has been somewhat generalized; and some algorithms 

initialize  and check for . 

 5.3 Clustering with Missing Data 

Generally methods dealing with missing data can be classified into two major approaches 

(Fujikawa and Ho, 2002): 

(a)  Pre-replacing methods, which replace missing values before the data analysis 

process. 

(b)  Embedded methods, which deal with missing values during the data analysis process. 

 

Some of the common methods for pre- replacing missing values stated by Fujikawa and 

Ho, (2002) are statistics-based methods including linear regression, replacement under same 

standard deviation and mean-mode method. Machine learning-based methods include nearest 

neighbor estimator, auto associative neural network, and decision tree imputation also fall into 

this category. Embedded methods include case-wise deletion, lazy decision tree, dynamic path 

generation and some popular methods such as C4.5 and CART.  

Few common clustering methods, based on the fuzzy c-means algorithm developed by 

Hathaway and Bezdek (2001) which are used to determine missing values are discussed below. 
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 5.3.1 Whole Data Strategy (WDS) 

This particular approach is simple and valid for data sets with small proportion of missing 

values. Data vectors with missing values are deleted and then fuzzy c-means clustering is 

applied. This algorithm provides better results if less than 25% of the data points are missing. 

Thus, the WDS provides membership values for vectors of complete dataset only. Membership 

of missing data vectors need to be estimated based on nearest-prototype classification scheme 

using partial distances, which is presented in the following section. This method holds all the 

convergence properties of fuzzy c-mean clustering (Hathaway and Bezdek, 2001). 

 5.3.2 Partial Distance Strategy (PDS) 

This approach is more applicable for cases with large data sets. It is based on scaling the 

calculated partial distance by the quantity of data items used. Thus it reduces the influence of 

incomplete data values on the distance calculated. 

Using this approach, the partial distance (squared Euclidean) is calculated using all 

available values and then scaled by reciprocal of the proportion of components used. The general 

formula for partial distance  is given by:  

 

(5.8) 

 

 

 

 

The partial distance strategy algorithm is obtained by making two important 

modifications to the FCM algorithm. (1) Calculate  for incomplete data according to equation 

(5.8) and (2) replace the calculation for new cluster centers by the old centers multiplied by  
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where  is zero for corresponding missing values. Here  represents that  attribute value of 

the center of cluster k. 

 

(5.9) 

This algorithm also holds all convergence properties of fuzzy c-mean clustering 

(Hathaway and Bezdek, 2001). 

 5.3.3 Optimal Completion Strategy Algorithm (OCS) 

OCS algorithm is an extension to fuzzy c-means (FCM) algorithm with an additional step 

to optimize the missing values over each iteration. OCS modification of FCM is referred as 

OCSFCM, posses all the convergence properties of FCM. At the beginning of the algorithm 

missing values in the dataset are replaced by some initial values. The effect of choosing different 

types of values can influence the results, which will be discussed in section 5.4. Missing values 

are considered additional variables which are estimated by minimizing the objective function of 

FCM. At each iteration missing values are estimated using the step 5 of the OCS algorithm. 

Estimated missing values are placed into the dataset at each iteration, and the algorithm 

continues until the termination condition of FCM (step 4) is satisfied. This algorithm is referred 

to as a tri-level alternating optimization, and for convergence properties refer (Hathaway et al., 

2001). 

 

The first four steps of OCS algorithm are the same as the FCM clustering algorithm, the 

additional step of OCS algorithm is as follows:  

 

Step 5: Calculate missing values for the iteration r+1 using equation (5.10). Place the 

calculated missing values into the dataset and proceed to the next iteration until the condition in 

step 4 (of FCM) is satisfied. 

   (5.10) 



76 

 

 5.3.4 Nearest Prototype Strategy (NPS) 

This algorithm is a simple modification to the OCS algorithm. Here, the missing values 

of incomplete data item are substituted by the corresponding values of the cluster center to which 

the data point has highest membership degree (Hathaway and Bezdek, 2001). 

In the NPS approach the additional step (Step 5) of OCS algorithm which estimates the 

missing values is replaced by the equation (5.11). Theoretical convergence properties of this 

method have not yet been proved. 

   (5.11) 

 5.4 Effect of Initial Values and Cluster Size on OCS 

The previous section discussed some important algorithms to handle missing values in 

clustering. OCS algorithm seems to produce a better set of results since the convergence 

properties of this algorithm are proven. The two issues associated with optimal completion 

strategy (OCS) algorithm are initializing the missing values and determination of cluster size. 

Missing values at the beginning of the OCS algorithm need to be replaced by some initial values. 

This section illustrates the effect that selecting such initial values to replace the missing values 

will have on the final results, using an example. Consider a small dataset with 10 objects and 2 

attributes taken from a real dataset, as shown in Table 5.2. Two values (10%) of the dataset are 

randomly assigned as missing values. Assume that X21 and X72 values as missing. The effect of 

the cluster size on the data recovered is also demonstrated using the same example.  

 

Assumed missing values are replaced by initial values based on three different methods: 

 Type 1: Missing values in each attribute are initially replaced by average value of the 

attribute. 

 Type 2: Missing values in the dataset are initially replaced by using Average Ratio 

Method, discussed in the previous chapter. 

 Type 3: Missing values in the dataset are initially replaced by zero. 

 

Table 5-2: Initial Dataset 

 
Y1 Y2 

X1 0.127 0.102 
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X2 0.080 0.098 

X3 0.345 0.297 

X4 0.483 0.461 

X5 0.054 0.018 

X6 0.041 0.135 

X7 0.230 0.195 

X8 0.009 0.019 

X9 0.003 0.002 

X10 0.065 0.017 

 

Table 5.3 presents the values placed into the dataset initially for estimating the missing 

values X21, X72 of the original dataset. 

 

Table 5-3: Initial Values Generated by the Three Approaches 

Missing Values Original Values Type 1 Type 2 Type 3 

X21 0.080 0.151 0.153 0.000 

X72 0.195 0.128 0.146 0.000 

 

Since it is difficult to determine the optimal number of clusters, we experimented with 2 

to 7 clusters, considering n=8 (  objects which possess complete data. The OCS 

algorithm is applied to the three different datasets, obtained by replacing the missing values, 

using different number of clusters. The recovered values obtained using the OCS algorithm for 

different number of clusters is compared to the original values using the Mean Absolute Percent 

Error (MAPE), as shown in Table 5.4.  

 

Table 5-4: Values Recovered using OCS algorithm with Different Number of Clusters 

 Missing  

Values 

Original  

Values 

Different number of clusters 

2 

Clusters 

3 

Clusters 

4 

Clusters 

5 

Clusters 

6 

Clusters 

7 

Clusters 

Type 1 X21 0.080 0.0496 0.1738 0.0879 0.0882 0.1260 0.1256 

X72 0.195 0.3678 0.1064 0.2948 0.2255 0.2072 0.1794 

MAPE 63.31 81.34 30.53 12.95 31.88 32.50 

Type 2 X21 0.080 0.0496 0.1738 0.0880 0.0879 0.1260 0.1201 

X72 0.195 0.3679 0.1064 0.2948 0.2153 0.2316 0.2028 

MAPE 63.33 81.34 30.59 10.14 38.13 27.06 

Type 3 X21 0.080 0.0496 0.0471 0.0879 0.0733 0.0432 0.0419 

X72 0.195 0.3690 0.2906 0.2954 0.1214 0.1600 0.1232 

MAPE 63.62 45.08 30.68 23.06 31.97 42.22 
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The results demonstrate the influence of the initial values as well as the number of 

clusters on the missing values generated using the OCS approach. The results show that the 

missing values are best estimated using the Average Ratio Method with 5 clusters (50% of the 

total number of data objects, n=10). Thus we suggest the use of Average Ratio Method (ARM) to 

estimate the initial values prior to the application of the OCS algorithm. There is no good way to 

determine the optimal number of clusters which can produce the best estimates of the missing 

values. Thus determination of the number of clusters is left to the choice of the user. Drawing 

inferences from the results, we suggest choosing the number of clusters as 40 to 60% of total 

number of objects in the dataset.   

 5.5 Using the OCS Algorithm for Data Recovery 

This section presents an application of the Optimal Completion Strategy algorithm using 

a real and complete dataset. The data is taken from a research project which aims at determining 

the productivity of 41 clinics in Kansas with 225 attributes, with the intention of improving the 

clinic‟s quality and revenue. Since most clinics did not have complete data sets we reduced the 

data to 22 clinics with seven attributes, consisting of four input and three output variables. Table 

5.5 shows the list of these inputs and outputs. 

 

Table 5-5: List of Inputs and Outputs 

Key No Input Variables Key No Output Variables 

I1 Medical Staff Expenses O1 Total Medical Visits 

I2 Facility Expenses O2 Self Pay Collected 

I3 Administration full time employee O3 State PC Collected 

I4 Nurses full time employee   

 

The normalized and complete dataset is presented in Table 5.6. 

 

Table 5-6: Normalized Values of the Original Data 

 

Input Attributes Output Attributes 

Key # I1 I2 I3 I4 O1 O2 O3 

1 0.1273 0.1022 0.1380 0.0665 0.2909  0.0397 0.1463 

4 0.4831  0.4606 0.7661 0.3694 0.4576 0.2980 0.4504 

5 0.0537 0.0177 0.0690 0.1661 0.1129 0.0075 0.1701 
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7 0.2300 0.1950 0.2070 0.0665 0.2455 0.0596 0.1874 

11 0.9193 0.4436 0.5735 1.0000 0.4740 0.5013 0.6058 

12 0.0609 0.2636 0.2416 0.1329 0.1548  0.1278 0.1536 

13 0.4924 0.6900 0.6149 0.1601 0.3583 1.0000 0.3437 

14  0.1150 0.5303 0.1380 0.1993 0.1702 0.0143 0.1170 

15 0.0705 0.0117 0.2070 0.1462 0.0821 0.0396 0.1178 

16 0.1391 0.0804 0.3057 0.1595 0.1145 0.0810 0.2140 

17 0.0792 0.1985 0.1035 0.1329 0.0937 0.0390 0.2068 

20 1.0000  1.0000 1.0000 0.7163 1.0000 0.6349 0.3870 

22 0.2466 0.2659 0.0518 0.2658 0.1751 0.1703 0.3189 

23 0.2638 0.1861 0.2554 0.2392 0.1786 0.0325 0.1158 

29 0.2688 0.3750 0.7384 0.2013 0.2684 0.2248 0.2166 

33 0.4108 0.9466 0.4072 0.3608 0.6018 0.2867 0.1581 

34 0.6827 0.5379 0.7522 0.8625 0.4215 0.3779 0.5858 

35 0.1813 0.2148 0.0552 0.0665 0.0617 0.0174 0.1755 

38 0.1249 0.1621 0.1035 0.0665 0.1500 0.1321 0.1097 

39 0.4086 0.3235 0.4141 0.1329 0.5293 0.6085 1.0000 

40 0.4505 0.1931 0.2070 0.1661 0.4126 0.3260 0.1755 

42 0.2416 0.2875 0.3278 0.1329 0.1952 0.2388 0.2627 

 

The effectiveness of the OCS algorithm in recovering the missing values is evaluated by 

assuming various levels of data missing, ranging from 10% to 40%. In addition we assumed four 

different patterns of missing values including: 

a) Randomly missing values. These values do not follow any pattern.  

b) Missing values are centered around the attribute‟s average.  

c) The values missing consist of extreme low and extreme high values only. Thus the 10% 

missing values consist of 5% of the lowest values and 5% of the highest that are 

eliminated.  

d) The values missing consist of low input values and high out values only.  

 

Thus, a total of ten different cases are tested including 10% random, 10% average, 10% 

extreme, 10% low input and high output, 20% random, 20% average, 30% random, 30% 

average, 40% random, and 40% average values as missing.  

Notation wise the randomly missing data is denoted as “Missing Completely At Random” 

(MCAR), the “average” values are denoted as “Missing At Random (MAR)” (since these values 

close to the average are still randomly selected for elimination). The values in category (c and d) 
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are denoted as “Missing Not At Random” (MNAR)”, since this selection is based on a specific 

criterion and is not random notation is adopted from Little and Rubin, 2002).  

The 10 different cases are demonstrated using the real and complete dataset of the 22 

rural clinics, where the values assumed as missing are initially replaced based on the Average 

Ratio Method.  

The difference between the highest and lowest missing values is represented as range for 

each case. The range demonstrates the variability of the missing data, with a higher range 

implying data further away from a possible cluster center, making it harder to regenerate. The 

best set of recovered values for the 10 different cases is shown in Table 5.7. In this Table the 

recovered values are compared with the known values that were eliminated as missing. The 

Table also shows Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation 

(MAD) and the best number of clusters for each case.  

 

Table 5-7: Recovered Values using OCS for different cases 

No. Title Range # of Missing 

Values 

Best # of 

Clusters 

MAPE MAD 

1 10% Random 0.9603 16 12 52.7 0.1351 

2 10% Average 0.2622 16 11 50.4 0.1463 

3 20% Random 0.9463 32 15 55.1 0.1350 

4 20% Average 0.2945 32 11 45.6 0.1304 

5 30% Random 0.7517 47 18 68.7 0.1093 

6 30% Average 0.3333 47 11 44.0 0.1164 

7 40% Random 0.9883 62 14 89.7 0.1626 

8 40% Average 0.5339 62 11 48.5 0.1267 

9 10% Extreme 0.9925 16 18 177.3 0.2897 

10 10% Low IP & High OP 0.9883 16 18 186.7 0.2704 

 

 5.5.1 Results and Discussions 

The results in Table 5.7 show that missing values that are close to the entity‟s average 

estimated more accurately than data missing at random, or data of extreme values, especially as 

more data is missing.  
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In the case of randomly missing values the MAPE is increasing as the percentage of 

missing values increases as expected as shown in Figure 5.1.  

 

 

Figure 5-1: MAPE for the case of Missing Completely At Random 

 

This shows that the OCS approach recovers missing values that are close to the average 

better than randomly missing values. The Mean Absolute Deviation of data missing at random is 

largely insensitive to the quantity of the missing data until the 40% mark. At that point too much 

data is missing which affects the accuracy of the clustering and thus data recovery as shown in 

Figure 5.2.  

 

 

Figure 5-2: MAD as a Function of Quantity of Missing Data 
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The worst case scenarios as expected occur when the missing data is of extreme value. In 

this case the OCS algorithm cannot estimate the missing values accurately, since the estimates 

are based on the fuzzy clusters‟ centers.  

Observation of the results from Table 5.7 also shows that under most cases the best set of 

missing values are recovered when the number of clusters equals about 50% of total number of 

observations. As the percentage of missing values increase, the preferred number of clusters 

increases also. 

 5.6 Data Recovery Effects on DEA Results  

In the previous section we had assumed various quantities of data as missing starting 

from 10% to 40% under 10 different cases. (Note that the actual complete dataset of the 22 

KAMU clinics with 3 inputs and 4 outputs was shown in Table 5.6)  The initial set of missing 

values was estimated using the Average Ratio Method and the final set of missing values was 

generated using the OCS algorithm. Hence for the DEA analysis we have a total of 11 different 

datasets including 10 generated and one real and complete dataset.  

The efficiency scores of the clinics based on the CCR Input oriented model are shown in 

Table 5.8.  

The Table shows the actual efficiency of each clinic using the complete data set. Also, 

the Table shows the calculated efficiency using the recovered data using the 10 schemes 

described in section 5.5. Then the difference between the “assumed” efficiency and the “real” 

(with actual data) is calculated using again the Mean Absolute Percentage Error (MAPE) and 

Mean Absolute Deviation (MAD). 

 

Table 5-8: Comparison of Efficiency Scores using CCR Input Model 

DMU  

Key # 

Original 

Dataset 

10% 

Ran 

20% 

Ran 

30% 

Ran 

40% 

Ran 

10% 

Avg 

20% 

Avg 

30% 

Avg 

40% 

Avg 

10% 

Ext 

10% 

LI & HO 

1 1.000 1.000 1.000 1.000 1.000 0.826 0.810 0.819 0.965 1.000 1.000 

4 0.558 0.540 0.634 0.553 0.496 0.756 0.693 0.611 0.641 0.688 0.813 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.836 

7 0.860 0.860 1.000 0.645 0.919 0.810 0.785 0.960 0.966 1.000 1.000 

11 0.611 0.692 0.682 0.578 1.000 0.772 0.739 0.776 0.661 0.702 0.743 

12 1.000 1.000 1.000 0.447 0.967 1.000 1.000 1.000 1.000 1.000 0.897 

13 1.000 1.000 1.000 1.000 0.524 1.000 1.000 1.000 1.000 0.854 1.000 

14 0.655 0.553 0.787 0.776 0.647 0.861 0.916 1.000 0.937 0.869 0.713 
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15 1.000 1.000 1.000 1.000 0.702 1.000 1.000 1.000 1.000 0.923 0.877 

16 0.629 0.686 0.843 0.836 1.000 0.886 0.939 0.979 1.000 1.000 1.000 

17 0.933 0.908 1.000 1.000 0.961 0.756 0.675 0.717 0.768 1.000 1.000 

20 0.617 0.769 0.833 0.597 1.000 0.760 0.775 0.706 0.693 0.726 0.422 

22 1.000 1.000 1.000 1.000 0.843 1.000 1.000 1.000 1.000 0.785 1.000 

23 0.342 0.341 0.752 0.475 0.475 0.667 0.736 0.888 0.964 0.345 0.429 

29 0.598 0.565 0.973 0.709 0.641 0.594 0.711 0.878 1.000 0.660 0.884 

33 0.835 0.455 0.797 1.000 0.719 0.955 0.884 1.000 0.998 0.840 0.715 

34 0.426 0.501 0.646 0.510 0.780 0.546 0.520 0.549 0.653 0.580 0.659 

35 1.000 0.521 0.915 0.801 0.744 0.949 1.000 1.000 1.000 1.000 1.000 

38 0.932 0.848 0.911 0.832 1.000 0.996 1.000 0.875 0.882 1.000 1.000 

39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000 1.000 1.000 

42 0.610 0.606 1.000 0.531 0.865 0.601 0.622 0.896 0.986 0.859 1.000 

MAPE 8.87 20.51 13.14 23.76 15.95 17.56 23.63 25.43 14.13 20.13 

MAD 0.068 0.112 0.095 0.159 0.094 0.102 0.134 0.137 0.096 0.127 

 

 5.6.1 DEA Results and Discussions 

The results from Table 5.8 show that generally the efficiency scores deviate from the real 

ones as more data is missing, as shown in Figure 5.3. 

 

 

Figure 5-3: Error in Efficiency Scores as a Function of Missing Data Quantity 

 

The inferences that can be clearly identified from the results are as the percentage of 

missing values increases the MAPE also increases. 
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The interesting nature of DEA scores can be observed by comparing the efficiency scores 

calculated with 10% extreme and 10% lowest input and highest output missing. Generally the 

nature of outliers present in the data can greatly affect the results, but in the case of DEA 

analysis the most critical observations are with lowest inputs and highest outputs. These 

observations denote efficient DMUs, and when these values are replaced by averages these DMU 

scores are degraded. 

 Hence when 10% of the lowest inputs and highest output values are missing, the error 

presented as MAPE is equivalent to the MAPE of 20% random missing values and is quite larger 

than any other case in the group of 10% missing values. The MAPE for the 4 different cases 

under the group of 10% missing values is graphically illustrated in Figure 5.4 and is compared 

against 20% random missing values. This shows that the influence of lowest input and highest 

output missing values can be greater in the case of DEA when compared to the general extreme 

missing values (without distinction of input or output). 

 

 

Figure 5-4: Influence of Lowest Input & Highest Output Missing Values 

 5.7 Conclusions 

This paper provides a brief introduction to DEA Methodology, literature review of DEA 

in healthcare, literature review of approaches of handling missing data using DEA, and a 

comprehensive review of clustering approaches, and approaches of handling missing values in 

clustering applications.  
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This paper focuses on a methodology for conducting DEA analysis when some of the 

necessary input or output parameters are missing. The approach presented is to replace the 

missing values based on the data generated by a modified fuzzy c-means clustering approach 

enhanced by the Optimal Completion Strategy (OCS). The two major factors that could greatly 

affect the results are: initializing the missing values at the beginning of the clustering approach, 

and choosing the number of clusters. The influence of these two factors on the recovered missing 

values is illustrated using a short example dataset. The results suggest using the Average Ratio 

Method to replace the initial missing values, and to select about 50% of the total number of 

objects in the dataset as the number of clusters. These two recommendations are also validated 

using a real and complete dataset of 22 clinics. 

The missing data recovery using the OCS algorithm was tested using the complete data 

set of the 22 clinics, with varying levels of assumed missing values, ranging from 10% to 40%. 

Here a total of 10 different cases were considered to test the effectiveness of the Optimal 

Completion Strategy (OCS) algorithm. The three basic types of missing values, Missing 

Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random 

(MNAR) are covered under the 10 different cases. The results show that the OCS worked more 

effectively with values Missing At Random (MAR) (where missing values are centered around 

the attribute‟s mean) than values Missing Completely At Random (MCAR). In the case of the 

MAR, the Mean Absolute Percentage Error (MAPE) is gradually decreasing as the percentage of 

missing values are increasing, whereas in the case of MCAR the mean absolute percentage error 

is gradually increasing as the percentage of missing values are increasing.  

The clustering methodology generates the missing values to be used in the DEA analysis. 

The methodology developed here assigns the best set of recovered missing values back into the 

data set.  

The DEA analysis performed here analyzed 22 KAMU clinics with 7 attribute, of which 

3 are inputs and 4 are outputs, with varying levels of missing values. In the analysis we 

compared the actual efficiency scores of the clinics, calculated with the original and complete 

data set against the data generated using the OCS approach. The results show that the efficiency 

scores are fairly insensitive to the missing data – either due to a sufficiently good recovery of the 

data, or the averaging effect of the DEA. Even when a large amount of data is missing, the DEA 

results are still almost always within 0.1 of the correct efficiency score. 
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Thus the proposed approach is robust in the sense that the data recovered and the DEA 

scores generated are insensitive to the quantity of data missing! 

However, when extreme data is missing, especially low input and high output values, the 

DEA analysis tends to underestimate the efficiencies as expected.  

As a summary, this paper provides an effective and practical approach for replacing 

missing values needed for a DEA analysis. 
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Chapter 6 - CLUSTER DISPERSION 

This chapter presents a methodology to estimate missing values based on a modified 

fuzzy c-means clustering algorithm which takes cluster dispersion into account. This particular 

clustering methodology acts as an intermediate step, estimating the missing values scientifically 

to be used for Data Envelopment Analysis. The cluster dispersion approach reduces the 

likelihood of mistakenly assigning marginal data objects to larger cluster groups instead of 

nearer smaller clusters. The newly developed clustering approach, which takes dispersion into 

account, is demonstrated on a real and complete dataset of 22 KAMU clinics, assuming varying 

levels of missing data. Results show the effect of the clustering approach on the data recovery 

considering the amount of missing data. Moreover, the paper also shows the effect that the 

recovered data has on the DEA scores. 

This chapter is structured as follows. Section 6.1, provides introduction to existing cluster 

dispersion methodology. Section 6.2, illustrates the issues associated with the existing cluster 

dispersion methodology using an example. Section 6.3 presents the new cluster dispersion 

methodologies. Section 6.4, presents the application of these new methodologies to real and 

complete dataset of 22 KAMU clinics. It also compares the effectiveness of the recovered values 

and convergence properties for these new methods. Section 6.5 illustrates the effect of data 

recovered using cluster dispersion on DEA outcomes. Finally Section 6.6 provides the 

conclusions. 

 6.1 Cluster Dispersion 

This algorithm is an extension of Optimal Completion Strategy (OCS), discussed in the 

previous chapter, taking cluster dispersion into account. Himmelspach and Conrad (2010) 

suggest that general clustering approaches to estimate missing values work well for uniformly 

distributed datasets but not for real datasets that do not have uniform cluster sizes. OCS 

algorithm estimates missing values solely based on distances between observations and their 

cluster centers, hence remote data objects can be biased by cluster size.  

Extending the OCS algorithm by taking cluster dispersion into account, this new 

algorithm by Himmelspach and Conrad (2010) is named as Fuzzy C-Means Algorithm for 
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Incomplete Data based on Cluster Dispersion (FCMCD). FCMCD updates the new membership 

function  taking cluster dispersion into account by computing it. This cluster dispersion,  

of a cluster  is defined as squared average distance of data objects to their cluster centers, 

considering only entities with complete data, as shown in equation (6.1). „f‟ represents the 

attribute values of the corresponding observation. The primary difference between calculating 

the FCMCD and the OCS is the usage of the cluster dispersion value, . 

 

 

(6.1) 

Where  

 

 

 

The FCMCD algorithm, an extension of OCS and FCM, can be obtained by modifying 

Step 3 of Fuzzy C-Means algorithm, discussed in the previous chapter, in the following way: 

 

Step 3’: This step is the primary difference between OCS and FCMCD, the process of 

updating the membership function where the later takes the cluster dispersion into account. 

Updating the membership function of the  observation to cluster k, , using cluster 

dispersion is defined as. 

 

      (6.2) 
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Calculate new set of cluster centers  and estimate missing values using equation 6.3. For 

more details of FCMCD refer to Himmelspach and Conrad, 2010. Note that convergence 

properties of this particular method are not discussed.  

 

   (6.3) 

 6.2 Issues associated with FCMCD 

This particular section further concentrates on FCMCD and illustrates the issues 

associated in application of this algorithm to estimate missing values. The primary issue lies in 

computing the cluster dispersion value, , which further influences the updating the 

membership matrix. Reviewing the dispersion, , in equation (6.1), illustrates that it is mainly 

based on observations with complete data ( . There is a possibility that there are too many 

missing values in the dataset leaving no potential observations with complete data. However this 

possibility can happen even in cases with smaller percentage of missing data. If this probable 

case happens then it leaves no good way for computing the cluster dispersion value ( ) and also 

updating the membership matrix. 

Consider a real and complete dataset of 22 observations with 7 attributes, which will be 

presented later in section 6.5. Assume 10% of data is missing, which implies that potentially 16 

values in the dataset can be missing. There is a possibility that 16 observations (out of 22) each 

can have a single missing value, which leaves 6 potential observations with complete data. Based 

on experimental results calculating the dispersion based on 6 observations, estimating the 

missing values, and trying to classify a group of 22 observations can lead to incorrect analysis. 

Potentially if 14% of data is assumed as missing then each observation will have a single missing 

value and cannot be used for computing the dispersion value. Based on the experimental results 

the FCMCD algorithm could fail to converge for even smaller percentage of missing values 

depending on the size of dataset and structure of missing values. 
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Figure 6-1: Repetition of Error Value with 2 Clusters 

 

Figure 6-2: Repetition of Error Value with 3 Clusters 

 

Figure 6-3: Repetition of Error Value with 4 Clusters 
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The second issue that we discovered during the experimentation process is that the 

FCMCD algorithm failed to converge when increasing the number of clusters. During the 

experiments the algorithm successfully converged to a final solution with up to 4 clusters. The 

iteration of the error value for cluster size from 2 to 4 is shown in Figures 6.1 to 6.3 respectively. 

When the number of clusters is increased to 5 or more, the algorithm failed to converge. It is 

evident that after a few iterations the error  starts to follow a pattern as shown in Figure 6.4. 

 

 

Figure 6-4: Repetition of Error Value with 5 Clusters 

 

When looking at the updated membership matrix we can see that data points shift from 

one cluster to another repeatedly. The updated membership matrix is shown in Table 6.1 for 10
th

, 

11
th

, and 12
th

, iterations. Highlighted cells in Table 6.1 represent the maximum membership 

value of a particular observation in a particular cluster center. Maximum membership value of a 

particular cluster keeps iterating between cluster 5 and 2 in this example, showing that the 

algorithm does not converge to a stable fuzzy cluster. 

 

Table 6-1: Repetition of Membership Matrix (Cells Highlighted) 

 

10th Iteration 11th Iteration 12th Iteration 

Key No C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

1 0.291 0.028 0.011 0.027 0.644 0.027 0.898 0.012 0.029 0.033 0.257 0.027 0.012 0.029 0.674 

4 0.038 0.001 0.053 0.886 0.022 0.004 0.029 0.058 0.909 0.001 0.056 0.001 0.080 0.831 0.032 

5 0.116 0.013 0.009 0.018 0.845 0.027 0.835 0.024 0.049 0.065 0.113 0.013 0.010 0.021 0.845 

7 0.490 0.033 0.010 0.028 0.439 0.030 0.928 0.007 0.018 0.016 0.421 0.038 0.011 0.032 0.497 
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11 0.020 0.001 0.917 0.047 0.015 0.002 0.017 0.933 0.048 0.001 0.024 0.001 0.903 0.054 0.018 

12 0.471 0.027 0.009 0.025 0.468 0.044 0.895 0.010 0.027 0.025 0.419 0.033 0.009 0.028 0.512 

13 0.189 0.005 0.196 0.489 0.121 0.019 0.165 0.230 0.581 0.006 0.194 0.005 0.195 0.488 0.119 

14 0.513 0.015 0.034 0.093 0.346 0.068 0.716 0.051 0.142 0.023 0.467 0.018 0.035 0.105 0.376 

15 0.120 0.014 0.008 0.017 0.841 0.026 0.843 0.020 0.043 0.067 0.117 0.013 0.008 0.018 0.844 

16 0.268 0.024 0.011 0.026 0.671 0.032 0.872 0.016 0.037 0.043 0.245 0.022 0.011 0.027 0.695 

17 0.088 0.015 0.004 0.009 0.884 0.021 0.871 0.011 0.025 0.073 0.084 0.014 0.004 0.011 0.887 

20 0.091 0.003 0.619 0.221 0.067 0.008 0.080 0.675 0.234 0.003 0.090 0.003 0.640 0.202 0.066 

22 0.532 0.018 0.018 0.043 0.389 0.068 0.813 0.027 0.065 0.027 0.453 0.023 0.020 0.052 0.452 

23 0.487 0.025 0.015 0.037 0.437 0.047 0.874 0.016 0.040 0.024 0.422 0.029 0.016 0.041 0.492 

29 0.327 0.007 0.086 0.417 0.164 0.036 0.282 0.116 0.556 0.010 0.328 0.007 0.086 0.423 0.156 

33 0.232 0.005 0.131 0.499 0.133 0.023 0.194 0.155 0.621 0.007 0.219 0.005 0.128 0.521 0.127 

34 0.038 0.001 0.817 0.119 0.026 0.003 0.032 0.838 0.125 0.001 0.040 0.001 0.814 0.116 0.029 

35 0.220 0.028 0.009 0.021 0.722 0.023 0.902 0.010 0.026 0.040 0.207 0.026 0.009 0.024 0.735 

38 0.166 0.028 0.005 0.013 0.789 0.020 0.906 0.007 0.017 0.050 0.142 0.027 0.005 0.013 0.813 

39 0.252 0.007 0.182 0.376 0.183 0.027 0.261 0.230 0.473 0.010 0.243 0.007 0.188 0.379 0.182 

40 0.656 0.011 0.027 0.076 0.230 0.106 0.674 0.052 0.148 0.020 0.626 0.013 0.027 0.082 0.252 

42 0.887 0.005 0.006 0.022 0.081 0.258 0.619 0.024 0.083 0.015 0.962 0.002 0.002 0.008 0.027 

 

For more information on cluster dispersion refer to Appendix C, which explains the 

cluster dispersion using an example. 

 6.3 Optimal Completion Strategy based on Cluster Dispersion  

This section illustrates three new approaches for estimating the missing values based on 

Optimal Completion Strategy with Cluster Dispersion. The cluster dispersion values are 

computed using all the observations in the dataset unlike the existing method which considers 

only observations with complete data. These approaches try to achieve similarity among the 

cluster sizes reducing the opportunity for formation of few large cluster groups. Three different 

methods for calculating the cluster dispersion are presented below and the step by step procedure 

used to update the membership matrix is explained at the end. 

 

Method 1: 

This method tries to achieve uniformity among the clusters using Euclidean distance. The 

cluster dispersion value, , of a cluster k is defined as the average Euclidean distance of each 

observation in the dataset to the corresponding cluster center. 



93 

 

 

(6.4) 

Where  

 

Method 2: 

This method considers also the influence of membership grade, thus the cluster 

dispersion value, , of a cluster k is defined as the weighted average of membership times the 

square of Euclidean distance 

 

 

(6.5) 

Where  

 

Method 3: 

Cluster dispersion plays an important role in updating the new membership matrix, 

having observations closer to the cluster center emphasized and ones further from a cluster center 

pushed to choose a nearer cluster center. Here the function that supports this influence is 

achieved by computing the ratio of membership to distance. Observations closer to the cluster 

center have shorter distance and high membership value while observations away from cluster 

center have larger distance and lowest membership value. The ratio of membership to distance 

for observations closer to cluster center will have a higher value, and for observations far away 

from cluster center will have a lower value. The higher value helps emphasizing closer 

observations and push remote observations away from the cluster towards a nearer cluster.  
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The cluster dispersion of cluster  is defined as: 

 

(6.6) 

Where  

 

The following is procedure of Optimal Completion Strategy algorithm based on Cluster 

Dispersion (OCSCD). Based on the cluster dispersion method chosen the cluster dispersion 

values, , may vary however equation (6.9) and the rest of the procedure remains the same. 

 

Step 1: Fix  and select a value for . Initialize  such that 

condition (6.7) is satisfied. Each step in the algorithm will be labeled as  where r = 0, 1, 2…….. 

                                                 (6.7) 

Step 2: Calculate  fuzzy cluster centers  for each step using  and (6.8) 

     (6.8) 

Step 3: Update the initial membership function from  to  using   and  

      (6.9) 

Step 4:If the difference between the updated and original membership matrix i.e., 

 then STOP. 

 Step 5: Calculate missing values for the iteration „r+1’ using equation (6.10). Place the 

calculated missing values into the dataset and proceed to the next iteration until the condition in 

step 4 is satisfied. 

   (6.10) 
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 6.4 Using OCSCD Algorithm for Data Recovery 

This section presents an application of the Optimal Completion Strategy Cluster 

Dispersion (OCSCD) algorithm using a real and complete dataset, and considering the three 

methods that determine the cluster dispersion presented in the previous section. These 

approaches are tested on the complete dataset obtained from the data provided KAMU clinics. 

Since most clinics did not have complete data sets we reduced the dataset to 22 clinics with 

seven attributes, consisting of four input and three output variables. The dataset for 22 clinics is 

complete and does not contain any missing values. Table 6.2 shows the list of these inputs and 

outputs. 

 

Table 6-2: List of Inputs and Outputs 

Key No Input Variables Key No Output Variables 

I1 Medical Staff Expenses O1 Total Medical Visits 

I2 Facility Expenses O2 Self Pay Collected 

I3 Administration Full Time Employee O3 State PC Collected 

I4 Nurses Full Time Employee   

 

The normalized and complete dataset is presented in Table 6.3. 

 

Table 6-3: Normalized Values of the Original Data 

 

Input Attributes Output Attributes 

Key No I1 I2 I3 I4 O1 O2 O3 

1 0.1273 0.1022 0.1380 0.0665 0.2909  0.0397 0.1463 

4 0.4831  0.4606 0.7661 0.3694 0.4576 0.2980 0.4504 

5 0.0537 0.0177 0.0690 0.1661 0.1129 0.0075 0.1701 

7 0.2300 0.1950 0.2070 0.0665 0.2455 0.0596 0.1874 

11 0.9193 0.4436 0.5735 1.0000 0.4740 0.5013 0.6058 

12 0.0609 0.2636 0.2416 0.1329 0.1548  0.1278 0.1536 

13 0.4924 0.6900 0.6149 0.1601 0.3583 1.0000 0.3437 

14  0.1150 0.5303 0.1380 0.1993 0.1702 0.0143 0.1170 

15 0.0705 0.0117 0.2070 0.1462 0.0821 0.0396 0.1178 

16 0.1391 0.0804 0.3057 0.1595 0.1145 0.0810 0.2140 

17 0.0792 0.1985 0.1035 0.1329 0.0937 0.0390 0.2068 

20 1.0000  1.0000 1.0000 0.7163 1.0000 0.6349 0.3870 

22 0.2466 0.2659 0.0518 0.2658 0.1751 0.1703 0.3189 

23 0.2638 0.1861 0.2554 0.2392 0.1786 0.0325 0.1158 

29 0.2688 0.3750 0.7384 0.2013 0.2684 0.2248 0.2166 
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33 0.4108 0.9466 0.4072 0.3608 0.6018 0.2867 0.1581 

34 0.6827 0.5379 0.7522 0.8625 0.4215 0.3779 0.5858 

35 0.1813 0.2148 0.0552 0.0665 0.0617 0.0174 0.1755 

38 0.1249 0.1621 0.1035 0.0665 0.1500 0.1321 0.1097 

39 0.4086 0.3235 0.4141 0.1329 0.5293 0.6085 1.0000 

40 0.4505 0.1931 0.2070 0.1661 0.4126 0.3260 0.1755 

42 0.2416 0.2875 0.3278 0.1329 0.1952 0.2388 0.2627 

 

The effectiveness of OCSCD algorithm in recovering the missing values is evaluated by 

assuming varying levels of data as missing, ranging from 10% to 30%. The algorithm is tested 

using the 3 different cluster dispersion methods noted as Method 1, 2 and 3. The data assumed as 

missing is Missing Completely At Random, (Little and Rubin, 2002) implying that data assumed 

missing does not follow any pattern with respect to data present or missing.  

The difference between the highest and lowest of missing values is represented as the 

range for each case. The range demonstrates the variability of the missing data, with a higher 

range implying data that is more remote from a cluster center is missing. 

The Mean Absolute Deviation (MAD) between the real values (assumed as missing) and 

recovered values using Method 1, 2 and 3 for 10%, 20%, and 30% missing values are presented 

in Table 6.4.  

 

Table 6-4:  Recovered Values using OCSCD 

    Mean Absolute Deviation 

No. Title Range # of Missing Values Method 1 Method 2 Method 3 

1 10% Missing 0.9603 16 0.1287 0.1161 0.1150 

2 20% Missing 0.9463 31 0.1341 0.1277 0.1153 

3 30% Missing 0.9925 47 0.1322 0.1388 0.1223 

 6.4.1 Results and Discussions 

The results in Table 6.4 show that Mean Absolute Deviation (MAD) for the recovered 

values keep increasing as the percentage of missing data increases. The increase of MAD 

between 10%, 20%, and 30% missing data varies differently for each method. Graphical 

illustration of MAD values for method 1, 2, and 3 is shown in Figure 6.5. 
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Figure 6-5: MAD of recovered values based on Cluster Dispersion 

 

Based on the Mean Absolute Deviation values we can clearly infer that Method 3 is the 

best alternative among the 3 cluster dispersion methods to estimate the missing values. MAD 

value for 30% missing using Method 3 is still less when compared to 20% missing using Method 

2 and 10% missing using Method 1. Method 3 is robust as the MAD does not jump much from 

10% missing to 20% missing, when compared to Method 2 where the MAD keeps increasing 

quickly as the percentage of missing data increases. 

 6.4.2 Convergence 

Method 1 converges for any number of clusters with varying percentage of missing data 

as 10%, 20%, and 30%. Based on the experimental results this method is able to converge under 

all these cases. Method 2 converges for any number of clusters when smaller percentage of data 

is missing. As the percentage of missing values increase this method failed to converge 

especially with a higher number of clusters. The convergence for Method 3 cannot be guaranteed 

at higher number of clusters for any percentage of missing values. However this method is able 

to recover the missing values with higher fidelity with a lower number of clusters when 

compared to Method 1 and 2. 
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 6.5 Effects of Data Recovery on DEA Results  

In the previous section we assumed varying quantities of data as missing starting from 

10% to 30%. As the results in section 6.4 suggest, Method 3 is the best approach towards 

recovering the missing data. 

Here we assess the fidelity of the DEA results based on the recovered data. Thus we have 

a total of 3 recovered dataset with 10%, 20%, and 30% missing cases. The efficiency scores of 

the three recovered datasets will be compared with the efficiency scores of the real and complete 

dataset using DEA. 

The efficiency scores of the clinics are determined based on the CCR Input oriented 

model. Table 6.5 shows the actual efficiency of clinics for the real and complete data set, and 

also the efficiency for the recovered datasets described in section 6.4. Then the difference 

between the “real” (with actual data) and “assumed” efficiency is calculated using the Mean 

Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD). 

 

Table 6-5: Comparison of Efficiency Scores obtained using CCR Input Model 

DMU 

Key # 

Original 

Dataset 10% Missing 20% Missing 30% Missing 

1 1.000 0.7059 1.0000 1.0000 

4 0.558 0.6178 0.5656 0.5651 

5 1.000 1.0000 1.0000 1.0000 

7 0.860 0.9283 0.9953 0.9598 

11 0.611 0.6225 0.5834 0.7422 

12 1.000 1.0000 1.0000 1.0000 

13 1.000 1.0000 1.0000 1.0000 

14 0.655 0.6380 0.9004 0.8258 

15 1.000 0.5794 0.6084 0.5713 

16 0.629 0.6990 0.6912 0.6709 

17 0.933 0.8827 1.0000 1.0000 

20 0.617 0.7041 0.6730 1.0000 

22 1.000 1.0000 1.0000 0.4843 

23 0.342 0.5514 0.4706 0.5963 

29 0.598 0.6264 0.7120 0.5506 

33 0.835 0.8850 0.9435 0.5918 

34 0.426 0.4056 0.5466 0.5538 

35 1.000 1.0000 0.8619 0.8257 

38 0.932 0.9907 1.0000 1.0000 
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39 1.000 1.0000 1.0000 1.0000 

40 1.000 1.0000 1.0000 0.7441 

42 0.610 0.6049 0.8815 0.7675 

MAPE 9.5006 13.0893 20.3772 

MAD 0.0660 0.0883 0.1443 

 

 6.5.1 DEA Results and Discussions 

The results from Table 6.5 show that the efficiency scores of recovered datasets 

increasingly deviate from the real scores, as more data is missing. Both the Mean Absolute 

Percentage Error (MAPE) and Mean Absolute Deviation (MAD) keep increasing as the 

percentage of missing data increases. Figure 6.6 demonstrates the MAD deviation as a function 

of missing data quantity. 

 

 

Figure 6-6: MAD a Function of Missing Data 

 

The MAD of efficiency scores for 10%, 20%, and 30% missing data under Method 3 

imitate the pattern observed in Figure 6.5. The difference between the 10% and 20% MAD 

values is minimal and increases rapidly from 20% to 30%. 

 6.6 Conclusions 

This chapter focuses on an existing clustering methodology by taking cluster dispersion 

into account and conducting the Data Envelopment Analysis (DEA) when some critical input or 

output parameters are missing. The clustering approach acts as an intermediate approach to 

estimate the missing values for conducting DEA analysis. 
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The chapter highlights the importance of the cluster dispersion and its influence on 

estimating the missing values in the cases of real datasets. It identifies the limitations of the 

existing method taking cluster dispersion into account. The existing cluster dispersion method 

tends to fail (does not converge) even for a small percentage of missing values and with 

increasing number of clusters. These limitations are clearly stated and illustrated using a real 

dataset. Hence three new approaches to calculate the cluster dispersion are introduced. 

The effectiveness of these methods is tested based on a complete data set of the 22 

clinics, with varying levels of assumed missing values, ranging from 10% to 30%. The values 

assumed as missing are considered to be missing completely at random, and are estimated based 

on the three different methods proposed in this paper. Method 3 is found to be the best method 

among the three available methods based on the Mean Absolute Deviation between the real 

(assumed as missing) and recovered (estimated using the clustering).  

The best set of recovered values, using Method 3, is replaced back into the dataset to 

perform the DEA. In the analysis we compared the actual efficiency scores of the clinics, 

calculated with the original and complete data set, against the data recovered using the Method 3. 

The results suggest that the efficiency scores are fairly insensitive to the missing data. Even 

when 20% data is missing, the MAD between the real and recovered efficiency scores is still less 

than 0.1. 

The convergence properties exhibited by the three different methods under varying levels 

of missing data are also explored in this paper. 

As a summary, this chapter provides an effective and practical approach for replacing 

missing values needed for a DEA analysis using Cluster Dispersion approach. 
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Chapter 7 - INTERVAL DEA 

This chapter presents a methodology based on interval approach to handle missing value 

concerns and to perform Data Envelopment Analysis (DEA). Traditionally complete data should 

be available to carry out DEA. In case of sparse data, generally the missing values are replaced 

by interval ranges estimated by experts, rest remains crisp. In most interval based DEA methods, 

the efficiency scores are expressed in terms of fuzzy environment but this chapter‟s primary 

focus is to express the DEA scores in terms of crisp values. Crisp efficiency scores are identified 

in similar lines to how DEA determines efficiency scores using the best set of weights. 

The interval ranges are broken down into crisp values based on interpolations, but 

common alpha value is chosen for the interpolation of different ranges. The methodology in this 

chapter uses the concept of common alpha value for different interval ranges. The best value of 

alpha, for interval ranges, will be the one which endows most of the DMUs with best efficiency 

scores. This new interval approach is demonstrated on a real and complete dataset of 22 KAMU 

clinics, assuming varying levels of data as missing. 

This chapter is structured as follows. Section 7.1 provides literature review to interval 

based DEA models to handle missing value concerns. Section 7.2, presents the formulation of 

the new interval approach. Section 7.3 demonstrates the application of this new interval approach 

using the actual clinical data for varying levels of missing values. Section 7.4 discusses the 

results and shows the effect of interval approach on the DEA analysis. Section 7.5 provides 

summary and conclusions. 

 7.1 Literature Review 

Traditionally complete data should be available to carry out the Data Envelopment 

Analysis. However, this assumption might not be valid in all the cases. Apart from the cases with 

missing values there exist other types where the data is collected in form of interval data and 

ordinal data. DEA models developed to handle such type of data are known as Imprecise Data 

Envelopment Analysis (IDEA) models. The resulting DEA models turn out to be non-linear 

programming problems. There exists two different approaches to handle this issue; one approach 

is to transform the non-linear programming model to linear and to handle the interval and ordinal 
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data. The second approach is to convert the interval or ordinal data to a set of exact data and to 

proceed with the standard DEA methodology. This section does not dig much into this aspect. As 

more of these models are applicable when all of the provided data can be classified as interval or 

ordinal or as ratio bounded. For more information refer to Chen and Zhu (2007), Cook and Zhu 

(2007). These literature works summarize most of the research work done in this area. 

This section presents some of these methods which can be applied to the perspective 

when data possess both crisp and interval values. Kao and Liu (2000), treats the missing data 

with the help of interval data using fuzzy approach. Smirlis et al., (2006) treats the missing data 

with the help of interval data using imprecise DEA approach. 

Kao and Liu (2000) adopted the concept of membership function used in fuzzy set 

theory, to illustrate the efficiency scores of 24 university libraries in Taiwan with 3 missing 

values. Triangular membership function for missing data is created using the smallest, most, and 

largest possible values from the observed data. Fuzzy DEA model is transformed into 

conventional crisp model using the concept of alpha cut. Alpha cut value indicates the 

corresponding input and output interval values for the membership function. Each alpha cut 

provides two input and two output values. In order to determine the bounds of the efficiency 

scores at every level of alpha, two mathematical programs are formulated to determine the 

minimum and maximum efficiency scores. 

Maximum efficiency score occurs when lower bound of input values and upper bound of 

output values for the target DMU, and upper bound of input values and lower bound of output 

values for rest of the DMUs in the constraint set are considered. Minimum efficiency score 

occurs when upper bound of input values and lower bound of output values for the target DMU, 

and lower bound of input values and upper bound of output values for rest of the DMUs in the 

constraint set are considered. 

For every level of alpha there exist two efficiency scores, hence increasing the alpha 

value in the intervals of 0.1 from zero to one we need to run the DEA methodology 22 times. 

The most likely efficiency score out of the 22 runs will be selected. This makes the methodology 

computationally intense with multiple runs. Decreasing the intervals of alpha increases the total 

number of runs to be performed. 

The effectiveness of this methodology is not evaluated as the 3 missing values are real. 

Hence the most likely obtained efficiency score cannot be compared to efficiency score of real 
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dataset. This methodology transforms interval data to crisp values and uses the standard DEA 

structure. 

Kao and Liu (2007), presents the application of this methodology on a complete dataset 

assuming 1%, 2%, and 5% of the data as missing. They modified the existing triangular 

membership function construction process. In the new study the three vertices of the triangular 

membership function corresponds to the smallest, largest, and the median ranks which have 

appeared in other variables for the DMUs with the missing values. The new membership 

construction provided better results. The limitation associated with the new membership 

construction process is that at least one input and one output variable should possess complete 

data. This implies that for smaller percentage of missing values, assuming one for each variable, 

we need to drop few DMUs to continue DEA analysis. 

Smirlis et al., (2006) adopted the concept of imprecise DEA model developed by 

Despotis and Smirlis (2002), to illustrate the efficiency scores of 29 secondary public schools in 

Greece which possess 8 missing values. The missing values are estimated within intervals based 

on statistical or experiential techniques. This methodology transforms the non-linear 

programming model to linear model, to handle the interval data. Similar to the previous model 

the minimum and maximum efficiency scores are determined using two mathematical programs. 

Based on the bounds of the interval efficiency scores, DMUs are classified into three classes. 

First class consists of DMUs that are efficient for any combination of inputs and outputs. Second 

class consists of DMUs that can act as both efficient and inefficient based on the combination of 

inputs and outputs. Third class consists of DMUs that are inefficient under any combination of 

inputs and outputs. 

 7.2 Interval Approach Formulation 

This section presents new formulation based on interval approach. The missing crisp 

values in the dataset can be estimated with in an interval range based on expert opinion or 

statistical methods. The missing input and output values  are expressed in terms of 

interval range as  and .  and  represent the lower and upper 

bounds of the interval range for input variables respectively. Where,  and  represent the 

lower and upper bounds of the interval range for output variables respectively. The interval 
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developed for each missing value is converted into a series of crisp values using linear 

interpolation of the interval as follows: 

 

 

 

The alpha value lies between zero to one. There exist several combinations to choose the 

alpha value for each interval range to obtain the crisp values. In this chapter we choose common 

alpha value for all the different interval ranges. This avoids the fuzzy environment of DEA 

efficiency scores. This also avoids the concept of minimum and maximum efficiency scores. Use 

of common alpha value reduces the overall computations by 50%. Replacing the crisp values 

back into the dataset, efficiency scores of the DMUs are calculated. This procedure will be 

repeated for different values of alpha, between zero to one.  

The best value of alpha, for interval range, will be the one which endows best efficiency 

scores for most of the DMUs. The efficiency scores achieved for a particular value of alpha are 

summed. This summation value helps us in determining the best value of alpha. The alpha value 

corresponding to the highest summation score will be chosen as the best value of alpha and this 

bestows most of the DMUs with best efficiency scores. This methodology is based on the 

concept of transforming the interval data to precise data and making use of the standard DEA 

structure. The extended interval based DEA (CCR Input) model is shown below: 
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We can also determine the best possible and least possible efficiency scores based on the 

interval range for different missing values. Clearly, for DEA analysis, a DMU will be most 

efficient if α→0 for input variables and α→1 for output parameters, providing a DMU with 

lowest possible input and highest possible output. The best efficiency score occurs when we 

consider the lowest input values and highest output values for the target DMU, and consider the 

highest input values and lowest output values for rest of the DMUs in the constraint set. The least 

efficiency score is possible when we consider the highest input values and lowest output values 

for the target DMU, and consider the lowest input values and highest output values for rest of the 

DMUs in the constraint set. This helps us in determining the possible interval range for DEA 

efficiency scores. Model 7.1 and 7.2 represent the formulation for best and least CCR input 

oriented models respectively, shown in Table 7.1. 

 

Table 7-1: Best and Least cases for CCR Input Model 

Best CCR Input Oriented Model Least CCR Input Oriented Model 

 
                                                              (7.1) 

 

 

 

 

 
                                                              (7.2) 

 

 

 

 
 

There exist very less probability for best and least efficiency scores cases to happen in 

real world and moreover these are imaginary situations. Best case model represents the upper 

bound for the possible efficiency scores with interval range. While the least case represents the 

lower bound for the possible efficiency scores with interval range. However we are not 
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determining the multiple efficiency scores which represent the fuzzy environment. This chapter 

primarily focuses on determining the crisp efficiency scores. 

 7.3 Application of Interval Approach 

This section presents application of the new interval approach using a real and complete 

dataset of 22 KAMU clinics, assuming varying levels of data as missing. Table 7.2 shows the list 

of these inputs and outputs. Interval ranges for the assumed missing values are constructed 

around the actual value based on two different approaches. In the first model intervals are 

constructed relatively to the actual value. In the second model intervals are fixed around the 

actual value. In both these cases the intervals are symmetrical around the actual value. 

 

Table 7-2: List of Inputs and Outputs 

Key No Input Variables Key No Output Variables 

I1 Medical Staff Expenses O1 Total Medical Visits 

I2 Facility Expenses O2 Self Pay Collected 

I3 Administration Full Time Employee O3 State PC Collected 

I4 Nurses Full Time Employee   

 

The normalized and complete dataset is presented in Table 7.3. 

 

Table 7-3: Normalized Values of the Original Data 

DMUs Input Variables Output Variables 

Key No I1 I2 I3 I4 O1 O2 O3 

1 0.1273 0.1022 0.1380 0.0665 0.2909 0.0397 0.1463 

4 0.4831 0.4606 0.7661 0.3694 0.4576 0.2980 0.4504 

5 0.0537 0.0177 0.0690 0.1661 0.1129 0.0075 0.1701 

7 0.2300 0.1950 0.2070 0.0665 0.2455 0.0596 0.1874 

11 0.9193 0.4436 0.5735 1.0000 0.4740 0.5013 0.6058 

12 0.0609 0.2636 0.2416 0.1329 0.1548 0.1278 0.1536 

13 0.4924 0.6900 0.6149 0.1601 0.3583 1.0000 0.3437 

14 0.1150 0.5303 0.1380 0.1993 0.1702 0.0143 0.1170 

15 0.0705 0.0117 0.2070 0.1462 0.0821 0.0396 0.1178 

16 0.1391 0.0804 0.3057 0.1595 0.1145 0.0810 0.2140 

17 0.0792 0.1985 0.1035 0.1329 0.0937 0.0390 0.2068 

20 1.0000 1.0000 1.0000 0.7163 1.0000 0.6349 0.3870 

22 0.2466 0.2659 0.0518 0.2658 0.1751 0.1703 0.3189 

23 0.2638 0.1861 0.2554 0.2392 0.1786 0.0325 0.1158 
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29 0.2688 0.3750 0.7384 0.2013 0.2684 0.2248 0.2166 

33 0.4108 0.9466 0.4072 0.3608 0.6018 0.2867 0.1581 

34 0.6827 0.5379 0.7522 0.8625 0.4215 0.3779 0.5858 

35 0.1813 0.2148 0.0552 0.0665 0.0617 0.0174 0.1755 

38 0.1249 0.1621 0.1035 0.0665 0.1500 0.1321 0.1097 

39 0.4086 0.3235 0.4141 0.1329 0.5293 0.6085 1.0000 

40 0.4505 0.1931 0.2070 0.1661 0.4126 0.3260 0.1755 

42 0.2416 0.2875 0.3278 0.1329 0.1952 0.2388 0.2627 

 

The effectiveness of this approach is evaluated by assuming varying percentage of data as 

missing, starting from 10% to 30%. The data assumed as missing is Missing Completely At 

Random (MCAR). MCAR implies that data assumed as missing does not follow any pattern with 

respect to data present or missing. All the values assumed as missing have equal probability to be 

identified as missing, Little and Rubin (2002). 

The values assumed as missing in 10% missing case are shown as italics in Table 7.3. 

The values assumed as missing in 20% missing case are underlined and shown in Table 7.3. The 

values assumed as missing in 30% missing case are represented in bold and shown in Table 7.3. 

If a value is both italic and underlined then it is assumed as missing in both 10% and 20% 

missing cases. Similarly, if the value is both italic and bold then it is assumed as missing in both 

10% and 30% missing cases. 

The number of values assumed as missing in case of 10%, 20%, and 30% are 16, 32, and 

48 respectively. In each case the number of missing input values equals to number of missing 

output values. For each case the difference between the lowest and the highest of the assumed 

missing values are calculated and this value is known as range. Range for 10%, 20%, and 30% 

missing cases are shown in Table 7.4. The range demonstrates the variability of the missing data, 

higher the value greater the difficulty to recover the missing data precisely. 

 

Table 7-4: Number of Missing Values 

No. Title Range # of Missing Values # of Missing Inputs # of Missing Outputs 

1 10% Missing 0.9603 16 8 8 

2 20% Missing 0.9675 32 16 16 

3 30% Missing 0.7517 48 24 24 
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 7.3.1 Relative Intervals 

In this case the intervals are relatively constructed for missing values based on the actual 

values (assumed as missing), rest of the values remain crisp. Intervals constructed equals 50% 

times of the actual value. Where the lower bound is 25% times less than the actual value and 

upper bound is 25% times greater than the actual value. Hence, the interval range constructed 

equals 50% of the actual value, varying symmetrically at ∓25% around the center point (the 

actual known value). This implies that when alpha equals to 0.5 the crisp values of the interval 

range represent the actual missing values. Based on a common alpha value for all the interval 

ranges, crisp values are determined using linear interpolations. Thus the relative interval around 

the central point  is calculated as: 

 

 

 7.3.2 Fixed Intervals 

In this case also the intervals are constructed for missing values based on the actual 

values (assumed as missing), rest of the values remain crisp. Intervals are fixed around the actual 

values. Hence, the intervals are symmetrically varying at ∓0.25 around the center point (the 

actual known value). Based on a common alpha value for all the interval ranges, crisp values are 

determined using linear interpolations. These calculated crisp values are substituted back into the 

dataset to carry out the DEA analysis and to determine the efficiency scores. Thus the fixed 

interval around the central point  is calculated as: 

 

For more details on construction of the relative and fixed intervals refer to Appendix D. 

 7.4 Results and Discussions 

The efficiency scores are determined for different alpha values based on the interval 

range constructed, for both relative and fixed intervals. The efficiency scores of the clinics are 

determined based on CCR Input oriented model. The efficiency scores obtained by varying the 

percentage of missing data from 10% to 30% for relative intervals are shown in Tables 7.5 to 7.7 
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respectively for different values of alpha. The efficiency scores obtained by varying the 

percentage of missing data from 10% to 30% for fixed intervals are shown in Tables 7.8 to 7.10 

respectively for different values of alpha. Efficiency scores of all the 22 DMUs obtained for a 

particular alpha value are summed. The alpha value corresponding to the highest summation 

value of efficiency scores is chosen as the best. Hence the best alpha value chosen bestows most 

of the DMUs with best efficiency scores. The best chosen value of alpha and the corresponding 

efficiency score for the 22 clinics are highlighted in each case.  

 

Table 7-5: Efficiency Scores for different Alpha Values, 10% Missing, Relative Intervals 

Key No 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 0.600 0.591 0.582 0.574 0.566 0.558 0.551 0.543 0.536 0.529 0.523 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 

11 0.698 0.675 0.657 0.641 0.623 0.611 0.600 0.591 0.579 0.569 0.559 

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

14 0.752 0.730 0.709 0.690 0.672 0.655 0.639 0.625 0.612 0.608 0.604 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

16 0.667 0.659 0.651 0.643 0.635 0.629 0.622 0.616 0.610 0.605 0.599 

17 1.000 0.988 0.973 0.959 0.946 0.933 0.920 0.908 0.896 0.884 0.873 

20 0.650 0.639 0.633 0.627 0.622 0.617 0.612 0.608 0.603 0.599 0.595 

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

23 0.345 0.344 0.344 0.343 0.343 0.342 0.342 0.342 0.341 0.341 0.341 

29 0.637 0.628 0.620 0.612 0.605 0.598 0.591 0.585 0.578 0.572 0.566 

33 0.788 0.797 0.806 0.815 0.825 0.835 0.846 0.856 0.867 0.878 0.889 

34 0.452 0.446 0.440 0.435 0.430 0.426 0.421 0.417 0.413 0.409 0.406 

35 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.974 0.950 0.928 0.907 

38 0.973 0.967 0.959 0.950 0.941 0.932 0.924 0.916 0.909 0.902 0.896 

39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

42 0.650 0.642 0.634 0.626 0.618 0.610 0.602 0.594 0.585 0.577 0.568 

SUM 18.072 17.965 17.868 17.776 17.686 17.605 17.529 17.433 17.342 17.261 17.184 

 

Table 7-6: Efficiency Scores for different Alpha Values, 20% Missing, Relative Intervals 

Key No 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 0.451 0.476 0.501 0.521 0.541 0.558 0.575 0.593 0.610 0.627 0.644 
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5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 0.645 0.688 0.731 0.774 0.817 0.860 0.903 0.946 0.989 1.000 1.000 

11 0.573 0.578 0.588 0.600 0.602 0.611 0.625 0.640 0.656 0.674 0.693 

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

14 0.450 0.490 0.532 0.577 0.617 0.655 0.692 0.729 0.777 0.833 0.893 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

16 0.621 0.622 0.623 0.625 0.627 0.629 0.630 0.636 0.653 0.671 0.689 

17 0.841 0.858 0.876 0.894 0.913 0.933 0.953 0.974 0.990 1.000 1.000 

20 0.566 0.577 0.593 0.602 0.609 0.617 0.624 0.631 0.639 0.645 0.650 

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

23 0.376 0.359 0.346 0.335 0.333 0.342 0.354 0.366 0.378 0.386 0.393 

29 0.493 0.524 0.552 0.568 0.583 0.598 0.612 0.627 0.641 0.661 0.682 

33 0.945 0.919 0.892 0.871 0.844 0.835 0.833 0.831 0.829 0.824 0.825 

34 0.365 0.379 0.393 0.405 0.416 0.426 0.435 0.444 0.453 0.463 0.472 

35 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.965 0.938 0.913 0.890 

38 0.761 0.802 0.852 0.881 0.907 0.932 0.955 0.977 0.996 1.000 1.000 

39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

42 0.597 0.595 0.606 0.614 0.610 0.610 0.611 0.612 0.611 0.611 0.614 

SUM 16.686 16.866 17.084 17.267 17.420 17.605 17.798 17.969 18.160 18.307 18.445 

 

Table 7-7: Efficiency Scores for different Alpha Values, 30% Missing, Relative Intervals 

Key No 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 0.499 0.500 0.515 0.529 0.541 0.558 0.579 0.602 0.628 0.656 0.686 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 1.000 1.000 1.000 0.950 0.902 0.860 0.821 0.786 0.754 0.724 0.697 

11 0.779 0.750 0.706 0.667 0.632 0.610 0.591 0.576 0.567 0.582 0.598 

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

14 0.757 0.720 0.692 0.667 0.645 0.655 0.680 0.701 0.717 0.729 0.737 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

16 0.604 0.615 0.626 0.632 0.633 0.629 0.622 0.627 0.641 0.663 0.685 

17 0.964 0.958 0.952 0.946 0.939 0.933 0.926 0.920 0.913 0.907 0.900 

20 0.630 0.637 0.638 0.630 0.623 0.617 0.612 0.608 0.610 0.612 0.610 

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

23 0.431 0.409 0.388 0.370 0.354 0.340 0.327 0.318 0.317 0.315 0.313 

29 0.595 0.601 0.613 0.617 0.605 0.598 0.592 0.588 0.585 0.583 0.582 

33 0.863 0.869 0.871 0.864 0.852 0.835 0.823 0.828 0.832 0.829 0.814 

34 0.539 0.498 0.472 0.454 0.437 0.426 0.420 0.427 0.435 0.444 0.453 
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35 0.769 0.820 0.871 0.923 0.974 1.000 1.000 1.000 1.000 1.000 1.000 

38 0.742 0.787 0.829 0.863 0.899 0.931 0.961 0.992 1.000 1.000 1.000 

39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

42 0.530 0.538 0.550 0.570 0.591 0.610 0.627 0.640 0.653 0.675 0.698 

SUM 17.702 17.703 17.725 17.680 17.628 17.601 17.581 17.613 17.651 17.718 17.773 

 

Table 7-8: Efficiency Scores for different Alpha Values, 10% Missing, Fixed Intervals 

Key No 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 0.954 0.774 0.658 0.601 0.530 0.489 0.465 0.447 0.427 0.406 0.386 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 0.682 0.824 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 

11 1.000 0.943 0.831 0.741 0.662 0.611 0.568 0.525 0.484 0.447 0.412 

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.967 

14 1.000 1.000 1.000 0.698 0.590 0.550 0.530 0.520 0.520 0.520 0.520 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

16 0.876 0.859 0.772 0.690 0.623 0.578 0.553 0.529 0.508 0.490 0.474 

17 0.968 1.000 1.000 1.000 0.939 0.826 0.737 0.673 0.627 0.593 0.564 

20 0.581 0.569 0.631 0.611 0.574 0.528 0.481 0.469 0.469 0.469 0.469 

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

23 0.370 0.359 0.356 0.347 0.341 0.339 0.337 0.337 0.336 0.336 0.335 

29 0.918 1.000 0.750 0.637 0.578 0.541 0.506 0.473 0.442 0.413 0.391 

33 0.444 0.551 0.678 0.707 0.698 0.692 0.749 0.807 0.864 0.922 0.979 

34 0.509 0.491 0.477 0.458 0.428 0.399 0.380 0.361 0.343 0.326 0.308 

35 1.000 1.000 1.000 0.747 0.565 0.459 0.392 0.388 0.387 0.385 0.383 

38 1.000 1.000 0.904 0.943 0.920 0.874 0.818 0.760 0.702 0.658 0.658 

39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.921 0.921 0.921 

42 0.565 0.623 0.655 0.639 0.622 0.599 0.579 0.584 0.620 0.679 0.736 

SUM 18.869 18.993 18.574 17.677 16.931 16.344 15.955 15.724 15.509 15.424 15.362 

 

Table 7-9: Efficiency Scores for different Alpha Values, 20% Missing, Fixed Intervals 

Key No 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.900 0.810 

4 0.365 0.377 0.438 0.480 0.516 0.569 0.681 0.736 0.731 0.726 0.725 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 0.471 0.522 0.659 0.861 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

11 0.453 0.495 0.532 0.565 0.600 0.619 0.658 0.703 0.753 0.788 0.820 
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12 0.674 0.857 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

14 0.288 0.330 0.413 0.576 0.693 0.901 0.906 0.910 0.913 0.915 0.917 

15 0.680 0.893 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

16 0.557 0.607 0.618 0.687 0.735 0.846 1.000 1.000 1.000 1.000 1.000 

17 0.716 0.804 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 0.506 0.541 0.567 0.587 0.635 0.666 0.671 0.657 0.627 0.597 0.573 

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

23 0.921 0.843 0.715 0.563 0.494 0.496 0.519 0.566 0.643 0.723 0.803 

29 0.369 0.383 0.418 0.468 0.522 0.627 0.770 0.830 0.857 0.868 0.897 

33 1.000 1.000 1.000 0.963 0.916 0.925 0.855 0.770 0.712 0.670 0.636 

34 0.281 0.307 0.372 0.403 0.403 0.427 0.450 0.474 0.521 0.571 0.620 

35 0.843 1.000 0.928 0.694 0.563 0.506 0.607 0.708 0.809 0.759 0.685 

38 1.000 0.896 0.734 0.862 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.953 

42 0.882 0.790 0.711 0.662 0.620 0.612 0.637 0.743 0.951 1.000 1.000 

SUM 16.006 16.646 17.088 17.370 17.698 18.193 18.753 19.098 19.516 19.515 19.437 

 

Table 7-10: Efficiency Scores for different Alpha Values, 30% Missing, Fixed Intervals 

Key No 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 0.481 0.485 0.474 0.493 0.545 0.643 0.688 0.747 0.812 0.851 0.850 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 1.000 1.000 1.000 0.772 0.651 0.719 0.722 0.707 0.746 0.849 0.960 

11 0.582 0.680 0.703 0.668 0.634 0.611 0.585 0.542 0.508 0.509 0.514 

12 0.600 1.000 1.000 0.918 0.931 0.866 0.868 0.879 0.919 0.971 0.980 

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 0.902 0.833 

14 1.000 1.000 0.938 0.761 0.889 0.947 0.830 0.756 0.731 0.736 0.739 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

16 1.000 0.694 0.621 0.628 0.777 0.993 1.000 1.000 1.000 1.000 1.000 

17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 0.519 0.543 0.568 0.588 0.603 0.639 0.654 0.630 0.610 0.572 0.549 

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

23 1.000 1.000 0.769 0.542 0.456 0.444 0.401 0.376 0.364 0.357 0.349 

29 1.000 0.871 0.680 0.601 0.677 0.664 0.623 0.625 0.643 0.679 0.726 

33 0.631 0.840 0.862 0.844 0.793 0.930 0.922 0.884 0.854 0.775 0.709 

34 0.611 0.601 0.539 0.472 0.443 0.447 0.476 0.490 0.503 0.522 0.541 

35 1.000 0.457 0.580 0.746 0.994 1.000 1.000 1.000 1.000 1.000 1.000 

38 1.000 0.461 0.550 0.792 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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40 1.000 1.000 1.000 1.000 1.000 1.000 0.971 0.880 0.917 0.996 1.000 

42 0.384 0.413 0.439 0.469 0.576 0.674 0.782 0.894 1.000 1.000 1.000 

SUM 18.807 18.046 17.722 17.294 17.967 18.579 18.522 18.410 18.588 18.719 18.750 

 

The effectiveness of the recovered efficiency scores are evaluated based on mean 

absolute difference between the actual and recovered efficiency scores. The Mean Absolute 

Deviation values for different cases are shown in Table 7.11. 

 

Table 7-11: Mean Absolute Deviation for recovered efficiency scores 

 

Relative Intervals Fixed Intervals 

10%  20%  30%  10%  20%  30%  

Mean Absolute Deviation 0.026 0.050 0.033 0.096 0.115 0.148 

 

 7.4.1 Effects of Interval Approach on DEA Results  

In the previous section we assumed varying quantities of data as missing starting from 

10% to 30% and determined the efficiency scores for different values of alpha. The best value of 

alpha is chosen based on summation of the efficiency scores for all DMUs. The summation of 

efficiency scores as a function of alpha for relative intervals considered in the above section is 

shown in Figure 7.1. The summation of efficiency scores as a function of alpha for fixed 

intervals considered in the above section is shown in Figure 7.2. 

 

 

Figure 7-1: Summation of Efficiency Scores as a function of Alpha, Relative Intervals 
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Observation of Figure 7.1 shows that the nature and range (difference between the 

highest and lowest) of the efficiency scores does not really depend on the percentage of missing 

values. The range of the DEA efficiency scores in cases of 20% missing is greater when 

compared to 10% and 10% be greater when compared to 30% missing. Moreover, the nature of 

the DEA efficiency scores also does not depend on the amount of missing values. The DEA 

efficiency scores in case of 10% missing values are linearly decreasing, increasing linearly in 

case of 20% missing, and in case of 30% missing it follows both increasing and decreasing 

nature. 

 

 

Figure 7-2: Summation of Efficiency Scores as a function of Alpha, Fixed Intervals 

 

Similarly we can also observe from Figure 7.2 that the nature and range (difference 

between the highest and lowest) of the efficiency scores does not really depend on the percentage 

of missing values. 

Based on the Mean Absolute Deviation values shown in Table 7.11, we can identify that 

recovered efficiency scores are less deviated from the actual scores in case of relative intervals. 

This means that outcomes of DEA are directly proportional to the accuracy of constructing the 

narrow interval ranges. 
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 7.5 Conclusions 

Generally in case of missing values being estimated within an interval ranges there exists 

multiple efficiency scores leaving the decision to the individuals. This chapter focuses on 

determining the best crisp DEA efficiency score out of interval ranges created to estimate the 

missing values. 

This chapter provides literature review of interval based DEA models to handle the issue 

of missing values. This chapter proposes new approach based on interval range to determine the 

best crisp efficiency scores. The missing values in the dataset are estimated with in interval range 

based on the actual values. Interval range is broken down into crisp values based on linear 

interpolations. This chapter considers the concept of common alpha for all the interval ranges in 

order to avoid the fuzzy environment, and to reduce the total number of computations by 50%. 

Crisp values are replaced back into the dataset to carry out the Data Envelopment Analysis. Best 

value of alpha is chosen which provides the best efficiency scores to most of the DMUs. 

The interval based approach is illustrated using a complete data set of the 22 clinics, with 

varying levels of assumed missing values, ranging from 10% to 30%. The values assumed as 

missing are considered to be Missing Completely At Random (MCAR). The values assumed as 

missing are estimated within an interval range. Interval ranges are broken down into crisp values 

and are replaced back into the dataset to execute the DEA. Efficiency scores are determined for 

the different values of alpha. Based on the summation of all the efficiency score, best value of 

alpha is chosen. Best alpha value chosen bestows most of the DMUs with best possible 

efficiency scores. Two types of interval ranges are constructed to show that accuracy of the DEA 

outcomes depend on the construction of intervals. 

The summation of efficiency scores as a function of missing data is graphically 

illustrated. Based on this illustration we can suggest that percentage of missing values cannot 

influence the range and nature of the efficiency scores. The results suggest that the efficiency 

scores are fairly insensitive to the missing data.  

As a summary, this chapter provides an effective and practical approach for replacing 

missing values needed for a DEA analysis based on interval values. 
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Chapter 8 - SUMMARY AND FUTURE RESEARCH 

This chapter provides brief summary of the research work carried out, its outcomes and 

as well as the scope for future research in this area. 

This thesis proposes new methodologies based on three different platforms such as 

correlation, clustering, and interval approach to execute Data Envelopment Analysis (DEA) with 

sparse data in an effective manner. It also provides the motivation and necessity for scrutinizing 

the proposed research. The objective is to evaluate the productivity of 41 member clinics of 

Kansas Association of Medically Underserved (KAMU) with sparse data. In order to achieve this 

primary focal point, our goal is to develop new methods to determine the missing values and 

then to execute DEA in a reliable manner. 

This thesis provides a thorough background to Data Envelopment Analysis, clearly states 

the different concepts germane to this research, conducts an exhaustive literature review to 

analyze the importance of efficiency measurement techniques in the field of healthcare, also 

provides the summary of missing data treatment methods to handle DEA, and identified 

limitations associated with few of these methods to improve their effectiveness. It also presents 

the guidelines to prepare the data by identifying the issues, providing the measures to clean the 

data and to perform DEA more effectively.  

This thesis significantly contributed few new methodologies to this area named as 

Average Ratio Method, and Cluster Dispersion. It successfully incorporated clustering 

methodology as an intermediate approach to determine the missing values for DEA and also 

studied the influence of such recovered values on the efficiency score results of DEA. This thesis 

identified productive ways to determine the crisp efficiency scores from interval values estimated 

by experts. The effectiveness of these proposed methods are evaluated by comparing few of 

them by the data acquired from literature works, and others by their capability to determine the 

assumed missing values within the proximity of actual values. These proposed methods are 

tested for different levels of missing values, up to 40% of the data assumed as missing. They are 

also tested for different possible nature of missing values. These methods can serve as 

benchmarks in this area, to recover missing data. These methods can generate the efficiency 

scores within close proximity to the actual efficiency scores. 
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First method named as Average Ratio Method (ARM) is based on the concept of 

correlation between two variables. Accuracy of this methodology depends on the level of 

correlation between them. The effectiveness of this method is way more when compared to other 

basic methods, such as case-wise deletion and replacing the missing values by average. 

Second method is based on the concept of modified fuzzy c-means clustering algorithm 

which can handle missing values, is an existing algorithm. Identified the two primary issues 

associated with this method, suggested approaches to eliminate these issues and improved the 

effectiveness of this method further. Identified the convergence failure of existing Cluster 

Dispersion algorithm, illustrated the reasons. Three new approaches are proposed based on the 

similar lines of existing cluster dispersion methodology. 

Third method is based on interval approach to handle the issue of missing values. 

Missing values are replaced by interval ranges estimated by experts. Crisp efficiency scores are 

identified in similar lines to how DEA determines efficiency scores using the best set of weights. 

Identification of crisp efficiency scores out of interval values is something uncommon in this 

area. The concept of common alpha value reduces the total number of computations by 50% 

when compared to other methods. 

As a summary, this thesis provides valuable methods to recover the missing values, and 

evaluated the effectiveness of these methods. This thesis also provides guiding principles for 

someone looking into the practical approach for executing Data Envelopment Analysis with 

sparse data. 

 8.1 Future Research 

For future research in this area, one can look into the core aspect of the Data 

Envelopment Analysis, identifying the linear programming structure to estimate the missing 

values. This can be achieved in two ways, one by controlling the behavior of weights associated 

with the missing values. The other can be achieved by using the sensitivity analysis concept of 

linear programming methodology to estimate the range for missing value where the DMU 

continues to be efficient for that interval range. Converse to the core aspect, one can look into 

other domains to determine the missing values (similar to clustering approach in this thesis) and 

using it as an intermediate approach. Then evaluate the effectiveness and influence of these 

intermediate methods on DEA outcomes. 
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Appendix A - Bibliography 

Based on the Bibliography work done by Becker (2011) starting from the inception of 

DEA in 1978, the extracted list of healthcare related journals and the number of published 

research articles in the field of DEA are presented below: 

Count   Journal Title 

45  Health Care Management Science 

17  Health Policy 

17  Health Services Research 

12  Health Economics 

09  European Journal of Health Economics 

09  Health Services Management Research 

08  Journal of Health Economics 

06  Journal of Health Management 

06  International Journal of Healthcare Technology and Management 

06  Journal of Health and Human Resources Administration 

05  Journal of Health Care Finance 

04  Health Care Management Review 

03  Hospital and Health Services Administration 

02  The Health Care Supervisor 

02  International Journal of Health Care Quality Assurance 

02  International Journal of Health Care Finance and Economics 

02  Journal of Mental Health Policy and Economics 

01  The Journal of Behavioral Health Services and Research 

01  The International Journal of Health Planning and Management 

01  Research in Healthcare Financial Management 

01  Journal of Health and Human Services Administration 

01  Journal of Public Health Medicine 

01  Journal of Public Health 

and many more……… 
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There are many other researchers who made significant contributions updating the 

Bibliography for Data Envelopment Analysis. The following are the list of significant works: 

 

Becker D. (2011). DEA Bib. Retrieved October, 2011, from 

http://www.deabib.org/journals.html#x6-160005. 

Seiford, L.M. (1997). A bibliography for Data Envelopment Analysis (1978-1996). Annals of 

Operations Research, 73, 393-438. 

Tavares, G. (2002). A bibliography of data envelopment analysis (1978-2001). RRR 01-02, 

RUTCOR, Rutgers Center for Operations Research, Rutgers University, Piscataway, 

New Jersey. 

Emrouznejad, A., Parker, B.R., Tavares, G. (2008). Evaluation of research in efficiency and 

productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. 

Socio-Economic Planning Sciences, 42, 151-157. 

http://www.deabib.org/journals.html#x6-160005
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Appendix B - List of KAMU Clinics 

The following is the list of current 42 member clinics under Kansas Association of 

Medically Underserved Clinics. 

 

No Name of the Clinic Address County 

1 Atchison Community Health Clinic 217 M Street, Atchison, KS, 66002 Atchison 

2 Center for Health and Wellness 2707 E 21st Street, Wichita, KS, 67214 Sedgwick 

3 Cheyenne County Clinic, St. Francis 221 West 1st St. Francis, KS, 67756 Cheyenne 

4 

Children's Mercy West 

The Cordell Meeks Jr. Clinic 

4313 State Avenue Kansas City, KS, 

66102 Wyandotte 

5 

Community Health Center of 

Southeast Kansas 3011 N Michigan, Pittsburg, KS, 66762 Crawford 

6 

Community Health Council of 

Wyandotte County 

755 Minnesota Avenue, 1st Floor 

Kansas City, KS, 66101 Wyandotte 

7 Community Health Ministry Clinic 903 6th Street, Wamego, KS, 66547 Pottawatomie 

8 Douglas County Dental Clinic 316 Maine Street, Lawrence, KS, 66044 Douglas 

9 Duchesne Clinic 636 Tauromee. Kansas City, KS, 66101 Wyandotte 

10 E.C. Tyree Health & Dental Clinic 1525 N Lorraine, Wichita, KS, 67214 Sedgwick 

11 First Care Clinic, Inc. 105 W 13
th
, Hays, KS, 67601 Ellis 

12 Flint Hills Community Clinic 401 Houston, Manhattan, KS, 66502 Riley 

13 Flint Hills Community Health Center 420 W 15th Street Emporia, KS, 66801 Lyon 

14 Grace Med Health Clinic, Inc. 1122 N Topeka Wichita, KS, 67214 Sedgwick 

15 Greeley County Health Services 

504 E 6th Street Sharon Springs, KS, 

67758 Wallace 

16 Guadalupe Clinic, Inc. 940 S St. Francis Wichita, KS, 67211 Sedgwick 

17 Health Care Access, Inc. 330 Maine Lawrence, KS, 66044 Douglas 

18 Health Ministries Clinic 209 S Pine Street Newton, KS, 67114 Harvey 

19 Health Partnership Clinic 

7171 W 95th Street, Ste. 100  

Overland Park, KS, 66212 Johnson 

20 Heart of KS Family Health Care 1905 19th Street Great Bend, KS, 67530 Barton 

21 Heartland Medical Clinic 

1 Riverfront Plaza, #100 Lawrence, KS, 

66044 Douglas 
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22 Hunter Health Clinic 2318 E Central Wichita, KS, 67214 Sedgwick 

23 Johnson County Health Department 

11875 S Sunset, Suite 300, Olathe, KS, 

66061 Johnson 

24 

KS Statewide 

Farm worker Health Program 

1000 SW Jackson, Ste. 340, Topeka, KS, 

66612 Shawnee 

25 

Konza Prairie 

Community Health Center 

361 Grant Avenue Junction City, KS, 

66441 Geary 

26 

KU Health Partners/Silver City Health 

Center 

1428 S 32nd, Ste. 100 Kansas City, KS, 

66106 Wyandotte 

27 Marian Clinic 

1001 SW Garfield Avenue, Topeka, KS, 

66604 Shawnee 

28 Mercy and Truth Medical Missions 

636 Minnesota Avenue Kansas City, KS, 

66101 Wyandotte 

29 

Mercy Health Systems: Arma, 

Cherryvale, and Linn County 216 E 4th Cherryvale, KS, 67335 Montgomery 

30 

Montgomery County Community 

Clinic (MC3) 900 W Myrtle Independence. KS, 67301 Montgomery 

31 Mother Mary Anne Clinic 1152 S Clifton Wichita, KS, 67218 Sedgwick 

32 Prairie Star Health Center 

1600 N Lorraine, St. 110 Hutchinson, 

KS, 67501 Reno 

33 Rawlins County Dental Clinic 707 Grant Street, Atwood, KS, 67730 Rawlins 

34 Riley County Community Health Clinic 2030 Tecumseh Manhattan, KS, 66502 Riley 

35 Saint Vincent Clinic 

818 N 7th Street Leavenworth, KS, 

66048 Leavenworth 

36 Salina Family Health Care Center 651 E Prescott Salina, KS, 67401 Saline 

37 Shawnee County Health Agency/CHC 1615 SW 8th Street Topeka, KS, 66606 Shawnee 

38 

Southwest Boulevard Family 

Health Care 

340 Southwest Boulevard Kansas City, 

KS, 66103 Wyandotte 

39 St. Gianna Health Clinic 

638 West D Avenue Kingman, KS, 

67068 Kingman 

40 

Swope Health Wyandotte and 

Swope Health West 

21 N 12th Street, Ste. 475 Kansas City, 

KS, 66102 Wyandotte 

41 Turner House Children's Clinic 

21 N 12th, Ste. 300 Kansas City, KS, 

66102 Wyandotte 

42 

United Methodist Mexican 

American Ministry 

712A St. John Street Garden City, KS, 

67846 Finney 
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Appendix C - Cluster Dispersion Example 

Cluster Dispersion proposed by Himmelspach and Conrad (2010) tries to reduce the 

likelihood of marginal objects of a large cluster being falsely assigned to the nearest small 

cluster. Cluster dispersion values helps in updating the membership function. To understand how 

cluster dispersion updates the membership function in case of smaller and larger clusters and to 

understand its influence, let‟s consider a simple example of 8 observations classified into 2 

clusters. This will be presented using two different kinds of datasets, one with fractional numbers 

and other with whole numbers. 

 C.1 Fractional Numbers 

Let‟s assume that out of 8 observations, cluster center 1  has 3 observations at a 

distance of 0.1 from the cluster center. Let‟s assume that the other 5 observations are also at a 

distance of 0.1 from cluster center 2, . The can be represented using Figure C.1. 

 

 

Figure C-1: Clusters 1 and 2 (Fractional Numbers) 

 

According to Himmelspach and Conrad, cluster dispersion value, , is calculated as 

follows: 
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Let‟s calculate the cluster dispersion using the above formulae for both these cluster 

represented by  and  for clusters 1 and 2 respectively. 

 

 

 

From these cluster dispersion values we can infer that under similar conditions, cluster 

with more number of observations possess lesser cluster dispersion value. 

According to Himmelspach and Conrad, New membership is updated as follows: 

 

 

Now let‟s determine how these cluster dispersion values influence the membership of the 

observations within clusters. Where  represent the membership of observation (1) towards 

cluster 1,  represent the membership of observation (1) towards cluster 2. Where  

represent the membership of observation (4) towards cluster 1,  represent the membership of 

observation (4) towards cluster 2. Where  represent the distance of observation (1) towards 

cluster 1,  represent the distance of observation (1) towards cluster 2.  

Let‟s assume that observation (1) is 0.8 units away from cluster center 2 and similarly 

observation (4) is 0.8 units away from cluster center 1. 
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Let‟s determine how these cluster dispersion values influence the membership of the 

observations within cluster 2.  

 

 

 

 

Based on the updated membership values in both cluster 1 and 2, the updated 

membership value of a cluster group with more observations is less when compared to other 

cluster group with less number of clusters. 

 C.2 Whole Numbers 

In the previous case we have seen how to determine the cluster dispersion values and 

update the membership matrix when the given data is fractional numbers. In this section we will 

focus on the similar topics but based on whole numbers. 

Let‟s consider the same example of 8 observations classified into 2 clusters. Let‟s assume 

that cluster center 1  has 3 observations at a distance of 2 from the cluster center. Let‟s 

assume that the other 5 observations are also at a distance of 2 but they belong to cluster center 2, 

. The can be represented using Figure C.2. 

 

 

Figure C-2: Clusters 1 and 2 (Whole Numbers) 
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Let‟s calculate the cluster dispersion for both these cluster represented by  and  for 

cluster 1 and 2 respectively. 

 

 

 

From these cluster dispersion values we can infer that under similar conditions, cluster 

with more number of observations possess lesser cluster dispersion. 

Let‟s determine how these cluster dispersion values influence the membership of the 

observations within clusters. 

Let‟s assume that observation (1) is 5 units away from cluster center 2 and similarly 

observation (4) is 5 units away from cluster center 1. 

 

 

 

 

 

 

 

Based on the updated membership values in both cluster 1 and 2, the updated 

membership value of a cluster group with more observations is less when compared to other 

cluster group with less number of clusters. 
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Appendix D - Relative and Fixed Intervals 

This appendix presents the values assumed as missing in KAMU complete dataset of 22 

clinics with 7 variables for each case 10%, 20% and 30% missing values. The relative and fixed 

intervals are constructed around the center value (actual known value). These intervals are 

broken down into crisp values based on linear interpolations using the concept of common value 

of alpha (α). Table D.1 to D.6 presents the crisp values that are used to replace the assumed 

missing values. Alpha of 0 represents the lower bound and alpha of 1 represents the upper bound 

of the intervals. Table D.1 to D.3 represent the relative intervals for 10%, 20% and 30% missing 

values cases respectively. Table D.4 to D.6 represent the fixed intervals. 

 

Table D-1: Relative Intervals in case of 10% Missing Values 

Reference 

Cells 

Actual 

Values 

Alpha Values 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X(1,6) 0.040 0.035 0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.044 0.045 

X(2,2) 0.461 0.403 0.415 0.426 0.438 0.449 0.461 0.472 0.484 0.495 0.507 0.518 

X(3,7) 0.170 0.149 0.153 0.157 0.162 0.166 0.170 0.174 0.179 0.183 0.187 0.191 

X(5,3) 0.574 0.502 0.516 0.530 0.545 0.559 0.574 0.588 0.602 0.617 0.631 0.645 

X(6,5) 0.155 0.135 0.139 0.143 0.147 0.151 0.155 0.159 0.162 0.166 0.170 0.174 

X(8,1) 0.115 0.101 0.104 0.106 0.109 0.112 0.115 0.118 0.121 0.124 0.127 0.129 

X(9,7) 0.118 0.103 0.106 0.109 0.112 0.115 0.118 0.121 0.124 0.127 0.130 0.132 

X(12,2) 1.000 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 

X(13,7) 0.319 0.279 0.287 0.295 0.303 0.311 0.319 0.327 0.335 0.343 0.351 0.359 

X(15,4) 0.201 0.176 0.181 0.186 0.191 0.196 0.201 0.206 0.211 0.216 0.221 0.226 

X(16,5) 0.602 0.527 0.542 0.557 0.572 0.587 0.602 0.617 0.632 0.647 0.662 0.677 

X(18,3) 0.055 0.048 0.050 0.051 0.052 0.054 0.055 0.057 0.058 0.059 0.061 0.062 

X(19,4) 0.066 0.058 0.060 0.061 0.063 0.065 0.066 0.068 0.070 0.071 0.073 0.075 

X(20,6) 0.609 0.532 0.548 0.563 0.578 0.593 0.609 0.624 0.639 0.654 0.669 0.685 

X(21,1) 0.450 0.394 0.405 0.417 0.428 0.439 0.450 0.462 0.473 0.484 0.496 0.507 

X(22,7) 0.263 0.230 0.236 0.243 0.250 0.256 0.263 0.269 0.276 0.282 0.289 0.296 

Mean Abs Dev 0.048 0.040 0.032 0.024 0.016 0.008 0.013 0.018 0.023 0.028 0.033 
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Table D-2: Relative Intervals in case of 20% Missing Values 

Reference 

Cells 

Actual 

Values 

Alpha Values 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X(1,3) 0.138 0.104 0.110 0.117 0.124 0.131 0.138 0.145 0.152 0.159 0.166 0.173 

X(1,4) 0.066 0.050 0.053 0.056 0.060 0.063 0.066 0.070 0.073 0.076 0.080 0.083 

X(2,5) 0.458 0.343 0.366 0.389 0.412 0.435 0.458 0.480 0.503 0.526 0.549 0.572 

X(3,1) 0.054 0.040 0.043 0.046 0.048 0.051 0.054 0.056 0.059 0.062 0.064 0.067 

X(4,6) 0.060 0.045 0.048 0.051 0.054 0.057 0.060 0.063 0.066 0.069 0.072 0.075 

X(5,4) 1.000 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000 

X(5,5) 0.474 0.356 0.379 0.403 0.427 0.450 0.474 0.498 0.521 0.545 0.569 0.593 

X(6,6) 0.128 0.096 0.102 0.109 0.115 0.121 0.128 0.134 0.141 0.147 0.153 0.160 

X(6,7) 0.154 0.115 0.123 0.131 0.138 0.146 0.154 0.161 0.169 0.177 0.184 0.192 

X(7,1) 0.492 0.369 0.394 0.419 0.443 0.468 0.492 0.517 0.542 0.566 0.591 0.615 

X(7,3) 0.615 0.461 0.492 0.523 0.553 0.584 0.615 0.646 0.676 0.707 0.738 0.769 

X(8,2) 0.530 0.398 0.424 0.451 0.477 0.504 0.530 0.557 0.583 0.610 0.636 0.663 

X(8,5) 0.170 0.128 0.136 0.145 0.153 0.162 0.170 0.179 0.187 0.196 0.204 0.213 

X(9,7) 0.118 0.088 0.094 0.100 0.106 0.112 0.118 0.124 0.130 0.135 0.141 0.147 

X(10,5) 0.114 0.086 0.092 0.097 0.103 0.109 0.114 0.120 0.126 0.132 0.137 0.143 

X(11,5) 0.094 0.070 0.075 0.080 0.084 0.089 0.094 0.098 0.103 0.108 0.112 0.117 

X(12,4) 0.716 0.537 0.573 0.609 0.645 0.680 0.716 0.752 0.788 0.824 0.860 0.895 

X(12,7) 0.387 0.290 0.310 0.329 0.348 0.368 0.387 0.406 0.426 0.445 0.464 0.484 

X(13,2) 0.266 0.199 0.213 0.226 0.239 0.253 0.266 0.279 0.292 0.306 0.319 0.332 

X(14,1) 0.264 0.198 0.211 0.224 0.237 0.251 0.264 0.277 0.290 0.303 0.317 0.330 

X(14,6) 0.033 0.024 0.026 0.028 0.029 0.031 0.033 0.034 0.036 0.037 0.039 0.041 

X(15,5) 0.268 0.201 0.215 0.228 0.242 0.255 0.268 0.282 0.295 0.309 0.322 0.335 

X(16,1) 0.411 0.308 0.329 0.349 0.370 0.390 0.411 0.431 0.452 0.472 0.493 0.513 

X(16,7) 0.158 0.119 0.126 0.134 0.142 0.150 0.158 0.166 0.174 0.182 0.190 0.198 

X(17,6) 0.378 0.283 0.302 0.321 0.340 0.359 0.378 0.397 0.416 0.435 0.453 0.472 

X(18,3) 0.055 0.041 0.044 0.047 0.050 0.052 0.055 0.058 0.061 0.063 0.066 0.069 

X(19,2) 0.162 0.122 0.130 0.138 0.146 0.154 0.162 0.170 0.178 0.186 0.194 0.203 

X(19,6) 0.132 0.099 0.106 0.112 0.119 0.125 0.132 0.139 0.145 0.152 0.158 0.165 

X(20,4) 0.133 0.100 0.106 0.113 0.120 0.126 0.133 0.140 0.146 0.153 0.159 0.166 

X(21,2) 0.193 0.145 0.154 0.164 0.174 0.183 0.193 0.203 0.212 0.222 0.232 0.241 

X(22,3) 0.328 0.246 0.262 0.279 0.295 0.311 0.328 0.344 0.361 0.377 0.393 0.410 

X(22,7) 0.263 0.197 0.210 0.223 0.236 0.250 0.263 0.276 0.289 0.302 0.315 0.328 

Mean Abs Dev 0.077 0.063 0.049 0.035 0.022 0.008 0.018 0.029 0.040 0.050 0.061 

 

 

 

 



135 

 

Table D-3: Relative Intervals in case of 30% Missing Values 

Reference 

Cells 

Actual 

Values 

Alpha Values 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X(1,1) 0.127 0.095 0.102 0.108 0.115 0.121 0.127 0.134 0.140 0.146 0.153 0.159 

X(1,6) 0.040 0.030 0.032 0.034 0.036 0.038 0.040 0.042 0.044 0.046 0.048 0.050 

X(2,3) 0.766 0.575 0.613 0.651 0.689 0.728 0.766 0.804 0.843 0.881 0.919 0.958 

X(2,5) 0.458 0.343 0.366 0.389 0.412 0.435 0.458 0.480 0.503 0.526 0.549 0.572 

X(3,1) 0.054 0.040 0.043 0.046 0.048 0.051 0.054 0.056 0.059 0.062 0.064 0.067 

X(3,7) 0.170 0.128 0.136 0.145 0.153 0.162 0.170 0.179 0.187 0.196 0.204 0.213 

X(4,3) 0.207 0.155 0.166 0.176 0.186 0.197 0.207 0.217 0.228 0.238 0.248 0.259 

X(4,4) 0.066 0.050 0.053 0.056 0.060 0.063 0.066 0.070 0.073 0.076 0.080 0.083 

X(4,7) 0.187 0.141 0.150 0.159 0.169 0.178 0.187 0.197 0.206 0.215 0.225 0.234 

X(5,2) 0.444 0.333 0.355 0.377 0.399 0.421 0.444 0.466 0.488 0.510 0.532 0.554 

X(5,5) 0.474 0.356 0.379 0.403 0.427 0.450 0.474 0.498 0.521 0.545 0.569 0.593 

X(6,1) 0.061 0.046 0.049 0.052 0.055 0.058 0.061 0.064 0.067 0.070 0.073 0.076 

X(6,5) 0.155 0.116 0.124 0.132 0.139 0.147 0.155 0.162 0.170 0.178 0.186 0.193 

X(6,6) 0.128 0.096 0.102 0.109 0.115 0.121 0.128 0.134 0.141 0.147 0.153 0.160 

X(7,2) 0.690 0.517 0.552 0.586 0.621 0.655 0.690 0.724 0.759 0.793 0.828 0.862 

X(7,4) 0.160 0.120 0.128 0.136 0.144 0.152 0.160 0.168 0.176 0.184 0.192 0.200 

X(7,7) 0.344 0.258 0.275 0.292 0.309 0.326 0.344 0.361 0.378 0.395 0.412 0.430 

X(8,3) 0.138 0.104 0.110 0.117 0.124 0.131 0.138 0.145 0.152 0.159 0.166 0.173 

X(8,6) 0.014 0.011 0.011 0.012 0.013 0.014 0.014 0.015 0.016 0.016 0.017 0.018 

X(9,1) 0.070 0.053 0.056 0.060 0.063 0.067 0.070 0.074 0.078 0.081 0.085 0.088 

X(9,7) 0.118 0.088 0.094 0.100 0.106 0.112 0.118 0.124 0.130 0.135 0.141 0.147 

X(10,4) 0.159 0.120 0.128 0.136 0.144 0.151 0.159 0.167 0.175 0.183 0.191 0.199 

X(10,5) 0.114 0.086 0.092 0.097 0.103 0.109 0.114 0.120 0.126 0.132 0.137 0.143 

X(11,2) 0.198 0.149 0.159 0.169 0.179 0.189 0.198 0.208 0.218 0.228 0.238 0.248 

X(11,6) 0.039 0.029 0.031 0.033 0.035 0.037 0.039 0.041 0.043 0.045 0.047 0.049 

X(12,4) 0.716 0.537 0.573 0.609 0.645 0.680 0.716 0.752 0.788 0.824 0.860 0.895 

X(12,7) 0.387 0.290 0.310 0.329 0.348 0.368 0.387 0.406 0.426 0.445 0.464 0.484 

X(13,2) 0.266 0.199 0.213 0.226 0.239 0.253 0.266 0.279 0.292 0.306 0.319 0.332 

X(13,5) 0.175 0.131 0.140 0.149 0.158 0.166 0.175 0.184 0.193 0.201 0.210 0.219 

X(14,1) 0.264 0.198 0.211 0.224 0.237 0.251 0.264 0.277 0.290 0.303 0.317 0.330 

X(14,3) 0.255 0.192 0.204 0.217 0.230 0.243 0.255 0.268 0.281 0.294 0.306 0.319 

X(15,4) 0.201 0.151 0.161 0.171 0.181 0.191 0.201 0.211 0.221 0.232 0.242 0.252 

X(15,7) 0.217 0.162 0.173 0.184 0.195 0.206 0.217 0.227 0.238 0.249 0.260 0.271 

X(16,3) 0.407 0.305 0.326 0.346 0.366 0.387 0.407 0.428 0.448 0.468 0.489 0.509 

X(16,6) 0.287 0.215 0.229 0.244 0.258 0.272 0.287 0.301 0.315 0.330 0.344 0.358 

X(17,1) 0.683 0.512 0.546 0.580 0.614 0.649 0.683 0.717 0.751 0.785 0.819 0.853 

X(17,5) 0.421 0.316 0.337 0.358 0.379 0.400 0.421 0.443 0.464 0.485 0.506 0.527 

X(18,2) 0.215 0.161 0.172 0.183 0.193 0.204 0.215 0.226 0.236 0.247 0.258 0.268 
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X(18,7) 0.176 0.132 0.140 0.149 0.158 0.167 0.176 0.184 0.193 0.202 0.211 0.219 

X(19,4) 0.066 0.050 0.053 0.056 0.060 0.063 0.066 0.070 0.073 0.076 0.080 0.083 

X(19,5) 0.150 0.112 0.120 0.127 0.135 0.142 0.150 0.157 0.165 0.172 0.180 0.187 

X(19,6) 0.132 0.099 0.106 0.112 0.119 0.125 0.132 0.139 0.145 0.152 0.158 0.165 

X(20,2) 0.323 0.243 0.259 0.275 0.291 0.307 0.323 0.340 0.356 0.372 0.388 0.404 

X(20,6) 0.609 0.456 0.487 0.517 0.548 0.578 0.609 0.639 0.669 0.700 0.730 0.761 

X(21,7) 0.176 0.132 0.140 0.149 0.158 0.167 0.176 0.184 0.193 0.202 0.211 0.219 

X(21,3) 0.207 0.155 0.166 0.176 0.186 0.197 0.207 0.217 0.228 0.238 0.248 0.259 

X(22,5) 0.195 0.146 0.156 0.166 0.176 0.185 0.195 0.205 0.215 0.225 0.234 0.244 

X(22,6) 0.239 0.179 0.191 0.203 0.215 0.227 0.239 0.251 0.263 0.275 0.287 0.299 

Mean Abs Dev 0.063 0.051 0.038 0.025 0.013 0.000 0.013 0.025 0.038 0.051 0.063 

 

Table D-4: Fixed Intervals in case of 10% Missing Values 

Reference 

Cells 

Actual 

Values 

Alpha Values 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X(1,6) 0.040 0.000 0.029 0.058 0.087 0.116 0.145 0.174 0.203 0.232 0.261 0.290 

X(2,2) 0.461 0.211 0.261 0.311 0.361 0.411 0.461 0.511 0.561 0.611 0.661 0.711 

X(3,7) 0.170 0.000 0.042 0.084 0.126 0.168 0.210 0.252 0.294 0.336 0.378 0.420 

X(5,3) 0.574 0.324 0.374 0.424 0.474 0.524 0.574 0.624 0.674 0.724 0.774 0.824 

X(6,5) 0.155 0.000 0.040 0.081 0.121 0.162 0.202 0.243 0.283 0.324 0.364 0.405 

X(8,1) 0.115 0.000 0.037 0.073 0.110 0.146 0.183 0.219 0.256 0.292 0.329 0.365 

X(9,7) 0.118 0.000 0.037 0.074 0.110 0.147 0.184 0.221 0.257 0.294 0.331 0.368 

X(12,2) 1.000 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 

X(13,7) 0.319 0.069 0.119 0.169 0.219 0.269 0.319 0.369 0.419 0.469 0.519 0.569 

X(15,4) 0.201 0.000 0.045 0.090 0.135 0.181 0.226 0.271 0.316 0.361 0.406 0.451 

X(16,5) 0.602 0.352 0.402 0.452 0.502 0.552 0.602 0.652 0.702 0.752 0.802 0.852 

X(18,3) 0.055 0.000 0.031 0.061 0.092 0.122 0.153 0.183 0.214 0.244 0.275 0.305 

X(19,4) 0.066 0.000 0.032 0.063 0.095 0.127 0.158 0.190 0.222 0.253 0.285 0.316 

X(20,6) 0.609 0.359 0.409 0.459 0.509 0.559 0.609 0.659 0.709 0.759 0.809 0.859 

X(21,1) 0.450 0.200 0.250 0.300 0.350 0.400 0.450 0.500 0.550 0.600 0.650 0.700 

X(22,7) 0.263 0.013 0.063 0.113 0.163 0.213 0.263 0.313 0.363 0.413 0.463 0.513 

Mean Abs Dev 0.183 0.141 0.102 0.071 0.050 0.042 0.080 0.119 0.157 0.196 0.234 

 

Table D-5: Fixed Intervals in case of 20% Missing Values 

Reference 

Cells 

Actual 

Values 

Alpha Values 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X(1,3) 0.138 0.000 0.039 0.078 0.116 0.155 0.194 0.233 0.272 0.310 0.349 0.388 

X(1,4) 0.066 0.000 0.032 0.063 0.095 0.127 0.158 0.190 0.222 0.253 0.285 0.316 

X(2,5) 0.458 0.208 0.258 0.308 0.358 0.408 0.458 0.508 0.558 0.608 0.658 0.708 

X(3,1) 0.054 0.000 0.030 0.061 0.091 0.121 0.152 0.182 0.213 0.243 0.273 0.304 
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X(4,6) 0.060 0.000 0.031 0.062 0.093 0.124 0.155 0.186 0.217 0.248 0.279 0.310 

X(5,4) 1.000 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 

X(5,5) 0.474 0.224 0.274 0.324 0.374 0.424 0.474 0.524 0.574 0.624 0.674 0.724 

X(6,6) 0.128 0.000 0.038 0.076 0.113 0.151 0.189 0.227 0.264 0.302 0.340 0.378 

X(6,7) 0.154 0.000 0.040 0.081 0.121 0.161 0.202 0.242 0.283 0.323 0.363 0.404 

X(7,1) 0.492 0.242 0.292 0.342 0.392 0.442 0.492 0.542 0.592 0.642 0.692 0.742 

X(7,3) 0.615 0.365 0.415 0.465 0.515 0.565 0.615 0.665 0.715 0.765 0.815 0.865 

X(8,2) 0.530 0.280 0.330 0.380 0.430 0.480 0.530 0.580 0.630 0.680 0.730 0.780 

X(8,5) 0.170 0.000 0.042 0.084 0.126 0.168 0.210 0.252 0.294 0.336 0.378 0.420 

X(9,7) 0.118 0.000 0.037 0.074 0.110 0.147 0.184 0.221 0.257 0.294 0.331 0.368 

X(10,5) 0.114 0.000 0.036 0.073 0.109 0.146 0.182 0.219 0.255 0.292 0.328 0.364 

X(11,5) 0.094 0.000 0.034 0.069 0.103 0.137 0.172 0.206 0.241 0.275 0.309 0.344 

X(12,4) 0.716 0.466 0.516 0.566 0.616 0.666 0.716 0.766 0.816 0.866 0.916 0.966 

X(12,7) 0.387 0.137 0.187 0.237 0.287 0.337 0.387 0.437 0.487 0.537 0.587 0.637 

X(13,2) 0.266 0.016 0.066 0.116 0.166 0.216 0.266 0.316 0.366 0.416 0.466 0.516 

X(14,1) 0.264 0.014 0.064 0.114 0.164 0.214 0.264 0.314 0.364 0.414 0.464 0.514 

X(14,6) 0.033 0.000 0.028 0.057 0.085 0.113 0.141 0.170 0.198 0.226 0.254 0.283 

X(15,5) 0.268 0.018 0.068 0.118 0.168 0.218 0.268 0.318 0.368 0.418 0.468 0.518 

X(16,1) 0.411 0.161 0.211 0.261 0.311 0.361 0.411 0.461 0.511 0.561 0.611 0.661 

X(16,7) 0.158 0.000 0.041 0.082 0.122 0.163 0.204 0.245 0.286 0.326 0.367 0.408 

X(17,6) 0.378 0.128 0.178 0.228 0.278 0.328 0.378 0.428 0.478 0.528 0.578 0.628 

X(18,3) 0.055 0.000 0.031 0.061 0.092 0.122 0.153 0.183 0.214 0.244 0.275 0.305 

X(19,2) 0.162 0.000 0.041 0.082 0.124 0.165 0.206 0.247 0.288 0.330 0.371 0.412 

X(19,6) 0.132 0.000 0.038 0.076 0.115 0.153 0.191 0.229 0.267 0.306 0.344 0.382 

X(20,4) 0.133 0.000 0.038 0.077 0.115 0.153 0.191 0.230 0.268 0.306 0.345 0.383 

X(21,2) 0.193 0.000 0.044 0.089 0.133 0.177 0.222 0.266 0.310 0.354 0.399 0.443 

X(22,3) 0.328 0.078 0.128 0.178 0.228 0.278 0.328 0.378 0.428 0.478 0.528 0.578 

X(22,7) 0.263 0.013 0.063 0.113 0.163 0.213 0.263 0.313 0.363 0.413 0.463 0.513 

Mean Abs Dev 0.178 0.136 0.097 0.065 0.044 0.040 0.080 0.121 0.161 0.202 0.242 

 

Table D-6: Fixed Intervals in case of 30% Missing Values 

Reference 

Cells 

Actual 

Values 

Alpha Values 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X(1,1) 0.127 0.000 0.038 0.075 0.113 0.151 0.189 0.226 0.264 0.302 0.340 0.377 

X(1,6) 0.040 0.000 0.029 0.058 0.087 0.116 0.145 0.174 0.203 0.232 0.261 0.290 

X(2,3) 0.766 0.516 0.564 0.613 0.661 0.710 0.758 0.806 0.855 0.903 0.952 1.000 

X(2,5) 0.458 0.208 0.258 0.308 0.358 0.408 0.458 0.508 0.558 0.608 0.658 0.708 

X(3,1) 0.054 0.000 0.030 0.061 0.091 0.121 0.152 0.182 0.213 0.243 0.273 0.304 

X(3,7) 0.170 0.000 0.042 0.084 0.126 0.168 0.210 0.252 0.294 0.336 0.378 0.420 

X(4,3) 0.207 0.000 0.046 0.091 0.137 0.183 0.229 0.274 0.320 0.366 0.411 0.457 

X(4,4) 0.066 0.000 0.032 0.063 0.095 0.127 0.158 0.190 0.222 0.253 0.285 0.316 
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X(4,7) 0.187 0.000 0.044 0.087 0.131 0.175 0.219 0.262 0.306 0.350 0.394 0.437 

X(5,2) 0.444 0.194 0.244 0.294 0.344 0.394 0.444 0.494 0.544 0.594 0.644 0.694 

X(5,5) 0.474 0.224 0.274 0.324 0.374 0.424 0.474 0.524 0.574 0.624 0.674 0.724 

X(6,1) 0.061 0.000 0.031 0.062 0.093 0.124 0.155 0.187 0.218 0.249 0.280 0.311 

X(6,5) 0.155 0.000 0.040 0.081 0.121 0.162 0.202 0.243 0.283 0.324 0.364 0.405 

X(6,6) 0.128 0.000 0.038 0.076 0.113 0.151 0.189 0.227 0.264 0.302 0.340 0.378 

X(7,2) 0.690 0.440 0.490 0.540 0.590 0.640 0.690 0.740 0.790 0.840 0.890 0.940 

X(7,4) 0.160 0.000 0.041 0.082 0.123 0.164 0.205 0.246 0.287 0.328 0.369 0.410 

X(7,7) 0.344 0.094 0.144 0.194 0.244 0.294 0.344 0.394 0.444 0.494 0.544 0.594 

X(8,3) 0.138 0.000 0.039 0.078 0.116 0.155 0.194 0.233 0.272 0.310 0.349 0.388 

X(8,6) 0.014 0.000 0.026 0.053 0.079 0.106 0.132 0.159 0.185 0.211 0.238 0.264 

X(9,1) 0.070 0.000 0.032 0.064 0.096 0.128 0.160 0.192 0.224 0.256 0.288 0.320 

X(9,7) 0.118 0.000 0.037 0.074 0.110 0.147 0.184 0.221 0.257 0.294 0.331 0.368 

X(10,4) 0.159 0.000 0.041 0.082 0.123 0.164 0.205 0.246 0.287 0.328 0.369 0.409 

X(10,5) 0.114 0.000 0.036 0.073 0.109 0.146 0.182 0.219 0.255 0.292 0.328 0.364 

X(11,2) 0.198 0.000 0.045 0.090 0.135 0.179 0.224 0.269 0.314 0.359 0.404 0.448 

X(11,6) 0.039 0.000 0.029 0.058 0.087 0.116 0.144 0.173 0.202 0.231 0.260 0.289 

X(12,4) 0.716 0.466 0.516 0.566 0.616 0.666 0.716 0.766 0.816 0.866 0.916 0.966 

X(12,7) 0.387 0.137 0.187 0.237 0.287 0.337 0.387 0.437 0.487 0.537 0.587 0.637 

X(13,2) 0.266 0.016 0.066 0.116 0.166 0.216 0.266 0.316 0.366 0.416 0.466 0.516 

X(13,5) 0.175 0.000 0.043 0.085 0.128 0.170 0.213 0.255 0.298 0.340 0.383 0.425 

X(14,1) 0.264 0.014 0.064 0.114 0.164 0.214 0.264 0.314 0.364 0.414 0.464 0.514 

X(14,3) 0.255 0.005 0.055 0.105 0.155 0.205 0.255 0.305 0.355 0.405 0.455 0.505 

X(15,4) 0.201 0.000 0.045 0.090 0.135 0.181 0.226 0.271 0.316 0.361 0.406 0.451 

X(15,7) 0.217 0.000 0.047 0.093 0.140 0.187 0.233 0.280 0.327 0.373 0.420 0.467 

X(16,3) 0.407 0.157 0.207 0.257 0.307 0.357 0.407 0.457 0.507 0.557 0.607 0.657 

X(16,6) 0.287 0.037 0.087 0.137 0.187 0.237 0.287 0.337 0.387 0.437 0.487 0.537 

X(17,1) 0.683 0.433 0.483 0.533 0.583 0.633 0.683 0.733 0.783 0.833 0.883 0.933 

X(17,5) 0.421 0.171 0.221 0.271 0.321 0.371 0.421 0.471 0.521 0.571 0.621 0.671 

X(18,2) 0.215 0.000 0.046 0.093 0.139 0.186 0.232 0.279 0.325 0.372 0.418 0.465 

X(18,7) 0.176 0.000 0.043 0.085 0.128 0.170 0.213 0.255 0.298 0.340 0.383 0.426 

X(19,4) 0.066 0.000 0.032 0.063 0.095 0.127 0.158 0.190 0.222 0.253 0.285 0.316 

X(19,5) 0.150 0.000 0.040 0.080 0.120 0.160 0.200 0.240 0.280 0.320 0.360 0.400 

X(19,6) 0.132 0.000 0.038 0.076 0.115 0.153 0.191 0.229 0.267 0.306 0.344 0.382 

X(20,2) 0.323 0.073 0.123 0.173 0.223 0.273 0.323 0.373 0.423 0.473 0.523 0.573 

X(20,6) 0.609 0.359 0.409 0.459 0.509 0.559 0.609 0.659 0.709 0.759 0.809 0.859 

X(21,7) 0.176 0.000 0.043 0.085 0.128 0.170 0.213 0.255 0.298 0.340 0.383 0.426 

X(21,3) 0.207 0.000 0.046 0.091 0.137 0.183 0.229 0.274 0.320 0.366 0.411 0.457 

X(22,5) 0.195 0.000 0.045 0.089 0.134 0.178 0.223 0.267 0.312 0.356 0.401 0.445 

X(22,6) 0.239 0.000 0.049 0.098 0.147 0.196 0.244 0.293 0.342 0.391 0.440 0.489 

Mean Abs Dev 0.179 0.137 0.097 0.064 0.038 0.036 0.078 0.121 0.164 0.207 0.250 
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