SOFTWARE DEVELOPMENT:
A SURVEY OF CURRENT PRACTICES

by

LOYE E. HENRIKSON

B. Se. Ed., Central Missouri State University, 1974

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by:

Oealu ot

‘\da]o ofessor

SPEL
CoLL
LD
20t
R4
1982
H4G
1

EA].IEEID 188L21

Table of Contents
List of Tables
Acknowledgements

CHAPTER 1
1.0
1.1
L2
1.3
1.4
1.5
1.6
1.7

CHAPTER 2
CHAPTER 3
3.0
3.1
CHAPTER 4
4.0
4.1
4.2
CHAPTER 5
5.0
5.1
BIBLIOGRAPHY

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

APPENDIX F
APPENDMX G

TABLE OF CONTENTS

INTRODUCTION
Software Development Costs and Techniques
Software Engineering
System Requirements
Software Design Methodologies
Chief Programmer Teams
e Issues
Automated Software Testing and Evaluation
Application of New Techniques

QUESTIONS on the SURVEY

OVERALL SURVEY RESULTS
Response Profile
Preliminary Observations

ANALYSIS of DATA
Investigations for Relationships
Analysis Techniques

Analysis Results

CONCLUSIONS

Overall Results
Suggestions on Improving the Survey

Product-Moment Method of Computing
Coefficient of Correlation

Coefficient of Correlation between No. of
Problems and No. of Structured Techniques Used

Coefficient of Correlation between Problems
Ranking and Struetured Techniques Ranking

Coefficient of Correlation between Problems
Ranking and No. of Language Improvements Desired

Coefficient of Correlation between No. of Structured
amming Techniques Used and No. of Language

Improvements Desired

Other Coefficient of Correlation Calculations

Data From Survey Responses

43

46

47

48

49

51
54

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

TABLE

3.1-1
3.1-2
3.1-3
3.1-4
4.2-1

4.2-1a

4.2-2

LIST OF TABLES

Summary of Results

Language Improvements Desired

Use of Structured Techniques

Software Development Problems

Development Problems vs. Strucetured Techniques
Development Problems vs. Structured Techniques
(In percentages of those using (or not using)
structured techniques)

Development Problems vs. Language Improvements

26
27
28
29
35

35
36

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to the many people who helped him with

this study.

His committee members, Dr. David Gustafson, Dr. William Hankley, and Dr. Myron
Calhoun deserve praise for their guidance. Dr. Gustafson merits special thanks for

his patience and understanding while serving as principal advisor.

Many thanks go to Larry Walker for shouldering much of the responsibility for the
evening degree program in Kansas City and for keeping the author's motivation alive

to complete the course work.

The respondents who took time to complete and return the survey deserve many

thanks.

Finally, special thanks goes to his wife, Kathy, for her support and understanding and

for her patienece in typing, retyping, and proof-reading the report.

CHAPTER 1 INTRODUCTION

1.0 Software Development Costs and Techniques

A great deal of attention is paid these days to software costs, and understandably so.
In 1976, overall software costs in the United States were estimated at more than $20
billion.* The continued decline in hardware costs and rise in software system costs
naturally resulted in software accounting for an ever greater percentage of total
system cost. This was seen as following the trend predicted by Boehm in 1'5!'?3,l and
would place software costs in 1976 at 80% of total. By 1985, if trends continue,
software will account for 90% of total system cost.! This situation abounds with
irony. Not only is hardware much cheaper, but it is also much more reliable than in
past years, and the trend is toward still lower costs and even greater reliability in the
future. Software, with its mushrooming cost, generally cannot match hardware
reliability, and herein lies one of the ironies. Another is that, even as software
becomes more expensive, it is not even generally recognized as a discrete, patentable
entity. Anyone who has been involved in software development most likely thinks of
the program or programs being developed as being very real, as of course they are.
Anyone in management who has to budget software development costs has an equally

good grasp of reality.

So, where does this leave us? We have cheap, reliable hardware and expensive, often
unreliable software. Barry Boehm refers to builders of frequently unusable systems
as "computer basket weavers". He states, "A basket weaver has a very difficult job.

He must plan his basket very carefully and he puts a lot of loving care into it; he

builds it, studies it from various angles, discusses it with other basket weavers, and
then goes off to build another basket. Very rarely does he go out and sample users to
find out whether they are interested in baskets with handles or with several
compartments rather than one compartment, and the like. And, unless something
changes considerably in computing, it will remain a kind of computer basket

weaving." 2

In an effort to hold the line on costs and improve reliability (and productivity and
quality), a great many software development techniques have been developed and
used over the past few years for every phase of the software life ecyele. A
(nonexhaustive) list of recently developed software development techniques would
include: software engineering, development of system requirements, software design
methodologies, chief programmer teams, language preprocessors and macro gen-
erators, and automated software testing and evaluation systems. This report will

review recently developed techniques and investigate the extent of their usage.

1.1 Software Engineering.

Software Engineering, considered soberly, should rightly include the entire software
development process. Refining software development to an engineering discipline is
in fact the direction software developers should take over the next few years. The
present, unfortunate state is probably much closer to "basket weaving". Indeed, given
the present conditions, "software engineering" practically amounts to a contradiction

of terms. Hoare's brief, brilliant paper, "The Engineering of Software: A Startling

Contradiction"!! states elegantly how far removed software development realities
are from a literal application of software engineering. Witness: the engineer
understands the needs of his client; the programmer "wishes he'd make up his mind
what he wants". The engineer recommends from a range of known techniques those
which are best for his client to minimize cost while achieving the desired effect; the
programmer welcomes the most elaborate fancies of his "client" (user) as a challenge
to his programming ingenuity. Still worse, the programmer often prefers to ignore
known techniques used successfully by others, and embarks "on some spatchcocked
implementation of (his) own defective invention"}! How many of us have observed

exactly this? How many of us are ourselves guilty?

Software Engineering, as an engineering discipline, should seek to reduce costs and
improve reliability at every opportunity. Simplicity of every aspect from conceptual-
ization to implementation is the only way to achieve these objectives. In large
projects (100,000 source statements), design errors greatly outnumber coding errors
both in sheer numbers and in effort required to detect and correct them? One (as yet
unresolved) difference between engineers and programmers is a widely accepted
mathematical or theoretical foundation for programmers' work. The term fwidely
accepted" is key; a great many theoretical foundations for programming are

available, but most are ignored. This would doubtlessly change if programmers, like

engineers, were required to pass a licensing exam.

1.2 System Requirements.

Boehm estimates that 45-50% of software effort goes to the checkout and testing
phase, and 30-39% to analysis and design.’ Further, a generally undisciplined ap-
proach is usually taken in the analysis and design phase. One method of automated
development of system requirements is described by Bell, Bixler, and Dyer. Their
method is "Computer Aided Software Requirements Engineering", called SREM.> The
system they describe would be most applicable to very large systems, and includes
"techniques and procedures for requirements decomposition and for managing the
requirements development process." [t also includes a machine-processable language
for stating requirements, and an integrated set of tools to support the development of .
requirements. The system is intended to add a measure of computer-imposed
diseipline to the requirements phase, an element almost invariably lacking. Of
course, SREM is intended for use in designing truly large systems, such as the
Ballistic Missile Defense system, which eventually had 8248 requirement paragraphs

in a 2500-page specification. >

1.3 Software Design Methodologies.

Peters and Tripp have examined several software design methodologies, ineluding: (1)
Structured Design, (2) The Jackson Methodology, (3) Logical Construction of

B The au-

Programs, (4) META Stepwise Refinement, and (5) Higher Order Seftware.
thor of each of the above naturally has a different perspective of important design
issues. Thus, "Structured Design" is concerned with data flow and its transformations

from input to bDecoming output; the "Jackson Methodology" and the "Logical

Construction of Programs™ hold that the identification of the inherent data structure
is very important, and that the structure of the data (in and out) can be used to derive
the structure of the program. Those who use "META Stepwise Refinement" state that
- success is certain if the problem is solved several times, each time being more
detailed than before. "Higher Order Software" provides a set of axioms which must
be used for successful software design.

b It relies

Structured Design is based on concepts developed by Larry Constantine.?
primarily on following the flow of data through the system. Data transformations,
transforming processes, and the order of their occurrences are depicted with a special
notational scheme. The system specification is used to produce a data flow diagram,
the diagram to develop a structure chart, and the structure chart to develop data
structures. The use of structured design does seem to aid in rapid definition and
refinement of data flows, but consistent identification of data transformations is

sometimes difficult.!® Structured design should work fairly well in systems contain-

ing only transformations that change data characteristics inecrementally.

The Jackson Methodology sees data structure as the driving force of software
design.’? Programs are viewed as the means of transforming input data into output
data. It is assumed that paralleling the structure of the input (data) and output
(reports) will ensure quality design. Some cautions are needed, however: resulting
data structures need to be compatible with rational program structure and only serial
files may be involved. Data structuring is dependent upon the data base management
system employed. Peters and Tripp object to the basic assumption of the Jackson
Methodology: there is no simple linkage between data structures and program
qua}.ity.16

Logical Construction of Programs (LCP) also assumes data structure as the key to
software design, but is more procedural than the Jackson Methodology.!® Originated
by Jean-Dominique Warnier in France, some of it's methods have recently come into
some use under the name of Warnier-Orr diagrams. The LCP method is:
1. Organize input data hierarchically (files, records, items).
2. Define the number of occurrences of each input element.
3. Do (1) and (2) for the output.
4. Obtain program details by identifying instruction types needed in a
specific order: reads, branches, calculations, outputs, and subroutines.
5. In flowchart-like fashion, write the logical instruction sequence.
Number the parts of the logical sequence and expand each by using the .
instructions in step 4.
Some objections are that this method imposes hierarchical data structures inappro-
priately; for those cases in which hierarchical structures are appropriate, a
pseudocode statement of a program is achieved rapidly, but may not be the program

method normally chosen.!®

META Stepwise Refinement'3 (MSR) involves beginning with a simple, general
solution and building increasing amounts of detail until the final, detailed solution is
reached. It requires a fixed problem definition, uses design levels, details are
postponed to lower levels, the design is successively refined, and correctness is
assumed at each level. MSR was designed by Henry Ledgard, and is a blend of Mill's
top-down ideas, Wirth's step-wise refinement, and Dijkstra's level structuring. MSR
attempts to separate functionally independent levels: higher levels being the general
problem statement and lower ones being more detailed. Modules at a certain level

may invoke only lower-level modules.

.

MSR's theory is good, but in reality, non-trivial problems undergo constant revision.
Since MSR's solutions at any given level are dependent upon prior levels, and any
change in the problem affeets prior levels, the ability to produce a solution at any
given level is lacking unless all levels are up to date.'®* MSR perhaps works best on a

small, well-defined problem requiring an elegant solution, such as an executive for an

operating system.

Higher Order Software (HOS) was developed by Hamilton and Zeldin while working on
NASA projects at MIT. It was intended to provide a formal means of defining
reliable, large-scale, multiprocessor s’.ysttems.lu The main parts of HOS are:

1. aset of formal laws,

2. a specification language,

3. automated analysis of system interfaces,

4. system architecture layers from analyzer output, and

3. transparant hardware.
The design method is based upon axioms defining a hierarchy of software control,
with control being a formally specified effect of one software module upon another.
The axioms, which are very explicitly stated, define intermodular controls, access

rights to variables, and relationships between modular levels.

HOS is most useful in applications wherein the' acecuracy and sauditability of the
algorithm are the primary conecerns, such as in seientific problems. Peters and Tripp
objeet to HOS' lack of explicit data base design concepts. Their experience with

large systems is that design of code and data base must be synchronous.'®

In comparing these five methodologies, Peters and Tripp conelude that no single
method applies to every situation, that designers produce designs, methods do not,
and finally, that designing is problem solving, a personal issue. Methods are most
sucecessfully applied in supportive management environments which include planning,
scheduling, and control. Merging methods and environments would perhaps be the

next step.'®

Of the five methodologies above, Structured Design is perhaps the most used, or at
least most often mentioned. Quite possibly references to "structured design" are not
to the developments of Constantine?? but instead to general techniques. Indeed,
structured design has become something of a generic term, admittedly preferable tb ,
"basket weaving". In spite of their limitations, the five methodologies represent
important steps in organizing the design phase of the software life cycle. It would be
interesting to investigate the extent of usage of these methodologies, perhaps by
making reference not to particular methods by name but by less specific generic
references. This would allow respondents to answer questions concerning usage of

struetured techniques without requiring familiarity with specific literature.
1.4 Chief Programmer Teams.

Many production projects are staffed by relatively junior programmers. The low
average level of education and experience usually results in less-than-optimum
efficiency in program design, coding, and testing. More experienced programmers,
who probably have the needed insight and knowledge necessary to improve this

situation, are usually in low-level management positions where they ecannot

accomplish the detailed programming work.® In this typical project structure, each
programmer normally has complete responsibility for all aspeets of one or a few
modules. This entails not only programming, but also maintaining listings, setting up
runs, and writing reports concerning all aspects of his portion of the system. Few
guidelines (or standards) for any of the associated tasks are ever provided, so the
results are very individualized. This often further complicates the process of system

integration, documentation, and leads to a lack of development effectiveness.

One approach to attacking the problems of poor software quality and low programmer
productivity is the chief programmer team. If, indeed, programming is the most

complex mental activity ever undertaken by mankind,7 then such an .approach should

be elementally appealing.

Baker ® describes a chief programmer team management concept for production
programming. He describes a chief programmer as a senior-level programmer who is
given overall responsibility for development of a production system. The chief
programmer produces the nuecleus of the system being developed, and specifies and
integrates other programming aectivity for the -system. Other permanent team
members are his backup programmer (also senior level) and a programming librarian.
The team is described as analogous to a surgical team, with the chief programmer
being compared to the chief surgeon, and being supported by a team of specialists
who assist the chief. Functional details of the system may be provided by other
programmers and then integrated into the system by the chief programmer. This
approach directly attacks many of the problems of the more traditional approach,

particularly coordination of development.

1.5 Language Issues.

Programming languages are perhaps often overlooked as potential tools for improving
program reliability. Program reliability may be considered in two aspects: (1)
Number of errors which crop up after system release, and (2) correct, predictable
performance of intended function. The second is the more important of the two,
although both are important. Reliability features should include robustness (the
ability of a system to handle unexpected data values gracefully), and a high degree of

system availability (infrequent crashes).

Language features important for reliability are:
Simplicity - Language must be small enough for programmers to master.
Consistency - Language should form coherent whole -~ regular semantics,
uniform syntax.
Modularity - Language must support the division of a problem into smaller
problems.

Redundancy and error checking - with good diagnostics.

It seems fairly obvious that programs with & high probability of being correct are
more reliable. Two methods of increasing this probability are: reducing the
probability of programming errors and increasing the probability of detecting

® Good language design can contribute to both goals. A programming

errors.
language should lend confidence to the programmer in the correctness of programs.

Violations of programmer intentions should be detectable as errors, ideally at compile

- 10 -

time. Redundant expression of intention through type checking, declarative
redundancy, and assertions should lead to better error detection® Other common
sense issues are really language independent. Eliminating "magic numbers" outside of
named constants and using readable formatting of program text on the page are two
_activities which may be accomplished with a little programmer effort in almost any
language. A nicer approach would be the automation of these in the design of a

language.

Language improvements need not be limited to cosmetic improvements, of course.
Gannon and Horning mention statistically significant results demonstrating that
subjects using a nestable conditional construct made fewer semantic errors and
arrived at problem solutions more quickly than did subjects using a branch-to-label
construct.® This may be a matter of programmer training and technique, but it also
could be a built-in language construct (or omission of one in the case of branch-to-
label). Potentially, programming languages could aceomplish much in improving
program quality and reliability.

The language used by more soffware developers than any other is COBOL. Philippakis
surveyed 164 computer installations and found that 86% used it, and that 70% of
coding was done in COBOL.!” Unfortunately, COBOL is frequently attacked from

many standpoints, ineluding intrinsic design and error-proneness.

= I =

To consider an example of intrinsic COBOL design limitations, observe some code
which might be generated by a programmer attempting to use structured program-
ming techniques:
READ-AND-PROCESS-DATA.
READ DATA-FILE
AT END MOVE 1 TO END-OF-FILE-FLAG.
PERFORM PROCESS-DATA UNTIL END-OF-FILE.

PROCESS-DATA.
Process data record
WRITE DATA-RECORD.
READ DATA-FILE
AT END MOVE 1 TO END-OF-FILE-FLAG.
PROCESS-DATA-EXIT.

Small wonder that many programmers find structured programming awkward. Some
rather convoluted logic is involved in coding a "pre-read" before entering the loop
which really does the major portion of the work, the PROCESS-DATA paragraph.
Further, PROCESS-DATA is itself of an awkward structure. At first glance, the logic
seems all wrong: you should read first, then process and write data. If PROCESS-
DATA were physically far removed from it's calling sentence (as it often would be),
the observer would usually want to look at the calling sentence to assure that the

logic in fact is correct.

-12 -

Now, consider an imaginary extended COBOL version:
LOOP.
READ DATA-FILE
AT END EXIT LOOP.
Process data
WRITE DATA-RECORD.
ENDLOOP.

This example allows utilization of the read-write sequence, which seems more natural
than write-and-read (with a pre-read first). The problem is that standard COBOL has
no in-line-loop eapability, nor a general EXIT-IF structure. A language preprocessor
would, of course, allow just this sort of strueture, and many such preprocessors are
available today, MetaCOBOL being one example.21 Another approach would be the
use of a maero facility. The macros themselves would be written in COBOL and
configured with the COBOL compiler. The macros would be converted to standard
COBOL statements at compile time. Perhaps some future ANSI version of COROL

will inelude in-line looping, exit~if, and other such construets.

Error-proneness is another COBOL vuinerability. Research conducted by Liteeky and
Davis indicated that 20% of error types account for 80% of the total error frequency
in COBOL programming.'* Somewhat surprisingly, the more persistent errors were
clerical mistakes: adding a period after 'FD file-name', the use of commas as word
delimiters, etec. These errors do not involve crueial elements of the basie structure of
COBOL, which strongly suggests that such elements should be changed. Another
finding of their research was that 80% of error diagnostics were inaccurate, a
problem which should also be improvable, particularly if emphasis were placed on

better diagnosis of common errors.
w LG

1.6 Automated Software Testing and Evaluation.

Upon completion of eoding, testing and debugging begins. This can be the most tiring,
expensive, and unpredictable phase of software development, and often represents 40-
50% of the total effort.’ Large systems may consist of many components with
complex interactions, probably developed by a large number of programmers. For
these reasons, operational software is often not error-free in spite of large testing

efforts.

Formally proving the correctness of large, complex systems is not currently feasible,
although proofs of non-trivial programs are possible,? Ramamoorthy and Ho de-
seribe automated tools for all phases of software development.lg Automated tools
are programs to check such things as program syntax, control structures, module
interface, and testing completeness. These tools may be used to allow programmers
to concentrate on advance system checkout by removing simple coding errors.
Among those for the testing phase are tools for monitoring program run-time
behavior and automated test case generation. Monitoring run-time behavior might
include bounds cheecking, recording frequency of traversal in particular sections of
code, and excution path tracing, which would record paths taken by test cases. Test
cases may be generated to exercise all possible program branches, sometimes
considered "complete" testing, Exhaustive testing is usually impossible, so "com-
plete" testing is defined in a more relaxed manner. It is possible to find a minimum
set of test cases to accomplish this, and Ramamoorthy and Ho desecribe an algorithm
to detect branches not tested and indicate conditions necessary to traverse those

paths 19

-14 -

Problems encountered in developing software systems are usually tackled in an ad hoe

3 most software evalua-

manner. Although most software errors are design errors,
tion systems attempt to solve problems at the code level, which is well after design is
complete. This condition could be corrected by designing an automated evaluation
system in conjunction with the development methodology. Systems should be

designed with the goal of validation in mind.!?

1.7 Application of New Techniques.

As may be surmised from the preceeding sections, many software development
techniques have been developed over the past years. Most are designed as tools for
use in very large projects such as missle systems, space programs, or perhaps
compiler development. Their use should enhance management control over
development cost. This goal is imperative, given the well-established upward trend of

software development cost.

These newly developed design techniques should be equally applicable to smaller
projects. Few businesses undertake projects of the same scale as a missle system, but
are nontheless interested in controlling costs. The use of a programming language is
elemental in any software development project. It is thus an interesting area of focus

in an assessment of usage of new design techniques.

In an effort to do this, a questionnaire was sent to 58 data processing shops.

Emphasis was placed on questions concerning programming languages. The

-15 -

geographical area covered was limited to the Kansas City area in the interest of
easier communication with respondents and in time constraints. It is acknowledged

that Kansas City may not be representative of general data processing practices, but

hopefully the survey results may serve as a basis for further investigation.

-16 =

CHAPTER 2 QUESTIONS ON THE SURVEY

Ideally, a survey should be constructed to achieve a good responsé rate but also
provide an adequate volume of usable data. The greatest difficulty in writing a
survey lies in satisfying these two conflicting goals. The rate of response should be
enhanced by writing a limited number of easily answered questions using generally
understood terminology. This is no small task, particularly if information is desired
concerning recently developed techniques. Usable responses are those which are
readily quantifiable and yet reflect reality at the respondent's shop. Anticipating
common responses and including these as choices in multiple-choice questions is one

step that may be used in gathering standard data.

These factors were considered in writing the survey of software development
practices. Top priority was given to achieving a good response rate. To limit the
number of questions, emphasis was placed on language usage; a total of five language-
oriented questions were included. Only one question was asked coneerning the extent
of usage of new design methodologies. One question was also asked about software
development problems. Guaging language usage and satisfaction in applications

development thus became the main thrust of the survey.
The questions and some comments follow.
1. Title of person responding

- was requested to determine if responses would differ between management

and staff personnel.

17 =

2.

3.

5.

6.

7.

Primary programming language used in shop.

Are most applications business or numerically oriented?
- was asked to see if software development practices would differ between

business and scientific or engineering shops.

Are you happy with the language?

- It was anticipated that a certain amount of dissatisfaction would be expressed,

particularly in shops experiencing problems.

Are most applications programmers happy with the language?
- It was expected that even greater dissatisfaction would be expressed than

from management.

Have you considered converting old applications or writing new ones with a
different language?

- This was asked to lend further qualification to the responses from questions (4)
and (5). It was thought also that trends toward usage of new languages could be

spotted.

Would you like to see improvements in your language? Examples:
a. CASE statement

b. 'DO...UNTIL or WHILE cond. DO...

e. Cross reference of called procedures

d. Local data in procedures

-18 -

7.

8.

(eont'd)
e. More accurate error diagnostics

f. QOther

As in question (6), it was thought that responses to this question might help
clarify the question of language satisfaction, although indicating a desire for

improvements would not necessarily imply dissatisfaction.

Examples (a), (b), and (d) are not available in more commonly used languages
(COBOL and FORTRAN), although these three may be simulated by the use of
preprocessors. They were chosen as examples because of their importance in
structured programming and because of their high frequency of simulation by '
using existing language constructs. The other two, (¢) and (e), are frequently

mentioned as desirable complier enhancements.

Does your shop utilize structured techniques? Examples:
a. Top-down design

b. Step-wise refinement

c. Hierarchic control structures (perform, gosub, ete.)
d. Modular programs/segments

e. Extensive use of comments

f. Other

Both design and programming techniques were included in the chosen examples;
these probably should have been separated into separate questions. Top-down

design is a commonly mentioned structured design technique; step-wise

-19 -

refinement is less commonly known. Section three in Chapter 1 contains details
about Structured Design and META Step-Wise Refinement; examples (a) and (b)
referred to these. The remaining choices (¢), (d), and (e) are structured

programming techniques.

9, What are the most serious software development/maintenance problems in your
shop?
a. Cost/time overruns
b. Poor communications with users
c. Personnel turnover
d. Unreliable hardware
e. Inadequate development tools
f. Lack of education or experience among staff members

g. Other

Decreasing the frequency of cost/time overruns was one of the more important
reasons for development of techniques described in Chapter 1; it was thought
that it would be interesting to see if the use of any particular structured design
techniques were effective against overruns. The other examples were chosen as
commonly occurring problems in software development; all may be contributors
to cost/time overruns. Asking respondents to rank the seriousness of problems

in their own shops might have been a better approach.

It was expected that a majority of shops would use COBOL, so the language questions
were perhaps biased toward responses from COBOL users. For example, it was

expected that many COBOL users would express dissatisfaction with their language.

-20 -~

The results were surprising: 94% of managers were satisfied, and indicated that 100%
of their programmers were also. (This was for all languages, not just for COBOL.) A
hint of this bias may also be evident in the next two questions concerning converting
to a new language and inquiring about language improvements desired. It was
anticipated that some interesting remarks might come from COBOL users responding

to these questions. This proved to be not significantly so.

Consideration was given to including questions about previous language usage and
software development practices. These were omitted from the survey to remain
consistent with the goal of limiting the number of questions asked in hope of
achieving a high rate of response. Later, during analysis of survey responses, it was
observed that historical data would have been very useful in spotting trends,
particularly in the occurrence of software development problems. (This idea is
addressed in more detail in Chapter 5.) It was believed that useful information
concerning current practices could be obtained with the chosen questions and that in
the worst case, a benchmark could be established for later software development

surveys.

-921 -

CHAPTER 3 OVERALL SURVEY RESULTS

3.0 Response Profile.

Of 58 questionnaires sent to Kansas City area locations, 37 were returned, giving a
64% response rate. Some effort was made to include a broad range of industries, as
well as shop sizes, although no research was done to identify businesses within
specific budget ranges or numbers of employees. With this limitation in mind, the
sample is generally representative of the Kansas City area. Industries and number of

respondents were:

Education 4
Engineering Consultant 2
Health Care 3
Insurance 3
Manufacturing 10
Retail/Distribution 5
Utility 4
Other 6
Total 37

Only two non-management responses and two non-business shops were received, so no

comparisons using these were possible.

Although efforts were made to write questions which would generate quantifiable

responses, it became evident during response analysis that some improvement was

-99 -

possible. For example, question 9 asked which of 6 possible software development
problems were most serious in the respondent's shop. This allows serious problems to
be identified, but provides no measure of the severity. A better method of stating
this question might have been to ask the respondent to indicate which problems were
encountered and to rank these according to seriousﬁess. In evaluating the results of
this survey, it is of course possible to note such things as the total number of
occurrences of a particular problem, say cost/time overruns, but it is not possible to
determine the overall "seriousness ranking” of any particular problem. With this
limitation in mind, the results probably reflect reality as perceived by thé

respondents.
3.1 Preliminary Observations.
The following conclusions may be drawn from Table 3.1-1:

L. COBOL is the most used language, listed by 84% of respondents. This
result corresponds very closely to the 86% usage found by Philippakis in
1974.17 COBOL is apparantly not being replaced by other languages.

2. It was possible to identify eight shops (22% of those responding) using
assembler. Twenty-two percent is a much lower usage than the 76% found
by Philippakis,!” but it must be emphasized that the 22% is a very low-
confidence figure. Six of the eight were identified by their indication that
they were converting old assembler programs to COBOL. It is possible,

even likely, that many more shops use assembler than were identified by

-23 -

3.

9.

6.

the survey. It would appear, however, that fewer shops use assembler
than in 1973 when the Philippakis survey was published, and that those

using assembler are tending toward higher level languages.

Language satisfaction is very high among both management and program-
ming staff.

COBOL is the majority choice of those considering a different language

for new applications.

The use of structured design and programming techniques is widespread.

Even more widespread is the occurrence of software development

problems.

Another observation from the data in Table 3.1-1 is that slightly more than half of

the respondents would like language improvements. A positive correlation was found

between the use of COBOL and the desire for language improvements, but the

correlation was of moderate statistical significance, between the 1 and 5% levels.

Table 3.1-2 shows language improvements desired in some detail. Percentages shown

in the table are not of the entire sample, but of those desiring improvements. The

following conclusions may be drawn:

-024 -

| % More accurate error diagnosties and a cross reference of CALL'ed
procedures are the most often listed improvements. Both are really

compiler enhancements, not language improvements.

2. In-line looping and 'CASE' statements are of about equal desirability, but

both are fairly low.

The percentages of those desiring more accurate error diagnosties would seem to
show increasing demand with increasing shop size, but no correlation of statistical
significance was found to support this idea. More generally, no significant

correlations were found between shop size and any of the language improvements.

The use of structured techniques is documented by Table 3.1-3. It may be noted that
the percentages of shops using top-down design increases with shop size. A positive
correlation was found to support this observation, but was below the 5% level of
significance. A very similar statement may be made for the use of comments: use
increases with shop size, a positive correlation may be found, but is of marginal
significance. Included under the category of "other" are three instances of the use of

Warnier-Orr diagrams.

The occurrence of software development problems is tabulated in Table 3.1-4. The
only correlation between shop size and the occurrence of any particular development
problem is that between size and cost/time overruns. A positive correlation was
found, significant to the 5% level. Lack of education or experience is easily the most
frequent problem, and appears to decrease with shop size. However, no significant

correlation was found in this relationship.

-925 -

Table 3.1-1 - Summary of Results

SHOP SIZE
15 41% 15 41% 7 18% 37 100%
CATEGORY SMALL MEDIUM LARGE ALL
No. % No. % No. % No. %

1. Primary Language(s):

COBOL 12 80% 13 87% 6 86% 31 84%

Assembler Languages 1 % 1 7% 1 14% 3 8%

FORTRAN 1 7% 1 7% 0 0% 2 5%

RPGII 2 13% 1 % 0 0% 2 5%

MARK IV 0 0% 2 13% 0 0% 2 5%

MIs 0 0% 1 7% 0 0% 1 3%
2. Application Type:

Business 14 93% 14 93% 7 100% 35 95%

Business/Numeric 1 7% 1 7% 0 0% 2 5%
3. Management Satis. w/Lang. 15 100% 13 87% 7 100% 35 95%
4. Prog. Satis. w/Lang. 15 100% 15 100% 7 100% 37 100%
5. Consider Different Lang. 4 27% 8 53% 3 43% 15 41%
6. Different Lang. Considered:

COBOL 3 75% 63% 2 67% 10 687%*

Other 1 25% 38% 1 33% 5 33%*
7. Would Like Lang. Improvs. 53% 60% 4 57% 21 57%
8. Use Structured Techniques 11 73% 11 73% 5 71% 27 73%
9. Experience S.W. Dev. Probs. 10 67% 15 100% &6 86% 31 84%

*Percentage of those considering a new language

- 9286 -

Table 3.1-2 - Language Improvements Desired

SHOP SIZE
8 53% 9 60% 4 57% 21 57%
I e Improvements SMALL MEDIUM LARGE ALL
Desired No. % No. % No. % No. %

CASE 3 8% 2 22% 2 50% 33%
DO...UNTIL or WHILE...DO 2 25% 4 4% 0 0% 29%
'CALL' cross reference 2 25% 6 67% 2 50% 10 48%
Local Data 2 25% 1 11% 1 25% 4 19%
More accurate diagnosties 4 50% 6 67% 3 75% 13 62%
Other 2 25% 4 44% 1 25% 7 33%

-927 -

Table 3.1-3 - Use of Structured Techniques

SHOP SIZE
11 73% 11 73% 5 T1% 27 73%
Structured Design Techniques SMALL MEDIUM LARGE ALL

No. % No. % No. % No. %
Top-down Design 4 36% 7 64% 4 80% 15 56%
Step~-wise refinement 1 9% 1 9% 0 0% 2 7%
Hierarchic control structures 9 82% 6 5% 4 80% 19 70%
Modular programs/segments 8 73% 9 45% 4 80% 17 63%
‘Comments 4 36% 6 55% 4 80% 14 52%
Other 2 18% 5 56% 2 40% 9 33%

-28 -

Table 3.1-4 - Software Development Problems

SHOP SIZE
Software Development 10 67% 15 100% 6 86% 31 84%
Problems SMALL MEDIUM LARGE ALL
No. % No. % No. % No. %
Cost/time overruns 3 30% 5 33% 5 83% 13 42%
Poor communications w/users 1 10% 6 40% 3 50% 10 32%
Personnel turnover 4 40% 6 40% 0 0% 10 32%
Unreliable hardware 1 10% 2 13% 1 17% 13%
Poor development tools 2 20% 1 7% 1 17% 4 13%
Education/Experience 7 70% 9 60% 1 17% 17 55%
Other 1 10% 3 20% 1 17% 5 16%

- 99 -

CHAPTER 4 ANALYSIS OF DATA
4.0 Investigations for Relationships.

Potentially, one of the more interesting findings of a survey of this nature would be
the existence of software development techniques effective in controlling develop-
ment problems. No such conelusions appear possible from analysis of data collected
by this survey. Possible relationships between occurence of software development
problems and desire for language improvements were also investigated, but the

results were largely inconclusive.
4,1 Analysis Techniques.
Analysis techniques used were:
1. A table of the occurences of specific software development problems in
conjunction with the usage of specific structured techniques was drawn.
(See Table 4.2-1).
2. The same table as in (1) was drawn, but showing instead, percentages of
those using structured techniques and not using structured techniques.

(See Table 4.2-1a).

3. A table was drawn showing the total number of software development

problems against the total number of structured techniques used for each

-30-

5.

8.

respondent. Possible correlations were investigated between the number

of problems and the number of techniques. (See Appendix B),

Software development problems and structured techniques were ranked
respectively by perceived seriousness and perceived value or potential
effectiveness. Total problem and technique "scores" were then computed,

placed in a table, and then investigated for correlation. (See Appendix C).

A table was drawn as in (3) above, but showing the total number of
software problems against the total number of language improvements
desired by each respondent. Possible correlations were then investigated.

(See Appendix D).

A table similar to (1) above was drawn, showing the occurence of specifie
software development problems in econjunetion with language improve-

ments desired. (See Table 4.2-2).

Another table similar to (3) above was drawn, but this time showing only
the number of structured programming techniques used against the
number of language improvements desired. Correlations were investi-

gated. (See Appendix E).

Additional correlations were investigated and are detailed in Appendix F.

-31-

4.2 Analysis Results.

The results of the above analysis techniques, taken in the same order:

1I

2.

4.

No quantitative correlation calculations were possible due to the
unordered nature of the tabular data. In terms of raw numbers, it would
appear that more shops using structured techniques experience software

development problems than do those using no struetured techniques.

No quantitative correlations were possible for the same reason as (1)
above. The conclusion drawn in (1) no longer holds, however. It is not
possible to conclude that greater percentages of shops using structured
techniques experience software development problems than do those using

no structured techniques.

A positive correlation just outside the 5% significance level was found
between total numbers of software design problems and total numbers of
structured techniques used. (See Appendix B).

Problems were ranked in order of ascending perceived seriousness: (1)
unreliable hardware; (2) inadequate development tools; (3) lack of
education or experience; (4) poor communications with users; (5) personnel
turnover; (6) cost/time overruns. The individual respondent scores, when
added, ranged from zero to 21. The ranking scheme was chosen partially

by the total number of ocecurrences of each problem, particularly in the

-32 -

.

6.

case of unreliable hardware and inadequate development tools. Cost/time
overruns was considered the most serious problem, even though it was not

the one most frequently oceurring.

Structured techniques were ranked by supposed effectiveness, also in
ascending order: (1) use of comments; (2) modular programs; (3)
hierarchical control structures; (4) step-wise refinement; and (4) top-down
design. Step-wise refinement and top-down design were assumed equally
effective, and, if both were used by a respondent, only one was counted.

Individual respondent scores ranged from zero to 12.

Using the ranking technique just desecribed, a small positive correlation
was found between the occurence of software development problems and
the use of structured techniques. The correlation was slightly less than
that found in (3) above, and so was also outside the 5% significance level.
(See Appendix C).

A strong positive correlation (inside the 1% significance level) was found
between the cccurence of software development problems and the desire

for language improvements. (See Appendix D).

As in (1) above, no quantitative correlations were possible because of the
unstructured nature of the data. It would appear, however, that more
respondents experiencing software development problems were in favor of

language improvements than those who were not.

=34 =

7.

Two separaté cases were considered: (a) use of struetured programming
technic}ues (not including structured design) against language improve-
ments desired (not including compiler improvements) and (b) use again of
structured programming techniques only against language and compiler
improvements. Case (a) showed a positive corrieation just below the 5%

significance level. Case (b) showed no correlation. (See Appendix E).

Positive correlations inside the 5% significance level were found between
(1) the use of COBOL and the desire for language improvements and (2)
shop size and cost/time overruns. (See Appendix F, Tables F-I and F-IX).

No other significant correlations were noted. (See Appendix F).

- 34 -

Table 4.2-1 - Development Problems vs. Structured Techniques

STRUCTURED
TECHNIQUES

Table 4.2-1a - Development Problems vs. Structured Techniques

SOFTWARE DEVELOPMENT PROBLEM

At
Bt
Ct
Dt
Et
none

Ap

Bp Cp Dp Ep Fp none

[T L B B - L B — B - |

Ap
Bp
Cp
Dp
Ep
Fp

7

- T - B - S LI — R -
= s 00 o =

3

0
2
3
1
0

1

[T — T - B]

9

W ~3 W -3 =~

cost/time overruns

perso..nel turnover
unreliable hardware

0

0
1
1
0
1

At
Bt
Ct
Dt
Et

= inadequate development tools
= lack of education or experience

top—-down design
step-wise refinement

hierarch. eontr. strue.
modular programs
use of comments

poor communications with users

(In pereentages of those using (or not using) structured techniques.)

STRUCTURED
TECHNIQUES

SOFTWARE DEVELOPMENT PROBLEM

At
Bt

Ct

Dt
Et

Ap Bp Cp Dp Ep Fp none
30 22 26 15 4 33 0
4 0 4 0 0 4 0
26 19 22 11 4 26 4
33 15 30 15 7 33 4
26 15 19 7 0 26 0
none 20* 20% 20* 0* 20* 40* 10+

*Percentage of those not using structured techniques

- 35 -

Table 4.2-2 - Development Problems vs. Language Improvements

SOFTWARE DEVELOPMENT PROBLEM
Ap Bp Cp Dp Ep Fp none

Ai

LANGUAGE Bi
IMPROVEMENT Ci
DESIRED Di
Ei

none

4

= h N O N

58T 8

B2 B = ;e W

5

L W D

cost/time overruns

2

LT I - R

2

B - W N =

4

(2 B2 L B2 R B -

0

[LI T — T]

Bi
Ci
Di
Ei

[}

CASE statement
DO until; WHILE do
'CALL' cross-ref,
Local data

better diagnosties

poor communications with users

personnel turnover
unreliable hardware

inadequate development tools
lack of education or experience

- 36 -

CHAPTER 5 CONCLUSIONS

5.0 Overall Results.

Certain observations may be made concerning overall results:
1. COBOL is probably as extensively used as in 1974.
2. Struectured techniques are in wide use.

3. Software development problems are still widespread.

An unavoidable conclusion from the analysis just completed in Chapter 4 is that more
respondents using structured techniques experience software development problems
than do those who do not. There are at least four possible explanations:

1. This conelusion is accurate.

2. Shops not using structured techniques and reporting no software develop-
ment problems fail to realize that problems really are present.

3. Shops experiencing software development problems are using structured
techniques to respond to the problems, which may or may not be
improving.

4. The questionnaire contained too few questions and the sample taken was

too limited to support or deny this conclusion.

If the results are assumed accurate (1), then perhaps the recently developed software

design techniques are ineffective. The structured techniques referred to in the

questionnaire inelude both structured design and structured programming, but not

-37-

individually, and this is itself, incidentally, a weakness of the survey. But to consider
just structured programming for a moment, structured programming (SP) is
sometimes thought of as a discipline for turning out programs in response to
assignments. Certainly SP as covered by the questions and responses to the
questionnaire fits that description. Prywes states that the improvements in the
programming process due to the current methodology of SP are inadequate to respond
to future needs.18 Perhaps the results of this survey are evidence in support of this

conclusion.

Another possibility is that outlined in explanation (2). Many shops utilizing traditional
software development techniques (junior personnel, individualized responsibility, few

guidelines, etc.; see Chapter 1, Section 1.4 for more detail) may experience poor
efficieney in program design, coding and testing. The state of software development
may be very poor but accepted as normal by management, which may not realize that
things could be much better. If there were little concern about produectivity or
reliability, the result would be much the same: serious problems could exist but

would be unacknowledged by management.

There is no method of verifying or disclaiming explanation (3) by using data from the
questionnaire. For reasons already stated (limiting the survey length), no questions
were included regarding historie practices or problems. This line of reasoning leads
directly to consideration of explanation (4), that the questionnaire was too short, and

the sample taken was too limited.

- -

5.1 Suggestions on Improving the Survey.

Some weaknesses of the questionnaire have already been stated, namely problems
with the wording of certain questions and the lack of questions regarding previous
practices. It should be possible to construct a questionnaire correcting both of these
difficulties, and perhaps adding a few other features as well. It would seem desirable
to ask questions about the use of structured design techniques separately from
structured programming techniques. The question about language usage would be
improved by including a list of often used languages and asking the respondent to

indicate the percent of current and recently past coding effort experienced by each

language.

A good approach to structuring the sequence of questions might be to parallel the
software development cycle itself. The order would consist of questions regarding
the use of recently developed approaches to: (1) development of system require-
ments, (2) software design methodologies, (3) software engineering, (4) language
usage, and, (5) automated software testing and evaluation systems. The questions
should request both current (within the past 12 months) and recent past (perhaps 13-
36 months) information to determine trends and the degree of effectiveness of
particular practices. The questions should be constructed so that the responses would
be more readily quantifiable. An example might be:

Indicate on the scale below your current use of top-down system design with an

"N™ and your use over the past 13-36 months with a "P™:

None Moderate Extensive

I_] 1 i 1 l] b 1 1 _I

A set of this type of question could then be subjected to a Likert-type analysis.22
o G

Another approach might be to construet most or all of the questions in the same
manner as stated above for the language usage question. Commonly used (or recently
developed) structured programming techniques, for example, could be listed and the
respondent asked to estimate the percent of current and past programming effort
expended in utilizing each technique. This ﬁpproach should allow the computation of
correlations between the use of certain techniques and the occurence or discontinued
occurence of problems. It should allow trends to be spotted and conclusions to be
chjawn concerning the usage and effectiveness of struetured design and programming

techniques.

The sample taken should not be limited to any particular geographic area. The target
population should be selected with some care to get a cross-section of large, medium,
and small businesses with respect to both budgeted amounts and staff size. Effort
should be made to sample a variety of industries to obtain an overall representation

of current practices.

Many of the results of this survey are inconeclusive, but hopefully the report may
serve as a basis for further investigation. Much work remains to be done before any
strong conclusions may be drawn concerning the use and effectiveness of structured
design and programming techniques. Designing an improved questionnaire would be

the first step.

- 40 -

1.

2.

3.

6'

8.

10.

11.

12.
13.

14.

15.

Bibliography
Barry W. Boehm, "Software and Its Impact: A Quantitative Assessment",
Datamation, Vol. 19, No. 5, May 1973, pp. 48-59.
Barry W. Boehm, "Command/Control Requirements for Future Air Force
Systems", in Multi-Acess ComFtinﬁa Modern Research and Requirements,
Rochelle Park, NJ; Hayden, » PP 17-29.

Barry W. Boehm, Robert K. McClean, and D. B. Urfrig, "Some Experiences
with Automated Aids to the Design of Large-Scale Reliable Software", IEEE
Trans. on Software Engineering, Vol. SE-1, No. 1, March 1975, pp. 125-133.

Barry W. Boehm, "Software Engineering”, IEEE Trans. on Comp., Vol. C25,
No. 12, Dec. 1976, p. 1226.

T. E. Bell, D. D. Bixler and M. E. Dyer, "An Extendable Approach to
Computer-Aided Software Requirements Engineering”, IEEE Trans. on Soft-
ware Eng'il'leel'ing, VOL SE-3, NO. 1’ JBII- 1977.

F. T. Baker, "Chief Programmer Team Management of Production Program-
ming", IBM Syst. J., No. 1, 1972.

E. W. Dijkstra, "The Humble Programmer”, 1972 Turing Award Lecture,
Comm. of ACM, October 1972

John D. Gannon and J. J. Horning, "Language Design for Programming
Reliability", IEEE Trans. on Software Engineering, Vol. SE-1, No. 2, June 1975

Donald I. Good, Ralph L. London, and W. W. Bledsoe, "An Interactive Program
Verification System", IEEE Trans. on Software Engineering, Vol. SE-1, No. 1,
March 1975, pp. 59-67.

M. Hamilton and S. Zeldin, "Higher Order Software - a Methodology for
Defining Software", IEEE Trans. on Software Engineering, Vol. SE-2, No. 1,
March 1976, pp. 9-31.

C. A. R. Hoare, "The Engineering of Software: A Startling Contradiction”,
Computers and People.

M. A. Jackson, Principles of Program Design, Academic Press, N. Y., 1975.

H. F. Ledgard, "The Case for Structured Programming", Bit. Vol. 13, 1973, pp.
45-47.

C. R. Litecky and G. B. Davis, "A Study of Errors, Error-Proneness, and Error
Diagnosis in COBOL", Comm. of ACM, Vol. 19, No. 1, Jan. 1976.

Clement McGowan, "Structured Programming: A Review of Some Practical
Concepts", Computer, June 1975, pp. 25-30.

16.

17.

18.

19.

20.

21.

22.

Lawrence J. Peters and Leonard L. Tripp, "Comparing Software Design
Methodologies", Datamation, Vol. 23, No. 11, November 1977, pp. 89-94.

A. S. Philippakis, "Programming Language Usage", Datamation, Vol. 19, No.
10, Oct. 1973, pp. 109-114.

Noah Prywes, "Preparing for Future Needs", Computer, June 1975, pp. 70-72.
C. V. Ramamoorthy and S. F. Ho, "Testing Large Software with Automated

Software Evaluation Systems", IEEE Trans. on Software Engineering, Vol. SE-
1, No. 1, March 1975, pp. 46-58.

W. P. Stevens, G. J. Myers, and L. L. Constantine, "Structured Design", IBM
Syst. J., No. 2, 1974.

Weinberg, et. al. "MetaCOBOL", High-Level COBOL Programming, Winthrop,
Pa., ¢1977.

Rensis Likert, The Human Organization; Its Management and Value, McGraw
Hill, 1967.

APPENDIX A

Product-Moment Method of Computing the Coefficient of Correlation

The coefficients of correlation computed in analyzing the data for this report were
found by the Product-Moment method. These are the steps that were followed:

1.

2.

3.

A scattergram is drawn for the two variables being correlated (No. of
development problems and no. of structured techniques used, for ex-
ample). A correlation table is drawn from the scattergram by writing the
total occurences in each cell and then adding the rows and columns. The
sums of the columns are called fx and of the rows, fy.

A mean for the rows and for the columns is assumed. For example, the
mean number of problems was taken to be 1.97 and the mean number of
techniques 2.24. Then x' is taken to be the number of columns away from
the column in which the mean number of problems resides, and y' the
number of rows from the mean techniques' row. The prime (') indicates
distance from assumed means.

The fx', fy', fx'z, and fy'2 rows and columns are filled in and totaled.
Therefore, fx'=f - x', fy'=£f- y, t‘x'2 = fx' x', and fy'2 =fy' " y'. The fx'
and fy' will give the correction to the assumed means in units of interval,
and the standard deviations (ox and oy) may be computed from fxr2

fy'2 and their corresponding corrections. The formulas are:

and

e z fxt!
(1) ex = S
where ex = correction to assumed mean
Ifx' = sum of (ecolumn deviations x occurences)
N = sample size

2
(2) o =J;\/.‘5_f§'_-c2

where o = standard deviation
L = interval size
f = frequency
x' = deviation in intervals
fx* = f -x
fx? = fx.x
}:x‘2 = sum of (frequencies x squares of deviations)
N = sample size
c2 = square of correction to assumed means

4, The sum of the product deviations, I x'y'is computed. First, Ix'is found
by multiplying the occurences in each cell by the number of columns it is
from the assumed mean. When these are summed, the total (Lx') should
equal fy'. Iy is found in an analogous manner, multiplying the
occurences in each cell by the no. of rows from the assumed mean. Upon
summation, I y'should equal fx'. I x'y' may then be computed twice, first
by the summation of the products Ix'-y'and then the summation of the
produets Iy'+ x'. The same result should be found by both methods.

5. The coefficient of correlation, r, is then eomputed:

a'X g 'Y
where r = coefficient of correlation
IX'y'" = sum of product deviations
N = sample size
ex, ey = corrections to assumed means
o'%,0'y = standard deviations in units of class interval

-44 -

The level of significance was drawn from a table prepared by Garrett and Woodworth
in Statisties in Psychology and Education, David MeKay Co., Inc., N. Y., Fifth edition,
June 1964, page 201. A small portion is reproduced:

Degrees of freedom Level of Significance
(N-2) .05 .01
30 .349 .449
35 325 418
40 .304 .393

In this report the sample size was 37, so from the above, it may be seen that r must
be .325 or greater to be at the .05 level of significance and .418 or greater to be at
the .01 level. '

- 45 -

No. of Struct. Tech's

Used (m= 2.2)

APPENDIX B

Coefficient of Correlation between No. of Problems
and No. of Structured Techniques Used.

No. of Problems (m= 2.0)

0 1(2/345 6 fy y fy fy'z Ix* Ixty

7 1 15 52 1 5
6 04 0 0 0 0
5 12 33 9 271 -1 -3
4 |1 321 7 2 14 28 2 4
3 | 31 31 3 3 2 2
2 125 [1[1 i] 100 0 0 -4 0
11 2 3-1 -3 3 -4 4
o {3 3|22 10 -2 -20 40 -7 14
fx 7 1110620 1| 37 8 126 -11 26
X -2 -1 0123 4

fx' -14 -11 0640 4= -11

fx2 28 11 0680 16 = 69

1y -5 -510530 0= 8

IX'y' 10 5 0560 0= 26
ex = -.30 ey = .22

ex®= 0900 oy® = .0467
ox = 1.83 oy = 1.33

r= ,316

- 46 -

APPENDIX C

Coefficient of Correlation Between Problems Ranking
and Structured Techniques Ranking.

=
w
g
- Problems Ranking (m= 7.2)
g 0-2 3-5|6-8|9-11 12-14 15-17 18-20 21-23 fy y' fy' fy'2 Ix' Ixy
§ 12-13 1 1 4 416 1 4
= 10-11 |1 3| 4 1 9 3 27 81 6 18
b 8-9 1 1 2 2 4 8 1 2
S 67 1 1 1{ 31 3 3 6 6
» 45 |3 1] 4 8 0 0 0 -7 0
$ 23 1 1] 1 1 4-1 -4 4 -1 1
e 01 |1 2| 6 1 10 -2 =20 40 -2 4
fx 6 4 16 7 2 0 1 37 14 152 4 35
XX -2 -1 1 2 3
fx* -12 -4 7 4 0 4 5= 4
fx* 24 4 0 7 8 0 16 25=84
Iy 0 -5 -1 19 -3 0 3 1 =14
Lx'y' 0 5 0 19 -6 0 12 5=35
ex = ,L11 cy = .38
ex? = .0121 cy’= 1444
ox = 4.5 gy = 3.98
r = .,303
Problem Rankings used: Technique Rankings:
Cost/Time Overruns -6 Top-down Design -4
Poor Communications -4 Step-wise Refinement -4
Personnel Turnover -5 Hierarch. Ctl. Struet. -3
Unreliable Hardware -1 Modular Programs -2
Inadequate Devel. Tools -2 Use of Comments -1
Laek of Ed. or Exp. -3 Other -1
Other -1

-47 -

APPENDIX D

Coefficient of Correlation Between Problems Ranking
and No. of Language Improvements Desired.

Problems Ranking (m= 7.2)

o
& 0-4 [5-9]10-14 15-19 20-24 fy y' fy' fy” x' ©xy'
Ll —
ST s 1 1] 2 4 8 32 3 12
E’E 4 11 2 3 6 18 3 9
- B 2| 1 32 612 1 2
5L 21| 2 1 41 4 4 0 0
s 8 T2 T2 120 0 0 0 0
Z A 06| 8 1 15-1-15 15 -5 5
fx 9 20 6 1 1| 37 9 81 2 28
¥ -1 0 1 2 3
X -9 0 6 2 3= 2
tx* 8 0 6 4 9=128
iy 5 2 5 4 3= 9
x'y' 5 0 5 6 12 = 28
ex = .05 cy = .24
ex? = .0025 ey’ = .0576
ox = .87 oy = 7.30
r = .600

Problems Ranking used:
See Appendix C

- 48 -

APPENDIX E

(Case A)
Coefficient of Correlation Between No. of Structured Programming Techniques Used
and No. of Language Improvements Desired (CASE, in-line loop, and Local Data).

a2 No. of Sturctured
E '® Prog. Tech's Used (m=1.5)
E‘?E 0|12 3 fy y 1y fy'2 Ix Lx'y
29 3 1 1 2 3 6 18 2 6
s = 2 |1 1 2 4 2 8 16 4 8
s 8§ 1 11 1 § 1 4 23 1 1
Z A 70 (948 T| 2 0 0 o0 13 0
fx 11 6 9 11 37 17 37 20 15
X -1 01 2
fx* -11 0 9 22 = 20
2 11 0 9 44 = 64
Ly 3 4 2 8 = 17
ixXy' -3 0 2 16 = 15
ex = .54 cy = .46
ex? = .2922 2 - 2
ox = 1.20 oy = .89

r = .322

-49 -

(Case B)
Coefficient of Correlation Between No. of Structured Programming Techniques Used
and All Language Improvements.

No. of Structured

.| Prog. Tech's Used (m= 1.5)
2 ofil2 3ty y oty 5y x zxy
=< s 1 1 2 4 8 32 2 8
3l g 4 2 2 3 6 18 4 12
I3l 3 [1hh 1 3 2 6 12 1 2
S = 2 |3 1 1 51 5 5 0 0
¢ g 1 [4[I[T 3] 9 0 0 o0 3 0
Z = 0 [3|3]7T 3| 16 -1-16 16 10 ~-10
fx 11 6 9 11 37 9 83 20 12
X -1 01 2
fx -11 0 9 22 = 20
tx? 11 0 9 44 = 64
Iy 2 3 -610 = 9
IXy' -2 0 -6 20 = 12
ex = .54 ey = .24
ex? = 2016 cy? = .0576
ox = 1.20 oy = 1.48
r = .110

- 50 -

Chapter 3 makes reference to certain correlation investigations of shop sizes and
language improvements, structured techniques used, and software development
problems. The correlation tables and coefficients of correlation that were computed
are included below; detailed calculations are omitted but should be readily obtainable

APPENDIX F

Other Coefficient of Correlation Calculations

by the method outlined in Appendix A.

Table F-I -

COBOL)

Language Used

(m

Table F-1I -

Shop Size
(m= MD)

Table F-II -

Correlation between the Use of COBOL and the Desire for Language

Improvements

Language Improvements Desired? (m= yes)

no yes
COBOL 10 21
Other 5 1 r = .384

Correlation between Shop Size and the Desire for More Accurate

Error Diagnosties

Better Diagnosties Desired? (m= no)

no yes
LG
MD
SM 11 4 r = .141

Correlation between Shop Size and Desire for CASE Statement

CASE Statement Desired? (m= no)

no yes

LG 5

MD 13

SM 12 3 r = .051

-5 =

Table F-IV - Correlation between Shop Size and Desire for In-Line Looping (DO
UNTIL or WHILE)

In -Line Looping Desired? (m= no)

no yes
LG 7 0
MD 11
SM 13 2 r = -.069
Table F-V - Correlation between Shop Size and Desire for Cross-reference of

CALL'ed Procedures

CALL cross-reference Desired? (m= no)

no yes
LG
MD
SM 13 2 r = .182

Table F-VI- Correlation between Shop Size and the Desire for Local Data

Local Data Desired? (m=no)

no yes
LG 6 1
MD 14
SM 13 2 r = -012

-52 -

Table F-VII - Correlation between Shop Size and the Use of Top-Down Design

Top-Down Design Used? (m= no)

no yes
LG

MD 8 7

SM 12 3 r = .311

Table F-VIII - Correlation between Shop Size and the Use of Comments

Comments Used? (m= no)

no yes
LG

MD 9 6

SM 11 4 r =.235

Table F-IX - Correlation between Shop Size and Cost/Time Overruns

Cost/Time Overruns? (m= no)

no yes
LG 2 5
MD 10 5
SM 12 3 r = .369
Table F-X - Correlation between Shop Size and Lack of Education or Experience

Lack of Education or Experience? (m= no)

no yes
LG 6 1

MD _

SM 8 7 r = -165

AIR

2 COM

0 =~1 & o

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24

ED
ED

ENG
ENG

ENT
GRN*
GRN*
HOS
HOS
HOS

INS
INS
INS
INV
MFG
MFG
MFG
MFG
MFG
MFG

& IRg

LG
SM

SM
SM
SM
SM
MD

SM
SM
SM
SM
SM
MD

MD
MD
MD
MD
MD
LG

SM

MD
LG

MD

ERERREEERERwWZRE=

g

=EEEE=

=E==2=2=28
o o

B = =
< < 4

=

Z <4 4 <o

Mod o g

APPENDIX G

Data From Survey Responses

< law
; (2]
bl = -

YB
Y BN

YB
YB
YB
YB
Y BN

YB
YB
YB
YB
YB
YB

YB
YB
YB
YB
YB
YB
YB
YB
YB
YB

PRIM.
LANG.

NEW
LANG.

ALC
COB
COB

NO
COBOL
NO

OL
OL

FORTRN

COBOL
COBOL
COBOL
COBOL
COBOL

COBOL
NO

NO

NO

U/F

FORTRN

COBOL
COBOL

RPG
COB
NEA
COB

IMPRS
COBOL

I NO
OL ANS COBOL
T/3 NO
OL NO

MARK IV

COB
COB
COB

COBOL
COBOL
COBOL
COBOL
COBOL
COBOL

OL
OL
OL

COBOL
NO

NO
RPG I
COBOL
NO

NO

NO

NO

MARK IV COBOL
RPG II

-54 -

LANG. STRCT. SW.DEV.
IMP. TECHS. PROBLS.
NO NO NO RESP
ACE ACDE;W AB

AD CD C

NORS C NO RESP
NO CE NONE

E C F

AB NO F

BC/F NO A

o NO!! F
ABCDE AD ABCDEF
NO ACDE;DDCF

CE NO NO RESP
NO CD E

C;RG ACE CD

NO YES PD
ABCE ACDE ABCF
NO C SS

(o) NO CF

NO RS ADE CF

E ACDE ADF

NO YES NO RESP
E;O NO CF

NO YES A

NO NO BE;PD

25
26
27

28
29

30
31
32
33
34
35
36

37

MFG SM
MFG LG
MFG LG
MFG LG
R/D MD
R/D SM
SWD MD
FED MD
UTL MD
UTL MD
UTL SM
UTL MD
VDR* SM

=
=

= =2
-

L=
Koo Z

M

4

=

Lo

YB
YB
YB

YB
YB

YB
YB
YB
YB
YB
YB
YB

YB

COBOL
COBOL

ANS-
COBOL

COBOL

COBOL
ALC

COBOL
MIIS

COBOL
COBOL
COBOL
COBOL
COBOL

RPGII

NO

NO

UFO/FOCUS NO
ANS COBOL ACDE

NO
COBOL

NO
COBOL
NO

NO

NO

NO
MAPPER

RPG I

RG;SN
BCE

NO

NO

CE
BCE
NO

E
ABCDE

RF

* In body of report, was included with retail/distribution.

- 55 -

NO NONE
ACDE U/S CODE
ACDE AB

NO ABE

AW BF

ACDE CF
AD;WT;W AF

ACDE ABD

CE BF

YES ABF

CDE AF;SS;PD

ABCDE; CPF;NS
WT;HIPO

ABCDE A

1.

2.

4,

5.

Summary of Abbreviations ‘

IND = Industry;

AIR
COM
ED
ENG
ENT
GRN
HOS
INS
MFG
R/D
SWD
FED
UTL
VDR

= Airline

= Communication

= Education

= Engineering Consultant

= Entertainment

= Grain

= Health Care

= Insurance

= Manufacturing

= Retail/Distribution

= Software Development

= Federal Government (Dept. of Agriculture)
= Utility

= Veterinary Drug Research/Mfg/Distr.

SH SZ = Shop Size;

LG
MD
SM

I

Large
Medium
= Small

PS = Position of Respondent in Department

M
S

= Management
= Staff

MS = Management Satisfied with Language?;

Y
N

Y
N

= Yes (all except 2 were yes)
= No

SS = Staff Satisfied with Language?;

= Yes (all were yes)
= No

-56 -

6. SHTP = Shop Type;
B = Business (all except 2 were Business)
N = Numerie
BN = Both (only 2 were both)

7. PRIM. LANG. = Primary Language;
8. NEW LANG. = New Language used for new applications or for converting
old ones;

U/F = User Friendly (probably doesn't exist)

9. LANG. IMP. = Language Improvements Desired;

A = CASE statement

B = In-line looping (DO UNTIL or WHILE DO)
C = 'CALL' cross reference

D = Loecal Data in procedures

E = More accurate error diagnostics

B C/F = Blend of COBOL and FORTRAN
NO RS= No response

RF = More flexibility in reading files
RG = Easier report generation

SN = Simplified nesting

0 = Other

10. STRCT. TECHS. = Structured Techniques used;
A = Top~-down design

B = Step-wise refinement
C = Hierarchical Control Struetures (perform, gosub, ete.)
D = Modualr programs/segments
E = Comments
DD = Data Dictionary
HIPO = HIPO Diagrams
W = Warnier-Orr Diagrams
WT = Structured Walk-thru

- 37 -

11. SW. DEV. PROBLS. = Software Development Problems

A = Cost/time overruns
B = Poor communications with users
C = Personnel turnover
D = Unreliable hardware
E = Inadequate development tools (text editors, libraries, ete.)
F = Lack of education or experience
NS = No standards
PD = Poor documentation
SS = Small staff
U/S CODE = Old unstructured code

-58 -

SOFTWARE DEVELOPMENT:
A SURVEY OF CURRENT PRACTICES

by

LOYE E. HENRIKSON

B. Se. Ed., Central Missouri State University, 1974

AN ABSTRACT OF A MASTER'S REPORT

‘submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Seience

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

In recent years, rising software costs have prompted the development of many
techniques and automated aids for the software development cycle. A few
examples would include software engineering, structured design and programming,
language preprocessors, and automated software testing and evaluation. To
determine the extent of usage and effectiveness of new techniques and automated

aids, a questionnaire was sent to 58 data processing shops in the Kansas City area.

COBOL was found to be the most used language; 84% of respondents used it. A
high degree of satisfaction with programming languages was expressed, although a
few improvements were desired: primarily compiler improvements of error
diagnosties and a cross reference of called procedures. A consistent and fairly high
usage of structured techniques was exhibited by small, medium, and large shops.
Software development problems were also extensively reported, in spite of the use

of structured techniques.

A small positive correlation (although not a statistically significant one) was found
between the use of structured techniques and the occurence of softweare
development problems. A strong positive correlation was found between the

occurence of problems and the desire for language improvements.

It was concluded that another, more quantitatively designed questionnaire should be
sent to a wider sample group before any firm judgements were made on the

effectiveness of newly developed techniques.

