- COMPUTER PROGRAM FOR AN ODITMUM TRANSPORTATION SOLUTION BY THE DLSCRERE MAXJMUM PRINCIPLE
by \qquad

PRADI'T KONGKATONG

B.Sc. (Chemical Technology), Cmlalongkorn University Bangkok, Thailand, 1963

A MASTER'S REPORT
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENGE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1968

Approved by:


```
\(\angle V\)
2668

TABLE OF CONTENTS
1. INTRODUCTION. ..... 1
2. STATEMENT OF THE PROBLEM. ..... 3
3. SOLUTION BY THE DISCRETE MAXIRMM PRINCIPLE METHOB. ..... 6
4. COMPUTING PROCEDURE ..... 29
ACKNOWLEDGEMENTS ..... 44
REFERENCES ..... 45

\section*{1. INTRODUCTTON}

In a large supermarket retail chain with several storing locations, one of the problems in supplying the individual stores is transportation, i.e., how much of a particular item should be sent each time and from what location should it be sent in order to satisfy the demands of all the stores, given the resources available at different storing locations.

Optimization of a transportation problem with linear cost function can be regarded as a generalization of the assignment problem, which can be carried out by means of the simplex method of linear programming (4). However, some special methods, such as the northwest corner method, the unit penalty method and Vogel's approximation method, have veen developed which are easier to apply and are less tedious than the sirplex method (1, 11). Optimization of transportation problems with non-linear cost furctions cannot be solved by linear prograriming methods. The non-linear problem with two and three depots has been solved by dynamic programming (2). Recently, a discrete version of the maximum principle has been applied to the two-depot problem \((5,6)\) and the three-depot problem (7). This has resulted in a great simplification in numerical calculations.

The purpose of this report is to study and understand more thoroughly the application of the discrete version of the maximum principle in the transportation problem with nonlinear cost function so as to enable us.to modify the
algorithm in Ref. (7) and to write computer program according to this algorithm.

In section 2 the transportation problem is defined and a table of transportation costs and requirements is presented. The modification of the discrete version of the maximum principle is developed to derive the Hamiltonian function for the transportation problem in section 3 . Also in this section the numerical method in obtaining the optimal solution is illustrated. Section 4 deals with the explanation of the steps in the computer program.
2. STATEMENT OF THE PROBLEMT

Suppose that there are a number of origins (depots) where the resource is located and N number of destinations (demand points) where the demand for this resource exists. Also suppose that there is only one type of resource and that its total supply is equal to the total demand. Let
\(\theta_{i}^{n}=\) the quantity of the resource sent from the i-th depot (origin) to the \(\mathrm{n}^{\text {th }}\) demand point, and \(F_{i}^{n}\left(\theta_{i}^{n}\right)=\) the cost incurred by this operation.

If there are \(s\) depots and \(\mathbb{N}\) demand points, the problem is to determine the values of \(\theta_{i}^{n}, i=1,2, \ldots, s ; n=1,2, \ldots\), N , so as to minimize the total cost of transporting the resources,
\[
\begin{equation*}
c_{s N}=\sum_{n=1}^{N} \sum_{i=1}^{S} F_{i}^{n}\left(\theta_{i}^{n}\right) \tag{1}
\end{equation*}
\]
subject to the constraints.
(i) \(\theta_{i}^{n} \geq 0\),
(ii) \(\begin{aligned} \sum_{n=1}^{N} \theta_{i}^{n}=W_{i} & \text { number of units of the resource. } \\ & \text { available at the } i-t h \text { depot, } i=1,\end{aligned}\) 2, ..., s,
(iii) \(\sum_{i=1}^{S} \theta_{i}^{n}=D^{n}\), number of units of the resource

> required by the \(n^{\text {th }}\) demand point, \(n=1,2, \ldots, N\).

A nonlinear cost function of the transportation problem is as follows:
\[
\begin{equation*}
F_{i}^{n}\left(\theta_{i}^{n}\right)=a_{i}^{n} \theta_{i}^{n}+b_{i}^{n}\left(\theta_{i}^{n}\right)^{2} \tag{2}
\end{equation*}
\]
where \(a_{i}^{n}, b_{i}^{n}\) are constants. The values of \(a_{i}^{n}, b_{i}^{n}\) with \(D^{n}\), the number of units of the resource required by the \(n^{\text {th }}\) demand point, and \(W_{i}\), the number of units of the resource available at the \(i^{\text {th }}\) depot, are shown in Table 1.
*The superscript, \(n\), indicates the stage number. The exponents are written with parentheses or brackets such as \(\left(\theta^{n}\right) 2\) or \(\left\{\phi\left(\theta^{n}\right)\right\}^{2}\).

Table 1. Transportation costs and requirements

Depots

3. SOLUTION BY THE DISCRETE MAXIMUM PHINCIPLE METHOD

Let the derand points be stages, and the total amount of resource which has been trensported from the \(i^{\text {th }}\) depot to the first \(n\) stages (demand points) be state variables \(x_{i}^{n}, i=1,2\), then
\[
\begin{align*}
& x_{i}^{n}=x_{i}^{n-1}+\theta_{i}^{n}, \quad x_{i}^{0}=0, \quad x_{i}^{4}=W_{i}  \tag{I}\\
& i=1,2 ; \quad n=1,2,3,4 .
\end{align*}
\]

It must be noted that, though there arc 3 depots in the problem, there are only 2 state variablcs. This is because the demand of each stage is preassigned; hence, the number of the units supplied from the \(3^{\text {rd }}\) depot to the \(n^{\text {th }}\) stage can be obtained by subtracting from the total number of units required by the \(n^{\text {th }}\) stage, the sum of the units sup. plied to the \(\mathrm{n}^{\text {th }}\) stage from the first and sccond depot. This is equivalent to writing
\[
\begin{equation*}
\theta_{3}^{n}=D^{n}-\sum_{i=1}^{2} \theta_{i}^{n}, \quad n=1,2,3,4 \tag{2}
\end{equation*}
\]

Since the objective is to minimize the total cost of transportation, we define this objective as the \(3^{\text {rd }}\) state variable which satisfies the following performance equation:
\[
\begin{align*}
x_{3}^{n} & =x_{3}^{n-1}+\sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right), \quad x_{3}^{0}=0  \tag{3}\\
n & =1,2,3,4 .
\end{align*}
\]

It can be shown that \(x_{3}^{4}\) is equal to the total cost of transportation. Hence, the problem of minimizing the total cost of transportation becomes that of minimizing the final value of the \(3^{\text {rd }}\) state variable, \(x_{3}^{4}\), by the proper choice of the sequence of \(\theta_{i}^{n}, i=1,2 ; n=1,2,3,4\) for the process described by equations (1) and (3).

The Hamiltonian function can be written as
\[
\begin{align*}
H^{n}= & \sum_{i=1}^{2} z_{i}^{n}\left(x_{i}^{n-1}+\theta_{i}^{n}\right)+z_{3}^{n}\left(x_{3}^{n-1}+\sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right)\right) \\
& n=1,2,3,4 \tag{4}
\end{align*}
\]

The recursion relation for the components of the adjoint vector are found to be
\[
\begin{equation*}
z_{i}^{n-1}=\frac{\partial H^{n}}{\partial x_{i}^{n-1}}=z_{i}^{n}, \quad i=1,2 \tag{5}
\end{equation*}
\]
and
\[
\begin{equation*}
z_{3}^{n}=1, \quad n=1,2,3,4 \tag{6}
\end{equation*}
\]

Since \(z_{i}^{n}\) and \(x_{i}^{n-1}\) are considered to be constants in searching for a stationary point or in finding a minimum point of the Hamiltonian function given by equation (4) with respect to \(\theta_{i}^{n}\), it is convenient to define the variable portion of the Hamiltonian function as
\[
\begin{equation*}
H_{v}^{n}=\sum_{i=1}^{2} z_{i}^{n} \theta_{i}^{n}+\sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right) \tag{7}
\end{equation*}
\]

Since the performance equations (1) and (3) are linear in the state variable \(x_{i}^{n-1}\) and the coefficients of the state variables are constants, the objective function is absolutely maximum (or minimum) if and only if \(H^{n}\) is absolutely maximum (or minimum). Therefore, the optimal sequence of the decision vector, \(\theta^{n}\), is obtained from equation (7) if and only if \(H^{n}\) is absolutely maximum (or minimum). By substituting equation (2-2) and (2) into equation (7) we have
\[
\begin{aligned}
H_{v}^{n}= & \left(z_{1}^{n}+a_{1}^{n}-a_{3}^{n}-2 b_{3}^{n} D^{n}\right) \theta_{1}^{n}+\left(z_{2}^{n}+a_{2}^{n}-a_{3}^{n}-2 b_{3}^{n_{0}} D^{n}\right) \theta_{2}^{n} \\
& +\left(b_{1}^{n}+b_{3}^{n}\right)\left(\theta_{1}^{n}\right)^{2}+\left(b_{2}^{n}+b_{3}^{n}\right)\left(\theta_{2}^{n}\right)^{2}+a a_{3}^{n} D^{n} \\
& +b_{3}^{n}\left(D^{n}\right)^{2}+2 b_{3}^{n} \theta_{1}^{n} \theta_{2}^{n}
\end{aligned}
\]

But in our case \(b_{3}^{n}=0\) for \(n=1,2,3,4\); therefore,
\[
\begin{align*}
H_{v}^{n}= & \left(z_{1}^{n}+a_{1}^{n}-a_{3}^{n}\right) \theta_{1}^{n}+\left(z_{2}^{n}+a_{2}^{n}-a_{3}^{n}\right) \theta_{2}^{n} \\
& +b_{1}^{n}\left(\theta_{1}^{n}\right)^{2}+b_{2}^{n}\left(\theta_{2}^{n}\right)^{2}+a_{3}^{n} D^{n}, n=1,2,3,4 . \tag{8}
\end{align*}
\]

Procedure for Ootimal Allocation:

Step 1. Calculate the breaking value \(z_{i}^{n}\).

Stage 1:
The variable part of the Hamiltonian equation for the first demand point is
\[
H_{V}^{1}=\left(z_{1}^{1}+0.5\right) \theta_{1}^{1}+\left(z_{2}^{1}-1\right) \theta_{2}^{1}-.03\left(\theta_{2}^{1}\right)^{2}+100 .
\]

Therefore the breaking value of \(z_{1}^{1}\) is -0.5. Taking the partial derivative of \(H_{V}^{l}\) with respect to \(\theta_{2}^{l}\) and equating it to zero results in
\[
\frac{\partial H_{v}^{1}}{\partial \theta_{2}^{1}}=0=z_{2}^{1}-1-0.06 \theta_{2}^{1} .
\]

However, the second derivative of \(H_{V}^{l}\) with respect to \(\theta_{2}^{l}\) yields,
\[
\frac{\partial^{2} H_{v}^{I}}{\partial\left(\theta_{2}^{1}\right)^{2}}=-0.06<0
\]

Therefore, from the condition \(\frac{\partial H_{V}^{I}}{\partial \theta_{2}^{I}}=0\), we cannot obtain a value for \(\theta_{2}^{l}\) which yields the minimum of \(H_{v}^{l}\). The minimum of \(H_{v}^{l}\) occurs at the boundary of the constraint of \(\theta_{2}^{l}\), as shown in Fig. 1. Therefore, the conditions for \(H_{v}^{l}\) to be minimum are
\[
\begin{aligned}
H_{v}^{1}=\min . ~ a t: & \theta_{2}^{1}=0 \text { if } z_{2}^{1} \geq 2.5, \\
& \theta_{2}^{1}=50 \text { if } z_{2}^{1} \leq 2.5 .
\end{aligned}
\]


Fig. 1. \(H_{v}^{l}\) v.s. \(\theta_{2}^{1}\)

Thus, the so called breaking values of \(z_{i}^{n}\) are -0.5 and 2.5 . The six conditions at which \(H_{v}^{l}\) may be minimum are presented in Table 2.

Stage 2:
The variable part of the Hamiltonian equation for the second demand point (stage) is
\[
H_{V}^{2}=\left(z_{1}^{2}-2.5\right) \theta_{1}^{2}+\left(z_{2}^{2}-3.5\right) \theta_{2}^{2}-0.05\left(\theta_{1}^{2}\right)^{2}+350 .
\]

Therefore, the breaking value of \(z_{2}^{2}\) is 3.5. Taking the partial derivative of \(H_{v}^{2}\) with respect to \(\theta_{1}^{2}\) and equating it to zero results in
\[
\frac{\partial H_{v}^{2}}{\partial \theta_{1}^{2}}=0=z_{1}^{2}-2.5-0.1 \theta_{1}^{2}
\]

However, the second dorivative of \(H_{v}^{2}\) with respect to \(\theta_{1}^{2}\) yields
\[
\frac{\partial^{2} H_{v}^{2}}{\partial\left(\theta_{1}^{2}\right)^{2}}=-0.1<0
\]

Therefore, from the condition \(\frac{\partial H_{v}^{2}}{\partial \theta_{1}^{2}}=0\), we cannot obtain \(\theta_{1}^{2}\) which yields the minimum of \(\mathrm{H}_{\mathrm{v}}^{2}\). The minimum of \(\mathrm{H}_{\mathrm{V}}^{2}\) occurs at the boundary of the constraint of \(\theta_{1}^{2}\), with curve similar to Fig. 1. Therefore, the conditions of \(\mathrm{H}_{\mathrm{V}}^{2}\) to be minimum are

Table 2. Conditions necessary for \(H_{V}\) to be minimum
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{n} & \multicolumn{4}{|c|}{Minimum of \(H_{v}^{\mathrm{n}}\) occurs at} \\
\hline & \(\theta_{1}^{n}\) & \(\theta_{2}^{n}\) & \(z_{1}^{n}\) & \(z_{2}^{n}\) \\
\hline 1 & \[
\begin{gathered}
0 \\
0 \leq \theta_{1}^{1} \leq 50 \\
50 \\
0 \\
0 \\
\theta_{1}^{1}=0 \text { or } 50
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
50 \\
50 \\
\theta_{2}^{1}=0 \text { or } 50
\end{gathered}
\] & \[
\begin{aligned}
& >-0.5 \\
& =-0.5 \\
& <-0.5 \\
& >-0.5 \\
& =-0.5 \\
& <-0.5
\end{aligned}
\] & \[
\begin{aligned}
& \geq 2.5 \\
& \geq 2.5 \\
& \geq 2.5 \\
& \leq 2.5 \\
& \leq 2.5 \\
& \leq 2.5
\end{aligned}
\] \\
\hline 2 & \[
\begin{gathered}
0 \\
.70 \\
0 \\
70 \\
0 \\
\theta_{1}^{2}=0 \text { or } 70
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \leq \theta_{2}^{2} \leq 70 \\
0 \\
70 \\
\theta_{2}^{2}=0 \text { or } 70
\end{gathered}
\] & \[
\begin{aligned}
& \geq 6 \\
& \leq 6 \\
& \geq 6 \\
& \leq 6 \\
& \geq 6 \\
& \leq 6
\end{aligned}
\] &  \\
\hline 3 & \[
\begin{gathered}
0 \\
0 \leq \theta_{1}^{3} \leq 100 \\
100 \\
0 \\
0 \leq \theta_{1}^{3} \leq 100 \\
0 \leq \theta_{1}^{3} \leq 100 \\
0 \\
0 \\
\theta_{1}^{3}=0 \text { or } 100
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
-25 z_{2}^{3}-50 \\
-25 z_{2}^{3}-50 \\
-25 z_{2}^{3}-50 \\
100 \\
100 \\
e_{2}^{3}=0 \text { or } 100
\end{gathered}
\] & \[
\begin{aligned}
& >-2.5 \\
& =-2.5 \\
& <-2.5 \\
& >-2.5 \\
& =-2.5 \\
& <-2.5 \\
& >-2.5 \\
& =-2.5 \\
& <-2.5
\end{aligned}
\] & \[
\begin{gathered}
\geq-2 \\
\geq-2 \\
\geq-2 \\
-6 \leq z^{3}<-2 \\
-6 \leq z_{2}^{3}<-2 \\
-6 \leq z^{3}<-2 \\
<-6 \\
<-6 \\
<-6
\end{gathered}
\] \\
\hline
\end{tabular}

Table 2. Conditions necessary for \(H_{V}\) to be minimum (cont.)

\[
\begin{aligned}
H_{v}^{2}=\min . \quad \text { at: } \quad \theta_{l}^{2} & =0 \text { if } z_{1}^{2} \geq 6, \\
\theta_{1}^{2} & =70 \text { if } z_{1}^{2} \leq 6 .
\end{aligned}
\]

Thus, the breaking values of the \(z_{i}^{n}\) are 6 and 3.5. The six conditions at which \(\mathrm{H}_{\mathrm{v}}^{2}\) may be minimum are presented in Table 2.

Stage 3:

The variable portion part of the Hamiltonian equation for the third demand point (stage) is
\[
H_{V}^{3}=\left(z_{1}^{3}+2.5\right) \theta_{1}^{3}+\left(z_{2}^{3}+2\right) \theta_{2}^{3}+.02\left(\theta_{2}^{3}\right)^{2}+100
\]

The breaking value of \(z_{1}^{3}\) is -2.5 . Taking the partial derivative of \(\mathrm{H}_{\mathrm{V}}^{3}\) with respect to \(\theta_{1}^{3}\) and equating it to zero results in
\[
\frac{\partial H_{v}^{3}}{\partial \theta_{2}^{3}}=z_{2}^{3}+2+.04 \theta_{2}^{3}=0
\]
or
\[
\begin{equation*}
\theta_{2}^{3}=-25 z_{2}^{3}-50 \tag{9}
\end{equation*}
\]

Therefore, the upper and lower breaking values of \(z_{2}^{3}\) are
\[
\text { upper } z_{2}^{3}=-2, \quad \text { when } \quad \theta_{2}^{3}=0
\]
and lower \(z_{2}^{3}=-6\), when \(\quad \theta_{2}^{3}=100\).

Hence, \(H_{v}^{3}\) is minimum at \(\theta_{2}^{3}=-25 z_{2}^{3}-50\) for \(-6 z_{2}^{3}-2\) as shown in Fig. 2. The nine conditions at which \(H_{v}^{3}\) may be minimum are presented in Table 2.

Stage 4:
The variable part of the Hamiltonian equation for the third demand point (stage) is
\[
H_{V}^{4}=\left(z_{1}^{4}+1\right) \theta_{1}^{4}+\left(z_{2}^{4}-1\right) \theta_{2}^{4}+0.03\left(\theta_{1}^{4}\right)^{2}+\left(\theta_{2}^{4}\right)^{2}+240
\]

Taking the partial derivative of \(H_{V}^{L}\) with respect to \(\theta_{1}^{4}\) and equating it to zero results in
\[
\frac{\partial H_{v}^{4}}{\partial \theta_{1}^{4}}=0=z_{1}^{4}+1+0.06 \theta_{1}^{4}
\]
or
\[
\begin{equation*}
\theta_{1}^{4}=-16.7 z_{1}^{4}-16.7 \tag{10}
\end{equation*}
\]

Therefore, the upper and lower breaking values of \(z_{1}^{4}\) are
\[
\text { upper } z_{1}^{4}=-1, \quad \text { when } \quad \theta_{1}^{4}=0
\]
and lower \(z_{1}^{4}=-5.8\), when \(\quad \theta_{1}^{4}=80\).
Hence, \(H_{v}^{4}\) is minimum at \(\theta_{1}^{4}=-16.7 \mathrm{z}_{1}^{4}-16.7\) for \(-5.8 \leq\) \(z_{1}^{4} \leq-1\) with curve similar to Fig. 2. Taking the partial derivative of \(H_{v}^{4}\) with respect to \(\theta_{2}^{4}\) and equating it to zero results in


Fig. 2. \(H_{v}^{3}\) v.s. \(\theta_{2}^{3}\).
\[
\frac{\partial H_{v}^{4}}{\partial \theta_{2}^{4}}=0=z_{2}^{L_{2}}-1+2 \theta_{2}^{4}
\]
or
\[
\begin{equation*}
\theta_{2}^{4}=-0.5 z_{2}^{4}+0.5 \tag{11}
\end{equation*}
\]

Therefore, the upper and lower breaking values of \(z_{2}^{4}\) are
\[
\text { upper } z_{2}^{4}=1, \quad \text { when } \quad \theta_{2}^{4}=0
\]
and lower \(z_{2}^{4}=-159\), when \(\theta_{2}^{4}=80\).
Hence \(H_{v}^{L_{4}}\) is minimum at \(\theta_{2}^{4}=-0.5 z_{2}^{4}\) for \(-159 \leq z_{2}^{4} \leq 1\) with curve similar to Fig. 2. The nine conditions at which \(H_{V}^{4}\) may be minimum is given in Table 2. The conditions for all \(\mathrm{H}_{\mathrm{V}}^{\mathrm{n}}\) to be minimized are summarized in Table 2. The breaking values of all the stages are summarized in Fig. \(3 a\) and Fig. 3b.

Step 2. Systematically searching
Each combination of the interior and/or the breaking values of \(z_{1}^{n}\) and \(z_{2}^{n}\) are systematically searched for a feasible solution; cases which do not satisfy the constraint \(\sum_{n=1}^{4} \theta_{1}^{n}=W_{i}\) will be eliminated.
a) Region to be searched

In this searching procedure regions or points of the


Fig. 3a. The breaking value of adjoint variable \(z_{1}^{n}\)


Fig. 3b. The breaking value of adjoint variable \(z_{2}^{n}\).
breaking value of \(z_{i}^{n}\) are searched systematically by exhausting all possible combinations in the region of the breaking value.
b) Elimination of infeasible solution

Most of the infeasible solutions result from not satisfying the constraint we put into the system, i.e.,
\(\sum_{n=1}^{4} \theta_{j}^{n}=W_{i}, \quad i=1,2\).
Example 1. The combination of regions \(z_{1}\) and of \(z_{2}\) given by \(-0.5<z_{1} \leq 6 ; 2.5 \leq z_{2}<3.5:\)

From Table 2, the tables of conditions necessary for \(H_{v}^{n}\) to be minimum, we have the conditions shown in Table 3 . It is obvious that this is an infeasible nase, since \(\sum_{n=1}^{4} \theta_{3}^{n}=\) \(50+0+100+80=230\) is larger than \(W_{3}\), where \(W_{3}=80\). However, there are cases where the value \(z_{i}\) calculated from the equation of optimality (such as equations (9), (10), and (ll) when the value of \(\theta_{i}^{n}\) are known) does not fall in the region of search.

Example 2. The combination of region for \(z_{1}\) and \(z_{2}\) given by \(-2.5<z_{1}<-1 ;-6 \leq z_{2}<-2\) :

From Table 2 we obtain the conditions necessary for \(H_{V}^{l}\) to be minimum as shown in Table 4. The condition of \(\theta_{1}^{l}=0\) or 50 and \(\theta_{2}^{l}=0\) or 50 means that the minimum value of \(H_{v}^{l}\) is either at \(\theta_{1}^{l}=0\) and \(\theta_{2}^{l}=50\) or \(\theta_{2}^{l}=0\) and \(\theta_{1}^{l}=50\).

Table 3. \(\theta_{i}^{n}\) corresponding to the condition that \(z_{1}^{n}\) and \(z_{2}^{n}\) are in the region of \(-0.5<z_{1}^{n} \leq 6\) and
\[
2.5 \leq z_{2}^{n}<3.5
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(n\) & 1 & 2 & 3 & \(0^{n}\) \\
\hline 1 & 0 & 0 & 50 & 50 \\
2 & \(\theta_{1}^{2}=0\) or 70 & \(\theta_{2}^{2}=0\) or 70 & 0 & 70 \\
3 & 0 & 0 & 100 & 100 \\
4 & 0 & 80 & 80 \\
\hline\(W_{i}\) & 130 & 90 & 80 & 300 \\
\hline
\end{tabular}

Table 4. \(\theta_{i}^{n}\) corresponding to \(-2.5<z_{1}^{n}<-1\) and \(-6 \leq z_{2}^{n}<-2\)
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & 2 & 3 & \(D^{n}\) \\
\hline\(n\) & 1 & \(\theta_{2}^{1}=0\) or 50 & & 50 \\
2 & \(\theta_{1}^{2}=0\) or 50 & \(\theta_{2}^{2}=0\) or 70 & or 70 & \\
3 & 0 & \(-25 z_{2}^{3}-50\) & & 100 \\
4 & \(-16.7 z_{1}^{4}-16.7\) & \(-0.5 z_{2}^{4}+1\) & & 80 \\
\hline\(W_{i}\) & 130 & 90 & 80 & 300 \\
\hline
\end{tabular}

By using equation (8) we can compare the value of \(\mathrm{H}_{\mathrm{V}}^{1}\) for both cases as follows:
\[
\text { For } \theta_{1}^{1}=0, \theta_{2}^{1}=50
\]
upper \(H_{V}^{1}=\left(z_{2}^{1}+a \frac{1}{2}-a \frac{1}{3}\right) \theta_{2}^{1}+b \frac{1}{2}\left(\theta_{2}^{1}\right)^{2}+a \frac{1}{3} D^{1}\)
\[
\begin{aligned}
& =(-2.1+1-2) 50-.03(50)^{2}+2 \times 50 \\
& =3.1 \times 50-75+100 \\
& =-130
\end{aligned}
\]
lower \(H_{v}^{1}=(-5.9+1-2) 50-.03(50)^{2}+2 \times 50\)
\[
\begin{aligned}
& =-6.0 \times 50-0.03 \times(50)^{2}+2 \times 50 \\
& =-345-75+100 \\
& =-370
\end{aligned}
\]
\[
\text { For } \theta_{1}^{1}=50, \theta_{2}^{1}=0
\]
upper \(\quad H_{V}^{I}=(-1.1+2.5-2) 50+2 \times 50\)
\[
\begin{aligned}
& =-0.6 \times 50+100 \\
& =-30+100 \\
& =+70
\end{aligned}
\]
lower \(H_{v}^{1}=(-2.4+2.5-2) 50+2 \times 50\)
\[
=-1.9 \times 50+2 \times 50
\]
\[
=+10
\]

It is obvious that \(\theta_{1}^{1}=0, \theta_{2}^{1}=50\) gives a minimum, since the value \(H_{v}^{l}\) is negative throughout the regions of \(z_{2}\) while the
value of \(H_{v}^{l}\) when \(\theta_{1}^{l}=50, \theta_{2}^{l}=0\) is positive throughout the region of \(z_{1}\). Similarly, we assign \(\theta_{1}^{2}=70, \theta_{2}^{2}=0\); therefore, \(\theta_{1}^{4}=W_{1}-\sum_{n=1}^{3} \theta_{1}^{n}=130-70=60\). By using the equation of optimality given by equation (10) we find that
\[
-16.7 z_{1}^{4}-16.7=60
\]
or
\[
z_{1}^{4}=\frac{60+16.7}{-16.7}=-4.6
\]

By equation (6) we have
\[
z_{1}=z_{1}^{n}=z_{1}^{4}=-4.6 \text { for } n=1,2,3,4
\]

Since the region of \(z_{1}\) we are now searching is \(-2.5<z_{1}<-1\) and since the value of \(z_{1}\) we just calculated is out of the region, this is an infeasible combinaition of the region of search.
c) Feasible solution

Feasible solutions are combinations of regions of \(z_{i}^{n}\) which satisfy all the constraints of the system and the value of \(z_{i}^{n}\) calculated from the equation of optimality is within the region.

Example 3. A feasible solution corresponding to the values of \(z_{1}^{n}\) at the point of \(z_{1}^{n}=-2.5\) and \(z_{2}^{n}\) in the region of
\(-6 \leq z_{2}^{n}<-2\) which satisfies the constraints is presented in Table 5.

By comparing \(H_{v}^{l}\) as we did in example 2 we have \(\theta_{l}^{l}=0\), \(\theta_{2}^{1}=50\); similarly, we have \(\theta_{1}^{2}=70, \theta_{2}^{2}=0\). Since \(z_{1}^{n}=z_{1}^{4}=-2.5\), from equation (10) we have
\[
\begin{aligned}
\theta_{1}^{4} & =-16.7 \mathrm{z}_{1}^{4}-16.7 \\
& =-16.7 \times(-2.5)-16.7 \\
& =41.7-16.7=25
\end{aligned}
\]
\[
\theta_{1}^{3}=w_{1}-\theta_{1}^{1}-\theta_{1}^{2}-\theta_{1}^{4}
\]
\[
=130-0-70-25
\]
\[
=35 .
\]

From the constraint \(W_{2}=90\) and \(z_{2}=z_{2}^{3}=z_{2}^{4}\) we obtain
\[
50+0-25 z_{2}-50-0.5 z_{2}+0.5=90
\]
or
\[
z_{2}=-\frac{89.5}{25.5}=-3.51
\]
which satisfies the condition, \(-6 \leq z_{2}^{n}<-2\). The corresponging value of \(\theta \frac{3}{2}\) obtained by substitution of \(z_{2}^{3}=-3.51\) is
\[
\begin{aligned}
\theta_{2}^{3} & =-25(-3.51)-50 \\
& =87.6-50=37.6
\end{aligned}
\]

Table 5. \(\theta_{i}^{n}\) corresponding to the condition that \(z_{I}^{n}\) and \(z_{2}^{n}\) are in the region of \(z_{I}^{n}=-2.5\) and \(-6 \leq z_{2}^{n}<-2\).
\begin{tabular}{|c|c|c|c|c|}
\hline i & \multicolumn{1}{|c|}{1} & 2 & 3 & \(0^{n}\) \\
\hline 1 & \(\theta_{1}^{1}=0\) or 50 & \(\theta_{2}^{1}=0\) or 50 & & 50 \\
2 & \(\theta_{1}^{2}=0\) or 70 & \(\theta_{2}^{2}=0\) or 70 & & 70 \\
3 & \(0 \leq \theta_{1}^{3} \leq 100\) & \(-2.5 z_{2}^{3}-50\) & 100 \\
4 & \(-16.7 z_{1}^{4}-16.7\) & \(-0.5 z_{2}^{4}+0.5\) & 80 \\
\hline\(W_{i}\) & 130 & 90 & 80 & 300 \\
\hline
\end{tabular}

Table 6. \(\theta_{i}^{n}\) corresponding to \(z_{I}^{n}=-2.5\) and \(-6 \leq z_{2}^{n}<-2\)
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 1 & 2 & 3 & \(D^{n}\) \\
\hline 1 & 0 & 50 & 0 & 50 \\
2 & 70 & 0 & 0 & 70 \\
3 & 35 & 38 & 27 & 100 \\
\hline\(W_{i}\) & 25 & 2 & 53 & 80 \\
\hline
\end{tabular}
or
\[
\begin{aligned}
& \theta_{2}^{3}=38 \\
& \theta_{2}^{4}=-0.5(-3.51)+0.5=2.25
\end{aligned}
\]
or
\[
\theta_{2}^{4}=2
\]

The value of \(\theta_{3}^{n}\) can be found by using the constraint, \(\sum_{i=1}^{S} \theta_{i}^{n}=D^{n}\).

The itemized cost for the above solution is presented in Table 7, and the total cost is
\[
\sum_{n=1}^{4} \sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right)=171.25+125.8+186=\$ 483.05
\]

Another feasible solution corresponding to the values of \(z_{1}^{n}\) in the region of \(-5.8 \leq z_{1}^{n}<-2.5\) and \(z_{2}^{n}\) in the region \(-6 \leq z_{i}^{n}<-2\) which satisfies the constraints is presented in Table 8.

The allocation of the value of \(\theta_{i}^{n}\) and the calculation of transportation cost, similar to example 3 , are shown in Tables 9 and 10.

The total transporation cost for this combination of regions is
\[
\sum_{i=1}^{3} \sum_{n=1}^{4} F_{i}^{n}\left(\theta_{i}^{n}\right)=\$ 173.30+125.80+184.00=\$ 483.10
\]

Table 7. Cost of transportation corresponding to \(z_{1}^{n}=-2.5\)
\[
-6 \leq z_{2}^{n}<-2
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{1.} & \multicolumn{2}{|c|}{2} & \multicolumn{2}{|c|}{3} \\
\hline & \(a_{1}^{n} \theta_{1}^{n}\) & \(b_{1}^{n}\left(\theta_{1}^{n}\right)^{2}\) & \(a_{2}^{n} \theta_{2}^{n}\) & \(b_{2}^{n}\left(\theta_{2}^{n}\right)^{2}\) & \(a_{3}^{n} \theta_{3}^{n}\) & \(b_{3}{ }^{n}\left(\theta_{3}^{n}\right)^{2}\) \\
\hline 1 & 0 & 0 & 50 & -75 & 0 & 0 \\
\hline 2 & 175 & \(-24.5\) & 0 & 0 & 0 & 0 \\
\hline 3 & 122.5 & 0 & 114 & 28.8 & 27 & 0 \\
\hline 4 & 100 & 18.75 & 4 & 4 & 159 & 0 \\
\hline & 397.5 & -226.25 & 168 & -42.2 & 186 & 0 \\
\hline \(\sum_{n=1}^{4} F_{i}^{n}\left(\theta_{i}^{n}\right)\) & \multicolumn{2}{|r|}{171.25} & \multicolumn{2}{|r|}{125.8} & \multicolumn{2}{|c|}{186} \\
\hline \(\sum_{n=1}^{4} \sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right)\) & \multicolumn{6}{|c|}{\(\cdots 483.05\)} \\
\hline
\end{tabular}

Table 8. \(\theta_{i}^{n}\) corresponding to the condition that \(z_{i}^{n}\) is in the region of \(-5.8 \leq z_{1}^{n}<-2.5\) and \(z_{2}^{n}\) is in the region of
\[
-6 \leq z_{2}^{n}<-2
\]
\begin{tabular}{|c|c|c|c|c|}
\hline i & 1 & 2 & 3 & \(D^{n}\) \\
\hline 1 & \(\theta_{1}^{1}=0\) or 50 & \(\theta_{2}^{1}=0\) or 50 & & 50 \\
2 & \(\theta_{1}^{2}=0\) or 70 & \(\theta_{2}^{2}=0\) or 70 & & 70 \\
3 & \(0 \leq \theta_{1}^{3} \leq 100\) & \(-25 z_{2}^{3}-50\) & & 100 \\
4 & \(-16.7 z_{1}^{4}-36.7\) & \(-0.5 \mathrm{z}_{2}^{2}+0.5\) & 80 \\
\hline\(W_{i}\) & 130 & 90 & 80 & 300 \\
\hline
\end{tabular}

Table 9. \(\theta_{i}^{n}\) corresponding to \(-5.8 \leq z_{1}^{n}<-2.5\) and \(-6 \leq z_{2}^{n}<-2\).
\begin{tabular}{|c|c|c|c|c|}
\hline\(i\) & 1 & 2 & 3 & \(D^{n}\) \\
\hline 1 & 0 & 50 & 0 & 50 \\
\hline 1 & 70 & 0 & 0 & 70 \\
3 & 34 & 38 & 28 & 100 \\
4 & 26 & 2 & 52 & 80 \\
\hline\(W_{i}\) & 230 & 90 & 80 & 300 \\
\hline
\end{tabular}

Table 10. Cost of transportation corresponding to \(-5.8 \leq z_{1}^{n}\) \(<-2.5\) and \(-6 \leq z_{2}^{n}<-2\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{2} & \multicolumn{2}{|c|}{3} \\
\hline & \(a_{1}^{n} \theta_{1}^{n}\) & \(b_{1}^{n}\left(\theta_{1}^{n}\right)^{2}\) & \(a_{2}^{n} \theta_{2}^{n}\) & \(\mathrm{b}_{2}^{\mathrm{n}}\left(\theta_{2}^{\mathrm{n}}\right)^{2}\) & \(\mathrm{a}_{3} \mathrm{n}_{3}^{n}\) & \(b_{3}^{n}\left(\theta_{3}^{n}\right)^{2}\) \\
\hline 1 & 0 & 0 & 50 & -75 & 0 & 0 \\
\hline 2 & 175 & -245 & 0 & 0 & 0 & 0 \\
\hline 3 & 119 & 0 & 114: & 28.8 & 28 & 0 \\
\hline 4 & 104 & 20.3 & 4 & 4 & 156 & 0 \\
\hline & 398 & \(-224.7\) & 168 & \(-1.2 .2\) & 184 & \\
\hline \(\sum_{n=1}^{4} F_{i}^{n}\left(\theta_{i}^{n}\right)\) & \multicolumn{2}{|c|}{173.3} & \multicolumn{2}{|r|}{125.8} & \multicolumn{2}{|c|}{184} \\
\hline \(\sum_{n=1}^{4} \sum_{i=1}^{3} F_{1}^{n}\left(\theta_{i}^{n}\right)\) & \multicolumn{6}{|c|}{483.10} \\
\hline
\end{tabular}

Step 3. The optimal solution is cbtained by comparing the total transportation cost of all the feasible regions. In our case there are only two feasible regions. Since the total transportation cost corresponding to \(z_{1}^{n}=-2.5\) and \(-6 \leq z_{2}^{n}<-2\) is less than that of \(-5.8 z_{1}^{n}<-2.5\) and \(-6 \leq z_{2}^{n}<-2\), the optimal solution is \(\theta_{i}^{n}\) corresponding to \(z_{i}^{n}=-2.5\) and \(-6 \leq z_{2}^{n}<-2\) which is shown in Table 6, and the minimum total transportation cost - \$483.05.

\section*{4. COMPUTING PROCEDURE}

Step 1. Read in data: the values of \(a_{i}^{n}, b_{i}^{n}, W_{i}\), and \(D^{n}\). Step 2. Calculate the breaking value of \(z_{i}^{n}\).

The equation used for the calculation depends on the value of \(b_{i}^{n}\) as follows:
a) For \(b_{i}^{n}<0\), the secondary derivative of \(H_{v}^{n}\) with respect to \(\theta_{i}^{n}\) will be negative. Therefore, from the condition \(\frac{\partial H_{v}^{n}}{\partial \theta_{i}^{n}}=0\), we cannot obtain a \(\theta_{i}^{n}\) which yields the minimum of \(H_{V}^{n}\). The minimum of \(H_{V}^{n}\) occurs at the boundary of the constraint of \(\theta_{i}^{n}\) as shown in Fig. 1 ; the equation to be used in this case is as follows:
\[
\begin{equation*}
z_{i}^{n}=-a_{i}^{n}+a_{s}^{n}-2 b_{i}^{n} \frac{n^{n}}{2} \tag{12}
\end{equation*}
\]
b) For \(b_{i}^{n}=0\), the cost function is linear, and the minimum will occur at the boundary of the constraint of \(\theta_{i}^{n}\). The breaking value is given by
\[
\begin{equation*}
z_{i}^{n}=-a_{i}^{n}+a_{s}^{n} . \tag{13}
\end{equation*}
\]
c) For \(b_{i}^{n}>0\), the cost of transportation is non-linear and the second derivative of \(H_{v}^{n}\) wi.th respect to \(\theta_{i}^{n}\) is larger than zero. The shape of the curve of \(H_{v}^{n}\) verses \(\theta_{i}^{n}\) is as shown in Fig. 2. The minimum of \(H_{v}^{n}\) can be obtained by equating the
derivative of \(H_{v}^{n}\) with respect to \(\theta_{i}^{n}\) to zero. The lower breaking value (Lower \(z_{i}^{n}\) ) and the upper breaking value (Upper \(z_{i}^{n}\) ) are at the boundary of the constraint, that is, \(\theta_{i}^{n}=D^{n}\) and \(\theta_{i}^{n}=0\) respectively, or
\[
\begin{align*}
& \text { Lower } z_{i}^{n}=-a_{i}^{n}+a_{s}^{n}-2 b_{i}^{n} D^{n},  \tag{14}\\
& \text { Upper } z_{i}^{n}=-a_{i}^{n}+a_{s}^{n} . \tag{15}
\end{align*}
\]

Step 3. Define the regions of search according to the breaking values.

This step consists of three substeps.
a) Rearrange the upper breaking value, \(z_{i}^{n}\), in an order of largeness and represent it by ZEU \({ }_{i}^{j}\), where \(j=1,2, \ldots\), indicate the order of largeness. The lower breaking value of the \(n^{\text {th }}\) stage will use the same \(j\) value as the upper breaking value of that stage and represent it by \(Z B L_{i}^{j}\).
b) Assign the upper limiting value of regions to be searched. The upper limits of regions to be searched are assigned according to the value of \(b b_{i}^{j}\) (the \(b_{i}^{n}\) value in the new index) as follows:
(I) \(\mathrm{bb}_{i}^{j}<0, \quad Z O P_{i}^{k}=2 B U_{i}^{j}-0.005\)
(2) \(\mathrm{bb}_{i}^{j}=0, Z O P_{i}^{k}=Z B U_{i}^{j}\)
\[
\begin{equation*}
\mathrm{ZOP}_{i}^{k+1}=\mathrm{ZBU}_{i}^{j}-0.005 \tag{17}
\end{equation*}
\]
(3) \(\mathrm{bb}_{\dot{i}}^{j}>0 \quad \mathrm{ZOP}_{\dot{i}}^{\mathrm{k}}=\mathrm{ZBU}{ }_{i}^{j}-0.005\)
\[
\begin{equation*}
Z O P_{i}^{k+1}=Z B L_{i}^{j}-0.005 \tag{20}
\end{equation*}
\]

The value 0.005 is a small increment between the lower limit of the previous region and the upper limit of the current region.

In the search for a feasible solution, the upper limit of each region will serve temporarily as the \(z_{i}\) value in the first trial.
\(k\), the new index for the regions, follows the order of the \(j\) index. Therefore, \(20 P_{i}^{k}, k=1,2, \ldots, 7\), is not in order according to the largeness of the value of zopk.
c) Rearrange \(Z O P_{\dot{i}}^{k}, k=1,2, \ldots, 7\), in an order of largeness of the value of \(\mathrm{ZOP}_{\mathrm{i}} \mathrm{k}\).

The results of step 3 are shown in Figs. 4 a and 4 b .
Step 1. The first allocation of \(\theta_{i}^{n}\).
The optimal value of \(\theta_{i}^{n}\) which corresponds to the value of \(z_{i}\), given ( \(Z O P_{i}^{k}\) ), \(i=1,2\), can be classified into the following 5 cases (see Table 2)
a) \(\theta_{i}^{n}=0, \quad Z O P_{i}^{k}>z_{i}^{n}\).
b) \(e_{i}^{n}=-\left(Z O P_{i}^{k}+a_{i}^{n}-a_{s}^{n}\right) /\left(2 b_{i}^{n}\right)\),
\[
\text { Lower } z_{i}^{n} \leq Z O P_{i}^{k}<\text { Upper } z_{i}^{n} \text {. }
\]


Fig. 4a. The region or point of search of \(z_{1}\).


Fig. 4b. The region or point of search of \(z_{2}\).
c) \(\quad \theta_{i}^{n}=D^{n}, \quad Z O R_{i}^{p k}<z_{i}^{n}\).
d) \(0 \leq \theta_{i}^{n} \leq D^{n}, \quad Z O P_{i}^{k}=z_{i}^{n}\). In computer programning the optimal value \(\theta_{i}^{n}\) is represented by \(D^{n}+1\), that is, \(\theta_{i}^{n}=D^{n}+1\) at this step.
e) \(\theta_{i}^{n}=D^{n}-\left[-\left(Z O P_{i a}^{k}+a_{i a}^{n}-a_{s}^{n}\right) / 2 b_{i a}^{n}\right]\),
\[
z O P_{i}^{k} z_{i}^{n} \text { and }
\]

Lower \(z_{i a}^{n} \leq Z_{i a}^{k}<\) Upper \(z_{i a}^{n}\). In computer programming the optimal value \(\theta_{i}^{n}\) is represented by \(D^{n}+2\), that is \(\theta_{i}^{n}=D^{n}+2\) at this step.

Step 5. Preliminary elimination of infeasible combinations of regions of search.

Most of the combinations of the region of search are eliniminated in this step. This is done by using the optinal values of \(\theta_{i}^{r_{1}}\) which have been allocated in Step 4.la and 4.lc \(\left(\theta_{i}^{n}=0, \theta_{i}^{n}=D^{n}\right)\), and the constraint \(\left(W_{i}=\sum_{n=1}^{N} \theta_{i}^{n}\right)\). The two conditions that give the infeasible regions are
a) \(\sum_{n=1}^{N} \theta_{i}^{n}>W_{i}\); this may occur when we have \(\theta_{i}^{n}=D^{n}\)
for several \(n^{\prime} s\) in the \(i^{\text {th }}\) origin, and
b) \(\sum_{n=1}^{N} \theta_{i}^{n}<W_{i}\); this may occur when we have \(\theta_{i}^{n}=0\) for many \(n^{\prime}\) s in the \(i^{\text {th }}\) origin, even though we assign the maximurn value ( \(D^{n}\) ) for the rest of \(n^{\prime} s\).

Step 6. The second allocation of \(\theta_{i}^{n}: \quad D^{n}+1, D^{n}+2\), \(\theta_{i}^{n}=-\left(Z O P_{i}^{j}+a_{i}^{n}-a_{s}^{n}\right) / 2 b_{i}^{n}\).

This step is divided into 7 substeps.
1) The identification of the different conditions of optimality.

In each origin the number of occurcnces of each type of optimal condition classified in Step 4 is counted. The type of optimal condition at each stage is also idcntificd. The counters and indexes for different types of conditions of optimality are shown in Tablc ll.
2) Find the available resource for the unassigned stages. The difference between the total resources available at each origin or depot \(\left(W_{i}\right)\) and the sum of all \(\theta_{i}^{n}=D^{n}\) assigncd (SUM \(\mathrm{D}_{\mathrm{i}}\) ) is the available resource for the unassigned stages ( \(\theta\) SUM). It can be put into computer equations as follows:
\[
\begin{align*}
& \operatorname{SUM} D_{i}=\operatorname{SUM} D_{i}+D^{n}  \tag{21}\\
& \theta \operatorname{SUM}=W_{i}-\operatorname{SUM} D_{i} \tag{22}
\end{align*}
\]

Table 1l. Indicator in computer program
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Type of \\
Con- \\
dition
\end{tabular} & \begin{tabular}{c} 
Kind of \\
Condition
\end{tabular} & \begin{tabular}{c} 
Temporary \\
Value
\end{tabular} & \begin{tabular}{c} 
No, of \\
Types at \\
each origin
\end{tabular} & \begin{tabular}{c} 
Sum of \\
\(\sum_{i=1}^{2}\) ke etc.
\end{tabular} & \begin{tabular}{c} 
Index to \\
identify \\
stage
\end{tabular} \\
\hline \(4 . l b\) & \begin{tabular}{l} 
Equation of \\
optimality
\end{tabular} & \(0 \leq \theta_{i}^{n_{1}} \leq \mathrm{D}^{n}\) & ke & ckk & me \(_{k e}\) \\
\hline \(4 . l e\) & \begin{tabular}{l} 
Severely \\
Constrained
\end{tabular} & \(\theta_{i}^{n}=\mathrm{D}^{n}+2\) & \(k c, k k\) & \(p\) & \(m_{k c}\) \\
\hline \(4 . l d\) & \begin{tabular}{c} 
Free varied \\
of Theta
\end{tabular} & \(\theta_{i}^{n}=D^{n}+1\) & \(k\) & \(q\) & \(m_{k}\) \\
\hline
\end{tabular}

When the assigned stages include the temporary value of \(\theta_{i}^{n}=\) equation of optimality and \(\theta_{i}^{n}=D^{n}\), the sum of the resource of the assigned stages \(\left(S \mathrm{SM}_{1}\right)\) will be the sum of all \(\theta_{i}^{n}=D^{n}\) and \(\theta_{i}^{n}=-\left(z_{i}^{n}+a_{i}^{n}-a_{s}^{n}\right) /\left(2 b_{i}^{n}\right)\). The available resource for the unassigned stages ( \(T H_{i}\) ) will be the difference between the total resource available at that origin ( \(W_{i}\) ) and the sum of the resource of the assigned states ( \(\mathrm{SUM}_{\mathrm{i}}\) ), which can be written in computer equations as follows:
\[
\begin{align*}
& \operatorname{SUN}_{i}=\operatorname{SUM}_{i}+D^{n}  \tag{23}\\
& \operatorname{SUM}_{i}=\operatorname{SUM}_{i}+\theta_{i}^{n}  \tag{4}\\
& \mathrm{TH}_{i}=W_{i}-\operatorname{SUM}_{i} \tag{25}
\end{align*}
\]

When the assigned stages include the temporary \(\theta_{i}^{n}\) value \(\left(\theta \theta_{i}^{n}\right)\) of the severely constrained condition and \(\theta_{i}^{n}=D^{n}\), the available resource for the unassigned stages ( \(\theta S_{i}\) ) will be the difference between the total resource available at that origin ( \(W_{i}\) ) and the sum of the resource of the assigned stages (SUM \(\theta \theta_{i}\) ). It can be written in computor equations as follows:
\[
\begin{align*}
\operatorname{SUM} \theta \theta_{i} & =\operatorname{sUM} \theta \theta_{i}+\mathrm{D}^{n}  \tag{26}\\
\operatorname{sUM} \theta \theta_{i} & =\operatorname{sUM} \theta \theta_{i}+\theta \theta_{i}^{n}  \tag{27}\\
\theta S_{i} & =W_{i}-\operatorname{sUM} \theta \theta_{i} \tag{28}
\end{align*}
\]
3) Allocation for \(\theta_{i}^{n}\) which is given by the equation of optimality
\[
\begin{equation*}
\theta_{i}^{n}=\cdot\left(\left(z_{i}^{n}+a_{i}^{n}-a_{s}^{n}\right) / 2 b_{i}^{n} .\right. \tag{29}
\end{equation*}
\]

The \(z_{i}^{n}\) value used in finding the optimal \(\theta_{i}^{n}\) may be divided into 5 catagories.
a) At the point of search. When there is a condition of free variation of \(\theta_{i}^{n}\) in the origin, the \(2 U P_{i}^{n}\) should be used immediately and is fixed.
b) In the region of search. In this case we have to search a whole region or a particular interval of \(z_{i}^{n}\) value to find the optimal value of \(z_{i}^{n}\). The equations for finding the optimal \(z_{i}^{n}\) depend upon the number of equations of optimality in the same origin as follows:
(1) One equation of optimality condition (ke = 1).
\[
\theta_{i}^{n}=\frac{z_{i}^{i m}+\left(a_{i}^{i m}-a_{3}^{i m}\right)}{2 b_{i}^{i m}}=-\left(w_{i}-\sum_{\substack{n=1 \\ n \neq i m}}^{N} D^{n}\right)=-\theta \operatorname{SUM} \quad(30)
\]
or
\[
z_{i}^{i m}=-2 b_{i}^{i m} \theta S U M-\left(a_{i}^{i m}-a_{s}^{i m}\right) .
\]
(2) Two equations of optimality conditions (ke \(=2\) ).
\[
\begin{aligned}
& \frac{z_{i}^{i m}+\left(a_{i}^{j m}-a_{s}^{i m}\right)}{2 b_{i}^{i m}}+\frac{z_{i}^{j m}+\left(a_{i}^{j m}-a_{s}^{j m}\right)}{2 b_{i}^{j m}}=-\left(w_{i}-\sum_{\substack{n=1 \\
m \neq i m \\
n \neq j m}}^{N} D^{n}\right) \\
&=-\theta \text { SUM },
\end{aligned}
\]
\[
z_{i}=z_{i}^{i m}=z_{i}^{j m}=\frac{\left.2 b_{i}^{i m} b_{i}^{j m} \theta S U M-b_{i}^{j m} a_{i}^{i m}-a_{s}^{i m}\right)-b_{i}^{i m}\left(a_{i}^{j m}-a_{s}^{j m}\right)}{\left(b_{i}^{i n}+b_{i}^{j m}\right)} .
\]
(3) Three equations of optimality conditions (ke \(=3\) ).
\[
\begin{gathered}
\frac{z_{i}^{i m}+\left(a_{i}^{i m}-a_{s}^{i m}\right)}{2 b_{i}^{i m}}+\frac{z_{i}^{j m}+\left(a_{i}^{j m}-a_{s}^{j m}\right)}{2 b_{i}^{j m}}+\frac{z_{i}^{k m}+\left(a_{i}^{k m}-a_{s}^{k m}\right.}{2 b_{i}^{k m}} \\
=-\left(W_{i}-\sum_{n=1}^{N} D^{n}\right)=-\operatorname{SSUM},
\end{gathered}
\]
or
\[
\begin{align*}
& z_{i}= z_{i}^{i m}=z_{i}^{j m}=z_{i}^{k m}=\frac{-2 b_{i}^{i n} b_{i}^{j m} b_{i}^{k m} \theta S U M}{}-b_{i}^{j m} b_{i}^{k m}\left(a_{i}^{i m}-a_{s}^{i m}\right) \\
& b_{i}^{i m} b_{i}^{j m}+b_{i}^{j m} b_{i}^{k m}
\end{aligned} \quad \begin{aligned}
& \quad \frac{-b_{i}^{i m} b_{i}^{k m}\left(a_{i}^{j m}-a_{s}^{j m}\right)-b^{i m_{b}} b^{j m}\left(a_{i}^{k m}-a_{s}^{k m}\right)}{+b_{i}^{k m}} \cdot \tag{32}
\end{align*}
\]
(4) Four equations of optimality conditions (ke \(=4\) ).
\[
\frac{z_{i}^{i m_{+}}+\left(a_{i}^{i m}-a_{s}^{i m}\right)}{2 b_{i}^{i m}}+\frac{z_{i}^{j m}\left(a_{i}^{j m}-a_{s}^{j m}\right)}{2 b_{i}^{j m}}+\frac{z_{i}^{k m}+\left(a_{i}^{k m}-a_{s}^{k m}\right)}{2 b_{i}^{k m}}
\]
\[
\begin{align*}
& +\frac{z_{i}^{l m}+\left(a_{i}^{l m}-a_{s}^{l m}\right)}{2 b_{i}^{l m}}=-\left(W_{i}-\sum_{\substack{n=1 \\
n \neq i m} j m, k m, \operatorname{lm}}^{N} D^{n}\right)=-\operatorname{SSUM}, \\
& z_{i}=z_{i}^{i m}=z_{i}^{j m}=z_{i}^{k m}=z_{2}^{1 m} \\
& =-\left(2 b_{i}^{i m_{b}} b_{i}^{j m_{b}} b_{i}^{k m} b_{i}^{I m} \theta S U N \quad+b_{i}^{j m} b_{i}^{k m} b_{i}^{1 m}\left(a_{i}^{i m}-a_{s}^{i m}\right)\right. \\
& +b_{i}^{i m} b_{i}^{k m} b_{i}^{l m}\left(a_{i}^{j m}-a_{s}^{j m}\right)+b_{i}^{i m} b_{i}^{j m} b_{i}^{l m}\left(a_{i}^{k m}-a_{s}^{k m}\right) \\
& \left.+b_{i}^{i m} b_{i}^{j m} b_{i}^{k m}\left(a_{i}^{l m}-a_{s}^{l m}\right)\right) / b_{i}^{i m} b_{i}^{j m} b_{i}^{k m}+b_{i}^{i m} b_{j}^{j m} b_{i}^{l m} \\
& +b_{i}^{i m} b_{i}^{k m} b_{i}^{l m}+b_{i}^{j m} b_{i}^{k m} b_{i}^{l m} . \tag{33}
\end{align*}
\]

Similarly any number of equations of optimality condi.tion in the same origin can be derived.
c) Upper limiting value in the region of search. When there is a sevcrely constrained condition (4.e) in the origin and \(\Theta S_{i} \leq 0\), the maximum value of \(z_{i}\) in the interval of the region that we are searching is used. This value corresponds to the minimum value of \(\theta_{i}^{n}\) that can be allocated to stage \(n\) in this region of search. This occurs when \(\Theta S_{i}\) from equation (28) is less than or equal to zero.
d) The region of search with scvere constraint. When there is a sevcrely constrained condition in the origin and
the value \(\theta S_{i}\) from equations (2d) is larger than zero, \(z_{i}^{n}\) of the equation of optimality (29) can be calculatcd from (6.3b) instead of (6.3c) and the value \(z_{i}^{n}\) can be anywhere within the region.
e) Iterated valuc of \(z_{i}^{n}\). When there is more than one origin with the property of (6.3d) we have a different series of values of \(\theta_{i}^{n}\) each time we repeat the \(D 0-100 p\) of step 6 . This is bccause the valuc \(z_{i}\) is changing each time we complete the DO-loop of step 6. Therefore the DO-loop of step 6 has to be repeated until we get a set of constants, \(z_{i}^{n}\), which give us the optimal \(\theta_{i}^{n}\) value for this combination of regions of search. When this is reached the triggering counter (ckk) will decreasc to zero and the next substep will be executed.
4) Allocation for \(\theta_{i}^{n}\) with severely constrained condition case.

The reason this case has a severely constrained condition is that the condition for optimal \(\theta_{i}^{n}\) is \(\theta_{i}^{n}=D^{n}\), but it is constrained by the priority we give to the equation of optimality in the preceding or the next origin. If this condition is nowhere present in the total system at the current combination of regions of search \((p=0)\), this substep will automatically skip to the next substep.

The maximum allowable, available resource is allocated to \(\theta_{i}^{n}\) in this case so that the value of \(\theta_{i}^{n}\) is as close to
the optimal condition as possible. This is done by checking both constraints
\[
\begin{equation*}
\theta_{i}^{i m k}=D^{n}-\theta_{i a}^{n} \tag{35}
\end{equation*}
\]
and
\[
\begin{equation*}
\theta_{i}^{i m k}=W_{i}-\sum_{\substack{n=1 \\ n \neq i m k}}^{N} \theta_{i}^{n} \tag{36}
\end{equation*}
\]
and choosing the smaller of these two values. This value is the maximum allowable, available amount of resource.
5) Allocation of \(\theta_{i}^{n}\) with frec variation of \(\theta_{i}^{n}\) condition.

This is the last type of \(\theta_{i}^{n}\) in the active origin to be allocated. Since the optimal value can be anything from 0 to \(D^{n}\), it also serves as an allocation to satisfy the constraint
\[
\sum_{n=1}^{N} \theta_{i}^{n}=W_{i}
\]

When this property is not present at the region of search ( \(q=0\) ), this substep will automatically skip to the next substep.
6) Control of Allocation. The control of the allocation serves two functions:
(1) It servcs to check if the optimal \(z_{i}\) is within the intcrval of the region of search, and
(2) as a trigger mechanism for substeps (6.3), (6.4), and (6.5) which can be described as follows: For substcp (6.3) when the counter is triggered, (ckk=0) the search for optimal \(\theta_{i}^{n}\) is complete for this substep and it will go back to step 6 again. This time the substep (6.4) is executed if \(p>0\) but if \(p=0\) the next substep (6.5) will be executed if \(q>0\) and if \(q=0\), the computer will go to substep (6.7)
7) Allocation of constrained origin ( \(s^{\text {th }}\)-depot)

The reason we called this a constraincd origin is that the number of the units supplied from the constrained origin ( \(s^{\text {th }}\)-depot) to the \(n^{\text {th }}\) stage can bc obtained by substracting from the total number of units required by the \(n^{\text {th }}\) stage the sum of the units supplied to the \(n^{\text {th }}\) stage from the first through \((s-1)^{\text {th }}\) depot (or active state). This is equivalent to writing
\[
\theta_{S}^{n}=D^{n}-\sum_{i=1}^{s-l} \theta_{i}^{n}=D^{n} \cdots \theta_{1}^{n}-\theta_{2}^{n} .
\]

Step 7. Calculate total cost of transportation
The cost of all feasible solutions is calculated by substituting the optimal \(\theta_{i}^{n}\) into the cost function equation, and summing all the costs of transportation of each feasible solution.

Step 8. Compare the total cost with that of the previous minimum.

The total cost of transportation of the new feasible solution is compared with that of the previous one. The new mininum is then stored for future comparison.

Step 9. Punch out output on cards

All the values of the feasikle solution are punched on cards, including \(\theta_{i}^{n}, i=1,2,3\) and \(n=1,2,3,4 ;\) the region of search of the new minimum the up-dated minimum cost; and the current total cost.

\section*{ACKNOWLEDGEMENTS}

The author is indebted to Dr. C. L. Hwang, his major professor, for his valuable guidance, tremendous devotion, assistance and constructive criticism in preparing this report. The support and encouragement provided by Dr . F. A. Tillman, Head of the Department, and Dr. L. E. Grosh is sincerely acknowledged. Finally, the author wishes to thank all the staff of the computer ceater for their assistance in debugging the computer program.

\section*{REFRRENCES}
1. Bomman, E. H., and Petter, R. B., "Analysis for Production Management," Richard D. Irvin, Inc., 1961.
2. Bellman, R. E., and Dreyfus, S. E., "Applied Dynamic Programming," Princeton University Press, Princeton, New Jorsey, 1962.
3. Chang, S. S. L., "Digitized Maximurn Principle," Proceedings of I.R.E., 2030-2031, Dec., 1960.
4. Dantzig, C. B., "Linear Programing and Fxiensions," Princeton University Press, Princcton, New Jersey, 1963.
5. Fan, I. Th., and Want C. S., "The Discrete Maximum Principle--A SCudy of Nultistage System Optimization," John Wiley \& Son, Inc., New York, 1964.
6. Fan, L. T., and Wang, C. S., "The Application of the Discrete Piaximum Principle to Transportation Problem," J. Math. \& Physics, 43, 255 (1964).
7. Hyang, C. L., Schrader, G. F., Panchal, J. M., Farı, L. T., and Chen, S. K., "Thc Application of the Discrete Maximurn Principle to Transportation Problems with iinear and Nonlinear cost Funetions," Special Report No. 75, Kansas Engineering Experiment Station, Nov. 1966.
8. Katz, S., "Best Operating Points for Staged Systems" I.\&E.C. Fundamental.s, Vol. 1, No. 4, Nov., 1962.
9. Pontriagin, L. S., "Some Mathematical Problem Arising in Connection with the Thcory of Optimum Automatic Control System, " (in Russian), Session of The Academy of Sciences of The USSR on Scientific Problems of Automating Industry, October 15-20, 1956.
10. Rozonoer, L. I., "The Maximum Principle of L. S. Pontryagin in Optimal-System Theory," Automat, Tel.enech., Moscow, 20, 1320, 1441, 1561, 1960.
11. Sasieni, M., Yaspan, A., and Eriedman, L., "Operation Research Methods," John Wiley \& Son, Inc., New York, 1961.

\section*{APPENDIX A COMPUTER FIOW CHART}

The steps of the computer program are:
1. Read in \(a_{i}^{n}, b_{i}^{n}, a_{3}^{n}, D^{n}, W_{i}, W_{3}\).
2. Calculate the breaking value, \(\bar{z}_{i}^{n}\).
3. Order the breaking values from the largest to the smallest; and assign the region of search.
4. Choose a pair of the region of search, and make the first allocation of \(\theta_{i}^{n} ; 0, D^{n}+1, \theta_{i}^{n}=\frac{-\left(\overline{Z O P} i_{i}^{j}+a_{i}^{n}-a_{s}^{n}\right)}{2 b_{i}^{n}}, D^{n}\) and \(D^{n}+2\).
5. Check the feasibility of the region.
6. Make the second allocation for \(\theta_{i}^{n}: \quad \theta_{1}^{n}=D^{n}+1\);
\[
\theta_{i}^{n}=\frac{-\left(20 p_{i}^{j}+a_{i}^{n}-a_{s}^{n}\right)}{2 b_{i}^{n}} ; \text { and } \theta_{i}^{n}=n^{n}+2
\]
7. Calculate total cost of transportation.
8. Compare the total cost with that of the previous minimurn cost.
9. Punch out the \(\theta_{i}^{n}\) which gives the current minimum, where \(i=1,2,3\) and \(n=1,2,3,4\); the region of the new minimum; the registered minimum; and the current minimum.





(4)


\(120 n=2, \mathrm{D}-4 \mathrm{n}\)
\[
\begin{aligned}
& \text { UPPER } \overline{Z n}_{i \ldots 1}^{n}=Z U_{i-1}^{n} \\
& \text { UPEER } V_{i}^{n}=Z U_{i}^{n}
\end{aligned}
\]
\[
. \quad<0
\]



























GO BACK TO STEP 5 FOR A NEW REGION OF SEARCH


SUBROUTIIT CALHV (IL, ZOP , \(a, b, \theta, i, j, H V)\)
DIETESION \(\mathrm{ZOP}(2,8), a(3,4), b(3,4), \theta(3,4), \operatorname{Hy}(3)\)


SUBROUTINE ALLIL2 (kma, kmb, kmc, i, ia, \(\theta, \mathrm{D}, \mathrm{TH}\) ) DIMENSIOAT \(\theta(3,4), D(4), \mathrm{TH}(2)\)





APPENDIX B SYMBOL TABLE FOR COMPUTER PROGRAM
\begin{tabular}{|c|c|c|}
\hline Program Symbol & Mathematical Symbol & Explanation \\
\hline A ( \(1, N\) ) & \(a_{i}^{n}\) & The coefficient of the first order theta in the cost function expression. \\
\hline \(B(I, N)\) & \(b_{i}^{n}\) & The coefficient of the second order theta in the cost function expression. \\
\hline \(\mathrm{BB}(\mathrm{I}, \mathrm{J})\) & \[
b_{i}^{n}
\] & Same as above but the superscript is ordered according to the value of the upper breaking value. \\
\hline C & & A counter to indicate whether the \(\theta_{1}^{n}=\) equation of optimality have been allocated. It is use for allocating the severely constrained condition. \\
\hline CKK & & A counter of the number of the states with the severely constrained condition. \\
\hline co & & A counter to indicate whether the ZOP \({ }_{1}\) ( 3 c ) is out of order. \\
\hline COUNT & & The number of time step 6 is repeating when there is a severely constrained condition. \\
\hline D (N) & \(D^{n}\) & The number of units of the resource required by the \(n^{\text {th }}\) demand point. \\
\hline \(F(I, N)\) & \(\mathrm{F}_{\mathrm{i}}^{\mathrm{n}}\left(\theta_{i}^{\mathrm{n}}\right)\) & The cost incurred by transporting \(\theta_{j}^{n}\) \\
\hline H(I) , HV(LL) , HV(LI) & \(\mathrm{H}_{\mathrm{v}}^{\mathrm{n}}\) & The Hamiltonian function. \\
\hline I & i & Subscript for origin. \\
\hline IA & & Subscript of the next or preceding origin. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline IM, IME & & The index of the first stage to have a \(\theta_{i}^{n}=\) equation of optimality condition. \\
\hline IMK & & The index of the first stage to have a severely constrained condition. \\
\hline IT & \(\theta_{i}^{n}\) & The integerized \(\theta_{i}^{n}\). \\
\hline J & & The subscript for the ordered region of search, ZOPj. \\
\hline JM, JME & & The index of the second stage to have a \(\theta_{i}^{n}=\) equation of optimality condition. \\
\hline J1 & & Superscript of the ordered region of search, ZOPjl. \\
\hline JMIN & & The optimal region of search of the second origin. \\
\hline JOMIN & & The optimal region of search of the first origin. \\
\hline K & & A counter for the number of free variation of \(\theta_{j}^{n}\) condition; It is also used for subscript in place of i for a loop inside i-"DO-loop". \\
\hline KC & & A counter for the number of free variation of \(\theta_{i}^{n}\) condition. \\
\hline KE & & A counter for the number of \(\theta_{i}^{n}=\) equation of optimality condition. \\
\hline KK & & A counter for the number of severely constrained condition. \\
\hline KKK & & A counter for the number of stages in the origin which has \(\mathrm{D}^{n}\) larger than \(W_{i}\). \\
\hline KMA & & The index of the first stage to have a severely constrained condition. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline P & & A counter to indicate whether the \(\theta_{1}^{n}\) with the severely condition has been allocated. \\
\hline \(\operatorname{PN}(\mathrm{I}, \mathrm{N})\) & & Identification for stages in the origin where \(D^{n}\) is larger than \(W_{i}\). \\
\hline \(\cdots\) & & A counter to indicate whether the \(\theta_{I}^{n}\) with the free variation of \(\theta_{2}^{n}\) conditon has been allocated. \\
\hline SM-IN & \(\mathrm{C}_{\text {SN }}\) & The current minimum total cost of transportation. \\
\hline SUM(I) & \[
x_{i}^{n}
\] & The state variable, the total amount of resources which have been transported from the ith depot to the first \(n\) stages (demand points). \\
\hline SUM C (N) & \(\sum_{i=1}^{S} F_{i}^{n}\left(\theta_{i}^{n}\right)\) & The total cost of transporting \(\theta_{i}^{n}\) from all depotsto the \(n{ }^{\text {th }}\) demand point. \\
\hline SUM D (I) & - & Similar to SUM(I) except only \(\theta_{i}^{n}=D^{n}\) are added. \\
\hline SUM F & \(\mathrm{X}_{5}^{n}\) & The total cost of transporting \(\theta_{1}^{n}\) from all depots (origins) to the first \(n\) demand points. \\
\hline SUM TT(I) & & Similar to SUM(I) except only \(\theta_{1}^{n}=D^{n}\) and \(\theta \theta_{i}^{n}=D^{n}-C_{i a}^{n}\) (where \(\theta_{i a}^{n}=\) equation of optimality and \(\theta e_{1}^{n}\) has a severely constrained condition). \\
\hline SUM T (3) & & Similar to SUM(I) but \(i=3\). \\
\hline SUM W(I) & & The constraint for the stages with \(\theta_{i}^{n}=0\). \\
\hline T( \(\mathrm{I}, \mathrm{N}\) ) & \(\theta_{i}^{n}\) & The quantity of the resources sent from the \(i^{\text {th }}\) depot (origin) to the \(\mathrm{n}^{\text {th }}\) demand point. \\
\hline TH(I) & & The available resource to be allocated to the free variation of \(\theta_{i}^{n}\) condition. \\
\hline
\end{tabular}
\(\left.\begin{array}{ll}\text { TR } \\ \text { TS(I) }\end{array} \quad \begin{array}{l}\text { The remainder of } \theta_{1}^{n} \text { in the origin } \\ \text { due to integerization of } \theta_{i}^{n} .\end{array}\right\}\)
\begin{tabular}{ll} 
KMB \\
KMC. & \begin{tabular}{l} 
The index of the second stage \\
to have a severely constrained
\end{tabular} \\
condition.
\end{tabular}

\section*{APPENDIX C CDMPUTER PRDGKAM}
//MASTER JDE DCI50406GCO1.SKDPCKATONGS
20,20,900
// EXEC FTECLGKS
//FDRT.SYSLIN DE UNIT=194
//FDRT.SYSIN LD *
DIMENSION ZCP \((2,8), Z U(3,4), Z B L(2,4), \operatorname{NK}(2), W(3), 0(4)\)
DIMENSIDN \(H(2), \operatorname{SUM}(3), \operatorname{SUMW}(3), \operatorname{TT}(3,4), \operatorname{SUPD}(2), \operatorname{ME}(4)\)
DIMENSIDN \(A(3,4), R(3,4), T(3,4), B B(3,4), \operatorname{ZUP}(3,4)\)
DIMENSIDN SUMTT(2),PM(3,4),MPC(4),ZLOW(3,4),MK(4)
DIMENSIDN TH \((2), \operatorname{SUMC}(4), F(3,4), \operatorname{IT}(3,4), \operatorname{SUMT}(3), T S(2)\)
DIMENSIDN HHV(6),ZZ(2), M(4), \(\operatorname{HV}(3), Z B U(2,4)\)
100 FORMAT(3F8.4, 3F 10.0 )
102 FQRMAT \((2 H I=, I 3,5 H \quad J=, I 3,16 H \quad\) Z8U(I,J) \(=, F 9.5)\)
103 FDRMAT(28HTHIS IS AN INFEASIBLE REGIDN)
107 FURMAT (I4)
108 FDRMAT(3F15.3)
101 FORMAT(2HI=,I3,4H \(N=, I 3,11 H \quad Z U P(I, N)=, F 9.3\),
\(\mathrm{C} 12 \mathrm{H} \quad \mathrm{ZLOW}(I, N)=, F 9.3)\)
104 FDRMAT \((3 H J D=, 12,5 H \quad J=, 12,15 H \quad Z O P(I-1, J O)=, F 9.3\),
\(\mathrm{C} 12 \mathrm{H} \quad 20 \mathrm{P}(I, \mathrm{~J})=, F 9.3)\)
109 FDRMATI8H JDMIN=,I2,8H JMIN=,I2,9H SMIN=,F10.2,
C9H \(\quad\) SUMF \(=, F 16.2)\)
110 FORMAT ( \(1 \times, 11\) HTHIRDCHECK \(=, 2 F 9.2\) )
111 FDRMAT (F10.3)
112 FDRMAT (2F15.6)
113 FDRMAT(2F9.1)
114 FURMAT(1X,IIHFIRSTCHFCK \(=413,9 F 6.1)\)
\(L D=0\)
\(\mathrm{N} N=4\)
\(N S=3\)
900 DU \(1 I=1,2\)
DO \(2 N=1, N N\)
READ(1,100)A(I,N),t(I,N),A(NS,N),O(N),W(I),W(NS)) (I)
```

 IF(B(I,N))40,50,60C
 40 T(I,N)=O(N)/2.
ZUP(I,N)=-A(I,N)+A(NS,N)-2.\#B(I,N)*T(II,N)
ZLOW(I,N)=2UP(I,N)
GO TO 2
50 2UP(I,N)=-A(I,N)+A(NS,N)
ZLOW(I,N)=2UP(I,N)
GO TC 2
60 2UP(I,N)=-A(I,N)+A(NS,N)
ZLOW(I,N)=-A(I,N)+A(NS,N)-2.*B(I,N)*D(N)
2 WRITE(2,101)I,N,ZUP(I,N),ZLUW(I,N)
SMIN=1000000.
OO 3 J=1,NN
ZBU(1,J)=-1000.
DO 4N=1,NN
IF(ZBU(1,J)-ZUP(I,N))41,51,61
41 ZBU(I,J)=ZUP(I,N)
51 NO=N
GO TO 4
61 GO TO 4
4 continue
ZU(I,NO)=ZUP(I,NO)
ZUP(I,NO)=-1000
BB(I,J)= B(I,NO)
ZBL(I,J)=2LOW(I,NO)
3 Wiz1TE(2,102)I,J,ZBU(1,J)
K=^
DO }5\textrm{J}=1,N
IF(BB(I,J))42,52,62
42 K=K+1
ZOP(I,K)=ZBU(I,J)-.005
GO TO 5
52 K=k+1
2OP(1,K)=2BU(1,J)
K=K+1

```
```

 ZUP(I,K)=ZBU(II,J)-..NOW
 GU TC 5
 62K=K+1
 ZOP(I,K)=ZBU(I,J)-.005
 K=k+1
 ZCP(I,K)=2BL(I,J)-.005
 5 CONTINUE
 NK(I)=K
 1. WRITE(2,107)NK(I)
 NJO=NK(1)
 NJ=NK(2)
 I= 1
 NJO=NJO-1
 316 CO=0.
00 300 J0=1,NJO
IF(ZOP(I,JO)-ZOP(I,JO+1) 340,360,360
340 2AP=LOP(I,JO)
ZCP(I,JO)=ZOP(I,JO+1)
ZUP(I,JO+1.)= ZAP
CU}=\textrm{CO}+1
360 GO TO 300
3 0 0 ~ C U N T I N U E ~
IF(CO)361,351,361
361 GU TO 316
3 5 1 ~ N J O = N J O + 1
00 500 J0=1,NJO
500 WRITE(2,111)ZOP(I,JO)
I=2
NJ=NJ-1
317CO=0.
DO 301 J0=1,NJ
IF(ZOP(1,JO)-ZOP(I,JO+11)343,363,363
343 2AP=2OP(1,JO)
ZOP(I,JO)=ZOP(I,JU+1)
ZOP(I,JO+1)=ZAP

```
\(\mathrm{CO}=\mathrm{CC}+1\).

\section*{363 GU IC \(3 C I\)}

\section*{301 CONTINUE}

IF (CO) \(364,354,364\)
364 ©0 TO 317
\(354 \mathrm{NJ}=\mathrm{NJ}+1\)
DO \(501 \mathrm{JO}=1, \mathrm{NJ}\)
501 WRITE(2,111)20P(1, JO)
\(W T=W(1)+W(2)+W(3)\)
DU \(6 \mathrm{JO}=1, \mathrm{NJO}\)
OO \(8 \mathrm{~J}=1, \mathrm{NJ}\)
\(L=1\)
\(\mathrm{I}=\mathrm{L}+\mathrm{l}\)
\(Q=0\).
\(C=0\).
\(\mathrm{P}=0\).
COUNT \(=0\).
\(C K K=0\).
\(22(1)=0\).
\(Z Z(2)=0\).
[0] \(7 \mathrm{~K}=1,3\)
SUM (K) \(=0\).
SUMH(K) =WT
DU \(800 \mathrm{~N}=1, \mathrm{NN}\)
\(800 \operatorname{PM}(K, N)=0\).
7 CONTINUE
WRITE(2,104)JO,J,ZOP(I-1,JO), ZOP(I, J)
DO \(9 \mathrm{~N}=1\), NN
\(\operatorname{ZUP}(I, N)=Z \cup(I, N)\)
\(\operatorname{ZUP}(I-1, N)=2 \cup(I-1, N)\)
\(\operatorname{IF}(\) ZOP (I, J)-ZUP(I, v) \(45,55,65\)
\(45 \operatorname{IF}(2 \mathrm{OP}(I, J)-2 \operatorname{LOW}(1, N)) 46,56,56\)
\(46 \quad 1 F(20 P(I-1, J 0)-Z U P(I-1, N)) 47,57,57\)
\(471 F(20 P(I-1, J O)-Z L O W(I-1, N)) 48,58,58\)
\(49 H(I-1)=(\operatorname{COP}(I-1, J U)+A(I-1, N)-A(N S, N)) * U(N)+A(I-1, N) * D(N) * * 2\)
```

 H(I)=(ZOP(I,J)+A(I,N)-A(NS,N))*D(N)+B(I,N)*L(N)**2
 IF(H(I-1)-H(I))49,59,59
 49 IF(O(N)-W(I-1))830,830,854
 830 T(I,N)=0.
T(I-1,N)=D(N)
GO TC 116
850 T(I,N)=D(N)-W(I-1)
T(I-1,N)=W(I-1)
BO1 PM(I-1,N)=1.
PM(I,N)=1.
GO TO 116
59 IF(O(N)-W(I)) 831,831,851
831 T(I-1,N)=0.
T(I,N)=D(N)
GO TC 116
851 T(I,N)=W(I)
T(I-1,N)=D(N)-W(I)
GO TO BOI
58 T(I-1,N)=-(2OP(I-1,JO)+A(I-1,N)-A(NS,N))/(Z.*B(I-1,N))
T(I,N)=D(N)+2.
GO TG 9
57 IF(D(N)-W(I))832,832,852
832 T(I,N)=D(N)
T(I-1,N)=0.
GO TO 1l6
852 T(I,M)=W(I)
T(I-l,N)=C.
GO TO 801
56 IF(ZUP(I-1,JO)-ZUP(I-1,N))70, B0,90
70 IF(ZCP(I-1,JO)-ZLOW(I-1,N))71,81,81
71 T(I,N)=-(ZOP(I,J)+A(I,N)-A(NS,N))/(2.*R(I,N))
T(I-1,N)=D(N)+2.
GO TO 9
81 T(I,N)=-(ZOP(I,J)+A(I,N)-A(NS,N))/(Z.*B(I,N))
T(I-1,N)=-(ZOP(I-1,JO)+A(I-I,N)-A(NS,N))/(2.*S(I-I,N))

```

GU TC 9
\(8 \mathrm{D}(1, N)=-(Z O P(I, J)+A(I, N)-A(N S, N)) /(2 \cdot \# B(I, v))\)
\(T(I-1, N)=0(N)+1\) ．
GO TD 9
\(90 \mathrm{~T}(I, N)=-(\operatorname{ZDP}(I, J)+A(I, N)-A(i J S, N)) /(2 . * B(1, N))\)
\(T(I-1, N)=0\) 。
GD TO 1 I 6
55 1F（2DP（1－1，JD）－ZUP（1－1，N））72，82，92
\(72 \operatorname{IF}(Z O P(I-1, \sqrt{2})-\operatorname{ZLOW}(I-1, N)) 73,83,83\)
73 IF（D（N）－W（I－1））833，833，853
\(833 \mathrm{~T}(1, N)=0\) ．
\(T(I-1, N)=D(N)\)
GU TD 116
\(853 \mathrm{~T}(1, \mathrm{~N})=0\).
\(T(1-1, N)=W(I-1)\)
GO TO 801
\(83 T(I, N)=D(N)+1\) 。
\(T(I-I, N)=-(Z D P(I-I, J O)+A(I-1, N)-A(N S, N)) /(2 \cdot * 8(I-1, N))\)
GO TD 9
\(82 T(1, N)=D(N)+1\) ．
\(T(I-1, N)=D(N)+1\).
GD TD 9
\(92 \mathrm{~T}(1, N)=\mathrm{D}(\mathrm{N})+1\) ．
\(T(I-1, N)=0\) ．
GU TD 116
\(65 \operatorname{IF}(2 D P(I-I, J 0)-\operatorname{ZUP}([-1, N)) 74,84,94\)
74 IF（ZCP（1－1，JD）－7LOW（I－I，N））75，85，85
75 GO TL 73
\(85 \mathrm{~T}(\mathrm{I}, \mathrm{N})=0\) 。
\(T(I-I, N)=-(2 D P(I-1, J \cup)+A(I-1, N)-A(N S, N)) /(2 \cdot * B(I-I, N))\)
GO TC 116
\(84 T(I, N)=0\).
\(T(I-I, N)=D(N)+1\).
GU TC II6
\(94 \mathrm{~T}(\mathrm{I}, \mathrm{N})=\mathrm{C}\) ．
```

 T(1-1,N)=0.
 T(NS,N)=D(N)
 G0 TO 117
 116 DO 10 K=1,2
IF (PM(K,N)-1.) 834,844,834
834 IF(T(K,N)-D(N))76,86,76
844 IF(T(K,N)-W(K))835,86,835
835 LF(T(K,N)) 836,87,836
8 3 6 ~ I F (T (K , N) - D (N)) 8 4 6 , 1 0 , 1 0
846 SUM(K)=SUM(K)+T(K,N)
GO TO 10
76 IF(T(K,N))77,87,77
77 GO TO 10
8 7 \operatorname { S U M W } (K) = S U M W (K) - D (N)
GOTO 10
86 SUM(K)=SUM(K)+T(K,N)
SUMW(3)=SUMH(3)-T(K,N)
10 CONT INUE
GO TO ?
117 T(3,N)=D(N)
SUM(3)=SUM(3)+T(3,N)
9 WRITE(2,112)T(1,N),T(2,N)
DO 11 K=1,3
IF(SUM(K)-W(K))78,78,99
78 IF(SUMW(K)-W(K))79.89,
79 WRITE(2.103)
IX=1
00 405 N=1,NN
WRITE(2,113)T(1,N),T(?,N)
4O5 CONTINUE
WRITE(2,107)IX
G0 TU \&
89 KKK=0.
DO 802 N1=1,NN
IF(T(K,N1))838, BD2,839

```
```

938 KKK=KKK+1
MPC(KKK)=N1
8 0 2 ~ C O N T ~ I N U E -
IF(KKK-1)11,849,11
849 N=MPC(1)
IF(PN(K,N))840,11,840
840 IF(K-1)570,880,87L
870 KA=K-1
GO TO \&10
880 KA=K+1
810 IF(T (K,N)-W(K))871,11,871
871 IF(D(N)-W(K))11,11,882
882 T(K,N)=W(K)
T(KA,N)=U(N)-W(K)
GO TD 11
98 GO TD 79
11 CONTINUE
200 00 12 I=1,2
SUM(I)=0.
SUMD(I)=0.
SUMTT(I)=0.
K=0
KE=0
KK=0
DN13 N=1,NN
IF(PN(I,N)-1.1837,847,837
837 IF(T(I,N)-(D(N)+1.))14n,150,160
847 GO TO 151.
140 1F(T(I,N)-(U(N)))141,151,151
141 IF(T(I,N))142,152,162
142 G0 TE 79
152 GD TO 118
162KE=KE+1
ME(KE)=N
118 SUM(I)=SUN(I)+T(I,w)

```
```

 GO TC 13
 151 SUMD(I)=SUMU(I)+T(I,N)
 SUMTT(I)=SUMTT(I)+T(I,N)
 GD TE 118
 150 K=K+1
 M(K)=N
 GO TC 13
 160 KK=KK+1
 IF(I-1) 143,153,143
 143 I A=I-1
 J = \
 NJl=NJ
 119 IF(C)144,154,144
 144 IF(TS(I))347,357,357
 347 GO TC 13
 357 T(I,N)=D(N)-T(IA,N)
 P=p-1.
 GO TO 151
 154 TT(I,N)=D(N)-T(IA,N)
P=P+1.
SUMTT(I)=SUMTT(I)+TT(I,N)
GO TC 13
153 I A = I + I
J1= JC
NJI=NJO
G0 TC 119
13 CONTINUE
IF(C)145,155,145
145 IF (KK) 348,348,368
348 GO TO 12
368 IF(TS(I))349:359,359
359 G0 T0 12
349 KC=0
TH(I)=W(I)-SUM(I)
IF(TH(I))370,380,380

```
```

370 bu TC 79
380 DO 303 N=1,4
IF(T(1,N)-(D(N)+2.))371,381,371
371 GU TO 303
381 KC=KC+1
MK(KC)=N
303 CONTINUE
IF(KC-2)373,3\&3,393
373 IMK=NK(1)
T(I,IMK)=TH(I)
P=P-1.
GO TO 12
383 P=P-2.
DO 304 L1=1,2
IF(Ll-2)374,384,374
3 7 4 ~ K M A = N K (1) ~
KMB=NK(2)
GO TO 319
384 KMA=NK(2)
KMB=MK (1)
319 WRITE(3,114)KMA,KMB,I,IA,T(1,1),T(1,2),T(1,3),T(1,4),
CD(1),D(2),D(3),D(4),,TH(1)
CALL ALLTI (KMA,KMB,I,IA,T,D,TH)
WRITE(3,110)T(I,KMA),T(I,KMB)
LL=KMA
HHV(LI)=0.
CALL CALHV (LL, LOP,A,B,T,I,JI,MV)
HHV(LI)=HHV(LI)+HV(LL)
LL=KNB
CALL CALHV (LL, ZOP,A,B,T,I,J1,HV)
HHV(L1)=HHV(Ll)+HV(LL)
IF(LI-2)375,385,375
375 TM1=T(I,KMA)
TMZ =T(I,KMB)
GO TC 304

```
```

3U4 CONTINUE
385 IF(HHV(1)-HHV(2))376,3e6,,86
376 T(I,KMA)=TM1
T(I,KMS)=TM2
GO TO 12
386 GU TC 12
393 P=P=3.
D0 305 L1=1,6
IF(LI-2)377,387,397
397 IF(LI-4)378,388,398
398 IF(LL-6)379,389,389
389 KMA=MK(3)
KMB=NK(2)
KMC=NK(1)
GO TO 320
379 KMA=NK(3)
KMB=NK(1)
KMC=MK(2)
GO TO 320
388 KMA=MK(2)
KMB=MK(3)
KMC=MK(1)
GO TO 320
378 KMA=MK(2)
KMB=MK(1)
KMC=MK(3)
GO TO 320
387 KMA=MK(1)
KMB=NK(3)
KMC=MK(2)
GO TO 320
377 KMA=NK(1)
KM9=MK(2)
KMC=NK(3)
GO TC 320

```
```

320 CALL ALLT2 (KMA,KMB,KMC,I,IA,T,D,TH)
HHV(L1)=0.
LL=KMA
CALL CALHV (LL,ZOP,A,B,T,I,JI,HV)
HHV(Ll)=HHV(LI)+HV(LL)
LL=KMB
CALL CALHV (LL,ZOP,A,B,T,I,Jl,|V)
HHV(L1)=HHV(L1)+HV(LL)
LL=KMC
CALL CALHV (LL,IOP,A,P,T,I,JI,HV)
HHV(L1)=HHV(L1)+HV(LL)
IF(Ll-2)440,450,45!
440 TM1=T(I,KMA)
TM2=T(I,KMB)
TM3=T(I,KMC)
GO TO 305
450 IF(HHV(LI-1)-HHV(L1))441,451,451
441 T(I,KMA)=TM1
T(I,KMB)=TM2
T(I,KMC)=TM3
451 GO TC 305
305 CONTINUE
GO TC 12
155 IF (K-1)147,157,167
147 IF(KE-1)148,158,168
148 GO TO 12
158 IM=ME(1)
IF(KK)470,470,490
470 T(I,IM)=W(I)-SUMD(I)
Z=-2.*P(I,IM)*T(I,IM)-(A(I,IM)-A(NS,IM))
744 IF(Z-20P(I,J1))745,79,79
745 IF(J1-NJI)746,12,12
746 IF(L-ZOP(I,J1+1))79,79,12
490 TSUM=W(I)-SUMO(I)
TSUI=W(I)-SUMTT(I)

```
```

 IF(TSUI)471,481,401
 4 7 1 ~ Z = 2 0 P (1 , N 1)
CALL CALTI (Z,A,B,I,KM,NS,T,IT)
T(I,IM)=T(I,IM)+1.
G0 TO 323
481 Z=-2.*8(I,IM):TSUI-(A(I,IM)-A(NS,IM))
CALL CALTI (Z,A,B,I,IM,NS,I,IT)
GO TC 323
168 IF(KE-3)149,159,169
149 TSUM=W(I)-SUMD(I)
IM=ME(1)
JM=ME(2)
IF(KK)472,472,492
4 7 2 ~ C A L L ~ C A L Z 2 ~ (A , B , I , I M , J M , T S U M , N S , Z)
CALL CALTI (Z,A,B,I,IM,AS,T,IT)
T(I,JM)=W(I)-SUMO(I)-T(I,IM)
G0 TO 744
492 IF(TSUI) 473,483,483
4 7 3 ~ 2 = Z O P (1 , J 1)
CALL CALTI (Z,A,B,I,IM,NS,T,IT)
CALL CALTI (Z,A,B,I,JM,NS,T,IT)
T(I,IN)=T(I,IM)+1.
T(I,JM)=TII,JM)+1.
G0 TC 323
4 9 3 CALL CALZ2 IA,B,I,IM,JM,TSUI,NS,Z)
CALL CALTI IZ,A,B,I,IM,NS,T,IT)
CALL CALTI (Z,A,B,I,JM,NS,T,IT)
G0 TO 323
159 TSUM=W(I)-SUMO(I)
I M=ME(1)
JM=ME(2)
KM=ME(3)
IF (KK)474,474,494
4 7 4 ~ C A L L ~ G A L Z 3 ~ (A , B , N S , I M , J M , K M , T S U M , Z)
CALL CALTI (Z,A,B,I,IH,NS,T,IT)

```
```

 CALL CALTI (Z,A,R,I,JM,NS,T,IT)
 T(I,KM)=W(I)-SUMC(I)-T(I,IM)-T(I,JM)
 GO TO 744
 494 IF(TSUI)475,485,485
475 Z=LOP(I,J1)
CALL CALT1 (Z,A,B,I,IM,NS,T,IT)
CALL CALTI (Z,A,B,I,JM,NS,T,IT)
CALL CALTI (Z,A,B,I,KM,NS,T,IT)
T(I,IM)=T(I,IM)+1.
T(I,JM)=T(I,JM)+1.
T(I,KM)=T(I,KM)+1.
GO TO }32
485 CALL CALZ3 (A,B,NS,IM,JM,KM,TSUM,Z)
CALL CALTI (Z,A,B,I,IM,NS,T,IT)
CALL CALTL (Z,A,B,I,JM,NS,T,IT)
CALL CALT1 (Z,A,B,I,KM,NS,T,IT)
GO TO 323
323 IF(CCUNT)445,445,465
4 4 5 ~ C K K = C K K ~ + 1 . ~
465 IF(ZZ(I)-Z)447,457,447
4 4 7 ~ 2 Z (I) = 2
GU TC 12
457 IF(Z-ZOP(I,JI))448,448,468
448 IF(Jl-NJI)543,469,469
543 IF(Z-ZOP(I,JI+1))468,468,469
469 TS(I)=TSUI
CKK=CKK-1.
GO TO 12
468 GO T0 79
169 IM=ME(1)
JM=ME(2)
KM=ME (3)
LM=ME(4)
Z1*2.*8(I,IM)*R(I,NM)*R(I,KM)*B(I,LM)*W(I)
Z2=B(I,JM)*B(I,KM)*B(I,LM)*(A(I,IM)-A(NS,IM))

```
\(Z 3=R(I, I M)=B(I, K M)=Q(I, L M)=(A(I, J M)-A(N S, J M))\)
\(Z 4=B(I, I M) * B(I, J M) * P(I, L M) *(A(I, K M)-A(N S, K M))\)
\(Z 5=B(I, I M)=B(I, J M) * B(I, K M)=(A(I, L M)-A(N S, L M))\)
\(Z 6=B(I, J M) * B(I, K M)=B(I, L M)+B(I, I M) * B(I, K M)=B(I, L M)\)
\(27=8(I, I M)=R(I, J M)=B(I, L M)+B(I, I M)=B(I, J M)=A(I, K M)\)
\(Z=-(Z 1+7.2+Z 3+Z 4+Z 5) /(Z 6+Z 7)\)
\(I T(I, I M)=-(Z+A(I, I M)-A(N S, I M)) /(2 \cdot B(I, I M))\)
\(T(I, I M)=I T(I, I M)\)
\(I T(I, J M)=-(Z+A(I, J M)-A(N S, J M)) /(2 \cdot * B(I, J M))\)
\(T(I, J M)=I T(I, J M)\)
\(I T(I, K M)=-(Z+A(I, K M)-A(N S, K M)) /(2, B(I, K M))\)
\(T(I, K M)=I T(I, K M)\)
\(T(I, L M)=W(I)-T(I, I M)-T(I, J M)-T(I, K M)\)
GO TD I2
\(157 \mathrm{I} M=M(\mathrm{~K})\)
IF (KE-1) 170,180,190
170 IF (KK) 171, 181,171
\(171 Q=0+1\).
GO TO 12
\(181 \mathrm{~T}(I, I M)=W(I)-S U M D(I)\)
GO TC 12
180 IME=ME(1)
\(I T(I, I M E)=-(Z U P(I, I M)+A(I, I M E)-A(N S, I M E)) /(2 . * B(I, I M E))\)
\(T(I, I M E)=I T(I, I M E)\)
IF (KK) 172,182,172
\(1720=0+1\).
GOTO 12
\(182 \mathrm{~T}(\mathrm{I}, \mathrm{IM})=\mathrm{H}(\mathrm{I})-\mathrm{SUMD}(I)-\mathrm{T}(\mathrm{I}, \mathrm{I} M E)\)
GO TO 12
190 IF \((K E=3) 173,183,183\)
173 IME=ME(1)
\(J M E=M E(2)\)
\(I T(I, I M E)=-(Z U P(I, I M)+A(I, I M E)-A(N S, I M E)) /(2 \cdot \operatorname{Ha}(I, I M E))\)
\(T(I, I M E)=I T(I, I M E)\)
\(I T(I, J M E)=-(\) ZUP \((I, I M)+A(I, J M E)=A(N S, J M E)) /(2 . * 3(I, J M E))\)
```

 T(I,JME)=IT(I,JME)
 IF(KK)174,184,174
 174Q=0+1.
GO TO 12
184 T(I,IM)=W(I)-SUMO(I)-T(I,IME)-T(I,JME)
GOTO 12
183 IME=NE(1)
JME=ME(2)
KME=ME(3)
IT(I,IME)=-(ZUP(I,IM)+A(I,IME)-A(NS,IME))/(2.*8(I,IME))
T(I,IME)=IT(I,IME)
IT(I,JME)=-(ZUP(I,IM)+A(I,JME)-A(NS,JNE))/(2.*B(I,JNE))
T(I,JME)=IT(I,JME)
IT(I,KME)=-(ZUP(I,IM)+A(I,KME)-A(NS,KME))/(2.*R(I,KME))
T(I,KME)=IT(I,KME)
T(I,IM)=W(I)-T(I,IME)-T(I,JME)-T(I,KME)
GO TO 12
167 IF(KE-1)175,185,195
175 C=C+1.
GO TO 12
185 IME=NE(1)
IT(I,IME)=-(ZUP(I,IM)+A(I,IME)-A(NS,IME))/(2.W8(I,IME))
T(I,IME)=IT(I,IME)
GO TD 175
195 IME=ME(1)
JME=ME(2)
IT(I,IME)=-(ZUP(I,IM)+A(I,IME)-A(NS,IME))/(2.*B(I,IME))
T(I,IME)=IT(I,IME)
IT(I,JME)=-(ZUP(I,IM)+A(I,JME)-A(NS,JME))/(2.*B(I,JME))
T(I,JME)=IT(I,JME)
12 CONTINUE
IF(CKK) 454,454,444
444 COUNT=CDUNT +1.
GO TO 200
454 IF(P)177,187,177

```
```

177 C=C+1.
P=\rho/(COUNT+1.)
GO TO 200
187 IF(O)178,188,178
178Q=Q/(COUNT+1.)
GO TO 120
188 GO TO 121
120 DO 14 I=1,2
OO 15 N=1,NN
IF(T(I,N)-(0(N)+I.))240,250,240
240 GO TO 15
250 TH(I)=W(I)-SUM(I)
IF(TH(I))241,251,261
241 GO TO 79
251 T(I,N)=0.
261 IF(I-2)242,252,242
242 IA=I +1
GO TO }12
252 I A=I-1
122 IF(T(IA,N)-(D(N)+1.))243,253,243
243 IF(TH(I)-(D(N)-T(IA,N))1244,244,264
244 T(I,N)=TH(I)
GO TC I23
264 T(I,N)=O(N)-T(IA,N)
GO TO 123
253 IF(TH(I)-O(N))245,245,?65
245 T(I,N)=TH(I)
GO TC 123
265 T(I,N)=C(N)
123 SUM(I)=SUM(I)+T(I,N)
15 CONTINUE
14 CONTINUE
121 SUMT (3)=0.
00 607 K=1,2
IF (K-1)642,642,652

```
```

642 KA=K+1
Gu TC 607
6 5 2 ~ K A = K - 1 ~
6 0 7 CALL ALLT3 (T,K,W,D,NN,KA)
DO 16 N=1,NN
T(3,N)=D (N)-T(1,N)-T(2,N)
IF(T(3,N))246,256,256
246 GO TO 79
256 SUMT(3)=SUMT(3)+T(3,N)
16 CONTINUE
IF(W(3)-SUMT(3)1247,257,247
247 GO TO 79
257 SUMF=0.
O0 17 N=1,NN
SUMC (N)=0.
00 18 I=1,3
F(I,N)=A(I,N)*T(I,N)+B(I,N)*T(I,N)**2
SUMC(N)=SUMC(N)+F(I,N)
18 CONTINUE
SUMF=SUMF+SUMC(N)
17 CONTINUE
|F(SUMF-SMIN\248,248,258
249 SMIN=SUMF
JOMIN= JO
JMIN=\
GO TO 258
25800 19 N=1,NN
WRITE(2,108)T(1,N),T(2,N),T(3,N)
19 CONTINUE
WR1TE(2,109) JOMIN, JMIN, SMIN,SUMF
8 CONTINUE
6 CONTINUE
LO=LC+1
NN=3
IF(LO-1)921,922,921

```
```

922 GD TD 900
921 STDP
END
SUBRDUTINE ALLTI(KMA,KMP,I,IA,T,D,THI)
DIMENSIDN T(3,4),D(4),TH(2)
110 FORMAT(1X,11HTHIRDCHECK=,2F9.2)
115 FDRMAT(1X,12HSECDNDCHECK=,F9.2)
T(I,KMA)=O(KMA)-T(IA,KMA)
WRITE(3,115)T(I,KMA)
IF(T(I,KMA)-TH(I))442,442,462
442 T(I,KMB)=TH(I)-T(I,KMA)
GO TO 321
462 T(I,KMA)=TH(I)
T(I,KMB)=0.
321 WRITE(3,110)T(I,KMA),T(I,KMB)
RETURN
END
SUBRDUTINE CALHV(LL,ZDP,A,B,I,J,HV)
DIMENSION ZOP (2,8),A(3,4),B(3,4),T(3,4),HV(3)
HV(LL)=(ZOP(I,J)+A(I,LL)-A(3,LL))*T(I,LL)+B(I,LL)*T(I,LL)**2
RETURN
END
SUBRDUTINE ALLTZ(KMA,KMB,KMC,I,IA,T,O,TH)
DIMENSION T(3,4),D(4),TH(2)
T(I,KMA)=D(KMA)-T(IA,KMA)
IF(T(I,KMA)-TH(I))443,443,463
443 TH(I)=TH(I)-T(I,KMA)
T(I,KMB)=D(KMB)-T(I,KMB)
IF(T(I,KMB)-TH(I))444,444,464
444 T(I, KMC)=TH(I)-T(I,KMB)
GD TD 322
464 T(I,KMB)=TH(I)
T(I,KNC)=0.
GD TD 322
463 T(I,KMA)=TH(I)

```

```

 T(I,K流)=f.
 322 REDUSS
EI!T
SuHRDUT [**E ALLTYTT,I,**NN,IA:

```

```

 SUMT=?.
 DN 1 N=1,N
    ```

```

 TK=:N(1)-5U:H5*
 IF(T<)20,20,1
 1) IF(T?-N4) 11,20,20
11 M=2
N N=N+1
IF(T(I,N)-D(N)) 12, z,Z
12 TF((T([A,N)+F(I,H))-U(!))!3, 彐,?
13 [F(T(\,N))3,3,14
3 IF(!-1)?,14,14
14T(I,N)=T(I,i,j+1.
TR=T:-1.
IF(T`)2C,2%,2
2. R: IUQ*
EN0
SUBQCUTIIEG GALZJ(A,H,I,NS,IM,J,N,N,TSLM,Z)
D!唯EA: [CN 4(3,4), (3,4)
ZI=2.*3(I, I%) =P(I, J.%)*a(I, K, (I) \#TSUM
Z2=S(I,NU)*2(I,KH)*(A(I,IM)-A(:S,IH))
```



```

 Z=-(21+22+73+24)/23
 RETU的学
 Eme
 SUBEUT:
 DIMENSICiv A(3,4), P(3,4)
    ```

```

 Z2=0(I,M)
    ```

```

 R2H%KN
 Ema
 SuErcutiNE CAt.T:(Z,1,",i,Im,NS,T,IT)
 DIMENSICN A(3,4), (2,4),T(3,4),1T(3,4)
 IT(I,IM)=-(2+{(I,Im)-\Delta(IS,IM))/(2.*-(I,IM)
 T(1,IM)=-(Z+A(I,IM)-A1 S,I)l/(2.*R(I,TM))
 IF(T(1,IM)-[T(1,IN)-0.5)1,2,?
 1)(1,(*)=1T(I,泜)
Gu ro 3
2 1(I,IN)=[T(I,IM)+1.
3 R:TUR:
E.i)
/*
2.500 0.0000 2.0000
2.5000-0.0500 5.0n00 70
3.5000 0.0000 1.0.000 100. 136. 80.
4.0009 .030e 3.0002 30. 135. 80.
1.0000-0.0300 2.000 50. 90. al.
1.5000 0.7000 5.000% %% sc. 8%.
3.0000 0.2.200 1.0000 103. 90. 80.
2.000 1.000 3.0000 80. S0. 80.
//0U.SYSIM ED *
2.5000 0.0.000 2.0000 20. 50. 40.
3.0000 0.0100 9.000:2 60. 50. 40.
6.0000 1.0000 6.0002 40. 5r. 40.
2.6000 0.0000 1.0065 द̌. 36. 4!.
2.7000 0.0000 9.0000 60. 30. 40.
5.0000 0.012. 6.60c0 42. 30. 40.
//LKEL.SYSLGOO DO UNIT=I33

```
/*

\section*{APPEMOI: 1 EESULTS}

```

 -2.cc5
 -5.005
 -15%.005
 NO=5 J=5 20P(1-1,N1)= -2.530 200(1, J)= -2.025
T(1,N)
T(?,N)
0.0
50.0000%5
7..000100 . 0.6
101.000200 2.124079
25.000000 1.532520

| $T(1,0)$ | $T(2.01$ | $T(3.01$ |
| :---: | :---: | :---: |
| 0.5 | 50.000 | 0.0 |
| 70.000 | 0.0 | 0.0 |
| 35.000 | 3.000 | 27.000 |
| 25.000 | 2.000 | 53.000 |

```
```

JOMIN= 5 JMIN=5 S%IN= 483.13 SLNF= 433.13

```
```

JOMIN= 5 JMIN=5 S%IN= 483.13 SLNF= 433.13

```


```

I= 1 J=1 2OU(1,j)= 6.00000
I= 1 J=2 z21 (1,) = 0.00250
I= 1 J=3 . Lev(1,J)= -1.50000
I= 2 N= 1 2UP(I,N)= -1.600 ZLOM(I,N)= -1.600
I= ? M= ? LUP(1,N)= 6.300 LLJF(1,.N)= 5.30)
I=2 i= % ZUP(I,M)= 1.800 ZLOW1I, I= j.000
1=2 J=3 ZRU(I,J)=6.3007
I=2 J=2 Z\&U(I,j]= I.S2000
I=2 J=3 -ZRU(I:J)=-1.50500
5.725
4.755
C.050
C.505
-1.500
-1.505
6.300
6.235
1.5.5
8.7.5
-1.6.05
-1.525
JO=3 J=2 20P(I-1.J0)= 2.60) 20P(I,N)= 5.295
r(1.) T10,%
0.0 -.

```
\[
\begin{array}{ll}
5.000500 & \text { in.unced } \\
42.00050 n & 60 .
\end{array}
\]
\begin{tabular}{|c|c|c|}
\hline T(1, M) & r12, 3\()\) & 163.23 \\
\hline 0.0 & 0. & 20.cco \\
\hline 30.000 & 35.306 & 0.6 \\
\hline 20.800 & 0.3 & 20.600 \\
\hline
\end{tabular}
\[
\text { JOM } 1 N=3 \quad J M 1 N=.2 \quad \because I N=\quad 45 ? .60 \quad 54 N F=452.00
\]

\section*{by}

PRADIT KONGKATONG

\title{
B.Sc. (Chemical Technology), Chulalongkorn University Bangkok, Thailand, 1963
}

\author{
AN ABSTRACT OF A MASTER'S REPORT
}
summitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Inoustrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1968

The transportation problem is to minimize the cost of sending a resource from s orgins, where the resource is located, to \(N\) destinations (demand points) where the demand for this resource exists. Suppose that there is one type of resource and that its total supply is equal to the total demand.

The aim of this report is to explore the application of a discrete version of the maximum principle to the problem and to modify and define some of the concepts so that a computer program may be written for solving a problem with a large number of origins and demand points.

The computer program is written primarily for a problem with three origins and four demand points with one origin consisting of linear cost functions. This can in some instances be generalized for 3 origins and \(N\) demand points.

A problem with three origins and four demand points is used as an example to test the logic of the computer program.```

