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CHAPTER I

INTRODUCTION

In the past years, composite steel-conerate floor systems

have been used in construction practice. The composite con-

struction is economical in buildings for longer spans and large

live load intensities. The elastic behavior and load-carrying

capacity of composite steel-concrete beams have been well under-

stood.

In the design of multi-story buildings, the economic

orinciples are important as well as the safety factors. When

all other factors are approximately equal, the design which

results in the lowest structure cost will be considered as the

most economical and desirable design. One method of achieving

economy in high-rise steel frame buildings is to reduce the

building height by introducing web openings in the floor beams

to oermit the passage of utility ducts and pipes. Thus, the

space from the floor cf one story to the ceiling Of ~he story

below will be reduced, so that the overall building height will

be lowered, "'any research programs en the effect of web open-

ings on the behavior of non-composite steel beams have beer,

conducted. But neither the composite steel-concrete theory nor

the theories of non-composite steel beams with web openings

can be aoolied directly to composite steel-concrete beams with

web openings.

The primary objective of this thesis was to determine the

suitability of a finite element program which was developed by



Michael Taylor (14) at the university of California at Davis

for problems associated with composite beams with web openings.

In this study, the program was" used to model non-composite steel

beans, reinforced concrete beams, composite steel-concrete beans

without web openings and composite beams with web openings.

Three types of elements are combined in this program: plane

stress (or strain) continuums, reinforcing bending elements

("beams") and bend elements. numerical results obtained from

the finite element computer program analysis were compared with

those obtained from other methods of analysis.



CHAPTER II

LITERATORE REVIEW

2.1 Non-Cotraosite Steel Beams T,fith !:.''eb Openings

Research concerning the elastic behavior of non-

composite steel beams with openings in their webs has been

conducted by many groups and organizations. In 1958,

Heller, Brock and Bart presented a solution by the complex

variable method associated with Kuskhelishvili for the

stresses around a rectangular opening in a uniformly loaded

plate (1). In 1962, they again presented a paper in which

the stresses abound a rectangular opening in a beam sub-

jected to bending and shear were investigated (2).

In 1956, Bower developed an analytical method for

calculating stresses around elliptical holes in a wide-

flange beam under a uniform load (3). In the same year,

he conducted tests on simply supported wide-flange beams

with circular or rectangular web openings loaded by con-

centrated loads (4). He concluded that for circular and

rectangular holes the elastic analysis could accurately

credict the tangential stress along the hole and the

bending stress on transverse cross sections in the vicinity

of the hole when the hole did not exceed half of the web

depth. In his studies, Vierendeel Analysis was used to

nredict a reasonably accurate bending stress except for

loca-1 stress concentrations at the hole corners.



Ultimate strength analyses and tests have also been

reported in recent years. In 19S3, Bower presented a

paper concerned with Ultimate Strength of Beams with

Rectangular Holes (5). In the same year, Redwood and

HcCutcheon conducted the beam tests with unreinforced

web openings (5). In 1972, Cooper and Snell performed

tests on beams with reinforced web openings and confirmed

the validity of Vierendeel Analysis for the estimation

of the normal stresses in the vicinity of the hole (7).

2.2 Composite Steel-Concrete Seams Without Web Openings

ComDOsite steel-concrete beam studies in 'cne United

States were started in 1929 (3). During the period 1929-

195S, investigations of composite beams without web opening

were carried out both experimentally and theoretically.

Before the 1950 's, composite construction was primarily

utilised in highway bridges. In 1960, Viest (9) reviewed

and listed the references describing the conoosice beam

tests. He also reviewed the studies of elastic theories

and ultimate strength theories of the composite beams (9).

A State-of-Art report on composite construction

published in 1974 listed recently conducted research in

this country (10).

2.3 Composite Steel Beams With Web Openings

The results of the investigations for non-composite

beams with web openings and composite steel beams without



web openings cannot: be directly applied to the composite

steel beams with web openings.

In 1964 and 1955, Larnach and C-iriyappa tested some

castellated composite T-Beams (11,12), but the web openings

in castellated beams have different shapes than those

normally used in ''/'-shape beams. Therefore, the results

of this research probably cannot be applied to the present

problem.

In 1963, Granade reported the results of elastic and

ultimate load tests on two composite beams with rectangular

web openings (13). The data obtained from his research was

not sufficient to accurately determine the distribution of

the shear forces around the openings. He also concluded

that the failure in both ultimate load 'cests was by diago-

nal cracking in the concrete slab.



CHAPTER III

TAYLOR'S COMPUTER PROGRAM

3.1 Material Property Assumptions

3.1.1 Steel

The typical stress-strain curves for both normal steel

and prestressing steel shown in Fig. 3.1 are used for this

program. The Poisson's ratio for all steel used as rein-

forcing ("beam") elements is assumed to be constant

throughout all possible ranges of loading. Although this

assumption is incorrect in the plastic range, there is no

significant error when using this type of element. The

uniaxial modulus values are assumed to be based upon the

axial stress condition in the steel.

If steel is used as a continuum material, the elastic

roperties are based on any reasonable biaxial failure

criterion.

3.1.2 Concrete

Concrete has a uniaxial compressive strength between

2000 and 8000 osi and uniaxial tension strength of about

one-tenth the compressive strength (14). Plain concrete

is essentially linear and elastic in tension but is non-

linear "when subjected to compressions greater than aoout

one quarter of its uniaxial strength (Fig. 3.2). If

unloading occurs, as shown at points P and 0, it has been

observed that the concrete unloads along lines parallel

to the initial tangent modulus.
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NORMAL STEEL PRESTRESSING STEEL

3.1 Stress-Strain Curves for
Reinforcing Steels
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There is far less information available for biaxial

stress states. Host of the biaxial investigations have

reported only the ultimate strength of the concrete.

However, the most reliable source is probably that of

Kupfer, Hilsdorf and Riisoh (15).

The data obtained by Kupfer, Hilsdorf and Riisoh are

presented in the form of stress-strain curves. The invest-

igation was based on biaxially loaded specimens tests at

different ratios of stress (R) on perpendicular faces.

The ratio between the stresses was held constant throughout

the loading and nine such ratios were examined covering

the entire range of compression-compression, compression-

tension, tension-compression and tension-tension. Concrete

strength used was approximately 4500 psi for the reported

data.

For the requirement of the input data format, each

stress-strain curve corresoonding to different stress ratios

is replaced by a multilinear approximation. As shown in

Fig. 3.3, the uniaxial compression stress-strain curve is

replaced by linear segments (Id), six in this case.

3.1.3 Steel-Concrete Bond

The bond that occurs between the reinforcing bars and

the concrete is renresented by a model suggested by Tigo and

Soordelis (16) (See Fig. 3.4). The normal and tangential

bond forces between concrete and the reinforcement are

represented by linear or non-linear springs which have
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STRESS (COMP)

7"
^jq- s

STRAIN (COMP)

Fig. 3.3 Replacement of Uniaxial Compression Curve
With Several (here six) Linear Regions
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Typical Normal and Tangential Bond

Elements Spaced dx Apart Along

Beam Element

Fig. 3.4 Finite Element Representation
of Steel-Concrete Bond
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incremental spring constants k and k , respectively.
n s

Thess springs can be considered as connecting points on

the edge of the continuum element with neighboring points

on the adjacent "beam" element. Data to be used for kJ n

and k are suggested to follow the cubic bond stress-slit;
s

law by Nilson (14,17), or use the uniaxial compression

curve of concrete.

3.2 Determination of Damage Levels

It is necessary to define when and how failure occurs

in a concrete element.

First, some material property data must be given to

the program:

(i) Kultilinearlized uniaxial stress-strain

information for compression.

(ii) Moduli and Poisson's ratio for each segment

(zone) of the multilinearlized compression curve.

(iii) A failure or maximum stress surface which is

obtained by applying knowledge and judgment with resnect

to the materials failure characteristics or by using

actual biaxial test information.

A biaxial failure stress plot given by (iiil has the

disadvantage of non-unia.ueness of strains for any given

stress sta~e. For example, given stress data in Fig. 3.3,

there is more than one strain at some stress levels. For

overcoming this difficulty, the stress plot should be

transformed into a strain olot. This transformation is
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done by the computer program (14). The result is a

biaxial strain plot which has a unique stress for each

strain state.

Fig. 3.5 is a strain space damage plot obtained from

a stress space damage plot. There are six damage zones in

this example, denoted as I, II, III, IV, V and VI. For

each damage zone, the zone modulus and Poisson's ratio are

given by (ii) and denoted as E_ , v_; STT , W-j-t> •••> S,_,

v
VI

-

A specimen tested from the zero strain state by in-

creasing the strains e, and s_ (Strain 1 and Strain 2 in

Fig. 3.5) is assumed to have a particular internal structure

with corresponding material properties E_ and -j_. ','/hen the

strain state in the test reaches a zone boundary, an instan-

taneous and incremental change in the internal structure is

assumed. Now the material properties are defined as E--

and v__ until the next zone boundary is reached. In Fig.

3.5, the move from point R to R
n

has the corresponding

material properties E_ T and v.., and the move from R. to

R, has the corresponding material oroperties E___ and '.'_ TT .

Any move toward the origin is considered to be "unload-

ing" and any move toward the next zone is considered to be

a "loading" case. For example, in Fig. 3.5 point P repre-

sents the strain state for a concrete element at the end of

some increment which is subjected to a change in strain

state. Point is ~he predicted next element strain state,

i.e., the element strain state moves from P to Q. If point



STRAIN 1 (COMP)

0.002

STRESS J i m n
(COMP) K,

V V

/ STRAII

UNIAXIAL APPROX

STRAIN 2 (COMP)

Fig. 3.5 Strain Space Damage Plot
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lies on a damage level less than or equal to the initial

state P, then "unloading" has occurred. If the predicted

point lies on a greater damage level than P, as shown

in Fig. 3.5, then the change defined as "loading" has

occurred.

An iterative solution technique is used in the program.

It is necessary to be able to predict the incremental values

for E and v when the element is subjected to a change in

strain state. As the first approximation for such a pre-

diction as the element strain state moves from p to 0, the

following procedure is followed.

First, is connected to the origin (0Q in Fig. 3.5),

and 00 intersects zone boundaries at R. , R_ and R, in this

example. The equal damage line (line parallel to a zone

boundary) which passes through P is drawn and it intersects

0Q at R. Now the element strain is assumed to pass from ?

to along P-R-R, -R^-R^-Q. The movement along ?-R is a

constant damage move which is defined as "unloading" and

has properties equal to the initial elastic properties (E_)

,

according to plasticity theory. The path R0 (RR, , R-.R
? i

R
7
R„ ) will pass several equal damage zones. So the computa-

tion of incrementally estimated values of S are then perform-

ed by "weighting" the moduli of the several zones according

to the lengths PR RR RR ... R0, i.e.
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An exactly similar procedure is used to calculate

the incremental value of v.

Description of Finite Elements

The finite element method is a computer based tech-

nique for obtaining solutions to mechanics problems. In

this program, three types of finite elements, i.e.,

Continuum Element, Reinforcing ("Beam") Element and Bond

Element are used.

3.3.1 Continuum Element

For the need of the stress defined cracking criterion,

a more accurate displacement behavior element should be

used. From among the existing two dimensional finite

elements available the quadrilateral element consisting of

two linear strain triangles was selected (14,13). Such an

element is shown in Fig. 3.6.

For the linear strain triangular sub-element, as shown

in Fig. 3.7, the additional three nodes are selected to be

located at the mid-points of the sides, and the computer

program will compute their coordinates automatically once

the corner nodal coordinates are given as input data. The

unknowns of the analysis are the nodal displacement {5} of

the element. There are six nodes, and each has two degrees

of freedom.

Strains {e} are expressed in terms of nodal point dis-

placements {6} through a displacement transformation matrix

{E}:

{£} = [ c ] { 5 } (I)
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(I + J) -Even

(1 J) -Odd

Fig. 3.6 Quadrilateral Elements I, J is Made Up
of Two Triangular Sub-Elements
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Fig. 3.7 Triangular Sub-Element With
Six Modal Points
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Stresses {a} are related to strain by a stress-strain

lav/ [D], i.e., an elasticity matrix, as

{o} = [D]{e} (2)

Stresses a at the edges of the element are replaced by

equivalent stress resultants or nodal point forces {q}

through a force transformation matrix [cj

{q} = [cliil (3)

By substitution

{q} = [c]{a} = [0][D]{e} = [c][D][3]{S} (4)

Since the force transformation matrix [c] is equal to

the transpose of the displacement transformation matrix [B],

the element stiffness matrix tk] can be defined as follows:

[k] = [cl [D] [3] = [B]
T
[D] [B] (5)

and equation (4-) can be rewritten in the compact form

{q} = [k] [6] (5)

The stiffness matrix [K] of the entire system can

then be assembled by directly adding the contribution of

each individual element stiffness [k] into its proper

location.

The resulting equation relates the total loading

system {Q} and displacements {6} is:

{0} - [K]{5} (7)

For solving the unknown nodal displacements {5}

{6} = [K]
-1

{0} (3)

Once the unknown nodal displacements are computed,

then the strains are calculated by Eq. (1), the stresses

are calculated by Eq. (2).
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3.3.2 Beam Element

The element selected for the bending beam element is

a displacement element based upon thick shell theory (14),

i.e., a Timoshenko bending element (13), as shown in Fig.

3.8 . This beam element is compatible with the selected

continuum element in the previous section. The deflection

and rotation of the bending beam element are illustrated in

Fig. 3.9 , and this element is one dimensional.

3.3.3 Bond Element

The transfer of stress by bond between concrete and

steel is most difficult to model realistically. However,

this program adopts a model which has two springs, one

acting parallel to the beam axis and one acting perpendic-

ular to it, as shown in Fig. 2.4, which considers the bond

between the beam element i-.j-k and the side of the adjacent

continuum element i -i -k .

c ,J c c

For a particular increment of load, express the in-

cremental normal and tangential bond forces (per unit length)

between any two adjacent points cf the beam element and

continuum as

(u
c - u

b }

3 (s) = ::_
c

,,

'

B (s) = K -
.,

~

K = secant aDoroximation of normal bond modulus

secant approximation of the tangential t snd

modulus
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Node

-»» r

Fig. 3.8 Cross Section of Beam Element
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*Z

Deformed Eiement

Undeformed Element

Membrane Displacement

Y+ AY

lk

h-8 + A£

Transverse Displacement
Rotation of Plane Sections

Fig. 3.9 Displacements and Rotation
of Beam Element
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3 3 incremental normal and tangential bond
n ' s forces per unit length

u, , v = incremental beam element displacement in

the n and s directions

u v = incremental continuum displacements
c c

s = coordinate parallel to beam.

n = coordinate normal to beam

W = distance between the center line of the

beam element and the edge of the adjacent
continuum element

1 = length of bending element

Solution Technique

3.4.1 Linear Analysis

The eouation for the unknown nodal displacements {5}

is

{5} = [K]"
1

{Q}

The Skyline Equation Solver (20) is used in the program

for solving this equation.

3.4.2 I'on-iinear Analysis and Iteration Procedure

The r.on-linear analysis procedure is performed by

applying loads or specifying boundary displacements in

increments and then iterating within each increment to

(i) establish the appropriate incremental material

properties by successive comparisons of "secant slope"

computations, and

(ii) establish the cracking pattern for the increment.

The iterative analysis within each increment is per-

formed in the following procedure:
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1. Each iteration uses "secant properties" (Fig, 3.10)

based on an estimated incremental solution.

Start the analysis with estimated strain increments

equal to the values at the ends of the first linear portion

of the stress-strain plots. Then all the iterations except

the first use the strain estimates from the preceding

iteration.

?. . After each iteration, measure the errors as the

differences between the last two secant property predictions

divided by the initial or elastic secant value. Compare

this measured error with the following criteria.

a) Each element error must be less than a

specified maximum.

':: ) The average of the element errors must

be less than a specified maximum.

Iteration is continued until the maximum error criteria

are satisfied, then the results of the last iteration are

taken as correct

.

3. The next increment of lead "hen is applied and the

above procedures 1 and 2 are repeated,

A maximum iteration number is input for the problem.

The program will terminate if the number of iterations

exceeds the maximum specified.

3.4.3 I'on-linear Analysis for Cracking Investigation

The strain ray is defined as the length of the line

connecting the origin and the oredicted strain state in
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Fig. 3.10 Secant Modulus in Uniaxial Compression
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Fig. 3.11. The ratio of the predicted strain ray to the

length of the portion of the ray lying within the failure

surface is called the "crack ratio" ?.. Three crack ratios

are shown in Fig. 3.11, and when R is £1.0, the failure

criterion has been exceeded.

The cracks are permitted to form along the finite

element grid lines and terminate at "corner node points"

(See Fig. 4.1). The decision whether or not neighboring

elements should be seoarated by a crack (i.e., whether the

grid line common to the two elements should be permitted

to crack) is based on the stress state at their common

"side point" (See Fig. 3.12).

The user may snecify the initial cracks in the input

data, otherwise, after each increment of load is =.pnlied

to the structure, all side ooints lyirig on the boundaries

that have not previously cracked will be examined as crack

candidates. The crack examination is based on the "cracking

ratio". The iteration will continue until there is no

longer any tendency to crack and non-linear secant ?rc Ger-

ties have reached the accuracv snecified.
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e? U
Failure Strain States

Failure Region

1 / S
l ' s No Failure RegionV

T ""*"" Ei

Fig. 3.11 Illustration of Strain Ray Concept
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Stress at this Point Used to

Determine if a Crack is to be

Introduced Between Element

"m" and "n"

Element "m"
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Between Two
? Cracking
Clements
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CHAPTER IV

USER'S MANUAL OF TAYLOR'S PROGRAM

4.1 Data Input Requirements

Data Input Formats and Explanatory Comments are .given

here.

4.1.1 Input Formats

Al. Title Card (13A4)

A2. Control Card (12, 311, 315, E10.5, 2(E10.5, 15))

Col.

, ^_. linear problem
1 non-linear problem 1*

3 NIIAT3D = -lumber of bond descriptions
(See Section A6) 2

4 NMATBM = Number of beam geometries
(See Section A5

)

2

5 ?!MAT = Number of different continuum
materials (See Section A4) 2

6-10 IMAX

11-15 JKAX
Maximum values of I and J 2,3

generalized plane stress
20 ITYPS = 1 generalized plane strain

2 axisymnetric analysis

21-30 psv = CT3 for Plane stress
£3 for plane strain

31-40 PST = Thickness of Plane Stress Slab
(if left blank the thickness is
assumed to be unity)

41-45 NIT = TFumber of Solution Increments
(if left blank it is taken to
be unity)

See Sxoianatorv Comments in Section 4.1.2.
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Col.

46-55 AT = Temp, change. This temp.
change is used for all nodes
except those considered in
Section 32.

56-60 NOCRK = Number of grid lines between
initiating cracks (if cracking
is not to be permitted set
NOCRK = -1) 1,7

Iteration Control Card (IX, 14, 2E10.5, 215!
(This card appears only if NK = 1. See
Section A2

)

Col.

2-5 ITMAX = Max. no. of iterations allowed in
any given increment (failure to
converge in this number aborts th«
problem)

5-15 ERAVGP = The average relative error permit-
ted in the secant modulus for the
non-linear elements

16-25 ERHAXP = The max. relative error permitted
in the secant modulus for the non-
linear elements

26-30 IPRHT = The I coordinate of the node at
which displacements are printed
in each iteration

31-3 5 JPRIiT = The J coordinate of the node at
which displacements are printed ir

each iteration

A4. Continuum Material Cards (repeat Section A4
for each material)

(i) Initial Prooerties Card (215, 5310.5.
15)

5 1 = Material number

10 HON = Linear Isotropic description
1 Linear Anisotropic 3-D description
2 Linear 2-D plane stress or plane

strain Anisotropic description
3 Mon-linear Isotropic description
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Col.

11-20

21-30
Body Forces densities in
x-v directions

31-40

41-50

51-60

51-70

(Isotropic or (Anisotropic

,

(Anisotropic 2-D
initial tangent 3-D) plane stress or
oroDerties for olane strain
non-linear
material

)

£ Modulus CU C
1X

or -
1]_

v = Poisson 1 s

Ratio
C
12

o
12

or l
12

a Thermal
coeff. of
expansion

C
13

C
13

0r U
13

6 (degrees) 5 (decrees)

1-10

KA = No initial stress - go to
(iii)(l.e., omit card

- A4ii)
1 Initial stress - card (ii)

must follow

(ii) Initial Stress card (4E10.5)
(This card is present only if
KA = 1, see card A4i

)

a or a (Normal initial stress ir. :: or r
' o o direction)

11-20 a or a

21-30 t

direction)
;ss in • or z

31-40 a.

(iii) SON = Go to A4i or A5

MOM = 3 Go to A4v

NOW = 1 or 2 (Anisotropic material)
the following two cards must
follow (7E10.S and 4S10.5)
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Ani sotropic 2-D
Col. # Anisotropic 3-D

C
22

PI an«-Stress Plane Strain

1-10 C *22 22

11-20 C
23

C*23 C
23

**

21-30 C
33

C *33 C33**

31-40 C
14

C*14 L
14

41-50 C
24

C 24 °24

51-60 C
34

C
34 "34

51-70 C
44

(iv)

(1#w 44
U
44

1-10 T
l

t*
x

<r> *#
-l

11-20 T
2

?*,
2

21-30 T
3

T*3 T3*

31-40 T
4

T% "4

:oi

(v) Omit Cards (A4v, vi , vii

)

unless MOM = 3 (215)

1-5 NZ = No, of damage zones

6-10 NOR? = Mo. of stress ratio tests
defining the stress-strain
surface

(vi) MZ Cards (2E10.5), one for
each zone, giving

1-10 ZK = Zone modulus

11-20 ZMU Zone Poisson's Ratio
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(vii) MOST Cards (8E10.3), one for each
stress ratio test, giving

Col.

1-10 R Stress Ratio (Must begin with
equal compression-compression,
i.e., R = +1 and proceed to
conpression-tension then
tension- tension)

21-30 a. " = Stress at end of 2nd zone

A5. Beam Cards (1 - NUATEM) ( 15 , 13, 12,
7S10.5) 10

(i) Initial Properties Card

5 1 = Beam number

10 NOH = linear material
1 non-linear material

, 3

11-20 I = Moment of inertia (ft* - or cone or

strip plate; h = Shell thickness)
(A value of zero results in the
utilization of an extensional
element)

21-30 A = Area (h for cone or strip plate)

31-40 E = Modulus (for non-linear material
this is the initial modulus

41-50 a = Thermal coefficient of expansion

51-60 toverlay

51-70 a = Shear deformation coeff. - if not
soecified it is set equal to the
coefficient for a circular cross-
section

71-80 v = Poisson's Ratio
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(ii) (15) If NON*l0mit cards A-5ii
and A- 5 i i i

1-5 MZ = Number of segments describing
the stress-strain curve

(iii) As many cards (8E10.3) as needed
(in fields of ten) to give the oairs
of stress-strain values which describe
the stress-strain curve, i.e.

1-10 a(l)

11-20 £(1)

21-30 a (2)

31-40 e(2)

etc .

A6 . Bond Cards (215, 2E10. 5 ) (repeat Section
A.S for each bond type) 10

(i) Initial Properties Card

5 HON = Linear properties
1 Non-linear properties

10 I = Bond description No.

11-20 K where F = — (u - u )
n n w n n,

c o

21-30 K where F = K (u_ - u ) For non-linear
°c b properties these

are the initial
tangent properties

(ii) (215) Omit cards A-6ii and A-5iii
if RON * I

1-5 riZJf = No. of points defining normal
modulus

5-10 NZS = No. of points defining tangent
modulus

(iii) As many cards (8E10.3) as needed,
using fields of ten, to give pairs
of bond stress-bond slio values
chosen to describe the bond behavior.
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The normal bond curve must be
input first followed by the
tangetial properties. If either
one of these relationships is to
be treated elastically no descrip-
tion is required here and the
corresponding NZN or PIZS value
should be input as zero.

1-10 u. (Hormal or Tangential Stress)

11-20 d (normal or Tangential Strain)

21-30 u, ("iorrnal or Tangential Stress)

31-40 d, (normal or Tangential Strain)

etc

.

A7 . ?!ode Coordinate Cards (IX, 14, 15,
2E10.5, 15, 2E10.5)

2-5 I

5-10 J

11-20 x

21-30 -r

= Node numbers

,0-ordmates

35 IC-EN = If no points are to be generated
between this and previous point

1 If points (along I = Const, or
J = Const, line) bet'./een this
and point soecified on the
orevious card are to be gener-
ated

35-45 D = Spacing ratio (if value not specif

i

it is taken to be unity)

46-55 R = Radius of arc connecting points
(aero for st. line)
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2-5 I

= Eler.ent
6-10 J

15 MN a Materia

31. Element Cards (IX, 14, 515) (If there are
any cards in this group they must be
preceded by a card with 1 ounched in
Col. 1)

Coordinates

"aterial Number (0 indicates the
absence of material, i.e., a hole)

15-20 NMIS = Number of additional elements for
which it is desired to generate
material numbers

21-25 INCR
= The amount the element coordinates

26-30 JHCR are to be incremented in the genera-
tion orooedure

Note: Element Cards need not be used if KM = 1

Temperature Cards (1", 14, 15, E10.5,
315). Corner Mode points only (If there
are any cards in this group they must be
preceded by a card with 2 punched in Col. 1)

(Any values specified here supersede the
value given on the control card)

Mode number:
2-5 I

5-10 J

11-20 AT = value of temperature change at node

21-25 NMIS = Mumber of additional nodes for which
it is desired to generate the same
temperature scecification

26-30 INCR
= The amount the node numbers are to be

31-35 JNCR incremented in the generation procedure

B3. Boundary Condition Cards (IX, 14, 2(15,
E10.5), E10.5, 215, E10.5) (Cards in this
group must be preceded by a. card with 3

ounched in Col. 1)
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2-5 I

5-10 J

Mode numbers of boundary point

15 IF. = if force specified in
1 if displacement 1 dir.

15-25 V. = Specified force or displacement
1

in 1 dir.

30 IF„ = if force specified in
1 if displacement 2 dir.

31-40 V, = Specified force or displacement
in 2 dir.

41-50 9 = ( in degrees) Angle between local
and global coordinates

51-55 I ' The above Boundary Conditions are
specified for all points (including

56-60 J' bide ooints) between and including
( I , J )

' and (
I

' , J '
) , I , J and I ' J >

must both be corner points.

51-70 q = Applied uniform surface pressure
between I, J and I', J' (v/h.en a *

F„ = V„ = 9 = 0)

34. Seam Element Description (IX, 14, 715).
This group of cards must be preceded by a

card with 4 punched in Col. 1) 10

2-5 IB
= Mode numbers of Beginning of beam

5-10 J3

15 MB = Boundary rotation code for Be-
ginning of beam

for 9*0
1 for 9 =

15-20 II
= Mode numbers of End of Beam

21-25 JE

30 ME = Boundary rotation code for End
of beam

for 9 *
1 for 9=0
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35 MN = 3eam Material Number See Sections
A5 and A6

40 MK3ND = Bond Description Number

35. Beam Intersection Description (IX, 14,
215) (This group of cards must be preceded
by a card with 5 punched in Col. 1). If
no information is given the connection is
assumed to be rigid 10

2-5 I

5-10 J

= Element containing the intersection

15 CODE = if rigidly connected
1 if Din-connected

35. Definition of Possible Crack Paths (IX,
14, 414) (This group of cards must be pre-
ceded by a card with 6 punched in Col. 1).
If no cards appear in this section all
interior element boundaries are oossible
crack paths. If any possible crack paths
are defined in this section then they are
the onlv oaths possible.

2-5

5-10
Side ooint located on crack path

11-15 NMIS = dumber of additional oaths for
which it is desired to generate
specifications

13-20 INCH
= The amount the node numbers are

21-25 JJICR to be incremented in the genera-
tion orocedure

37. Specified Cracks (IX, 14, 315) (This group
of cards must be preceded by a card with
7 punched in Col. 1).

Crack nust begin
Beginning of crack and end at corner

points and lie
along a constant
I or J line; also

= End of crack I'll and J ' i J

2-5 I

5-10 J

11-15 I

15-20 J
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B8. Boundary Condition Modification Cards
(IX, 14, 2F.I0.5) Used for increments
beyond the first. (Cards in this group
must be preceded by a card with 8 punched
in Col. 1)

.

11

2-5 KK = Boundary condition number

6-15 V.

= Values to replace those previously
16-25 V. soecified

B9. Incremental Load Card (3E10.3) (This card
must be preceded by a card with 9 punched
in Col. 1). For each increment (including
the first) the following information must
be supplied.

1-10 ?FBC Boundary load
or displacement to be

11-20 PF3F = ;
ropor

^. Body force applied
tion of -

• -
....in the

21-30 PFT Temperature incr.
change

For each increment after the first the data
sequence is repeated starting with group 37.
Any cards in group E7 add to the descriptions
previously given; any cards in group B8 mod-
ify the information initially given in group
B3 (to be used when the modification is not
possible simply by using the "Incremental
load card" )

.

4.1.2 Explanatory Comments

1. If one or more of the "continuum" materials and/oi

"beams" and/or "bonds" have a non-linear properties de-

scription or if crack .generation is permitted (TIOCRK - 0)

the problem is non-linear.

2. As the program is currently dimensioned the

following inequalities must be observed:
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IMAX - 21

JMAX - 11

NMAT - 3

NHATBH - 4

NMATBD - 3

No. of Boundary Conditions - 99

Mo. of zones in the continuum stress-strain
representation 2 5

No. of stress ratios in the description of
the continuum stress-strain surface 1 10

No. of zones in the beam stress-strain rep-
resentation - 7

No. of zones in the bond stress-strain rep-
resentation - 9

For changing the dimensions of the program, see Appendix A.

"or the sake of economy the I-J grid should be sc

oriented that JMAX < IMAX since the local bandwidth is

determined by the number of J coordinates.

3. "esh Generation:

The layout and soecification of the locations of the

node points for a finite element program is often a time-

consuming job in which some human error is high. To mini-

mize both effort and error, a subroutine for the nodes

generation is used in the program (
\e.) which is based on

a method reported by Wilson (21).

The mesh generation is accomplished in the following

manner. The coordinates of those nodes whose location are

to be exactly defined (the location of all boundary points
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must be so specified) are specified by either entering a

data card containing the values of I, J and its x and y

coordinates or by employing the straight line or circular

arc generation options. The location of all other ooints

are calculated by the program.

(a) To lay out a nodal point system for the body to

be analyzed, the region of the x-y (r-z) plane containing

the body is covered with an array of quadrilaterals. Each-

vertex of a quadrilateral is called a corner nodal point or

corner node, which is identified by an ordered pair of

positive integers, denoted by (I, J). Each quadrilateral

(or continuum element) is named by the node (I, J) of the

lower left hand vertex of the element. Fig. 4.1 illustrates

the element (I, J) is defined by the nodes (I, J), (I+1,J),

(I,J+1), and (I+l.J+1), In addition to corner nodes, eacn

element has "side nodes" which are located midway along the

element edges, i.e., nodes (-( 1 + 1 ) , J ) , (( I+I ), -( J+l ) ) ,

(-(1+1), (J+l)), (I, -(J+1)). The "side nodes" are not

from the inout data but determined by the nodes generation

subroutine in the orosram.

(b) The program includes a procedure for generating

the coordinates of points intermediate to two soecified

points. The two specified points and their intermediate

nolnts must lie along a constant I or J line. The specifi-

cation is accomplished by first entering the coordinates of

one of the end ooints followed by the coordinates of the

other end point and (i) a code "IC-EIi". If "IGEN" equals to
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I Line

Fig. 4.1 Definition of Element _,J
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means no points are to be generated between this point

and previous point, if IGEN equals to 1 means points (along

1 = constant, or J = constant line) between this and point

specified on the previous card are to be generated. (ii)

the spacing ration D and (iii) the arc radius R (this value

is left blank for a straight segment). As shown in Fig.

4.2, the operation of generating the points intermediate

to the points "a" and "b" is denoted as "a + b" (where

point "a" is specified before "b"). The end points for a

straight segment may be entered in any order, i.e., the

straight line segment shown in Fig. 4.2 may be defined by-

specifying the end points in order a + b or b •* a. However,

the circular segments shown in Fig. 4.2 must all be spec-

ified a + b. The angle 8 must not exceed 130°.

The soacing ratio D is eaual to the ratio of the lengths
4n-l

of the successive segments, i.e., D = — in Fig. 4.o. A
An

value of D = 1.0 gives equally spaced points. The location

of intermediate points (3.3) and C3.4) in Fig. 4.4 could

be generated by either specifying points (3.2)^(3.5) with

D = 2.0 or (3. 5)* (3. 2) with D = 0.5.

(c) The scheme for mesh generation may be though; of

as representing a one-to-one mapping from the I-J plane

into the x-y plane. Fig. 4.5 illustrates this mapping. The

body to be analyzed is shown in Fig. 4.5(A), the points in

the I-J plane are shown in Fig. 4.5(B), and their image

points in the x-y plane are shown in Fig. 4.5(C). It can
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Fig. 4.2 Indicating Required Orders of
Specifying End Points a, b for
Generation Option



Fig. 4.3 Definition of Spacing Ratio (D)

(3', 5)

rig. 4.4 Example of the Straight Line Generation Ootion
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be seen that the inverse images of the quadrilaterals

in the x-y plane are squares in the I-J plane. The

elements which occupy the "hole" in the body are so

indicated by a material number of zero.

(d) Some restrictions were found from the exper-

iences of running this program.

When laying out the nodes for a body, the square

elements will give more accurate answers than other tyoes

of elements. The vertical strip elements will give more

accurate answers than horizontal strip elements.

When the continuum materials are more than one or

the two neighboring elements have a big difference in

sizes it might effect the bandwidth of the stiffness matrix,

then IMAX = 21, JMAX = 11 are no longer correct. IMAX < 21

and JMAX < 11.

After IMAX and JMAX have been decided, all the I lines

must have JMAX nodes and all the J lines must have IMAX

nodes.

The nodes for a body should start from node (1,1)

and be input along the boundary in a counterclockwise

direction.

4. The program will assume that the body occupies

all the space with a material description number of 1

unless seme other number is indicated, i.e., if the ele-

ments are holes then a material number of zero must be

specified, or if the elements have a material number

different from 1 then it has to be specified.



The generation option also oermits the specification

of the same material number for a sequence of elements

with a single card, for example, if the elements (3,2),

(3,3), (3,4), (3,5) and (3,5) are all of material Type 3,

they could be so specified by assigning the following

values

:

1 = 3

J = 2

MN = 3

MMIS = 4

IPICR =

JNCR = 1

This generation option can be used in Section (31),

(32) and (35) of Input Formats.

5. The program may be used for either plane stress,

olane strain or axi symmetric analyses. The bending element

for these cases becomes resoectively a beam, strip plate

or a cone element. For axisymmetric analyses the symbols

X-Y-Z in the User's Manual (14) are to be interpreted as

P.-Z-9.

5. The value PSV is used to specify a non-zero thick-

ness stress for plane stress analysis, or a non-zero value

of normal strain for a plane strain analysis. For axisym-

metric analyses this item is to be ignored. The subscript 3

of a o refers to the direction oeroendicular to the r.lane.
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7. A crack whose initiation is predicted in a given

iteration of a given increment is required to have J.'OCEX

node lines between it and its nearest neighbors.

8. If an error limit is left blank then the criterion

is ignored. If more than one criterion is employed then

they must all be satisfied before convergence is achieved.

For error permitted, see Chapter III.

9. Material Properties:

(a) If the material is linear isotropic, i.e., NOH =

0, the material properties are specified by giving values

for E (Young's Modulus), v (Poisson's Ratio), and a (thermal

coefficient of expansion).

(b) If the material is linear anisotrooic 3-Dir.er.sional

description, i.e., '10?! = 1, then the material properties are

specified in terms of the 3-Cimensional elastic constants,

'12

"14 24

'I

T
2

T
3

T
4

-

(c) If the material is linear 2-Dimensional plane

stress (or olane strain) material, i.e., MON = 2, there

are two descriptions. For plane stress description,
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12

11 12 i;

'12 22 2'

'13 23 "33

e.
1

S + *2

Y
12 "3

- -

24

=3 = C
44

a
3 " C

14
£
1

- C
24

E
2 " ° 34 *12 " T

4
iT

If PSV = (a = o) one need not specify

For plane strain description,

-

e
l

Z
2

=

Y
12 12

at +

14

'34

;
3 " C

14 £
1

+ C 24 £ 2
+ C34 ~< 12

+ C
44 T 4T

If PSV = (e = 0) one need not specify '14

3 is the angle measured counterclockwise between

global coordinate system and local coordinate system, as

illustrated in Fig. 4.5.

(d) If the material is non-linear description, i.e.

1:01! = 3, the properties are described by (i) uniaxial

compression stress-strain curve, (ii) stress strain test

data defining the biaxial stress soace (See Chanter II).
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Linear segments are used for showing the approximate

stress-strain curve. As illustrated in Fig. 4.7, there

are six damage zones and each zone has zone modulus (E. )
i

Which is the slope of the segment, and Zone Poisson's

ratio. The number of damage zones (NZ) is equal to the

number of linear segments used to approximate the stress-

strain curve

.

Figure 4.3 illustrates the Biaxial Stress Data and

there are 6 stress ratio testing data sets for the Biaxial

Stress Space. Stress Ratios are defined as R = 3 /<T

The data is given starting with the equal compression-

corroression case (R = 1.0) and the ° stress at each zone

boundary is required. For example, the first card 'tfould

have B = 1.0, a
iv

a
2i>

o^, o^, c^, o^ (all values of

a
2
along line R = l.C).

The (ZZJ(I)) refers here to the value of stress

orojected on the 3_ axis at the "i" zone boundary and "J"

radial line. The second card may be -0.3, cJ,-, Cf„„, a„_,
L— 22 j2

a ,n> a
.ri>

a
--,i and so on until NZ Zone.42 ' 52 o2

10. Beam Element Properties:

(a) "Beam" elements may only connect "side node

points". When viewing a beam element in the I-J plane

"side 1" refers to the lower side for a beam element par-

allel to the I lines and to the right side for a beam

element parallel to the J lines. Beams should be located

between side ooints in the grid, the "beginning of beam"

gives lower values of (I, J), the "end of beam" gives

higher value of (I, J) (See Fig. 4.9).
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x'y'= Axes of Anisotropy

xy or rz = Axes of Globaf Coordinate System

Fig. 4.6

Fig. 4.7
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" Sida Noes " Dafining

3eg!-r.ins at Sesn

"Containing"

ContiflUUBT aieirsn'

i
>— 'jfia -_..ies

3aa,Ti clement:

Fig. 4.9
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(b) When beam elements are to be used in conjunction

with continuum elements to represent a composite structure

(e.g., a reinforced structure) three options are available

(See Fig. 4.10).

(i) When a beam element is bonded to the sur-

rounding continuum elements, the thickness of the

overlay element is denoted as t . (See Fig.J overlay

4.10 (i)). The continuum element which overlies the

beam element will have the properties defined by its

"continuum material cards". The bond elements between

the beam element and the surrounding continuum element

have properties specified by the "bond cards".

(ii) The beam element may be connected to the

surrounding continuum by a bond element by setting

the t . eoual to zero (or soecifvins the materialoverlay -

number of the overlay element to be zero) (Fig. 4.10

(ii)). For example, if it is desired to have a beam

on the outside edge of a continuum, then the beam

should be located in the outside row of the continuum

element and set the t , ecual to zero,overlay

(iii) If the beam is embedded in the continuum

element (Fig. 4.10 (iii)) then giving the "bond

description number" (MN3IID) as zero and entering the

overlay thickness as the negative of its actual value.

(c) Two beams which intersect can have either a rigid

or pinned connection. The specification of the type of

connection is made in Section 35 of Input Format.
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Overlay Continuum

Element

overlay

•-Continuum Element

Bond Element

Beam Element

Embedding

Continuum

Element

(iii)

Fig. 4.10 Cross-Section of Possible Beam-Continuum
Element Arrangements

(d) For non-linear beam elements and bond elements

the stress-strain or bond stress-bond slip curves are

described in a piecewise linear fashion. For the bond

descriptions the normal properties information should be

given follovred by the tangential croperties information

successively for each bond type. Typically, the normal

bond characterization may be taken as the uniaxial com-

pression stress-strain diagram for concrete.

11. Boundary Conditions:

(a) Boundary conditions need to be specified for

both "side" and "corner" boundary points.

If the boundary conditions are only applied to (I, J)

node, then (I'.J 1

) = (0,0). If the boundary conditions
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are applied to all the points (including side points)

between and including (I, J) and (I 1

, J'), then (I',J') is

not equal to zero. The points (I, J) and (I'.J 1

) must

both lie on a constant I or J line.

The pressure q may be applied to a continuum surface

or directly to a beam. A positive value of pressure q is

defined as the body under compression. If the pressure

is specified from (I, J) to (I',J'), it must be specified

counterclockwise along the boundary of the body. Pressure

specifications must precede any other specification re-

lated to the same boundary points. Whan q * 0, then

IF- = IF, = V. m \r

2
= 9=0. In Fig. 4.11, "9" is the

angle measured counterclockwise from the global coordinate

system (x-y) to the local coordinate system (1-2).

(I, J) and (I',J') both must be corner points. The

only exception is when uniform pressure is applied to a

"beam", then they would be side ooints.

(b) The specification of "increments of boundary

conditions" (Section 39 of Input Formats) may involve

a) Boundary loads or displacements (value V. , V, or q in

Section B3 ) , b) Body forces (value F or F in Section A4)

and c) Temperature change (value AT in Section 32).

(i) The quantities of the first increment of

the boundary conditions are the original values spec-

ified in card (33), (A4) and (32) times the values

specified in card (39). Then the next increment of

the boundary conditions will be the values of (E3)
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times the original values specified in (32), (A4)

and (32) added tc the sura of the previous boundary

conditions, "or example,

(33) Card 1: V = 0.7

then

,

(39) Card 1

Card 2

Card 3

Card 4

Increment 1

Increment 2

9 (Control Card)

PF3C =5.0

9 (Control Card)

PF3C =5.0

V, = 0.7 x 5.0 = 3.5

(ii) lion-proportionate boundary loads or dis-

placements may be specified by modifying, in any

given increment, the values of V. and V, Specified

in Section 33. This modification is carried out by

entering cards in 33. . Values once entered into 33

modify the original values specified in 33, then these

values -'/ill be used for all subsequent increments

until they are modified again by the use of 35.

The "Boundary Condition numbers" (KK) in 33 are

the sequence numbers of boundary conditions specified

in B3 and are printed with the boundary condition

information.

4.2 Output

The output of the program consist of:

1. A statement of the incut



50

2. For each increment:

a) The number of iterations necessary to achieve

a solution

b) The locations of newly formed cracks

c) For each node in the system the stresses,

strains and displacements are printed. When a crack

runs through a node point multiple states of stress,

strain and displacement exist. These multiple values

are printed for each of the subpointa in the order

shovm below.

J Line

For Comer Node Points

For Side Node Points

o 2

•
° 1

J Line

I Line

1 o O o 2

1 Line
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Several exsunples of the subpoints for vfhich print out

would be given are shown below,

i)

2 •

1 •

• 4

No Cracks

Print out is given only for Subpoint 1 as the other

points have the same values,

(ii)

•Crack

2 • S • 4

1 • > • 3

Print out given for Subpoints 1 and 3 (Point 2 hs.s

the same values as 1 and 4 same as 3).
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2 o

Print-out Given Only for Point 1 as All
Four Points Reoresent the Tio of the Crack

(iv)

Corner of a Body

Print-out Given Under ?.bel of Subpoint 4

d) For side points which have beam (strip plate

or cone) elements passing through them information

concerning the forces and moments in the beam ele-

ment and the bond forces between the element and

the surrounding contimuum is given:
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Axial Force

Moment

-Tangential Bond Foice

•Normal Bond Force

Definition of Non-self-evident Cutout Headings

F-X (etc) Body force in X-direction per unit of volume

MU Poisson's ratio

ALPHA Thermal coefficient of linear expansion

S.C.F. Timoshenko shear coefficient

PO Subpoint number

U, V Continuum displacements in X(P.) and Y(Z) directions

E-X (etc) Strain in X (radial) direction

S-X (etc) Stress in X (radial) direction

S-l Most tensile principal stress

Angle between 31 and X-axis in degrees

Tangential and transverse displacement components
for a bending element

Axial force, shearing force and bending moment in
bending element

Force in Z-direction (Place Strain)
Force in hoop direction (Axisynmetric

)

SBK1, SBS1 Normal and tangential bond force quantities for site
1 of beam.

u, V

o V, H

PZ (ORPH)
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CHAPTEH V

NUMERICAL EXAMPLES

Some numerical examples are presented in this chapter to

explain the techniques useci for modelling the structural

elements and to show how the computer program works.

5.1 W Shape Steel Beam Without Web. Openings

A simply supported W shape 13 x 50 steel beam with

132" span length subject to 10 kips concentrate load at

midspan was used here. Techniques were used for modelling

and analyzing this beam (elastic behavior only).

5.1.1 Simplification of the Problem

(A) Since there is no interest in the stresses

throughout the entire beam, the portion of interest can

be analyzed by considering two cutting sections (Fig, 5.1).

The moments and shear forces on the free body in Fig. 5.1

(b) could not be input to the program directly. These

moment and shear were approximated by a series of concen-

trated loads applied at the nodal points on the end section;

The bending stresses at the end sections were calculated by

the simple beam theory

a = f-

This stress distribution is linear along the boundary. The

formulas of calculating the ncdal forces are: (See Fig. 5.2)

i < 2 -i
+ ? 2

>
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k-



?. = nodal force, i=l, 2

p. = force intensity per unit area, i=l, 2

t = thickness

The concentrated load at each nodal point is the sura

of the resultants from the adjacent sides.

The shear stresses at the end section are calculated

by

vo
T

"K
The half section of a beam is shown in Fig. 5.3 when

< y < d/2 - t-

,d *f
- t*

3 = b.t- (j - -±) + t (S - t. - y)'(S--—t + i.)

+ (v)
"F *V yj

4- [0. + (y)

The area of shear stress diagram

1-1

A
i

= & T V»y "
,

E A., i = 2, n

where

H = I (y1+i
*y

t ). 1 ii Sn-l

5n = 'n
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/51 f t d » i r1 (°- + Q ) 3yo w v I o E

= i Vf I - ^ s
i 1 s «i - v 2

h

JL £ {'= t (d - t ) + t rf- - t )

2
- i £

2
i}

1-1

- I A , i=l, n

where I is the moment of inertia, V is shear force at end

section.

The concentrated shear force at each nodal ooint ?.
i

is the area of shear stress diagram A. (for i * 1), and

P
l = 2 A

l-

(B) Modify the flange thickness to he the ..•eh

thickness for a W shape beam.

In using the plane stress finite element method for

analysis, the three-dimensional structure with different

thicknesses has to be modified to a two-dimensional struc-

ture with the sajne thickness.

The stiffness matrix of a triangular element for the

olane stress analysis is defined by:
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[K] =

ii ij

K .. K . .

J 1 J J

mi mi run

where i, j, m are the three nodes of the triangular element

and each element of matrix [k] is a 2 x 2 matrix given by

the general expression

[K. J = CbJ- [D](3.}-t • area
ij i J

The matrix {3} is the displacement-strain matrix whose

elements are independent of the coordinates X, V of the

system. [D] is the elasticity stress matrix which has

the expression

1 v

[D] = -=-w y 1

1 _v

u o —

—

v.'here v is the Poisson'a ratio and E is Young's modulus.

The equation [l". ; .. ] becomes to

~i y o

1 (3.)[K ] = {3 }" (^ij)
J x 1-v

1-v

The "St" value is a constant for a plane stress analysis

and S can be modified in order to use the flange thickness

equal to the web thickness.



(C) Equivalent reinforcing ("beam") elements
for flanges.

Another way of modifying the three-dimensional

structure with different thicknesses to the two-dimensional

structure was followed. Equivalent "beam" elements were

used for the flanges and were bonded to the continuum

element (web) with bond elements. These beam elements

have one-dimensional material properties and can transfer

axial forces, shear forces and bending moments.

5.1.2 Numerical Examples

Problem 1 : Half of the W18x50 steel beam. Fig. 5.4

shows the discretization of the analyzed portion. The

flanges of the beam were treated as ea.uivalent reinforcing

bars ("beam elements"). The computer results are given

in Table 5.1 and are compared with simple beam theory.

Pro'clsrr. 2 : Fig, 5.5 shows the discretization of the

'.-.
r13x5C steel beam by modifying the flange thickness to be

the web thickness (Section 5.1.1 (B)). Table 5.2 gives

the results of the computer program.

Problem 3: Fig. 5.3 shows the discretization of the

W18x50 steel beam by using the cutting sections (Section

5.1.1 (A)) and equivalent reinforcing elements techniques

(Section 5.1.1 (C)). Table 5.3 gives the results of the

comouter program.

W Shaoe Steel 3eam With Web Openings

The cutting sections technique in Section 5.1 was

also used in this type of problem. For the elastic
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analysis, the Vierendeel Analysis was used to predict

the stresses around the wee openings and check with the

output of the computer program.

5.2.1 Vierendeel Analysis

The basic assumption of the analogy is that secondary

moments caused by shearing forces in the region of the

hole are zero at midlength of the hole. Final stresses

may be obtained by considering stresses due to the primary

bending moment using the net section and adding to these

the stresses due to the secondary bending moment using

the T-section above and below the ocening.

First, consider the moment M which causes the basic
p

bending stresses a at the centerline of the ooening (See
P

Fig. 5.7 (a).

where I = moment of inertia of the net beam about its
n

centroidai axis, and y = the transverse distance from

the centroidai axis of the net beam. Thus, H is assumed
p

to be carried by the reduced section at the hole acting

according to elementary beam theory.

The secondary moment M caused by shear introduces

the secondary bending stresses, 8 . In Fig. 5.7 (b), the

hole is symmetrical with respect to the horizontal axis

of symmetry cf the team.



a
(a)

V KL

rsA

- C.L. of 5

ooening

(b)

Fig. 5.7 Vierendeel Analysis
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where I = the moment of inertia of the too or bottom
eg

section about its centroid, y = the transverse distance

from the centroid of the top or bottom section.

So, the stress a at any section is

a = a + a

V
I

5.2.2 Mume r i c al Examp 1

e

Problem 4 : Fig. 5.5 also gives the discretization

for the analyzed portion of a ".'.'13x50 steel beam with a

web opening by assuming elements I from 7 to 13, J from

3 to 6 have the material properties equal to zero. 'Table

5.4 shows the results of the computer output which is

compared with the results from the Vierendeel Analysis.

Composite Steel-Concrete Beam Without Web Openings

Problem 5 : A '.'.' shape 13x50 steel beam with 4" thick

concrete slab on top was taken for an example. Fig. 5.3

shows the discretization of half of the beam without an

ooening. The beam was described as two materials. The

flanges were treated as reinforcing bars as exolair.ed in

Section 5.1.1 (C). The thickness of the concrete slab was
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modified into a thickness corresponding to the steel web

by using Section 5.1.1 (3).

The results iron the computer outnut were checked

by beam theory in which the concrete slab was transformed

to an equivalent steel block. Table 5.5 gives these

results

.

5.4 Composite Steel-Concrete Beam With Web Openings

Problem 5 : Using the same beam as Problem 5 by

assuming the material properties of the elements which

covered by the hole ecual to sero. Fig. 5.S shows the

discretization of the beam. Table 5.6 gives the results

and they were checked by Vierendeel Analysis.

5.5 Reinforced Concrete Beam - Tlon-linear Analysis

5.5.1 Problem 7 : A simply supported concrete beam with

four Mo. 3 reinforcing bars was analysed here. The loads

were .applied in three increments resulting in 9 , 24 .and

33" total force which were symmetrical about the centerlin;

of the beam length.

A sketch of the half of this beam and the discretisa-

tion of analysed portion are shown in Fig. 5.10, the

thickness of the beam is 10".

For the concrete properties, a non— linear uniaxial

compression stress-strain (cj-s) curve was assumed to be a

carabola by the following equation

- t ' [2 (#-) - C-S-)
2

]



33

fH -H

<n x

u JS
<»l OJ i

;

or) !") IN i:'. 1!) to CM o to Of V
^ JR
!r ^- H U <7 CO 10 N n rH CJ
w rH Cvi IN CO

CO
LO CM CM H

,_ „ CO
4-> CO to— 3 r-i ID o OJ 01 CO 0) C> IN T on t-i CM CO CM

3 C X <CT CO *r O) IN IO OJ o i-< ^T Ol o r^
a+> o

CM rH O o O CO o
o

>,
^

* * *
<D t m rH CI CO CO <T CO ra IN CO to IN CO OJ

cu u) CM CO CO 0) u> H IN CO CO V '

CO Q i-i IN CM
Sh X LO CM JO lO CM i-H rH CJ O 01 01 01 to r-i T

D C) CO cm o o CO * C\J o CO LO CO <-> o CO CO O o r-i

C3 CM C\J OJ OJ rH rr i-i ^ r-i o r> r> n O CO n n O
1 1 1 1 1 1

m

_

D -> H 1 OJ 1 'X 1 K 1 LO 1 (£3 I in 1 CO 1 CI 1 rH

H LO in LO L0 'S> LO to CO LO LO to 10 10 to 10 LO in 10 LO
^ *-* r-4

3 rH z r-i r-i

LI! o (0 ^; LO C\J 01 en N LO o H o
f. co lO LO C*3 H o r-i V N OJ O N r-

1

Q m H 3
'

s
CO

u 01 rH t LO
1) -p O C\i 01 OJ CO n cm Ol '0 o
r> 3 T U) on C\l 10 CO CO IN OJ IN CI lO 10

co CO CM o CM r>C^
c

H H H "< H " O c o o O o a c O o c

su

* * *
u L'l CO c; rH LO CM IN N LO

LO CO CO c; LO ai 01 o
5- X c CO r-i [N Ol CO O.l in

D <- - lil =r .-; H <-> CO r- LO ^r OJ H o rH OJ o c o

1
rH rH '"' c ° ° ° O c o

1 1 1 r 1 1

^
CvJ •sT 1(1 CI oO >-; 1-1

1 CM 1 CO 1 V 1 "1 1 CO 1 N 1 CO 1 01 1

C H ^J r-i rH rH H rH H r-i ,H H ,_, ^ ,_, r-i H _^ ,_, ^ rH
rH *"*

-l



Tin f^l

C1C3 > lO Ifl w^



r_, * * *
O -P o Li
+3 2 (0 •7 01 V co <r 'T CO
3 a m c 5" co OJ CT c 01 m c
C-P O
S 3 L.0

.9 ° r 1 1 1 1 l I 1 1

-

H
o * # *
to t) LO LO LO CO LO <& LO
T3 O OJ o o OJ OJ LO CO CO OJ
C £ X LO en UO OJ CO -3- V CJ

JP o
Sl CO o OJ C\J OJ rH O c c
o E H
•H 1 1 1 I>

^
-—«l ,—* -—

*

oj ^-v CO -<^ <T ^-* tn -—s. ^~» [N •-V CC „-^. cn --^ rH
•H CO -; «H 1 1 1 I in [ 1 1 CO I CO 1 r-H

CO

^ H rH ^ rH rH rH H rH rH rH rH r-H r-H rH rH rH r-i r-H 1—1 rH

m

S *-; rH rH 1-1 M M rH rH r-i H H rH r-i rH r-i r-i

CO

(U b * * *
4-> CO r-{ OJ c CO

-p LO rH 0". LO LO ^r
co

a* X
o

^ ^ t> ^ OJ H H G b
P* 3 rH — rH O O c

LO O
u

1 1 1 I !

OOJ

43 \ CD <^- LO * R
3: co n co CO i> CO V CO

T3 C in CO OJ CO OJ
LO T r-i CJ c

CO *J o
Hi • u co r-

)

t—

i

rH r-i rH Q O c Q
c c ~

1 1 1 1 1 1

B 1] >
-P
rH -H

3 m ^^
. .

o O *o ** rj i-^ fi] -—

^

^- ^~v 1/1 ^~x to •-N ^ .—. 2) ^-^ c. ^~v _, 3
ClC t-i

O H
r-i 1 04 1 1 V ' If) 1 (0 1 f- 1 CC 1 CO ! rH

a Cl CI a a CO O CO <T> CO d
lo

LO

co P
H +J 3 *7 LO V CO LC LO c^ Q •v.

— 3 C, X LO CO —

*

'10 c 1—1 CC n co LO ~-. cc *N LO CO ,—

,

Q H
Co 3_ P o H c 01 C! M H c N H CO CT:

o o r-i rH CO •sr c O O c c r-H V OJ rH c c c°
1 1 1 1 1 1 1

1

1 !

H
* * *

13 OJ ai
— O OJ CO CO 0- CO

-3 C CO LO 'JO OJ O c c fl
c l3 X CO CO LO O LO CO

-p o
U CO CI rH CI CM r-H 1—

1

3 c O
CO £ OJ 4JH 1 1 1 | | J ] 1>

e
£

OJ ^r CO
1 OJ 1 CO 1 •n- 1 10 1 1 0~

1 1 I cO H cW
[

L 0- o- £"* fr* c^. ^
—



ss

II II II



87

where z is the strain corresponding to f . The stress-
es c

strain curve was replaced by six linear segments (zones)

and the input data is shown in Fig. 5.11 and Appendix 3.

A biaxial failure stress plot was assumed to be

given by following Kupfer, Holsdorf and Eusch (15), there

are eight sets of data to be given into the program.

Fig. 5.12 shows the biaxial failure space and the data

is given in Appendix 3.

Fig. 5.13 shows the steel properties of the reinforc-

ing bars, f = 60 ksi. The normal and tangential bond
y

orooerties K and K were assumed to be the Youns '

s

n s

modulus of concrete S and shear modulus C- ,

•o = 2 (1 + V
taken as the initial slope cf the stress-

strain curve (E-, V
T ).

The resulting crack pattern as predicted by the progrs

at the ends of increments 2 and 3 are shown in Fig. 5.14.

Normal stresses were compared with beam theory and are

shown in Table 5.7.

5.5.2 Discussion of Results

For the load increment 1, ? = 9 , all sections of the

reinforced concrete beam uncracked and the computer results

have fairly good agreement with elastic beam theory (See

Table 5.7(a)).
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fig. b.12 Biaxial Failure "r^ace for Concre
1 psi = 6.9 KN/m2

'
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For the load increment 2, ? = 24""", unoracked section

1=4 has good agreement with elastic beam theory. The

results of cracked section I = 10 are not as good as for

uncracked sections. Section I = 5 should crack by bean

theory prediction, but the program results are uncracked.

Section 1=6 was checked by both cracked and uncracked

theory. It can be found out that the computer results at

Section 1 = 6 correspond to cracked beam theory at some

locations and uncracked theory at other locations, because

the program capability for spacing cracks influences

results at adjacent sections (See Table 5.7(b)).

For the load increment 3, ? = 36"
, uncracked section

1=3 gives fairly reasonable results (See Table 5.7(c)).

Other cracked sections were not checked because the stress

level in the concrete is greater than about 0.5 f and

ordinary bear, theory is not adequate for these stress

levels

.
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CHAPTER VI

CONCLUSIONS

Some modifications were made for the original finite element

conouter orogram which was obtained from the University of

California at Davis in order to increase the capability of solv-

ing bigger matrices and get more accurate numerical solutions.

On the basis of the experiences and numerical results

obtained from this study, the following conclusions can be

reached:

1. The normal stresses of the non-composite steel beams

and composite steel-concrete beams obtained from the finite

element computer program had very good agreement with the beam

theory (Problems I, 2, 3, and 5).

2. For the elastic analysis, both steel beams and composite

beams (Problems 4 and 5), along the section at the centerline of

the opening, the normal stresses obtained from the finite element

comnuter program were close to ~he predictions based on the

Vierenceel Analysis.

3. The normal stresses of uncracked sections and cracked-

elastic behavior sections predicted by this program had reason-

able agreement with beam theory. However, the program capability

exceeds that of normal beam theory in being able to estimate

spacing of cracks (Problem 7).

4. The computer program at present cannot predict the ul-

timate load canacity of a beam system adequately, but it will

terminate as an unstable system when the load specified is

bic'ser than the ultimate load caoacity.
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5. The mesh generation scheme of this program is very

awkward to use and effectively prevents the use of a. fine mesh

at regions of interest in combination with a coarse mesh at oths

regions. Therefore, very large numbers of elements must be usee

to adequately model problems such as beams with openings.

6. For the non-linear analysis, for failure the programs

need the input of the biaxial stress states or damage of the

material. There is great technical difficulty in obtaining

these data and they are generally not available.

7. The core storage requirements and running time for a

linear analysis are low, but for a non-linear analysis, there

are many iterations involved which can raise the running time

and cost. A table of core storages, running time and costs for

the numerical examples in Chapter V are given in Appendix C.

3. The limits of mesh sine capabilities of the program

indicated in the documentation vary depending on a number of

parameters, eg., number of materials used, "beam" elements

used, bond elements used. Further v;ork is necessary to estab-

lish aopropriaxe limits on maximum available mesh sise that

car. be used for different combinations of these cs.rameters.
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APPENDIX A

CHANGING THE DIMENSIONS OF TAYLOR'S PROGRAM

When changing the dimensions of the program, three areas

must be considered:

1. Common blocks (See Table A.l)

2. The values of IZT and NQilAX specified at the begin-
ning of the program MAIN

3. The dimension checks at the end of the subroutine
PREP.

The dimensions in the program which are related to the

size of the problem are indicated below:

CPI (N-, 3, 4)

F (Nr 2)

AL (Nlf 5)

tcexp (n.), nonprc (i^)

ZE (N
x

, M
2
), Z!:U (N

x
, N

2 )

esi (?:,), ES2 CI,), s:otd (n
2 ), eno (n

2 )

R (I".,, N
3 )

ZEI (H
x

, N
3 , rl

2
), ZE2 (N^ Ng , :!,)

NONPRB (N
4 ), XI3A (N4 ) , A3A (l!^) , E5A (M

4 ), S3AP (M
4 ), ALPBA (N

4 )

TBOVER (N
4 ), SCF3A (Nj , C-NU3A (N

4 )

ZSB (N1C , N-), ZEB (N-., N-)
16 5 16 5

~?:::^ro (::.

)

xkn (:;., 4), XX5 (N„, 4)
a o
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S3BN (N
? ), ZEBN (N

?
), Z33S (N

? ), ZE3S (N
? )

PSTRH (N 4)u
l' '

HODB (K
g

)

3IV (NQ , 3)

NEA (M
g

)

T (N H )

X (>\r N ) Y(S N ) ""II I0('i'T
"'I )

S (N
12 )

NO (H
15 )

MOHLA (?I
13 )

CRAK (N
14 , Hu )

Where

:

H- = maximum number of continuum materials (must not
exceed 9)

N ~ = maximum number of zones in a continuum stress
strain representation

N, = maximum number of stress ratios used in the de-
scription of a continuum stress-strain surface

H = maximum number of zones in a beam or bond stress-
strain representation
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N. = maximum number of different bond descriptions
(must not exceed 9)

N„ = maximum number of zones in the bond description

f:„
-J

' = maximum number of boundary conditions
o

N =5 fj M _ 'J _ H
9 " 10 11 10 11

N, _ = maximum value of IMAX

N.

,

= maximum value of JMAX

M.
p

= size of core equation block

M
13

= (U
lQ
-h (N^- 1

)

N
14 = 2 N

10
_1

:;,„""" = maximum number of system unknowns (the actual
number for a given problem is dependent upon the
degree of cracking - it is suggested that H... =

8 »
10

Nu )

16

Values of Above Dimensions of the Current Program

NL = 1000

M
3

= 10

N
4

= 4

N
5

= S

•'6 = 3

K
7

= 10

PI'3 = 100

hi = 11

•'12 = 2B500

N
13

= 231

N
14

= 44

"15 = 1000

M
"IS

= 10



^ "
i 1-\_^ COMMON

--^SLOCK

SUBROUTINE ""^^
|

1 , .,

, 5 7

1

3 9

Mail! A x X x x

30LPR? x x x

BLOCK DATA x

Fi'iOD X

:I r-

BONDST

2LST x y x X, X

©PEP v X X X
1

''-

MAXV

BUNARY x

STIFHS X x X X

ELIM x

RESTRN
i

?.0?AT

STFSUB x x x

Ti:i?o?. X*

REDUCI ---X-

BAKSUB

PRINC

COMPEL

COMBIN

BONDEL -

BEAHEt x x x x 1

EVAL

CRAKD X

CRKISQ x X x
j

COriVRT
1

PROPEC V

PROBER x
1

-- X i

PROPEB 1

FAILU

Due to double precisioning this subroutine.

Table A.l Common Blocks - Subroutine Association
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APPENDIX B

COMPUTER OUTPUT OF PROBLEM 7
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APPENDIX C

:ORS STORAGE RSQIjIRE:™::T5 , RUNNING TIME AND
COSTS FOR NUMERICAL EXAMPLES

IBM 370/158 computer system was used for solving all the

numerical examples presented in Chapter V. Table C.l shows the

core used, running time and costs of these examples.

Table C.l

(k) (seconds) (Dollars)

15.33

13.39

20.17

15.22

20.27

23 . 73

52.55

*Small version of the program: IZT = 5CCC

f*Lars;e version of the program: IZT = 2S5CO (See Append!;: A)

1 (21,3) 266k* 43.93

2 (21,7) 26Sk* 39.77

3 (21,9) 256k* 53.72

4 (21,9) 266k* 43.54

5 (17,10) 266k* 5g 00

5 (17,10) 484k** 49.35

7 (12,5) 430k** 133.36
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ABSTRACT

A finite element computer program which was developed in

the University of California at Davis was used to model non-

composite steel beams, reinforced concrete teams, composite

steel concrete beams without web openings and composite steel-

concrete beans with web openings. The numerical results obtained

from the finite element computer program analysis had generally

good agreement with those obtained from other methods of analy-

sis.

Although research investigations cf the behavior of non-

composite steel beams with web openings and the elastic behavior

of composite Bteel-concrete beams have been conducted in past

years, the results of these investigations cannot be directly

applied to composite steel-concrete beams with web openings.

On the basis of experiences and the results of numerical

examoles, some conclusions of the suitability and Limitations

cf this program were reached in this study.

It was generally concluded that this computer program has

the capability of adequate!;,- modelling the composite beam with

wet opening. However, the cost/storage requirements for this

program may preclude its extensive application to this problem.


