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NOMENCLATURE

r, e, 2 cylindrical coordinates

h thickness of the plate

a outer radius of the plate

b inner radius of the plate and radius of the concentric
rigid core

M^ mass of the rigid core
c

t time variable

u, w radial and transverse displacements of the middle plane,

respectively

e , e radial and circumferential strain components, respectively
r

a , a , a radial, circumferential and normal stress components,
respectively

D, E, V flexural rigidity, elastic modulas and Poisson's
ratio, respectively

N , N radial and circumferential membrane forces per unit
length, respectively

M , M radial and circumferential bending moments per unit
length, respectively

T, , Tp Kinetic energy of the plate and of the concentric
rigid mass, respectively

V,, Vp strain energy due to bending of the plate and due to

stretching of the middle plane, respectively

e , e° radial and circumferential strain components acting
on the middle plane, respectively

p density of the plate material

I action integral of the vibratory system

6l first variation of I

n, ? arbitrary functions in the admissable variations of

w and u, respectively

e arbitrary infinitesimal constant

VI



X nondimensional transverse displacement

5, T nondimensional space and time variables, respectively

R radius ratio

Y mass ratio

(0 nondimensional angular frequency

ij;, i\) stress functions

A, a amplitude parameters

g(c). ^(5) shape functions of vibrations

A nondimensional nonlinear eigenvalue

6X first variation of X

fiW virtual work of all transverse forces

Y,Z,H (6x1) vector functions

(M), (N) coefficient matrices

n^ adjustable data in the related initial value problem

(J,) Jacobian matrix

Wj,/h relative amplitude at 5 = R

ft) linear angular frequency

vn



INTRODUCTION

The transverse oscillations of a thin circular plate carrying a

concentric rigid mass are important in many engineering applications

ranging from telephone receiver diaphragm oscillations to structures

supporting vibratory machinery and to modeling printed circuit boards.

Since vibrations may be disastrous, reliable predictions of their nature

is of great importance. The amplitude of vibrations may be of sufficient

magnitude to result in malfunction of delicate components. In addition,

undesirable noise associated with vibrations may result in human

discomfort as well

.

When the amplitude of vibration is of the same order of magnitude

as the thickness of the plate, classical linear plate theory must be

extended to include the effects of middle plane deformation. Considering

this membrane effect results in a set of two equations, well known as

the dynamical von Karman's equations, which are non-linear and coupled.

Due to the complexity of the governing equations, the only present

means of solution is by approximate methods.

Employing various approximate numerical methods, several authors

have examined the vibratory characteristics of circular plates of

constant thickness [3,7,11]. However, limited attention has been given

to the large amplitude vibration of simply supported plates with a

rigidly attached concentric rigid mass.

Handelman and Cohen [10] studied the effects of adding a concentric

rigid mass to a clamped circular plate. Small amplitude vibration

response curves were obtained for various mass and radii ratios by

employing a minimum principle. Extending the problem, Laura and

Gutierrez [13] solved the problem of variable thickness circular

1



plates carrying a concentric rigid mass by means of the Ritz method.

Defining a thickness ratio and a flexibility parameter, frequencies

were obtained for various conditions.

Approximate solutions are commonly obtained by separating the

variables and using function space methods for the purpose of eliminating

the space function from the governing equations. An alternate solution

was proposed by Huang and Sandman [14] to assume the existence of

harmonic vibrations and eliminate the time variable by a Kantorovich

time-averaging method.

The present investigation is concerned with the ax i symmetric

vibrations of a thin isotropic circular plate carrying a concentric

rigid mass. Hamilton's principle is utilized to derive the von Karman

form of the governing differential equations and the associated natural

boundary conditions. Harmonic vibrations are assumed and the time

variable is eliminated by a Kantorovich averaging method. Thus, the

governing equations of motion are reduced to a pair of ordinary

differential equations, which form a non-linear eigenvalue problem.

Numerical solutions are obtainable by introducing the related initial

value problem. Free vibrations of the plate-mass system are investigated

for various mass and radius ratios, and the fundamental angular

frequencies and its corresponding results are presented. Agreement

with prior work is obtained for a flat circular plate when the radius

of the rigid mass tends to zero and a mass ratio of unity is prescribed.



BASIC DIFFERENTIAL EQUATIONS

Formulation of Governing Equations

Consider a flat circular plate having an outer radius a, constant

thickness h, and an attached concentric rigid mass, M . The radius of

the rigid mass is b and equals the inner radius of the plate. Let the

origin of polar coordinates (r.e.z) be located at the center of the

middle plane of the plate as shown in Figure 1. The plate material is

assumed to be elastic, homogeneous, and isotropic. Formulation of the

governing equations of motion are based on the following assumptions:

1. Planes normal to the middle plane of the undeformed
plate remain normal to the middle plane in the deformed
state.

2. Normal stresses to the middle plane, a^, are small compared
to other stress components and may be neglected from the
stress-strain relationships.

3. Deflections of the plate are symmetrical with respect to
the z-axis.

4. Effects of stretching of the middle plane are not negligible.

In accordance with these assumptions, the non-zero radial and

circumferential strain-displacement relations are found to be [1,4]

En = - - -^ (lb)
9 r r r ^ '

where e^ and e denote the radial and circumferential strain components

respectively. Also, u(r,t) and w(r,t) denote the radial and transverse

displacements of the middle plane of the plate. The subscripts of the
2

displacement components represent partial derivatives, e.g. w = -^ .
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From Hooke's Law the stress-strain relationships are derived as

1-v

"^9 = rr (^9 " ^s^ (2b)
1-v

Expressions for the radial and circumferential forces per unit length,

^r
^"^ ^9' ^^^ obtained by integrating the corresponding stresses over the

thickness of the plate

h

2

n

It

^ = f h ^9^^ = ^f ^ -r ^ H^ (3b)

I h

Also, expressions for the radial and circumferential moments per unit

length, M^ and M^, are obtained by integrating the moments of the forces

about the middle plane

h

Mr= ]^h V^^= -D(w^^ + -;-w^) (4a)

"
2

h

^9 = l!h V^^^ -DCK'-^V^ (4b)

2

Hamilton's Principle, [5,6], is used in the derivation of the

governing equations of motion and related boundary conditions. It states

that between any two instants, tj and t^, the first variation of the

action integral is equal to zero, e.g. si =



where
h

I = (Tj + T2 - Vj - V2)dt (5)

and T, = Kinetic energy of the circular plate

Tp = Kinetic energy of the rigid mass

V, = strain energy due to bending

V2 = strain energy due to stretching of middle plane

The kinetic energy of the circular plate, considering only the transverse

velocity component, is given as

'1 2

Ztt

w. rdrde

where p denotes the mass per unit volume of the plate. Integrating yields

ra

T, = irph
2

w. rdr

The kinetic energy of the rigid mass is given as

h - Vtl^'b

The strain energy due to bending is given by [1,4]

r2ir ,a M w„„ M w

{-V^ + -y^} rdrde
ib 2 2r

(6)

(7)

substituting M and M , then integrating yields
r 9

'1 = ^°/ {w^^ + 2> w^^ + ^h rdr
u rr r r rr i r
D r

(8)

The strain energy due to stretching of the middle plane is given

by [1,4]



where

f2"
ra Nv N E°

4-''r^H

. u
and eg = -

are the strain components acting on the middle plane. Substituting N

and N., then integrating yields
9

r

2"
h2 J

a w 2

{Up + \^l + 7u(2u/w^) + 4^ + ^}rdr (9)

b r

Introducing equations (6), (7), (8), and (9) into (5) results in

the following expression

(10)

where

(2 (^ * *
I = {tt F (r,t;w,w^,w^^,w. ,u,u^)dr - G (r=b,t;w^)}dt

n, Jb r rr t r t

F* = phrw^ - DCrw^^ + 2vw^w^^ + V] - ^ [ru^

h

+ ru w^ + vuw^ + 7*J + 2vuu^ + -tTw^]
r r r r r 4 r

and G* = i^W^lr=b

The displacement functions w(r,t) and u(r,t) are given an

admissible variation •en(r,t) and ecCr.t) respectively, where nCr.t) and

c(r,t) are continuously differentiable functions which satisfy the

constraints of the plate, and e is an arbitrary infinitesimal constant.

The change in the action integral I is given in the following expression.



Al =
j

^ {irf [F*(r,t; w + en, w^ + en^, w^^ + en^^. u + ec

u^ + eCy.. w^ + en^) - F ]dr

-[G*(r=b,t;w^ + en^) - G*]}dt (11)

Properly expanding the integrand, integrating by parts, and

retaining only the linear terms of e contained in aI, produces the first

variation, 6l. The resulting expression is listed in Appendix A.

Extremization of the resulting integrand is accomplished by noting the

necessary condition that the double and single integrals must vanish

separately. Therefore, combining the double integrals with like terms of

the admissable functions and equating to zero yield the governing

equations of motion,

+ UW+UW +-^W+ ^W +-s^+oWW ] =
rr r r rr r r r r rr 2r 2 r rr-^

^ + u + 1-^^ + w w - -g-w^ - ^ = (12b)
r rr 2r r r rr 2r r „2 ^ '

r

while combining the single integrals with like terms of the admissable

functions and equating to zero yield the natural boundary conditions,

2.Dr(w^^ + ^JnJl = ° ^^^'^

rr r r r '

b

^K^Vr^>K-^ (13b)

h

2
W W _ o/i n W^

2,0r(v.,,, * ^ - -^Ml - ^„^(u, * ^ * /)c,,

^"cVlb'" '13=)



Introducing a stress function 4;(r,t), which satisfies the

equilibrium equation of the plate, given by

ii =

where

and

^-^\ '^-\

w2

'V T2^ r 2 r^'
^

} (from (3))

transforms the governing equations of motion, (12a) and (12b), into

7[r{-^rw^)^}^]^ + Phw^^ - -^(rpw^)^ = (14a)

r

Equations (3) may be used to derive a useful expression of the

radial displacement, u(r,t), needed later in the definition of the

boundary conditions

u(r.t) = ^(Ng - vN^) . (15)

Using the following dimensionless variables

^ a ^ a

h ^r
R = ^ - c

ttD ph

pha

transforms the governing equations of motions into the following forms;
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2,

V + 2„ 1 y + 1_Y + X -
12(l-v )(a)2(.x

) =

(16a)

Boundary Conditions

Depending on the type of support on the outer edge and the physical

constraint on the inner edge of the circular plate, the geometric

boundary conditions are supplemented by the natural boundary conditions

of equations (13a), (13b), and (13c) providing a complete set of boundary

conditions to satisfy.

An edge is termed immovable if it is rigidly held so as to

eliminate any radial displacanent. The geometric boundary conditions

for a hinged-immovable plate with an attached concentric rigid mass are

as follows:

(")r=a = ("V=b =

An edge is termed movable if it is allowed radial displacement,

thus eliminating radial forces at the boundary. The geomentric boundary

conditions for a hinged-movable plate with an attached concentric rigid

mass are given as:

(w)r=a = ° ^^V=b = ° ^"V=b = °

Utilizing the geometric and natural boundary conditions, the prescribed

dimensionless variables and equation (15), Table 1 represents appropriate
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non-dimensional boundary conditions for simply supported plate-mass

systems.

Table 1. Non-dimensional Boundary Conditions

Type
of
Edge

Boundary Condition

£ = 1 C - R

HINGED
IMMOVABLE

X =

*^ - 1* = j - ^ =

HINGED
MOVABLE

X =

j
- ^ =



APPROXIMATE ANALYSIS

An exact solution to the problem defined by the non-linear

differential equations of (16a) and (16b) which must satisfy the

associated boundary conditions of Table (1) is at present unknown.

Thus, the analysis and solution of the problem is accomplished by

approximate methods. Approximate solutions to large amplitude

vibration problems are commonly obtained by using function space

methods to eliminate the space coordinate with an assumed mode shape

function [7], Thus, the non-linear partial differential equations are

reduced to a set of non-linear ordinary differential equations with

time, t, as an independent variable. In this investigation a time

function is assumed, then a Kantorovich averaging method is employed

to reduce the non-linear partial differential equations to a set of

ordinary differential equations.

Kantorovich Averaging Method

The Kantorovich method is used to find an assumed time mode

solution to the equations (16) which satisfies the boundary conditions

of Table (1) [9]. Assuming a harmonic solution for the system of

equations (16), the behavior of the plate is given by:

X(5,t) = Ag(c) sin cot (17a)

(C.t) = A^f(5) sin^ ojT (17b)

12
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where A is an amplitude parameter, w is the angular frequency, and g(c)

and f(c) are shape functions of vibration to be determined.

Substituting equations (17) into the differential equation (16b)

yields the expression

where the superscript denotes total differentiation, i.e. f '
= ^ •

Noting that equations (17) cannot satisfy the differential eq. (16a)

for all T, the residual may be found and minimized by the Ritz-Kantorovich

method. For any instant in time t, the virtual work of the transverse

forces moving through a virtual displacement 6X =56 sin "t is given by

the following integral.

j^ 5555 5 555 ^2 55 _3 5 tt

-1211^ ^^)2(^X^)^}6X^d5 (19)

Substituting eqs. (17) and 5X into the above integral and equating the

average virtual work over one complete period of oscillation to zero,

that is

rZu/ (D

6WdT = (20)

•'o

yields, upon integration with respect to t, the following expression;

5 5

2

+ |g"' -^" +^g' - xg - -^^^^ a (g'f)' = o (21)

2 a 2
where x = u and a = (AT-) are additionaldimensionless parameters associated

with the angular frequency and amplitude respectively. Thus, the time
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variable is eliminated from the governing differential equations with an

average minimum error over one complete cycle of assumed motion. There-

fore, the motion of the plate-mass system becomes governed by the pair

on non-linear ordinary differential eqs. (18) and (21).

Similarily, by substitution of equations (17), the boundary

conditions of Table (1) are transformed to the final form given in

Table (2). In addition to the boundary conditions of Table (2), a

unique relationship between a and X is assured by imposing the following

condition:

Table 2. Final Non-dimensional Boundary Conditions

Type
of

Edge

Boundary Condition

C = 1 K = R

g = g = 1

HINGED
IMMOVABLE

g" +^' =

f ' - vf =

g' =

f - vf =

g'" +|g" -fxg =

g = g = 1

HINGED
MOVABLE

g" +|g" =0

1=0

g' =

f '
- vf =

g " ' + |g" - frxg
=



NUMERICAL ANALYSIS

The equations (18) and (21) along with the boundary conditions of

Table (2) comprise a nonlinear two-point boundary value problem describing

the harmonic motion of a circular plate carrying a concentric rigid mass.

Although solutions to boundary value problems are complicated, they may

be solved by numerical integration to the associated initial value

problem.

Matrix Formulation

In order to solve the problem numerically, equations (18) and (21)

are rewritten as six first order differential equation as follows

^=ff(C, Y; a. A, y) RlCll (23a)

where Y(5)

9 h
g' Hg"

1 1

1

. ^z
g

f
H

f H
H

and H =

H
H

F4 ^2-^3

2

^6

1 1

1^6 " JH
1_ 2

2c ^2

15
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The boundary and normalization conditions of Table (2) may be

written in the generalized' form:

MY(R)

and

NY(1) =

(23b)

(23c)

where M and N are 4 x 6 and 3 x 6 coefficient matrices respectively,

shown in Table (3) for the two different sets of boundary conditions

considered.

Table 3. Coefficient Matrices (M) and (N) of Boundary Conditions

Type of
Edge

(M) (N)

Hinged
Immovable

1

1

1

V 1

-frA
1

R
1 -V 1

-V
R

1

Hinged
Movable

1

1

1

V 1

|yA 1

R
1 1

-V
1
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Initial Value Problem

To conveniently study the system of equations (23), a related

initial value problem may be expressed as

dZ = H(5, Z; a, X, y)

where Z(R) =
^3

.

"
1

"^1 ^ R
,

H n2

H
C=R _ F2

(24a)

(24b)

Equation (24b) represents the initial value vector constructed from the

boundary and normalization conditions at c = R and n^. n2 and x are

unknown adjustable initial value parameters. Substituting equations

(24b) into (23b) for Y(R) yields the following system of equations

MI(R) =

1

(25)

that must be satisfied at the inner boundary c = R.

A solution to the initial value problem of (24) may be symbolically

written as:

r.

,T

fC

Z(c) = Z(R) + H(c, Z; n, a, Y)d5 (26)

where n = [n-. n2 x]
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Given the parameters a and y, the values of n-i . no and x are searched

for such that a solution to equations (25) also satisfies the boundary

conditions of (23c),

N7(1; n, a. y) = (27)

A solution to the boundary value problem defined by equations (18) and

(21) is found when a continuous set of solutions satisfying equations

(23) are obtained for the related initial value problem (24). Therefore,

for given values of a and y.

Y(5) = Z(5; nt a, y)

_*
represents a solution to the boundary value problem where n is a root

of equation (27).

By direct application of Newtons method [8], a root, n , of

equation (27) may be found. Starting with an initial guess, n", , and

fixed parameters a and y, the iterative sequence

is generated. Retaining only first order terms of the Taylor series

expansion of (27) about n"|^ provides the linear correction,

An,^ = - [N(Jj),^]"^ NZ(1; n,^, a, y) , (29)

at the k-th step of iteration. The Jacobian matrix (J,) is defined as

^*^1^ " ^30^5=1 "
^3nj-5=l ' j=l,2,3



19

and represents the change of final values with respect to a change in

the initial ii". The term NZ(1; "n, a, y) represents the error vector at

the k-th iteration. Given constant values of a and y» the following

vectors provide the linear correction of the initial values n^* ^2 and

X for hinged immovable and hinged movable edge constraints respectively.

^-1

An

An/

AX

8Z

ani

1

3Z2 3Z3

3ni 3n
1

3Zj

3ni

3Z

30'

1
3Zi

3Z2 az^

3n'

3Zc

3n'

3n'

3t1'

3X

3Z2 3Z2

^^Tx"
"*"

"Ix

3X

VZ2 + Z3

-VZ5 + Zg

(31)

An

Ari'

AX

3Zj

3ni

3Z,

3n
1

9Zj

9ni

3Z-

'h
3n2

3Zi

3X

3Z2
^

3Z3

^ 3n2 3n2 ^ 3X^

^^3

3X

3Z5 3Z5

^-1 I-

3n' 3X

VZ2 + Z3 (32)

If the initial values of n are chosen in a sufficiently small proximity

* *
of the root n . the sequence (28) will converge to the root n of (27).

Since an explicit solution to the initial value problem (24)

cannot be readily obtained, due to the nonlinearity of the vector

function H, an expression for the Jacobian matrix cannot be determined

directly. Therefore, a technique for constructing the Jacobian matrix

at any iteration step is necessary. Differentiating the initial value

problem (24) with respect to n" yields the following variational equations.
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d ,dZ . _ /3Hn/3Z

(||-)|,.R=C0 0l40 0]^ (33b)

4(|^) =

(f (|f)
.

(330

(|-)|^,= [00 00 1^f ^'''^

3l<# =

(f# ^ # (^^^^

(|f)|^=R= [0 Ofy oof (33f)

Performing the operations indicated by equations (33a), (33c) and

(33e) results in eighteen first order equations which are presented in

Appendix B. The initial conditions for the associated variational

problem are given by equations (33b), (33d) and (33f). For given values

of cc and y, and a vector "n, the initial value problem (24) may be

integrated numerically by a Runge-Kutta method. Evaluation'of the resulting

solution to the variational problem at c = 1 provides the Jacobian

matrix (J,) corresponding to the given values of a, y and n- Therefore,

by setting ri'
=

"n and integrating equations (24) and (33) simulatneously

_2
from 5 = R to c = 1, the first corrected vector, n , can be calculated

— -2
from equations (31) or (32). Repeating the same operations with n = n ,

_3
one obtains the second corrected vector, n . Repetition of this

—

*

procedure yields the desired solution n , a root of equation (27).



21

Once a root n^ has been obtained for a given = 0"^ and y, the

value of a can be perturbed,

a = J + i^J = a^^*"^^^ J = 1. 2 , m

For this value of a, the Iteration is restarted from the previous root

nK If Aa"^ is chosen sufficiently small, "rV^ will be within the new

contraction domain of Newton's method, and iteration will converge to a

new root T?"^"*"^' corresponding to a = a^''"'" ^ The range of a is limited

to finite amplitudes for which equations (18) and (21) were derived.

In determining the vibration characteristics of a plate-mass

system, the outline of the numerical computation procedure used is as

follows.

By first considering the linear vibration case, with a set to zero,

initial estimates may be obtained for n [H]- Next, the initial value

problems (24) and (33) are integrated numerically over the interval

[R,I] with a fourth order Runge-Kutta-Gill method having a step size

Au = 1/40. Successive corrections and integrations are carried out

until the final values, 1(1), satisfy the inequality,

T<U I ^ij^j(i) 1

1

0.1 X
10-5

j=i

where n.. = (N) and the prescribed error is consistent with the Runge-

Kutta-Gill method employed. Having obtained an approximate solution

for the linear vibration of the system, the corresponding values n,,

T\2 and X are stored. Successively incrementing a and starting iteration

_*
from the previously obtained root, n , provides the resonance curves of

the plate-mass system. Three or four iterations were required for
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convergence to a solution when the increments, Aa , in the value of a

satisfied the constraint 0.0 <
|
Aa^

|
_< 0.1. Two Fortran computer

programs are listed in Appendix C for the purpose of illustrating specific

steps in the numerical solution to hinged immovable and hinged movable

plate-mass systems.



RESULTS OF NUMERICAL COMPUTATION

To support the method of solution in the present investigation,

the plate-mass system may be reduced for comparison to the characteristics

of a flat circular plate with a hinged immovable outer boundary. Since

the mass ratio, y, is defined as the ratio of the rigid mass to the

mass of the plate it replaces, setting y = 1 describes a plate-mass

system having the same mass as a flat circular plate. As the radii

ratio tends to zero, the conditions of zero slope and radial deflection

are approached. Appropriately, R = 0.025 was selected since it falls

on a radius defined by a convenient step size in the numerical integration

technique. The response curve (Wj^/h - oj) obtained by setting y = 1 and

R = 0.025 is presented in Figure 2, where Wj^/h is the relative amplitude

at the inner boundary and co is the dimensionless angular frequency.

Huang and Al-Khattat [12] also employed the von Karman equations to study

the characteristics of a flat circular plate. Values taken from their

investigation are presented by circles in Figure 2. The close agreement

supports the correct method of solution used in the present investigation.

Although the mass of the system under consideration is the same

as that of a flat circular plate, the present investigation examines a

flat plate with a small finite rigid region, while Huang and Al-Khattat

had examined a complete elastic flat circular plate. Therefore, the

response of the plate-mass system is slightly higher than that in [12],

due to an increase in the stiffness of the plate.

When a rigid mass occupying a finite area is concentrically added

to a thin circular plate, the effect upon the response is not immediately
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obvious. Insertion of a rigid mass produces a change in kinetic energy

which must compete with a change in potential energy due to the

additional stiffening effect at the inner boundary. Thus, the behavior

of the plate-mass system is dependent upon the specified mass and radii

ratios given to the system under consideration.

An examination of the linear vibration characteristics is found to

facilitate the study of the nonlinear vibration of plate-mass systems.

Accordingly, the nonlinear problem is reduced by setting the amplitude

parameter to zero, ie. a = 0. The linear problem may then be solved for

various mass and radii ratios. The dimensionless linear frequencies

presented as a function of radii ratio are shown in Figure 3 and are

valid for both immovable and movable edge constraints. The linear

problem has been studied by other authors [10,13] where similar curves

were produced.

For mass ratios of less than 2.0, the stiffening produced by

insertion of a rigid core of any radius will increase the natural

frequency of the system. Increasing the radii ratio simultaneously

increases the stiffness and the frequency of the plate-mass system. As

the mass ratio is assigned to values greater than 2.0, the frequencies

must be examined more carefully. To gain further insight, a refined

view of Figure 3 is presented in Figure 4. For mass ratios greater than

2.0, there exists a critical radii ratio for which the frequency is a

minimum. As the radii ratio is increased, the frequency decreases for

radii ratios less than the critical value. Hence, the effect of

additional mass is seen to have more influence than the increase in

stiffness on the frequency. The frequency increases as the radii ratio
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is increased beyond the critical value. Here, the influence of the

stiffening effect becomes dominant over any addition of mass. Referring

to Figure 4, the dashed curve represents the critical radii ratios where

the transition occurs.

Since the primary intention of the present investigation is to

determine the response of nonlinear vibratory plate-mass systems, deter-

mining the exact critical radii ratios of Figure 4 was not attempted.

It will later be apparent how the critical radii ratios are related to

the response of plate-mass systems at finite amplitudes.

Advancing the problem to nonlinear considerations. Figure 5

represents how the effects of mass and radii ratios and edge constraints

influence the response of the plate-mass system. Similarities are

observed between the linear case, a = 0, and the curves in Figure 5,

a = 1.0. Obviously, the movable edge condition produces lower frequencies

than the immovable edge due to the greater flexibility.

Nonlinear response curves obtained from numerical results are

given in Figures 6-21. The figures are presented with dimensionless

relative amplitudes, Wn/h, plotted as a function of dimensionless angular

frequency, oi. Response curves are given for constant radii ratios in

Figures 6-11. For both immovable and movable edge constraints, the

addition of mass decreases the frequency of the system. The response

curves of Figures 12-17 are presented with constant mass ratios, providing

an alternate view to the nonlinear behavior of plate-mass systems.

Recalling the observations found for linear vibratory systems, the

effects of varying the radii ratio for mass ratios greater than 2.0

are evident. The frequency decreases for radii ratios less than the
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critical value while increasing for radii ratios greater than the critical

value. For design considerations. Figures 18-21 present the nonlinear

response envelopes of immovable and movable plate-mass systems.
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CONCLUSIONS

Utilizing the method of variational calculus facilitated the

derivation of the governing differential equations of motion, geometric

and the natural boundary conditions. By eliminating the time variable,

the governing equations for the transverse and in-plane displacements

were reduced to a pair of ordinary differential equations. Results for

the responses of a plate-mass system are obtained using numerical

integration. This method can easily be extended to investigate forced

vibrations and stress distributions of a plate-mass system.

As noted in references [10,13], the linear behavior of the plate

is dependent upon the specific mass and radii ratios imposed on the

system under consideration. The non-linear behavior of the plate-mass

system under consideration was also found to be dependent upon the

specified mass and radii ratios. Excellent agreement was obtained with

previous results [12] for the case of a hinged-immovable edge condition

when the present problem was reduced to approximate a flat circular

plate. With both edge constraints considered, characteristics were

exhibited by the response of the plate as similar to that of a hard

spring.

Varying the mass and radii ratios of the plate-mass system had

interesting effects on the behavior of the system. The frequency of

the plate decreased with the addition of mass for both hinged

immovable and hinged movable boundaries with a constant radii ratio.

In addition, the dependency of the frequency on amplitude weakens for

large mass ratios with a constant radii ratio.
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For both kinds of edge constraints, increasing the radii ratio

simultaneously increased the frequency for mass ratios less than 2.0.

For mass ratios greater than 2.0, there exists a critical radii ratio

for which the frequency is a minimum. As the radii ratio is increased,

the frequency decreases for radii ratios less than the critical point

while the frequency increases for radii ratios greater than the critical

point.

The findings of this investigation are intended to yield some

essential information of the behavior of plate-mass systems. Figures 6-17

are useful in prediction or alteration of the frequency response of a

plate-mass system. With the edge constraints analyzed being mathematical

idealizations. Figures 18-21 are of valuable importance to the designer

in defining a range envelope for the frequency response of simply

supported thin circular plates carrying a concentric rigid mass, and

provide the upper and lower bounds for the plates.



REFERENCES

1. Langhaar, H.L., Energy Methods in Applied Mechanics . John Wiley
and Sons, 1962, pp. 159-198.

2. Merovitch, L., Analytical Methods in Virbations . Macmillan,
1967, pp. 42-45.

3. Sandman, B.E., Hannonic Oscillations of Circular and Annular
Plates at Finite Amplitudes , Ph.D. Dissertation, Kansas State
University, Manhattan, Kansas, 1970.

4. Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates
and Shells , Second Edition, McGraw-Hill, 1968, pp. 396-428.

5. Lanczos, C. , The Variational Principles of Mechanics ,

University of Toronto Press, 1949.

6. Wienstock, R. , Calculas of Variations , McGraw-Hill, 1952.

7. Nowinski, J.L., "Nonlinear Transverse Vibrations of Circular
Elastic Plates Built-in at the Boundary," Proc. of the Fourth
U.S. National Congress of Applied Mechanics , ASME, 1962,
pp. 325-334.

8. Kellar, H.B., Numerical Methods for Two-Point Boundary-Value
Problems , Ginn Blaisdell, 1968.

9. Kantovovich, L.V. and Krylov, V.I., Approximate Methods of Higher
Analysis , Interscience Publishers, 1958.

10. Handelman, 6. and Cohen, H., "On the Effects of the Addition of
Mass to Vibrating Systems," Proc. of 9th Int. Con, of Applied
Mechanics , Vol. 7, 1957, pp. 509-516.

11. Leissa, A.W., Vibrations of Plates , NASA SP-160, 1969, pp. 7-19.

12. Huang, C.L.D. and Al-Khattat, I.M., "Finite Amplitude Vibration
of a Circular Plate," Int. J. of Non-linear Mechanics, Vol. 12,
pp. 297-306.

~"

13. Laura, P. A. A. and Gutierrez, R.H., "Transverse Vibrations of
Annular Plates of Variable Thickness with Rigid Mass on Inside,"
J. of Sound and Vibration . Vol. 79, n2, 1981, pp. 311-315.

14. Sandman, B.E. and Huang, C.L.D. , "Finite Amplitude Oscillations
of a Thin Elastic Annulas," Proc. 12th Midwestern Mechanics
Conference, University of Notre Dame, 1971, pp. 921-934.

49



APPENDIX A

The first variation of the action integral I is defined to be

f2.
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APPENDIX B

Differentiation of the initial value problem with respect to

n,, Tio* and X yields the variational equations defined by (33a), (33c)

and (33e) as follows:

5_/_J.) = —1
dranj 3ni

6j'j2. .!f3
W^^i 3nj

A 3Z, 3Z,

dranj' 3nj

,< 32- 3Zc

dranj 3ni

u 3Z, 3Z,
d / l.> _ 2

^^3n2 ~ 3n2

J 3Zo 3Z,

d5^3n2 3n2

A 32, 3Z.—(—) = —

^

d5^3n2^ 3n2
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APPENDIX C

Fortran Computer Programs for Free Vibrations

The relationship between the equations given in {23a) and Appendix B

to the following programs is described as.

Yd) =yi

3Zj

Y(I+12) = T-^ 1=1, ...., 6
dno

3Z,

Y(U18) = 3^
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C HINGED CIRCULAR PLATE WITH ATTACHED CONCENTRIC RIGID M*ASS
C INITIAL-VALUE METHOD FOR THE FREE VIBRATION OF A SIMPLY-
C SUPPORTED CIRCULAR PLATE WITH CONCENTRIC RIGID MASS
C RIGID MASS INSIDE AND HINSED-IMMOVABLE OUTSIDE BOUNDARY
C POISSON'S RATIO = 0.3
C *********************************************************
c

IMPLICIT REAL»S(A-H,0-Z) ,INTEeER(I-N)
DIMENSION Y(24),Q(24),TP(3,4),D<&,41),C(3),ER(3)

112 F0RMAT(5X,'AHP»',D22.14,3X,'FREQ«',D22.14)
C 113 F0RMAT(9X,'H',19X,-DH',18X,'DDW',17X,'DDDW')
C 114 F0RMAT(4D22.14)
C 115 F0RMAT(//9X,'F',19X,'DF'>
C 116 F0RMAT(2D22.14)

117 FORMATdH )

C 118 FORMATdS)
119 FORMATdSX, -RADIUS RATIO- ' ,D22. 14)
120 FORMATdOXj'MASS RATIO" ' ,D22. 14)

C ******************************************************ifitt
C A-AMPLITUDE PARAMETER
C R«RATIO OF INNER RADIUS TO OUTER RADIUS B/A
C BAMMA«RATIO OF RIGID MASS TO MASS OF PLATE IT REPLACES
C DA»INCREMENT IN AMPLITUDE
C DR»INCREMENT IN RADIUS RATIO
C D6«INCREMENT IN MASS RATIO
C H-STEP-SIZE FDR NUMERICAL INTEGRATION
C VV»POISSON'S RATIO
C IKaCOUNTER FOR AMPLITUDE INCREASE
C IR»COUNTER FOR RADIUS RATIO INCREASE
C IG-COUNTER FOR MASS RATIO INCREASE
C LL=STEPS REQUIRED FOR RADIUS RATIO TO REACH UNITY (R=1.0)
C IN RUNGE-KUTTA-GILL INTEGRATION {LL=( (1 . 0+R) /H) +1 . 0)

}

C *******************************************************itt
DA»0.1D-0
DR=0.1D-0
DG-l.OD-0
VV»0.3D-0
R-O.OD-0
H«2.5D-2
LLs41

C »* L00P510 INCREMENTS THE RADIUS RATIO
DO 510 IR=1,5
LL-LL-4
R=R+DR
GAMMAsQ.SD-O
WRITE(6,117)
WRITE(6,119) R
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C LOOP 520 INCREMENTS THE MASS RATIO
DD 520 IG=l,l
IK=1

P=4.975D-0
A=0.0D-0
GAHnAsGAnnA-fDe
WRITE(6,117)
MRITE(6,120) BAMMA

C »# CONSTRUCT INITIAL VALUES
500 DO 10 1=1,24
10 Y(I)=0.0D-0

Y(l)«1.0D-0
Y(3)»-4.&7D-0
Y(4)=-Y(3)/R+0.5D-0»R*6AMMA*P
Y(5)«0.82D-0
Y(6)«(VV»Y(5))/R
Y(9)»l.0D-0
Y(10)«-1.0D-0/R
Y<l7)«1.0D-0
Y(1B)«VV/R

Y(22)»0.5D-0*R»SAMMA
IF(IK.EQ.l) 60 TO 600
DO 15 1*1,6

15 Y(I).D(I,1)
C X'lNDEPENDENT VARIABLE

600 X=R

00 20 I«l,24
20 Q(I)s0.0D-0

DO 21 1=1,6
21 D(I,1)»Y(I)

C PERFORM RUNSE-KUTTA-SILL INTEGRATION
DO 25 1=2, LL
CALL RKBPL(X,H,Y,Q,P,A)
DO 30 J=l,6

30 D<J,I)=Y(J)
25 CONTINUE

C «* ER(I)=ERROR VECTOR FOR BOUNDARY CONDITIONS AT X=1.0
ER(1)=D(1,LL)
ER(2)»D<2,LL)*VV+D(3,LL)
ER(3)»D(6,LL)-VV»D(5,LL)
DO 35 1=1,3
DER=DABS(ER(I))
IF(DER.6T..0.1D-5) 60 TO 36

35 CONTINUE
SO TO 900

36 CONTINUE
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C TP(I,J) IS THE JACOBIAN OF THE MAPPING OF INITIAL VALUES
C TO FINAL VALUES

TP(1,1)=Y(7)
TP<2,1)=Y(8)*VV+Y(9)
TP(3,1)=Y(12)-VV»Y<11)
TP(1,2)=Y(13)
TP(2,2)=Y(14)»VV+Y(15)
TP(3,2)=Y(18)-VV»Y(17)
TP(l,3)aY(19)

TP(2,3)=Y(20)#VV+Y(21)
TP(3,3)»Y(24)-VVtY<23)
DO 40 I»l,3

40 TP(I,4)«ER(I)
CALL 6AUSSX(TP,C,3,4)

C *» C(I)»CORRECTION VECTOR
DO 76 I«l,6

76 Y(I)»D(I,1)
Y(3)»Y(3)-C<1)
Y(5)»Y(5)-C(2)
P*P-C(3)
DO 80 1-7,24

80 Y<I)«O.OD-0

Y(4)»-Y(3)/R+0.5D-0»R»SAMMA*P
Y(6)«(VV*Y(5))/R
Y(9)»1.0D-0
Y<10)«-l.0D-0/R
Y(17)-1.0D-0
Y<18)»VV/R

Y(22)»0.5D-0»R*SAMMA
60TO 600

900 SRAaDSQRT(A)
SP«DSQRT(P)
WRITE(6,117)
WRITE(6,112) SRA,SP

C WRITE(6,117)
C WRITE<6,113)
C DO 910 J=1,LL
C 910 WRITE<6,114) «D< I , J)

,

I»l ,4)
C WRITE(6,115)
C DO 920 J«1,LL
C 920 WRITE(6,116) (D (L, J) ,L=5,6)
C WRITE<6,117)

A-A-t-DA

IK»IK+1
IF(IK.ST.40) GO TO 520
60 TO 500

520 CONTINUE
510 CONTINUE
550 STOP

END
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SUBROUTINE RKGPL (X ,H, Y,Q,P,AP)
C #* THIS ROUTINE PERFORMS A RUNGE-KUTTA-BILL INTEGRATION

IMPLICIT REAL«8(A-H,0-Z) , INTEGER ( I-N)
DIMENSION Y(24),Q(24),DY(24),A(2)
A<1)=. 2928932188134524
A(2)al.7071067BllB6547
H2«0.5D-0*H
CALL DERIVL(X,H,Y,DY,P,AP)
DO 13 I»l,24
B«H2*DY(I)-Q(I)
Y<I)*Y(I)+B

13 Q(I)=Q(I)+3.0D-0*B-H2*DY<1)
X»X+H2
DO 60 J»l,2
CALL DERIVL(X,H,Y,DY,P,AP)
DO 20 I»l,24

B=A(J)*(H«DY(I)-Q(I))
Y(I)»Y(I)+B

20 Q ( I ) =Q ( I ) +3. OD-0*B-A ( J ) H^DY ( I

)

60 CONTINUE
X»X+H2
CALL DERIVL(X,H,Y,DY,P,AP)
DO 26 I»l,24
B-. 1666666666666666»(H»DY(I)-2.0D-0*Q<I)

)

Y(I)»Y(I)+B
26 Q(I)»Q(I)+3.0D-0»B-H2»DY(n

RETURN
END

C ********************************************************
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SUBROUTINE DERIVL (X ,H, Y,DY,P, AP)
C * THIS ROUTINE EVALUATES THE DERIVATIVES OF THE RELATED INITIAL-
C VALUE PROBLEM AND THE ASSOCIATED VARIATIONAL EQUATIONS

IMPLICIT REAL»8(A-H,0-Z) ,INTESER(I-N)
DIMENSION Y(24) ,DY(24)
DO 10 I»l,3

10 DY<I)=Y(H-1)
DY(5)»Y(6)
DO 15 1-7,9

15 DY(I)=Y(I+1)
DY(11)=Y(12)
DO 20 1=13,15

20 DY(I)=Y(I+i)
DY(17)=Y<18)
DO 25 I»19,21

25 DY(I)=Y(I+1)
DY(23)«Y(24)

50 DY(4)»-2.0D-0»(Y(4)/X)+Y(3)/(X»X)-Y(2)/(X»X«X)+P»Y(1)
DY(4)«DY<4)+8.19D-0»AP»(Y{3)»Y(5)+Y(2)*Y(6))/X
DY(6)»-Y(6)/X+Y(5)/(X»X)-(Y(2)*Y(2))/(2.0D-0*X)
DY(IO)—2.0D-0*(Y(10)/X)+Y(9)/(X*X)-Y(8)/(X»X*X)-i-P»Y(7)

i+8.19D-0»AP»(Y(5)»Y(9)+Y(3)»Y(ll)+Y(2)»Y(12)+Y(A)»Y(8))/X
DY(12)—Y(12)/X+Y(ll)/(X»X)-(Y<2)*Y<8))/X
DY(16)—2.0D-0«(Y(16)/X)+Y(15)/(«X)-Y(14)/(X»X»X)+P*Y(13)

i+8.19D-0*AP«(Y(3)»Y«17)+Y(5)*Y(15)+Y(2)»Y(18)+Y(6)»Y(14))/X
DY(18)=-Y(18)/X+Y(17)/<X»X)-(Y(2)»Y(14))/X

DY(22)«-2.0D-0*(Y(22)/X)+Y(21)/(X»X)-Y(20)/(X»X»X)+P»Y(l9)-t.Y(l)
«.+8.19D-0»AP«(Y(3)*Y(23)+Y(5)»Y(21)+Y(2)«Y(24)+Y(6)»Y(20))/X
DY(24)=-Y(24)/X+Y(23)/<X«X)-(Y(2)»Y(20))/X

70 RETURN
END
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SUBROUTINE 8AUSSX (A,X ,N,N1

)

** THIS ROUTINE PERFORMS A GAUSSIAN ELIMINATION
IMPLICIT REALt8<A-H,0-Z) , INTESER< I-N)
DIMENSION A(N,N1),X(N)
DO 200 J»1,N
******************
J1«J*1
IF(Jl.ET.N) SO TO 980
BI6sDABS<A(J,J))
M=J

DO 900 L=J1,N
IF<DABS(A(L,J)).LE.BIB) GO TO 900
M»L

BIGsDABS(A<L,J))
900 CONTINUE

DO 990 JJ»J,N1
DUMMY»A(M,JJ)
A(M,JJ)«A(J,JJ)

990 A(J,JJ)«DUMMY
980 CONTINUE

*****************t
S=1.0D-0/A<J,J)
DO 201 K«J,N1

201 A(J,K)sA(J,K)»S
DO 202 1=1,

IF(I-J) 203,202,203
203 AIJ»-A(I,J)

DO 204 K»J,N1
204 A(I,K)»A(I,K)+AIJ*A(J,K)
202 CONTINUE
200 CONTINUE

DO 300 1=1, N

300 X(I)»A(I,N1)
RETURN
END
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C »#»»**«#»««»#««««##«#»##»## ^nnnnnn^^n^,

C HINGED CIRCULAR PLATE WITH ATTACHED CONCENTRIC RISID MASS
C INITIAL-VALUE METHOD FOR THE FREE VIBRATION OF A SIMPLY-
C SUPPORTED CIRCULAR PLATE WITH CONCENTRIC MASS
C RISID MASS INSIDE AND HIN6ED-M0VABLE OUTSIDE
C POISSON'S RATIO = 0.3
C *********************************************************
c

IMPLICIT REAL»8(A-H,0-Z) ,INTESER(I-N)
DIMENSION Y(24),Q<24),TP(3,4),D(6,41),C(3),ER(3)

1 1 2 FORMAT ( 5X
,

• AHP» *
, D22. 1 4 , 3X

,
' FREQ-

'
, D22. 1 4

)

C 113 F0RflAT(9X,'W',19X,'DW',18X,'DDW',17X,'DDDH')
C 114 F0RMAT(4D22.14)
C 115 F0RMAT«//9X,'F',19X,'DF')
C 116 F0RMAT(2D22.14)

117 FORMATdH )

C 118 FORMATdS)
119 FORMATUSX, -RADIUS RATIO=' ,D22. 14)

120 FORMAT <1 OX, 'MASS RATIO*' ,D22. 14)

C *********************************************************
C A=AHPLITUDE PARAMETER
C R=RATIO OF INNER RADIUS TO OUTER RADIUS B/A
C 6AMMA»RATI0 OF RISID MASS TO MASS OF PLATE IT REPLACES
C DA«INCREMENT IN AMPLITUDE
C DR=INCREMENT IN RADIUS RATIO
C OS-INCREMENT IN MASS RATIO
C H»STEP-SIZE FOR NUMERICAL INTEBRATION
C VV«POISSON'S RATIO
C IK»COUNTER FOR AMPLITUDE INCREASE
C IR=COUNTER FOR RADIUS RATIO INCREASE
C IG«COUNTER FOR MASS RATIO INCREASE
C LL-STEPS REQUIRED FOR RADIUS RATIO TO REACH UNITY (R=1.0)
C IN RUNGE-KUTTA-SILL INTEBRATION {LL»M 1 . O+R) /H) +1 . 0)
C *********************************************************

DA=0.1D-0
DR«0.1D-0
D6-1.0D-0
VV-0.3D-0
R»0.0D-0
H-2.5D-2
LL»41

C «« LOOP 10 INCREMENTS THE RADIUS RATIO
DO 510 IR»1,5
LL=LL-4
R=R+DR
GAMMA=0.5D-0
WRITE(6,117)
WRITE(6,119) R
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C LOOP 520 INCREMENTS THE MASS RATIO
DO 520 IS=1,1
IK=1

P»4.975D-0
AxO.OD-0
6AlinA>6AMMA-»-0G

WRITE<6,117)
WRITE(6,120) GAMMA

C CONSTRUCT INITIAL VALUES
500 DO 10 I»l,24
10 Y(I)»O.OD-0

Y(l)«1.0D-0
Y(3)«-4. 670-0
Y (4 ) »-Y (3) /R+0. 5D-0»R«SAMMA»P
Y(5)=0.82D-0
Y(6)=(VV»Y(5))/R
Y(9)al.OD-0
Y(10)=-1.0D-0/R
Y(17)al.0D-0
Y(lB)aVV/R

Y(22)»0.5D-0*R*6AMMA
IF(IK.EB.l) 60 TO 600
DO 15 I»l,6

15 Y(I)«D(I,1)
C X»INDEPENDENT VARIABLE

600 X>R

DO 20 1=1,24
20 Q(I)«O.0D-0

DO 21 I>1,6
21 Dn,l)=Y(I)

C PERFORM RUNSE-KUTTA-GILL INTEGRATION
DO 25 1=2, LL
CALL RKGPL(X,H,Y,Q,P,A)
DO 30 J=l,6

30 D(J,I)«Y(J)
25 CONTINUE

C » ER(I)=ERROR VECTOR FOR BOUNDARY CONDITIONS AT X=1.0
ER(1)»D(1,LL)
ER(2)=D(2,LL)»VV+D(3,LL)
ER<3)«D(5,LL)
DO 35 1=1,3
DER=DABS<ER(I))
IF(DER.GT.0.1D-5) GO TO 36

35 CONTINUE
SO TO 900

36 CONTINUE
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C * TPd.J) IS THE JACOBIAN OF THE MAPPING OF INITIAL VALUES
C TO FINAL VALUES

TP(1,1)=Y(7)
TP<2,1)=Y(8)»VV+Y{9)
TP(3,1)=Y(11)
TP(1,2)=Y(13)
TP(2,2)=Y(14)»VV+Y(15)
TP(3,2)=Y(17)
TP(1,3)=Y(19)
TP(2,3)=Y<20)»VV+Y<21)
TP(3,3)=Y(23)
DO 40 I»l,3

40 TP(I,4)»ER(I)
CALL 6AUSSX(TP,C,3,4)

C «« C(I)=CORRECTION VECTOR
DO 76 1*1,6

76 Y(I)»D(I,1)
Y<3)=Y(3)-C(1)
Y(5)=Y(5)-C(2)
P=P-C(3)
DO 80 1*7,24

80 Y(I)aO.OD-0

Y(4)»-Y(3)/R+0.5D-0*R»SAMMA*P
Y(6)»(VV*Y(5)>/R
Y(9)«1.0D-0
Y(10)«-1.0D-0/R
Y(17)=1.0D-0
Y(18)=VV/R

Y(22)«0.5D-0»R»SAMMA
60 TO 600

900 RA»DSQRT(A)
SP=DSQRT(P)
WRITE(6,117)
HRITE(6.112) SRA,SP

C WRITE(6,117)
C WRITE(6,113)
C DO 910 J=1,LL
C 910 WRITE(6,114) (D(I , J) , 1 = 1 ,4)
C WRITE(6,115)
C DO 920 J=l,LL
C 920 WRITE(6,116) (D (L, J) ,L»5,6)
C WRITE<6,117)

A«A-i-DA

IK=IK*1

IF(IK.ST.40) 60 TO 520
60 TO 500

520 CONTINUE
510 CONTINUE
550 STOP

END
c **«»»##»»**«»«##,»,,»,
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SUBROUTINE RKGPL (X ,H, Y,Q,P,AP)
C « THIS ROUTINE PERFORMS A RUNSE-KUTTA-SILL INTEBRATION

IMPLICIT REAL*8(A-H,0-Z) ,INTEBER(I-N)
DIMENSION Y(24),Q(24),DY(24),A<2)
A(l)=. 2928932188134524
A(2)»l. 707106781186547
H2»0.5D-0»H
CALL DERIVL{X,H,Y,DY,P,AP)
DO 13 1-1,24
BaH2»DY(I)-Q(I)
Y(I)»Y(I)+B

13 Q(I)=Q(I)+3.0D-0*B-H2»DY(I)
X»X+H2
DO 60 Jsl,2
CALL DERIVL(X,H,Y,DY,P,AP)
DO 20 I»l,24
B»A(J)»<H»DY(I)-Q(I))
Y(I)«Y(I)+B

20 Q ( I ) =Q ( I ) +3. OD-0»B-A ( J ) #H«DY < I

)

60 CONTINUE
X»X+H2
CALL DERIVL(X,H,Y,DY,P,AP)
DO 26 I«l,24
B=. 1666666666666666* <H»DY ( I

) -2. OD-0* < I )

)

Y(I>»Y(I)+B
26 Q(I)«Q(I)+3.0D-0*B-H2»DY(I)

RETURN
END

c ***»***»»*»««»«#»,»„«
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SUBROUTINE DERIVL (X ,H, Y,DY,P, AP)
C THIS ROUTINE EVALUATES THE DERIVATIVES OF THE RELATED INITIAL-
C VALUE PROBLEM AND THE ASSOCIATED VARIATIONAL EQUATIONS

IMPLICIT REAL»8(A-H,0-Z) , INTEGER (I-N)
DIMENSION Y(24) ,DY<24)
DO 10 I«l,3

10 DY(I)«Y(I+1)
DY(5)»Y(6)
DO 15 I»7,9

15 DY(I)»Y(I+1)
DY(11)=Y(12)
DO 20 I»13,15

20 DY(I)»y(I+l)
DY(17)aY(lS)
DO 25 1=19,21

25 DY(I)aY(I+l)
DY(23)»Y(24)

50 DY(4)«-2.0D-0»(Y(4)/X)+Y(3)/(X»X)-Y(2)/(X»X»X)+P«Y(1)
DY(4>»DY(4)+8. 19D-0»AP» (Y (3) Y (5) +Y (2) Y (6) ) /X
DY(6)»-Y(6)/X+Y(5)/(X»X)-(Y(2)»Y(2))/(2.0D-0»X)
DY(10)«-2.0D-0«(Y(10)/X)*Y(9)/(X*X)-Y<8)/(X»X»X)+P»Y(7)

«t+8.19D-0*AP»(Y(5)»Y(9)+Y(3)»Y(ll)+Y(2)»Y(12)+Y(6)»Y(S))/X
DY(12>=-Y«12)/X+Y(11)/(X»X)-(Y<2>*Y(8))/X
DY(16)»-2.0D-0»<Y(16)/X)+Y(15)/(»X)-Y(14)/(X»X»X)+P»Y(13)

Jt+8.19D-0*AP*(Y(3)*Y(17)+Y(5)*Y(15)+Y<2)*Y(18)+Y(6)*Y(14))/X
DY(18)»-Y(18)/X+Y(17)/(X»X)-<Y(2)*Y(14))/X

DY(22)=-2.0D-0»(Y(22)/X)+Y(21)/(X*X)-Y(20)/<X»X*X)+P*Y(l9)*Y(l)
J<+8.19D-0»AP»(Y(3)»Y(23)+Y(5)»Y(21)+Y(2)»Y<24)+Y(6)*Y(20))/X
DY(24)=-Y(24)/X+Y(23)/(X*X)-(Y(2)»Y<20))/X

70 RETURN
END

c »»**********»***«»»*#»#««»»«»,»#,###,
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SUBROUTINE SAUSSX (AX ,N,N1

)

C »*« THIS ROUTINE PERFORMS A GAUSSIAN ELIMINATION
IMPLICIT REAL*8<A-H,0-2) , INTEBER< I-N)
DIMENSION A(N,N1),X(N)
DO 200 J»i,N

C *•*«**•«*««««««•>*
J1»J+1
IF(Jl.ST.N) 60 TO 980
BIS=DABS(A(J,J))
M=J

DO 900 L=J1,N
IF(DABS(A(L,J)).LE.BIG) GO TO 900
MsL

BIB»DABS(A(L,J))
900 CONTINUE

DO 990 JJ»J,N1
DUMMY»A(M,JJ)
A(H,JJ)3A(J,JJ)

990 A<J,JJ)-DUMMY
980 CONTINUE

C ******************
S«l.OD-0/A(J,J)
DO 201 K»J,N1

201 A(J,K)»A(J,K)#S
DO 202 1=1,

N

IF(I-J) 203,202,203
203 AIJ=-A<I,J)

DO 204 K=J,N1
204 A(I,K)»A(I,K)+AIJ»A(J,K)
202 CONTINUE
200 CONTINUE

DO 300 I«1,N
300 X(I)=A(I,N1)

RETURN
END
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ABSTRACT

Large amplitude axisymmetric vibrations of a thin elastic circular

plate with an attached concentric rigid mass are investigated. The

problem is formulated and results in a set of von Karman's dynamic

equations by employing Hamilton's Principle and the method of Calculus

of Variations. Harmonic oscillations are assumed and the time variable

is eliminated by the Kantorovich averaging method. The resulting

differential equations of motion form an eigenvalue problem. Successive

corrections of the unknown initial values by Newton's method and

perturbations of the amplitude parameter provide approximate solutions

to the eigenvalue problem. The effects of adding a mass to the plate

are studied for very small amplitudes. The behavior of both hinged

immovable and movable plates are examined when a mass is added. Various

mass and radii ratios are investigated to provide complete non-linear

characteristics.


