

Understanding and Responding to Climate Change in the Great Plains: Source, Impact, and Mitigation

Charles W. Rice (KSU)
Johannes Feddema (KU)
John Harrington (KSU)
Stacy Hutchinson (KSU)
Chunsheng Ma (WSU)

Climate Change and Energy: Basic Science, Impacts, and Mitigation

BASIC SCIENCE

meso-Scale Modeling of Regional Climate Change Feddema (KU)/Ma (WSU)

Food/Fuel Crop
Decisions/Projections
Earnhart (KU)/Peterson (KSU)

IMPACTS

Kansas Farmlands Harrington (KSU)/Gibson (KU)

Indigenous Lands Wildcat (HINU)/Nagel (KU)

MITIGATIO

C-Sequestration Rice (KSU)/Rille

Biomass → Biof Williams (KU)/W

Biomass → Biofuels

Challenges for Kansas and the central Great Plains

- What will be the local temporal and spatial expression of temperature and precipitation change? How will these changes impact local water resources?
- How will the combined impacts of changes in temperature and precipitation impact natural agricultural systems and thus the economy of Kansas and the Great Plains?
- What are the necessary adaptation strategies for climate change for Great Plains natural resources and agricultural systems?
- To what extent can the efforts of those in Kansas and the Great Plains be used to offset GHG emissions?
- How might extensive biofuel production impact climate change and water resources availability in Kansas and the central Great Plains?

Global economic mitigation potential for different sectors at different carbon prices

Mitigation

Objective: Identification of possible management (adaption or mitigation) strategies to minimize the impact of climate variability and change on stability and productivity.

- Enhance our understanding of the long-term success of soil carbon sequestration and N₂0 emissions as mitigation efforts.
 - Employ new technologies to enhance our understanding of the biological, biogeochemical, and physical processes involved in mitigation
 - Feedbacks of climate change on the capacity of terrestrial ecosystems to mitigate
- If biofuels are to provide a mitigation option and an alternate energy source then it is important to understand the feedbacks on other agricultural mitigation (Soil C, N₂O) strategies.

Agriculture

- A large proportion of the mitigation potential of agriculture (excluding bioenergy) arises from soil C sequestration.
- Soil C sequestration
 - has strong synergies with sustainable agriculture and
 - generally reduces vulnerability to climate change.

Education

- Educate a new generation of environmental scientists across disciplinary domains
 - Inter-institutional Activities
 - Annual symposia and semi-annual workshops
 - Seminars and colloquia with national and international scholars.
 - Monthly journal clubs, shared via video conferencing.
 - Institutional Activities
 - Integrated activities with faculty, post-docs, graduate students and undergraduate students

International Opportunities

- International agreements are already in place for institutional collaboration.
 - For example, KSU and the Federal University of Santa Maria in Brazil have a signed MOU to share research, undergraduate and graduate students, and faculty with the focus on adapting to and mitigating climate change.
- Global Research Alliance on Agricultural Greenhouse Gases, an international research collaborative to combat climate change. Includes 20 countries.
 - will focus on research, development, and extension of technologies and practices to grow more food (and more climate-resilient food systems) without growing greenhouse gas emissions

Mitigation and Energy

- Management of natural resources has a significant role to play in climate mitigation (ENVIRONMENTAL SECURITY) while still producing food (FOOD SECURITY)
- Improved energy efficiency in agriculture can contribute to further climate mitigation and reduce energy use. (ENERGY SECURITY)
- Transformation in education