LOF OF LOGISTIC GEE MODELS AND COST EFFICIENT
BAYESIAN OPTIMAL DESIGNS FOR NONLINEAR COMBINATIONS
OF PARAMETERS IN NONLINEAR REGRESSION MODELS
by
ZHONGWEN TANG

M.S. , Kansas State University, 2004

AN ABSTRACT OF A DISSERTATION
submitted in partial fulfillment of the requirements for the degree
DOCTOR OF PHILOSOPHY
Department of Statistics

College of Arts and Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2008



Abstract

When the primary research interest is in the marginal dependence between
the response and the covariates, logistic GEE (Generalized Estimating Equa-
tion) models are often used to analyze clustered binary data. Relative to or-
dinary logistic regression, very little work has been done to assess the lack of
fit of a logistic GEE model. A new method addressing the LOF of a logistic
GEE model was proposed. Simulation results indicate the proposed method
performs better than or as well as other currently available LOF methods
for logistic GEE models. A SAS macro was developed to implement the
proposed method.

Nonlinear regression models are widely used in medical science. Before
the models can be fit and parameters interpreted, researchers need to decide
which design points in a prespecified design space should be included in the
experiment. Careful choices at this stage will lead to efficient usage of limited
resources. We proposed a cost efficient Bayesian optimal design method for
nonlinear combinations of parameters in a nonlinear model with quantitative

predictors. An R package was developed to implement the proposed method.
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1.1

Lack of Fit for Logistic GEE Model

Notation

0: a vector with all elements equal to 0.
1: a vector with all elements equal to 1.
GEE: generalized estimating equation.
GLM: generalized linear model.

LOF: Lack-Of-Fit.

I,: An n x n identity matrix with diagonal elements equal to 1 and off

diagonal elements equal to 0.

I(.): An indicator function, which equals to 1 with true argument;

equals to 0 with false argument.
J: a matrix with all elements equal to 1.

logit (.): logit function, logit (z) = log (7).



1.2 Introduction

Studies involving binary outcomes are quite common in medical science.
Berkson (1944) first proposed using logistic regression for the analysis of
binary bioassay data while Cox (1970) described its application for a variety
of problems. The logistic regression model has become a widely used and
accepted method for the analysis of binary outcome variables. This popu-
larity stems from the availability of easily used software (such as SAS, R,
Minitab) and the ease of interpretation of the results of the fitted model.
Commensurate with this increase in application has been an increase in sta-
tistical research on the model. One area of current research is the develop-
ment of methods to assess the adequacy of the fitted model (Lack-Of-Fit).
Many Lack-Of-Fit methods for logistic regression models have been devel-
oped. An incomplete list of Lack-Of-Fit methods for logistic regression in-
cludes Prentice’s goodness of link test based on generalized logistic regression
(1976), Hosmer and Lemeshow chi-square test (1980) based on data parti-
tioning, Tsiatis’ score test based on data partitioning using covariate patterns
(1980), Copas’s graphical approach comparing parametric and nonparamet-
ric estimates (1980), Brown’s score test extending Prentice work to multiple

regressor (1982), Stukel’s score test based on generalized logistic regression



model (1988), Azzalini et al. pseudo likelihood approach comparing para-
metric and nonparametric estimates (1989), le Cessie and Van Howelingen’s
smoothed residual tests (1991, 1995), Osius and Rojek’s approximate normal
test (1992), Royston’s cusum method for detecting departures from linearity
in the logit link function (1992), Farrington’s generalized Pearson statistics
(1996), Pulkstenis and Robinson’s Pearson and Deviance chi-square tests
(2002), and Liu and Yang’s partitioned model test (2007).

If binary outcomes are correlated, ordinary logistic regression is not ap-
propriate. These data can be analyzed using the generalized estimating equa-
tion (GEE) method proposed by Liang and Zeger (1986). Assessment of the
adequacy of a fitted GEE model could be problematic since no likelihood
exists and the residuals within a cluster are correlated. Compared to ordi-
nary logistic regression model, relatively little work has been done to assess
the adequacy of a logistic GEE model. Barnhart and Williamson (1998),
Horton et al. (1999), and Evans and Li (2004) proposed some LOF (Lack Of
Fit) methods for logistic GEE model based on data partitioning and model
comparison. Williamson et al. (2003) proposed a kappa-like classification
statistic for assessing the adequacy of a logistic GEE model. Evans (1998)

and Pan (2002) proposed some residuals based LOF statistics for logistic



GEE model. In our work, we developed a LOF method for logistic GEE
model which performs as well as or better than other currently available

methods.



1.3 Literature Review

Our goal is to develop a LOF method for assessing the adequacy of a logistic
GEE model. Since a logistic GEE model can be thought of as an extension
of ordinary logistic regression models, it is useful to review ordinary logistic

regression and its LOF methods first.

1.3.1 Logistic Regression Model

In our work, we follow the notation by McCullagh and Nelder (1983) to
describe ordinary logistic regression. The responses ¥, - - , ¥y, are assumed
to be the observed values of independent random variables Y/s, i =1,--- ,n
such that Y; has a binomial distribution with m; trials and probability of
success ;. The logit of 7; depends on covariate vector x; in a linear manner,

le.,

log (1 7_T7T> = x;53, (1)

where x; = (1,21;, -+ ,7,;) denotes a set of p+1 dimensional fixed covariates
for observation i. Parameter estimates for 3 are usually obtained by maxi-

mum likelihood approach and denoted by BI = (BO, Bl, cee Bp). We denote



the fitted value of m; by ;.
Note that a Binomial experiment with m; trials consists of m; independent
Bernoulli experiments. Equivalently, the model may be written in terms of

the odds of a positive response in Bernoulli experiment, giving

T4

7 = exp (%)

Finally the probability of a positive response is

exp x;ﬁ
T, =

1+exp<x;B)

Specifically a linear logistic regression model with two covariates can be

expressed as

log (ﬁ) = By + 111 + Bar2

Assuming x; and x5 are functionally independent of each other, the con-
clusion based on such a model may be stated as follows. The effect of a unit
change in x5 is to increase the log odds by an amount ,. Equivalently, we
may say that the effect of a unit change in x5 is to increase the odds of a
positive response multiplicatively by a factor of exp (35). It is important here
that z; is held fixed and is not permitted to vary as a consequence of the

change in 5.



The log likelihood may be written in the form
L(By) = Y yxif— 3 milog (1 + exp (x;0))

The score function is: % =UB) =X (y—m)

!/

where X = [Xlu e JXH]IJ ™= [7‘-17' te 77Tn] Y :[ylu U ;yn],-
The Fisher information for 8 is X'W X, where
W = diag {mim (1 —m), -+ ,mpm, (1 —m,)}. The maximum likelihood

estimates of the parameters are obtained by solving the following equations

(McCullagh and Nelder, 1983).

U(B) = X' (y - (8)) =0

A logistic regression model provides accurate description and inference for
a data set only if it fits that data set well. After fitting the assumed model,
it is very important to check the adequacy of the model before drawing any
conclusions. If the assumed model is not adequate to model the data, it is
necessary to modify the original analysis or the assumed model. Otherwise
misleading results may be produced.

In principle, there are two different approaches for assessing LOF of a
logistic regression model. The first, known as residual analysis, investigates

the model on the level of individual observations and looks for those ob-



servations which are not adequately described by the model or which are
highly influential on the model fit. This approach is most useful in detecting
outliers.

The second approach seeks to combine the information on lack of fit in a
single number, a test statistic. Statistical tests, so called overall LOF tests,
are performed based on this test statistic to judge if the observed Lack-Of-
Fit is statistically significant or due to random chance. Overall lack-of-fit
tests have application in model building. Modeling building is the process
of searching for a good model from some candidate models. In this process,
different knowledge and tools can be used to assess how good the models are.
For example, prior knowledge may require some variables to be included in
the model even the data don’t support this. Hypothesis tests may show that
some variables have significant relationship with the response and therefore
are good to be kept. Some other tools such as Akeike information criteria of
(AIC) or the Bayesian information criteria (BIC) can also be used to select
a good model. Our goal is to develop a new overall lack-of-fit test.

According to Hosmer et al. (1997), in the context of a logistic regression
model, evidence of Lack-Of-Fit may come from violation of one or more of

the following 3 assumptions for a logistic regression model.



1. the logit transformation is the correct function linking some linear

function of the covariates x with the conditional mean E (Y|x) = 7 (x), i.e.

log (2885 ) = x
2. the linear predicting function, x'3, is correct.
3. the conditional variance of the response is Binomial, i.e. Var (Y|x) =

mm (x) [1 — 7 (x)].

1.3.2 Lack-Of-Fit Methods for Logistic Regression

Lack-Of-Fit methods for logistic regression can be roughly divided into 3
categories. The first group of Lack-Of-Fit methods are Pearson and Deviance
chi-square tests and their derivatives. The second group of methods embed
the logistic regression model in a more general model. Then the lack of fit is
assessed by comparing the fitness of the more general model with that of the
assumed logistic regression model. The third group of methods are based on
comparing the parameter estimates of the assumed logistic regression model

and a robust nonparametric regression model.

Pearson and Deviance Chi-square Tests The first group of Lack-Of-
Fit test statistics for the assumed logistic regression model defined in page

5 are based on the comparison between the fitted values and the observed



Table 1: Contingency table of binary data for considering LOF of a logistic
regression model

X1 | X2 T Xn—1 | Xn

y=0
y=1

values. If the discrepancy between the observed and fitted values is small, it
indicates good fit, otherwise it shows evidence of Lack-Of-Fit.

Note that each binomial variable Y; is the sum of m; independent binary
variables. Hence the n binomial variables Y;s can be considered as imi
independent binary observations. A useful conceptual framework for thinking
about assessment of the model fit for binary data is to consider the data as
described by a 2 x n contingency table (Table 1). The 2 rows are defined by
the values of the dichotomous outcomes of the variable Y and the n columns

are defined by the assumed number of possible distinct values taken on by

the covariates in the model.

One important measure of the discrepancy between the observed and
predicted number of successes is the generalized Pearson chi-square statistic.
The generalized Pearson chi-square test statistic (McCullagh and Nelder,
1983) is defined as the sum of the squared discrepancy scaled by the estimated

variance. In the context of a logistic regression, it can be expressed as

10



X2 = ; (s — masi)? / fmades (1 — 7))

Another measure of the discrepancy between the fitted values and the
observed values is the deviance test statistic (D). Given n observations we
can fit models containing up to n parameters. This model is not informa-
tive, because it doesn’t summarize the data but merely repeats them in full.
However this model gives us a baseline for measuring the discrepancy for
an intermediate model. The maximum log likelihood achievable in a model
with n parameters [ (B, y) is ordinarily finite. The deviance test statistic
(D) is defined to be twice the difference between the maximum achievable
log likelihood and that attained under the assumed model (McCullagh and
Nelder, 1983). Under any given model with fitted probabilities 7, the log

likelihood is

1(By) = z{y log (:) + (m; — i) log (1 — #:)}

The maximum achievable log likelihood is attained at the points 7; =

y;/m; (McCullagh and Nelder, 1983). Therefore the deviance function is
D=2l (B;y> —1 (B;y>]
=2 ;{yi In (y;/mi#i) + (mi — yi) In[(m; — yi) / (mi — ma;)]}

11



Evidence for model Lack-Of-Fit occurs when the values of these statistics
(D or X?) are large. Asymptotically X? and D have a x? distribution with
n — p — 1 degrees of freedom, where p + 1 is the number of parameters in
the assumed logistic regression model. This result applies when n is fixed
and the fitted counts in the contingency tables are large (Aggresti, 1996).
These conditions are violated in two ways if the covariates are continuous and
most of the m/s are small (sparseness). First when most ms are very small
(sparseness), the fitted cell counts will be small. Second, when more data are
collected, additional covariate values could occur, so n is not fixed. Because of
this, X2 and D for logistic regression models fitted with continuous covariates
usually do not have approximate chi-squared distribution. These Lack-Of-
Fit statistics are more properly applied when the explanatory variables are
categorical, and relatively few fitted cell counts are small.

Many authors have proposed methods to check the adequacy of a logistic
regression model with continuous covariates with sparseness. One school of
thought is based on grouping the data using the similarity of the data. Then
the discrepancy between the fitted values and the observed values for all
the groups is summarized in a test statistic. The Pearson and Deviance chi-

square test statistics similar to that for checking Poisson models are then used

12



to check the Lack-Of-Fit for the assumed logistic regression model (Aggresti,
1996).

The data can be pooled based on partitioning the covariate space into
g distinct regions (¢ < n and g is fixed) to increase the number of counts
for each cell in the contingency table. The original 2 x n contingency table
is shrunk to a 2 x ¢ contingency table with the columns consisting of ¢
covariate patterns and the rows consisting of binary response values. Then
the discrepancy between the fitted and observed values for all the cells is
summarized into one test statistic, and a chi-square test with ¢ — p — 1
degrees of freedom can be performed to test the overall Lack-Of-Fit. Let
E;1 be the sum of N; estimated fitted probabilities for subjects in covariate
pattern i, and E;» = N;— E;;. The Deviance and Pearson chi-square statistics

are expressed as follows.

g 2 g 2
X2 =3y 3 OBl and D =230 3 (0y) log (%)
i=1j=1 “

i=1j=1 *
where O;; and Ej; are the observed and expected cell counts for the cell in
column 7 row j respectively. These test statistics were described by Aggresti
(1996). One disadvantage of this method is that the choice of the partition

of the covariate space is subjective.

13



Hosmer and Lemeshow (1980) proposed a test which first orders all the
responses according to their fitted probabilities and then classifies them into
10 (or about 10) groups (decile of risk) with approximately equal sizes. Then
the Hosmer-Lemeshow Lack-Of-Fit test statistic for the assumed logistic re-

gression model can be expressed as:
g 2 2
2 (0i;—Eij)
XHL = 231 221 E;j;
1=1 9=

where ¢ is the number of decile of risk groups. Through simulation Hosmer
and Lemeshow (1980) showed that this test statistic has approximate chi-
square distribution with g — 2 degrees of freedom.

Hosmer and Lemeshow used 2 methods to group the data based on the
fitted probabilities. The first method divides the data into g groups with
approximately equal sizes. The resulted chi-square test statistic is called
Hosmer-Lemeshow C. The second method put the responses with fitted
probabilities between 0 and 0.1 in the first group; responses with fitted prob-
abilities between 0.1 to 0.2 in the second group; and so on. The resulted
chi-square test statistic is called Hosmer-Lemeshow H.

le Cessie and van Houwelingen (1991, 1995) noted that because the Hosmer-

Lemeshow tests are based on a grouping strategy in the 'y’ space, they

14



lack power to detect departures from the model in regions of the 'x’ space
that yield the same estimated probabilities. For example, a model with a
quadratic term may have widely different 'x’ values with the same estimated
probability.

Pulkstenis and Robinson (2002) developed two hybrid test statistics which
combine the ideas of covariate partitioning and using groups based on ranked
estimated probabilities. First the data are partitioned into g covariate pat-
terns, where the covariate patterns are determined only by categorical ex-
planatory variables. Then the data are split into two subcategories based on
the sorted fitted probabilities within each covariate pattern. The medians
of the sorted fitted probabilities are generally used as the cutoff values to
separate the data. The additional stratification doubles the number of co-
variate patterns. The original 2 x n contingency table is shrunk to a 2 x (2¢g)
contingency table. The model-based expected values are computed exactly
as before. The proposed Lack-Of-Fit test statistics for assumed logistic re-
gression model are given by

g 2 2

9 g 2 2 (Oihj*Eihj)z Oinj
Ga= 3 3 2 OB and Dpg =2 3 3 Oy los (52

i=1 h=1j=1 I i=1 h=1j=1

where 7 indexes covariate patterns, h indexes substratification based on or-

15



dering of fitted probabilities, and j indexes binary response values. These
two test statistics have approximate chi-square distribution if the assumed
logistic regression model is correct. The degrees of freedom for y%, and
Dppr are obtained by modifying the degrees of freedom for regular Pearson
and Deviance chi-square test statistics and degrees of freedom for Hosmer-
Lemeshow test statistics. The degrees of freedom used by Pulkstenis and
Robinson are 2g —p — 1, where 2¢ is the number of columns in the new strat-
ification, p+ 1 is the number of parameters in the assumed logistic regression
model. Pulkstenis and Robinson empirically confirmed this approximate null
distribution through simulation. The simulation indicates their method has
higher power for detecting omission of an interaction between a continuous
covariate and a dichotomous covariate. Their simulation indicates that both
their method and Hosmer-Lemeshow methods have low power detecting link

function misspecification.

Parametric Models Comparison Many authors seek to test the Lack-
Of-Fit of a logistic regression model by embedding the logistic regression
model in a more general parametric model. The fitness of the logistic re-

gression model is assessed by comparing the fitted logistic regression model

16



and the more general model. If the assumed logistic regression model fits
the data well, the more general model shouldn’t explain significantly more
variation than the logistic regression model. This can be tested by several
methods such as likelihood ratio tests, score tests or Wald tests.

Tsiatis (1980) proposed a Lack-Of-Fit test statistic based on partition-
ing data using covariate patterns. The space of covariates (X1, X2, -+, X))
is partitioned into G distinct regions in p-dimensional space denoted by
Ri,--, Re.

Define G group indicators

1 if subject ¢ is in group g,
Iig: g=1,---,G
0 otherwise

Consider the model

log {7 (x;) /(1 =7 (x))} = HXH”’Y/L‘,

where I, = (I, ,1g) and v = (v, ,7¢). The Lack-Of-Fit test is
equivalent to testing the hypothesis Hy : v, = -+ = 7o = 0. Tsiatis’ test is
based on the efficient score test (Rao, 1973). The Tsiatis’ test statistic for

the score test can be expressed as follows.

T =sV"s,

17



where s’ is the G dimensional vector (0l/0v4,- -+ ,0l/07v) and where [ de-
notes the log likelihood.

The G x G matrix V is equal to

V=A-BCDB,
where

Ajy = =P1)0y;0vy (4,5 =1,---,G),

Bjj = =01/0v;08; (j=1,--+,G; j'=0,---,p),

Cyy = —0°1/0B,08, (j.j' =0, ,p).

All the terms are evaluated at v = 0 and 3 = B, where B is the maximum
likelihood estimate of the parameters B when Hj is true. Under the null
hypothesis, the test statistic 7" is asymptotically distributed as chi-square
with degrees of freedom equal to the rank of V. When T is large, the presence
of Lack-Of-Fit is claimed.

Liu and Yang (2007) proposed a Lack-Of-Fit method based on approxi-
mating the true model by a partitioned logistic model. The "true" model is

a logistic model with linear predictors.

log (ﬁ) —xXB+wé 2)

First the data are fitted with the assumed logistic regression model de-

18



fined on page 5. Then the data are partitioned into G mutually disjoint
groups (Ry,--- , Rg) based on the ranked fitted probabilities. The following

partitioned logistic model is used to approximate the unknown true model.

log <1 T ) = x;B + z;gag (3)

— T
where g = 1,--- ,G is used to index the partitioned groups; ¢ = 1,--- ,n is
used to index the observations; z;, = x;I ((x;,v;) € Ry).

They extended their model by allowing x;, in the definition of z;, be
replaced by a vector whose components are any function of the components
of x;4. They restrict their model by requiring that z;, contains "1’ function
as a covariate which corresponds to the intercept for ¢t group.

They assume that when the group number G is big enough, the full model

(3) should approximate the unknown linear true model (2).

! !
X1 Z
! !
X9 Zy
Let X = A
i !
X’I’L ZTL

Let [ (X,Z) and [ (X) be the maximum log likelihood achievable from
the approximate full model (3) and the assumed logistic regression model

19



defined in page 5, respectively. If the assumed logistic regression model is
true, then 4 = 0 in the true model (2). Therefore the Lack-Of-Fit test
is equivalent to testing Hy : d = 0. When H, is true, 21 (X, Z2) — 20 (X)
follows an asymptotic chi-square distribution with degrees of freedom equal
to rank ([X, Z]) — rank ([X]). If 21 (X, Z) — 21 (X) is large, the presence of
Lack-Of-Fit is claimed for the assumed logistic regression model defined in
page 5. Liu and Yang (2007) used simulation to show that their method has
high power for detecting omission of a quadratic term, or an interaction term

between continuous and discrete covariates.

Nonparametric Methods Copas (1983) proposed a goodness-of-fit method
by comparing the estimates of the assumed parametric regression function
with a non-parametric kernel estimate graphically. Azzalini (1989) proposed
a more formal goodness-of-fit method by comparing these two regression es-
timates using pseudo-likelihood ratio test. One problem with these methods
is that the nonparametric curve is biased (le Cessie and Houwelingen, 1995).
The bias problem is avoided by Firth et al. (1991) using a local likelihood
estimation to obtain a non-parametric estimate of the regression function.

Their method uses Monte Carlo methods, which makes it computationaly
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expensive.
Le Cessie and Houwelingen (1995) proposed a Lack-Of-Fit method using
smoothed residuals. Hosmer et al. (1997) show that this method has low

power for detecting Lack-Of-Fit.
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1.3.3 Logistic GEE Model

Clustered data consisting of a set of multivariate responses y; = (vi1, - - - , Yir, )',
for i = 1,---, K, together with a T; x p matrix X; of covariates associated
with each response y; are common in medical science. The multivariate re-
sponses y;s are independent of each other. Measurements y;1, - - - , y;r, within
each cluster could be correlated. This data structure covers the well known
longitudinal data, in which each cluster is defined by a set of repeated mea-
sures on the same subject. This data structure also covers so-called familial
data with a set of observations on different subjects which are grouped into
clusters sharing some common features, e.g. animal litters, families or ge-
ographical regions. For ease of presentation, without loss of generality we
assume the clustered data are longitudinal data and each cluster is a subject.
In many practical applications, the purpose of the analysis is to construct
a regression model as a function of the marginal mean of the response ¥;;,
where i = 1,--- K and t = 1,--- ,T; (Rotnitzky and Jewell, 1990) and
the dependence within clusters is a nuisance (Liang and Zeger, 1986). For
example, the presence of a disease along with some covariates (such as nu-
tritional status, age, sex and family income) of children might be observed

every year for 3 year period. Observations from each child form a cluster.
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The dependence of the outcome variable, presence of disease, on the covari-
ates is of interest. The correlations among the 3 years within the cluster
are nuisance parameters. With Gaussian data, multivariate methods can
be used to analyze cluster data due to the flexibility of multivariate normal
distribution. With binary data, when the focus is on the marginal probabil-
ity of the individual outcomes, Prentice (1988) showed that fully parametric
approaches can be cumbersome and computationally prohibitive. Alterna-
tively, mixed effects models (Stiratelli, Laird and Ware, 1984) can be used to
analyze clustered binary data. However, in mixed effects binary model, the
fixed effects regression parameters have their natural interpretation for the
individual clusters rather than describing covariate effects on the marginal
mean (Zeger, Liang and Albert, 1988).

Generalized estimating equation (GEE) models, described in Liang and
Zegger’s landmark paper (1986), can be used to analyze clustered binary
data. This model essentially extends generalized linear models (GLM, Mc-
Cullagh and Nelder, 1983) to the situation of correlated data. GEE models
can be used to analyze binary data, count data, and continuous data. In
our work we will focus on logistic GEE models for analyzing clustered bi-

nary data. Therefore in our discussion, the response y;;, ¢ = 1,--- , K and
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t=1,---,T; is binary with values 0 or 1.

GEE models can be divided into GEE1 and GEE2 based on the relation-
ship between the regression parameters and correlation parameters. In our
work, we focus on GEE1, which assumes that the regression parameters and
the correlation parameters don’t depend on each other (Hardin and Hilbe,
2003).

In our work, without specification, the default GEE model is GEE1
model. Actually, most researchers who refer to a GEE model are referring
to this special collection of models.

A basic feature of GEE models is that the joint distribution of a subject’s
response vector y; does not need to be specified. Instead, only the marginal
distribution of y;; at each time point is specified. For example, suppose that
there are 2 time points and we observe 2 binary outcomes y;; and y;5. GEE
only requires that y;; and ;2 are two univariate binary variables rather than
assuming that y;; and y;, form a (joint) bivariate distribution.

A related feature of GEE models is that the covariance structure is treated
as nuisance. The focus is on the relationship between the conditional mean
of y;; given the covariate value and the covariate x;;. A GEE model yields

consistent and asymptotically normal estimates for the regression parame-
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ters, even with mis-specified covariance structure of the clustered data (Liang
and Zeger, 1986). The logistic GEE model can be thought of as an exten-
sion of the logistic regression model to correlated data. The logistic GEE
model specification involves those of logistic regression with one additional
specification.

First the dependence between y;; and x;; is defined as

log( - ):X;t/g7 Z:177-Z:<7t:177,‘rZ (4)

I — 7y
where x;; = [1, %41, , Tisp) 18 a (p + 1) X 1 covariate vector for subject i at
time t and B is a (p + 1) x 1 parameter vector. m; = P (y; = 1|x;;) is the
conditional mean of the positive response given the covariate values. The
conditional variance of y;; is m; (1 — ;).

This model can also be expressed for each subject.
logit (m;) = Xi3

where logit (m;) = [logit (m31),--- ,logit (mir)], Xi = [Xa, - ,xiz] is a
T; x (p+ 1) design matrix.
The additional specification in a GEE model is the "working" correlation

structure of the repeated measures. This working correlation matrix is of
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size T' x T assuming that there are T' fixed number of time points for each
subject. For a given subject, it doesn’t have to be measured at all T time
points. Therefore T; < T'. Each individual’s correlation matrix R; is of size
T; x T; which could be obtained by removing appropriate rows and columns
in R. It is assumed that the correlation matrix R, and hence R;, depends
on a vector of correlation parameters denoted by . These parameters are
shared by all subjects. They represent the average dependence among the
repeated observations across subjects.

The simplest correlation structure is independence, i.e. R = [r. This is
equivalent to saying that the longitudinal data are not correlated.

The next simplest structure is to assume that all the correlations in R
are the same, or "exchangeable". This exchangeable structure is specified as
R(a) = pJr+ (1 —p)Ir, where Jr is a T'x T' matrix with all elements equal
to 1; It is a T' x T identity matrix.

Another useful one parameter model for the longitudinal data is the
AR(1) covariance structure. This correlation structure is specified as R (o) =
{'Oij}TxT = {p‘i*ﬂ}TxT, where {pij}TxT is a T' X T' matrix with elements p;;
in the i*" row and j** column. Here the within-subject correlation over time

is an exponential function of the lag between the two time points.
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Define A; to be the T; x T} diagonal matrix with 7;; (1 — ;) as the ¢t di-
agonal element. Then the working covariance matrix for y; can be expressed

as

Vi () = A/?R; () A}? (5)

)

Then the GEE estimator of 3, 3, is found by solving the following esti-

mating equations (Liang and Zeger, 1986):

Z D; Vi (&)]_1 (yi—mi) =0 (6)

where y; = [y, , yir,|, ™ = [min, -+, mir), Dy = 6%[3’8), and &, which
can be estimated from the Pearson residuals (ﬁ), is a consistent
estimate of o (Liang and Zeger, 1986). Assuming that missing data are
missing completely at random in the sense of Rubin (1976), 3 estimated
from these equations are consistent and asymptotically normal even when

the correlation matrix structure is misspecified as long as the marginal mean

model is correct (Liang and Zeger, 1986). Because the estimating equation
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only depends on the mean and variance of y, the precise distribution of y is
not required for estimating 3. The solution from the estimating equation is
also called the quasi-likelihood estimate (Wedderburn, 1974).

If the marginal mean model is correct and the working correlation is

correctly specified, then the model-based estimator of the covariance matrix

of B, Cov (B), is given by
K —1
> (@)
i=1

A more robust estimate of C'ov (B) can be made without assuming the
structure of the working correlation is correctly specified. It is given by the

following expression.
K 1rk K -1
S D@D | DIn(@) o v Vit@) D] | D) D
This estimator is often referred to as the "sandwich" estimator. The
outer pieces of the sandwich are C'ov <B) when the structure of the work-
ing correlation is correctly specified and the center terms depend on the
true correlation of the responses. Cov (y;) can be consistently estimated by

(ys — #3) (yi — 7)) (Liang and Zeger, 1986).
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1.3.4 Lack-Of-Fit Methods for Logistic GEE Model

Currently available LOF methods for logistic GEE models are mainly based
on parametric model comparison. The assumed logistic GEE model is em-
bedded in a more general parametric model. The general model reduces to
the assumed logistic GEE model if some parameters are set equal to 0. If the
general model is significantly different from the assumed logistic GEE model,
namely the additional parameters in the general model are significantly dif-
ferent from 0, then the presence of Lack-Of-Fit for the assumed logistic GEE
model is claimed. In addition, statistics based on residuals and kappa-like

classification statistic have been previously proposed.

Statistics based on covariate partitioning Barnhart and Williamson
(1998) developed a Lack-Of-Fit test statistic for logistic GEE model based on
partitioning data using covariate patterns. This method can be thought of
as an extension of Tsiatis (1988) for the ordinary logistic regression models.

Suppose a random sample of multivariate data y; = [yi1,--- ,vir]’, 1 =
1,--- K, are observed. y.s are independent of each other, but the T;
measurements within a cluster could be correlated with each other. ul,s,

t=1,.--,T; and + = 1,---, K are binary data with values 0 or 1. The
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assumed model is the logistic GEE model defined on page 25. For simplicity,
assume T1; = T for all 7. The authors proposed to partition the covariate
space X = (z1,-++,,) into G distinct regions in p—dimensional space.

Define G group indicator variables as follows.

1 if covariates at time ¢ for subject ¢ are in group g,
Iitg: gzl,,G

0 otherwise
Let Ii; = (Jy1, -+, Ing) be a G x 1 vector and I; = [L;1,--- ,Liy]’ be a
T x G matrix. Let Zr be a T'x (T' — 1) matrix where the first row has entries
0 and the remaining (7' — 1) rows form a (7" — 1) x (T' — 1) identity matrix,
ie. Zr =[0Iy Let S; = [0,diag (Li1,--- ,Lir)] bea T x (T — 1) G matrix
and 0 be a (T'— 1) G x 1 vector of zeros.

Consider the following general model.

Note that 7 is the (T — 1) x 1 vector of time effects (the first time effect is set
to be 0). «is a G x 1 region effect vector. pisa (T — 1) G x 1 time and region
interaction vector because each column of S; results from componentwise
multiplication of two column vectors, one column from Z7 and the other from

I;. Note that the assumed logistic GEE model defined on page 25 is embedded
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in this general model. A Lack-Of-Fit statistic consists of testing Hy : @ = 0,
where 0 =[1/,4/, p']' is a J x 1 vector with J = (T — 1)+ G+ (T — 1) G.

Let U be the L = (p+ 1+ J) vector with [ component

K . .
U=>DugVi ' (yi—a)l=1,.., L
=1

where D;; = g’;l" for I < p+1, D, = % for I > p+ 1, where #; =
logit ! (Xi,B—!—ZTT—l—[i’y—l—Sip), and B is the GEE estimator obtained from
the assumed logistic regression model defined in page25. Then under Hj :

60 = 0, the asymptotic distribution of U is multivariate normal with mean 0

and covariance matrix (Liang and Zeger, 1986)

K .
Wr =3 D;V;'Cov (y;) Vi ' D;
=1

1=
where D; = |Dj1,--- , D | is a T x L matrix. Cov (y;) can be consistently
estimated by (y; — 7;) (y; — #;)" (Liang and Zeger, 1986). If the correlation
matrix R (a) is correctly specified, then the asymptotic covariance of U

reduces to

U, Ar Bp A B
Let U= ,  Wr= ,and W =

U, Br Cg B C
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be the partitioning for U, Wg, and W, where U, is a J x 1 vector and Cg
and C are J x J matrices. Under H : @ = 0, both the proposed model-based

LOF test statistic
Qu =U,(C—-BA'B) U,

and the proposed robust LOF test statistic
Qr =, (Cr— BrAy'By) U,

have asymptotic chi-square distribution with degrees of freedom equals to
rank ((C’ — BA_lB/)_> = rank ((C’R — BRAEIB;%)_>

where M~ is any generalized inverse of matrix M.

The authors reported the statistics had high power for detecting omission
of a quadratic term but low power for detecting omission of an interaction
term. This method has also been shown to have low power for detecting

omitted covariates (Evans and Li, 2005).

A statistic using groups based on ranked estimated probabilities
Horton et al. (1999) developed a statistic using ranked estimated probabili-
ties. This method can be thought of as an extension of Hosmer and Lemeshow
(1980) for ordinary logistic regression.
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Suppose a random sample of multivariate data y; = [y, ,yir|, i =
1,--- K, is observed. y.s are independent of each other, but the 7; mea-
surements within the cluster could be correlated with each other. s,
t=1,---,T;, and 7+ = 1,--- , K are binary data with values 0 or 1. The
assumed model is logistic GEE model defined on page 25.

The proposed LOF test method forms G groups of approximately equal
sizes (decile of risk groups) in the following manner, where G is 10 or an
integer close to 10.

K

1. The first group contains > T;/G observations with the smallest values
i=1

of fitted probabilities 7.
K
2. The second group contains > 7;/G observations with the next smallest
i=1

values of fitted probabilities 7.

G. The last group contains f:lTZ /G observations with the biggest values
of fitted probabilities 7.

In general, we could form G groups, with approximately f:lTi /G obser-
vations in each group. Since subject i can have different 7},s for each of the

T; observations, a subject’s group membership, g, can change for different ¢.

Then (G — 1) group indicators are defined as

33



1 if 7 is in group g,
Lipg = g=1,---,G-1
0 otherwise

Consider the following general model.
lOth (71'1'15) = ,B/Xit + O/Iit

where Ly = [Ij1, - - , lig_1) . Note that @ =[01,--- ,0g_1)" represents region
effects. When 6 = 0, the general model reduces to the assumed logistic
GEE model. A Lack-Of-Fit test of the assumed model is equivalent to test
Hy : 8 =0. The proposed LOF test statistic is shown below. Under Hy, it

has asymptotic chi-square distribution with G — 1 degrees of freedom.

6= (39) (v o (30)]} ' (39

where
u; (83,0) K | DVt lyi — mi(8,6)]
u(.0) = -3
uz (/67 0) - DQzV;_l [yi - T (/37 0)]
with Dli = %—7;_;, Dgi = g;i and

(3 is obtained by solving u; (3,0) = 0 and
Var [uz ([3, 0)] — [~AB",1]C[-AB, 1]

where
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A—E {am(ﬁ,e) " B=E {aulr(ﬁ,(a)

9B }3=B,e:0’
/
K | Ui <B, 0) Uy <B7 0)
C=K1Y
= Uz; (B, 0) Uz (3 0)
This method has been reported to have high power detecting omitted

quadratic term, but low power detecting an omitted interaction term or ad-

ditional covariates (Evans and Li, 2005).

Hybrid Statistics Evans and Li (2005) proposed a Lack-Of-Fit method
for logistic GEE model based on partitioning data using both covariates and
ranked fitted probabilities. This method can be thought of as an extension
of Pulkstenis and Robinson (2002) for ordinary logistic regression.

Suppose a random sample of multivariate data y; = [y, -, vin], i =
1,---, K, is observed. y.s are independent of each other, but the 7; mea-
surements within the cluster could be correlated with each other. s,
t=1,.--,T;and ¢+ = 1,--- , K are binary data with values 0 or 1. The
assumed model is logistic GEE model defined in page25.

The proposed method first partitions the covariate space into G distinct
regions using categorical covariates. Then each region is further partitioned

into 2 parts based on the fitted probabilities from logistic GEE model defined
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in page25 within each region. Then each observation (y;;, X;;) belongs to one
of 2G distinct regions.

Define (2G — 1) group indicators.

1 if 7; is in group g,
Iitg: g=1---,2G-1

0 otherwise

Let Iy = [Lis1, -+ - , Tioc—1]’ be a (2G — 1) x 1 vector.

Consider the following general model.
logit (m;) = X;8+1,0

where I; = [Ii1,...,Liz] is a T x (2G — 1) design matrix. Note that 0 is a
(2G — 1) x 1 vector of region effects.

Let U be the L = (p+ 1 + 2G — 1) vector with [* component,
K . .

U=>DugV ' (yi—R)1=1,..,L
i=1

gg; for il < p+1, Dy = 89?:"71 for I > p+ 1, where #t; =

where ﬁil =
logit~! (Xz-,@—l—IzH), and (3 is the GEE estimator obtained from the assumed
logistic regression model defined in page25. Then under Hy : 8 = 0, the
asymptotic distribution of U is multivariate normal with mean 0 and covari-

ance matrix (Liang and Zeger, 1986)
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K R
Wgr=> Di‘/;_lgov (v:) V;_lDi
i=1

A~

where D; = Dii,---,D;| is a T x L matrix. Cov (y;) can be consistently
estimated by (y; — #;) (y; — #;)" (Liang and Zeger, 1986). If the correlation

matrix R (a), is correctly specified, then the asymptotic covariance of U

)

reduces to

U, Ar DBj A B
U= Wg = W =

U2 B R CR B C
be the partitioning for U, Wg, and W, where U, is a J x 1 vector and Cg
and C are J x J matrices. Under Hy : @ = 0, both the proposed model-based

LOF test statistic
Ny =U, (C— BA™'B') U,

and the proposed robust LOF test statistic
Ng = U, (Cr — BrAyr'B) U

have asymptotic chi-square distribution with degrees of freedom equals to
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rank ((C - BA_lB’)7> = rank ((CR - BRAEIB;%)7>

where M~ is any generalized inverse of matrix M.
The methods were reported to have low power for detecting an omit-

ted quadratic term, interaction term or additional covariates (Evans and Li,

2005).

A Classification Statistic Suppose a random sample of multivariate data
yi = Wi, -+ v, i = 1,--- , K, is observed. y!s are independent of each
other, but the T; measurements within a cluster could be correlated with
each other. yl,s,t =1,---,T; and i =1,--- | K are binary data with values
0 or 1. The assumed model is logistic GEE model defined in page25.

Williamson et al. (2003) developed a kappa-like classification statistic for
assessing LOF for logistic GEE models. Historically, kappa has been used
to determine the agreement of binary (Cohen, 1960) and categorical (Fleiss,
1971) outcomes between raters. Kappa corrects the percentage of agreement
between raters by taking into account the proportion of agreement expected
by chance.

The general expression for the kappa statistic is

j — PP
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where P, is the observed proportion of agreement and P, is the proportion
of agreement expected by chance alone (Fleiss, 1971). A value of 0 for x
indicates no agreement beyond chance and a value of 1 indicates perfect
agreement. Larger values of x indicate greater agreement between the out-
comes (Fleiss, 1971). Willamson et al. estimated P, by fitting an intercept-
only model proposed by Cox and Snell (1989) and Nagelkeke (1991). For
simplicity, assume T; = T for all :. The estimated probabilities from the
intercept-only model will be the same for all subjects and all time points,

and can be denoted as
pitg :pg =ny/TK

where 7, is the number of observations equals to 0 or 1 for g = 0,1. All n,
observations with response values 0 or 1 will each be correctly predicted with

probability pg; accordingly the estimate of P, is

2

(SR

Po= SN (=g = X uPTE - [(m) JTE| +
5]

Define P,;; to be the probability that the predicted response from the
assumed model for t*" observation in subject i is equal to the observed re-
sponse, i.e. y;; = Ui. A natural estimate of P,;; is 61‘1: =7l (1— ﬁit)lfy“. Let
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P,; and U; denote the T x 1 vectors [Py, - -+ , Pyr] and [(;y, -+, (ip)'. They
estimate an overall x to assess the fit of the assumed logistic GEE model.
Here "overall" means k = k;; forte=1,--- K andt=1,--- ,T. Noting that
P,: = P. + k(1 — P.), they estimate s by solving the following estimating

equation together with the generalized estimating equations (page27)

5 O (UL 8) ~ Pur (1)) =0

!/

where C; = dP,;/dk = [1 —]56,...,1 —P| isaT x 1 vector and W, ~
Var (U;) is the T' x T working covariance matrix of U;.

The kappa measure intuitively estimates the probability of being correctly
predicted by the fitted model and this probability is corrected for chance.
An advantage of this statistic is that no subjective decision need to be made
concerning partitioning. However, interpretation of the statistic is not trivial
since no distribution of the statistic is given. As in Landis and Koch (1977),
Williamson et al. recommended that: a x value from 0 to 0.2 represents
poor fit, a value from 0.21 to 0.4 represents fair fit, a value from 0.41 to 0.6

represents good fit, and a value from 0.61 to 1 represents excellent fit.

Statistics based on residuals Suppose a random sample of multivariate

data y; = [yi1, -+ ,vir,], i = 1,--- , K, is observed. The y’s are independent
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of each other, but the T; measurements within the cluster could be correlated
with each other. yl,s, ¢t =1,---,7, and i = 1,--- , K are binary data with
values 0 or 1. The assumed model is logistic GEE model defined in page 25.

Pan (2002), and Evans (1998) developed two statistics to assess the LOF
of the assumed logistic GEE model based on comparing observed versus
predicted values. For simplicity, assume T; = T for all .

Let Y =[Y;,- ,Y'K}/ be the T'K x 1 response vector for all the mea-
surements in all K subjects, m = [71"1, e ,71"[(]/ be the T'K x 1 probability
of positive response vector corresponding to Y, A = diag (Ay,- -+, Ag), V =
diag (V1,- -+ , Vi) where A; and V; are defined as in the definition of working
covariance matrix on page27, X = [(1 x’ll),, (1 x’u)/, cee (1 lejT)l]l be
the (T'K) x (p+ 1) design matrix including the intercept,

H=AX (X'AVAX) "' X'AV- ande =Y — 7.

Pan shows that the residuals can be approximated by using the following

expression.
Y-f7~({I—-H)(Y—m)
The Pearson weighted sums of square test statistic is

Tl — K74 (1 - 27) A6 ~KT+(1 - 2%) A~ (I — H)e

it (1=Tit)

M=
=

G:

1t

7 1
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—

with F (G) = KT, and

Vm) = (1—27) A1 (I — ﬁ) cﬂ) ([ — I:I’> A~1(1 — 2#). Pan used

2 estimates of Cov(Y). The first is the empirical covariance estimator:
Cm)e = diag <Cﬂ1), o Cﬂk))y where Cov (Y:) = (yi — #:) (y: — #1)’
The second is, Cm)u = A'2diag (Eu, . f%u) A2 where R, is the un-

structured correlation matrix estimate, specifically,

=

Fou= % LA (Vi = 70 (Y = #0) A

)

The corresponding test statistics are denoted as G1 and G2 respectively.

The unweighted sums of squares statistic is defined as

Its mean and variance are approximately
EU)=#"(1-7),

—

Var (U) = (1 - 2&) (1 - H) Cov (Y) (1 . H> (1 2#)

and Cov (Y) is estimated by either Cm)e or Cm)u described above.

The test statistics are denoted by Ul and U2 respectively. Both G1, G2 and

42



U1, U2 have approximately standard normal distributions upon standard-

ization.
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1.4 Proposed LOF Test

Although logistic GEE model has been widely used and accepted as a stan-
dard method for analyzing clustered binary data, relatively little work has
been done to assess the adequacy of the fitted model. The purpose of this
research is to develop a new test statistic for assessing the Lack-Of-Fit for
a logistic GEE model. This method is designed to enable one to determine
overall Lack-Of-Fit of a logistic GEE model.

There are 5 explicit objectives for the proposed research.

1. Develop a new method for assessing LOF of a logistic GEE model based
on comparing the assumed logistic GEE model with a more general

model.

2. Develop the asymptotic null distribution of the proposed test statistic
and verify the distribution using extensive simulation in a number of

different scenarios.

3. Investigate the power of the test to detect a variety of departures from

the logistic GEE model via simulation.

4. Compare the performance of the proposed method with some currently
available LOF methods for logistic GEE models.
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5. Demonstrate the application of the proposed method using real exam-

ples.

1.4.1 Description of the Proposed Method

Suppose a random sample of multivariate data y; = [y, -, v, @ =
1,--- K, are observed. y.s are independent of each other, but the T;
measurements within the cluster could be correlated with each other. v,s,
t=1,---,T;andi=1,--- , K are binary data with values 0 or 1. If missing
values are present, they are assumed to be missing completely at random in
the sense of Rubin (1976). The primary interest is in the dependence of the
marginal mean of y; on (p+ 1) x 1 covariate vector x;; = [1, Zi1, -+ , Titp)-
The assumed model is logistic GEE1 model. The marginal regression of the

model can be expressed as

log( Tt ):x;tﬁ, t=1,---,Tyandi=1,--- | K (7)
1—7T7;t

or more concisely for each subject

logit (m;) = Xi3
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where logit (m;) = [logit (mi1) ,- -, logit (7)), Xi = [Xi1, -, Xz
8= [60, By, ,Bp], is a (p+ 1) x 1 population parameters vector.

We assume that all the subjects are set out to be measured at the same
T time points. For each subject, measurements are available at T; (T; < T)
time points. The joint distribution of y; is not specified. All the clusters
share the same correlation for the measurements within clusters. A working
correlation structure is specified, such as exchangeable, or AR(1). The work-
ing correlation R depends on a vector of parameters . These parameters
a are assumed to be the same for all subjects. a contains nuisance parame-
ters. a and 3 do not depend on each other. The working correlation for each
cluster R; is obtained by removing corresponding rows and columns from R
according to which time points are not measured for the subject. Defin-
ing A; = diag [ry (1 — 7)), ,mr (1 — m)], then the working covariance
matrix V; can be expressed as A; / R A; 2

The parameters 3 are estimated by solving the following generalized es-

timating equations.

2

K
DVi(&) " (y; —m) =0
=1

where D; = %’E, & is a consistent estimate of a, which can be estimated
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using Pearson residuals (ﬁ) by method of moments (Liang and
Zeger, 1986).

This model may not be adequate to model the collected data. We define
Lack-Of-Fit of a logistic GEE model by extending the method of Hosmer
et al (1997) for standard logistic regression model. Evidence of Lack-Of-Fit
may come from violation of one or more of the following 3 assumptions for

marginal logistic regression model.

(A1) the logit transformation is the correct function linking the covariates

x with the marginal conditional mean F (Y |x) = 7 (x), i.e. log (J;’ZL)) =
x B

(A2) the linear predicting function, x 3, is correct;

(A3) the marginal conditional variance of the response is the variance of
Bernoulli distribution, i.e. Var (Y|x) = (x)[1 — 7 (x)].

In the proposed method, the data are divided into 2 groups using the
median of the fitted probabilities. The first group contains the observations
with the fitted probabilities 7;; smaller than the median. The second group
contains the observations with the fitted probabilities 7;; equal to or bigger

than the median.

In general, we could form 2 groups with approximately equal numbers of
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observations. Since subject 7 can have different 7,s for each of the T; obser-
vations, each subject ¢ can have multiple group memberships at 7T; different
time points.

Define one group indicator variable as follows.

1 if the covariates at time ¢ for subject ¢ is in group 1,
I =

0 otherwise

Consider the following piecewise logistic regression model (?7).

10g< - >:X;tﬂ+x;t01it} 1=1,---  K;t=1,---,T; (8)

]-_ﬂ-it

where 0 is a vector of unknown parameters; The piecewise models for different
groups are linear with different slopes and different intercepts. Notice that
the general model reduces to the fitted model if @ = 0. Therefore the LOF
test is equivalent to test if @ = 0 or not. For simplicity, we assume T; =
Ti=1,2,--- K.

Let U be the the L = (2p + 2) x 1 vector with /" component
K . .

U= DgV (yi—F:) I =1,--- , L
i=1
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where D;; = g’ﬂrl’ for I < p+1, D, = 8016:"71 for I > p+ 1, where #; =

-~ ’ ;A / ;- 1 /
[logit_1 (x;lﬁ + xﬂO]il) ,logit ™! (xﬂﬁ + X¢20]i2) -, logit™! (Xm@ + XiTOQT)] ,
and ,@ is the GEE estimator obtained from the general logistic regression

model (8) with @& = 0. Then under Hy : 8 = 0, the asymptotic distribution

of U is multivariate normal with mean 0 and covariance matrix (Liang and

Zeger, 1986).¢
K ., . N N
Wgr =Y DiV;'Couv(y;) Vi ' D;

i=1

where D; = [f)il, s f)iL] is a 7' x L matrix. Cov(y;) can be consistently
estimated by (y; — #;) (y; — #;)" (Liang and Zeger, 1986).

Partition U and W respectively into the form:

U, Ar Bj
U — WR =
U2 BR CR
where Uy is a (P + 1) x 1 vector and Cg is a (P + 1) x (P + 1) matrix. The

proposed LOF test statistic is
Yr = U, (Cr — BrAyR'By) U,

Under Hy : @ = 0, as K — o0, it has chi-square distribution with degrees

of freedom equal to
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rank ((CR — BRAng;%)7>

where M~ is any generalized inverse of matrix M.

When Y5 is large, the presence of Lack-Of-Fit for the assumed logistic
regression model (7) is claimed.

The proposed method can be extended in the following ways. First the
number of partitioned groups can be more than 2. Second the piecewise mod-
els can be other than linear models. The proposed method can be extended
by adopting a data partitioning scheme similar to Pulkstenis and Robinson
(2002). That is to partition the data based on categorical covariates (in-
cluding time points within each subject when the number of time points are
small) first. Then within each covariate pattern the data are further parti-
tioned into two subgroups using ranked fitted probabilities from the assumed
logistic GEE model defined in page 45.

The proposed method has connections with some currently available LOF
methods. This method can be thought of as an extension of Hosmer and
Lemeshow (1980) and Liu and Yang (2007) for ordinary logistic regression
model. Our approach differs from Liu and Yang (2007) in that we utilize
Liang and Zeger’s generalized score test statistic whereas Liu and Yang use a

likelihood ratio test statistic and that our method is applicable to clustered
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data, whereas Liu and Yang applies to independent data. The proposed
approach is also an extension of Horton (1999)’s method for logistic GEE
model. Horton’s method can be thought of as a special case of the proposed
method. In Horton’s method, the submodels for different groups, apart from
a group specific intercept, are the same. However, in the proposed method,

submodels for different groups can be quite different in forms.

1.4.2 Computation

In order to conduct simulation study about logistic GEE model, we need to
generate pseudo random clustered binary data.

Let Y denote an K x 1 vector of Bernoulli random variables (Y3, - -, Yx)',
with E(Y) = (uy, -+, i) = m, corr (Y) = {r;;} = R and cov (V) =
{vi;} = V. For Bernoulli variables var (Y;) = p; (1 — p,), therefore specifying
(w,V) is equivalent to specifying (i, R). Suppose there are 25 = m possible
configurations of Y, and let p; denote the probability of configuration j. The
vector p takes values in the following set

m
{p > pi=1Lp > 0}
=1
We d:)note the mean of the Y as g (p) and the covariance matrix of Y as

h(p). g (p) and h (p) are functions of p.
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If p is specified, it is straightforward to simulate Y. However specifying
or computing p so that g (p) and h (p) are equal to some prespecified mean
vetror and covariance matrix becomes impractical for a big cluster size.

Many methods have been proposed to tackle this problem. Emrich and
Piedmonte (1991) proposed a method based on threadshoding multivariate
normal variables. Lee (1993) developed a method based on copulas. Park
et al. (1996) proposed a method based on generating correlated Poisson
random variables. Lunn and Davies (1998) proposed a method based on a
finite mixture of Bernoulli variables. Oman and Zucker (2001) proposed a
method based on a finite mixture of continuous variables. Kang and Jung
(2001) proposed a method based on computing joint distribution of the mul-
tivariate binary variable. Leish et al. (1998) proposed a method based on
threasholding multivariate continuous variables. Qaqish (2003) proposed a
method based on a conditional linear family of multivariate binary data.
Qaqish’s method is attractive in simulation study because of the following
reasons. It allows unequal means for observations within the same cluster
and both positive and negative correlation between observations within the
same cluster. It avoids computing the joint distribution of the multivariate

variable. The computation time for this task grows exponentially as the size
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of the cluster increases. It has been adopted in some simulation study such
as Evans and Li (2004). We used this method in our work. The method is
described below.

For i = 2,---, K define X; = (Y1,---,Y;1), 0,;=E(X;), G; = cov (X;)
and s; = cov (X, Y;).

The conditional linear family is obtained by letting

E (Y| X; =x;) = p; +b; (x; — 6;) i=2,,--, K

This happens to be just enough restrictions to determine a unique p such
that g (p) = pand h (p) = V are equal to some prespecified mean vector and
covariance matrix . Furthermore, for given (u, V'), the parameters are given
in closed form as b; = Gi_lsi7 fori =2,--- K. Y;|X; = x; has conditional
Bernoulli distribution and the corresponding conditional mean is given by

i—1
A=A (%3, V) = E(Yi|Xi = %) = by (i — 0:) = > bij (v — 1)
=1

If the correlation structure is exchangeable, namely r;; = o for ¢ # j and

—1/(n—1) < a < 1, the j™ element of b; is

1/2
bij: vn) (j:1,"',i—1).

_a
1+(i—2)0¢ ('Ujj
If the correlation structure is ar(1), namely r;; = oli=il for i # j and

|a| < 1, then
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N2
)\i:/ii—FOé(yi—l_Miq) <—U” ) (1=2,---,K).

Vi—1,i—1

1.5 Simulation Study

Since the proposed method is based on asymptotic results, we did extensive

simulation study to check its performance for finite sample sizes.

1.5.1 Null distribution

In order to verify that the null distribution of the proposed test statistic can
be approximated by a chi-square distribution with appropriate degrees of
freedom, we considered a number of different scenerioes to examine whether
the type I error rate are controlled for given levels of significance. Table 2
provides the list of models investigated. These scenarios provide the oppor-
tunity to assess the effects of several factors including: magnitudes of the
correlation, number of covariates, number of observations within a cluster,
correlation structures, cluster-level versus time-varying covariates, covariate
distributions.

For each scenario, we generated random data from each of two linear
logistic GEE models with different coefficients. The first model has intercept

0 and slopes 0.8 for all predictors. The second model has intercept 1 and
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Table 2: Simulation Setting for Checking Type I Error Rate Control

Correlation
M® | Covariate dist? r Level? | Dim® | p? | Structure®
1 U-1,1,U]-1,1 T,T 100X2 | 0.2 | exchange
2 U-1,1,U]-1,1 T,T 100X2 | 0.6 | exchange
3 | B(0.5), B(0.5) T,T 100X2 | 0.2 | exchange
1 [ B(0.2), B(0.2) T,T 100X2 | 0.2 | exchange
5 | U}-1,1],U[-1,1] C,C 100X2 | 0.2 | exchange
6 | U-1,1],B(0.5) T,T 100X2 | 0.2 | exchange
U[1,1],B(0.5) C,C
7 | U-L,1],B(0.2) T,T 100X2 | 0.2 | exchange
U[1,1],B(0.2) C,C
8 U-1,1,U]-1,1 T,T 250X2 | 0.2 | exchange
9 Ul-1,1],U}-1,1 T, T 100X5 | 0.2 | exchange
10 | UFL1,UFL] T,T 100X5 | 0.2 | arl
11 | ULL1),UFLY] T,T 100X5 | 0.6 | arl
12 | N(0,1),x3 T,T 100X2 | 0.2 | exchange
13 | x3,x4 T, T 100X2 | 0.2 | exchange
14 | U[-1,1],U[-1,1 T,T 25X2 | 0.2 | exchange
15 | U[-1,1],U]-1,1 T,T 50X2 | 0.2 | exchange
16 | U[-1,1],B(0.5) T,T 500X2 | 0.2 | exchange
U1,1],B(0.5) C,C
17 | U-1,1],U(-3,3),N(0,1) | T,C,T | 700X2 | 0.2 | exchange
N(0,2),N(0,1)2,U(-1,1)* | T,T,T

1. U: uniform distribution; x?: chi-square distribution; B: Bernoulli
distribution.

2. C: cluster-level (covariate values are the same for different time points
within a cluster); T: time-varying (covariate values may differ for different
time points within a cluster).

3. Number of clusters by number of observations within a cluster.

4. p value in the definition of exchangeable and AR(1) correlation structure.
5. In AR(1), the time points are equally spaced; exchange: exchangeable.

6. Model number
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slopes 0.2. After fitting the correct models, the proposed LOF test statistics
Yr was calculated to evaluate model adequacy at 5% and 10% significance
levels. Th type I error rate was estimated from 1000 simulation replicates.
Table 3 displays the simulation results.

In some of the replications, the parameters can’t be estimated. It is be-
cause some of the predicted values are 1, and therefore the Pearson residuals
are not defined and hence the correlation parameters, the regression para-
meters can’t be estimated. The proposed LOF method controls type I error
rate pretty well except for model 13 with intercept 0 and slopes 0.8. In this
case, the parameters are estimated for only about 20% of the replications,

the result doesn’t tell us much about the truth.

1.5.2 Power

We investigated the power of the proposed LOF methods for detecting var-
ious departures from the assumed logistic GEE model. We investigated 4
different departures: omitted covariates, omitted quadratic terms, omitted
interaction terms, and incorrect link functions. For each situation, we stud-
ied 10 different models (Table 4), which allows us to investigate the effect

of the following factors: magnitudes of correlation, sample sizes, number of
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Table 3: Checking Type I Error Rate Control

intercept 0 and slopes 0.8! intercept 1 and slopes 0.22
M|a=005]a=01*| n° |[model | a=005|a=01*| n°
1 0.066 0.130 | 1000 1 0.042 0.103 | 1000
2 0.050 0.104 | 1000 2 0.058 0.119 | 1000
3 0.044 0.092 999 3 0.049 0.109 | 1000
4 0.035 0.075 960 4 0.035 0.082 961
5 0.058 0.123 | 1000 5 0.041 0.098 | 1000
6 0.061 0.126 992 6 0.065 0.120 962
7 0.047 0.101 | 1000 7 0.044 0.093 997
8 0.043 0.096 | 1000 8 0.054 0.112 | 1000
9 0.041 0.098 | 1000 9 0.050 0.094 | 1000
10 0.066 0.126 | 1000 10 0.053 0.105 | 1000
11 0.060 0.123 999 11 0.050 0.103 998
12 0.039 0.090 919 12 0.055 0.114 | 1000
13| 0.000 0.015 | 203 13 0.046 0.119 994
14 0.041 0.106 989 14 0.037 0.098 964
15 0.046 0.113 | 1000 15 0.057 0.111 | 1000
16 0.046 0.096 | 1000 16 0.049 0.102 997
17 0.057 0.106 | 1000 17 0.050 0.103 | 1000

1. Data generated from logistic GEE model with linear predictor with
intercept 0 and slopes 0.8;

2. Data generated from logistic GEE model with linear predictor with
intercept 1 and slopes 0.2;

3. Estimated type I error rate based on analysis of n data sets and
significance level of 0.05.

4. Estimated type I error rate based on analysis of n data sets and
significance level of 0.1.

5. n is the number of replicates with successful GEE analysis.
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observations within a cluster. Each departure is repeated for a model with
intercept 0, regression coefficients 0.8 and a model with intercept 1, regres-

sion coefficients 0.2. This allows us to investigate the effect of coefficients in

the model.
Table 4: Simulation Setting for Checking Power
M | Correlation! | Dim? M | Correlation® | Dimension?
1 102 50X2 6 |06 50X2
2 102 100X2 |7 | 0.6 100X2
3 102 250X2 |8 | 0.6 250X2
4 10.2 100X5 |9 | 0.6 100X5
5 10.2 100X20 | 10 | 0.6 100X20

1. p value in the definition of exchangeable correlation structure.

2. Number of clusters by number of observations within a cluster.

Power for detecting omitted covariates We generated random data
from the following 2 logistic GEE models: log (;j—;:t) = 0.874,1 +0.8752 +
0.8z 3, log (J—ﬂfﬂ) =1+0.22; 1 +0.22; 2 + 0.22; 3 where the last subscript

indexes the covariate variables. There are three covariate variables in the

model =1, o, and x3. The data are analyzed using the following GEE model:
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Table 5: Simulation Setting for Checking Power of Detecting a Missing Co-
variate

Correlation
M | Covariate dist! x Level? | Dimension® | p* | Structure®
1 | B(0.5), U(-3,3), N(0,1) | C, T, T | 50X2 0.2 | Exchange
2 | B(0.5), U(-3,3), N(0,1) | C, T, T | 100X2 0.2 | Exchange
3 | B(0.5), U(-3,3), N(0,1) | C, T, T | 250X2 0.2 | Exchange
4 | B(0.5), U(-3,3), N(0,1) | C, T, T | 100X5 0.2 | Exchange
5 | B(0.5), U(-3,3), N(0,1) | C, T, T | 100X20 0.2 | Exchange
6 | B(0.5), U(33), N(0,1) | C, T, T | 50X2 0.6 | Exchange
7 | B(0.5), U(-3,3), N(0,1) | C, T, T | 100X2 0.6 | Exchange
8 | B(0.5), U(-3,3), N(0,1) | C, T, T | 250X2 0.6 | Exchange
9 | B(0.5), U(-3,3), N(0,1) | C, T, T | 100X5 0.6 | Exchange
10 | B(0.5), U(-3,3), N(0,1) | C, T, T | 100X20 0.6 | Exchange

I

1. B: Bernoulli distribution; U:
distribution; .

2. C: cluster-level (covariate values are the same for different time points
within a cluster); T: time-varying (covariate values may differ for different
time points within a cluster).

3. Number of clusters by number of observations within cluster.

4. p value in the definition of exchangeable correlation structure.

5. FExchange: exchangeable.

niform distribution; N: Normal

log (1’:—;:”) = By + B1xit1 + Bozira. We tested the LOF using Yr. Table 5
displays the detailed simulation setting for detecting missing covariates.
Table 6 shows the simulation results for detecting a missing covariate.

The results indicate that proposed method has no power for detecting a

missing covariate which is independent of covariates in the fitted model.
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Table 6: Power of Detecting Missing Covariate

intercept 0, slopes 0.8} intercept 1, slopes 0.22
M| Dim® | p" |a=005°]|a=01*| n° |a=005|a=0.1%] n°
1 50X2 0.2 0.061 0.119 994 0.048 0.092 947
2 | 100X2 | 0.2 0.045 0.101 1000 0.044 0.099 978
3 | 250X2 | 0.2 0.041 0.097 1000 0.049 0.098 | 997
4 | 100X5 | 0.2 0.051 0.103 1000 0.050 0.102 | 999
5 | 100X20 | 0.2 0.050 0.092 1000 0.050 0.093 | 998
6 50X2 | 0.6 0.059 0.117 992 0.028 0.078 | 932
7 | 100X2 | 0.6 0.046 0.100 1000 0.041 0.093 | 988
8 | 250X2 | 0.6 0.055 0.109 1000 0.056 0.118 | 998
9 | 100X5 | 0.6 0.048 0.091 996 0.041 0.093 998
10 | 100X20 | 0.6 0.058 0.112 996 0.046 0.100 | 998

1. Data generated from logistic GEE model
T ) = 0.821 + 0,822 + 0875,

log (

1—71'“

2. Data generated from logistic GEE model
) =14 0.2051 + 022500 + 0.2253

log ( it

1—71'“

3. Estimated power based on analysis of n data sets and significance level of

0.05.

4. Estimated power based on analysis of n data sets and significance level of

0.1.

5. n is the number of replicates with successful GEE analysis.

6. Number of clusters by number of observations within a cluster.
7. p value in the definition of exchangeable correlation structure.
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Table 7: Setting for Power of Detecting Missing Quadratic Term

Correlation
M | Covariate dist' | x Level? | Dimension® | p* | Structure®
1 | B(0.5),U(-3,3) | C, T 50X2 0.2 | Exchange
2 | B(0.5),U(-3,3) | C, T 100X2 0.2 | Exchange
3 | B(0.5),U(-3,3) | C, T 250X2 0.2 | Exchange
4 | B(0.5), U(-3,3) | C, T 100X5 0.2 | Exchange
5 | B(0.5),U(-3,3) | C, T 100X20 0.2 | Exchange
6 | B(0.5),U(-3,3) | C, T 50X2 0.6 | Exchange
7 | B(0.5),U(-3,3) | C, T 100X2 0.6 | Exchange
8 | B(0.5),U(-3,3) | C, T 250X2 0.6 | Exchange
9 [B(05), U33) |C, T | 100X5 0.6 | Exchange
10| B(05), U3,3) [ C, T | 100X20 0.6 | Exchange

1. B: Bernoulli distribution; U: Uniform distribution; N: Normal

distribution; .

2. C: cluster-level (covariate values are the same for different time points
within a cluster); T: time-varying (covariate values may differ for different
time points within a cluster).

3. Number of clusters by number of observations within cluster.

4. p value in the definition of exchangeable correlation structure.

5. Exchange: exchangeable.

Power for detecting omitted quadratic terms We generated data from

the following 2 logistic GEE models: log (Jjjﬂ) = 0.871,1+0.87 2 —}—0.8:131%/72,
log (1—’:7%) = 140.2231 + 0224 2+ 0.227, 5, but analyzed the data using the
following logistic GEE model: log <1j_7:1t> = By + Bi%it1 + Baxire. Then we
tested the LOF using Yx. Table 7 shows the simulation setting for detecting

a missing quadratic term.

Table 8 shows the simulation results of detecting a missing quadratic
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term.

The results indicate that the proposed method has power for detecting a
missing quadratic term; the power increases as the sample size and/or the
number of observations within a cluster increase; the power increases when

the missing quadratic term’s coefficient getts bigger.

Power for detecting omitted interaction terms We generated data

from the following 2 logistic GEE models: log ( it ) = 0.8x1 + 08732 +

1—71'1'15

0.8t 12412, log (1:';:”) =1+0.2%41 + 0.2z 9 + 0.22; 174 2, where the last
subscript indexes the covariate variables. There are two covariates x; and xs
in the model. x;x5 represents the interaction term. The data were analyzed
using the following GEE model: log <1f—ﬂ?t> = Bo+B1%ita + BoTire. Then we
tested the LOF using Yx. Table 9 shows the simulation setting for detecting
a missing interaction term.

Table 10 shows the simulation results for detecting a missing interaction
term.

The results indicate that the proposed method has power for detecting

missing interaction terms; the power increases as the sample sizes and /or the

number of observations within a cluster increase; the power increases when
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Table 8: Power of Detecting Missing Quadratic Term

intercept 0, slopes 0.8} intercept 1, slopes 0.22

Dim® | p" |a=0.05|a=01*] n° | a=0.05|a=0.1%] n°

o0X2 | 0.2 0.283 0.378 | 706 0.050 0.126 802

100X2 | 0.2 0.402 0.468 | 707 0.112 0.203 887

250X2 | 0.2 0.562 0.650 | 692 0.288 0.392 964

100X5 | 0.2 0.864 0915 | 895 0.321 0.439 964

100X20 | 0.2 1.000 1.000 | 995 0.856 0.895 999

20X2 | 0.6 0.349 0.468 | 745 0.057 0.124 801

100X2 | 0.6 0.501 0.572 | 755 0.181 0.288 888

250X2 | 0.6 0.706 0.791 | 783 0.447 0.546 954

100X5 | 0.6 0.954 0971 | 986 0.672 0.754 980

—
Sl oo x| wiv~Z

100X20 | 0.6 1.000 1.000 | 985 0.979 0.986 | 1000

1. Data generated from logistic GEE model
log ( s ) — 0.82i11 + 08245 + 0.82% ,

1—71'“

2. Data generated from logistic GEE model
log ( u ) — 140201 +0.22505 + 0222,

1—71'“

3. Estimated power based on analysis of n data sets and significance level of
0.05.

4. Estimated power based on analysis of n data sets and significance level of
0.1.

5. n is the number of replicates with successful GEE analysis.

6. Number of clusters by number of observations within cluster.

7. p value in the definition of exchangeable correlation structure.
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Table 9: Simulation Setting for Checking Power of Detecting Missing Inter-
action

Correlation
M | Covariate dist! | x Level® | Dimension® | p* | Structure®
1 | B(0.5),U(-3;3) | C, T 50X2 0.2 | Exchange
2 | B(0.5),U(-33) | C, T 100X2 0.2 | Exchange
3 | B(0.5),U0(33) | C, T 250X2 0.2 | Exchange
4 |1 B(0.5),U(-33)|C, T 100X5 0.2 | Exchange
5 | B(0.5), U(-3,3) | C, T 100X20 0.2 | Exchange
6 | B(0.5),U(-3,3) | C, T 50X2 0.6 | Exchange
7 | B(0.5),U(-3,3) | C, T 100X2 0.6 | Exchange
8 | B(0.5),U(-3,3) | C, T 250X2 0.6 | Exchange
9 [B(05),U(33)|C, T |100X5 0.6 | Exchange
10 | B(05), U(3,3) | C, T | 100X20 | 0.6 | Exchange

S

1. B: Bernoulli distribution;
distribution; .

2. C: cluster-level (covariate values are the same for different time points
within a cluster); T: time-varying (covariate values may differ for different
time points within a cluster).

3. Number of clusters by number of observations within cluster.

4. p value in the definition of exchangeable correlation structure.

5. FExchange: exchangeable.

Uniform distribution; N: Normal
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Table 10: Power of Detecting Missing Interaction Term

intercept 0, slopes 0.8} intercept 1, slopes 0.22

Dim® | p" [a=0.05|a=01*] n° [a=005|a=01*] n’

o0X2 | 0.2 0.134 0.232 990 0.063 0.112 975

100X2 | 0.2 0.260 0.416 999 0.094 0.182 999

250X2 | 0.2 0.701 0.793 | 1000 0.174 0.280 | 1000

100X5 | 0.2 0.672 0.792 982 0.195 0.295 | 1000

100X20 | 0.2 0.962 0.968 873 0.519 0.661 998

20X2 | 0.6 0.089 0.171 974 0.081 0.162 971

100X2 | 0.6 0.206 0.329 999 0.168 0.266 | 1000

250X2 | 0.6 0.493 0.637 | 1000 0.351 0.473 | 1000

100X5 | 0.6 0.342 0.481 830 0.364 0.479 993

—
Sl oo x| wiv~Z

100X20 | 0.6 0.836 0.888 725 0.611 0.739 998

1. Data generated from logistic GEE model
log ( it ) = 0.87i¢1 + 0.8751 2 + 0.875 1241 2,

1—71'“

2. Data generated from logistic GEE model
log ( i ) =14 0.2251 + 022500 + 0.2051Tir-

1—71'“

3. Estimated power based on analysis of n data sets and significance level of
0.05.

4. Estimated power based on analysis of n data sets and significance level of
0.1.

5. n is the number of replicates with successful GEE analysis.

6. Number of clusters by number of observations within cluster.

7. p value in the definition of exchangeable correlation structure.
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the missing interaction term’s coefficient getts bigger.

Power for detecting an incorrect link function Logit link function is
often used for analyzing binary data. An alternative link function for binary
data is the log log link (Figure 1). We generated data from the following 2
GEE model with a log-log link function: log (—log (7)) = 0.8z41 + 0.8%; 2,

log (—log (i) = 1+ 0.224,1 + 0.224 .

The generated data were analyzed using the following GEE model with

a logit link function: log <1T;it) = B¢ + B1%it1 + Boire. Then we tested
the LOF using Yi. Table 11 shows the simulation setting for detecting an
incorrect link function.

Table 12 shows the simulation results of detecting an incorrect link func-
tion.

The results indicate the proposed method has power detecting the incor-
rect link function for model log (— log (7;¢)) = 140.82;:1+0.82; 2;. the power
increases as the sample sizes and/or the number of observations within the
cluster increases. The results indicate the proposed method has very weak

power for model log (—log (7)) = 140.22;.1+0.224 2, . Note that the slopes

in the latter model is smaller, therefore the covariates are likely to cover a
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Figure 1: Comparison of Link Functions. The black curve represents log log
link function. The red curve represents logit link function.
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Table 11: Simulation Setting for Detecting an Incorrect Link Function

Correlation
M | Covariate dist' | x Level? | Dimension® | p* | Structure®
1 | B(0.5),U(-3,3) | C, T 50X2 0.2 | Exchange
2 | B(0.5),U(-3,3) | C, T 100X2 0.2 | Exchange
3 | B(0.5),U(-3,3) | C, T 250X2 0.2 | Exchange
4 | B(0.5), U(-3,3) | C, T 100X5 0.2 | Exchange
5 | B(0.5),U(-3,3) | C, T 100X20 0.2 | Exchange
6 | B(0.5),U(-3,3) | C, T 50X2 0.6 | Exchange
7 | B(0.5),U(-3;3) | C, T 100X2 0.6 | Exchange
8 | B(0.5),U(-3,3) | C, T 250X2 0.6 | Exchange
9 [B(05), U(33)[C, T | 100X5 0.6 | Exchange
10 B(05), U(3,3) | C, T | 100X20 0.6 | Exchange

S

1. B: Bernoulli distribution; Uniform distribution; N: Normal
distribution; .

2. C: cluster-level (covariate values are the same for different time points
within a cluster); T: time-varying (covariate values may differ for different
time points within a cluster).

3. Number of clusters by number of observations within cluster.

4. p value in the definition of exchangeable correlation structure.

5. Exchange: exchangeable.
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Table 12: Power of Detecting Incorrect Link Function

intercept 0, slopes 0.8* intercept 1, slopes 0.2?
M| Dim® | p" |a=0.05|a=01*| n° |a=005]|a=01%] n’
1 50X2 | 0.2 0.062 0.143 804 0.005 0.030 395
2 | 100X2 | 0.2 0.239 0.383 967 0.014 0.049 659
3 | 250X2 | 0.2 0.637 0.766 1000 0.067 0.148 914
4 | 100X5 | 0.2 0.467 0.624 973 0.053 0.109 879
5 | 100X20 | 0.2 0.668 0.755 784 0.088 0.155 908
6 50X2 | 0.6 0.061 0.128 799 0.013 0.040 446
7 | 100X2 | 0.6 0.175 0.283 966 0.030 0.072 670
8 | 250X2 | 0.6 0.514 0.648 999 0.065 0.134 949
9 | 100X5 | 0.6 0.256 0.382 865 0.092 0.158 922
10 | 100X20 | 0.6 0.605 0.692 710 0.069 0.133 961

1. Data generated from logistic GEE model

log (—log (i) = 0.874,1 + 0.8z 2,

2. Data generated from logistic GEE model

lOg (— lOg (ﬂ—it)) =1+ 0.21’1',5’1 + 0.237“72.
3. Estimated power based on analysis of n data sets and significance level of

0.05.

4. Estimated power based on analysis of n data sets and significance level of

0.1.

5. n is the number of replicates with successful GEE analysis.

6. Number of clusters by number of observations within cluster.
7. p value in the definition of exchangeable correlation structure.
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smaller range than the first model. Since locally the log log link function
is similar to a shifted logit link function (Figure 1), when the range of the

predictor is small, the two link functions are hardly differentiable.

1.5.3 Comparison with Other Currently Available Methods

Currently there are several LOF methods for logistic GEE models available.
We compared the performance of the proposed method with these methods.
If a method controls type I error rate, the simulation estimated error rates

will locate in the following range with about 99% chance.

a(l—a)

n

a =+ 20,005
where zg go5 is the value of a standard normal variable with upper tail area
0.005, « is the nominal error rate, and n is the replication number of simu-
lation. For o =5% and n=1000, the simulation estimated error rate is 99%
likely to locate in the range of (0.034,0.066) if the method controls type I
error rate. The performance data for the methods other than the proposed
method are obtained from Evans and Li (2004). The significance level is 0.05.
r-like method uses the recommended ’pool fit” cut-off value of 0.2.

Table 13 displays the simulation estimated type I error rate for all the

methods currently available. The data were generated using the setting in
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table 2 with model intercept 0 and slopes 0.8. Any values in the table out-
side the range (0.034,0.066) are bolded. Bold values indicate the methods
significantly inflate or deflate the type I error rate.

The following conclusions are indicated in the simulation results. The
kappa-like method doesn’t control type I error rate at all. The proposed
method performs better than the 4 statistics (G, G2, U, U2) based on resid-
uals when the magnitude of the correlation is high (model 2). Compared to
other robust test statistics (Qgr, Ng), the proposed test statistic controls type
I error rate better when the covariate distribution is highly skewed (model
12) or when there are many covariates in the model (model 17). Compared
to another test statistic based on partitioning data using fitted probabilities
(X?), the proposed method performs better when the covariates have highly
skewed distribution (model 12) or small sample size (model 14). Overall,
the results indicate the proposed method has better performance than other
currently available methods in controlling type I error rate.

Table 14 displays the power of detecting a missing covariate for different
methods. The data are generated in the same way as the proposed method
using the model with intercept 0 and slopes 0.8. See table 2 for details of the

model specification.
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Table 13: Comparisons of Methods for Controlling Type I Error Rate

M G G2 U U2 X2 Q QR Nm NR K YR
1141 4213143 60 | 48| 50 | 41| 49 | 98.0 | 6.6
2|68 |72|74|72| 38 [51] 62 [43] 6.8 | 98.3 |5.0
3151 50|54 (61| 60 |46 82 41| 4.7 |100.0 |44
4|1 58 | 48|53 |53| 46 |56 |14.3|52 | 56 |100.0| 3.5
5| 52 |46 |48 43| 41 (49| 58 |53 | 65 | 97.8 | 5.8
6|67 39]60|59]| 53 48| 84 [6.9]11.2| 81.5 |6.1
7154 149]50]46]| 58 |[52]10.2|52 | 7.4 | 88.7 | 4.7
8| 43 [ 4049 |51 45 |48 46 |3.2] 3.5 |100.0|4.3
91 49 51|50 (51| 42 |51] 54 |43 | 50 |100.0|4.1
10| 48 495251 39 (62| 54 |47 | 42 |100.0 | 6.6
111 63 [ 636364 | 36 |71 52 | 40| 45 |100.0 | 6.0
121 0.2 1 0.7 50| 52| 2.9 |57|63.3| 46 | 14.7| 30.2 | 3.9
14| 50 | 46|58 61| 1.2 [ 58| 65 |49 | 7.5 | 81.2 | 41
151 52 | 59|55 |53 | 48 [ 49| 59 | 35| 46 | 92.3 | 4.6
16 | 7.9 | 45|49 | 47| 44 | 39| 52 | 54| 6.1 | 99.8 | 4.6
17119.71 09|55 |58(23.9|48|29.6|6.1|15.1| 0.0 |5.7

G, G2: estimated type I error rate (%) for Pan (2002) using Pearson sums
of square of residuals. G uses empirical covariance estimate. G2 uses
unstructured correlation matrix estimate.

U, U2: estimated type I error rate (%) for Pan (2002) using unweighted
sums of square of residuals. U uses empirical covariance estimate. U2 uses
unstructured correlation matriz estimate.

X?2: estimated type I error rate (%) for Horton et al. (1999) based on
partitioning data using fitted probabilities.

Q, Qr: estimated type I error rate (%) for Barnhart and Williamson
(1998) based on partitioning data using covariates patterns. @ is computed
using model based estimated covariance matriz. Qg s computed using
robust estimated covariance.

N, Ng: estimated type I error rate (%) for Evans and Li (2005) based on
partitioning data using both fitted probabilities and covariates patterns. N is
computed using model based estimated covariance matrix. Ny is computed
using robust estimated covariance matrix.

k: estimated type I error rate (%) for Williamson et al. (2003).

Y r: estimated type I error rate (%) for proposed method.

The type I error rates are estimated from about 1000 simulated data sets.
The simulated data are generated using logistic GEE model with linear
predictor with intercept 0 and slopes 0.8. See table 2 for details of the model
specification.



Table 14: Comparisons of Methods for Detecting a Missing Covariate

M[G[G2] U [U2[X2] Q [ Qs ]| N, [Ngl Yz
1[65] 48 | 49 | 55 | 26| 48 | 7.2 | 5.4 | 7.0] 6.1
2 [95] 50 | 7.6 | 62 | 65| 3.8 | 104] 6.3 | 6.1 | 4.5
318154 49| 41 [56] 41 | 59 | 47 | 5.0 41
1]62] 62| 55| 62 |55] 6.3 |10.1] 56 | 7.0 5.1
5 194] 98 | 9.6 | 102]3.9]103] 0.0 | 6.0 | 6.2]5.0
6 |76| 68 | 66 | 66 | 28] 58 | 6.4 | 55 | 8159
719755 | 7.7 | 53 | 58] 3.0 | 10.9] 11.9| 7.7 | 46
8 | 88| 80| 66 | 74 |[62] 3.7 | 60 | 5.0 |55 5.5
9 |76 80 | 74| 79 |44] 66 | 82 | 68 | 7.8 | 4.8
1099135100 | 13434175 0.0 | 7.1 |55 5.8

G, G2: estimated power (%) for Pan (2002) using Pearson sums of square
of residuals. G uses empirical covariance estimate. G2 uses unstructured
correlation matriz estimate.

U, U2: estimated power (%) for Pan (2002) using unweighted sums of
square of residuals. U uses empirical covariance estimate. U2 uses
unstructured correlation matrix estimate.

X?2: estimated power for Horton et al. (1999) based on partitioning data
using fitted probabilities.

Q, Qr: estimated power (%) for Barnhart and Williamson (1998) based on
partitioning data using covariates patterns. @) is computed using model
based estimated covariance matriz. QQr is computed using robust estimated
covariance.

N, Ng: estimated power (%) for Evans and Li (2005) based on partitioning
data using both fitted probabilities and covariates patterns. N is computed
using model based estimated covariance matrix. N g 18 computed using
robust estimated covariance matriz.

k: estimated power (%) for Williamson et al. (2003).

The power is estimated from about 1000 simulated data sets. The simulated
data are generated using logistic GEE model

log (1’:—7:“) = 0.8z31 + 0.8zt 2 + 0.8z 3, The data are analyzed using the
following GEE model: log ( it ) = By + B1Titq + Boxir2. See table 5 for

1_7Tit

details of simulation setting.
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No methods have decent power detecting a missing covariate which is
independent of covariates in the fitted model. Especially the two methods
(X2 and YjR) based on partitioning data using fitted probabilities have no
power at all detecting missing independent covariates.

Table 15 displays the power of detecting a missing quadratic term, the
data are generated in the same way as that for the proposed method using
the model with intercept 0 and slopes 0.8.

The following conclusions are indicated in the simulation results. Almost
every method has some power detecting missing quadratic terms. But when
the cluster sizes are big, only a few methods have high power. The proposed
method is one of them.

Table 16 displays the power of detecting missing an interaction term, the
data are generated in the same way as that for the proposed method using
the model with intercept 0 and slopes 0.8. In detecting missing interaction
terms, a few methods perform satisfactorily in most of the scenarioes. The
proposed method is one of them.

Table 17 displays the power of detecting an incorrect link function, the
data are generated the in the same way as the proposed method using the

model with intercept 0 and slopes 0.8.
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Table 15: Comparisons of Methods for Detecting Missing a Quadratic Term

M| G | G2| U | U2 X2 Q | Qr | Npw | Nr | Ygr

1 |44.0 | 25.8|40.7 ]300 22.7 | 5.5 [ 149 | 5.7 | 17.9| 283
2 | 7441520 768|588 90.3 |30.9|481| 9.6 |13.2| 40.2
31949 |84.0(946 | 878 999 |[68.2|57.9|10.4 | 119 | 56.2
41449 136.8|12.6 | 13.1 | 100.0 | 46.4 | 71.2 | 45 | 7.6 | 86.4
5 | 11.7 | 10.1 | 14.0 | 14.1 | 100.0 | 87.2 | 0.1 | 7.3 | 7.4 | 100.0
6 130.3|18.0(23.0 178 | 150 | 46 |14.2| 6.1 | 23.1 | 34.9
7 171.9]50.1|739|57.1| 86.2 | 259|455 |15.2|14.8 | 50.1
8 882 73.0|60.6 | 54.1 | 100.0 | 67.8 | 56.5 | 8.0 | 9.4 | 70.6
9 1278210 6.8 | 6.8 | 99.8 |475|68.1| 6.1 | 10.5| 95.4
101 72 | 6.2 | 12.1 | 11.4 | 100.0 | 86.5 | 0.6 | 89 | 5.7 | 100.0

G, G2: estimated power (%) for Pan (2002) using Pearson sums of square
of residuals. G uses empirical covariance estimate. G2 uses unstructured
correlation matrix estimate.

U, U2: estimated power (%) for Pan (2002) using unweighted sums of
square of residuals. U uses empirical covariance estimate. U2 uses
unstructured correlation matrix estimate.

X?2: estimated power for Horton et al. (1999) based on partitioning data
using fitted probabilities.

Q, Qr: estimated power (%) for Barnhart and Williamson (1998) based on
partitioning data using covariates patterns. @) is computed using model
based estimated covariance matriz. QQr s computed using robust estimated
covariance.

N, Ng: estimated power (%) for Evans and Li (2005) based on partitioning
data using both fitted probabilities and covariates patterns. N is computed
using model based estimated covariance matrixz. N g is computed using
robust estimated covariance matrix.

Kk: estimated power (%) for Williamson et al. (2003).

Y r: estimated power (%) for the proposed method.

The power is estimated from about 1000 simulated data sets. The simulated
data are generated using logistic GEE model

log (17:_;:“> = 0.8zt1 + 0.872 + 0.8x12t72. The data are analyzed using the
following GEE model: log ( it ) = By + BiTita + Botirz. See table 7 for

1771‘1'75

details of simulation setting.
*: Approzimately 300 out of 1000 data sets analysis fail for Y r in model 1,
2, 8,6, 7 and 8. 5



Table 16: Comparisons of Methods for Detecting Missing Interaction

M G G2 U U2 X2 Q QR Nm NR K YR
1139|3544 |57 | 13|57 ]900 |85 |152]03]134
2 | 54|28 |43 |44 | 40 |232|47.70| 133|156 |0.0] 26.0
3 | 44 | 44 | 47 | 5.8 | 12.6 | 63.4 | 71.00 | 18.7 | 23.1 | 0.0 | 70.1
4 | 4752|6171 |83 |44.0(60.70| 7.5 | 85 | 0.0]68.0
5% | 18.422.4 | 10.2 [ 13.0 | 13.5[89.3 | 1.57 | 9.6 | 5.5 [ 0.0 | 96.1
6 | 51]61]63|93 14|61 ] 860 | 7713004 89
7 148 | 44|51 |56 | 43 |21.7]46.90 | 18.0|14.8|0.0] 20.6
8 | 71|53 |92 125|103 | 704 |73.70 | 159|185 | 0.0 | 49.3
9 [ 73 [10.7] 89 [10.1] 7.1 |57.0[5320| 7.4 | 7.7 [ 0.0 ] 33.5
10" | 48.7 | 52.5 | 16.4 | 18.7 | 179 | 93.1 | 16.50 | 40.4 | 7.7 | 0.0 | 84.4

G, G2: estimated power (%) for Pan (2002) using Pearson sums of square
of residuals. G uses empirical covariance estimate. G2 uses unstructured
correlation matrix estimate.

U, U2: estimated power (%) for Pan (2002) using unweighted sums of
square of residuals. U uses empirical covariance estimate. U2 uses
unstructured correlation matrix estimate.

X?2: estimated power for Horton et al. (1999) based on partitioning data
using fitted probabilities.

Q, Qr: estimated power (%) for Barnhart and Williamson (1998) based on
partitioning data using covariates patterns. @) is computed using model
based estimated covariance matriz. QQr s computed using robust estimated
covariance.

N, Ng: estimated power (%) for Evans and Li (2005) based on partitioning
data using both fitted probabilities and covariates patterns. N is computed
using model based estimated covariance matrixz. N g is computed using
robust estimated covariance matrix.

Kk: estimated power (%) for Williamson et al. (2003).

Y r: estimated power (%) for the proposed method.

The power are estimated from about 1000 simulated data sets. The
simulated data are generated using logistic GEE model

log (17:_;:“> = 0.8zit1 + 0.873 2 + 0.87; 121 2. The data are analyzed using
the following GEE model: log ( mit ) = By + Byins + Botinz. See table 9

1771'“

for details of simulation setting.

#: Approximately 350 out of 1000 replicates did not converge for all
statistics except for X2, k, and Yp. A7p6proximately 150 out of 1000 data
sets analysis fail for Yg.

*. Approximately 700 out of 1000 replicates did not converge for all
statistics except for X2, x, and Yg. Approximately 300 out of 1000 data
sets analysis fail for Yg.

&: Approximately 200 out of 1000 data sets analysis fail for Y.



Table 17: Comparisons of Methods for Detecting an Incorrect Link Function

M[ GG U[R[X[Q] Q [Ny [Nag| x| Y,
112400727719 53] 810 41 |94]00] 6.2
2 258 00 | 25.1| 154 42 | 3.0 | 8950 7.3 | 8.4 0.0 24.0
3 [87.5| 1.4 | 320282382 6.2 | 6450 6.0 | 65] 0.0] 63.7
4746 39 | 87 |11.1]284| 3.2 [ 8720 7.6 | 6.8 | 0.0 | 46.6
5922650 148|162 98.9| 10.2 | 1.30 | 14.3 | 5.4 | 0.0 | 67.2
6| 4101|3865 09] 54920 45 8403 6.1
7 [223] 0.1 | 228|148 40 | 1.7 | 85.00| 9.4 | 9.0]0.0] 17.6
8 820 6.1 | 44 | 6.6 |32.1| 42 |56.90| 5.4 | 5.7]0.0|5L5
9 | 65.3] 86 | 58 | 84 | 21.3| 3.0 |65.80| 9.4 | 6.7 ] 0.0] 25.2
10 [ 85.7 | 51.0 | 21.3 | 23.3 ] 96.3 | 18.1 | 1.53 | 22.8 | 7.6 | 0.0 | 59.6

G, G2: estimated power (%) for Pan (2002) using Pearson sums of square
of residuals. G uses empirical covariance estimate. G2 uses unstructured
correlation matrix estimate.

U, U2: estimated power (%) for Pan (2002) using unweighted sums of
square of residuals. U uses empirical covariance estimate. U2 uses
unstructured correlation matrix estimate.

X?2: estimated power for Horton et al. (1999) based on partitioning data
using fitted probabilities.

Q, Qr: estimated power (%) for Barnhart and Williamson (1998) based on
partitioning data using covariates patterns. @) is computed using model
based estimated covariance matriz. QQr s computed using robust estimated
covariance.

N, Ng: estimated power (%) for Evans and Li (2005) based on partitioning
data using both fitted probabilities and covariates patterns. N is computed
using model based estimated covariance matrixz. N g is computed using
robust estimated covariance matrix.

Kk: estimated power (%) for Williamson et al. (2003).

Y r: estimated power (%) for the proposed method.

The power are estimated from about 1000 simulated data sets. The
simulated data are generated using logistic GEE model

log (—log (7)) = 08741 + 0.8z412. The data are analyzed using the

following GEE model: log < it ) = By + Bixia + Bozire. See table 7 for

1—mi
details of simulation setting.
*: Approzimately 200 out of 1000 data sets analysis fail for Y g in model 1,
5, and 6. Approximately 300 out of 1000 data sets analysis fail for Y in
model 10. Approximately 140 out of 1G00 data sets analysis fail for all
statistics except for X2 and r in model 10.



In detecting an incorrect link function, several methods perform satisfac-

torily in most of the scenarios. The proposed method is one of them.
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1.6 Examples

Next we demonstrate the application by applying the proposed method to

some real examples.

1.6.1 Respiratory Disease

A clinical trial comparing two treatments for a respiratory disease was done
by Koch et al. (1990). In each of the two centers, eligible patients were
randomly assigned to active treatment or placebo. During the treatment,
the respiratory status was determined at each of 4 visits and recorded on
a H-point scale as 0 for terrible to 4 for excellent. Potential explanatory
variables are center, gender, baseline respiratory status (these 3 variables are
dichotomous), and age (in years) at the time of entry to the study. There were
111 patients (54 active, 57 placebo) participating the clinical trial. There are
no missing data for responses or covariates. The response is converted into a
dichotomous variable by dividing the response to good outcome (response of
3 or 4) and bad outcome (response less than 3). Four visits of each patient
form a cluster.
The data were analyzed using the following logistic GEE model.

logit(probability of good outcome) = [, + [B,center + Bytreatment +
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Table 18: Lack of Fit for Logistic GEE Model analyzing Respiratory Data
G | G2| U | U2] X2 Q | Qr | Now | N | YR
0.63 | 0.63 | 0.33 | 0.41 | 0.62 | 0.29 | .003 | 0.13 | 0.20 | 0.76

G, G2: LOF p value for Pan (2002) using Pearson sums of square of
residuals. G uses empirical covariance estimator. G2 uses unstructured
correlation matriz estimate.

U, U2: LOF p value for Pan (2002) using unweighted sums of square of
residuals. U uses empirical covariance estimator. U2 uses unstructured
correlation matrix estimate.

X2: LOF p value for Horton et al. (1999) based on partitioning data using
fitted probabilities.

Q, Qr: LOF p value for Barnhart and Williamson (1998) based on
partitioning data using covariates patterns. @) is computed using model
based estimated covariance matriz. QQr s computed using robust estimated
covariance.

N, Ng: LOF p value for Evans and Li (2005) based on partitioning data
using both fitted probabilities and covariates patterns. N is computed using
model based estimated covariance matrix. N g is computed using robust
estimated covariance matrix.

Y r: LOF p value for the proposed method.

Bssex + Pbaseline + Bsage

where outcome, center, treatment, sex, baseline are all coded with binary
values 0 and 1. The correlation structure within the cluster is assumed to be
unstructured. We use all the methods currently available except for kappa-
like method to assess the LOF of this model. The p values for different
methods are shown in table 18.

None of the methods except for Barnhart’s robust test statistic indicate
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there is LOF present in the fitted model. Since in the simulation study,
Barnhart’s method has inflated type I error rate in 6 different scenerioes,

Barnhart’s correctness is a suspect.

1.6.2 Diabetic Retinopathy

In a study in southern Wisconsin, 996 insulin-taking, younger-onset diabetic
patients were examined using standard protocols to determine the associa-
tion between diabetic retinopathy and some risk factors. Both eyes of the
patients are examined. The presence or absence of retinopathy together with
some covariates are recorded. Thirty-two observations with missing covariate
values are removed from the analysis.

Table 19 contains the p values for different LOF methods for 2 different
models. The first logistic GEE model has 4 linear covariates: duration of
diabetes, glycosylated haemoglobin level, diastolic blood pressure, and body
mass index. Most of the LOF methods suggest inadequacy of this model.
The second logistic GEE model has 4 linear covariates plus two quadratic
terms. None of the methods indicate the model has LOF except for Qr which
has been shown to inflate the type I error rate when the number of covariates

is big.
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Table 19: Lack of Fit for Logistic GEE Model analyzing Diabetic Retinopathy

Data
Model* | G G2 U U2 | X2 Q Qr | Now | N | YR

1 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.03
2 0.26 | 0.32 { 0.18 1 0.19 | 0.46 | 0.51 | 0.00 | 0.12 | 0.34 | 0.12

Notes:

* Model 1 has 4 linear terms: X, :duration of diabetes, Xy: body mass
mdex, X3 :glycosylated haemoglobin level, X4: diastolic blood pressure.
Model 2 has /J linear terms X1, X, X3, X; and two quadratic terms: X?
and X2.

G, G2: LOF p value for Pan (2002) using Pearson sums of square of
residuals. G uses empirical covariance estimator. G2 uses unstructured
correlation matriz estimate.

U, U2: LOF p value for Pan (2002) using unweighted sums of square of
residuals. U uses empirical covariance estimator. U2 uses unstructured
correlation matrix estimate.

X2: LOF p value for Horton et al. (1999) based on partitioning data using
fitted probabilities.

Q, Qr: LOF p value for Barnhart and Williamson (1998) based on
partitioning data using covariates patterns. @) is computed using model
based estimated covariance matriz. QQr s computed using robust estimated
covariance.

N, Ng: LOF p value for Evans and Li (2005) based on partitioning data
using both fitted probabilities and covariates patterns. N is computed using
model based estimated covariance matrix. N g is computed using robust
estimated covariance matrix.

Y r: LOF p value for the proposed method.
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1.7 Conclusions and Discussion

The simulation results indicate that the proposed method controls type I
error rate well; it has power for detecting missing interaction terms and
quadratic terms; the power increases as the sample sizes and/or the number
of observations within a cluster increase. The proposed method has power
detecting incorrect link functions if the predictor covers a reasonable range.
The proposed method doesn’t have power detecting missing covariates. The
simulation results indicate the proposed method has better or similar perfor-
mance compared to other currently available LOF methods for logistic GEE
models.

Intuitively the proposed method should work better than other model
comparison based method because its general model is a more flexible piece-
wise model. The general model in the proposed method allows both slopes
and intercept to vary for different data groups, while the other model com-
parison methods restrict the slopes for different data groups to be the same,
which limits the general model’s ability to approximate the true model, and
hence limit the performance of the method. Since the genral model in the
proposed method approximates the true model well, when LOF is present

in the fitted model, the piecewise logistic GEE model can be used as an
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alternative model to analyze the data.
Several SAS macros have been developed to implement the proposed

method. See appendix for the detailed SAS code.
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2 Optimal Designs for Nonlinear Combina-

tion of Parameters in Nonlinear Regression

Model

2.1 Introduction

Applied researchers often find nonlinear regression models useful to describe
phenomena in their study. Physical, biological, chemical or other theoretical
consideration often lead to mechanistic nonlinear models (Bates and Watts,
2007). Therefore nonlinear model parameters are usually easier to interpret
(O’Brien, 2005). Before the model can be fitted and parameters interpreted,
researchers need to make decisions about at which design points the experi-
ment should be carried out to take measurements. Careful choices of design
points at this stage will lead to efficient usage of limited resources (such as
time, money, patients) and maximize the information desired (such as pre-
cisely estimated parameters of interest). To accomplish this in an optimal
way is called an optimal design.

Motivated by an application in medical science, we proposed a cost-

efficient Bayesian optimal design for precisely estimating nonlinear combina-

93



tions of parameters in a nonlinear regression model with quantitative factors
with respect to some design variables.

Like many areas of Bayesian statistics. applicaton of Bayesian optimal
design lags behind its theory due to lack of appropriate software. In order
to make the proposed method attractive to researchers, we developed an
R package to implement the proposed method and make related graphs to

visualize the results.

2.2 Background

An optimal design often involves choosing a design with n design points,
denoted by &, to estimate the parameters of interest.
In traditional literature, such as Atkinson and Donev (1992), a design

is expressed as

X1, X2, 0, Xg
&=
Wy, Wz, -+, Wk
where the k (k < n) distinct design support “points” (or vector) xq,Xa, - -+ , Xy

are elements of the design space X, and nw; design points are assigned to
x;, © = 1,-+- k. Although this design scheme is commonly used in statis-

tics literature, it is rarely used in medical application. Instead researchers
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in medical application often use other design schemes such as dilution series
designs. One example of dilution series schemes is that of Rocke and Jones
(1997) which is detailed later in an example.

More generally a design £ dependent on control variables, which de-
termines the design points (Chaloner and Verdinelli, 1995), is denoted by
¢ =& (0), where 4 is a vector of control variables.

Let M denote the expected information matrix associated with the full
parameter vector @ (p x 1). M depends on both the design points and the
true values of the parameters. Strictly speaking, we need to express the
information matrix as M (£,0). In our work, we use M, M (£), M (&,0)
interchangeably when there is no confusion with the context. When ¢ is
determined by a control variable vector &, £ is replaced by 4.

Different experiments have different objectives. The goals of the experi-
ments could be precisely estimate parameters of interest, precise calibration,
or precise prediction the response of future observations. Different objectives
lead to different optimal designs. In the proposed research, we assume the
goal of the experiment is to estimate nonlinear combinations of parameters

precisely.
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2.2.1 Criteria of Optimality

When the research objective is precisely estimating parameters, in current
practice, an optimal design typically involves minimizing a function of the
information matrix of the parameters of interest (O’Brien, 2005). The most
important design criterion in applications is that of D-optimality, in which the
generalized variance, or its logarithm — log | M (£) |, is minimized. Two other
criteria which have a statistical interpretation in terms of the information
matrix M (§) are A- and E-optimality. In A-optimality ¢tr {M ! (&)}, the
total variance of the parameter estimate, is minimized. In E-optimality the
variance of the least well-estimated contrast /@ is minimized subject to the
constraint a’a =1. A contrast is a linear combination of 2 or more factor
level means whose coefficients (elements of o) add up to 0.

When the interest is in the full parameter vector 8 (p x 1). The above
ideas can be put more formally by considering the eigenvalues Ay, --- , A, of
M (§). The eigenvalues of M ' (&) are 1/A1,---,1/A,. In terms of these
eigenvalues the 3 criteria are as follows.

A-optimality minimizes the sum of the variances of the parameter esti-

mates:
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min ZZ L= (M)},

D-optimality minimizes the generalized variance of the parameter esti-

mates:
. p 1
min [T & = [M (&) .
j=1
E-optimality minimizes the variance of the least well-estimated contrasts:
minmax (1/);).

D-optimal design for quantitative factors do not depend on the scale of
the variables (Atkison and Doev, 1992), which is not in general the case for
A- and E-optimal designs. This property makes D-optimal design much more

popular than the other two design criterion.

D —optimality Sometimes the research interest is not in all p parameters,
but only in s independent linear combinations of the parameters 8 which
are the elements of A’@, where A is p X s of rank s < p. The covariance
matrix for these linear combinations is A/M~1 () A. If s = 1, A-, D-, E-
optimal designs all reduce to minimizing the variance of the estimated linear
combination. When s > 1, the A-optimal design minimizes the trace of
A'M~'(€) A. The D-optimal designs minimize |A’M ! (£) A|. To emphasize
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the dependence of the design on the matrix of coefficients A, this criterion is

called D 4—optimality (Sibson, 1974).

Dgs—optimality Dg-optimal designs are appropriate when interest is in
estimating a subset of s parameters as precisely as possible (Box, 1971). We
can partition @ into two sub-parameter vectors, i.e. 8 = [0;, 0/2} /, where 6,
(s x 1) is the parameters of interest. The (p — s) x 1 parameter vector 0 is
treated as nuisance parameters.

To obtain expressions for the design criterion and related variance func-

tion, partition the information matrix as

My (§) Mas (§)
M(€) =

Mo, (f) My, (5)

The covariance matrix for the least squares estimates of 8 is M (£), the
s x s upper left submatrix of M~!(£). It is easy to verify, from the results

on the inverse of a partitioned matrix, that

MY (&) = { My (€) — Mya () M5! (€) My, ()}

The Dg—optimum design for 8; accordingly maximizes the following de-

terminant
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| My (€) — Maz (&) Myy' (€) My, (€) |-

c-optimality In c-optimality the research interest is in estimating the lin-
ear combination of the parameters ¢’@ with minimum variance. The design

criterion to be minimized is thus

var <c’9) M1 (¢e

where c is a p x 1 vector.

Linear optimality (C- and L-optimality) Let L be a p X ¢ matrix of

coefficients. Then minimization of the criterion function
tr{M~"(£) L}

leads to a linear, or L-optimal, design.
If L is of rank s < ¢ it can be expressed in the form L = AA’ where A is

a p X s matrix of rank s. Then
tr {M~1(§) L} = tr {M 1 (§) AA'} = tr {A'M 1 (€) A}

This form stresses the relationship with the D 4-optimal designs, where

the determinant, rather than the trace, of A’M~!(£) A was minimized.
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When s = 1, so that A becomes the ¢ of c-optimality. If several contrasts
are of interest, these can be written as the rows of p x s matrix C, then the

criterion function is tr {C'M ! (£) C}, whence the name C-optimality.

2.2.2 Optimal Design for Nonlinear Regression Models

A nonlinear model is a model such that at least one of the derivatives of the
expected function with respect to the parameters depends on at least one
of the parameters (Bates and Watts, 2007). Therefore, a nonlinear model’s
information matrix depends on at least one of the model parameters, which
are not known exactly. If a previous estimate of parameters is plugged in to
M (&, 0) to find the optimal design, then the resulted optimal design is called
a local optimal design (Atkinson, 1992). An alternative to this is a Bayesian
optimal design, when a prior probability distribution for @ is available. This
extra information is incorporated into the design by taking expectation of

the design criterion with respect to the prior distribution (Atkinson, 1992).

2.2.3 Bayesian Optimal Design

Because nonlinear models information matrix depends on unknown parame-

ters values, people have been using Bayesian optimal designs for nonlinear
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models for a long time.

Lindley (1956) proposed choosing an optimal design by maximizing the
expected gain in Shannon information (Shannon, 1948) or, equivalently, max-
imizing the expected Kullback-Leiber distance between the posterior and

prior distributions:

Jlog LEEEL 1 (v, 6]¢) dOdy

where f (0) is the prior density of the parameters 8, f (0|y,¢) is the posterior
density of the parameters 6. This design criterion is appropriate when the
goal of the experiment is about the inference about the parameters.

The prior distribution does not depend on the design &, so the design &
maximizing the expected gain in Shannon information is the one that maxi-

mizes:

J1log{f (Bly &)} f (v.0[¢) dOdy

This is the expected Shannon information of the posterior density.

Corresponding to different local optimal designs, there are different Bayesian
optimal designs which optimize the corresponding expected objective func-
tions with respect to the prior distribution of the parameters (Atkinson,
1992). An optimal design which minimizes the expected value of the de-
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terminant of the information matrix is referred to as a Bayesian-D optimal
design. An optimal design which minimizes the expected value of the trace
of the information matrix is referred to as a Bayesian-A optimal design.
When the researchers are not only interested in the inference of para-
meters, but also obtaining large values of outcome (response values), the
following objective function proposed by Verdinelli and Kadane (1992) is

appropriate:

[lpy'1+ Blog f (Bly.&)] f (y,0|¢) dydb

where p and 3 are nonnegative weights representing the relative contributions
that the experimenter is willing to attach to the two components of the
research objective.

Verdinelli (1992) suggested to maximize the following objective function
to find an optimal design when the goal of the experiment is both inference

about the parameters and prediction about the future observation.

W’flogf(yn+1|yaf)f(Y:yn+1|§) dydyn+1+wf10gf(9|y,§)f(y,@lf) dyd@

where v and w express the relative contributions of the predictive and the
inferential components of the objectives; y,.1 represents the future observa-
tion.
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2.3 Methods

Although nonlinear models have been widely used in applied science, be-
cause of the limitation of currently available optimal designs methods for
nonlinear models, many researchers are still picking design points based on
intuition. The design picked in this way could be off the right track a lot.
Traditional optimal designs in literatures, such as Silvey (1980), Atkinson
and Donev (1992), assume a k point design scheme. This is rarely used in
medical application since this design scheme usually requires more pipettes
(measuring and moving of small amount of liquid) than design scheme such
as dilution series. This could increase the measurement error. Second tra-
ditional optimal designs focus on linear combinations of parameters. To the
best of our knowledge, optimal design for nonlinear combination of parame-
ters hasn’t been addressed. Objective functions of traditional optimal design
methods could generate a design which requires high concentration of expen-
sive reagents. The additional gain of information may not be worth the cost

paid. There are 5 explicit objectives in the proposed research.

1. Develop a cost-efficient Bayesian optimal design method for precisely
estimating nonlinear combinations of the parameters in nonlinear re-
gression models with quantitative factors and design schemes deter-
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mined by a few control variables.

2. Develop some R functions to implement the proposed optimal design

method.

3. Hlustrate the application of the proposed optimal design method using

real examples.

4. Create R functions for visualizing and comparing experimental designs.

5. Compile the R functions to an R package and submit it to cran project.

2.3.1 Proposed Optimal Design Method

Consider the following nonlinear regression model.
Y =f(x,0)+¢"
where Y is a continuous response; x is a k x 1 quantitative predictor vector;
0 =1[0,---,0,] is a p x 1 parameter vector; ¢* is a random error with mean
0. E(Y) = f(x,0) where f(.) is a nonlinear function with parameters 6.
The goal of the optimal design is to precisely estimate nonlinear combi-
nations of the parameters in a nonlinear regression model with quantitative
predictors. The nonlinear combination(s) could be of size 1 or more than 1.

When the combinations have size more than 1, one problem may arise. A
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design good for one parameter combination may be bad for another parame-
ter combination. There is no clear cut solution to this problem. Currently,
the optimal design typically maximizes some one dimensional function of the

Fisher information.

Information Matrix of a Nonlinear Model Before deriving the infor-
mation matrix, it is necessary to address the dependency between the mean
and the variance of the response.

There are two major approaches for this problem. The first approach is
called "transform both sides" approach (Carroll and Ruppert, 1982), which
assumes the existence of a transformation ensuring the approximately equal
variance across the range of the values of the predictors x. We denote the
transformation by ¢ (.). With this transformation, the model equation can

be rewritten as

Z=t(Y)=t(f(x,0)) +¢

where ¢ ~Normal(0,0?). The other approach to handle this problem is to

assume the existence of a variance function v (.) such that

Y ~Normal(p, v (i) 0%)
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where = f (x,0)

(Raab, 1981; Carroll and Ruppert, 1982; Davidian and Carroll, 1987; David-
ian, Carroll and Smith, 1988). In our work we focus on the first approach.
Let f; = f (x;,0) where x; is the predictor value for the i’ design point.
The design points x;,7 = 1,--- ,n are determined by a few control variables
0. The optimal design is found with respect to these control variables.
Let 7; =t (y;) — t (f;) where ¢ (.) is the transformation function.

The log likelihood for the i*" data point is

l; = —1/2log (210?) — 1/2072 (t (i) — t (f;))°

The gradient g; = [g1:, - - , gpi) of l; with respect to the parameters vector
0 is given by

. _ ot(f;
gdi:éa_gl;zo- 27"2‘#];) dzl,,p

The information matrix for the i** data point is r?0~*u,u;, where

_ otfi)

i 59~ 1s a p X 1 vector.

Then the information matrix of the regression parameters for the whole

n
. _ ! . .
data set is > r?0 4y, u;, where n is the sample size.
i=1
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n
The expected information matrix is I = 072 p, 1.
i=1
The asymptotic covariance matrix for the least square estimate of the

parameters 6 is 1! (Jennrich, 1969). Note that it depends on the control

variables vector 9.

Optimal Design for Estimating Nonlinear Combinations of Parame-
ters In practice researchers are sometimes interested in precisely estimating
nonlinear combination(s) of parameters. We denote it as ¢, which is a s x 1
vector (s < p). When ¢ is linear combination(s) of 6, the optimal design
has been studied by Sibson (1974). When ¢ is nonlinear combination(s) of
the parameters, if the parameter estimates 6 has normal distribution, apply-
ing the delta method (Cassela and Berger, 2002), the asymptotic covariance

matrix of the estimates of ¢ can be expressed as

AL A 9)

where A = g—‘g is a s X p matrix.
The most popular design criterion in application is D-optimality, because

the D-optimal design is scale invariant (Atkinson and Donev, 1992) to quan-
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titative factors. This is generally not the case for A- and E-optimality. It
is not desirable that the optimal design should depend on the scale that the
factor is measured at, such as meter or centimeter. Since the factors in the
model of interest are quantitative, we choose to minimize the log determi-
nant of AI~'A’ with respect to the control variables vector & to obtain the
D-optimal design for precisely estimating ¢.

For a nonlinear model, its information matrix depends on the parame-
ters. If ¢ is a nonlinear function of the parameters, the A matrix in the
asymptotic covariance matrix of the estimate of ¢ (equation 9) depends on
the parameters as well. To compute the log determinant of the asymptotic
covariance matrix of the estimate of ¢, we need the values of the parameters,
which are not known exactly. We could plug in the point estimates of the
parameters from previous experiments to obtain a local optimal design. This
method is often not appropriate for the following reasons. When the esti-
mates of the parameters are different from the true parameters, the achieved
local design could be quite different from the true optimal design. In medical
application, the found optimal design will be used to estimate the parameters
for many different patients. Different patients may have different parameter

values. Local optimal design could be good for some patients, but bad for
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the other patients. Since the optimal design will be used for the estimation
for all patients, the optimal design should be able to accommodate a range
of parameter values. Instead of using a local optimal design, we minimize
the expected value of log determinant of the asymptotic covariance matrix of
the estimate of ¢ with respect to a prior distribution of the parameters. The
resulted optimal design is referred to as a Bayesian optimal design, which
doesn’t require exact values of the parameters. The Bayesian optimal de-
sign minimizes the following objective function with respect to the control

variables vector
[log|A(8;0)1(5;0)"" A'(5;0)]|f(0)d6

where f () is the prior density function of the parameters 6. Prior distrib-
ution could be summarized from historical data. One example can be found
in Clyde et al. (1996).

Optimal designs found using this objective function may require usage of
high concentration of expensive reagents. In order to take cost into consider-
ation, we further extend the objective function by adding a term to penalize

designs with high cost. Such an objective function can be expressed as:
[log|A(6;0)1(6;0)"" A'(8;0)|f (6)d6 +w(8)
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where w (.) is a monotone function of the cost of the design. The optimal
design is the design which minimizes the objective function.
More specifically the optimal design can be found by minimizing the

following objective function:
[log |A(85;0)1(8;0)" A’ (5:0)|f (6) d6 + ¢ (8)w

where ¢ () is the total cost of the experiment design; w is a nonnegative
weight chosen by the researchers to represent the relative importance of sav-

ing money compared to increasing estimation precision.

2.4 An Example

Development of this project is motivated by an application in pharmacody-

namic study.

2.4.1 PKPD Models

Pharmacodynamics is the study of the biochemical and physiological effects
of drugs on bodies (human or animal) or on microorganisms or parasites
within or on the bodies and the mechanisms of drug action and the relation-

ship between drug concentrations and effects (Lees et al., 2004).
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Pharmacokinetics is a branch of pharmacology dedicated to the determi-
nation of the fate of substances administered externally to a living organism.

Pharmacodynamics is often summarized as the study of what a drug does
to the body, whereas pharmacokinetics is the study of what the body does
to a drug. Pharmacodynamics is sometimes abbreviated as "PD". Phar-
macokinetics is sometimes abbreviated as "PK". Pharmacokinetics is often
studied in conjunction with pharmacodynamics. In this case they are often
jointly referred to as "PKPD". Statistical models for PKPD processes are

referred to as PKPD models in literature.

2.4.2 Gaddum/Schild Model

Gaddum/Schild model is a widely used PD model. It has been used in
a number of cases to model responses to combined agonist and antagonist
stimuli (Williams et al. 1988; Swartz et al. 1992; Lazareno and Birdsall,
1993; Maguire and Davenport, 1995; Maguire et al. 1997; Motulsky and
Christopoulos, 2003). An agonist is a drug that binds to a receptor and
causes a response. An antagonist is a drug that does not provoke a response
itself, but blocks agonist-mediated response. The relationship is described

by the following equation:
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Y = Al B * — Mi Mazx—Min i *
f (Al [B]) +¢ m + (1OPEC5O<1+(IO[? 2)S>)Hﬂl +e€
1+

(4]

where Y is a continuous response, [A] and [B] are two quantitative predic-
tors. [A] is the agonist concentration and [B] is the antagonist concentration.
There are 6 parameters in this model: Min, Max, pEC50, Hill, S, and pA2.
Min is the baseline response; Max is the maximum response; pEC50 is the
negative logarithm of the EC50; Hill is the Hill slope; S is the Schild slope;
pA2 is the negative logarithm of the antagonist concentration which doubles
the EC50; and ¢* is a random error with mean 0. For simple competitive
antagonist, Schild slope equals to 1.

EC50 is the agonist concentration that provokes a response halfway be-

tween baseline and maximum response (Figure 2).

The maximum response ¥, for given concentration of agonist is obtained
when there is no antagonist present. 1C50 is defined as the concentration of
the antagonist that reduces the response to (yo + Min) /2 (Figure 3). More
generally ICx is defined to be the antagonist concentration, which brings the
response to the value Min + % (yo — Min).

Using the definition of ICx, it can be shown that ICx is a function of

the parameters and the given agonist concentration [A] . In practice, [A], is
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provided by the researcher based on the goal of the research.

; 1/8
ICx = 1 1 1 [ 1gpEose ) Hill S (Al 1 10—PrA2
e N O A N ToPPC0 -

g9

In drug discovery, researchers are mainly interested in estimating both
EC50 and ICx. Notice that they are nonlinear combinations of the parame-
ters in Gaddum/Schild model.

For illustrative purpose, we show a contour plot of the square root trans-
formed response surface as a function of the log concentration of the agonist

and antagonist in figure 4.

Optimal Design for the Estimation of pEC50 and log(IC50) We
considered the optimal design for Gaddum/Schild model. The purpose of
the experiment is to precisely estimate pEC50 and log(IC50) simultaneously
in a cost efficient way.

In practice since the solution should be easily prepared, researchers usu-
ally prepare solutions with 0 concentration and serial dilutions with same di-
lution factors. These concentrations may be replicated several times. Using
more complicated design schemes may increase measurement error because

more complex manipulation is required.

115



Lrary)

1] o -

[

o

(o))

©

i)

C

B,

S)

2

g -
<
1

log10[agonist]

Figure 4: Example Contour Plot for Square Root Transformed Gad-
dum/Schild Model
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Table 20: Illustration of Dilution Series Design

[AA] —
0139|78]|156 313|625 | 125 | 250 | 500 | 1000
[BB] | 0 XX | X | X X X X |1 X | X | X
! 30 XX | X | X X X X | X | X | X
300 | X|X | X | X X X X | X | X | X
3000 | X | X | X | X X X X | X | X | X

Let’s consider a hypothetical experiment. In this experiment, AA binds
to its receptor and triggers the release of YY. BB binds to the receptor
of AA and blocks its binding with AA. AA is the agonist in this experi-
ment. BB is the antagonist in this experiment. The relationship between
the concentration of YY and the concentration of AA, BB is well modeled
by Gaddum/Schild model.

Suppose previous experiments show that square root transformation on
both sides of Gaddum/Schild model leads to normal and stable random error.

That is

7 = \/_: MZTL+ Maz—Min ——

(<<4L>>)
1+

[4]

where ¢ ~Normal(0, 0?). In this example, we assume % = 0.163.
In table 20, we illustrate one possible zero concentration plus serial dilu-

tion experimental design.
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In this design, the maximum agonist concentration (max_a) is 1000; the
maximum antagonist concentration (max_b) is 3000. The dilution factor for
agonist (d_a) is 0.5. The dilution factor for antagonist (d_b) is 0.1. The
number of dilutions for agonist (nd a) is 8. The number of dilutions for
antagonist (nd_b) is 2. The total number of distinct design points is 40.
Each distinct design point is replicated twice. Here max a, max b, d_a,
d b, nd_ a, and nd b are design variables controlled by the researchers.

The prior distribution of the parameters can be extracted from historical
data. We assume the parameters have the following uniform distribution and

all the parameters are independent of each other.

Min~Uniform(0.00319, 2.629); Max~Uniform(21.54, 218.11);
pEC50~Uniform(1.91, 2.98); Hill~Uniform(1.48, 2.73);

pA2~Uniform(-2.24, 0.39); S~Uniform(0.32, 1.5);

We also use the following setting in the example. The unit price for
the agonist is 1. The unit price for the antagonist is 10. The researchers
think reducing the average log generalized variance (logvar0) 1 unit is worth
spending 1000 unit money. Every design point is replicated twice. We use

the following objective function to find the cost efficient optimal design for
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precisely estimating both pEC50 and log(IC50).

[ [ [log|A (max .a,max .b,d.a,d.b, nd.a,nd.b; Min, Mazx, pEC50, Hill, pA2, S)
I (max .a, max .b, d.a,d.b,nd.a,nd.b; Min, Max, pEC50, Hill, pA2, S)_1
A’ (max .a, max .b, d.a, d.b,nd.a,nd.b; Min, Maz, pEC50, Hill,pA2, S) |
f(Min, Maz,pEC50, Hill,pA2, S)dMin dMax dpEC50 dHill dpA2 dS+

¢ (max .a, max .b, d.a, d.b,nd.a, nd.b) w

where ¢ (max .a, max .b, d.a,d.b,nd.a,nd.b) =

max.a(l — d.a"*+V) /(1 — d.a) (nd.a + 2) +

max.b (1 — d.b®+D) /(1 — d.b) (nd.b+ 2) 10;

A is the derivative matrix of pEC50 and log(IC50) with respect to the pa-
rameters Min, Max, pEC50, Hill, pA2, and S; I is the information matrix of
the parameters; f(.) is the prior density function.

With the total number of distinct design points to be 40, there are 4 possi-
ble combinations of nd.a and nd.b. They are (nd_a=2, nd_b=8), (nd_a=8,
nd b=2), (nd_a=3, nd_b=6), and (nd_a=6, nd_b=3). Table 21 lists the
optimal designs for each of these combinations with w = 0. These optimal
designs don’t take cost into consideration.

The favorite optimal design without taking cost into consideration has
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Table 21: Optimal Designs without Taking Cost into Consideration

nd a|lnd b|max a|max b|d a|d b | logvar0
8 2 4836 60 0.60 | 0.14 | -11.23
2 8 3700 1026 | 0.19 | 0.24 | -10.91
6 3 6974 1881 | 0.49 | 0.07 | -11.29
3 6 3828 72 0.30 | 0.23 | -11.00

nd.a: number of dilution for agonist;

nd.b: number of dilution for antagonist;

maz_a: mazximum agonist concentration;

mazx_b: maximum antagonist concentration;

d_a: dilution factor for agonist;

d_b: dilution factor for antagonist;

logvar0: average log generalized variance for pEC50 and log(IC50) wtih
respect to prior distribution of parameters.

the number of dilution for agonist equals to 6 and number of dilution for
antagonist equals to 3.

Table 22 lists the cost efficient Bayesian optimal designs with w = 0.001.

After taking cost into consideration, the favorite optimal design has the
number of dilution for agonist equals to 8 and the number of dilution for
antagonist equals to 2. This is because the antagonist is more expensive.
Putting more points on the antagonist side will increase the cost and therefore
make the design less favored.

Table 23 compares the regular and cost efficient optimal design holding

the number of dilution for agonist equals to 6 and number of dilution for
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Table 22: Cost Efficient Bayesian Optimal Designs

nd a|nd b|max a|max b|d a|d b|logvar0 | cost | logvar
8 2 350 5 0391021 | -3.99 |5843 | 1.84
2 8 207 8.2 0.41 | 0.24 | -3.07 | 7427 | 4.35
6 3 315 6 0.37 ] 0.20 | -3.84 | 6193 | 2.35
3 6 238 7.4 039|021 | -333 | 7034 | 3.7

nd.a: number of dilution for agonist;

nd.b: number of dilution for antagonist;

maz_a: mazximum agonist concentration;

mazx_b: maximum antagonist concentration;

d_a: dilution factor for agonist;

d_b: dilution factor for antagonist;

logvar0: average log generalized variance for pEC50 and log(IC50) wtih
respect to prior distribution of parameters.

cost: total cost of the experiment.

logvar is the value of the objective function.

antagonist equals to 3.

The cost of the cost efficient optimal design is much smaller compared
to the regular optimal design, while the estimation precision of the regular
optimal design is much higher than the cost efficient optimal design. While
using cost efficient optimal design, we sacrifice estimation precision to cut
down cost. The maximum concentration of agonist is reduced 20 times in
the cost efficient optimal design compared to the regular optimal design. In
contrast the maximum concentration of the antagonist is reduced 200 times.

This is because the antagonist is more expensive, reducing the antagonist
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Table 23: Optimal Designs with Uniform Priors

design max_a |max b |d a|d b|logvar0 | cost
cost efficient 315 6 0371020 | -3.84 6193
regular 6974 1881 | 0.49 | 0.07 | -11.29 | 459422

nd.a: number of dilution for agonist;

nd.b: number of dilution for antagonist;

mar_a: marimum agonist concentration;

mazx_b: maximum antagonist concentration;

d_a: dilution factor for agonist;

d_b: dilution factor for antagonist;

logvar0: average log generalized variance for pEC50 and log(IC50) wtih
respect to prior distribution of parameters.

cost: total cost of the experiment.

logvar is the value of the objective function.

concentration is more efficient way to cut cost.

Figure 5 compares the cost efficient and regular Bayesian optimal design
holding the number of dilution for agonist equals to 6 and number of dilution
for antagonist equals to 3. Notice that the cost efficient Bayesian optimal
design moves points to lower agonist and antagonist concentration to cut the

cost.

2.5 Implementation

Bayesian optimal design has existed for a while. But very few Bayesian opti-

mal designs have been used in real scientific research (Chaloner, 1995). One
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Figure 5: Comparison Between Regular and Cost Efficient Bayesian Optimal
Design Holding the Number of Dilution of agonist equals to 6, and Number
of Dilution for Antagonist Equals to 3. Red Dots Represent the Regular
Optimal Design. Blue Dots Represent the Cost Efficient Optimal Design.
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of the reasons is lack of appropriate software. To help researchers implement
the proposed method, an R package ODK has been developed.

Building package ODK involves many cutting-edge techniques such as nu-
merical computation of multiple-dimension derivatives, multiple-dimension
integrals, multiple-dimension optimization, adaptive quadratures, symbolic
computation, passing unknown number of parameters. Multiple-dimension
derivatives can be found symbolically using R function deriv in stat package
(Griewank and Corliss, 1991). In package ODK, multiple-dimension integral
is computed using adaptive quadrature. Basically adaptive quadrature is a
process in which the integral of a function is approximated using quadrature
rules on adaptively refined subintervals. Adaptive quadrature is effective for
"bad behaved" integrand, for which traditional methods fail (Rice, 1975). In
package ODK, adaptive quadrature is implemented using R function adapt in
adapt package. R has a very flexible data type called list. A list can accomo-
date different types of data with different length. In package ODK, passing
unknown number of parameters is achieved by using lists as arguments for
defined functions. The proposed method requires multiple-dimension opti-
mization, which is implemented using R function optim in stat package.

Function "OD" implements the proposed cost efficient Bayesian optimal
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design. It requires the following input.

e Expressions for the nonlinear model, nonlinear combinations of parame-
ters to be precisely estimated, and the derivatives of these expressions

with respect to the parameters in the model.

e A prior density function of the parameters.

e A function which generates the design points using design variables as

input.

e Unit costs for all predictors.

e A weight (w) value used in the objective function.

e Initial guess of the values of the control variables which optimize the

objective function.

e Lower bounds and upper bounds of the control variables space.

e Choice of optimization algorithem.

e Variance of the random error in the nonlinear model after normaliza-

tion.

e Arguments for the argument functions provided.
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Symbolic mathematical expression can be formed using R function as.formula.

The generated output includes the values of the control variables, and the
value of the objective function for the optimal design.

See appendix for example R codes about how to use the functions in the
pacakge to find a cost efficient Bayesian optimal design.

Since there are many arguments for the OD function, some interface will
be built in the future to prompt the user to provide all the information
required for the computation.

With a computer with a Pentium(R) 4, 2.8 GHz CPU and a 2.79 GHz,
1.99 GB RAM, it takes about 100 minutes to find the cost efficient optimal
design for a case similar to the previous example. The algorithm is com-
putationally expensive at this point. Considering the fast development of
computation technology, this limitation won’t be an issue in the future.

The proposed method requires inversing the Fisher Information matrix.
Because of precision limit for different computation system, computationally
singular matrix may be encountered. If this happens, a computer with higher
computation precision can solve the problem.

The package contains a function called "logdm.cost.int". This function

can compute the value of the objective function for any design that a re-
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searcher can come up with. Considering the complexity of reality, this func-
tion could be very helpful. The function provides a way for the researchers
to select the best design from several candidate designs.

The package has two functions related to dilution series design scheme.
The function "dilution" generates design points for a dilution series design
scheme. The function "design.points" adds deisgn points from a dilution

series design scheme to an existing plot.

2.6 Conclusion

In the proposed work, a cost efficient Bayesian optimal design method is
proposed for precisely estimating nonlinear (or linear) combinations of pa-
rameters in a nonlinear model with quantitative predictors. The proposed
method balances the information for multiple parameters of interest. It bal-
ances the cost of the design and the estimation precision. It accommodates a
range of parameter values. An R package has been developed to implement

the proposed method.
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3 Appendix

3.1 R Codes for Implementing Cost Efficient Bayesian
Optimal Design and Ancillary Functions

#The following functions help to find a cost-efficient Bayesian optimal
#design for any combinations of parameters for any model with stable
#normal random error and quantitative predictors with respect to some
#design variables;

#Reference: Tang and Yang (2008)

library (faraway)

library(adapt)

dilution <- function(xp, d.args) {

nd.a <- d.args[[1]]; nd.b <- d.args[[2]]; zero <- d.args|[3]]; km <- d.args[[4]];

#Checking input arguments for vaildity;

if(lis.vector(xp, mode="numeric")) stop("control variables must be in a
numeric vector!")

max.a <- 10" xp[1];max.b <- 10" xp[2];dilution.a <- ilogit(xp[3]);dilution.b
<- ilogit(xp[4]);

#design points
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#a is the concentrations for agonist;

#b is the concentrations for antagonist;

a <- dilution.a"seq(from=0, to=nd.a)*max.a;

if (zero==TRUE) {a <- ¢(0, a); nd.a2 <- nd.a+2;}
else {nd.a2 <- nd.a+1};

b <- dilution.b”seq(from=0, to=nd.b)*max.b;

if (zero==TRUE) {b <- ¢(0, b); nd.b2 <- nd.b+2;}
else {nd.b2 <- nd.b+1};

Data <- matrix(0, nd.a2*nd.b2, 2)

for (i in 1:nd.a2) {

for (j in 1:nd.b2) {

Datal(i-1)*nd.b2+j,] <- c(a[i], b[j])

}

}

Data.all <- matrix(0, km*nd.a2*nd.b2, 2)
for (k in 1:km) {

Data.all[(nd.a2*nd.b2*(k-1)+1):(nd.a2*nd.b2*k),] <- Data

}

Data.all
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}

cost <- function(design.points, pr) {

d <- length(pr)

if(d!=dim(design.points)[2]) stop("predictor dimension and weight dimen-
sion do not match!")

cost <- drop(apply(design.points, 2, sum)%*%pr)

¥

#logdm.cost computes log| A’T-1A |4cost*weight

logdm.cost <- function(theta, x, design, sigma, input, funs, pr, weight,
d.args, jpdf, ...) {

#check validity of arguments

if (lis.vector(theta, mode="numeric")) stop("input parameters must be
a numeric vector!")

if (lis.list(input)) stop("input for parameters of interest must be a list
with lists as elements!")

#generate design points and replace 0 by a very small value

design.points <- design(x, d.args)

design.points[design.points==0] <- 1e-30

#information matrix
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d <- length(theta);

I <- matrix(0, d, d);

for (i in 1:dim(design.points)[1]) {

point <- design.points|i,]

point.list <- vector("list", dim(design.points)[2])

for (j in 1:dim(design.points)[2]) {

point.list[[j]] <- point[j]

}

u <- attr(do.call(funs|[1]], c(theta, point.list)), "gradient")
V <- (t(u)%*%u) /sigma

[ <-I+V

}

#delta method variance

n <- length(input);

A <- matrix(0, n, d)

for (iin 1:n) {

Ali,] <- attr(do.call(funs|[i+1]], c(theta, input][[i]])), "gradient")
}

ATA <- A%*%solve(I, tol=1e-30)%*%t(A)
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res <- (log(det(AIA))+-cost(design.points, pr)*weight)*jpdf(theta, ...)

¥

logdm.cost.int <- function(x, int.low, int.up, design, sigma, input, funs,
pr, weight, d.args, jpdf, ...) {

if (lis.vector(int.low, mode="numeric") | lis.vector(int.up, mode="numeric"))
stop("lower and upper

bound of parameters must be numeric vectors!")

if (length(int.low)!=length(int.up)) stop("lower and upper bound of pa-
rameters should have same dimension!")

ndim <- length(int.low)

if (ndim==1) {integrate(logdm.cost, lower=int.low, upper=int.up, x=x,

design=design, sigma=sigma, input=input, funs=funs, pr=pr, weight=weight,
d.args=d.args, jpdf=jpdf, ...)$value }

else { adapt(ndim=ndim, lower=int.low, upper=int.up, funct=logdm.cost,
X=X,

design=design, sigma=sigma, input=input, funs=funs, pr=pr, weight=weight,
d.args=d.args, jpdf=jpdf, ...)$value }

}

OD <- function(initial, method, int.low, int.up, design, sigma, input,
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funs, pr, weight, d.args, jpdf, ...) {

od <- optim(par=initial, fn=logdm.cost.int, method=method, int.low=int.low,
int.up=int.up,

design=design, sigma=sigma, input=input, funs=funs, pr=pr, weight=weight,
d.args=d.args, jpdf=jpdf, ...)

design.points <- design(od$par, d.args);

design.cost <- cost(design.points, pr);

logvar0 <- logdm.cost.int(x=od$par, int.Jlow=int.low, int.up=int.up, de-
sign=design, sigma=sigma,

input=input, funs=funs, pr=pr, weight=0, d.args=d.args, jpdf=jpdf, ...);

logvar <- od$value;

c(control=od$par, logvar=logvar, convergence=od$convergence, counts=od$counts,
cost=design.cost,

logvar0=logvarQ, pr=pr, weight=weight);

}

design.points <- function(max.a, max.b, d.a, d.b, nd.a, nd.b, color) {
a <- max.a*d.a"seq(0, nd.a)

b <- max.b*d.b”seq(0, nd.b)

for (i in 1:length(a)){
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for (j in 1:length(b)){
points(log10(ali]),log10(b[j]), col=color)
}

}

}

3.2 R Codes for Generating Clustered Binary Data

Using Qaqish’s Method

A A A A A AR A A e

#The following functions generate clustered binary data
#using Qaqish (2003);

#Specifically the data is generated with marginal means
#and correlations within clusters;

#The function corbin generates clustered binary data
#based on logit of the response, correlation parameters,
#and the correlation sturcture (exchangable or arl);
#Variables

#ly: logit vector of response;
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#alpha: correlation parameter in exchangalbe or arl
#structure;

#p: marginal probability vector of success of response;
#v: marginal variance vector of response;

#b: linear coeffecients vector in the conditional linear
#family;

#1: conditional probability; The conditional probability
#could be bigger than 1 and generates NA values;
A A AN AR A A o
library(faraway);

library(bindata);

logloginv <- function(x) {

1-exp(-exp(x))

}

corbin.ex <- function(ly, alpha, ilink) {

p <- ilink(ly)

v <- p*(1-p)

n <- length(ly)

y <- rbinom(1, 1, p[1])
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for (i in 2:m) {
b <- numeric(0)

for (j in 1:(i-1)){

blj] <- alpha/(1-+(-2)*alpha)*(v[il V)~ (1/2)
¥

1 <= pli+b%*%(y-p[L:(i-1)

y <- c(y, thinom(1, 1, 1))

ki

}

Htest.y <- corbin.ex(c(1,2, 3), 0.3)

#print (test.y)

#simdata <- numeric(3)

#

Sfor (i in 1:1000) {

# v < t(corbin.ex(c(1,1,1), 0.6))

# if (sum(is.nan(y)==0)) {

# simdata <- rbind(simdata, y)

# }

#}
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#simdata <- simdatal-1,]
print(cor(simdata))

corbin.arl <- function(ly, alpha, ilink) {
p <- ilink(ly)

v <- p*(1-p)

n <- length(ly)

y <- rbinom(1, 1, p[1])

for (i in 2:n) {

I <- pliJ+-alpha*(y[i-1]-p[i-1])*(v[i] /v[i-1])~ (1/2)
v <- c(y, thinom(1, 1, 1))

}

}

#print(corbin.ar1(c(1,2,3), 0.3))
#simdata <- numeric(3)

#

#for (i in 1:1000) {

# y <- t(corbin.arl(c(1,1,1), 0.6))

# if (sum(is.nan(y)==0)) {

# simdata <- rbind(simdata, y)
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# }
7}

#simdata <- simdatal-1,]

#print(cor(simdata))

corbin <- function(ly, alpha, cor.type, ilink) {

if (cor.type=="ex") corbin.ex(ly, alpha, ilink)

else if (cor.type=="arl") corbin.arl(ly, alpha, ilink)

else stop("Error: correlation type doesn’t exist")

}

#print(corbin(c(1,2,3), 0.3, "arl", ilink=logloginv))

HHHFHFHHFHFHHFH A FHFHAFH AT HAHH

#The following functions generate clustered binary data using qaqish
method;

#simulation replicates

#r

#dimeansion

#nXd;

#correlation parameter

#alpha
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#correlation structure

#cor.type

#linear predictor coefficeints

#b

sim.x <- function(rand.gen, args, powers=rep(1, length(x.type))) {

dx <- length(rand.gen)

X <- numeric(dx)

for (i in 1:dx) {

x[i] <- do.call(rand.gen[[i]], args[[i]]) ~powers]i]

¥

ki

#Hargs <- list(list(n=1, min=-1, max=1), list(n=1, min=-1, max=1))

#print(sim.x(c(runif, runif), args))

sim.yp <- function(d, b, rand.genl, rand.gen2, argsl, args2, powersl,
powers2) {

x1 <- sim.x(rand.genl, argsl, powersl)

yp <- numeric(d)

for (iin 1:d) {

x2 <- sim.x(rand.gen2, args2, powers2)
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x <- ¢(1, x1, x2)

yp[i] <- ilogit(b%*%x)

¥

yp

¥

#print(sim.yp(d=2, b=c(0, 0.8, 0.8), rand.gen1=c(runif), rand.gen2=c(runif),

# argsl=list(list(n=1, min=-1, max=1)), args2=list(list(n=1, min=-1,
max=1)),

# powersl=c(1, 1), powers2=c(1, 1)))

simdata <- function(r, n, d, b, rand.gen, x.type, alpha, cor.type, ilink,
args, powers=rep(1, length(x.type)),

addition="none") {

dx <- length(b)-1

dx0 <- length(rand.gen)

simdata <- matrix(0, r*n*d, dx+4)

for (iin 1:r) {

count <- 0

while (count<n) {

X <- matrix(0, d, dx+1)
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X[1] <- 1

for (j in 1:dx0) {

if (x.type[j]=="C") {

X[,j+1] <- do.call(rand.gen[[j]], args[[j]]) ~powers]]
¥

else {

for (k in 1:d) {

X[k,j+1] <- do.call(rand.gen/[j]], args([j]]) ~powers]j]
}

¥

ki

if (addition=="int") {

X[4] <- X[2]*X[,3]

}

if (addition=="qua") {

X[4] <- X[,3]"2

}

ly <- X%*%b

X <- X[-1]
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y <- corbin(ly, alpha, cor.type, ilink)

Y <- cbind(X, y, 1:d, rep(count+1, d), rep(i, d))

if (sum(is.nan(y))==0) {

count <- count + 1
simdata[((i-1)*n*d+(count-1)*d+1):((i-1)*n*d+4count*d),] <- Y
}

}

}

simdata <- data.frame(simdata)
names(simdata) <- c(paste("x", 1:dx, sep=""), "y", "t", "id", "r")
simdata
}
#Hargs <- list(list(n=1, min=-1, max=1), list(n=1, size=1, prob=0.5))
#powers <- ¢(2, 1); addition <- "int";
#testsim <- simdata(2, 5, 2, ¢(0, 0.8, 0.8, 0.8), c(runif, rbinom), c("C",
"T"), 0.4, "ex", ilink=logloginv, args, powers, addition)
#print(testsim)
A 0 A A A A A A A A i i

#Function models generate simulation data based on different models;
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models <- function(r, n, d, b, rand.gen, x.type, alpha, cor.type, ilink,
outpath, fn, ...) {

start.time <- proc.time()

model <- simdata(r, n, d, b, rand.gen, x.type, alpha, cor.type, ilink, ...)

end.time <- proc.time()

lapse <- end.time - start.time

print(lapse[3])

file <- paste(outpath, fn, sep="")

write.csv(model, file, row.names=F)

}

3.3 SAS Macro for Implementing Proposed LOF Meth-

ods for Logsitic GEE Models

/>I<**>I<>X<>|<*>l<>|<>l<*>I<>l<>I<***>l<**>l<>I<>X<*>I<>l<>|<>I<>l<>k*************************

The following macro implements the lack of fit method for logistic
GEE model using Tang and Yang (2008);

dataset: the data set contains the data;

x: the covariate variables in the model;

y: the response variable in the mode;
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id: the variable indicating an individual or a cluster;
corrtype: the correlation type used in the fitted model;
class: class variables in the model (including covariates,
subject variable and within subject variable);
time: variable indicating observations within the same cluster;
NOTES:
If the full model with different intercepts and different
slopes cause non-positive-definite Hessian, a full model
with different intercepts only or different slopes only are
fitted;
This macro uses another macro exist;
>x<>|<**>|<>x<>|<**********>|<>x<>|<***>x<***>|<>x<>|<>|<>x<***********************/
Ymacro lofty(dataset=, x=, y=, id=, corrtype=, class=, time=);
Y%let p=0;
%do Y%while(%scan(&x,&p+1)~=);
%let p=%eval(&p+1);
Yolet x&p=%scan(&x, &p);

Y%end; *partition of covariates;
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ods listing close;
proc genmod data=&dataset desc;
class &class;
model &y=&x / dist=bin link=logit;
repeated subject=&id / type=&corrtype within=~&time;
output out=linout predicted=p;
run;
ods listing;; *fitted model;
proc means data=linout noprint;
var p;
output out=linout2 median=m;
run;
proc sql noprint;
select m into :m from linout2;
quit;
data groups;
set linout;
if p<&m then g=1;

else g=2;
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run; *grouping data based on median
fitted probabilities;
ods listing close;
proc genmod data=groups desc;
class &class g / param=effect;
model &y=&x g
%do j=1 %to &p;
g &&x&j
Yoend;
/ dist=bin link=logit;
repeated subject=&id /type=&corrtype within=&time;
contrast "TY’ g 1,
%do k=1 %to &p;
g*&&ex&ck 1
Yoend;
/ €
ods output contrasts=gof;
run;

ods listing;
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*partitioned model with different intercepts and different slopes for
different groups;
Yoexist(gof, exist);
%if &exist=0 %then %do;
ods listing close;
proc genmod data=groups desc;
class &class g / param=effect;
model &y=&x g / dist=Dbin link=logit;
repeated subject=&id /type==&corrtype within=~&time;
contrast "TY g1 / e;
ods output contrasts=gof;
run;
ods listing;
*partitioned model with different intercepts for different groups;
%if &exist=0 %then %do;
ods listing close;
proc genmod data=groups desc;
class &class g / param=effect;

model &y=~&x
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%do j=1 %to &p;
g*&&ex&sj
%end;
/ dist=Dbin link=logit;
repeated subject=~&id /type==&corrtype within=&time;
contrast "TY’
%do k=1 %to &p;
g*&&ex&ck 1
Y%end;
/ €
ods output contrasts=gof;
run;
ods listing;
*partitioned model with different slopes for different groups;
Yoend;
Y%end,;

Y%omend:;

/********>|<>x<>|<***>|<>r<>|<>x<***>|<>x<>|<***************************
The following macro check the existence of a variable named "dsn".
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If the data set exists then set a global variable "varn" to 1,
otherwise "varn" is set to be 0;
HAAAAAAAAAAAAAAAAAA AR AR AAAAAAAAAAAAAAAAA A |
Y%macro exist(dsn, varn);

%global &varn;

%if &dsn ne %then %do;

data null ;
set &dsn;
run;
Y%end;

%if &syserr=0 %then %let &varn=1;
%else Yolet &varn=0;
Y%mend exist;

*%exist(gof3, exist3);

3.4 Example R Code of Using ODK Package to Find
a Cost Efficient Bayesian Optimal Deisgn

#The following functions help to find a cost-efficient Bayesian optimal

#design for any combinations of parameters for any model with stable
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#normal random error and quantitative predictors with respect to some

#quantitative predictors;

#The expression of square root transformed Gaddum/Schild model

sqrtGaddum <- as.formula(y “sqrt(thetal+(theta2-thetal)/

(1+(10"theta3*(1+(b/10" (-thetab)) ~theta6)/a) “thetad)))

parms <- ¢("thetal", "theta2", "theta3", "thetad", "theta5", "theta6")

argl <- c(parms, "a", "b")

#The expression of the derivative of square root transformed Gaddum/Schild
model

sqrtGaddum.D <- deriv(sqrtGaddum, parms, argl)

#The expression of pEC50

pEC50 <- as.formula(y "theta3)

arg2 <- parms

#The expression of the derivative of pEC50

pEC50.D <- deriv(pEC50, parms, arg2)

#input for pEC50.D

input2 <- list();

#The expression of loglC

logIC <- as.formula(y " log(((1/pct-14+1/pct™(10~thetad/a) ~thetad) ~ (1/thetad)*a/10"theta3-
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1)~ (1/theta6)*10" (-thetah)))
arg3 <- c(parms, "a", "pct")
#The expression of the derivative of loglC
logIC.D <- deriv(logIC, parms, arg3)
#The input for loglC.D
input3 <- list(500, 0.5)
input <- list(input2, input3);
funs <- ¢("sqrtGaddum.D", "pEC50.D", "logIlC.D")
xp <- ¢(2.5,1, -0.5,-2)
#arguments for the function dilution
d.args <- list(8, 2, TRUE, 2)
sigma <- 0.163
low <- ¢(0.00319, 21.54, 1.91, 1.48, -2.24, 0.32);
up <- ¢(2.629, 218.11, 2.98, 2.73, 0.39, 1.5);
jpdf <- function(theta, Ib, ub) {
1/prod(ub-1b)
}
initial <- ¢(2, 2, -1, -1)

od <- OD(initial, method="L-BFGS-B", int.low=low, int.up=up, de-
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sign=dilution,
sigma=sigma, input=input, funs=funs, pr=c(1, 10), weight=0.001,
d.args=d.args, jpdf=jpdf, Ib=low, ub=up)

print(od)
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