
INDIGO: AN INFRASTRUCTURE FOR OPTIMIZATION OF

DISTRIBUTED ALGORITHMS

by

VALERIY KOLESNIKOV

B.S., Sumy State University, Ukraine, 1995

M.S., Slippery Rock University, 1998

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2008

Abstract

Many frameworks have been proposed which provide distributed algorithms encapsulated

as middleware services to simplify application design. The developers of such algorithms

are faced with two opposing forces. One is to design generic algorithms that are reusable

in a large number of applications. Efficiency considerations, on the other hand, force the

algorithms to be customized to specific operational contexts. This problem is often attacked

by simply re-implementing all or large portions of an algorithm.

We propose InDiGO, an infrastructure which allows design of generic but customizable

algorithms and provides tools to customize such algorithms for specific applications. InDiGO

provides the following capabilities: (a) Tools to generate intermediate representations of

an application which can be leveraged for analysis, (b) Mechanisms to allow developers

to design customizable algorithms by exposing design knowledge in terms of configurable

options, and (c) An optimization engine to analyze an application to derive the information

necessary to optimize the algorithms. Specifically, we optimize algorithms by removing

communication which is redundant in the context of a specific application. We perform three

types of optimizations: static optimization, dynamic optimization and physical topology-

based optimization. We present experimental results to demonstrate the advantages of our

infrastructure.

INDIGO: AN INFRASTRUCTURE FOR OPTIMIZATION OF

DISTRIBUTED ALGORITHMS

by

VALERIY KOLESNIKOV

B.S., Sumy State University, Ukraine, 1995

M.S., Slippery Rock University, 1998

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2008

Approved by:

Major Professor
Gurdip Singh

Copyright

Valeriy Kolesnikov

2008

Abstract

Many frameworks have been proposed which provide distributed algorithms encapsulated

as middleware services to simplify application design. The developers of such algorithms

are faced with two opposing forces. One is to design generic algorithms that are reusable

in a large number of applications. Efficiency considerations, on the other hand, force the

algorithms to be customized to specific operational contexts. This problem is often attacked

by simply re-implementing all or large portions of an algorithm.

We propose InDiGO, an infrastructure which allows design of generic but customizable

algorithms and provides tools to customize such algorithms for specific applications. InDiGO

provides the following capabilities: (a) Tools to generate intermediate representations of

an application which can be leveraged for analysis, (b) Mechanisms to allow developers

to design customizable algorithms by exposing design knowledge in terms of configurable

options, and (c) An optimization engine to analyze an application to derive the information

necessary to optimize the algorithms. Specifically, we optimize algorithms by removing

communication which is redundant in the context of a specific application. We perform three

types of optimizations: static optimization, dynamic optimization and physical topology-

based optimization. We present experimental results to demonstrate the advantages of our

infrastructure.

Table of Contents

Table of Contents vi

List of Figures viii

Acknowledgements xiv

Dedication xv

1 Introduction 1
1.1 The problem domain . 1
1.2 Overview of the approach . 5
1.3 Thesis organization . 10

2 Model for distributed systems 11
2.1 System model . 11
2.2 Component-based distributed applications 15
2.3 Complexity measure . 22
2.4 Pseudocode conventions . 22

3 Problem motivation and related work 23
3.1 Problem motivation . 23
3.2 Related work . 32

4 InDiGO framework 36
4.1 Description of framework capabilities . 36
4.2 Application developer perspective . 38

4.2.1 Identifying the required services . 38
4.3 Application dependency graph . 41

4.3.1 Query interface for application dependency graph 47
4.3.1.1 Basic queries . 47
4.3.1.2 Arguments to queries . 48
4.3.1.3 Development of algorithms to answer queries 50
4.3.1.4 Using model checking to answer queries 51

4.4 Algorithm developer perspective . 52
4.4.1 Development of customizable algorithms 52

4.4.1.1 Interaction sets . 53
4.4.1.2 Membership criteria for interaction sets 54
4.4.1.3 Rules for dynamic updates to the interaction sets 56

vi

4.4.2 Mutual exclusion algorithm example 58
4.4.3 Termination detection algorithm example 65
4.4.4 Total order algorithm example . 71
4.4.5 Proofs for customizable algorithms 76
4.4.6 Discussion . 81

4.5 Optimization tools perspective . 82
4.5.1 ADG construction tool . 82
4.5.2 Promela model construction tool . 84
4.5.3 Optimizer . 88

4.5.3.1 Discussion on optimizer complexity 94
4.6 Summary . 98

5 Optimizations 100
5.1 Application-based static optimizations . 100
5.2 Application-based dynamic optimizations . 102
5.3 Physical topology-based optimizations . 104
5.4 Discussion . 105

6 Evaluation 107
6.1 Bidding applications . 109

6.1.1 Bidding application 1 . 109
6.1.2 Bidding application 2 with fewer constraints 122

6.2 Teleteaching applications . 128
6.2.1 Teleteaching application 3 . 129

6.3 Effectiveness of the customization techniques 136
6.4 Summary . 142

7 Conclusion and future work 143

Bibliography 146

A Grammar for CPS files 152

B Grammar for membership criteria 153

C Case study 155

D Examples of other distributed algorithms and their customization 191
D.1 Mutual exclusion algorithm . 191
D.2 Distributed termination detection algorithm for arbitrary topology 195
D.3 Distributed termination detection algorithm for a star topology 201
D.4 The total order algorithm that uses one process as a sequencer 207

vii

List of Figures

1.1 A distributed computing framework . 2
1.2 Architecture Diagram of InDiGO . 6

2.1 Architecture of the traditional development process in Cadena 16
2.2 Example of a component with 3 ports . 17
2.3 Graphical representation of assembly specification in Cadena 19
2.4 Example of a system with 3 components . 21

3.1 Mutual exclusion example - sending of Request messages 25
3.2 Mutual exclusion example - receiving of Ack messages 25
3.3 Mutual exclusion example - sending of Release messages 26
3.4 Mutual exclusion example - taking ordering information into account 26
3.5 Termination detection example - sending of Marker messages 27
3.6 Termination detection example - receiving of Done messages 27
3.7 Termination detection example - ordering on Q/A messages 28
3.8 Termination detection example - taking ordering information into account for

Marker messages . 28
3.9 Termination detection example - taking ordering information into account for

Done messages . 29
3.10 Small size scenario . 30
3.11 Medium size scenario . 31

4.1 Example of a CPS file for component bidComp 41
4.2 Example of a component with two ports. 45
4.3 Part of an application dependency graph that corresponds to the component

in Figure 4.2. 45
4.4 Example of two connected components. 45
4.5 Part of an application dependency graph that corresponds to the component

in Figure 4.4. 46
4.6 Part of an application dependency graph that corresponds to the component

in Figure 4.2 with internal connections. 46
4.7 Grammar for counter update rules. 49
4.8 Lamport’s permission based mutual exclusion algorithm 61
4.9 Customized version of mutual exclusion algorithm 64
4.10 Distributed termination detection algorithm for an arbitrary topology 68
4.11 Customized version of distributed termination detection algorithm 70
4.12 Total order algorithm based on Lamport timestamps 73
4.13 Customized version of total order algorithm based on Lamport timestamps . 75

viii

4.14 A pictorial view of ADG graph . 83
4.15 An example of ADG graph with five nodes 86
4.16 An example of ADG graph before projection 96
4.17 An example of ADG graph after projection 96
4.18 An example of a projected ADG graph . 97

6.1 Application 1 physical topology . 109
6.2 Application 1 logical topology . 110
6.3 Application 1 bidComp component type . 111
6.4 Graphical representation of application 1 scenario 111
6.5 Typical run of an application 1 . 116
6.6 Application 1 - average number of mutual exclusion messages per bid 117
6.7 Application 1 - average number of termination detection messages for last

round . 117
6.8 Application 1 - average number of total order messages per bid 118
6.9 Application 1 - average number of all messages per bid 118
6.10 Application 1 - % improvement in the number of messages over No Opt case 119
6.11 Application 1 - % improvement in the number of mutual exclusion messages

over No Opt case . 120
6.12 Application 1 - % improvement in the number of termination detection mes-

sages over No Opt case . 120
6.13 Application 1 - % improvement in the number of total order messages over

No Opt case . 121
6.14 Application 1 - % improvement in the total number of messages over No Opt

case . 121
6.15 Application 2 logical topology . 122
6.16 Application 2 - % improvement in the number of messages over No Opt case 125
6.17 Comparison of % improvement in the number of mutual exclusion messages

over No Opt case for Applications 1 and 2 126
6.18 Comparison of % improvement in the number of termination detection mes-

sages over No Opt case for Applications 1 and 2 126
6.19 Comparison of % improvement in the number of total order messages over

No Opt case for Applications 1 and 2 . 127
6.20 Comparison of % improvement in the total number of messages over No Opt

case for Applications 1 and 2 . 127
6.21 Teleteaching application 3 physical topology 129
6.22 Teleteaching application 3 logical topology 129
6.23 Application 3 - Instructor component type 131
6.24 Application 3 - Student component type . 131
6.25 Graphical representation of teleteaching application 3 scenario 132
6.26 Comparison of customized and optimized algorithms for Application 1 140

A.1 Grammar for CPS files . 152

ix

B.1 Grammar for membership criteria (part 1) 153
B.2 Grammar for membership criteria (part 2) 154

C.1 Case study - varying number of clusters - logical topology of application with
1 cluster . 156

C.2 Case study - varying number of clusters - physical topology of application
with 1 cluster . 156

C.3 Case study - varying number of clusters - logical topology of application with
2 clusters . 157

C.4 Case study - varying number of clusters - physical topology of application
with 2 clusters . 157

C.5 Case study - varying number of clusters - logical topology of application with
4 clusters . 157

C.6 Case study - varying number of clusters - physical topology of application
with 4 clusters . 158

C.7 Case study - varying number of clusters - logical topology of application with
8 clusters . 158

C.8 Case study - varying number of clusters - physical topology of application
with 8 clusters . 159

C.9 Case study - varying number of clusters - % improvement over No Opt case
for mutual exclusion service . 160

C.10 Case study - varying number of clusters - % improvement over No Opt case
for termination detection service . 160

C.11 Case study - varying number of clusters - % improvement over No Opt case
for total ordering service . 161

C.12 Case study - varying number of clusters - % improvement over No Opt case
for total number of messages . 161

C.13 Case study - varying number of clusters - % improvement over previous level
of optimization for mutual exclusion service 162

C.14 Case study - varying number of clusters - % improvement over previous level
of optimization for termination detection service 162

C.15 Case study - varying number of clusters - % improvement over previous level
of optimization for total ordering service . 163

C.16 Case study - varying number of clusters - % improvement over previous level
of optimization for total number of messages 163

C.17 Case study - varying number of components per cluster - logical topology of
application with 1 component per cluster . 165

C.18 Case study - varying number of components per cluster - physical topology
of application with 1 component per cluster 165

C.19 Case study - varying number of components per cluster - logical topology of
application with 2 components per cluster 166

C.20 Case study - varying number of components per cluster - physical topology
of application with 2 components per cluster 166

x

C.21 Case study - varying number of components per cluster - logical topology of
application with 4 components per cluster 167

C.22 Case study - varying number of components per cluster - physical topology
of application with 4 components per cluster 167

C.23 Case study - varying number of components per cluster - logical topology of
application with 8 components per cluster 168

C.24 Case study - varying number of components per cluster - physical topology
of application with 8 components per cluster 168

C.25 Case study - varying number of components per cluster - % improvement over
No Opt case for mutual exclusion service . 169

C.26 Case study - varying number of components per cluster - % improvement over
No Opt case for termination detection service 169

C.27 Case study - varying number of components per cluster - % improvement over
No Opt case for total ordering service . 170

C.28 Case study - varying number of components per cluster - % improvement over
No Opt case for total number of messages 170

C.29 Case study - varying number of components per cluster - % improvement over
previous level of optimization for mutual exclusion service 171

C.30 Case study - varying number of components per cluster - % improvement over
previous level of optimization for termination detection service 171

C.31 Case study - varying number of components per cluster - % improvement over
previous level of optimization for total ordering service 172

C.32 Case study - varying number of components per cluster - % improvement over
previous level of optimization for total number of messages 172

C.33 Case study - varying number of clusters with ordering - logical topology of
application with 1 cluster with ordering . 174

C.34 Case study - varying number of clusters with ordering - logical topology of
application with 2 clusters with ordering . 175

C.35 Case study - varying number of clusters with ordering - logical topology of
application with 4 clusters with ordering . 175

C.36 Case study - varying number of clusters with ordering - logical topology of
application with 8 clusters with ordering . 176

C.37 Case study - varying number of clusters - physical topology of application . . 176
C.38 Case study - varying number of clusters with ordering - % improvement over

No Opt case for mutual exclusion service . 177
C.39 Case study - varying number of clusters with ordering - % improvement over

No Opt case for termination detection service 177
C.40 Case study - varying number of clusters with ordering - % improvement over

No Opt case for total ordering service . 178
C.41 Case study - varying number of clusters with ordering - % improvement over

No Opt case for total number of messages 178
C.42 Case study - varying number of clusters with ordering - % improvement over

previous level of optimization for mutual exclusion service 179

xi

C.43 Case study - varying number of clusters with ordering - % improvement over
previous level of optimization for termination detection service 179

C.44 Case study - varying number of clusters with ordering - % improvement over
previous level of optimization for total ordering service 180

C.45 Case study - varying number of clusters with ordering - % improvement over
previous level of optimization for total number of messages 180

C.46 Case study - varying number of components per processor - logical topology
of application with 8 components per cluster 182

C.47 Case study - varying number of components per processor - physical topology
of application with 1 component per processor 183

C.48 Case study - varying number of components per processor - physical topology
of application with 2 components per processor 183

C.49 Case study - varying number of components per processor - physical topology
of application with 4 components per processor 184

C.50 Case study - varying number of components per processor - physical topology
of application with 8 components per processor 184

C.51 Case study - varying number of components per processor - % improvement
over No Opt case for mutual exclusion service 185

C.52 Case study - varying number of components per processor - % improvement
over No Opt case for termination detection service 185

C.53 Case study - varying number of components per processor - % improvement
over No Opt case for total ordering service 186

C.54 Case study - varying number of components per processor - % improvement
over No Opt case for total number of messages 186

C.55 Case study - varying number of components per processor - % improvement
over previous level of optimization for mutual exclusion service 187

C.56 Case study - varying number of components per processor - % improvement
over previous level of optimization for termination detection service 187

C.57 Case study - varying number of components per processor - % improvement
over previous level of optimization for total ordering 188

C.58 Case study - varying number of components per processor - % improvement
over previous level of optimization for total number of messages 188

D.1 Token based mutual exclusion distributed algorithm for arbitrary topology . 192
D.2 Customized version of token based mutual exclusion distributed algorithm

for arbitrary topology . 194
D.3 Distributed termination detection algorithm for any arbitrary topology - ini-

tiating process . 196
D.4 Distributed termination detection algorithm for any arbitrary topology - not

initiating process . 197
D.5 Customized version of distributed termination detection algorithm for any

arbitrary topology - initiating process . 199

xii

D.6 Customized version of distributed termination detection algorithm for any
arbitrary topology - not initiating process 200

D.7 Distributed termination detection algorithm for a star topology (process P0)
- version 1 . 202

D.8 Distributed termination detection algorithm for a star topology (process P0)
- version 2 . 203

D.9 Distributed termination detection algorithm for a star topology (process Pi, i 6=
0) . 204

D.10 Customized version of distributed termination detection algorithm for a star
topology (process P0) - version 1 . 205

D.11 Customized version of distributed termination detection algorithm for a star
topology (process P0) - version 2 . 206

D.12 Total order algorithm that uses one process as a sequencer 208
D.13 Customized version of total order algorithm that uses one process as a sequencer209

xiii

Acknowledgments

I am very grateful to my major professor Dr. Gurdip Singh for supervising this work. He

introduced me to the field, guided my work through the years, gave me many ideas, was

very patient, and provided financial support for my studies. It is difficult to imagine to be

able to do this work without this kind of support.

I am also thankful to Dr. Masaaki Mizuno, Dr. Mitchell Neilsen, Dr. Bala Natarajan,

and Dr. Xiang Fang for serving as my committee members. Their insightful comments and

encouragement especially during and after my proposal defense gave me a lot of help.

I am thankful to many professors who taught me while I studied at K-State. Many

thanks go to Dr. Dave Gustafson who was the supervisor of my teaching activities during

my first years.

I am thankful to my extended family and friends who supported and encouraged my

family during my studies.

I thank my beloved wife, Inna, and children, Timothy and Anastasia, for always being

there for me, having faith in me, their support, enouragement and love.

But at the end, all the glory goes to my Creator. You gave me strength and perseverance.

You comforted me and always loved me.

xiv

Dedication

To my big family.

xv

Chapter 1

Introduction

1.1 The problem domain

With increased deployment of communication infrastructure, a number of areas such as

embedded systems, sensor networks and peer-to-peer computing are emerging in which

distributed programming is the natural way to program systems. Although distributed pro-

gramming is highly desirable, putting together a correct and efficient distributed system

has been recognized as a difficult task due to several factors such as presence of hetero-

geneous hardware and software, lack of adherence to standards, asynchrony, limited local

knowledge, uncertainty in message delays and computation time, and failures. These fac-

tors make design of distributed systems a much more challenging task as compared to their

centralized counterparts. The explosive growth of distributed systems makes it imperative

to understand how to overcome these difficulties.

Several frameworks have been proposed for component-based development to ease the

design and development of distributed systems with the goal of isolating the developers from

lower-level details.1–10 As shown in Figure 1.1, in many such frameworks, an application

developer is responsible for designing components and assembling systems from components

using the underlying services. The task of a middleware developer is to provide a library of

distributed algorithms and communication abstractions for common tasks such as mutual

exclusion and termination detection to simplify programming and the deployment of the

1

applications.

Figure 1.1: A distributed computing framework

Distributed systems middleware developers are often faced with two conflicting forces. One

is to make the algorithms reusable in a number of different contexts, which forces them to

be more generic. Efficiency considerations, on the other hand, force the algorithms to be

customized to specific operational contexts (specific applications and target platforms). To

make algorithms generic, designers often make weak assumptions about the application. For

example, one can provide a generic algorithm for mutual exclusion which allows application

entities to request a shared resource in any possible order. Each application, however, may

have a specific pattern of resource usage (e.g., specific groups of components may alternate

access to a shared resource), or may wish to give priority to specific types of processes. In

such cases, the generic algorithm may be inefficient (may perform redundant or unneces-

sary communication), may require additional application level programming, and one may

want to customize the algorithm so that it only performs the required control. As another

example, algorithms for total ordering of events typically perform ordering without making

any assumptions regarding the order in which the application may issue events.1,11 How-

ever, if the application itself is issuing events in a certain order (e.g., an event ea is only

issued in response to eb), then the event ordering algorithm may be performing duplicated

work. To improve performance in such cases, we would like to optimize the algorithm to

perform only the required ordering. This, for instance, is similar to a compiler optimizing

a library function based on its usage (e.g., replacing a parameter with constant c if all in-

2

vocations to the function use c as the actual parameter). Along the same lines, to target

a larger class of platforms, algorithms often make weak assumptions regarding the target

platforms (e.g., they may assume that all channels take bounded but unpredictable time),

even though stronger properties might be true in specific cases. Such stronger properties of

the underlying platform may constrain the application events to interleave in a restricted

manner, which may make some computation or message passing in the algorithm unnec-

essary. This, for instance, is similar to a compiler optimizing a program during the code

generation phase by exploiting properties of the target architecture (e.g., re-arranging the

instructions to minimize delays). This conflict is especially problematic in product line ar-

chitectures wherein a fixed middleware infrastructure is made available to develop a family

of similar applications (e.g., the class of tele-conferencing applications). In such systems,

irrespective of their structure or size, all applications are forced to use the same underlying

distributed algorithms to satisfy their requirements (even though the various applications

may differ in their structure).

The problems described above are often attacked by simply re-implementing all or large

portions of the existing algorithms. This is time-consuming and tedious, and it limits the

ability to quickly develop new systems for emerging technologies. It may result in multiple

variants of an algorithm, each having a rigid, inflexible interface offering limited variability.

Furthermore, to simplify and speed up implementations, algorithms such as those based on

centralized control may be employed. For example, there has been done a study on the Boe-

ing Bold Stroke product line a platform for developing avionics applications.12 Bold Stroke

developers have identified several special application contexts where specialized configura-

tions of the event service middleware are preferred for performance optimizations. While

identifying such cases may be possible for application scenarios involving small number (10-

20) of components, it is tedious and error-prone for larger scenarios. Therefore, tools that

can identify and perform customizations in an automated manner are needed. There has

been a considerable amount of work done in optimizing compilers for sequential and paral-

3

lel programs where library modules are optimized to specific usage semantics. Techniques

such as aspect-oriented programming and feature-oriented programming have been used re-

cently to optimize and adapt systems.13,14 In the context of distributed systems, algorithms

utilizing application semantics have been proposed for specific problems such as transac-

tion processing, multicasting, and check-pointing.15–18 However, tools and methodologies

to customize distributed algorithms in a systematic manner are still lacking. Even if such

methodologies were available, these may be ineffective due to lack of algorithms amenable

to customization.

4

1.2 Overview of the approach

To address this, we propose InDiGO, an Infrastructure for Distributed alGorithm Optimi-

zation. In our framework, algorithm designers develop generic, but customizable algorithms,

and the infrastructure provides the tools necessary to customize such algorithms for specific

applications. The architecture diagram for our approach is shown in Figure 1.2.

The important aspects of this framework are the following:

• Tools to extract application information: We specify applications in Cadena, an inte-

grated modeling and development environment for component-based systems. As shown in

Figure 1.2, a designer develops an application by identifying the component instances and

specifying their port interconnections (assembly specification).

A component property specification (CPS) file is maintained for each component, which

contains information relevant to the internal structure of the component (e.g., order in which

it executes various actions). We have developed a tool that uses Cadena component and

assembly specification files and the CPS files to construct an application dependency graph

(ADG) which captures information pertaining to the application structure. We have also

developed an analysis infrastructure to support a set of basic queries on the ADG to query

for application-specific properties. These queries essentially ask for ordering information on

events. The semantics of the data structures for customizing the algorithms as described

below is defined in terms of these basic queries.

• Development of customizable distributed algorithms : To enable customization, an algo-

rithm developer must expose design knowledge pertaining to an algorithm in a form which

can be leveraged for analysis. In this work, we explore techniques to expose knowledge

related to the communication structure of an algorithm. In an algorithm, a process may

have to perform a number of interactions to accomplish various tasks such as accumulating

states of other processes or obtain permissions. To accommodate arbitrary applications,

designers often develop algorithms by including communication between all processes that

could potentially participate in an interaction. In specific applications, however, some of

5

Application
Specification

Component
Specification

app

Alg2

csl

Alg1

Assembly
Specification Skeleton (java)

Business logic

Component

Algorithm
Annotations

CPS

Target
Platform

ADG

Interface
Query

Engine
Optimization

Configured
Algorithms

Configuration
Metadata

Alg3

Component

Cadena
Infrastructure

Deployed

Tools
Deployment

Dynamic Optimization
Static Optimization

Alg Configurable
Interface

Configurable Multicast

CSL (JSim)

Interface

 System

Figure 1.2: Architecture Diagram of InDiGO

this communication may be unnecessary. Therefore, we require a designer to follow the

following steps:

(a): For each algorithm alg, the designer first identifies the interaction sets, denoted by

alg.interaction set, which characterize its communication structure and specify the pro-

cesses participating in each interaction. The designer then writes alg in terms of these sets.

For example, one interaction set for the termination detection algorithm is send marker to

and the algorithm is written so that process i sends a marker message only to nodes belong-

ing to send marker to, rather than all neighbors as in a generic algorithm. The interaction

sets provide a way to expose the communication structure of an algorithm for possible op-

timization.

(b): In the next step, the designer defines the membership criterion for each set; that is,

the criterion for a process to be involved in an interaction. This criterion is a problem-

specific property a process must satisfy to participate in the interaction. The criteria must

be defined in terms of the queries supported by the analysis infrastructure. For example,

the designer may specify that component j belongs to send marker to set for i only if it is

possible for j to be active when i is passive in the application.

(c): Next, the designer supplies information for dynamic updates to the interaction sets. In

an algorithm, as a result of message passing, a process may obtain knowledge of the states

6

of the application entities at other processes. For example, when process i receives a request

message from j, it knows that the application entity at j is in the requesting state. The

designer exposes this information by identifying a set of assertions, alg.app assert, and two

sets of control points, α pos and α neg, for each assertion α ∈ alg.app assert. α pos is the

set of control points where α is known to be true and α neg represents the control points

where α may no longer be true. As shown later, this information can be used for dynamic

updates to the interaction sets. Our main goal in using this additional design information

is to demonstrate that by exposing more design knowledge, the designer can enable more

optimization opportunities.

• Given an application App, an algorithm alg, and a physical topology, the optimization

engine optimizes alg by removing communication from alg which is redundant in the context

of App and the physical topology. These optimizations include the following:

? Static optimization: This involves analyzing the ADG to compute the initial values of

each set in alg.interaction set. For example, for the termination detection algorithm,

if the analysis of the ADG reveals that j is always passive whenever i is passive, then

j will be excluded from the interaction set send marker to for component i. This is

different from conflict sets which are based on semantics of message types (rather than

application analysis).3,17,19

? Dynamic optimization: For each assertion α in alg.app assert, the optimization en-

gine generates a set of dynamic optimization rules which specify whether any set in

alg.interaction set can be further constrained when α is true. The dynamic optimiza-

tion rules indicate the processes that can be removed from various sets when specific

assertions hold. The algorithm alg is then transformed to keep track of when the

assertions are true, and the dynamic optimization rules are applied to update the

interaction sets.

? Physical topology-based optimization: We are using the J-Sim simulator20 for eval-

uation. We have extended the Core Service Layer (CSL) of J-Sim to perform multi-

7

destination routing. Using information about the network topology, the extended CSL

layer can remove redundant messages when the same message is to be sent to a set of

processes. Our infrastructure analyzes the physical topology graph (PTG), which de-

scribes the underlying network topology on which the application is to be deployed, to

derive information necessary to initialize the CSL layer for optimized multi-destination

routing. We use this information to initialize data structures in the CSL layer of J-Sim

to enable efficient communication (for example, if a request in the mutual exclusion

service is to be sent from i to both j and k, and j is in the communication path from

i to k, then we combine the request message to be sent to j and k).

Metadata for all of the optimization are generated in the form of XML files. The deployment

tools use this metadata to configure the algorithms and the CSL layer and to deploy the

component code at each site. We have performed extensive experimental studies to demon-

strate the advantages of InDiGO. Clearly, as an application becomes more constrained (that

is, the application itself imposes more constraints on the order in which the components can

perform actions), one would expect more optimization opportunities. We demonstrate this

by conducting a series of experiments by incrementally adding constraints to an applica-

tion and showing that InDiGO tools can extract and exploit this information to improve

the performance of the underlying algorithms. The types of optimizations (both static and

dynamic) identified in these applications are non-trivial and difficult to arrive at by man-

ual inspection of the application (especially when the application is large) and will require

automated tools of the type provided by InDiGO.

The main contribution of InDiGO is the development of an extensible framework to

support the optimization process. The framework capabilities includes:

- Tools to extract application information from Cadena in a form amenable to analysis,

- Mechanisms for an algorithm designer to encode and expose design knowledge for

potential optimizations,

- Tools to analyze an application to derive information necessary to customize the al-

8

gorithms.

In this work, we utilize Cadena tool to specify component-based distributed applications.

Cadena provides component specification file and assembly specification file that describe

application assembly. Cadena also generates JAVA skeleton files per each component type.

Cadena CPS files describe internal behavior of components. Cadena also provides mecha-

nisms to deploy a distributed system. The rest is my contribution to this work and includes:

- extension of the traditional methodology to develop component-based distributed sys-

tems in Cadena to include middleware distributed services through the use of annota-

tions in the component code,

- development of a distributed application abstraction in the form of an application

dependency graph that can be analyzed for possible optimizations,

- development of a tool to construct an application dependency graph from application

specification information,

- design of a query interface to query application dependency graph for information of

interest,

- development of basic queies,

- utilization of SPIN model checker to answer basic queries,

- development of a tool to convert application dependency graph into a Promela model

used by SPIN,

- provision of mechanisms for an algorithm designer to encode and expose design knowl-

edge for potential optimizations,

- development of customizable algorithms presented in this thesis,

- development of tools to analyze an application to derive information necessary to

customize the algorithms, and

- implementation of applications presented in evaluation section.

9

1.3 Thesis organization

The rest of this thesis is organized as follows. Chapter 2, provides background information

and describes distributed system model. Chapter 3 motivates the problem and discusses

related work. Chapter 4 describes InDiGO framework in detail. The following chapter,

Chapter 5, discusses types of optimization that we perform. Experimental results are pre-

sented in Chapter 6. We conclude and discuss future work in Chapter 7. Appendix describes

a case study that utilizes the capabilities of our framework on a class of distributed appli-

cations. It also describes more distributed algorithms that we looked at during the years of

working on InDiGO framework. We also provide supplemental information like grammars

in the appendix.

10

Chapter 2

Model for distributed systems

In this chapter we present our distributed system model for message-passing systems with no

failures. We consider an asynchronous timing model. Next we describe a component based

approach to design and build distributed applications. In addition to describing formalism

for the systems, we also define the main complexity measure - number of messages, and

present the conventions we will use for describing algorithms in pseudocode.

2.1 System model

A distributed system is a collection of individual computing devices that can communi-

cate with each other. We consider distributed systems where communication takes place

through message passing. We assume the system to be without failures. We also consider

asynchronous timing model. In asynchronous systems, there is no fixed upper bound on

how long it takes a message to be delivered or how much time elapses between consecutive

steps of a processor.

In a message-passing system, processors communicate by sending messages over commu-

nication links called channels. Each channel provides a bidirectional connection between

two specific processors. The pattern of connections provided by the channels describes the

topology of the system. The topology is represented by an undirected graph in which each

node represents a processor. An edge is present between two nodes if and only if there is

a channel between the corresponding processors. A node is a neighbor of another node if

11

and only if there is a direct link between the two. The collection of channels along with

processors is also referred to as a network. An algorithm for a message-passing system with

a specific topology consists of a local program for each processor in the system. Processor’s

local program provides the ability for the processor to perform local computation and to

send messages to and receive messages from each of its neighbors in the given topology.

Formally, a distributed system consists of n processors P0, . . ., Pn−1, where i is the index

of processor Pi and k channels CH1, . . ., CHk, where j is the index of channel CHj. Each

processor Pi is modeled as a state machine SMi.

Definition 2.1. We define a state machine SMi for processor Pi as the following tuple

< Qi, Ai, Ti, si, Fi >, where Qi is a set of states of Pi, Ai is a set of actions, Ti is a transition

function Qi×Ai → Qi that takes as input a state qi ∈ Qi and an action a ∈ Ai and produces

as output a state q
′
i ∈ Qi. We denote such a transition as qi

a→ q
′
i. si ⊂ Qi is a distinguished

subset of initial states, and Fi ⊂ Qi is a distinguished subset of terminal states.

Each processor is identified with a particular node in the topology graph.

Definition 2.2. A configuration is a vector CF = (q0, . . ., qn−1, ch1, . . ., chk) where qi is a

state of Pi and chj is a state of channel CHj.

Definition 2.3. An initial configuration is a vector CF0 =(q0, . . ., qn−1, ch1, . . ., chk) where

each qi is an initial state of Pi and each chj is empty.

Definition 2.4. An action a ∈ Ai of processor Pi is either receipt of a message, send of a

message, or a computation action.

Definition 2.5. Occurrences of an action that can take place in a system are modeled as

events.

Notation 2.6. We will use notation ax to denote the event of xth occurrence of action a.

We consider three kinds of events.

12

Definition 2.7. A computation event, cx(i), represents a computation step of processor

Pi in which Pi’s transition function is applied to its current state. If the state machine

for processor Pi has a transition qi
c→ q

′
i, which says that if processor Pi is currently in

state qi then it can go to state q
′
i when computation event cx happens, then the sys-

tem can go from the configuration (q0, . . ., qi, . . ., qn−1, ch1, . . ., chk) to the configuration

(q0, . . ., q
′
i, . . ., qn−1, ch1, . . ., chk) when computation event cx happens on processor Pi.

Definition 2.8. A send event, ax, where a = send(i, j, m), represents the sending of message

m from processor Pi to processor Pj. If the state machine for processor Pi has a transition

qi
send(i,j,m)→ q

′
i, which says that if processor Pi is currently in state qi then it can go to state q

′
i

when send event ax happens, where a = send(i, j, m), then the system can go from configura-

tion (q0, . . ., qi, . . ., qn−1, ch1, . . ., chl, . . .,chk) to the configuration

(q0, . . ., q
′
i, . . ., qn−1, ch1, . . ., chl •m, . . .,chk), where chl is the state of channel CHl from

processor Pi to processor Pj, when send event ax happens on processor Pi, where

a = send(i, j, m). Notation chl •m means that message m was added to channel CHl.

Definition 2.9. A receive event, ax, where a = receive(i, j,m), represents the receiving of

message m by processor Pi from processor Pj. If the state machine for processor Pi has a

transition qi
receive(i,j,m)→ q

′
i, which says that if processor Pi is currently in state qi then it can

go to state q
′
i when receive event ax happens, where a = receive(i, j,m), then the system

can go from configuration (q0, . . ., qi, . . ., qn−1, ch1, . . ., chl, . . .,chk) to the configuration

(q0, . . ., q
′
i, . . ., qn−1, ch1, . . ., ch

′

l, . . .,chk), where chl is the state of channel CHl from pro-

cessor Pj to processor Pi with message m as the first message in it and ch
′

l is the state of

channel CHl from processor Pj to processor Pi with message m removed, when receive event

ax happens on processor Pi, where a = receive(i, j,m).

The behavior of a system over time is modeled as an execution.

Definition 2.10. An execution is a sequence of configurations alternating with events

CF0, e1, CF1, e2, CF2, . . ., where CFi
ei+1→ CFi+1 and CF0 is an initial configuration.

13

With each execution we associate a schedule.

Definition 2.11. A schedule is the sequence of events in the execution.

Definition 2.12. An execution is admissible if each processor has an infinite number of

computation events and every message sent is eventually delivered.

Remark 2.13. The requirement for infinite number of computation events models the fact

that processors do not fail. It does not imply that the processor’s local program must contain

an infinite loop; the informal notion of termination of an algorithm can be accommodated

by having the transition function not change the processor’s state after a certain point, once

the processor has completed its task. In other words, the processor takes ”dummy steps”

after that point.

Definition 2.14. A schedule is admissible if it is the schedule of an admissible execution.

14

2.2 Component-based distributed applications

In this section, we describe a component based approach to develop distributed applications.

Cadena is an integrated modeling environment for modeling and building component based

systems21. Here we also discuss the aspects of the development methodology in Cadena

which are relevant to our approach. We are using the Corba Component Model (CCM) as

the specification style. CCM framework aids application developers by providing services

for common aspects such as distributed deployment, event notification, transactions, persis-

tence, and security. Cadena, in particular, provides facilities for defining component types

using CCM IDL, assembling systems from components and producing stubs and skeletons

implemented in Java. Cadena is also providing basic event services to implement interactions

between the components.

In the component architecture that we employ, a basic entity is a component. Distributed

applications are assembled from components by specifying component instances and con-

nections between them. Components reside on processors. Each processor might host any

number of components. Each component owns one or more end points, called ports. The

component where a port resides is called the host component of the port. Two components

are connected by “wiring” their ports together. When a component sends data at one of its

ports, the port relays the data to the port(s) that connect to it. When data arrives at a port,

the component which owns the port invokes a handler for that port to process the data.

The pattern of connections provided by the ports wiring along with components’ internal

connections describe the application topology of the system. The application topology is

represented by a directed graph in which each port is represented by a node. An edge is

present between two nodes representing ports if and only if there is a wiring between the

corresponding ports. A node is a neighbor of another node if and only if there is a direct

link between the two. Each component has a local program that provides the ability for

the component to perform local computation and to send messages to and receive messages

from each of its neighbors in the given application topology.

15

Configuration
Metadata

Code
Component

Tools
DeploymentCadena

Infrastructure

Application
Specification

Component
Specification

Deployed
System

Figure 2.1: Architecture of the traditional development process in Cadena

Next, we formally define a component-based application and its structure. We will also use

a simple example of Figure 2.3 to illustrate the various steps (shown in Figure 2.1) of the

development process. In this example, discussed in more detail in the experimental results

section, components are arranged in disjointed clusters, and are bidding for an item. Fur-

thermore, components in each cluster bid for the item in a round-robin manner. Figure 2.3

shows the components for a single cluster.

Definition 2.15. We define a component C as the following tuple

< inp, outp, handlers >, where inp is a set of input ports, outp is a set of output ports

and handlers is a set of event handlers of component C.

Event handlers are associated with input ports and contain local actions and send message

actions. Event handlers are triggered by receive message actions. So, computation events

in the system model correspond to the local actions in the component-based application

model. Send events in the system model correspond to sending a message actions in the

component-based application model and receive events in the system model correspond to

receiving a message actions in the component-based application model.

Notation 2.16. Let C.inp, C.outp and C.handlers denote the set of input ports, the set

of output ports and the set of event handlers of component C respectively.

• The first step in traditional development of component based distributed systems is for

the application developer to specify the components.

For example, a component bidCompInit shown in Figure 2.2 has three ports.

16

nextToBid

start

bidMade

Component bidCompInit

Figure 2.2: Example of a component with 3 ports

The component specification in Listing 2.1 defines bidCompInit as having two input ports

and one output port. bidCompInit publishes events on port bidMade of type bid, and

consumes events on port nextToBid. It also consumes events on port start of type init.

Since we want to model asynchronous inter-process interactions via message passing, we will

restrict ourselves to event ports (we do not consider ports for synchronous method calls such

as those allowed in the Corba Component Model). In our framework, we allow a designer

to tag a port as an init port; such a port is used to initialize and start the application. In

Listing 2.1, the init port is tagged as type init.

1 :
2 eventtype i n i t () ;
3 eventtype bid () ;
4
5 Enum Mode { continueBid , stopBid } ;
6 Component bidCompInit {
7 pub l i she s bid bidMade ;
8 consumes bid nextToBid ;
9 consumes i n i t s t a r t ;

10 a t t r i bu t e Mode b id s t a t e ;
11 } ;

Listing 2.1: Specification of component bidCompInit

Listing 2.2 shows a Cadena component specification file. Component specification file de-

scribes component types and gives their ports information. For example, in Listing 2.2, lines

4-15 specify a component type bidCompInit. This type defines three ports specified in lines

6-8, 9-11, and 12-14.

17

1 ?xml ve r s i on =”1.0” encoding=”ASCII”?>
2 <edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : Module xmi : v e r s i on =”2.0” xmlns : xmi=
3 <s t y l e h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# 1MdskAMFEdqT6 lD
4 <components uuid=” OyaIQBbNEdypMp3lNrZ05w” name=”bidCompInit ” abs t ra c t=” f a l s e ”>
5 <componentKind hr e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Nu9hoA
6 <port s uuid=” 8 RL4BbOEdypMp3lNrZ05w” name=”bidMade” i n t e r f a c e=” sYVrUBbNEdyp
7 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# AjRjcANsEdqTK
8 </ports>
9 <port s uuid=” JTsK4BbPEdypMp3lNrZ05w” name=”nextToBid” i n t e r f a c e=” sYVrUBbNEd

10 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Ehsg0ANsEdqTK
11 </ports>
12 <port s uuid=” L196YBbPEdypMp3lNrZ05w” name=”s t a r t ” i n t e r f a c e=” uhdfgcxsxagyaw
13 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Ehsg0ANsEdqTK
14 </ports>
15 </components>
16 . . .
17 </edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : Module>

Listing 2.2: Example of a Cadena component specification file

Definition 2.17. We define an application App as the following tuple

< components, connections >, where components is a set of component instances in App

and connections is a relation (x, y), where x ∈ C.outp, y ∈ C ′ .inp and C,C
′ ∈ components

and describes interconnections between component instances in App.

Notation 2.18. Let App.components denote the set of component instances in App.

Notation 2.19. Let App.connections denote the set of connections in App.

• The next step in traditional development of component based distributed systems is to

assemble a system by identifying the component instances and their interconnections. Ca-

dena provides a graphical interface to specify the system assembly. Figure 2.3 shows the

graphical representation of the scenario in Cadena. This scenario has one instance, C1,

of component type bidCompInit and two instances, C2 and C3 of type bidComp. In this

system, for example, output port bidMade of component instance C1 is connected to port

nexToBid of component instance C2.

18

Figure 2.3: Graphical representation of assembly specification in Cadena

Listing 2.3 shows the assembly specification in Cadena.

1 <?xml ve r s i on =”1.0” encoding=”ASCII”?>
2 <edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . s c ena r i o : Scenar io xmi : v e r s i on =”2.0” xmlns :
3 <connector s uuid=” qrVl8YjnEdyLreIOXUe8aA”>
4 <portBindings uuid=” qrVl8ojnEdyLreIOXUe8aA”>
5 <i n s tanceRo le uuid=” pln7EIjnEdyLreIOXUe8aA” in s tance=” eM−n0IjnEdyLreIOXUe
6 <port x s i : type=”edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : ComponentPor
7 </instanceRole>
8 <portSpec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# U9ryIANsE
9 </portBindings>

10 <portBindings uuid=” qrVl84jnEdyLreIOXUe8aA”>
11 <i n s tanceRo le uuid=” tOnbBYjnEdyLreIOXUe8aA” in s tance=” fwzLAIjnEdyLreIOXUe
12 <port x s i : type=”edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : ComponentPor
13 </instanceRole>
14 <portSpec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# VJbvIANsE
15 </portBindings>
16 <kind hr e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# eUfwgANsEdqTKIG
17 </connectors>
18 . . .
19 <componentInstances uuid=” eM−n0IjnEdyLreIOXUe8aA” name=”C1”>
20 <po r tPrope r t i e s uuid=” eNIY0IjnEdyLreIOXUe8aA”>
21 <key x s i : type=”edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : ComponentPort”
22 </por tProper t i e s >
23 <po r tPrope r t i e s uuid=” eNIY0YjnEdyLreIOXUe8aA”>
24 <key x s i : type=”edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : ComponentPort”
25 </por tProper t i e s >
26 <po r tPrope r t i e s uuid=” eNIY0ojnEdyLreIOXUe8aA”>
27 <key x s i : type=”edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : ComponentPort”
28 </por tProper t i e s >
29 <type h r e f =”. ./ module/ i n t r o . module# L− UwIjkEdyLreIOXUe8aA”/>
30 </componentInstances>
31 <s t y l e h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# 1MdskAMFEdqT6 l
32 <imports h r e f =”. ./ module/ i n t r o . module# 6P3noIjjEdyLreIOXUe8aA”/>
33 </edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . s c ena r i o : Scenar io>

Listing 2.3: Example of a Cadena assembly specification file

For example, lines 19-30 specify a component instance C1. Lines 20-22, 23-25 and 26-28

specify three ports that component instance C1 has. Other component instances are not

shown. Lines 3-17 specify a connection between two ports. More specifically, lines 4-9

specify an output port of one component and lines 10-15 specify an input port of another

component. The two ports are connected.

19

• The next phase is the generation of code and the configuration metadata. Cadena uses the

OpenCCM’s IDL to Java compiler to generate the component and container code templates

from the component IDL definitions. This produces an implementation (Java) file for each

component into which the designer is supposed to fill the business logic. Java skeleton file

corresponds to a state machine. An example of such a file is shown in Listing 2.4.

1 pub l i c c l a s s bidComp extends Component {
2
3 . . .
4
5 pub l i c void proce s s (Object data , Port inPor t){
6
7 i f (data i n s t an c e o f Message){
8 i f (data i n s t an c e o f BidMadeMessage){
9

10 }
11 }
12 }
13 }

Listing 2.4: Java skeleton file for bidCompInit

The ”wiring” or interaction between the components is realized in Cadena by providing

basic event services, such as event notification. Public subscribe system is used where

subscriber subscribes for events published by publisher. When publisher publishes an event,

the subscriber is notified by the event notification service. Cadena tools also generate

configuration code (in XML format) to deploy the system.

• The final step involves installing the code on each node in the network. The designer

must provide a mapping, Map, to specify the node where each component instance is to be

deployed. The deployment tools use this mapping to generate and install the code to be

deployed on each node.

Definition 2.20. We define a mapping MAP as a function C → P that maps a component

instance c ∈ C to a processor p ∈ P on which c is to be deployed.

The example in Figure 2.4 shows a possible mapping for components shown in Figure 2.3:

the mapping function maps component C1 to processor P1, component C2 to processor P2,

and component C3 to processor P3.

20

Component C1

nextToBid

start

bidMade

Component C2

nextToBid
bidMade

Component C3

bidMade

nextToBid

Process 1 Process 2

Process 3

Figure 2.4: Example of a system with 3 components

21

2.3 Complexity measure

We will be interested in the number of messages (message complexity) as the complexity

measure for analyzing our algorithms and optimizations.

To define this measure, we need a notion of the termination of algorithm. We assume

that each processor’s state set includes a subset of terminated states and each processor’s

transition function maps terminated states only to terminated states. We say that the

system (algorithm) has terminated when all the processors are in terminated states and no

messages are in transit. Note that an admissible execution must still be infinite, but once a

processor has entered a terminated state, it stays in that state, taking ”dummy” steps.

Definition 2.21. The message complexity of an algorithm is the maximum, over all admis-

sible executions of the algorithm, of the total number of messages sent.

2.4 Pseudocode conventions

In the model just presented, an algorithm would be described in terms of state transitions.

However, we will seldom do this, because state transitions tend to be more difficult for

people to understand; in particular, flow of control must be coded in a rather contrived way

in many cases.

Instead, we will present algorithms in pseudocode. Algorithms will be described in an

interrupt-driven fashion for each processor. The effect of each message will be described

individually. This is equivalent to the processor handling the pending messages one by one

in some arbitrary order. It is also possible for the processor to take some action even if

no message is received. The local computation done within a computation event will be

described in a style consistent with typical pseudocode for sequential algorithms.

In the pseudocode, the local state variable of processor Pi will not be subscripted with

i ; in discussion and proof, subscripts will be added when necessary to avoid ambiguity.

Comments will begin with //.

22

Chapter 3

Problem motivation and related work

In this chapter we point out the shortcomings of traditional approach in development of

distributed applications and motivate the problem that we address in this thesis. We finish

this chapter with the description of related work.

3.1 Problem motivation

In the traditional methodology for the development of distributed applications described

in previous section, the application uses the basic event service to implement interactions

between the components. In general, an application may require a richer set of distributed

system services. For example, in bidding applications, we may want to constrain the various

components to bid in a mutually exclusive manner. So, we might want to use a service

that provides mutual exclusion functionality. We may also need a termination detection

algorithm to detect when the bidding is over. To isolate the designer from the intricacies

of a distributed system, one can provide a library of distributed algorithms implementing

different types of services.

In implementing such an approach to provide a library of distributed algorithms, the

designers of the library algorithms are faced with two opposing forces: One is to develop

generic reusable algorithms that can be used in a wide variety of applications. On the

other hand, applications may require algorithms to meet stringent performance constraints,

which may force the designer to develop customized versions of the algorithms. The following

23

examples illustrate this tradeoff:

• Distributed algorithms often do not make any assumption regarding the application and

are therefore conservative in nature. However, application components may follow a specific

communication pattern or topology. For example, in a tele-teaching application, sessions

or groups may be formed for different purposes with varying number of participants. Each

such group may follow a specific communication pattern (for example, an answer message

may be sent only in response to a question message) or a topology (for example, a ring or

a star), which the underlying algorithms may be able to exploit. Thus, a straightforward

use of a generic algorithm may not be efficient and this may force the designers to come up

with their own implementations.

• To broaden the applicability, designers of mutual exclusion algorithms often work under

the “pessimistic” assumption that the application components may request critical section

entries in any order and include the communication necessary to ensure mutual exclusion.

While this assumption may be true in general, in a specific application the components

may issue requests in a specific order. For example, in a tele-conferencing application, there

may be several operating phases, and in a particular phase, the participants may request

access to a shared document in a cyclic manner. Or the application structure may impose

a partial ordering on the entries itself. For example, it may be the case that the application

components are divided into several clusters and the application may itself restrict at most

one component in a cluster to access the shared resource (mutual exclusion is only required

between clusters). In such cases, one might be able to take advantage of this application

information to reduce the number of messages.

As an example, one way to implement mutual exclusion in a distributed environment is

through the use of permissions. The process that wants to use a resource section issues a

request to use it and waits until all other processes give it permission to do so. For example,

if process 2 in Figure 3.1 wants to use a resource, it sends a request message to all other

processes.

24

Figure 3.1: Mutual exclusion example - sending of Request messages

Other processes respond with an acknowledgement (see Figure 3.2). After receiving all the

permissions, process 2 can use the resource.

Figure 3.2: Mutual exclusion example - receiving of Ack messages

When the resource is no longer needed, process 2 notifies other processes that the resource

has been released by it (see Figure 3.3).

25

Figure 3.3: Mutual exclusion example - sending of Release messages

But application itself may impose a certain order on processes to use a resource. For

example, it might be the case that processes 1, 2 and 3 access the resource in a cyclic

manner: 1,2,3,1,2,3,. . . Then, if process 1 is requesting the resource use, processes 2 and 3

will not be interested in accessing the resource at the same time. So in generic algorithm, if

process 2 wants to use the resource, it will still send requests messages to all the processes,

but requests do not need to be sent to processes 1 and 3 (see Figure 3.4). So, generic

algorithm is going to be inefficient.

Figure 3.4: Mutual exclusion example - taking ordering information into account

26

• As another example, a number of algorithms have been proposed for termination detection.

In general, an algorithm for termination detection has to determine that all components are

passive and all channels are empty. In a particular application, however, the passive states

of the components may be dependent on each other. As a simple example, if component

A only communicates with B and performs tasks assigned by B only, then A will always

be passive whenever B is passive. Such dependencies can be used to reduce the number of

components to be polled for passive states.

For example, for star topology shown in Figure 3.5, if process 2 would like to determine

termination, it would send a marker message to processes 1, 3 and 4.

Figure 3.5: Termination detection example - sending of Marker messages

The processes respond with either Done message (if they are passive) or Continue message

(if they are still active) as in Figure 3.6. If process 2 receives Done message from all the

processes and it remained passive since it sent the marker messages out, termination is

detected.

Figure 3.6: Termination detection example - receiving of Done messages

27

But, in a particular application, if component 1 only communicates with component 2 and

performs tasks assigned by 2 only, then 1 will always be passive whenever 2 is passive.

For example, Answer message could only be sent in response to a Question message

(see Figure 3.7). Then, if process 2 received all the answer messages from process 1 and is

passive, then process 1 will be passive too (since it can only be activated by a message from

process 2).

Figure 3.7: Termination detection example - ordering on Q/A messages

Then, in generic algorithm, process 2 will still send a marker message to all processes. But

the message to process 1 is not needed (see Figure 3.8).

Figure 3.8: Termination detection example - taking ordering information into account for
Marker messages

Message Done from process 1 is not needed either (see Figure 3.9). So, generic algorithm

is going to be inefficient. Such dependencies as described above can be used to reduce the

number of components to be polled for passive states.

28

Figure 3.9: Termination detection example - taking ordering information into account for
Done messages

In each of the cases discussed above, one can take advantage of the application structure to

optimize the performance of the distributed algorithms. So, if the algorithms in the library

are used as-is, the resulting implementations may be inefficient. In such cases, an application

developer may be tempted to develop algorithms from scratch suited to the application.

Such conflicts are especially problematic in product line software architectures wherein a

fixed middleware infrastructure may have been developed for a class of applications (e.g.,

class of tele-teaching applications, or the class of avionics applications). In such cases, all

applications in the product line (irrespective of their size and structure) may be forced to

use the same set of underlying distributed algorithms to satisfy their requirements.

29

• In the Boeing Bold Stroke system, event service middleware is used to perform event

notifications.12,22 However, Bold Stroke developers have identified several places where spe-

cialized versions of the middleware are desirable. For instance, one such specialization

replaces event-channel based notification by a direct method invocation, which is an order

of magnitude more efficient. For small scenarios, such as shown in Figure 3.10, such opti-

mizations can be identified and performed manually. However, it is tedious and error prone

to do this manually for large systems, such as shown in Figure 3.11.

Figure 3.10: Small size scenario

30

Figure 3.11: Medium size scenario

31

3.2 Related work

To ease the design and development of distributed systems, several frameworks have been

proposed for component-based development1–10,21,23. The goal of such frameworks is to

isolate the developers from lower-level details. For example, CORBA Component Model

(CCM) Specification24 defines component model, CCM implementation framework, and de-

ployment mechanism. Cadena21 is an integrated modeling environment for modeling and

building CCM systems. It provides facilities for defining component types, assembling sys-

tems from component types, producing skeleton files implemented in Java, and generating

deployment and configuration code. Cadena is also providing basic event services to imple-

ment interactions between the components. Other frameworks provide a middleware layer

with distributed middleware services going beyond just providing a basic event notifica-

tion service. However, even if a middleware layer is present in such frameworks to provide

middleware services, the services provided are generic and might not be efficient for applica-

tions exhibiting, for example, certain patterns of resource usage or ordering of events. Our

main interest, along with the ease of design and development, is to incorporate optimization

mechanisms into a framework for distributed systems development.

The problem of optimization has been studied for specific services. Algorithms have

been proposed for various problems for specific topologies and assumptions. For example,

a number of optimized algorithms for mutual exclusion have been proposed for topologies

such as ring, trees, and complete networks, as well as for hierarchically arranged application

components25–29.This approach, however, requires a new algorithm for every situation.

Researchers have also addressed the problem of optimization in specific domains. A

number of concurrency control, transaction processing and multicasting algorithms which

take advantage of application semantics (e.g., conflict relation among operations) have been

proposed3,7,16–19,30–33. For example, if multiple replicas of a distributed database need to

be updated, the updates need to be performed in the same order. But other unrelated

operations could be done in any order. So, in an application, if messages of type t1 do

32

not conflict with those of type t2, then the message ordering algorithm does not have to

order the delivery of messages of type t2 together with the messages of type t1. This

approach, however, does not take into account ordering information that application itself

may impose. So, the algorithm will implement this conflict relation irrespective of the order

in which messages are issued by the application. Our work is complementary to this as it

targets application semantics by analyzing the structure of the application.

Agbaria et al.15 explored a similar approach for application-driven checkpointing wherein

checkpoints are inserted at specific points in the application to eliminate channel state

recording (thus, the checkpointing algorithm is essentially compiled away). But checkpoints

need to be inserted manually and it is not automatic. Manual work is tedious and error

prone especially for larger systems. We, on the other hand, would like to automate the

optimization process.

Distributed algorithms often use notions defined on the state of the application. One

interesting work in this regard is the HOPE optimistic programming system34. In optimistic

programming, an algorithm makes an optimistic assumption about the application and

verifies at a later point whether it is true or not. HOPE allows the programmer to explicitly

assert such assumptions in the algorithm. These techniques, however, are used to increase

concurrency. We are interested in optimization.

Some algorithms have been designed to dynamically monitor the application behavior

and perform optimizations on-the-fly. COAL is an example of such an algorithm which keeps

track of where the events are being sent and the events that have already been delivered when

an event is being sent35. The idea of this monitoring is to dynamically guess the behavior

on that particular execution. However, this approach does not take into consideration

application knowledge. More optimizations can be done by utilizing application knowledge.

The problem of customizing programs has been studied extensively for sequential and

parallel programs, wherein compiler techniques have been designed to analyze and optimize

library routines statically. For example,36 proposed the Broadway framework which is closely

33

related to our work. Broadway provides a framework for specifying optimization conditions

for software libraries for parallel programs. The designer can define properties, their values

of interest, how the library routines update these properties and the optimization conditions

in terms of these properties values.

A number of high-level abstractions for broadcasting, multi-party synchronization, and

atomicity have been proposed37–41. Using such primitives makes a program more declara-

tive and the intent of the programmer clearer. Although these primitives may allow some

optimizations, their main goal has been to simplify programming. We, on the other hand,

want to explore abstractions whose primary purpose is to enable customizations.

Although there has been work in specific contexts, there is a lack of tools and method-

ologies to systematically attack this problem. In most cases, either the algorithms and

middleware are not customizable or tools are not available to automatically configure them.

In our earlier preliminary work, we have studied model-driven techniques to customize

event service middleware42–44, event ordering algorithms45,46 and synchronization algori-

thms47–49 in which some of the issues listed above were addressed in a limited manner (e.g.,

application representation and analysis, design of configurable middleware).

The first case study dealt with an instance where a middleware service is made customiz-

able by exposing a set of configurable options42. This work was motivated by optimization

issues in Bold Stroke event communication middleware. In traditional implementations,

an event connection, say from port p1 to p2, is implemented via event service middleware

wherein p1 connects as a producer and p2 connects as a consumer to an event channel. In

general, the push path for event notification from p1 to p2 may use several event channel

features such as subscriber lists, correlation to allow subscription for composite events such

as ”e1 and e2”, and distributed notifications. A framework, FRAMES, was developed which

offers a number of alternatives to implement each of these features42. There have been per-

formed extensive experimentations to evaluate these mechanisms and it was found that each

option outperforms the others under certain conditions.

34

A second case study involved customization of distributed algorithms for event order-

ing46. In there, the causal ordering algorithm described by Prakash et al.35 was studied

which operates by propagating the immediate dependency relation. By analyzing the ap-

plication’s communication structure, it may be possible to eliminate the propagation of

dependency information in some cases. To accommodate such optimizations, a customiz-

able algorithm was designed which takes two tables as parameters, a generation rule table

and a propagation rule table46. These tables determine the dependency information to

be computed and propagated in the algorithm. An analysis algorithm was designed that

computes these tables by analyzing the application’s communication structure, thereby en-

suring that only the required dependency information is computed and propagated. It was

shown that this customization can capture the optimizations for causal ordering proposed

by Quaireau et al.33.

A third case study dealt with complete synthesis of algorithms customized to specific

contexts. An aspect oriented technique for synthesis of synchronization code was devel-

oped47,48,50. The approach is to factor out synchronization as a separate aspect, synthesize

synchronization code and then compose it with the functional code.

In the three case studies discussed above, several concepts and mechanisms crucial in

enabling customizations have been identified: exposing configurable options, leveraging ap-

plication’s communication structure, code transformation and synthesis tools. However,

since the mechanisms were developed for specific algorithms, most of the artifacts are hard-

coded in the customization tools.

35

Chapter 4

InDiGO framework

In this chapter, we present our infrastructure for distributed algorithms optimization. We

start with the brief description of the framework capabilities. The rest is presented from the

point of view of the three participating entities: an application developer, an algorithm de-

veloper and optimization tools. We describe the responsibilities of each entity, the steps that

application and algorithms developers need to take in their developments to utilize InDiGO

infrastructure, and the interfaces that optimization tools provide. We then summarize by

listing the key points of this chapter.

4.1 Description of framework capabilities

In this thesis, we propose InDiGO, an infrastructure to optimize distributed algorithms.

The capabilities of InDiGO include:

• Infrastructure to capture application information: Exploiting application information

will require that the application itself be in a form amenable to analysis. We use

the internal representation of an application in Cadena to construct an application

dependency graph (ADG), and provide a mechanism to analyze the ADG for relevant

information.

• Customizable Algorithms : To customize the algorithms, they must be in a form

amenable to customization. We have developed a mechanism which allows a designer

36

to expose design knowledge related to the communication structure of an algorithm.

This involves identifying the interaction sets used for communication in an algorithm,

and defining the semantics of these sets in terms of queries supported by the analysis

infrastructure.

• Optimization Tools : We have developed tools to analyze the ADG for optimization

information. Algorithms are optimized by removing communication redundant in the

context of a specific application. We perform static optimization to initialize the

interaction sets, dynamic optimization to update the interaction sets at run-time, and

physical topology-based optimization for efficient mapping of algorithm message passing

to the physical topology.

37

4.2 Application developer perspective

In this section, we describe our framework from an application developer perspective. An

application developer is responsible for designing components and assembling systems from

components using the underlying services. This development process is described in sec-

tion 2.2.

4.2.1 Identifying the required services

Cadena provides basic event services to implement interaction between components. We

would like to extend the development methodology described in section 2.2 to provide sup-

port for a richer set of distributed middleware services. We need to provide a mechanism

for the designer to indicate his interest in a service. One possibility is for the designer to

explicitly include calls to the interface offered by the service in the application code. The

other possibility is to provide the designer with a domain-specific language to annotate code

to specify the requirements. We have adopted the second approach. We are currently using

annotations which are sufficient for services studied in this work (the more general problem

of a domain specification language for such annotations may be needed and is beyond the

scope of this thesis).

So, if the application developer is interested in using an underlying middleware service

in his application, we require the developer to go through the following step:

• Application designer annotates the component code to specify the required library algo-

rithms. For example, for the mutual exclusion service, we require the designer to annotate

the code with regions which have to be executed exclusively. An example of such a file with

annotations is shown in Listing 4.1.

38

1 pub l i c c l a s s bidComp extends Component {
2
3 . . .
4
5 pub l i c void proce s s (Object data , Port inPor t){
6
7 i f (data i n s t an c e o f Message){
8 i f (data i n s t an c e o f BidMadeMessage){
9

10 /∗∗@cs request
11 . . .
12 /∗∗@cs r e l e a s e
13
14 }
15 }
16 }
17 }

Listing 4.1: Annotated Java skeleton file

As shown in Listing 4.1, the annotations for mutual exclusion service are /**@cs request and

/**@cs release and correspond to the beginning and the end of a critical section that needs

to be accessed in a mutually exclusive manner. We allow multiple critical sections, but we

do not currently support nested critical sections. If there is more than one critical section,

we require the designer to add the critical section id to the annotations. For example,

critical section 2 will have to be annotated with /**@cs request 2 and /**@cs release 2

annotations. Then, there will be a separate mutual exclusion service running per critical

section.

The designer is provided with a list of available services. The interface of each service

specifies the annotations to insert into code to use the specified service. As algorithm

developers provide new services, the list of available services along with their interfaces is

updated and provided to the application developers.

In this work we looked at three services, namely: mutual exclusion, termination detection

and total ordering. The annotations to use for mutual exclusion service are /**@cs request

and /**@cs release and must be inserted accordingly in the beginning and at the end of a

critical section that needs to be accessed in a mutually exclusive manner. The annotations

for termination detection service are /**@active and /**@passive and need to be inserted

accordingly to mark the beginning and the end of the code region that can potentially

activate another component through sending a message. Annotation for total ordering

service is /**@total and needs to be inserted on the line where a message is sent that need

to be totally ordered.

39

Once the designer has annotated the component code, the deployment tools integrate

it with the algorithm code. This integration involves adding the algorithm code to the

code base to be deployed, generating the code for the application components to interact

with the algorithm code, and code to initialize the services. For example, the annotations

in Listing 4.1 are used to transform the component code to include calls to the mutual

exclusion module to enter and exit the critical section.

40

4.3 Application dependency graph

In order to extract optimization information from application, we need to represent appli-

cation in such a form that it would be possible to analyze it. We construct an application

dependency graph (ADG) representing the structure of the application. The ADG is derived

from two sources of information. First, Cadena component specification file describes com-

ponent types and ports that each component type has. An example of such a file is shown

in Listing 2.2. Application assembly information is stored in Cadena assembly specification

file. This file describes application component instances and interconnections between them.

An example of such a file is shown in Listing 2.3. Second, in Cadena, a component property

specification (CPS) file is associated with each component to specify internal dependencies

between the input and output ports of the component and behavior of each event handler.

A fragment of the CPS file for component bidComp is shown in Figure 4.1 (the full grammar

is given in Appendix A). The case statement in the CPS file specifies how an incoming event

is processed. For example, the case statement in Figure 4.1 specifies that when an event

on port nextToBid is received, if the variable bidstate’s value is continueBid, then the

component executes actions cs request, bid, cs release, and emits an event on port

bidMade. If the value is stopBid, then the component becomes passive and no event is

emitted.

component bidComp {
Mode bidstate;
dependencies {

nextToBid →
case bidstate of {

continueBid: cs request; bid; cs release; bidMade
stopBid: passive

}
}

}

Figure 4.1: Example of a CPS file for component bidComp

41

As discussed earlier, the application developer annotates the component code to specify

algorithm usage (e.g., annotations to request/release a critical section). One of the capa-

bilities to be built is a tool to derive the CPS files from the annotated Java files for each

component. Each annotation then would be represented by a corresponding action in the

CPS file, which in turn will be represented by a node type in the ADG graph and the node

type will reflect the original annotation. At present, we are able to derive this information

for a restricted subset of the CPS grammar (for example, we do not handle nested case

statements). Therefore, for some of the experimental studies, we had to manually specify

the CPS files.

Let C1, C2 ∈ App.components. We say that (p1, p2) ∈ App.connections, where p1 ∈

C1.outp and p2 ∈ C2.inp, if p1 is connected to p2 in App. We construct an ADG from

the application specification and the CPS files as follows. First, we extract port id/port

name information from the component specification file. Component specification file stores

information in XML format. So, we use standard Java based parser to extract elements by

tag name utilizing DocumentBuilderFactory, DocumentBuilder and Document classes from

javax.xml.parsers library. Each component element describes a component type along with

its ports. We extract port id/port name information for each component type specified in

the component specification file and store it in memory. Next, we get component instance

id/component instance name information from the assembly specification file. Assembly

specification file also stores information in XML format. Again, we use standard Java based

parser to extract elements by tag name. Each component instance element describes a

component instance along with its ports. We extract component instance id/component

instance name information for each component instance specified in the assembly specifica-

tion file. Using the component instance id/component instance name information received

from assembly specification file, we obtain App.components. Utilizing port id/port name

information for each component type received from the component specification file, we ob-

tain C.inp and C.outp for each C ∈ App.components. Each port bindings element in the

42

assembly specification file describes a connection between two ports. Using port binding

information received from assembly specification file, we obtain App.connections. Each port

in C.inp and C.outp for each C ∈ App.components is a node in the ADG graph. In addition,

each action and case statement in the CPS file of a component instance is a node (each case

statement corresponds to a choice node). For component C, let C.in node, C.out node and

C.internal node denote the nodes corresponding to input ports, output ports and internal

actions respectively. Internal actions are the actions listed in a CPS file. Each case state-

ment in a CPS file corresponds to a choice action. Each dependency in a CPS file represents

an event handler. Each dependency begins with specifying the port for which the event

handler is listed next after the right arrow. Intuitively, each node represents an action (with

nodes in C.in node, C.out node and C.internal node representing receive, send and internal

actions of C respectively). The edges, representing ordering between actions, are defined as

follows: Let C1 and C2 be two components in the application and vp to denote the port

corresponding to node v. There is an edge (v1, v2) in the ADG if

(a) v1 ∈ C1.out node, and v2 ∈ C2.in node, and (vp1, v
p
2) ∈ App.connections.

(b) v1 ∈ C1.in node and v2 ∈ C1.internal node and event handler for vp1 contains v2 as the

first action.

(c) v1, v2 ∈ C1.internal node and v1 immediately precedes v2 in the same event handler.

(d) v1 ∈ C1.internal node, v2 ∈ C1.out node, and v1 immediately precedes v2.

Rule (a) defines the inter-component edges whereas the other rules define the intra-

component edges.

Each node in the ADG corresponds to an action (e.g., the node representing an input

port corresponds to a receive action). An action a in the system is either receipt of a

message, send of a message, or an internal action. Occurrences of an action that can take

place in a system are modeled as events. We use ax to represent the xth occurrence of a and

e.action to denote the action corresponding to event e. We now define the set of possible

executions of an ADG. An execution of ADG is a sequence, s0, e0, s1, e1, . . ., where each si

43

is a state and ei is an event. The state si is represented by the set of nodes in ADG which

are enabled. Initially, s0 contains the nodes representing the init ports (we use the Cadena’s

property specification mechanism to tag a port as an init port; such ports are used to trigger

the start of the system). The outgoing edges for all nodes (except the choice node) have

an AND-semantics; that is, control is transferred to all nodes reachable via the outgoing

edges. Thus, when an event ei representing a non-choice node a executes, si+1 is obtained

by removing a from si and adding nodes reachable from a via all outgoing edges. For a

choice node, a node for one of the outgoing edges of a is added. The incoming edges for a

node in an ADG have an OR-semantics, that is, the action for the node is enabled whenever

control is transferred along any of its incoming edges. Once a node is added to a state, it is

enabled and can be executed.

44

Example

As an example, let’s consider a component shown in Figure 4.2.

Figure 4.2: Example of a component with two ports.

The component in Figure 4.2 has two ports: an input port nextToBid and an output port

bidMade. So, there will be two nodes in the application graph which will correspond to the

two ports as in Figure 4.3.

Figure 4.3: Part of an application dependency graph that corresponds to the component in
Figure 4.2.

Next, consider two components and connections between them as shown in Figure 4.4.

Figure 4.4: Example of two connected components.

In Figure 4.4, the output port bidMade of Component C1 is connected to the input port

nextToBid of Component C2. So, the application graph shown in Figure 4.5 will correspond

to the scenario of Figure 4.4 with four ports and a connection between two of them.

45

Figure 4.5: Part of an application dependency graph that corresponds to the component in
Figure 4.4.

Next, let the handler for events on input port nextToBid of component type C look like in

Listing 4.2.

1 i f (data i n s t an c e o f BidMadeMessage){
2
3 . . .
4 /∗∗@cs request
5 . . .
6 // bid
7 . . .
8 /∗∗@cs r e l e a s e
9 . . .

10 }

Listing 4.2: Handler sketch for port nextToBid.

Let C1 component be an instance of component type C. When an event on input port

nextToBid of C1 is received, the handler shown in Listing 4.2 processes it. Critical section

access is requested next. Critical section is relased after critical section code ends. According

to the rules specified for the creation of an application graph, two more nodes C1.cs request

and C1.cs release corresponding to request to enter critical section and critical section re-

lease actions will be added to the graph. Also, edges from the input port C1.nextToBid to

the C1.cs request node and from the C1.cs request node to the C1.cs release node will be

added. The portion of the application graph will then look like in Figure 4.6.

Figure 4.6: Part of an application dependency graph that corresponds to the component in
Figure 4.2 with internal connections.

46

4.3.1 Query interface for application dependency graph

Now, that we have an application dependency graph, we need a mechanism to derive appli-

cation specific information from it. We achieve that by running queries on the application

dependency graph.

4.3.1.1 Basic queries

We have identified a set of basic queries useful in a number of algorithms that provide us

with the information regarding the structure of the application (ordering of events). This

set includes the following queries:

- precede(a,b) is true iff ∀ x, ax occurs before bx in all executions of the ADG.

- alternate(a, b) is true iff ∀ x, ax occurs before bx and bx occurs before ax+1 in all

executions of the ADG.

- exclusive(a,b) is true iff both a and b are not simultaneously enabled in all reachable

states.

- absence(a,b,c) is true iff in all executions of the ADG,

∀ x, (ex.action = b) ⇒ (∃y < x, ey.action = a and ∀z, y < z < x, ez.action 6= c).

Informally, it states that whenever b occurs, a has already occurred and c does not

occur between these occurrences of a and b.

- exclusive(a,b,cond) is true iff both a and b are not simultaneously enabled in all

reachable states in which cond is true. precede(a, b, cond), alternate(a, b, cond) and

absence(a, b, c, cond) are defined similarly.

- exclusive(cond1,cond2) is true iff both conditions cond1 and cond2 are not simultane-

ously true in all reachable states.

To answer these queries, our first approach was to develop a separate algorithm per query.

An algorithm would analyze the ADG and get a yes or no answer. A better approach is to

use model checking to answer the queries precisely. Both of our approaches are described

in the following sections.

47

4.3.1.2 Arguments to queries

Our framework currently supports several argument types that can be used in queries. One

type is the arguments that represent actions. Actions correspond to nodes in ADG graph.

The framework also supports arguments with conditions that are based on the state of the

system at run time. A condition describes that some component is in a certain state (some

node in ADG is enabled). The condition is first translated into which node c in ADG is

enabled and then the query is run taking into account that c is enabled. For instance,

we might want to know if actions a and b are exclusive when component Ci is in active

state. The condition will be translated into Ci.active is enabled. So, the query to answer is

whether a and b are exclusive when Ci.active is enabled.

Other types of arguments to basic quieries are conditions on counters. Developers can

specify counters, rules to update the counters and use conditions on these counters as argu-

ments to basic queries. The counters then will be associated with each component in appli-

cation. We denote App.counters a set of counters per application App. Then, every counter

counter ∈ App.counters will be associated with each component C ∈ App.components so

that every component C has a counter counter associated with it. Counters are specified

in a counter file. Counter file lists counter names one name per line. An example of such a

counter file is shown in Listing 4.3 and specifies one counter in cs. in cs counter represents

how many times a component entered and exited a critical section.

1 i n c s

Listing 4.3: Counter file that specifies one counter in cs.

The rules to update this counter are shown in Listing 4.4.

1 i f c s r e qu e s t . enabled then i n c s . increment
2 i f c s r e l e a s e . enabled then i n c s . decrement

Listing 4.4: Update rules for in cs counter.

These rules state that when a cs request node of the ADG graph becomes enabled, then

the counter needs to be incremented. Also, when corresponding cs release node of the ADG

graph becomes enabled, then the counter needs to be decremented.

48

The grammar for the counter update rules is given in Figure 4.7.

Figure 4.7: Grammar for counter update rules.

The meaning of each rule is that if a node type, represented by the first identifier in the rule

line, is in a certain state, enabled or disabled, then the counter, represented by the second

identifier in the rule line, must perform an action, i.e. be incremented or decremented.

49

4.3.1.3 Development of algorithms to answer queries

Our first approach to answer a query was to develop a separate algorithm per query. The

algorithm would analyze the ADG and get a yes or no answer. The algorithms we developed

are based on depth first traversal of the graph. For example, the pseudo code for the

algorithm used to answer precede(a,b) query is shown in Listing 4.5. We do not present

the complete algorithm here, nor the correctness proof, because we decided to pursue the

second approach. However, we describe it here for completness of presentation.

� �
− r e v e r s e edges o f the graph
− do depth− f i r s t t r a v e r s a l o f the graph

s t a r t i n g from node b
− stop f o l l ow i ng a path when the path reaches a ,

b , a l r eady v i s i t e d node on t h i s path , or i n i t
node and check f o r the f o l l ow i n g cond i t i on s :
− i f the path reaches b , ha l t and say NO
− i f the path reaches an a l ready v i s i t e d

node on t h i s path , ha l t and say NO
− i f the path reaches i n i t node ,

ha l t and say NO
− i f the path reaches a , backtrack

and cont inue the t r a v e r s a l
− i f every path from b l ead s to a ,

ha l t and say YES� �
Listing 4.5: Pseudo code for the algorithm to answer pre-
cede(a,b) query.

Although we have developed separate algorithms for the queries, these algorithms are con-

servative in nature. The responses to these queries do not yield any false positives and we

were going to use only positive responses for optimizations. This has been done because the

ADG is itself an abstraction of the application. One of the longer term goals in Cadena is

to derive more accurate models from the component code (e.g., derivation of more detailed

CPS files for Java files) which can yield more precise results.

50

4.3.1.4 Using model checking to answer queries

The second approach (the approach we adopted) to answer the queries is the use of a model

checking tool on the ADG. It allows to answer the queries precisely as well as to verify more

general properties.

For this, we use Spin model checker. This verification system was developed in the

eighties and nineties and is freely available from the Web. Spin is one of the most widely

used logic model checkers in the world.

The idea behind a model checking approach is that when the software itself cannot be

verified exhaustively, we can build a simplified model of the underlying design that preserves

its essential characteristics but that avoids known sources of complexity. The design model

can often be verified, while the full-scale implementation cannot.

Our ADG graph represents a simplified model of a distributed system and captures the

necessary application information that can be utilized for optimization.

The specification language that Spin accepts is called Promela. So, ADG needs to be

translated into a Promela model that Spin can work on. This translation is achieved with

the ADG-to-Promela conversion tool described in detail in section 4.5.2. Next, Optimizer

tool, described in section 4.5.3, runs queries on the Promela model utilizing SPIN model

checker to get a precise answer to each query.

51

4.4 Algorithm developer perspective

In this section, we describe our framework from an algorithm developer perspective. The

task of a middleware developer is to provide a library of customizable distributed algorithms

for common tasks such as mutual exclusion and termination detection.

4.4.1 Development of customizable algorithms

In this section, we discuss the design of customizable algorithmic base. One can follow

several complimentary approaches to build a customizable distributed algorithms library.

One approach is to develop a set of algorithms for the same problem, with each algorithm

offering advantages over its alternatives in specific operational contexts. For example, this

approach was followed in42 to design a set of mechanisms for event communication whose

relative performance are dependent on factors such as number and location of producers

and consumers and publication rates. Tools were developed to analyze the application to

select most appropriate mechanism for each event type. In this thesis, we follow a com-

plimentary approach wherein we want to customize specific algorithms themselves (rather

than selecting between algorithms). To enable customization, an algorithm developer must

expose design knowledge pertaining to an algorithm in a form which can be leveraged for

analysis. Algorithms have been designed with parameters such as maximum number of pos-

sible node failures or conflict relations to adapt their behavior. While parameters such as

conflict relation exploit application semantics, they do not directly analyze the application

structure for optimization.

In this thesis, we study mechanisms to expose knowledge related to the communication

structure of an algorithm for possible optimizations.

52

4.4.1.1 Interaction sets

In our framework, we require the algorithm designers to adopt the following approach:

• For each algorithm alg, the designer first identifies the interaction sets, denoted by

alg.interaction set, which characterize its communication structure and specify the pro-

cesses participating in each interaction. The designer then writes alg in terms of these sets.

As seen later, this involves a simple transformation of the existing algorithms.

For example, the communication structure of Lamport’s algorithm for mutual exclusion

can be characterized by the following three interaction sets: send request to (SRT) is the set

of processes to whom a request message has to be sent to enter critical section, wait for ack

(WFA) is the set of processes from whom ack must be obtained prior to entering critical

section, and send release to (SRelT) is the set of processes to whom a Release message must

be sent. After the interaction sets are identified, algorithm developer designs an algorithm

in terms of these interaction sets.

Alternatively, one can define sets with well defined meanings for a class of algorithms.

The sets could could be general enough to be used in a number of distributed algorithms or

could be very specific to a particular type of algorithms or even a particular algorithm.

In later sections of this chapter (section 4.4.2, section 4.4.3 and section 4.4.4) we look

at several distributed algorithms for which we define algorithm specific interaction sets that

describe the communication structure of those particular algorithms.

53

4.4.1.2 Membership criteria for interaction sets

• In the next step, for each interaction set interaction set, the algorithm designer defines

the membership criterion, denoted by interaction set.membership criterion, which specifies

the criterion for a process to be involved in an interaction and so defines if a process is a

part of the interaction set. The membership criteria must be defined in terms of the queries

supported by the analysis infrastructure. This criterion is a problem-specific property a

process must satisfy to participate in the interaction. As shown in the examples, this allows

the sets to be defined in a problem-specific manner (rather than only in terms of physical

topology).

For example, in the Lamport’s algorithm for mutual exclusion, the membership criterion

for SRT interaction set can be expressed in terms of exclusive basic query. Let C.cs request

denote the action of component C requesting access to enter the critical section. Let in cs

denote the ”in critical section” counter and C.in cs = 1 denote a component C being in

critical section. For simplicity, we have assumed that at most one application component

is mapped to each site and will use Ci to denote the component mapped to site i. Let S

denote the set of all components. SRT set is then defined in the following manner:

SRTi = {j : Cj ∈ S ∧ ¬exclusive(Ci.in cs = 1, Cj.in cs = 1)}.

That is, processor j belongs to the SRT set of processor i if processor j could potentially

request access to critical section concurrently with processor i.

The membership criteria need to be expressed in such a form that tools are able to parse

it. For that reason, we require the algorithm developer to specify membership criteria for

interaction sets in a standardized form. An example of such an input file for membership

criterion of SRT interaction set is shown in Listing 4.6. It specifies the name of the interac-

tion set, the name of the query to run and the arguments for the query in a comma delimited

format. The full grammar for specifying membership criteria is given in Appendix B.

54

1 SRT. i , ALL, not exc lu s i v e , i . i n c s = 1 , j . i n c s = 1
2 . . .

Listing 4.6: Sample of membership criteria input to optimizer.

InDiGo framework supports a number of basic queries that can be used in defining mem-

bership criteria.

It is the responsibility of the algorithm designer to ensure the correctness of the algo-

rithm written in terms of interaction sests with respect to membership criteria. Just like

in traditinal algorithm development, algorithm designers are to provide correctness proofs

with respect to algorithm properties.

55

4.4.1.3 Rules for dynamic updates to the interaction sets

• Finally, we allow the algorithm designer to further leverage the design knowledge and

provide information for dynamic updates to the interaction sets.

In an algorithm, as a result of message passing, a process may obtain knowledge of the

states of the application entities at other processes. For example, when process i receives a

request message from process j in a mutual exclusion algorithm, it knows that an application

entity at process j is in the requesting state. This information can be used to further

constrain the interaction sets via dynamic update.

The designer exposes this information by identifying a set of assertions, alg.app assert,

and two sets of control points, α pos and α neg, for each assertion α ∈ alg.app assert. α pos

is the set of control points where α is known to be true and α neg represents the control

points where α may no longer be true. For each such assertion α, we declare a boolean

variable condα, and insert “condα := true” at each control point in α pos and “condα :=

false” at each control point in α neg. We will illustrate this concept using examples in the

following sections.

As with the membership criteria for interaction sets, information on dynamic updates

to the interaction sets needs to be expressed in such a form that tools are able to parse it.

For that reason, we also require the algorithm developer to specify information on dynamic

updates to the interaction sets in a standardized form. We require the algorithm developer to

add a condition to the input file. This condition will describe which node in the abstraction

model of our system will be enabled when a process is in a certain state. An example of

such an input file for information on dynamic updates to the SRT interaction set is shown

in Listing 4.7.

1 SRT. i , ALL, not exc lu s i v e , i . i n c s = 1 , j . i n c s = 1 , i f k . s t a t e = reque s t i ng then k . c s r e qu e s t = enabled
2 . . .

Listing 4.7: Sample of dynamic information input to optimizer.

This example specifies the name of the set for which dynamic optimization information is

56

needed, the name of the query to run and the arguments for the query. It also specifies that

if a process is in the requesting state, a cs request node for this process will be enabled in

the abstraction model for our system. This, in turn, will be translated into which node is

enabled and the specified query will be run with an additional argument representing which

node is enabled.

These dynamic rules are used during the system execution to further constrain interaction

sets based on the information received through message passing of the executing system.

57

4.4.2 Mutual exclusion algorithm example

The Mutual Exclusion Problem

The mutual exclusion problem concerns a group of processors which occasionally need access

to some resource that cannot be used simultaneously by more than a single processor, for

example, some output device. Each processor may need to execute a code segment called

a critical section, such that at any time, at most one processor is in the critical section

(mutual exclusion), and if one or more processors try to enter the critical section , then one

of them eventually succeeds as long as no processor stays in the critical section forever (no

deadlock).

The above properties do not provide any guarantee on an individual basis since a pro-

cessor may try to enter the critical section and yet fail, since it is always bypassed by other

processors. A stronger property, which implies no deadlock, is no lockout: if a processor

wishes to enter the critical section, then it will eventually succeed as long as no processor

stays in the critical section forever.

More formally, an algorithm solves the mutual exclusion problem with no deadlock if

the following hold:

- Mutual exclusion: In every configuration of every execution, at most one processor is

in the critical section.

- No deadlock: In every admissible execution, if some processor is in the requesting

state in a configuration, then there is a later configuration in which some processor is

in the critical section.

- No lockout: In every admissible execution, if some processor is in the requesting state

in a configuration, then there is a later configuration in which that same processor is

in the critical section.

58

Description of Lamport’s Mutual Exclusion Algorithm

One way to implement mutual exclusion in a distributed environment is through the use of

permissions. The process that wants to enter a critical section issues a request to enter it

and waits until all other processes give it permission to do so.

Consider the Lamport’s permission based mutual exclusion algorithm51 shown in Fig-

ure 4.8. In this algorithm n represents the number of sites. We will make no distinction

between the concept of a process and the concept of a site in the distributed architecture.

The meaning of different types of messages that the algorithm is using is as follows:

- When a process is attempting to enter its critical section, it sends a message of the

request type to other processes.

- When it leaves its critical section, it broadcasts a message of release type.

- When a process Pi receives a message of the request type from a process Pj, it ac-

knowledges the receipt with an ack.

Every process has a local clock and transmits messages that consist of three fields: (message

type, local clock, site number). Therefore, each message carries its meaning along with timing

information that will be used to ensure that the timing mechanism remains coherent. Each

process also maintains a sorted queue of such received messages.

For each process we have the following local declarations:

- ack is an array of n elements of type bool and is used to keep track of permissions

received from all other sites per request message sent;

- request sent is a boolean and keeps track if a request to enter a critical section has

been set;

- my seq num is a local clock (my sequence number); it is reset on receiving a new

message in such a way as to ensure that every transmission date is earlier than any

receipt date;

- RQ is an ordered request queue; the order is defined on a pair (clock, site number) as

following: (a, b) < (c, d) ≡ (a < c) ∨ ((a = c) ∧ (b < d));

59

- in CS is a boolean and specifies if a process currently is in critical section.

The algorithm is shown in Figure 4.8 and works as following:

- When a process wants to enter a critical section, it sends a request message to every

process

- On receipt of a message (request, k, j) or (release, k, j) request queue is updated

accordingly.

- A process Pi enters the critical section when its request is at the head of the queue

and its timestamp is the oldest.

The algorithm is assumed to use logical clocks (clock update instructions are not shown).

60

Code for process Pi:

local variables:

01 bool ack[n]
02 bool request sent ← false
03 int my seq num ← 0
04 queue RQ ← empty
05 bool in cs ← false

06 :: (want to enter CS ∧ !request sent)
07 my seq num = local clock value;
08 broadcast(request, my seq num, i)
09 RQ.enqueue(<request, my seq num, i>)
10 request sent ← true
11 ∀ j 6=i ack[j] ← false; ack[i] ← true
12 :: receive(request, k, j)
13 RQ.enqueue(<request, k, j>)
14 if (k, j) > (my seq num, i) ack[j] ← true
15 send(ack) to j
16 :: receive(ack)
17 ack[j] ← true
18 :: receive(release, k, j)
19 RQ.dequeue()
20 :: (request sent ∧ ∀ j ack[j] = true ∧ head() = (request, i))
21 in CS ← true
22 :: (in CS ∧ want to exit CS)
23 broadcast(release, my seq num, i)
24 RQ.dequeue()
25 request sent ← false
26 in CS ← false

Figure 4.8: Lamport’s permission based mutual exclusion algorithm

61

Customized Version

The communication structure of Lamport’s algorithm can be characterized by the following

three interaction sets:

- send request to (SRT) is the set of processes to whom a request message has to be

sent to enter critical section.

- wait for ack (WFA) is the set of processes from whom ack must be obtained prior to

entering critical section.

- send release to (SRelT) is the set of processes to whom a release message must be

sent.

The algorithm written using these sets is shown in Figure 4.9. The algorithm is as-

sumed to use logical clocks (clock update instructions are not shown). As can be seen, the

transformation is simple.

Next, we define the membership criteria for these sets. From the interface offered by the

algorithm, the designer knows the actions of the application pertaining to mutual exclusion.

The criteria must be defined in terms of these actions only (as each algorithm is designed in-

dependently, the designer may not know of other events in the application). Let C.cs request

denote the action of component C requesting access to enter the critical section. Let in cs

denote the ”in critical section” counter and C.in cs = 1 denote a component C being in

critical section. For simplicity, we have assumed that at most one application component

is mapped to each site and will use Ci to denote the component mapped to site i. Let S

denote the set of all components. SRT set is then defined in the following manner:

SRTi = {j : Cj ∈ S ∧ ¬exclusive(Ci.in cs = 1, Cj.in cs = 1)}.

That is, processor j belongs to the SRT set of processor i if processor j could potentially

request access to critical section concurrently with processor i.

Both WFAi and SRelTi are defined to be the same as SRTi. It is the responsibility

of the designer to ensure correctness of the algorithm with respect to these criteria. That

is, any values assigned to these sets satisfying the specified criteria must ensure mutual

62

exclusion. For dynamic membership, we identify assertion “enabled(Cj.cs request)” (stating

that component Cj is ready to enter critical section), and line 14 as the control point where

it becomes true and line 20 when it becomes false. A call to procedure update SRT is added

(line 7) before the set is used. The code for this procedure is synthesized by the dynamic

optimization rules.

63

Code for process Pi:

local variables:

01 bool ack[n]
02 bool request sent ← false
03 int my seq num ← 0
04 queue RQ ← empty
05 bool in cs ← false

06 :: (want to enter CS ∧ !request sent)
07 update SRT()
08 my seq num = local clock value;
09 send(request, my seq num, i) to SRT
10 RQ.enqueue(<request, my seq num, i>)
11 request sent ← true
12 ∀ j 6=i ack[j] ← false; ack[i] ← true
13 :: receive(request, k, j)
14 RQ.enqueue(<request, k, j>)
15 if (k, j) > (my req num, i) ack[j] ← true
16 send(ack) to j
17 :: receive(ack)
18 ack[j] ← true
19 :: receive(release, k, j)
20 RQ.dequeue()
21 :: (request sent ∧ (∀j | j ∈WFA ∧ ack[j] = true) ∧ head() = (request, i))
22 in CS ← true
23 :: (in CS ∧ want to exit CS)
24 send(release, my seq num, i) to SRelT
25 RQ.dequeue()
26 request sent ← false
27 in CS ← false

Figure 4.9: Customized version of mutual exclusion algorithm

64

4.4.3 Termination detection algorithm example

The Termination Detection Problem

The problem of detecting that a distributed algorithm has terminated is both important

and non-trivial. Even if observation has shown that all the constituent processes of the

algorithm are in a passive state - that is, are not active - this cannot be taken as a proof

that the algorithm as a whole has terminated: for a process observed to be passive maybe

reactivated by a message from a process that has not yet been observed and which then

becomes passive. The problem would be simple if knowledge were available, at any instant,

of a global state that took into account both the processes and the communication channels.

Designing an algorithm for the problem thus comes down to designing a distributed control

mechanism that will recognize a particular state of global stability, that of termination.

A process is said to be active if it is executing the text of its program and is passive if

it is in any other state. A passive process can be either terminated, having completed its

task, or waiting for messages from other processes. If all the processes are passive and no

messages are in transit, the complete distributed algorithm is said to be terminated.

65

Description of Distributed Termination Detection Algorithm

We study the distributed termination detection algorithm that was first described in52. The

algorithm is shown in Figure 4.10 and works as following. Processes are labeled Pi, 0 ≤ i ≤ n.

We employ a token to transmit the values quietp. The token cycles through the processes

visiting P(i+1)mod n after departing from Pi. A cycle is initiated by a process Pinit, called the

initiator. If the token completes the cycle (returns to Pinit) after visiting all the processes

and if all processes P return a value quietP of true in this cycle, then the inititator detects

termination, i.e. it sets claim to true. If any process q returns a value quietq of false in a

cycle, then the current cycle is terminated and a new cycle is initiated with q as the initiator.

A process ends one observation period and immediately starts the next observation period

when it sends the token. The algorithm, described next in detail, shows how quietP is set.

There are no shared variables in a distributed system. However, for purposes of exposi-

tion we assume that claim is a shared global variable which has an initial value of false and

which may be set true by any process. Such a global variable can be simulated by message

transmissions; for instance, the process that sets claim to true may send messages to all

other processes notifying them.

Two types of messages are employed in the termination detection algorithm:

- (marker)

- (token, initiator)

Each process has the following constants and variables. These will be subscripted, by i,

when referring to a specific process i.

- ic: number of incoming channels to the process, a constant

- idle: process is idle

- quiet : process has been continuously idle since the token was last sent by the process;

false if the token has never been sent by this process

- have token: process holds the token

- init : the value of the initiator in the (token, initiator) message last sent or recieved;

66

undefined if the process has never received such a message

- m: number of markers received, since the token was last sent by the process

Initial conditions

- The token is at Pk

- mi = the number of channels from processes with indices greater than i, for all i, i.e.,

the cardinality of the set, {c | c is a channel from Pj to Pi ∧ j > i}

(This initial condition is required because otherwise, the token will permanently stay

at one process)

- quieti = false, for all i

- have tokeni = true for i = 0; false otherwise

- initi is arbitrary, for all i

67

Code for process Pi:

01 :: receive(marker)
02 m ← m + 1
03 :: receive(app)
04 if (quiet)
05 quiet ← false
06 :: receive(token, initiator)
07 init ← initiator
08 have token ← true
09 :: (have token ∧ (ic = m) ∧ idle)
10 if (quiet ∧ (init = i))
11 claim ← true // termination detected
12 else if (quiet ∧ (init 6= i)) // continue old cycle
13 m ← 0
14 send marker to all neighbors
15 have token ← false
16 send(token, init) to P(i+1)mod n

17 else if (!quiet) // initiate new cycle
18 m ← 0
19 quiet ← true
20 init ← i
21 send marker to all neighbors
22 have token ← false
23 send(token, init) to P(i+1)mod n

Figure 4.10: Distributed termination detection algorithm for an arbitrary topology

68

Customized Version

The communication structure of the algorithm shown in Figure 4.10 can be characterized

by the following three interaction sets:

- send marker to (SMT) is the set of all neighbor processors to which a marker message

has to be sent.

- wait response from (WRF) is the set of all neighbor processors from whom a marker

message is to be received.

- send token to (STT) is a singleton set consisting of the id of the next processor to

send token to.

The algorithm written using these sets is shown in Figure 4.11. As in the case of Lamport’s

mutual exclusion algorithm, the transformation is simple.

Next, we define the membership criteria for these sets. For simplicity, we have assumed

that at most one application component is mapped to each site and will use Ci to denote the

component mapped to site i. Let Nbri denote the set of processes such that a component

at processor i communicates with a component at processor j in App. We define SMTi

as following: SMTi = {j : j ∈ Nbri)}. SMT set for processor i specifies neighbours of i.

WRFi is defined the same as SMTi.

We define STT (i) as following:

STT (i) = if i < n− 1
j = i+ 1

else
j = 0

This specifies that i must send the token to P(i+1)mod n processor next. For dynamic mem-

bership, we identify assertion “enabled(Ci.passive noact)”, stating that component Ci is

passive and has not sent any messages to activate other components since its own last ac-

tivation. Calls to procedures update SMT (lines 14 and 24) and update STT (lines 17

and 26) are added and called before the sets are used. The code for these procedures is

synthesized by the dynamic optimization rules.

69

Code for process Pi:

01 :: receive(marker)
02 m ← m + 1
03 :: receive(app)
04 if (quiet)
05 quiet ← false
06 :: receive(token, initiator)
07 init ← initiator
08 have token ← true
09 :: (have token ∧ (WRF.size = m) ∧ idle)
10 if (quiet ∧ (init = i))
11 claim ← true // termination detected
12 else if (quiet ∧ (init 6= i)) // continue old cycle
13 m ← 0
14 update SMT()
15 send marker to SMT
16 have token ← false
17 update STT()
18 send(token, init) to STT
19 else if (!quiet) // initiate new cycle
20 m ← 0
21 quiet ← true
22 init ← i
23 update SMT()
24 send marker to SMT
25 have token ← false
26 update STT()
27 send(token, init) to STT

Figure 4.11: Customized version of distributed termination detection algorithm

70

4.4.4 Total order algorithm example

The Total Order Problem

We have also studied an algorithm for total ordering of messages. The total order (TO)

problem is about seeing the order of messages by different processes being the same across

the distributed system.

Consider a group of processes multicasting messages to each other. Each message is

always timestamped with the current (logical) time of its sender. When a message is multi-

cast, it is conceptually also sent to the sender. In addition, we assume that messages from

the same sender are received in the order they were sent, and that no messages are lost.

The first assumption is equivalent to the assumptions of having a fully connected graph of

links that have FIFO property.

Description of Total Order Algorithm Based on Lamport Timestamps

The algorithm is shown in Figure 4.12 and works as following. When a process receives

a message, it is put into a local queue, ordered according to its timestamp. The receiver

multicasts an acknowledgement to the other processes. Note, that if we follow Lamport’s

algorithm for adjusting local clocks, the timestamp of the received message is lower than

the timestamp of the acknowledgement.

The interesting aspect of this approach, is that all processes will eventually have the

same copy of the local queue. Each message is multicast to all processes, including acknowl-

edgements, and is assumed to be received by all processes. Recall also that we assume that

messages are delivered in the order that they are sent. Each process puts a received message

in its local queue according to the timestamp in that message. Lamport’s clocks ensure that

no two messages have the same timestamp, but also that the timestamps reflect a consistent

global ordering of events.

A process can deliver a queued message to the application it is running only when that

message is at the head of the queue and has been acknowledged by each other process. At

71

that point, the message is removed from the queue and handed over to the application; the

associated acknowledgements can simply be removed. Because each process has the same

copy of the queue, all messages are delivered in the same order everywhere. In other words,

we have established totally-ordered multicasting.

72

Code for process Pi:

local variables:

01 time ← 0
02 queue ← empty

03 :: receive(mes, source, dest) from APP component
04 time ← time + 1
05 queue.add(time, mes, source, dest)
06 broadcast(mes, source, time)
07 :: receive(mes, source, t)
08 if (dest = i)
09 queue.add(t, mes, source, dest)
10 else
11 queue.add(t, ACK, source, i)
12 if (t > time)
13 time ← t
14 time ← time + 1
15 broadcast(ACK, source, time)
16 :: receive(ACK, source, t)
17 queue.add(t, ACK, source, i)
18 if (t > time)
19 time ← t
20 :: ∃ entry : queueEntry | queue.has(entry) ∧ entry.messageType = APP MESSAGE ∧
21 ∀ p : process - i - entry.source | ∃ entryP : queueEntry | queue.has(entryP) ∧
22 entry.source = p ∧ entryP.t > entry.t
23 send(app, source) to APP component
24 ∀ e : queueEntry |
25 if (e.messageType = ACK ∧ e.t < entry.t)
26 queue.remove(e)
27 queue.remove(entry)

Figure 4.12: Total order algorithm based on Lamport timestamps

73

Customized Version

The communication structure of the algorithm shown in Figure 4.12 can be characterized

by the following three interaction sets:

- send app message to (SAMT) is the set of processors to whom application message

needs to be sent.

- wait ack from (WAKF) is the set of processors from whom acks must be obtained

prior to delivering the message to application.

- send ack to (SAT) is the set of processors to whom acks must be sent when application

message is received.

The algorithm written using these sets is shown in Figure 4.13.

Next, we define the membership criteria for these sets. For simplicity, we have assumed that

at most one application component is mapped to each site and will use Ci to denote the

component mapped to site i. Let S denote the set of all components. We define SAMTi as

SAMTi = {j : Cj ∈ S}. We define WAKFi as following:

WAKFi = {j : Cj ∈ S ∧ ¬exclusive(Ci.total, Cj.total)}

SATi is defined to be the same as WAKFi. It is the responsibility of the designer to ensure

correctness of the algorithm with respect to these criteria. That is, any values assigned to

these sets satisfying the specified criteria must ensure total ordering.

74

Code for process Pi:

local variables:

01 time ← 0
02 queue ← empty

03 :: receive(mes, source, dest) from APP component
04 time ← time + 1
05 queue.add(time, mes, source, dest)
06 update SAMT()
07 send(mes, source, time) to SAMT
08 :: receive(mes, source, t)
09 if (dest = i)
10 queue.add(t, mes, source, dest)
11 else
12 queue.add(t, ACK, source, i)
13 if (t > time)
14 time ← t
15 time ← time + 1
16 update SAT()
17 send(ACK, source, time) to SAT
18 :: receive(ACK, source, t)
19 queue.add(t, ACK, source, i)
20 if (t > time)
21 time ← t
22 :: ∃ entry : queueEntry | queue.has(entry) ∧ entry.messageType = APP MESSAGE ∧
23 ∀ p | p ∈ WAKF | ∃ entryP : queueEntry | queue.has(entryP) ∧
24 entry.source = p ∧ entryP.t > entry.t
25 send(app, source) to APP component
26 ∀ e : queueEntry |
27 if (e.messageType = ACK ∧ e.t < entry.t)
28 queue.remove(e)
29 queue.remove(entry)

Figure 4.13: Customized version of total order algorithm based on Lamport timestamps

75

4.4.5 Proofs for customizable algorithms

When algorithm developers design algorithms, they need to prove that their algorithms

solve the problem at hand correctly. In our framework, we require algorithm developers to

design distributed algorithms in such a way that communication structure of an algorithm

is exposed for possible optimizations. That is done through the specification of interaction

sets. Algorithm developers also provide membership criteria for interaction sets expressed

in terms of basic queries that InDiGO infrastructure supports. Algorithm developers still

need to provide a proof that their algorithms written in terms of interaction sets are correct

and satisfy algorithm properties.

In this section we show that the task of algorithm developers does not become more diffi-

cult because of the fact that they need to follow a certain path in designing their algorithms.

We will provide proofs for traditional algorithms as well as for algorithms written to be used

in our framework and show that the difficulty level in providing proofs for customized algo-

rithms does not increase. Specifically, we will take a look at the mutual exclusion algorithm

presented earlier and show that mutual exclusion, no deadlock and no lockout properties of

mutual exclusion algorithms are preserved. We will prove these properties for traditional

and customized algorithms.

Formally, an algorithm solves the mutual exclusion problem with no deadlock if the

following properties hold:

Property P 1. Mutual exclusion: In every configuration of every execution, at most one

processor is in the critical section.

Property P 2. No deadlock: In every admissible execution, if some processor is in the

requesting state in a configuration, then there is a later configuration in which some processor

is in the critical section.

Property P 3. No lockout: In every admissible execution, if some processor is in the

requesting state in a configuration, then there is a later configuration in which that same

76

processor is in the critical section.

The traditional version of mutual exclusion algorithm based on Lamport’s timestamps is

shown in Figure 4.8.

Theorem 4.1. Mutual exclusion algorithm in Figure 4.8 satisfies mutual exclusion property

P 1.

Proof. We proceed by contradiction. Suppose that two processes Pi and Pj are in critical

section CS at the same time. This means that both processes Pi and Pj broadcasted their

request message to all other processes (line 8) and put their own requests in their local

request queues RQ (line 9). Assume, without loss of generality, that the logical time ti of

Pi’s latest request message is smaller than the logical time tj of Pj’s latest request message.

Then, in order to enter critical section CS, Pj had to see in its local request queue RQ a

message from Pi with logical time greater than tj and hence greater than ti (line 20). Then,

FIFO property implies that Pj must have seen Pi’s current request message when it was in

CS. But then, in order for Pj to have its request on top of its local request queue RQ, Pj

must have seen a subsequent release message from Pi so that the request message from Pi

is removed from RQ (lines 18-19). This implies that Pi must have already left CS (lines

23-26) at the time Pj was in CS. We arrive at contradiction.

Customizable version of mutual exclusion algorithm based on Lamport’s timestamps is

shown in Figure 4.9.

Theorem 4.2. Mutual exclusion algorithm in Figure 4.9 satisfies mutual exclusion property

P 1.

Proof. We proceed by contradiction. Suppose that two processes Pi and Pj are in critical

section CS at the same time. SRT set is defined as follows:

77

SRTi = {j : Cj ∈ S ∧ ¬exclusive(Ci.in cs = 1, Cj.in cs = 1)} (for simplicity, we have as-

sumed that at most one application component is mapped to each site and we use Ci to

denote the component mapped to site i; S denotes the set of all components.). Since pro-

cesses Pi and Pj could be in critical section at the same time then, by definition of SRT set,

it will mean that process Pj is in the SRT set of process Pi and that process Pi is in the SRT

set of process Pj. Since process Pi is in the critical section, it had to send a request message

to the processes in its SRT set (line 9), and that includes process Pj. Since process Pj is in

the critical section, it had to send a request message to the processes in its SRT set (line

9), and that includes process Pi. Then both processes Pi and Pj put their own requests in

their local request queues RQ (line 10). Assume, without loss of generality, that the logical

time ti of Pi’s latest request message is smaller than the logical time tj of Pj’s latest request

message. Then, in order to enter critical section CS, Pj had to receive an acknowledgement

message from all processes in its WFA set (WFA set is defined the same as SRT set) and see

in its local request queue RQ a message from Pi with logical time greater than tj and hence

greater than ti (line 21). Then, FIFO property implies that Pj must have seen Pi’s current

request message when it was in CS. But then, in order for Pj to have its request on top of

its local request queue RQ, Pj must have seen a subsequent release message from Pi so that

the request message from Pi is removed from RQ (lines 19-20). This implies that Pi must

have already left CS (lines 24-27) at the time Pj was in CS. We arrive at contradiction.

Next, we will prove no lockout property P 3. No lockout property, in turn, implies no

deadlock property P 2.

Theorem 4.3. Mutual exclusion algorithm in Figure 4.8 satisfies no lockout property P 3.

Proof. No lockout property follows from the fact that requests are serviced in the order

of the logical times of their request messages. We argue that a request message with the

smallest logical time among those for current requests eventually gets served. Since there

78

are only finitely many requests messages that are assigned logical times smaller than that

of any particular request messages, an inductive argument then can be used to show that

all requests are granted.

Suppose that process Pi has broadcasted a request message (line 8) and this message

has the smallest logical time, ti, among those for current requests. We argue that eventually

the conditions for Pi to enter critical section CS (line 20) must become satisfied. First,

Pi eventually will receive its own request message and put it in its local request queue

RQ (line 9). Also, since request messages receive corresponding acknowledgments and the

clock variables are managed using Lamport’s timestamp mechanism, eventually Pi obtains

a message from each of the other processes with a logical time greater than ti. Finally, since

Pi’s request is the current request with the smallest logical time, any request with a smaller

logical time must have already been served. That implies that eventually Pi receives release

messages for the requests served and requests with smaller timestamps are removed from

the queue (lines 18-19). In this way, all the conditions for Pi to enter CS (line 20) must

eventually become satisfied.

Theorem 4.4. Mutual exclusion algorithm in Figure 4.9 satisfies no lockout property P 3.

Proof. No lockout property follows from the fact that requests are serviced in the order

of the logical times of their request messages. We argue that a request message with the

smallest logical time among those for current requests eventually gets served. Since there

are only finitely many requests messages that are assigned logical times smaller than that

of any particular request messages, an inductive argument then can be used to show that

all requests are granted.

Suppose that only a subset n of all processes N can request an access to critical section

at some point. Suppose that process Pi ∈ n. Then, by definition of SRT set, SRTi will

contain all processes in n − Pi. Suppose that process Pi has sent a request message to

all processes in its SRT set (line 9) and this message has the smallest logical time, ti,

79

among those for current requests. We argue that eventually the conditions for Pi to enter

critical section CS (line 21) must become satisfied. First, Pi eventually will receive its

own request message and put it in its local request queue RQ (line 10). Also, since request

messages receive corresponding acknowledgments and the clock variables are managed using

Lamport’s timestamp mechanism, eventually Pi obtains a message from each of the processes

in its WFA set with a logical time greater than ti. Finally, since Pi’s request is the current

request with the smallest logical time, any request with a smaller logical time must have

already been served. That implies that eventually Pi receives release messages for the

requests served and requests with smaller timestamps are removed from the queue (lines

19-20). In this way, all the conditions for Pi to enter CS (line 21) must eventually become

satisfied.

Theorem 4.5. Mutual exclusion algorithm in Figure 4.8 satisfies no deadlock property P 2.

Proof. Follows directly from Theorem 4.3.

Theorem 4.6. Mutual exclusion algorithm in Figure 4.9 satisfies no deadlock property P 2.

Proof. Follows directly from Theorem 4.4.

As can be seen, the proofs for customizable algorithms needed for our framework have

the same level of difficulty as the proofs for traditional algorithms. Therefore, algorithm

developers are not burdened with extra work when they design and prove customizable

algorithms suited for InDiGO infrastructure.

80

4.4.6 Discussion

There are several points to note here:

• As can be seen, it is relatively easy to transform existing algorithms into the format re-

quired by the scheme described above (interaction sets) as these interaction sets are already

being implicitly used in the algorithm design.

• Explicitly defining the membership criteria allows designers to capture the intended partic-

ipants in each interaction in a problem-specific manner. For some algorithms, the interaction

sets may coincide with the neighbor sets typically used in distributed algorithms. Explicit

definition allows us to compute the interaction set values in a more meaningful way, including

dynamically varying them based on application state. This becomes especially important

when an application employs several algorithms with different interaction sets.

• The interaction sets can be viewed as defining a logical topology for an algorithm. In

fact, in the description of many algorithms in the literature, the underlying graph is defined

in a problem specific manner (e.g., neighbors in the graph are defined as those with which

a process may actually communicate in the application rather than those in the physical

topology). This logical topology is mapped to the physical topology during deployment.

Our framework requires the definition of the logical topology to be made explicit using the

interaction sets. As an application may require several algorithms, the logical topologies for

each of the algorithms may be different, and furthermore, this may be different from the

communication topology of the application and the physcial topology. Defining the interac-

tion sets allows our optimization engine to further refine these sets before they are mapped

to the physical topology.

• The interaction sets can be specific to an algorithm or to a class of algorithms. For ex-

ample, we could also have followed an alternative approach wherein we define sets with well

defined meanings for a class of algorithms, and ask developers to use these predefined sets

to program the algorithms. For example, the set SRT could be common to mutual exclusion

algorithms.

81

4.5 Optimization tools perspective

In this section, we describe our framework from the framework tools perspective. The

infrastructure to automatically derive a representation of the application structure from the

application specification, the use of model checking tools to answer the queries of interest

on this representation precisely and optimization engine provide us with the tools necessary

to analyze the application to obtain information useful in optimizing the algorithms.

4.5.1 ADG construction tool

In our framework, we specify an application as an ADG graph. We developed a tool to auto-

matically construct an ADG graph. ADG construction is described in details in Section 4.3

on page 41. Inputs to the ADG construction tool are a Cadena module file that describes

component types and provides information about ports that each component type has,

a Cadena assembly specification file that describes component instances and connections

between them in a specific application, and a component specification file that describes

internal dependencies between the input and ouput ports of the component and behavior of

each event handler.

ADG construction tool follows the rules for the construction of an ADG graph described

in Section 4.3 and generates output file containing information about ADG nodes and con-

nections between them in XML format. A sample of such an output for the application in

Figure 2.3 is shown in Listing 4.8. A pictorial view of the graph generated by the ADG

construction tool is shown in Figure 4.14 for the application in Figure 2.3.

82

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <adgGraph>
3 <nodes>
4 <node nodeId=”1” nodeName=”C0 . s t a r t ” nodeStatus In i t=”true”/>
5 <node nodeId=”2” nodeName=”C0 . nextToBid” nodeStatus In i t=” f a l s e ”/>
6 <node nodeId=”3” nodeName=”C0 . case ” nodeSta tus In i t=” f a l s e ”/>
7 <node nodeId=”4” nodeName=”C0 . c s r e qu e s t ” nodeStatus In i t=” f a l s e ”/>
8 <node nodeId=”5” nodeName=”C0 . bid ” nodeStatus In i t=” f a l s e ”/>
9 <node nodeId=”6” nodeName=”C0 . c s r e l e a s e ” nodeStatus In i t=” f a l s e ”/>

10 <node nodeId=”7” nodeName=”C0 . bidMade” nodeStatus In i t=” f a l s e ”/>
11 <node nodeId=”8” nodeName=”C0 . pa s s i v e ” nodeSta tus In i t=” f a l s e ”/>
12 . . .
13 </nodes>
14 <edges>
15 <edge edgeId=”137” edgeName=”C0 . s ta r t−C0 . case”>
16 <nodeFrom nodeId=”1” nodeName=”C0 . s t a r t ” statusOutcoming=”AND”/>
17 <nodeTo nodeId=”3” nodeName=”C0 . case ” statusIncoming=”OR”/>
18 <edge/>
19 <edge edgeId=”138” edgeName=”C0 . nextToBid−C0 . case”>
20 <nodeFrom nodeId=”2” nodeName=”C0 . nextToBid” statusOutcoming=”AND”/>
21 <nodeTo nodeId=”3” nodeName=”C0 . case ” statusIncoming=”OR”/>
22 <edge/>
23 <edge edgeId=”139” edgeName=”C0 . case−C0 . c s r e qu e s t”>
24 <nodeFrom nodeId=”3” nodeName=”C0 . case ” statusOutcoming=”OR”/>
25 <nodeTo nodeId=”4” nodeName=”C0 . c s r e qu e s t ” statusIncoming=”OR”/>
26 <edge/>
27 <edge edgeId=”140” edgeName=”C0 . case−C0 . pa s s i v e”>
28 <nodeFrom nodeId=”3” nodeName=”C0 . case ” statusOutcoming=”OR”/>
29 <nodeTo nodeId=”8” nodeName=”C0 . pa s s i v e ” statusIncoming=”OR”/>
30 <edge/>
31 <edge edgeId=”141” edgeName=”C0 . c s r eque s t−C0 . bid”>
32 <nodeFrom nodeId=”4” nodeName=”C0 . c s r e qu e s t ” statusOutcoming=”AND”/>
33 <nodeTo nodeId=”5” nodeName=”C0 . bid ” statusIncoming=”OR”/>
34 <edge/>
35 <edge edgeId=”142” edgeName=”C0 . bid−C0 . c s r e l e a s e ”>
36 <nodeFrom nodeId=”5” nodeName=”C0 . bid ” statusOutcoming=”AND”/>
37 <nodeTo nodeId=”6” nodeName=”C0 . c s r e l e a s e ” statusIncoming=”OR”/>
38 <edge/>
39 <edge edgeId=”143” edgeName=”C0 . c s r e l e a s e−C0 . bidMade”>
40 <nodeFrom nodeId=”6” nodeName=”C0 . c s r e l e a s e ” statusOutcoming=”AND”/>
41 <nodeTo nodeId=”7” nodeName=”C0 . bidMade” statusIncoming=”OR”/>
42 <edge/>
43 . . .
44 </edges>
45 . . .

Listing 4.8: Sample of ADG construction tool output.

Figure 4.14: A pictorial view of ADG graph

83

4.5.2 Promela model construction tool

Spin models are written in Promela specification language. So, in order to utilize Spin model

checker, we need to convert ADG graph into Promela model. Here, we describe the Promela

model construction tool that we have developed.

ADG graph is stored in an XML file and the file describes the nodes of the graph and its

edges. This XML file serves as an input to our translation tool. Counters file and counter

update rules file are also inputs to the Promela model costruction tool. The output of the

tool is the model file written in Promela specification language.

The translation and output to a Promela file is done as follows. First, we extract ADG

node information from the ADG graph XML file. We use standard Java based parser

to extract elements by tag name utilizing DocumentBuilderFactory, DocumentBuilder and

Document classes from javax.xml.parsers library. Each node element describes an ADG

node. In the declaration part of the Promela file, we declare a variable of boolean type

for each node of the ADG graph, one declaration per line. The false value of the variable

specifies that the node the variable represents is currently disabled, while true value of the

variable specifies that the node the variable represents is currently enabled at execution

time. All init nodes of the ADG graph are initialized to true (they are enabled when the

system starts up). All other nodes are initialized to false. We also declare a variable for each

counter from counters file per each component and initialize them to 0. We then output

a blank line. Next, we output proctype declaration, call our proctype test, and output an

open curly brace on the next line. The body of the proctype starts after the open brace.

On the next line, we output the beginning of a Promela loop statement. Next, we output

the beginning of a Promela selection statement. Statements inside a selection statement

are chosen non-deterministically. Then, we extract ADG edge information from the ADG

graph XML file. We use standard Java based parser to extract elements by tag name utilizing

DocumentBuilderFactory, DocumentBuilder and Document classes from javax.xml.parsers

library. Each edge element describes an ADG edge. Edges of the ADG graph are translated

84

into guarded commands. A guard is a condition that describes the node that the edge is

coming out from as enabled. These guarded commands are placed inside the Promela if

structure. The body of each guarded command represents the result of a transition in the

ADG graph. Some nodes become enabled (these are those nodes that the edge goes into)

and other nodes become disabled (these are those nodes that the edge goes out from). If a

node has outcoming OR edges, then there is a guarded command per each outcoming edge.

If a node has outcoming AND edges, then all the nodes that the edges go into need to be

combined in the body part of one guarded command and get enabled. If a node has incoming

AND edges, all the nodes that these edges are coming out from need to be included in the

guard part of the guard statement, since all of them need to be enabled for the destination

node to become enabled. Counter update rules are embedded in guarded commands as

following. When an action in the body of a guarded command matches the if part of some

counter update rule, then the corresponding action of the rule is included in the body of

the guarded command as well. After all edges are translated into guarded commands and

all guarded commands are included into the body of the Promela if structure, we output

the end of the Promela selection structure on the next line. Next, we output the end of the

Promela repetition structure on the next line. Lastly, we ouput a closing brace that signifies

the end of the proctype.

85

Let’s look at an example. ADG graph depicted in Figure 4.15 is represented by XML file

in Listing 4.9. The graph has 5 nodes two of which are init nodes. This XML file is given

to the translation tool as input. The output from the translation tool is the Promela model

shown in Listing 4.10.

Figure 4.15: An example of ADG graph with five nodes

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <adgGraph>
3 <nodes>
4 <node nodeId=”1” nodeName=”1” nodeStatus In i t=”true”/>
5 <node nodeId=”2” nodeName=”2” nodeStatus In i t=” f a l s e ”/>
6 <node nodeId=”3” nodeName=”3” nodeStatus In i t=” f a l s e ”/>
7 <node nodeId=”4” nodeName=”4” nodeStatus In i t=”true”/>
8 <node nodeId=”5” nodeName=”5” nodeStatus In i t=” f a l s e ”/>
9 </nodes>

10 <edges>
11 <edge edgeId=”6” edgeName=”1−2”>
12 <nodeFrom nodeId=”1” nodeName=”1” statusOutcoming=”AND”/>
13 <nodeTo nodeId=”2” nodeName=”2” statusIncoming=”OR”/>
14 <edge/>
15 <edge edgeId=”7” edgeName=”2−3”>
16 <nodeFrom nodeId=”2” nodeName=”2” statusOutcoming=”AND”/>
17 <nodeTo nodeId=”3” nodeName=”3” statusIncoming=”OR”/>
18 <edge/>
19 <edge edgeId=”8” edgeName=”4−5”>
20 <nodeFrom nodeId=”4” nodeName=”4” statusOutcoming=”AND”/>
21 <nodeTo nodeId=”5” nodeName=”5” statusIncoming=”OR”/>
22 <edge/>
23 <edge edgeId=”9” edgeName=”5−3”>
24 <nodeFrom nodeId=”5” nodeName=”5” statusOutcoming=”AND”/>
25 <nodeTo nodeId=”3” nodeName=”3” statusIncoming=”OR”/>
26 <edge/>
27 </edges>
28 </adg>

Listing 4.9: ADG XML input file.

86

1 bool e1 = true ;
2 bool e2 = f a l s e ;
3 bool e3 = f a l s e ;
4 bool e4 = true ;
5 bool e5 = f a l s e ;
6
7 a c t i v e proctype t e s t ()
8 {
9 end : do

10 : : i f
11 : : (e1 == true) −> atomic {e1 = f a l s e ; e2 = true }
12 : : (e2 == true) −> atomic {e2 = f a l s e ; e3 = true }
13 : : (e3 == true) −> atomic {e3 = f a l s e }
14 : : (e4 == true) −> atomic {e4 = f a l s e ; e5 = true }
15 : : (e5 == true) −> atomic {e5 = f a l s e ; e3 = true }
16 f i
17 od
18 }

Listing 4.10: Promela file generated for ADG graph in Figure 4.15.

For example, boolean variable e1 is declared in line 1 and represents node 1. It is initialized

to true since node 1 is an init node. The guard statement in line 11 represents the edge from

node 1 to node 2. When node 1 is enabled (the guard), the system can go to a different

state where e1 becomes disabled and e2 becomes enabled.

87

4.5.3 Optimizer

The optimization engine derives information necessary for application and physical topology

based optimizations. Here, we describe our optimizer in detail.

The following are the inputs to the optimization engine:

a) An application App specified as a Promela model.

b) The membership criteria for the interaction sets used in the algorithms alg that

application App requires.

c) Information on dynamic updates to the interaction sets used in the algorithms alg

that application App requires.

d) Network model specified as a physical topology graph (PTG) that describes the

underlying physical topology on top of which the application is being deployed.

e) A mapping Map identifying the location of each component in the physical topology.

The optimizer outputs information for application-based static optimization, application-

based dynamic optimization and physical topology-based optimization in XML format.

Next we describe the inputs to the optimizer in detail.

Application App

An application App is specified as a Promela model. This model is an abstraction of the

application App. The Promela model is produced by the Promela model construction tool.

An example of such a file is shown in Listing 4.11.

88

1 bool e1 = true ;
2 bool e2 = f a l s e ;
3 bool e3 = f a l s e ;
4 bool e4 = true ;
5 bool e5 = f a l s e ;
6
7 a c t i v e proctype t e s t ()
8 {
9 end : do

10 : : i f
11 : : (e1 == true) −> atomic {e1 = f a l s e ; e2 = true }
12 : : (e2 == true) −> atomic {e2 = f a l s e ; e3 = true }
13 : : (e3 == true) −> atomic {e3 = f a l s e }
14 : : (e4 == true) −> atomic {e4 = f a l s e ; e5 = true }
15 : : (e5 == true) −> atomic {e5 = f a l s e ; e3 = true }
16 f i
17 od
18 }

Listing 4.11: Example of Promela file generated for ADG graph in Figure 4.15.

Membership criteria for the interaction sets

Another input to the optimization engine is the membership criteria for the interaction

sets used in the algorithms alg that application App requires. The membership criteria for

interaction sets need to be supplied to optimizer in a form that the optimizer is able to

parse it. An example of such an input file for membership criterion of SRT interaction set

is shown in Listing 4.12. It specifies the name of the interaction set, the name of the query

to run and the arguments for the query in a comma delimited format.

1 SRT. i , ALL, not exc lu s i v e , i . i n c s = 1 , j . i n c s = 1
2 . . .

Listing 4.12: Sample of membership criteria input to optimizer.

Information on dynamic updates to the interaction sets

Information on dynamic updates to the interaction sets used in the algorithms alg that

application App requires is also supplied to optimizer as an input. This information is

specified in a standardized form. An example of such an input file for information on

dynamic updates to the SRT interaction set is shown in Listing 4.13.

1 SRT. i , ALL, not exc lu s i v e , i . i n c s = 1 , j . i n c s = 1 , i f k . s t a t e = reque s t i ng then k . c s r e qu e s t = enabled
2 . . .

Listing 4.13: Sample of dynamic information input to optimizer.

89

This example specifies the name of the set for which dynamic optimization information is

needed, the name of the query to run and the arguments for the query. It also specifies that

if a process is in the requesting state, a cs request node for this process will be enabled in

the abstraction model for our system. Optimizer will translate this information into which

node is enabled and will run the specified query with an additional argument representing

which node is enabled.

Network model

The network model is specified as a physical topology graph (PTG) that describes the un-

derlying physical topology on top of which the application is being deployed. An example

of such a file is shown in Listing 4.14.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <Topology>
3 <Nodes>
4 <Node id=”1” nodeName=”0”/>
5 <Node id=”2” nodeName=”1”/>
6 <Node id=”3” nodeName=”2”/>
7 <Node id=”4” nodeName=”3”/>
8 <Node id=”5” nodeName=”4”/>
9 <Node id=”6” nodeName=”5”/>

10 . . .
11 </Nodes>
12 <Links>
13 <Link id=”13” node1=”0” node2=”1”/>
14 <Link id=”14” node1=”1” node2=”2”/>
15 <Link id=”15” node1=”2” node2=”3”/>
16 <Link id=”16” node1=”3” node2=”0”/>
17 . . .
18 </Links>
19 </Topology>

Listing 4.14: Sample of PTG XML file provided to optimizer as an input.

Component to physical topology mapping

A mapping Map identifying the location of each component in the physical topology is also

provided to the optimizer as input by the application developer. An example of such a file

is shown in Listing 4.15.

1 C1 , 1
2 C2 , 2
3 . . .

Listing 4.15: Sample of a mapping file provided to optimizer as an input.

90

This example specifies that component C1 is mapped to processor 1 and component C2 is

mapped to processor 2.

The optimization engine takes Promela model as an input. Next, the optimizer processes

membership criteria information file. The optimizer parses each membership criterion at a

time. Each membership criterion has a name of the interaction set that it defines, the name

of the query to run, and arguments to the query. These parts are parsed and the name of the

interaction set is temporarily stored in memory. The arguments to the query are either ADG

nodes that represent events or counters. If the arguments to the query are counters, then

one of the arguments is constant and corresponds to the same processor that the interaction

set is for. The other argument is variable and corresponds to a counter for another processor

and the query needs to be run for every possible processor in the variable part. Therefore,

we run the query number of processors minus one times to populate one interaction set. If

the arguments to the query are ADG nodes, then again each query contains a part that

stays constant (it corresponds to a node of ADG that is related to a process associated with

the interaction set) and a variable part (that will be associated with another node of ADG).

The variable part could be any node of the ADG so the query has to be run against every

possible node. Each query is translated into a never claim supported by Spin according to

a template that is specific to the query. To run a query, we run Promela model with the

never claim that represents the query to run. For each run, query arguments are updated

appropriately in the never claim.

For example, query exclusive(e2,e5) will be translated to the never claim shown in List-

ing 4.18.

1 never {
2 do
3 : : ((e2 == true) && (e5 == true)) −> break
4 : : e l s e
5 od
6 }

Listing 4.16: Never claim example.

The never claim is verified for every possible state of the system. If we run the verification

on the model shown in Listing 4.10 with never claim in Listing 4.18, Spin would output

91

”claim violated” response. What it means is that there is a state of the system represented

by the model when both e2 and e5 are true (or enabled). Therefore, exclusive(e2,e5) query

would return false.

If we look at another example, say exclusive(e1,e2), the corresponding never claim will

look like in Listing 4.17.

1 never {
2 do
3 : : ((e1 == true) && (e2 == true)) −> break
4 : : e l s e
5 od
6 }

Listing 4.17: Never claim example.

If we run the verification on the model shown in Listing 4.10 with never claim in Listing 4.17,

Spin verification will not detect a violation. What it means is that there is no state of the

system represented by the model when both e1 and e2 are true (or enabled). Therefore,

exclusive(e1,e2) query would return true.

We developed a script that runs Promela model with each never claim at a time. Ap-

propriate arguments are supplied for each run. The result of each run is used to populate

interaction sets specified in membership criterion. Physical topology graph along with the

mapping Map are utilized here as well and are used to see if several components are mapped

to one processor.

Next, the optimizer processes the information on dynamic updates to the interaction

sets. The procedure is similar to the one described for membership criteria. Optimizer

translates the specified conditions into wich nodes in the model are enabled and the query

is run taking that information into consideration. The result of each run is translated into

optimization information in the form of rules.

We completed implementation of optimizer parser to process membership criteria and

dynamic updates information for mutual exclusion service. We plan to finish implementation

of the parser for other services in the future work.

Finally, the optimizer caclulates the shortest path information for each pair of nodes

in the physical topology graph for physical topology based optimization and outputs that

92

information in XML format.

93

4.5.3.1 Discussion on optimizer complexity

In this section we will discuss the computational complexity of our tools. We will concentrate

on the optimizer because the optimizer is doing the bulk of the work. Other tools process

information by performing necessary conversions.

The main job of the optimizer is to provide optimization information. The optimization

information is in the form of sets of processes that participate in a certain interaction. These

sets are used to specify what is in our algorithms’ interaction sets described by membership

criterion per interaction set. Each algorithm is written in terms of interaction sets. Since

algorithms (services) are deployed on processors, we can talk of membership sets related to

a process. Each membership criterion is written in terms of basic queries that need to be

executed on ADG. Each basic query contains a part that stays constant (it corresponds to a

node of ADG that is related to a process associated with the interaction set) and a variable

part (that will be associated with another node of ADG). The variable part could be any

node of the ADG so the query has to be run against every possible node. Therefore, the

query needs to be run n-1 times in the worst case, with n being the number of nodes in

the ADG graph. Total complexity of running the query will then be (n-1) x (complexity of

running one query instance).

We utilize Spin model checker to answer the queries. First, ADG is translated into

Promela model. Next, a query is translated into a never claim supported by Spin. Then,

a model is verified with the never claim provided. Each Spin component (Promela model

or never claim) is a finite state automaton A. We will refer to state set S of A as A.S. The

computational complexity for the depth-first search algorithm utilized by Spin is linear in

the number of reachable states in A.S. But since A.S is computed from two asynchronous

components, Promela model and never claim, the size of this state set is equal to the size

of the Cartesian product of these two component state sets. Since the never claim is always

represented by a constant number of instructions (see Listing 4.18), the computational

complexity is still linear in the number of reachable states R in promela model. Thus, total

94

computational complexity of running one query is in the order of n x R.

1 never {
2 do
3 : : ((e2 == true) && (e5 == true)) −> break
4 : : e l s e
5 od
6 }

Listing 4.18: Never claim example.

So, the complexity of populating an interaction set for one component is in the order of

n× R. In the worst case, we might have one component per prosessor and one ADG node

per component. So, to populate an interaction set for all components will require n×n×R

in the worst case.

We might have m different interaction sets. To populate all of them then will require

m× n× n×R in the worst case. This is the total complexity of our optimizer.

In practice, we can lower the computational complexity tremendously. First, we note

that a basic query might contain only a certain type of nodes or update rules for counters

might depend on only certain types of nodes. For example, SRT set is defined as following:

SRTi = {j : Cj ∈ S ∧ ¬exclusive(Ci.in cs = 1, Cj.in cs = 1)}.

Therefore, to answer exclusive query with conditions on in cs counter, we can project ADG

graph to another graph that will have only cs request and cs release type nodes. For exam-

ple, if we need to run the above mentioned query on graph shown in Figure 4.16, we can

first project the graph to the one shown in Figure 4.17. As the result, the number of nodes

in the graph is much lower than in the original graph. When the graph is translated into

Promela model, the number of reachable states is tremendously lower than in the original

model. The total complexity then will be in the order of m× nprojected × nprojected ×R with

nprojected significantly smaller than original n.

95

Figure 4.16: An example of ADG graph before projection

Figure 4.17: An example of ADG graph after projection

We can do even better. Suppose, nodes C1.cs request and C2.cs request correspond to the

components that are mapped onto the same processor. Then, the two cs request nodes

could be combined into one and two cs release nodes could be combined into one as well as

in Figure 4.18.

A few other observations. Some interaction sets could be defined the same. Then, there

is no need to run same set of queries on ADG multiple times. The information can just be

copied over. This results in a smaller m in our complexity formula.

We utilize only boolean variables in our Promela model. There are no channels and

message buffers are not needed. The two most important sources of complexity in Spin

models, the number of asynchronously executing processes and the size of message buffers,

96

Figure 4.18: An example of a projected ADG graph

are not an issue in our approach. That results in high scalability of our approach, which is

the key to the success of our customization technique.

The main advantages of our approach is that analysis is performed off-line and at the

modeling level where the state space is much smaller.

97

4.6 Summary

Here, we will summarize the steps that application and algorithms developers need to take

in their developments to utilize InDiGO infrastructure.

In our framework, the application developer specifies applications in Cadena, an inte-

grated modeling and development environment for component-based systems. The developer

designs components first and then develops an application by identifying the component in-

stances and specifying their port interconnections (assembly specification).

For each component instance, Cadena generates a skeleton Java file. The application

designer fills in the business logic in the Java file and annotates the component code to specify

the required library algorithms. The designer is provided with a list of available services

and annotations per service interface. As algorithm developers provide new services, the list

of available services along with their interfaces is updated and provided to the application

developers.

A component property specification (CPS) file is also generated by Cadena for each

component and contains information relevant to the internal structure of the component.

To derive application specific information from application specification, we construct

an application dependency graph (ADG) representing the structure of the application. This

process is automated - we use ADG construction tool.

The optimization engine uses the ADG to derive information necessary to optimize the

algorithms by running queries on the ADG. We have identified a set of basic queries useful

in a number of algorithms.

The application designer must also provide a mapping, Map, to the optimizer to specify

the nodes where each component instances are to be deployed.

The task of a algorithm developer is to provide a library of distributed algorithms for

common tasks such as mutual exclusion and termination detection. To enable customization,

an algorithm developer must expose design knowledge pertaining to an algorithm in a form

which can be leveraged for analysis. To achieve this, we require a designer to first identify

98

the interaction sets, which characterize algorithm’s communication structure and specify

the processes participating in each interaction. The designer then writes the algorithm in

terms of these sets. Next, the designer defines the membership criterion for each set; that

is, the criterion for a process to be involved in an interaction. This criterion is a problem-

specific property a process must satisfy to participate in the interaction. The criteria must

be defined in terms of the queries supported by the analysis infrastructure.

Next, the algorithm designer supplies information for dynamic updates to the interaction

sets. This information can be utilized by our framework to further constrain interaction sets

at run time and to achieve even better optimization.

The optimization engine takes as input a) an application App specified as an ADG

graph; b) the membership criteria for the interaction sets used in the algorithms alg that

application App requires; c) information on dynamic updates to the interaction sets used in

the algorithms alg that application App requires; d) network model specified as a physical

topology graph (PTG) that describes the underlying physical topology on top of which the

application is being deployed; and e) a mapping Map identifying the location of each com-

ponent in the physical topology and proceeds with translating the ADG graph into Promela

model. Next, the optimizer processes membership criteria information to produce applica-

tion based static optimization information. Next, the optimizer processes the information

on dynamic updates to the interaction sets. This results in application based dynamic op-

timization information in the form of rules. Finally, the optimizer caclulates the shortest

path information for each pair of nodes in the physical topology graph for physical topology

based optimization and outputs that information in XML format.

The final step involves installing the code on each node in the network. The application

designer must provide a mapping, Map, to specify the nodes where each component instances

are to be deployed. Cadena provides deployment tools that use this mapping to generate

and install the code to be deployed on each node.

99

Chapter 5

Optimizations

This chapter describes optimizations that are possible through the utilization of our frame-

work. We perform application-based static optimizations, application-based dynamic op-

timizations and physical topology-based optimizations. Application-based optimization

comes in the form of reducing the number of control messages that an algorithm has to

use to achieve its task. In our framework, customizable algorithms are designed by algo-

rithm developers and written in terms of interaction sets. These interaction sets capture

the communication structure of an algorithm for possible optimizations in a given context.

Application-based optimization is achieved through constraining interaction sets based on

application information. Physical topology-based optimizations are realized through elim-

inating redundant messages and are based on shortest paths information. Each type of

optimization is describe in a separate section of this chapter. We summarize in section 5.4.

5.1 Application-based static optimizations

Static application-based optimization is performed by computing the initial values of the

interaction sets. These values are known to hold throughout the execution of the application.

Optimization engine provides this information in the form of XML file.

For each algorithm used by App, the optimization engine computes the values of the

interaction sets by issuing queries on the ADG. Note that the optimization engine does not

need to know how these sets are used in the algorithm. It merely uses the membership

100

criteria for interaction sets, provided by an algorithm developer to the optimizer, to query

the ADG. So, these queries are essentially those corresponding to the membership criteria

for each interaction set. Based on the responses, the optimization engine produces a file in

XML format describing the set membership. An excerpt of the file for the SRT sets used in

the mutual exclusion algorithm for bidding application described in evaluation section 6.1.1

on page 109 is shown in Listing 5.1. This set is computed with respect to each component,

and the elements belonging to one of the bidders are shown.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <components>
3 <component componentName=”bidder0”>
4 <SRT>
5 <SRTelement SRTelementName=”bidder8”/>
6 <SRTelement SRTelementName=”bidder9”/>
7 <SRTelement SRTelementName=”bidder6”/>
8 <SRTelement SRTelementName=”bidder7”/>
9 <SRTelement SRTelementName=”bidder4”/>

10 <SRTelement SRTelementName=”bidder5”/>
11 <SRTelement SRTelementName=”bidder11”/>
12 <SRTelement SRTelementName=”bidder10”/>
13 </SRT>
14 </component>
15 . . .

Listing 5.1: Example of static optimization information.

For example, if bidder0 wants to access critical section, it needs to send a request only to

components listed as elements of its SRT set, namely: bidder4 through bidder11. Notice,

that bidder1 through bidder3 are excluded.

101

5.2 Application-based dynamic optimizations

We also perform dynamic optimization of the interaction sets. During the execution of

the application, it might be the case that in specific states, the set membership can be

further constrained. During the execution of the algorithm, a process may be able to gain

knowledge of the state of the application entities at other nodes via incoming messages. For

example, when process i receives a request message from j in a mutal exclusion algorithm,

it knows that an application component at j is requesting critical section entry. Again, since

the algorithm designer has knowledge of the algorithm, it can provide such information by

identifying the assertions that hold true about the application state at certain points in the

algorithm. The optimization engine then computes a set of dynamic optimization rules to

update the set membership dynamically.

The algorithm developer is required to specify information on dynamic updates to the

interaction sets in a standardized form and provide it to optimizer as input. The optimiza-

tion engine evaluates queries provided in the dynamic updates information and, based on

the responses to the queries, generates a set of dynamic optimization rules in XML format.

For example, ADG analysis may reveal that when Cj is requesting entry into critical section,

Ck cannot be concurrently requesting entry. Hence if i has already received a request from

j, then SRTi is updated to exclude k.

An excerpt of the file for the SRT sets used in the mutual exclusion algorithm for bidding

application described in evaluation section 6.1.1 on page 109 is shown in Listing 5.2. As

shown, for each condition, it specifies the process ids that can be removed from the SRT

interaction set. The call to procedure update SRT is added to the algorithm (line 07 in

Figure 4.9). This procedure updates the SRT interaction set at run time.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <dynamicRules>
3 <RULE componentName=”bidder0”>
4 <cur rent lyReques t ing componentName=”bidder11”/>
5 <doesNotBelongToSRT componentName=”bidder9”/>
6 <doesNotBelongToSRT componentName=”bidder10”/>
7 </RULE>
8 . . .

Listing 5.2: Example of dynamic optimization information.

102

From this listing, for example, for component bidder0, if it wants to access critical section,

and it knows that bidder11 is currently requesting access to critical section too, bidder0

does not need to send a request message to bidder9 and bidder10 and excludes them from

its SRT set when update SRT() is called.

103

5.3 Physical topology-based optimizations

Network model is represented by the physical topology graph PTG that describes the un-

derlying physical topology on top of which the application is being deployed. PTG is an

undirected graph in which each node represents a physical processor. An edge is present

between two nodes if and only if there is a physical connection between the corresponding

physical processors. We will call edges links.

The Core Service Layer (CSL) in J-Sim simulator that we use to evaluate our frame-

work provides the basic communication services20 and requires that the routing tables be

initialized so that messages can be routed properly. Since many algorithms involve sending

the same message to multiple destinations in an interaction set, we have extended CSL to

perform multi-destination routing. Given a message and a set of destinations, we compute

the set of links on which to forward the message so that duplicate messages are eliminated.

For example, if a message has to be sent from i to both j and k, and j is on the path from

i to k, then a single copy of the message with both j and k as destinations is first sent to j.

This extension requires CSL to be initialized with shortest path information.

The optimizer caclulates the shortest path information for each pair of nodes in the

physical topology graph for physical topology based optimization and outputs that infor-

mation in XML format. An example of such information is shown in Listing 5.3. CSL

layer in J-Sim is initialized with this shortest path information and then uses it to perform

multi-destination routing.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <TopologyStat ic maxPath=”5”>
3 <Nodes>
4 <Node nodeName=”0”>
5 <Path toNode=”1” pathLenght=”1”>
6 <PathElement hopCount=”1” nodeName=”1”/>
7 </Path>
8 <Path toNode=”2” pathLenght=”2”>
9 <PathElement hopCount=”1” nodeName=”1”/>

10 <PathElement hopCount=”2” nodeName=”2”/>
11 </Path>
12 <Path toNode=”3” pathLenght=”1”>
13 <PathElement hopCount=”1” nodeName=”3”/>
14 </Path>
15 <Path toNode=”4” pathLenght=”2”>
16 <PathElement hopCount=”1” nodeName=”1”/>
17 <PathElement hopCount=”2” nodeName=”4”/>
18 </Path>
19 . . .

Listing 5.3: Example of physical topology shortest path information.

104

5.4 Discussion

We have provided an infrastructure which consists of a tool-chain to perform algorithm

optimizations. Although we have focused on specific types of optimizations in this thesis,

the infrastructure is extensible to allow a richer set of optimizations. For example, the

algorithm designer can enable optimizations by exposing more information about the algo-

rithms. Any algorithm information defined in terms of queries on the ADG can be leveraged

by the optimization engines for possible customization. The assertion set, alg.app assert, is

an example of one such type of information which we have exploited to perform additional

optimizations. Similarly, one can develop tools to capture more information about the ap-

plication in the ADG, which can reveal more optimization opportunities. Indeed, one of the

goals in Cadena is to derive more accurate models from the component code (e.g., derivation

of more detailed CPS files for Java files). Finally, more sophisticated analysis algorithms

can also be plugged into the tool-chain to analyze the ADG for aggressive optimizations.

As an example, we decided to utilize model checking the ADG that can be used to verify

more general properties.

We will end this chapter with the discussion on optimality of optimization. In computing,

optimization is the process of modifying a system to make some aspect of it work more

efficiently or use fewer resources. For instance, in networking environment it is desirable to

reduce the number of messages flowing in a network. If we are able to do that, we say that

we are able to optimize the system with respect to number of messages.

Optimization might mean different things to different disciplines. For example, in op-

erations research, optimization is the problem of determining the input to a function that

minimizes or maximizes its value. In computer programming, optimization usually means

producing more efficient software.

Although we would usually talk about optimality when it comes to optimization, it

is rare for the process of optimization to produce a truly optimal system. For example,

optimizing compilers are not optimal. There is no way that a compiler can guarantee that,

105

for all program source code, the fastest or smallest possible equivalent compiled program

is output; such a compiler is fundamentally impossible because it would solve the halting

problem.

Optimization can be automated by tools or performed by developers. Optimizing a whole

system is usually done by humans because the system is too complex for an automated

optimizer. Developers explicitly change code so that the system performs better. Although

it can produce better efficiency, it is far more expensive than automated optimizations.

Currently, automated optimizations are almost exclusively limited to compiler optimiza-

tion. We go beyond that in this thesis and provide a framework to analyze the system for

optimization opportunities at design level.

106

Chapter 6

Evaluation

In this chapter, we evaluate our infrastructure with respect to optimization in terms of

the number of messages that algorithms use to perform their tasks. We want to see if

our framework can utilize application ordering information for possible optimizations. We

also want to see if our framework can recognize when more constraints on ordering are

present in an application and translate that into higher optimization level. We implemented

several distributed applications to perform experiments that would help us evaluate the

optimizations performed. All applications were implemented on J-Sim simulator.20 J-Sim

is a component-based, compositional simulation environment.

In the following section, we describe our experiments for a class of bidding applications.

Bids are required to be made in a mutually exclusive manner, and all bids must be delivered

in a total order to all components. We also have to determine when the bidding has finished.

Each application in this class requires mutual exclusion, termination detection and total

ordering algorithms. We implemented each of these algorithms in J-Sim. We describe two

applications used as case studies, each with different application-level constraints.

Next, we look at a class of teleteaching applications. In a question/answer session of

a teleteaching application, students ask questions and instructors respond to them. Both

questions and answers are required to be made in a mutually exclusive manner and be

delivered in a total order to all components. We also have to determine when the session

has finished. Each application in this class requires mutual exclusion, termination detection

107

and total ordering algorithms. For a teleteaching application, we analize the application

structure and derive application and physical topology based optimization information in

the form of XML files. We do not implement this application but show that interaction

sets are constrained both statically and dynamically which will result in application based

optimization. We also analyze physical topology for shortest path information and show

that the information will result in physical topology based optimization. Whereas class of

bidding applications might include a specific ordering within clusters of bidders, class of

teleteaching applications in addition to that might exhibit specific ordering between the

clusters.

In the last section of this chapter we evaluate the effectiveness of the customization

techniques by comparing the performance of the customized algorithms to those designed

for specific operational contexts. We designed optimized algorithms for one of the bidding

applications described earlier. We will compare the performance of these optimized algo-

rithms to that of our customized algorithms. We end this chapter with the discussion on

the effectiveness of our customization techniques.

108

6.1 Bidding applications

In this section, we look at a class of bidding applications. In bidding applications, bids are

required to be made in a mutually exclusive manner, and all bids must be delivered in a

total order to all components. We also have to determine when the bidding has finished.

Each application in this class requires mutual exclusion, termination detection and total

ordering algorithms. We implemented each of these algorithms in J-Sim. We describe two

bidding applications, each with different application level constraints.

6.1.1 Bidding application 1

Description

This application involves twelve players making bids. Each player is located on a separate

physical machine and the machines are connected as shown in Figure 6.1.

Figure 6.1: Application 1 physical topology

109

The bids that each player receives from other players need to be totally ordered, and only

one player can bid at a time. Players are logically organized into three groups as shown

in Figure 6.2. Players in each group make bids in a round-robin fashion (e.g., in group 0,

players bid in the order 0,1,2,3,0,1,2,3....). This order is enforced by the application itself.

Each player’s bid is based on their current group bidding probability, which decreases with

each bid made. Once a player in a group decides not to bid, no other player in the group

can make any more bids. We need to know when bidding stops.

Figure 6.2: Application 1 logical topology

110

Capturing application information using Cadena

To specify this application in Cadena, we first defined two component types, bidCompInit

and bidComp. bidComp component type is shown in Figure 6.3.

Figure 6.3: Application 1 bidComp component type

Next, we created twelve component instances and specified the port connections via the

graphical interface of Cadena. The graphical representation of the scenario is shown in

Figure 6.4.

Figure 6.4: Graphical representation of application 1 scenario

111

Component specification file generated by Cadena is shown in Listing 6.1 and assembly

specification file is shown in Listing 6.2.

1 ?xml ve r s i on =”1.0” encoding=”ASCII”?>
2 <edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : Module xmi : v e r s i on =”2.0” xmlns : xmi=
3 <s t y l e h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# 1MdskAMFEdqT6 lD
4 <components uuid=” OyaIQBbNEdypMp3lNrZ05w” name=”bidCompInit ” abs t ra c t=” f a l s e ”>
5 <componentKind hr e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Nu9hoA
6 <port s uuid=” 8 RL4BbOEdypMp3lNrZ05w” name=”bidMade” i n t e r f a c e=” sYVrUBbNEdyp
7 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# AjRjcANsEdqTK
8 </ports>
9 <port s uuid=” JTsK4BbPEdypMp3lNrZ05w” name=”nextToBid” i n t e r f a c e=” sYVrUBbNEd

10 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Ehsg0ANsEdqTK
11 </ports>
12 <port s uuid=” L196YBbPEdypMp3lNrZ05w” name=”s t a r t ” i n t e r f a c e=” uhdfgcxsxagyaw
13 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Ehsg0ANsEdqTK
14 </ports>
15 </components>
16 . . .
17 </edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : Module>

Listing 6.1: Part of component specification file generated by Cadena for Application 1

1 </xmi :XMI>
2 <?xml ve r s i on =”1.0” encoding=”ASCII”?>
3 <xmi :XMI xmi : v e r s i on =”2.0” xmlns : xmi=”http ://www. omg . org /XMI” xmlns : x s i=”http ://w
4 <edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : Module uuid=” 6P3noIjjEdyLreIOXUe
5 <s t y l e h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# 1MdskAMFEdqT6
6 <components uuid=” L− UwIjkEdyLreIOXUe8aA” name=”C” abs t ra c t=” f a l s e ”>
7 <componentKind hr e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Nu9h
8 <port s uuid=” Z8Q2AIjmEdyLreIOXUe8aA” name=”port1 ” i n t e r f a c e=” YJnCEIjlEdyL
9 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Ehsg0ANsEdq

10 </ports>
11 <port s uuid=” b3o9kIjmEdyLreIOXUe8aA” name=”port2 ” i n t e r f a c e=” mW4ZEIjlEdyL
12 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Ehsg0ANsEdq
13 </ports>
14 <port s uuid=” hDn6QIjmEdyLreIOXUe8aA” name=”port3 ” i n t e r f a c e=” mW4ZEIjlEdyL
15 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# AjRjcANsEdq
16 </ports>
17 </components>
18 <components uuid=” 360UcIjmEdyLreIOXUe8aA” name=”CC” abs t ra c t=” f a l s e ”>
19 <componentKind hr e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Nu9h
20 <port s uuid=” 7S0yEIjmEdyLreIOXUe8aA” name=”port1 ” i n t e r f a c e=” mW4ZEIjlEdyL
21 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# Ehsg0ANsEdq
22 </ports>
23 <port s uuid=” 83r3EIjmEdyLreIOXUe8aA” name=”port2 ” i n t e r f a c e=” mW4ZEIjlEdyL
24 <spec h r e f=”http :// cadena . p r o j e c t s . c i s . ksu . edu/ccm/CCM. s t y l e# AjRjcANsEdq
25 </ports>
26 </components>
27 </edu . ksu . c i s . cadena . core . s p e c i f i c a t i o n . module : Module>
28 </xmi :XMI>

Listing 6.2: Part of assembly specification file generated by Cadena for Application 1

112

Cadena also generated skeleton files per component type. Skeleton file for bidComp com-

ponent is shown in Listing 6.3).

1 pub l i c c l a s s bidComp extends Component {
2
3 . . .
4
5 pub l i c void proce s s (Object data , Port inPor t){
6
7 i f (data i n s t an c e o f Message){
8 i f (data i n s t an c e o f BidMadeMessage){
9

10 }
11 }
12 }
13 }

Listing 6.3: J-Sim Java skeleton file for bidCompInit

We then added appropriate algorithm specific annotations to the .java files generated by the

Cadena tools. An excerpt of the annotated file with annotations to enter critical section is

shown in Listing 6.4.

1 pub l i c c l a s s bidComp extends Component {
2
3 . . .
4
5 pub l i c void proce s s (Object data , Port inPor t){
6
7 i f (data i n s t an c e o f Message){
8 i f (data i n s t an c e o f BidMadeMessage){
9

10 /∗∗@cs request
11 . . .
12 /∗∗@cs r e l e a s e
13
14 }
15 }
16 }
17 }

Listing 6.4: Annotated J-Sim Java skeleton file

Next, we specified the CPS files (the CPS file for bidComp is similar to one in Figure 4.1

with additional dependency for bidBroadcastIn).

113

Optimizations

We first constructed the ADG using our ADG contruction tool. The optimization engine

then used the query interface of the ADG to initialize the interaction sets. It also produces

dynamic optimization rules along with physical platform optimization information. An

excerpt of the file describing static optimization rules for the SRT sets used in the mutual

exclusion algorithm is shown in Listing 6.5.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <components>
3 <component componentName=”bidder0”>
4 <SRT>
5 <SRTelement SRTelementName=”bidder8”/>
6 <SRTelement SRTelementName=”bidder9”/>
7 <SRTelement SRTelementName=”bidder6”/>
8 <SRTelement SRTelementName=”bidder7”/>
9 <SRTelement SRTelementName=”bidder4”/>

10 <SRTelement SRTelementName=”bidder5”/>
11 <SRTelement SRTelementName=”bidder11”/>
12 <SRTelement SRTelementName=”bidder10”/>
13 </SRT>
14 </component>
15 . . .

Listing 6.5: Sample of static optimization information produced for mutual exclusion ser-
vice for Application 1.

For component bidder0, if it wants to access critical section, it needs to send a request only

to components listed as elements of its SRT set, namely: bidder4 through bidder11. Notice,

that bidder1 through bidder3 are excluded because the ADG analysis shows that bidder1,

bidder2 and bidder3 cannot make bids concurrently with bidder0.

An excerpt from dynamic optimization rules for mutual exclusion algorithm is shown in

Listing 6.6.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <dynamicRules>
3 <RULE componentName=”bidder0”>
4 <cur rent lyReques t ing componentName=”bidder11”/>
5 <doesNotBelongToSRT componentName=”bidder9”/>
6 <doesNotBelongToSRT componentName=”bidder10”/>
7 </RULE>
8 . . .

Listing 6.6: Sample of dynamic optimization information produced for mutual exclusion
service for Application 1.

The ADG analysis, for instance, reveals that if bidder0 knows that bidder11 is currently

requesting (that is, bidder0 has received a request message from bidder11), then bidder9 and

114

bidder10 cannot be requesting concurrently with bidder0 (this is due to the cyclic nature

of requests in each group). This rule is shown in Listing 6.6. Note that such optimizations

are difficult to arrive at by manual inspection. Optimization information is also derived for

termination detection and total ordering services.

Information for physical topology based optimization comes in the form of shortest path

information for each pair of processors in a given physical topology. An excerpt from the

shortest path information file produced by optimizer for this application is shown in List-

ing 6.7.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <TopologyStat ic maxPath=”5”>
3 <Nodes>
4 <Node nodeName=”0”>
5 <Path toNode=”1” pathLenght=”1”>
6 <PathElement hopCount=”1” nodeName=”1”/>
7 </Path>
8 <Path toNode=”2” pathLenght=”2”>
9 <PathElement hopCount=”1” nodeName=”1”/>

10 <PathElement hopCount=”2” nodeName=”2”/>
11 </Path>
12 <Path toNode=”3” pathLenght=”1”>
13 <PathElement hopCount=”1” nodeName=”3”/>
14 </Path>
15 <Path toNode=”4” pathLenght=”2”>
16 <PathElement hopCount=”1” nodeName=”1”/>
17 <PathElement hopCount=”2” nodeName=”4”/>
18 </Path>
19 . . .

Listing 6.7: Sample of shortest path information produced for Application 1.

The csl subcomponent of a J-Sim component will use this information for physical topology

based optimization. For instance, if the same message needs to be sent by processor 0 to

processors 1 and 2, then only one message will be sent to processor 2. Since processor 1 is

on the shortest path from processor 0 to processor 2, it will receive a message from processor

0 to processor 2. A separate message from processor 0 to processor 1 is then not needed.

115

Simulation results

The results of a typical run of the simulation are shown in Figure 6.5.

Figure 6.5: Typical run of an application 1

Table 6.1 and Figures 6.6 - 6.9 show the average number of messages per bid for five runs

of our system. The averages are shown for mutual exclusion (ME), termination detection

(TD), and total ordering (TO) algorithms as well as for total number of messages (note that

the total result contains some application messages in addition to the algorithm messages).

We also varied the level of optimization: No optimization (No Opt), Static Optimization

(S Opt), Static and Dynamic Optimization (SD Opt) and Static, Dynamic and Path Opti-

mization (SDP Opt).

116

ME TD TO Total
No Opt 83 47 336 469
S Opt 71 47 293 400
SD Opt 45 17 293 355
SDP Opt 31 17 170 219

Table 6.1: Application 1 - average number of messages per bid

Figure 6.6: Application 1 - average number of mutual exclusion messages per bid

Figure 6.7: Application 1 - average number of termination detection messages for last
round

117

Figure 6.8: Application 1 - average number of total order messages per bid

Figure 6.9: Application 1 - average number of all messages per bid

118

The results in Table 6.10 and Figures 6.11 - 6.14 show improvement in the number of

messages when optimizations are performed. In Table 6.1, the row corresponding to No Opt

shows the number of messages with no optimizations (even though we have 12 components,

the number of messages for ME is 83 as we are counting each hop in the physical network

as a separate message). As can be seen in Table 6.10 or in Figure 6.11, for the mutual

exclusion algorithm, static application optimization results in 14 percent improvement as

compared to the case with no optimization. Static and dynamic application optimization

results in 46 percent improvement, and addition of platform optimization results in 63

percent improvement. Similar improvement are observed for other algoritms as well. Since

the termination detection algorithm may be initiated several times, the results correspond

to the final initiation.

Figure 6.10: Application 1 - % improvement in the number of messages over No Opt case

119

Figure 6.11: Application 1 - % improvement in the number of mutual exclusion messages
over No Opt case

Figure 6.12: Application 1 - % improvement in the number of termination detection mes-
sages over No Opt case

120

Figure 6.13: Application 1 - % improvement in the number of total order messages over
No Opt case

Figure 6.14: Application 1 - % improvement in the total number of messages over No Opt
case

121

6.1.2 Bidding application 2 with fewer constraints

Description

The application context of our next application is the same as in Application 1. However,

Application 2 imposes the round-robin ordering of bids only in group 0 (others can request

in any order) as shown in Figure 6.15. Thus, this application imposes fewer constrains on

the components. Hence, one would expect fewer optimization opportunities.

Figure 6.15: Application 2 logical topology

Components and the application are specified in Cadena as in application 1.

122

Optimizations

ADG is constructed first using our ADG contruction tool. The optimization engine then

used the query interface of the ADG to initialize the interaction sets. It also produces

dynamic optimization rules along with physical platform optimization information. An

excerpt of the file describing static optimization rules for the SRT sets used in the mutual

exclusion algorithm is shown in Listing 6.8.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <components>
3 <component componentName=”bidder4”>
4 <SRT>
5 <SRTelement SRTelementName=”bidder0”/>
6 <SRTelement SRTelementName=”bidder1”/>
7 <SRTelement SRTelementName=”bidder2”/>
8 <SRTelement SRTelementName=”bidder3”/>
9 <SRTelement SRTelementName=”bidder8”/>

10 <SRTelement SRTelementName=”bidder9”/>
11 <SRTelement SRTelementName=”bidder6”/>
12 <SRTelement SRTelementName=”bidder7”/>
13 <SRTelement SRTelementName=”bidder5”/>
14 <SRTelement SRTelementName=”bidder11”/>
15 <SRTelement SRTelementName=”bidder10”/>
16 </SRT>
17 </component>
18 . . .

Listing 6.8: Sample of static optimization information produced for mutual exclusion ser-
vice for Application 2.

For component bidder4, if it wants to access critical section, it needs to send a request to

components listed as elements of its SRT set, namely: bidder0 through bidder11 excluding

bidder4. Notice, that all processes are included this time, whereas in application 1 this set

was constrained.

An excerpt from dynamic optimization rules for mutual exclusion algorithm is shown in

Listing 6.9.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <dynamicRules>
3 <RULE componentName=”bidder0”>
4 <cur rent lyReques t ing componentName=”bidder11”/>
5 </RULE>
6 . . .

Listing 6.9: Sample of dynamic optimization information produced for mutual exclusion
service for Application 2.

This time, if bidder0 knows that bidder11 is currently requesting (that is, bidder0 has

received a request message from bidder11), bidder9 and bidder10 cannot be removed from

bidder0’s SRT set as in application 1.

123

Information for physical topology based optimization is the same as in application 1 and is

shown in Listing 6.10.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <TopologyStat ic maxPath=”5”>
3 <Nodes>
4 <Node nodeName=”0”>
5 <Path toNode=”1” pathLenght=”1”>
6 <PathElement hopCount=”1” nodeName=”1”/>
7 </Path>
8 <Path toNode=”2” pathLenght=”2”>
9 <PathElement hopCount=”1” nodeName=”1”/>

10 <PathElement hopCount=”2” nodeName=”2”/>
11 </Path>
12 <Path toNode=”3” pathLenght=”1”>
13 <PathElement hopCount=”1” nodeName=”3”/>
14 </Path>
15 <Path toNode=”4” pathLenght=”2”>
16 <PathElement hopCount=”1” nodeName=”1”/>
17 <PathElement hopCount=”2” nodeName=”4”/>
18 </Path>
19 . . .

Listing 6.10: Sample of shortest path information produced for Application 2.

124

Simulation results

The simulation results are shown in Table 6.2.

ME TD TO total
No Opt 83 47 336 469
S Opt 80 47 321 445
SD Opt 71 36 322 432
SDP Opt 51 36 187 275

Table 6.2: Application 2 - average number of messages per bid

The results in Table 6.16 show improvement in the number of messages when optimizations

are performed.

Figure 6.16: Application 2 - % improvement in the number of messages over No Opt case

Figures 6.11 - 6.14 compare applications 1 and 2 in terms of improvement in the number of

messages when optimizations are performed. As can be seen, the performance improvements

in application 2 are less as compared to Application 1. For example, for mutual exclusion

algorithm, the improvement for S Opt over No Opt is 4 percent as compared to 14 per-

cent in Application 1. Similarly, the improvement between static and dynamic application

optimization over non-optimized case is 14 percent compared to 46 percent in Application

1. These results show that, if more optimization opportunities exist, our approach will

correctly recognize and use that.

125

Figure 6.17: Comparison of % improvement in the number of mutual exclusion messages
over No Opt case for Applications 1 and 2

Figure 6.18: Comparison of % improvement in the number of termination detection mes-
sages over No Opt case for Applications 1 and 2

126

Figure 6.19: Comparison of % improvement in the number of total order messages over
No Opt case for Applications 1 and 2

Figure 6.20: Comparison of % improvement in the total number of messages over No Opt
case for Applications 1 and 2

127

6.2 Teleteaching applications

In this section, we look at a class of teleteaching applications. In a question/answer session

of a teleteaching application, students ask questions and instructors respond to them. Both

questions and answers are required to be made in a mutually exclusive manner and be

delivered in a total order to all components. We also have to determine when the session

has finished. Each application in this class requires mutual exclusion, termination detection

and total ordering algorithms. For a teleteaching application, we analize the application

structure and derive application and physical topology based optimization information in

the form of XML files. We do not implement this application but show that interaction

sets are constrained both statically and dynamically which will result in application based

optimization. We also analyze physical topology for shortest path information and show

that the information will result in physical topology based optimization. Whereas class of

bidding applications might include a specific ordering within clusters of bidders, class of

teleteaching applications in addition to that might exhibit specific ordering between the

clusters.

128

6.2.1 Teleteaching application 3

Description

This application involves one instructor and two students in a question/answer session.

Students ask questions and instructor responds to each question with an answer. The

answer is broadcast to all students. Instructor and each of the students is located on a

separate physical machine and the machines are connected as shown in Figure 6.21.

Figure 6.21: Teleteaching application 3 physical topology

Questions/answers need to be totally ordered, and only one student or instructor can ask/an-

swer a question at a time. Instructor and students are logically organized into two groups

as shown in Figure 6.22. Students ask questions in a round-robin fashion (e.g., the order is

s1,s2,s1,s2....). This order is enforced by the application itself and represents the ordering

in a group.

Figure 6.22: Teleteaching application 3 logical topology

129

Instructor answers a question only in response to a question received from one of the stu-

dents. This order is enforced by the application and represents the ordering between the

groups.

Each student’s desire to ask a question is based on their current group probability to ask

a question, which decreases with each question asked. Once a student in a group decides

not to ask a question, no other student in the group can ask any more questions. We need

to know when the session is over.

130

Capturing application information using Cadena

To specify this application in Cadena, we first defined two component types, Instructor and

Student. Instructor component type is shown in Figure 6.23 and Student component type

is shown in Figure 6.24.

Figure 6.23: Application 3 - Instructor component type

Figure 6.24: Application 3 - Student component type

Next, we created one component instance I1 of Instructor type and two component instances

S1 and S2 of Student type. We then specified the port connections via the graphical interface

of Cadena. The graphical representation of the scenario is shown in Figure 6.25.

131

Figure 6.25: Graphical representation of teleteaching application 3 scenario

Cadena generated skeleton files per component type. Skeleton file for bidComp component

is shown in Listing 6.11).

1 pub l i c c l a s s I n s t r u c t o r extends Component {
2
3 . . .
4
5 pub l i c void proce s s (Object data , Port inPor t){
6
7 i f (data i n s t an c e o f Message){
8 i f (data i n s t an c e o f QuestionInMessage){
9

10 }
11 }
12 }
13 }

Listing 6.11: J-Sim Java skeleton file for Instructor component

132

We then added appropriate algorithm specific annotations to the .java files generated by the

Cadena tools. An excerpt of the annotated file with annotations to enter critical section is

shown in Listing 6.12.

1 pub l i c c l a s s I n s t r u c t o r extends Component {
2
3 . . .
4
5 pub l i c void proce s s (Object data , Port inPor t){
6
7 i f (data i n s t an c e o f Message){
8 i f (data i n s t an c e o f QuestionInMessage){
9

10 /∗∗@cs request
11 . . .
12 /∗∗@cs r e l e a s e
13
14 }
15 }
16 }
17 }

Listing 6.12: Annotated J-Sim Java skeleton file

Next, we specified the CPS files.

133

Optimizations

We first constructed the ADG using our ADG contruction tool. The optimization engine

then used the query interface of the ADG to initialize the interaction sets. It also produces

dynamic optimization rules along with physical platform optimization information. An

excerpt of the file describing static optimization rules for the SRT sets used in the mutual

exclusion algorithm is shown in Listing 6.13.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <components>
3 <component componentName=”S1”>
4 <SRT>
5 </SRT>
6 </component>
7 . . .

Listing 6.13: Sample of static optimization information produced for mutual exclusion
service for Application 3.

For component I1, if it wants to access critical section, it needs to send a request only to

components listed as elements of its SRT set. In this case, SRT set is empty. Therefore,

when I1 wants to access critical section, it does not need to send request messages at all.

Application constraints will guarantee that no other component will be requesting critical

section when I1 will. This information might be difficult to arrive at manually. But when

the process is automated, the use of customizable generic algorithms is very attractive.

An excerpt from dynamic optimization rules for mutual exclusion algorithm is shown in

Listing 6.14.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <dynamicRules>
3 <RULE componentName=”I1”>
4 <cur rent lyReques t ing componentName=”S1”/>
5 </RULE>
6 . . .

Listing 6.14: Sample of dynamic optimization information produced for mutual exclusion
service for Application 3.

In this particular case, no dynamic optimization information is generated for mutual ex-

clusion service for component I1 because it is a small scenario. Note, again, that manual

inspection is not necessary and saves development time. Optimization information is also

derived for termination detection and total ordering services.

134

Information for physical topology based optimization comes in the form of shortest path

information for each pair of processors in a given physical topology. An excerpt from the

shortest path information file produced by optimizer for this application is shown in List-

ing 6.15.

1 <?xml ve r s i on =”1.0” encoding=”ASCII” standalone=”no”?>
2 <TopologyStat ic maxPath=”2”>
3 <Nodes>
4 <Node nodeName=”1”>
5 <Path toNode=”2” pathLenght=”1”>
6 <PathElement hopCount=”1” nodeName=”2”/>
7 </Path>
8 <Path toNode=”3” pathLenght=”2”>
9 <PathElement hopCount=”1” nodeName=”2”/>

10 <PathElement hopCount=”2” nodeName=”3”/>
11 </Path>
12 . . .

Listing 6.15: Sample of shortest path information produced for Application 3.

The csl subcomponent of a J-Sim component will use this information for physical topology

based optimization. For instance, if the same message needs to be sent by processor 1 to

processors 2 and 3, then only one message will be sent to processor 3. Since processor 2 is

on the shortest path from processor 1 to processor 3, it will receive a message from processor

1 to processor 3. A separate message from processor 1 to processor 2 is then not needed.

Discussion

The optimization information generated by the optimizer shows that interaction sets are

constrained. This will result in fewer messages as was shown for Applications 1 and 2.

Also, teleteaching application 3, in addition to ordering information within groups, utilizes

ordering information between groups. The results from evaluation section show that our

framework can utilize both local ordering (ordering within groups) and global ordering

(ordering between groups) information for possible optimizations.

135

6.3 Effectiveness of the customization techniques

In this section we evaluate the effectiveness of the customization techniques by comparing

the performance of the customized algorithms to those designed for specific operational

contexts. We designed optimized algorithms for bidding application 1 from the evaluation

section. We will compare the performance of these optimized algorithms to that of our

customized algorithms.

Application description

The application involves twelve players making bids. Each player is located on a separate

physical machine and the machines are connected as shown in Figure 6.1. The bids that

each player receives from other players need to be totally ordered, and only one player can

bid at a time. Players are organized into three groups as shown in Figure 6.2. Players

in a group make bids in a round-robin fashion (e.g., in group 0, players bid in the order

0,1,2,3,0,1,2,3....). This order is enforced by the application itself. Each player’s bid is based

on their current group bidding probability, which decreases with each bid made. Once a

player in a group decides not to bid, no other player in the group can make any more bids.

This application will require the use of several services. Since bids have to be made in

mutually exclusive manner, we need a mutual exclusion service. Bids need to be received

in the same order by all players. So, we need a service for total ordering of messages. We

also need to know when bidding stopped, so we need to use termination detection service.

Algorithms for these services optimized for this specific application are described next.

Optimized mutual exclusion algorithm description

We will use a permission based mutual exclusion algorithm (similar to Lamport’s algorithm)

for mutual exclusion service. The main idea is that to enter a critical section to make a bid,

a process i needs to compete with the processes that might want to enter the critical section

at the same time that process i wants to enter it. So, if we have the information about which

processes can concurrently enter a critical section, we need to send a request message only

136

to those processes that can concurrently enter critical section with process i. If process i

receives the acks from all those processes and its request is at the head of its request queue,

then process i can enter critical section. When mutual exclusion component, mutex, receives

a local request message from its application component, app, it sends a request message to

the next would be requesting process in each group (those are the processes that might try

to enter critical section when process i wants to enter it). This request is also put in mutex’s

local request queue. If process i receives a request message but is already in critical section

(process i will not compete with anybody anymore - i is in critical section), then process i

does not need to reply with an ack message since release message will be sent to everybody

after process i exits critical section. Then the process that sent the request to process i will

know to send a request to next requesting process in process i ’s group to compete for access

to critical section. If process i already sent a request to some processes to compete for access

to critical section, and then it receives a request from a process that process i did not send

its request to, then process i needs to send its original request to that process too because

now process i competes with that process to enter critical section as well. Next, process i

needs to send an ack message to that process and add that process’ id to wait rel from set.

If process i already sent a request to that process, then it just needs to send an ack message

to that process and add that process’ id to wait rel from set. In all other cases process i

just adds the new request to its request queue, sends an ack message to the process that

sent request message to it, and adds the process’ id to wait rel from set to remember that

a release message from that process is expected. When mutex component receives an ack

message from another process, it remebers that by storing it in a temporary set. If mutex

component receives a release message from another process, it first checks if it is expecting

a release message from the message’s source. If so, it removes the corresonding request from

its request queue. In either case, next requesting process information is updated and if the

release message is from a process in my group, APP component is notified of that. If process

i receives a release message from a process that it sent a request message to before receiving

137

an ack message from it (which means that that process did not receive my request before

sending a release message to me), then process i does not need to compete with that process

for critical section (because it already used it). But process i needs to compete now with

the next requesting process in that group - therefore, process i needs to send an additional

request message to that next requesting process in that group. If mutex component receives

all the ack messages it expects and its own request is at the head of the queue, then it

enters into in cs state and notifies APP component that it can enter the critical section

now. When APP component is done using critical section and notifies mutex component

of that, mutex component broadcasts a release message. We want to broadcast the release

message because we want every process to update its next requesting process for the group

process i is in.

Optimized termination detection algorithm description

Termination detection service is used to determine if a computation is over. Optimized

termination detection algorithm for our application is given next. Termination detection

component, tedet, starts termination detection upon the receipt of START message from

the application component, app. It sends out ISPASSIVE message to the next would be

bidding process in each group (it is sufficient to do so because application is such that it is

known for all other processes to be passive). Upon the receipt of ISPASSIVE message, the

process queries its app component about its current status, and then sends corresponding

message to the requesting process. If all the responses are passive messages, then termination

is detected; if one of the responses is an active message, termination has not happened

yet. A release message from mutual exclusion mechanism is also processed here to update

next requesting process information and for the following situation: if process i initiates

termination detection, but receives a release message after that, it means that the next

process that is in the group of the process that sent the release message, will try to bid

based on its group probability. So, termination did not clearly happen yet. But if that

process decides not to bid anymore, it will start termination detection.

138

Optimized total order algorithm description

When a process receives a message, it is put into a local queue, ordered according to its

timestamp. The receiver multicasts an acknowledgement to the other processes. Note, that

if we follow Lamport’s algorithm for adjusting local clocks, the timestamp of the received

message is lower than the timestamp of the acknowledgement. All processes will eventually

have the same copy of the local queue. Each message is multicast to all processes, including

acknowledgements, and is assumed to be received by all processes. We assume that messages

are delivered in the order that they are sent. Each process puts a received message in its

local queue according to the timestamp in that message. Lamport’s clocks ensure that no

two messages have the same timestamp, but also that the timestamps reflect a consistent

global ordering of events. A process can deliver a queued message to the application it is

running only when that message is at the head of the queue and has been acknowledged

by each other process. At that point, the message is removed from the queue and handed

over to the application; the associated acknowledgements can simply be removed. Because

each process has the same copy of the queue, all messages are delivered in the same order

everywhere. In other words, we have established totally-ordered multicasting.

Optimization for total order protocol comes in the form of eleminating ack messages.

Each application message carries with it a sequence number. When total order component,

to, receives an application message for broadcast from application component, app, it broad-

casts it and also puts it in local queue. When to component receives an application message

from another process, it puts it in its local queue. A local sequence number counter is used

to store information on the next sequence number expected. If the message at the head of

the queue has the expected sequence number, the message is delivered to app component.

The global sequence number is incremented each time a process enters a critical section. It

is updated to the most current one upon receipt of an application message message in app

component (app components keep track of that sequence number).

139

Comparison of customized and optimized algorithms

Table 6.3 and Figure 6.26 show the average number of messages per bid for five runs of our

system. The averages are shown for mutual exclusion (ME), termination detection (TD),

and total ordering (TO) algorithms. The averages are shown for customized algorithms with

Static and Dynamic Optimization (SD Opt) and for optimized algorithms.

ME TD TO
Cusomized version with SD Opt 46 17 293
Optimized version 46 15 28

Table 6.3: Comparison of average number of messages per bid for customized and optimized
algorithms for Application 1

Figure 6.26: Comparison of customized and optimized algorithms for Application 1

The results show that our customization algorithms for mutual exclusion and termination

detection perform as well as optimized algorithms developed from scratch. Optimized al-

gorithm for total ordering outperforms the customized algorithm. The reason for that is

that ack messages are completely eliminated in the optimized version by making application

messages to carry more application specific information and by using control messages of

the mutual exclusion algorithm.

140

Although, as we have shown, it is possible to come up with more efficient optimized

algorithms for some services as opposed to our customized versions, it is possible to do so

by manually overloading the message content and using information of other services. That

also requires application level programming to assist services layer. That cannot be done

automatically by tools. Also, such an approach is highly undesirable because services and

application logic is interconnected and cannot be reused in other contexts.

141

6.4 Summary

InDiGO framework utilizes ordering information on events for possible optimizations and

thus is best suited for applications whose components issue events in some order. In this

chapter we looked at a class of bidding applications and showed that the more ordering con-

straints the application itself places on its components, the more optimization opportunities

there will be. Our framework produced optimization information that resulted in higher op-

timization for the application with higher level of ordering constraints that the application

itself inforced on its components. We also showed that ordering patterns could be effectively

exploited by InDiGO framework as in the case of teleteaching applications where answer

messages are issued in response to question messages. We also showed that the optimization

achieved with InDiGO framework is comparable with optimization of algorithms developed

from scratch for a bidding application that we studied in this thesis.

142

Chapter 7

Conclusion and future work

In this thesis, we proposed an extensible infrastructure to optimize distributed algorithms

for specific applications. The capabilities of our framework include the following: (a) In-

frastructure to capture application information, (b) Mechanisms to design customizable

algorithms, and (c) Optimization tools. We demonstrated that by allowing the algorithm

designer to capture and expose design knowledge, optimization opportunities can be real-

ized. For example, by exposing application knowledge gained as a result of message passing

within the algorithm, we were able to perform dynamic optimizations. We performed a

series of experiments on the classes of bidding and teleteaching applications to demonstrate

the different types of optimizations. As the number of constraints on the order in which the

components can perform actions were increased in the application, we showed that more

optimizations were possible.

Each of the capabilities provided by InDiGO can be extended for a richer set of optimiza-

tions. For example, we currently support interaction sets of an algorithm as a configurable

option. The infrastructure allows the algorithm designers to expose any other design infor-

mation which can be analyzed with respect to the ADG. The assertions, alg.app assert, is

one example of additional knowledge which we have exploited for optimization. Although we

have used specific algorithms as case studies, the framework applies to other algorithms as

well. Furthermore, the framework is extensible in that more sophisticated analysis tools can

be plugged in to analyze the already available information for more aggressive optimization.

143

Similarly, one can develop artifacts to expose more information about the application and

the algorithm. As more information about the algorithm is made available, more will be

the possible optimization opportunities. Note that the algorithm designers may not know of

the potential optimizations (the designer simply exposes algorithm information). The op-

timization tools leverage this information to uncover optimization opportunities. Similarly,

in constructing the ADG, we have abstracted several details of the application and retained

structural information only. One can include more details in the application models to allow

better analysis. Finally, the type of optimizations targeted by InDiGO are different from

those performed by existing techniques which exploit application semantics. For example,

techniques have been proposed to use conflict relations on messages to optimize message

ordering and concurrency control algorithms.3,17,19 Conflict relations are based on semantics

of message types and the underlying algorithms implement the conflict relation irrespective

of the order in which the application may send messages. Our work, on the other hand,

analyzes the application structure for optimization.

In the future work, we plan to do the following:

• We will investigate a general problem of a domain specification language for the annota-

tions that we used to specify middleware services in a distributed system. In this work, we

used annotations which were sufficient for studied services only.

• In collaboration with Cadena developers, one of the capabilities to be built is a tool to

derive the CPS files from the annotated Java files for each component. At present, for some

of the experimental studies, we had to manually specify the CPS files.

• Another goal in Cadena is to derive more detailed CPS files for Java files which will result

in more accurate application models. This will allow to capture more information about the

application in the ADG graph, the analysis of which can reveal more optimization oppor-

tunities.

• Also, we will investigate if more sophisticated analysis algorithms could be developed to

analyze the ADG graph for aggressive optimizations. These algorithms then can can be

144

plugged into the InDiGO tool-chain.

• We will include other customizable distributed services in InDiGO framework.

• In this work, we specified interaction sets specific to the algorithms studied here. We will

investigate the use of interaction sets for a class of algorithms. For example, the SRT set

could be common to mutual exclusion algorithms in general.

•We will investigate additional techniques to design distributed algorithms and middleware

amenable to customization.

145

Bibliography

[1] K. Birman and R. van Renesse, Reliable Distributed Computing with the ISIS toolkit,

IEEE Computer Society Press, 1994.

[2] R. Guerraoui and A. Schiper, Consensus service: A modular approach for building fault-

tolerant agreement protocols in distributed systems, in IEEE International Symposium

on Faul-Tolerant Computing Systems (FTCS), 1996.

[3] M. Kalantar and K. Birman, Causally ordered multicast: the conservative approach,

in Proceedings of the IEEE Int’l Conference on Distributed Computing Systems, 1999.

[4] R. F. K. Birman and M. Hayden, The maestro group manager: A structuring tool for

applications with multiple quality of service requirements, in Technical Report TR97-

1619, Department of Computer Science, Cornell University, 1997.

[5] B. Ban, JavaGroups - A Reliable Multicast Communication Toolkit for Java,

http://www.cs.cornell.edu/Info/Projects/JavaGroupsNew, 1999.

[6] P. Felber and R. Guerraoui, Programming with object groups in corba, in IEEE

Concurrency, 2000.

[7] I. Rhee, S. Cheung, P. Hutto, and V. Sunderam, Group communication support for

distributed collaboration systems, in Proc. of IEEE 17th International Conference on

Distributed Computing Systems, 1997.

[8] L. Moser, P. Melliar-Smith, D. Agrawal, R. Budhia, and C. Lingley-Papadopoulos,

Totem: a fault-tolerant multicast group communication system, in Communication of

the ACM, volume 39, 1996.

146

[9] Y. Amir, D. Dolev, S. Kramer, and D. Malki, Transis: a communication subsystem for

high availability, in International Symposium on Fault-Tolerant Computing, 1992.

[10] N. Bhatti and R. Schlichting, A system for constructing configurable high-level proto-

cols, in Proceedings of ACM SIGCOMM Conference, 1995.

[11] R. Guerraoui and A. Schiper, Total order multicast to multiple groups, in Proceedings

of the IEEE Int’l Conference on Distributed Computing Systems, 1997.

[12] D. Sharp, Avionics product line software architecture flow policies, in Proceedings of

the Digital Avionics Systems Conference, 1999.

[13] G. Kiczales et al., Aspect-oriented programming, in Proceedings of the European

Conference on Object-Oriented Programming (ECOOP), LNCS 1241, 1997.

[14] R. Pratap and R. Cytron, Transport layer abstraction in event channels for embedded

systems, in LCTES, 2003.

[15] A. Agbaria and W. H. Sanders, Application-driven coordination-free distributed check-

pointing, in Proceedings of the IEEE Int’l Conference on Distributed Computing Sys-

tems, 2005.

[16] G. Chockler, I. Kedar, and R. Vitenberg, Group communication frameworks: A com-

prehensive survey, in ACM Computing Surveys, 2001.

[17] P. Jensen, N. Soparkar, and A. Mathur, Characterizing multicast orderings using

concurrency control theory, in International Conference on Distributed Computing

Systems, 1997.

[18] L. Liu and C. Pu, A transactional activity model for organizing open-ended cooperative

activities, in Proceedings of the Hawaii International Conference on System Sciences,

1998.

147

[19] V. Murty and V. Garg, Characterization of message ordering specifications and proto-

cols, in Proc. IEEE International Conference on Distributed Computing Systems 1997,

1997.

[20] A. Sobeih et al., J-Sim: a simulation and emulation environment for wireless sensor

networks, in Proc. 38th Annual Simulation Symposium, 2005.

[21] A. Childs et al., Cadena: An integrated development environment for analysis, synthe-

sis, and verification of component-based systems, in FASE, edited by M. Wermelinger

and T. Margaria, volume 2984 of Lecture Notes in Computer Science, pages 160–164,

Springer, 2004.

[22] T. Harrison, D. Levine, and D. Schmidt, The design and performance of a real-time

corba event service, in Proceedings of OOPLSA, 1997.

[23] C. Ma and J. Bacon, Cobea: A corba-based event architecture, in Proceedings of

USENIX COOTS, 1998.

[24] O. M. Group, The common object request broker: Architecture and specification,

revision 2.0, 1995.

[25] G. Ricart and A. K. Agarwala, An optimal algorithm for mutual exclusion in computer

networks, in Communications of the ACM, volume 24, pages 9–17, 1981.

[26] Y.-J. Joung, Aynchronous group mutual exclusion in ring networks, in Proceedings of

International Parallel Processing Symposium, 1999.

[27] M. Maekawa, A
√
N algorithm for mutual exclusion, in ACM Transactions on Com-

puter Systems, volume 2, 1985.

[28] K. Raymond, A tree-based algorithm for distributed mutual exclusion, in ACM Trans-

actions on Computer Systems, volume 1, 1989.

148

[29] M. Neilsen and M. Mizuno, A dag-based algorithm for distributed mutual exclusion,

in Proceedings of the IEEE 11th International Conference on Distributed Computing

Systems, pages 354–360, 1991.

[30] B. Topol, M. Ahamad, and J. Stasko, Robust state sharing for wide area distributed

applications, in International Conference on Distributed Computing Systems, 1998.

[31] H. Kung and J. Robinson, On optimistic methods for concurrency control, in ACM

Transactions on Database Systems, volume 6, pages 213–226, 1981.

[32] S. Meldal, S. Sankar, and J. Vera, Exploiting locality in maintaining potential causality,

in Symposium on Principles of Distributed Computing, pages 231–239, 1991.

[33] S. Quaireau and P. Laumay, Ensuring applicative causal ordering in autonomous mobile

computing, in Workshop on Middleware for Mobile Computing, 2001.

[34] C. Cowan and H. Lutfiyya, Formal semantics for expressing optimism: The meaning

of HOPE, in Symposium on Principles of Distributed Computing, pages 164–173, 1995.

[35] R. Prakash, M. Raynal, and M. Singhal, An adaptive causal ordering algorithm suited

to mobile computing environments, in Journal of Parallel and Distributed Computing,

volume 41, 1997.

[36] S. Guyer and C. Lin, Broadway: A compiler for exploiting the domain-specific semantics

of software libraries, in Proceedings of the IEEE, volume 93, pages 342–357, Feb. 2005.

[37] N. Francez and I. Forman, Interacting Processes: A multiparty approach to coordinated

distributed programming, Addison-Wesley, 1996.

[38] M. Evangelist, N. Francez, and S. Katz, Multiparty interactions for interprocess com-

munication and synchronization, in IEEE Transactions on Software Engineering, vol-

ume 15, 1989.

149

[39] D. Garlan and R. Allen, Formalizing architectural connections, in IEEE International

Conference on Software Engineering, 1994.

[40] D. Luckman et al., Specification and analysis of system architecture using Rapide, in

IEEE Transactions on Software Engineering, volume 21, 1995.

[41] D. Sturman, Modular specification of interaction policies in distributed computing, PhD

thesis, University of Illinois at Urbana Champaign, 1996.

[42] G. Singh, P. S. Kumar, and Q. Zeng, Configurable event communication in cadena, in

IEEE Conference on Real-time Applications and Systems, 2004.

[43] P. S. Kumar, Q. Zeng, and G. Singh, Constraining event flow for regulation in pervasive

systems, in PERCOM ’05: Proceedings of the Third IEEE International Conference

on Pervasive Computing and Communications, pages 314–318, Washington, DC, USA,

2005, IEEE Computer Society.

[44] G. Trombetti et al., An integrated model-driven development environment for com-

posing and validating distributed real-time and embedded systems, in Model-Driven

Software Development, edited by M. B. S. Beydeda and V. Gruhn, Springer-Verlag,

2005.

[45] L. Chen and G. Singh, Enhancing multicast communication to support protocol design,

in IEEE International Conference on Computer Communication and Networks, 2002.

[46] G. Singh and S. Das, Customizing event ordering middleware for component-based

systems, in ISORC ’05: Proceedings of the Eighth IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing (ISORC’05), pages 359–362, Wash-

ington, DC, USA, 2005, IEEE Computer Society.

[47] G. Singh, B. Maddula, and Q. Zeng, Enhancing event channel for synchronization in

150

object oriented distributed systems, in Proceedings of IEEE International Symposium

on Object Oriented Real-time Computing, 2002.

[48] G. Singh and Y. Su, Region synchronization in message passing systems, in Proceedins

of the International Conference on Parallel Processing, 2002.

[49] Y. Su, Synchronization in Message Passing Systems, PhD thesis, Kansas State Uni-

versity, 2004.

[50] M. Mizuno, G. Singh, and M. Neilsen, A structured approach to develop concurrent

programs in uml, in Proceedings of the Third International Conference on the Unified

Modeling Language, 2000.

[51] L. Lamport, Time, clocks, and the ordering of events in a distributed system, in

Communications of the ACM, volume 21, pages 558–565, 1978.

[52] K. M. Chandy and J. Misra, A paradigm for detecting quiescent properties in dis-

tributed computations, in Logics and models of concurrent systems, pages 325–341,

New York, NY, USA, 1985, Springer-Verlag New York, Inc.

[53] A. Tanenbaum, Distributed systems, Prentice Hall, 2006.

151

Appendix A

Grammar for CPS files

Figure A.1: Grammar for CPS files

152

Appendix B

Grammar for membership criteria

Figure B.1: Grammar for membership criteria (part 1)

153

Figure B.2: Grammar for membership criteria (part 2)

154

Appendix C

Case study

In this appendix we apply InDiGO framework to study a class of distributed applications.

In particluar, we apply our framework to study a class of bidding applications. In evaluation

chapter, we did not study the effect of increasing the number of clusters on optimization level.

Nor did we study the effect of increasing the number of components per cluster. So, in this

appendix we take the same bidding application that we used in evaluation chapter, but we

want to study how optimization level is affected by varying several application parameters,

such as number of clusters, number of components per cluster, number of clusters with local

ordering and number of components per process. The results of this study will help us to

answer questions like: What type of application information is useful for optimization in our

approach? or How does the application structure or its size affect the level of optimization?

Application description

The application is the same as in evaluation chapter and involves players making bids. The

bids that each player receives from other players need to be totally ordered, and only one

player can bid at a time. Players are logically organized into groups. Players in each group

make bids in a round-robin fashion. This order is enforced by the application itself. Each

player’s bid is based on their current group bidding probability, which decreases with each

bid made. Once a player in a group decides not to bid, no other player in the group can

make any more bids. We need to know when bidding stops.

155

Varying number of clusters

In this section we will vary the number of clusters from 1 to 2 to 4 to 8. The number of

players per cluster is four and will remain the same. Players in each group make bids in

a round-robin fashion. Each player component is located on a separate physical machine.

Application and physical topologies for each case are shown in Figures C.1 - C.8.

Figure C.1: Case study - varying number of clusters - logical topology of application with
1 cluster

Figure C.2: Case study - varying number of clusters - physical topology of application with
1 cluster

156

Figure C.3: Case study - varying number of clusters - logical topology of application with
2 clusters

Figure C.4: Case study - varying number of clusters - physical topology of application with
2 clusters

Figure C.5: Case study - varying number of clusters - logical topology of application with
4 clusters

157

Figure C.6: Case study - varying number of clusters - physical topology of application with
4 clusters

Figure C.7: Case study - varying number of clusters - logical topology of application with
8 clusters

158

Figure C.8: Case study - varying number of clusters - physical topology of application with
8 clusters

The results for the improvement over No Opt case for studied services are shown in Figures

C.9 - C.12.

159

Figure C.9: Case study - varying number of clusters - % improvement over No Opt case
for mutual exclusion service

Figure C.10: Case study - varying number of clusters - % improvement over No Opt case
for termination detection service

The results for the improvement over previous level of optimization for studied services are

shown in Figures C.13 - C.16.

160

Figure C.11: Case study - varying number of clusters - % improvement over No Opt case
for total ordering service

Figure C.12: Case study - varying number of clusters - % improvement over No Opt case
for total number of messages

The results show the following trends:

For mutual exclusion service, as the number of clusters with local ordering information

161

Figure C.13: Case study - varying number of clusters - % improvement over previous level
of optimization for mutual exclusion service

Figure C.14: Case study - varying number of clusters - % improvement over previous level
of optimization for termination detection service

becomes larger, improvements due to static optimization become less and less significant.

Dynamic optimization is significant. It does not depend on the number of clusters and stays

162

Figure C.15: Case study - varying number of clusters - % improvement over previous level
of optimization for total ordering service

Figure C.16: Case study - varying number of clusters - % improvement over previous level
of optimization for total number of messages

the same. Physical topology based optimization further contributes to improvement in the

number of messages and stays the same as the number of clusters grow. For termination

163

detection service, only dynamic optimization contributes to the improvement in the number

of messages. As the number of clusters with local ordering information grows, the improve-

ment does not change significantly. For total ordering service, as the number of clusters

with local ordering information becomes larger, improvements due to static optimization

become less and less significant. Dynamic optimization is not a contributing factor. Physi-

cal topology based optimization is significant and stays the same as the number of clusters

grow.

Some results were not obvious but our framework tools correctly captured necessary

information that resulted in optimization. For example, in the case of one cluster for termi-

nation detection algorithm no messages needed to be sent out for the last round. Application

information was rightly utilized and dynamic optimization resulted in no messages for the

last round.

164

Varying number of components per cluster

In this section we will vary the number of components per cluster from 1 to 2 to 4 to 8.

The number of clusters is four and will remain the same. Players in each group make bids

in a round-robin fashion. Each player component is located on a separate physical machine.

Application and physical topologies for each case are shown in Figures C.17 - C.24.

Figure C.17: Case study - varying number of components per cluster - logical topology of
application with 1 component per cluster

Figure C.18: Case study - varying number of components per cluster - physical topology of
application with 1 component per cluster

165

Figure C.19: Case study - varying number of components per cluster - logical topology of
application with 2 components per cluster

Figure C.20: Case study - varying number of components per cluster - physical topology of
application with 2 components per cluster

166

Figure C.21: Case study - varying number of components per cluster - logical topology of
application with 4 components per cluster

Figure C.22: Case study - varying number of components per cluster - physical topology of
application with 4 components per cluster

167

Figure C.23: Case study - varying number of components per cluster - logical topology of
application with 8 components per cluster

Figure C.24: Case study - varying number of components per cluster - physical topology of
application with 8 components per cluster

168

The results for the improvement over No Opt case for studied services are shown in Figures

C.25 - C.28.

Figure C.25: Case study - varying number of components per cluster - % improvement
over No Opt case for mutual exclusion service

Figure C.26: Case study - varying number of components per cluster - % improvement
over No Opt case for termination detection service

169

Figure C.27: Case study - varying number of components per cluster - % improvement
over No Opt case for total ordering service

Figure C.28: Case study - varying number of components per cluster - % improvement
over No Opt case for total number of messages

170

The results for the improvement over previous level of optimization for studied services are

shown in Figures C.29 - C.32.

Figure C.29: Case study - varying number of components per cluster - % improvement
over previous level of optimization for mutual exclusion service

Figure C.30: Case study - varying number of components per cluster - % improvement
over previous level of optimization for termination detection service

171

Figure C.31: Case study - varying number of components per cluster - % improvement
over previous level of optimization for total ordering service

Figure C.32: Case study - varying number of components per cluster - % improvement
over previous level of optimization for total number of messages

172

The results show the following trends:

For mutual exclusion service, as the number of components per cluster with local order-

ing information becomes larger, improvements due to static optimization are not significant

and stay the same. Dynamic optimization is significant and increases with the increase of

number of components per cluster. Physical topology based optimization further contributes

to improvement in the number of messages and increases with the increase of number of

components per cluster. For termination detection service, only dynamic optimization con-

tributes to the improvement in the number of messages. As the number of components

per cluster with local ordering information grows, the improvement does not change sig-

nificantly. For total ordering service, as the number of components per cluster with local

ordering information becomes larger, improvements due to static optimization are not sig-

nificant and stay the same. Dynamic optimization is not a contributing factor. Physical

topology based optimization is significant and increases as the number of components per

cluster grows.

173

Varying number of clusters with ordering

In this section we will vary the number of clusters with ordering from 1 to 2 to 4 to 8.

The number of players per cluster is four and remains the same. The number of clusters

is eight and remains the same also. Players in each group with an ordering make bids in a

round-robin fashion. Players in the groups without an ordering make bids in no particular

order. Each player component is located on a separate physical machine. Application and

physical topologies for each case are shown in Figures C.33 - C.37.

Figure C.33: Case study - varying number of clusters with ordering - logical topology of
application with 1 cluster with ordering

174

Figure C.34: Case study - varying number of clusters with ordering - logical topology of
application with 2 clusters with ordering

Figure C.35: Case study - varying number of clusters with ordering - logical topology of
application with 4 clusters with ordering

175

Figure C.36: Case study - varying number of clusters with ordering - logical topology of
application with 8 clusters with ordering

Figure C.37: Case study - varying number of clusters - physical topology of application

176

The results for the improvement over No Opt case for studied services are shown in Figures

C.38 - C.41.

Figure C.38: Case study - varying number of clusters with ordering - % improvement over
No Opt case for mutual exclusion service

Figure C.39: Case study - varying number of clusters with ordering - % improvement over
No Opt case for termination detection service

177

Figure C.40: Case study - varying number of clusters with ordering - % improvement over
No Opt case for total ordering service

Figure C.41: Case study - varying number of clusters with ordering - % improvement over
No Opt case for total number of messages

178

The results for the improvement over previous level of optimization for studied services are

shown in Figures C.42 - C.45.

Figure C.42: Case study - varying number of clusters with ordering - % improvement over
previous level of optimization for mutual exclusion service

Figure C.43: Case study - varying number of clusters with ordering - % improvement over
previous level of optimization for termination detection service

179

Figure C.44: Case study - varying number of clusters with ordering - % improvement over
previous level of optimization for total ordering service

Figure C.45: Case study - varying number of clusters with ordering - % improvement over
previous level of optimization for total number of messages

180

The results show the following trends:

For mutual exclusion service, as the number of clusters with local ordering information

becomes larger, improvements due to static optimization are not significant. Dynamic op-

timization is significant. It increases with the increase of number of clusters with ordering.

Physical topology based optimization further contributes to improvement in the number

of messages and stays the same as the number of clusters with ordering grows. For ter-

mination detection service, only dynamic optimization contributes to the improvement in

the number of messages. As the number of clusters with local ordering information grows,

the improvement does not change. For total ordering service, as the number of clusters

with local ordering information becomes larger, improvements due to static optimization

are not significant. Dynamic optimization is not a contributing factor. Physical topology

based optimization is significant and stays the same as the number of clusters with ordering

grows.

181

Varying number of components per processor

In this section we will vary the number of components per processor from 1 to 2 to 4 to

8. The number of clusters is four and remains the same. The number of components is

thirty-two and also remains the same. Players in each group make bids in a round-robin

fashion. Application and physical topologies for each case are shown in Figures C.46 - C.50.

Figure C.46: Case study - varying number of components per processor - logical topology
of application with 8 components per cluster

182

Figure C.47: Case study - varying number of components per processor - physical topology
of application with 1 component per processor

Figure C.48: Case study - varying number of components per processor - physical topology
of application with 2 components per processor

183

Figure C.49: Case study - varying number of components per processor - physical topology
of application with 4 components per processor

Figure C.50: Case study - varying number of components per processor - physical topology
of application with 8 components per processor

184

The results for the improvement over No Opt case for studied services are shown in Figures

C.51 - C.54.

Figure C.51: Case study - varying number of components per processor - % improvement
over No Opt case for mutual exclusion service

Figure C.52: Case study - varying number of components per processor - % improvement
over No Opt case for termination detection service

185

Figure C.53: Case study - varying number of components per processor - % improvement
over No Opt case for total ordering service

Figure C.54: Case study - varying number of components per processor - % improvement
over No Opt case for total number of messages

186

The results for the improvement over previous level of optimization for studied services are

shown in Figures C.29 - C.32.

Figure C.55: Case study - varying number of components per processor - % improvement
over previous level of optimization for mutual exclusion service

Figure C.56: Case study - varying number of components per processor - % improvement
over previous level of optimization for termination detection service

187

Figure C.57: Case study - varying number of components per processor - % improvement
over previous level of optimization for total ordering

Figure C.58: Case study - varying number of components per processor - % improvement
over previous level of optimization for total number of messages

188

The results show the following trends:

For all services, as the number of components per processor becomes larger, improve-

ments due to all optimizations become less significant and approach zero. The more com-

ponents we put on a processor, the fewer messages we need to send from one processor to

another. If all components are placed on the same processor, no network messages will be

needed.

189

Summary

The results of case studies allow us to make several observations. InDiGO framework uti-

lizes ordering information on events for possible optimizations and thus best suited for

applications whose components issue events in some order.

The applications that have higher number of localized clusters of components with or-

dering show lower relative optimization level than those with fewer number of localized

clusters of components with ordering. But, as the number of components in a localized

cluster grows, so does the level of optimization.

For physical topology optimization, the sparser the physical topology that connects com-

ponents, the better physical topology optimization. Also, the fewer application components

are mapped on a single physical processor, the better the optimization achieved by utilizing

our framework.

In terms of algorithms, the algorithms that involve communication with higher number

of components tend to be optimized better than those which involve communication with

only a few components. For example, the algorithms that involve communication with

all components could be optimized better than those that involve communication with

neighbours only.

190

Appendix D

Examples of other distributed
algorithms and their customization

In this section, we will describe other distributed algorithms that we looked at. We will

also present their customized versions. As could be seen, the trasformation to a customized

version with interaction sets is simple. All algorithms that we present here have been

implemented on J-Sim simulator.

D.1 Token based mutual exclusion distributed algo-

rithm for arbitrary topology

Here we present a token based mutual exclusion distributed algorithm for an arbitrary

topology. The token is requested by process Pi using a timestamped request message sent

to all processes. Pi does not know which process has the token. Along with the token we

pass a vector vector that contains a timestamp of the last visit the token made to each of

the Pk processes. Once process Pj, which holds the token, exits its critical section, it looks

for the first process Pk (k in the order j + 1, . . . , n, 1, . . . , j - 1) such that the timestamp of

the last request from Pk is greater than the timestamp stored in the vector during its last

visit to Pk. The timestamps of requests received by a process Pk are stored in its local array

variable requests. The algorithm is presented in Figure D.1 below. This algorithm is due to

Ricart and Agrawala25.

191

Code for process Pi:

local variables:

msn: 1 .. ∞ // initialized to 1
bool have token ← false
bool request sent ← false
bool in cs ← false
vector: array[1..n] of 0 .. ∞ // all elements initialized to 0
requests: array[1..n] of 0 .. ∞ // all elements initialized to 0

:: (want to enter CS ∧ have token)
in CS ← true
want to enter CS ← false
want to exit CS ← false
request sent ← false

:: (want to enter CS ∧ !have token ∧ !request sent)
msn ← msn + 1
send(request, msn, i)
request sent ← true

:: receive(request, k, j)
requests[j] ← max(requests[j], k)
if (have token ∧ !in CS)

for j = i + 1 to n, 1 to i - 1
if ((requests[j] > vector[j]) ∧ have token)

have token ← false
send(token, vector, i) to j

:: (have token ∧ in CS ∧ want to exit CS)
vector[i] ← msn
in CS ← false
for j = i + 1 to n, 1 to i - 1

if ((requests[j] > vector[j]) ∧ have token)
have token ← false
send(token, vector, i) to j

:: receive(token, v, j)
have token ← true
for k = 1 to n

vector[k] ← max(vector[k], v[k])

Figure D.1: Token based mutual exclusion distributed algorithm for arbitrary topology

192

Customized version.

The following interaction sets are needed for a customized version:

- SRT - ”send request to” set

- RRF - ”request received from” set - reverse of SRT

The customized version is shown in Figure D.2 below:

193

Code for process Pi:

local variables:

msn: 1 .. ∞ // initialized to 1
bool have token ← false
bool request sent ← false
bool in cs ← false
vector: array[1..n] of 0 .. ∞ // all elements initialized to 0
requests: array[1..n] of 0 .. ∞ // all elements initialized to 0

:: (want to enter CS ∧ have token)
in CS ← true
want to enter CS ← false
want to exit CS ← false
request sent ← false

:: (want to enter CS ∧ !have token ∧ !request sent)
msn ← msn + 1
send(request, msn, i) to SRT
request sent ← true

:: receive(request, k, j)
requests[j] ← max(requests[j], k)
if (have token ∧ !in CS)

for j = i + 1 to n, 1 to i - 1
if (j ∈ RRF)

if ((requests[j] > vector[j]) ∧ have token)
have token ← false
send(token, vector, i) to j

:: (have token ∧ in CS ∧ want to exit CS)
vector[i] ← msn
in CS ← false
for j = i + 1 to n, 1 to i - 1

if (j ∈ RRF)
if ((requests[j] > vector[j]) ∧ have token)

have token ← false
send(token, vector, i) to j

:: receive(token, v, j)
have token ← true
for k = 1 to n

vector[k] ← max(vector[k], v[k])

Figure D.2: Customized version of token based mutual exclusion distributed algorithm for
arbitrary topology

194

D.2 Distributed termination detection algorithm for

arbitrary topology

Here we present a distributed termination detection algorithm for arbitrary topology. If

a process Q receives the marker for the first time, it considers the process that sent that

marker as its predecessor. Then, it returns to its predecessor either a DONE message or a

CONTINUE message. A DONE message is returned only when the following two conditions

are met:

1 All of Q ’s successors have returned a DONE message.

2 Q has not received any message between the point it recorded its state, and the point

it had received the marker along each of its incoming channels.

In all other cases Q sends a CONTINUE message to its predecessor.

Eventually, the original initiator, say process P, will receive either a CONITNUE mes-

sage, or only DONE messages from its successors. When only DONE messages are received,

it is known that no regular messages are in transit, and thus the computation has termi-

nateed. Otherwise, process P initiates another round, and continues to do so until onlly

DONE messages are eventually returned.

The algorithm described above is presented in Figures D.3 and D.4. This algorithm was

adopted from discussion about using a snapshot to solve termination detection problem in53.

195

Code for process Pk that initiates termination detection:

init(){
initiated ← false
replies ← 0

}

init()
sn ← 1 // sequence number
:: (!initiated ∧ state = passive)

send(marker, k, neighbours, sn)
initiated ← true

:: receive(CONTINUE, source, dest, seq)
if (seq = sn)

init()
sn ← sn + 1

:: receive(DONE, source, dest, seq)
if (seq = sn)

replies ← replies + 1
if (replies = neighbours.size)

termination detected
:: receive(app)

init()
sn ← sn + 1
state ← active

Figure D.3: Distributed termination detection algorithm for any arbitrary topology - initi-
ating process

196

Code for process Pi, i 6= k:

init(){
marker received ← false
predecessor ← -1
replies ← 0

}
init()
sn ← 0
:: receive(marker, source, dest, seq)

if (seq > sn)
sn ← seq; init()
if (state = active)

send(CONTINUE, i, source, sn)
else // state is passive

marker received ← true
predecessor ← source
if (neighbours.size > 1)

send(marker, i, neighbours - source, sn)
else // only one neighbour - source

send(DONE, i, source, sn)
else if (seq = sn)

send(ALREADY, i, source, sn)
:: receive(CONTINUE, source, dest, seq)

if (seq > sn ∧ marker received)
send(CONTINUE, i, predecessor, seq)
init()

:: receive(ALREADY, source, dest, seq)
if (seq > sn ∧ marker received)

replies ← replies + 1
if (replies = neighbours.size - 1) // -1 - account for predecessor

send(DONE, i, predecessor, seq)
:: receive(DONE, source, dest, seq)

if (seq > sn ∧ marker received)
replies ← replies + 1
if (replies = neighbours.size - 1)

send(DONE, i, predecessor, seq)
:: receive(app)

state ← active
if (predecessor ≥ 0)

send(CONTINUE, i, predecessor, sn)
init()

Figure D.4: Distributed termination detection algorithm for any arbitrary topology - not
initiating process

197

Customized version.

The following interaction sets are needed for a customized version:

- SMT - ”send marker to” set - all neighbors - ”not important” neighbors

- WRF = SMT - ”wait response from” set - all neighbors - ”not important” neighbors

The customized version is shown in Figure D.5 and Figure D.6 below.

198

Code for process Pk that initiates termination detection:

init(){
initiated ← false
replies ← 0

}

init()
sn ← 1 // sequence number
:: (!initiated ∧ state = passive)

send(marker, k, sn) to SMT
initiated ← true

:: receive(CONTINUE, source, dest, seq)
if (seq = sn)

init()
sn ← sn + 1

:: receive(DONE, source, dest, seq)
if (seq = sn)

replies ← replies + 1
if (replies = WRF.size)

termination detected
:: receive(app)

init()
sn ← sn + 1
state ← active

Figure D.5: Customized version of distributed termination detection algorithm for any
arbitrary topology - initiating process

199

Code for process Pi, i 6= k:

init(){
marker received ← false
predecessor ← -1
replies ← 0

}
init()
sn ← 0
:: receive(marker, source, dest, seq)

if (seq > sn)
sn ← seq; init()
if (state = active)

send(CONTINUE, i, source, sn)
else // state is passive

marker received ← true
predecessor ← source
if (SMT.size > 1)

send(marker, i, sn) to SMT
else // only one neighbour - source

send(DONE, i, source, sn)
else if (seq = sn)

send(ALREADY, i, source, sn)
:: receive(CONTINUE, source, dest, seq)

if (seq > sn ∧ marker received)
send(CONTINUE, i, predecessor, seq)
init()

:: receive(ALREADY, source, dest, seq)
if (seq > sn ∧ marker received)

replies ← replies + 1
if (replies = WRF.size)

send(DONE, i, predecessor, seq)
:: receive(DONE, source, dest, seq)

if (seq > sn ∧ marker received)
replies ← replies + 1
if (replies = WRF.size)

send(DONE, i, predecessor, seq)
:: receive(app)

state ← active
if (predecessor ≥ 0)

send(CONTINUE, i, predecessor, sn)
init()

Figure D.6: Customized version of distributed termination detection algorithm for any
arbitrary topology - not initiating process

200

D.3 Distributed termination detection algorithm for a

star topology

Next we present a distributed termination detection algorithm for a star topology. We

assume that all processes are arranged in a star topology with one special process P0 in the

center of the star and all the rest of the processes directly connected to P0 but not to any

other process.

To detect termination, when the app component signals to the termination detection

component that the state of P0 becomes passive, termination detection component sends a

marker message to all other processes. On receiving a marker message, if the process is

passive, it sends DONE message back to P0. Otherwise, it sends CONTINUE message to

P0. If P0 receives DONE relplies from all processes and remains passive since sending the

marker message out, it concludes that termination did happen. Otherwise, termination did

not happen. We present two versions for P0. In version 1, if termination is not detected, then

P0 responds with a NotTerminated message to the app component, and the app component

needs to initiate another round of termination detection (see Figure D.7). In version 2, after

detecting that termination did not happen, P0 waits until all the processes respond, and

initiates termination detection algorithm anew if its state is passive (see Figure D.8).

The number of processes is denoted by n. If APP component receives a NOTTERMI-

NATED message and still wants to detect termination, it needs to initiate TEDET algorithm

again by sending START message to TEDET component.

Next, we present algorithm for Pi, i 6= 0 shown in Figure D.9.

201

Code for process P0 (version 1):

state ← active
initiated ← false
pcolor ← black
number of replies ← 0
:: receive(START)

state ← passive
:: (!initiated && state = passive)

pcolor ← white
send(marker, all)
initiated ← true
number of replies ← 0

:: receive(app)
pcolor ← black

:: receive(DONE)
number of replies ← number of replies + 1
if (number of replies = n - 1)

if (pcolor = white)
send(TERMINATED, APP) and halt

else
send(NOTTERMINATED, APP)

state ← active
initiated ← false

:: receive(CONTINUE)
number of replies ← number of replies + 1
pcolor ← black
if (number of replies = n - 1)

send(NOTTERMINATED, APP)
state ← active
initiated ← false

Figure D.7: Distributed termination detection algorithm for a star topology (process P0) -
version 1

202

Code for process P0 (version 2):

state ← active
initiated ← false
continued ← false
pcolor ← black
number of replies ← 0
:: receive(START)

state ← passive
:: ((!initiated || continued) && state = passive)

pcolor ← white
send(marker, all)
initiated ← true
number of replies ← 0

:: receive(app)
pcolor ← black

:: receive(DONE)
number of replies ← number of replies + 1
if (number of replies = n - 1)

if (pcolor = white)
send(TERMINATED, APP) and halt

else
state ← active

:: receive(CONTINUE)
number of replies ← number of replies + 1
pcolor ← black
if (number of replies = n - 1)

state ← active
:: (initiated && state = active)

continued ← true
send(ISPASSIVE, APP)

:: receive(PASSIVE)
state ← passive

:: receive(ACTIVE)
skip

Figure D.8: Distributed termination detection algorithm for a star topology (process P0) -
version 2

203

Code for process Pi, i 6= 0:

:: receive(marker)
send(ISPASSIVE, APP)

:: receive(PASSIVE)
send(DONE, 0)

:: receive(ACTIVE)
send(CONTINUE, 0)

Figure D.9: Distributed termination detection algorithm for a star topology (process Pi, i 6=
0)

Customized version.

The following interaction sets are needed for a customized version:

- SMT - ”send marker to” set - all neighbors - ”not important” neighbors

- WRF = SMT - ”wait response from” set - all neighbors - ”not important” neighbors

The customized versions are shown in Figures D.10 and D.11 below.

204

Code for process P0 (version 1):

state ← active
initiated ← false
pcolor ← black
number of replies ← 0
:: receive(START)

state ← passive
:: (!initiated && state = passive)

pcolor ← white
send(marker) to SMT
initiated ← true
number of replies ← 0

:: receive(app)
pcolor ← black

:: receive(DONE)
number of replies ← number of replies + 1
if (number of replies = WRF.size)

if (pcolor = white)
send(TERMINATED, APP) and halt

else
send(NOTTERMINATED, APP)

state ← active
initiated ← false

:: receive(CONTINUE)
number of replies ← number of replies + 1
pcolor ← black
if (number of replies = WRF.size)

send(NOTTERMINATED, APP)
state ← active
initiated ← false

Figure D.10: Customized version of distributed termination detection algorithm for a star
topology (process P0) - version 1

205

Code for process P0 (version 2):

state ← active
initiated ← false
continued ← false
pcolor ← black
number of replies ← 0
:: receive(START)

state ← passive
:: ((!initiated || continued) && state = passive)

pcolor ← white
send(marker) to SMT
initiated ← true
number of replies ← 0

:: receive(app)
pcolor ← black

:: receive(DONE)
number of replies ← number of replies + 1
if (number of replies = WRF.size)

if (pcolor = white)
send(TERMINATED, APP) and halt

else
state ← active

:: receive(CONTINUE)
number of replies ← number of replies + 1
pcolor ← black
if (number of replies = WRF.size)

state ← active
:: (initiated && state = active)

continued ← true
send(ISPASSIVE, APP)

:: receive(PASSIVE)
state ← passive

:: receive(ACTIVE)
skip

Figure D.11: Customized version of distributed termination detection algorithm for a star
topology (process P0) - version 2

206

D.4 The total order algorithm that uses one process

as a sequencer

Next we present the total order algorithm that uses one process as a sequencer. We can

designate one processor to be a sequencer. In that case, every processor that wishes to send

a message, sends that message to the sequencer. Upon receiving a message, the sequencer

assigns a sequence number to the message and forwards it to the destination process. It is

easy to see that the sequencer will maintain the total order of messages based on sequence

number.

A message carries with it a message id. When a process receives a message, it stores it in

its local priority queue. The sequencer process assigns timestamps to messages as before thus

providing total order mechanism. After assigning a timestamp to a message, the sequencer

broadcasts message id along with the timestamp instead of broadcasting the whole message.

In this way, if the sequencer process goes down, total order would not be provided. But all

messages will be delivered to other processes. On receiving a message id/timestamp pair

message from the sequencer, a process updates the corresponding message in the queue with

the timestamp assigned by the sequencer process.

207

Code for process Pi:
sn ← 0
queue ← empty
mid ← 0

:: receive(app) from APP component
mid ← mid + 1
broadcast(app, i, mid) // broadcast app to all processes incl the sequencer

:: receive(app, source, id)
queue.add(app, id, source)

:: receive(mid, seq)
updatequeue(mid, seq)

:: (!queue.IsEmpty() ∧ queue.head.seq = sn + 1)
deliver (app, source) to APP component
sn ← sn + 1

Code for process Sequencer:
sn ← 0

:: receive(app, source, mid)
sn ← sn + 1
broadcast(mid, sn)

Figure D.12: Total order algorithm that uses one process as a sequencer

208

Customized version.

The following interaction sets are needed for a customized version:

- SAMT - ”send app message to” set

- SSNT - ”send sequence number to” set

The customized version is shown in Figure D.13 and D.11 below.

Code for process Pi:
sn ← 0
queue ← empty
mid ← 0

:: receive(app) from APP component
mid ← mid + 1
send(app, i, mid) to SAMT

:: receive(app, source, id)
queue.add(app, id, source)

:: receive(mid, seq)
updatequeue(mid, seq)

:: (!queue.IsEmpty() ∧ queue.head.seq = sn + 1)
deliver (app, source) to APP component
sn ← sn + 1

Code for process Sequencer:
sn ← 0

:: receive(app, source, mid)
sn ← sn + 1
send(mid, sn) to SSNT

Figure D.13: Customized version of total order algorithm that uses one process as a se-
quencer

209

	Title Page
	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	The problem domain
	Overview of the approach
	Thesis organization

	Model for distributed systems
	System model
	Component-based distributed applications
	Complexity measure
	Pseudocode conventions

	Problem motivation and related work
	Problem motivation
	Related work

	InDiGO framework
	Description of framework capabilities
	Application developer perspective
	Identifying the required services

	Application dependency graph
	Query interface for application dependency graph
	Basic queries
	Arguments to queries
	Development of algorithms to answer queries
	Using model checking to answer queries

	Algorithm developer perspective
	Development of customizable algorithms
	Interaction sets
	Membership criteria for interaction sets
	Rules for dynamic updates to the interaction sets

	Mutual exclusion algorithm example
	Termination detection algorithm example
	Total order algorithm example
	Proofs for customizable algorithms
	Discussion

	Optimization tools perspective
	ADG construction tool
	Promela model construction tool
	Optimizer
	Discussion on optimizer complexity

	Summary

	Optimizations
	Application-based static optimizations
	Application-based dynamic optimizations
	Physical topology-based optimizations
	Discussion

	Evaluation
	Bidding applications
	Bidding application 1
	Bidding application 2 with fewer constraints

	Teleteaching applications
	Teleteaching application 3

	Effectiveness of the customization techniques
	Summary

	Conclusion and future work
	Bibliography
	Grammar for CPS files
	Grammar for membership criteria
	Case study
	Examples of other distributed algorithms and their customization
	Mutual exclusion algorithm
	Distributed termination detection algorithm for arbitrary topology
	Distributed termination detection algorithm for a star topology
	The total order algorithm that uses one process as a sequencer

