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Abstract

It is common to assume the spatial or spatio-temporal data are realizations of un-

derlying random fields or stochastic processes. Effective approaches to modeling of the

underlying autocorrelation structure of the same random field and the association among

multiple processes are of great demand in many areas including atmospheric sciences, me-

teorology and agriculture. To this end, this dissertation studies methods and application

of the spatial modeling of large-scale dependence structure and spatio-temporal regression

modelling.

First, variogram and variogram matrix functions play important roles in modeling

dependence structure among processes at different locations in spatial statistics. With

more and more data collected on a global scale in environmental science, geophysics, and

related fields, we focus on the characterizations of the variogram models on spheres of

all dimensions for both stationary and intrinsic stationary, univariate and multivariate

random fields. Some efficient approaches are proposed to construct a variety of vari-

ograms including simple polynomial structures. In particular, the series representation

and spherical behavior of intrinsic stationary random fields are explored in both theoreti-

cal and simulation study. The applications of the proposed model and related theoretical

results are demonstrated using simulation and real data analysis.

Second, knowledge of the influential factors on the number of days suitable for field-

work (DSFW) has important implications on timing of agricultural field operations, ma-

chinery decision, and risk management. To assess how some global climate phenomena



such as El Nino Southern Oscillation (ENSO) affects DSFW and capture their complex

associations in space and time, we propose various spatio-temporal dynamic models under

hierarchical Bayesian framework. The Integrated Nested Laplace Approximation (INLA)

is used and adapted to reduce the computational burden experienced when a large num-

ber of geo-locations and time points is considered in the data set. A comparison study

between dynamics models with INLA viewing spatial domain as discrete and continuous

is conducted and their pros and cons are evaluated based on multiple criteria. Finally a

model with time- varying coefficients is shown to reflect the dynamic nature of the impact

and lagged effect of ENSO on DSFW in US with spatio-temporal correlations accounted.
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Preface

In modern science, more and more data is collected on a large scale. Not only the

number of locations and time points becomes large, it also cover a great area. Model on

spheres in spatial statistics is to capture spatial dependent structure over a globe, which

may applied to many applications in geophysics and climatology, such as global mapping

of greenhouse gas fluxes, temperature-precipitation interactions in climate change and

so on. Since we are working on distance on spheres. The distortion between Euclidean

distance and spherical distance can be not ignored. We must validate positive definite

properties of the variogram constructed from this study. A series of theorems and corol-

laries are developed for this purpose. In this dissertation, we also focus on variogram

and variogram matrix function on spheres of all dimensions. Some intrinsically stationary

random fields may not have a valid covariance structure by definition, but variogram can

be a relevant tool in modeling dependence structures among those fields. We also found

many data collection process on spheres are multivariate by their nature. In particular,

the characterizations of isotropic variogram models on all spheres for both univariate and

multivariate random fields are engaged and some efficient approach are proposed with a

simple polynomial structure. Furthermore, to compare our model with existing method

fairly, we propose a new simulation method, which allow us to generate a multivariate

intrinsic stationary, Gaussian or Non-Gaussian spatial random field.

In chapter 2, we focus on methods and applications of Bayesian dynamic models on

spatio-temporal data. One application in agriculture economics is used as a source of our

question to demonstrate how to solve a complex questions in dynamic models’ framework.
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Days suitable for fieldwork (DSFW) is the count of farming operation within a week or a

month. The El Niño Southern Oscillation (ENSO) is a naturally occurring phenomenon

that involves fluctuation of ocean temperatures in the equatorial Pacific. The knowledge

of how global weather pattern such as ENSO influence the number of days suitable for

fieldwork (DSFW) has important implications on timing of agricultural field operations,

machinery decision, and risk management. The Bayesian dynamic models are used to

assess the complex association between ENSO and DSFW in space and time. However,

the computational burden of large amount of data in space and time has to be considered

thoroughly. Integrated Nested Laplace Approximation perform fast full Bayesian inference

through accurate approximation of marginal posterior and latent variables. INLA reduces

computational cost from days in MCMC to hours and then allow us to fit some very

complex dynamic models in a large data set. Besides, we also use DSFW and ENSO data

as an example to investigate and compare dynamic models in discrete spatial domain

and continuous spatial domain. A lagged effect model with time-varying coefficients are

finalized to make inferences.
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Chapter 1

Variogram Models on Spheres of All

Dimensions

1.1 Introduction

With more and more data collected on a global scale in geophysics, climatology and related

fields, efficiently capturing spatial dependence structure on spheres play an increasingly

important role in understanding the underlying processes, such as global mapping of

greenhouse gas fluxes, temperature-precipitation interactions in climate change, and so

on ( see e.g. Adviento-Borbe et al. 2007, Gaspari and Cohn 1999, Sain et al. 2011, Du

et al. 2013, among others). Recently, it has caught great attention to develop and validate

covariance models on spheres (see e.g. Jun and Stein 2007, Jun and Stein 2008, Cressie

and Johannesson 2008, Du and Ma 2011, Ma 2012, Du et al. 2013, Ma 2015), although the

idea of positive definite functions on spheres was introduced as early as 1940’s ( Bochner

1941, Schoenberg 1942).

Comparing with covariogram or covariance matrix function, variogram or variogram
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matrix function can be more general and relevant tools in modeling dependence struc-

ture among multiple processes at different locations in spatial statistics ( Matheron 1963,

Journel and Huijbregts 1978, Du and Ma 2011). For example, some intrinsically station-

ary random fields may not have finite second order moments and therefore covariograms

do not exist, but variogram models might still be used for capturing the co-reaction of

the attributes at different locations. In fact an isotropic variogram on a sphere may not

only be associated with a stationary random field on the sphere but also an intrinsically

stationary random field on the sphere, such as a fractional Brownian motion on a sphere.

Moreover, the estimation of parameters through the variogram is more stable in univari-

ate case, and is recommended for estimation in multivariate case (Cressie et al. 2015).

It is also worth mentioning that kriging or cokriging can be achieved through variogram

or variogram matrix models (Cressie 1993). Jeong and Jun (2015) demonstrate that the

distortion between Euclidean distance and spherical distance is not negligible when the

spatial range of the data is large and the models originally defined on Euclidean space

are often not physically justifiable on spheres. They further argue the need to construct

variogram specifically built for spheres, even when Matérn or other variogram can be valid

on all spheres through chordal distance to spherical distance mapping. Before adapting

Euclidean covariance and variogram models to the sphere, one must first ensure their

validity (Huang et al. 2011). While the Gaussian random field on the Euclidean space is

well studied (Lang and Schwab 2015), the study on variogram modeling and properties

on all spheres is limited in literature. Most of them are focusing on univariate isotropic

covariance for stationary random fields without actual implementation to show the use-

fulness of the given models in real data analysis (e.g. Ma 2015). Since data on the

globe often cover a very large spatial range, the stationary assumption can be violated

easily and long distance prediction is more likely due to large scale land zone variation.
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Thus, intrinsically stationary or nonstationary models on spheres are of great demand,

and so are the models that capture negative spatial correlation and hole effects. To deal

with nonstationarity on spheres, kernel convolution has been effectively used to model

underlying random field (see e.g. Heaton et al. 2014, Li and Zhu 2016). But the as-

sociated numerical calculation sometimes can be challenging with no closed form for its

corresponding covariance functions generally. In this work we focus on explicit variogram

modeling for intrinsically stationary random fields with straightforward calculation. In

particular, we engage in the characterizations of isotropic variogram models on spheres

of all dimensions for both univariate and multivariate random fields. More efficient ap-

proaches are introduced to construct isotropic variogram models with various structures

including simple polynomial forms with hole effect. Some of which will prove to be ef-

ficient in modeling and effective on long distance kriging through simulation study and

data analysis. Moreover, a new simulation method will be proposed to generate intrinsic

stationary, Gaussian or non-Gaussian, multivariate spatial data, given the fact that most

of the existing spatial simulation methods are based on Gaussian and weakly stationary

assumptions.

The rest of this chapter is organized as follows. Sections 2 and 3 establish sufficient and

necessary conditions for validating univariate variogram or multivariate variogram matrix

functions for random fields with isotropic increments on all spheres. Those sufficient and

necessary conditions can further be used to find an adequate form of variogram matrix

functions when needed, and to provide a guideline to develop new forms of variograms on

all spheres. In Section 4, we introduce a new method to simulate a vector random field

on a sphere, which may or may not be a Gaussian random field. The simulation study

in this section and data analysis in next section are conducted to show how to apply the

proposed models and demonstrate the advantages of some models developed in certain

3



scenarios, such as for long distance prediction with separation of oceans or mountains.

Particularly one proposed polynomial type of variogram turns out to be computationally

efficient, valid on all spheres and flexible enough to fit different large scale data sets.

Proofs of Theorems 1-5 are given in the Appendix.

1.2 Univariate Isotropic Variogram Models on All

Spheres

Geophysical and environmental data are often viewed as a realization of a random field

{Z(x),x ∈ Sd}, where Sd is a sphere or spherical shell of radius one and centered at the

origin in Rd+1, i.e., Sd = {‖x‖ = 1,x ∈ Rd+1}, where ‖x‖ is the Euclidean norm of x. For

two points x1 and x2 on Sd, their spherical (angular or great-circle) distance is denoted by

ϑ(x1,x2), 0 ≤ ϑ(x1,x2) ≤ π. It is related to the Euclidean (chordal) distance ‖x1 − x2‖

and the inner product x1
′x2 through the following formulas,

‖x1 − x2‖2 = 2(1− x1
′x2) = 2{1− cos(ϑ(x1,x2))}, x1,x2 ∈ Sd. (1.1)

A random field {Z(x),x ∈ Sd} is said to have second order increments if its increments

have second-order moments. Moreover, {Z(x),x ∈ Sd} is called an intrinsically stationary

random field with isotropic increments, if E(Z(x1) − Z(x2)) does not depend on x1 and

x2, and its variogram

γ(ϑ(x1,x2)) =
1

2
var (Z(x1)− Z(x2)) =

1

2
E[Z(x1)−Z(x2)−E(Z(x1)−Z(x2))]

2, x1,x2 ∈ Sd,

(1.2)

depends only on the spherical distance ϑ(x1,x2) between x1 and x2 on Sd. We say γ(ϑ)
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is an isotropic variogam on all spheres or S∞, if γ(ϑ), ϑ ∈ [0, π], is an isotropic variogram

on all Sd(d = 1, 2, ...).

A nonnegative and continuous function g(x) is absolutely monotone on [a, b], if it has

non-negative derivatives of all orders over (a, b), i.e.,

g(n)(x) ≥ 0, a < x < b, n = 1, 2, . . . .

The following theorem characterizes a nonnegative and continuous function to be an

isotropic variogram on S∞.

Theorem 1. For a nonnegative and continuous function γ(ϑ) on [0, π], the following

statements are equivalent:

(i) γ(ϑ) is an isotropic variogram on S∞;

(ii) γ(ϑ) is of the form

γ(ϑ) =
∞∑
n=1

bn (1− cosn ϑ) , ϑ ∈ [0, π], (1.3)

where {bn, n = 1, 2, . . .} is a summable sequence of nonnegative numbers;

(iii) γ(ϑ) is of the form

γ(ϑ) = g(1)− g(cosϑ), ϑ ∈ [0, π], (1.4)

where the function g(x) is continuous on [−1, 1] and absolutely monotone on [0, 1], and

g(x)− g(−x) is absolutely monotone on [0, 1];

(iv) γ0 − γ
(
π
2
− arcsinx

)
and γ

(
π
2

+ arcsinx
)
− γ

(
π
2
− arcsinx

)
, x ∈ [−1, 1], are

absolutely monotone on [0, 1], and γ(0) = 0, where γ0 is a constant with γ0 ≥ max
0≤ϑ≤π

γ(ϑ).
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Theorem 1 (iii) and (iv) above provide handy tools to validate variograms on S∞, given

a wealth of ways to construct and verify absolute monotone functions in the literature

(Widder 1941, Feller 1971). In addition, Theorem 1 (ii) results in the following two

properties of an isotropic variogram, which can be used to show that certain function is

not a variogram on S∞.

Corollary 1. If γ(ϑ), ϑ ∈ [0, π] is an isotropic variogram on S∞, then it is nonnegative

on [0, π], increasing on [0, π
2
], and γ(0) = 0.

Corollary 1 is directly derived from theorem 1, since each bn is nonnegative and cosn ϑ

lies between -1 and 1. In view of Corollary 1, γ(ϑ) has to be increasing on
[
0, π

2

]
, but it

may not be so on the interval
[
π
2
, π
]
, as is released from Corollary 2.

Corollary 2. If γ(ϑ), ϑ ∈ [0, π] is an isotropic variogram on S∞, then γ
(
π
2

+ ϑ
)
−

γ
(
π
2
− ϑ
)

is nonnegative and increasing on
[
0, π

2

]
, and γ

(
π
2
− ϑ
)

+ γ
(
π
2

+ ϑ
)

is nonneg-

ative and decreasing on
[
0, π

2

]
.

In fact, it follows from identity (1.3) that

γ
(π

2
+ ϑ
)
− γ

(π
2
− ϑ
)

=
∞∑
n=1

bn

{
1− cosn

(π
2

+ ϑ
)}
−
∞∑
n=1

bn

{
1− cosn

(π
2
− ϑ
)}

=
∞∑
n=1

bn (−(−1)n sinn ϑ+ sinn ϑ)

= 2
∞∑
n=0

b2n+1 sin2n+1 ϑ, ϑ ∈ [0,
π

2
],

6



which takes nonnegative values and increases on
[
0, π

2

]
, since sinϑ does so. Similarly,

γ
(π

2
+ ϑ
)

+ γ
(π

2
− ϑ
)

=
∞∑
n=1

bn

{
1− cosn

(π
2

+ ϑ
)}

+
∞∑
n=1

bn

{
1− cosn

(π
2
− ϑ
)}

=
∞∑
n=1

bn (2− (−1)n sinn ϑ− sinn ϑ)

= 2
∞∑
n=1

b2n
(
1− sin2n ϑ

)
, ϑ ∈

[
0,
π

2

]
,

takes nonnegative value and decreases on
[
0, π

2

]
.

For the convenience of applications, we also give some sufficient conditions for vari-

ograms on all spheres in the sequel. We say a nonnegative and continuous function g(x)

is completely monotone on [0, a), if it possesses derivatives of all order on (0, a), and

(−1)(n)g(n)(x) ≥ 0, 0 < x < a, n = 1, 2, . . . ,

where a is a finite number or infinity. Obviously, a function that is completely monotone

on [0, a1) is also completely monotone on a sub-interval [0, a2) with 0 < a2 < a1, but it

may not be so on an extended interval [0, a3) for a3 > a1. Theorem 2 (ii) below follows

from Theorem 2 (i), and the latter can be derived from Theorem 1 (iv).

Theorem 2. For a continuous and nonnegative function γ(ϑ) on [0, π], with γ(0) = 0,

it is an isotropic variogram on S∞, if one of the following conditions is satisfied:

(i) both γ0 − γ
(
π
2
− x
)

and γ
(
π
2

+ x
)
− γ

(
π
2
− x
)

are absolutely monotone on
[
0, π

2

]
,

(ii) γ0 − γ(ϑ) is completely monotone on [0, π], where γ0 is a constant such that

γ0 ≥ max
0≤ϑ≤π

γ(ϑ).

Theorem 2 along with preceding corollaries can be used to verify if a function on [0, π]

is a valid isotropic variogram on all spheres as shown in the following examples.
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Example 1. A simple linear power function

γ(ϑ) = b0 + b1ϑ
λ, ϑ ∈ [0, π], (1.5)

is a valid isotropic variogram on S∞ if and only if b0 = 0, b1 > 0 and 0 < λ ≤ 1. As a

matter of fact, we obtain b0 = 0 and b1 ≥ 0 directly from Corollary 1. In case b1 > 0, λ

must lie between 0 and 1. This follows from Corollary 2, since γ
(
π
2
− ϑ
)

+ γ
(
π
2

+ ϑ
)

is

decreasing on
[
0, π

2

]
, so that γ

(
π
2
− 0
)

+ γ
(
π
2

+ 0
)
≥ γ

(
π
2
− π

2

)
+ γ

(
π
2

+ π
2

)
, or 2

(
π
2

)λ ≥
πλ, which implies λ ≤ 1. On the other hand, when 0 < λ ≤ 1, (1.5) is a variogram on

S∞, since Theorem 2 (ii) applies with

(−1)n
d(γ0 − γ(ϑ))

dϑn
= (−1)(n+1)

n∏
i=1

(λ− i+ 1)b1ϑ
(λ−n) ≥ 0, n = 1, 2, . . . .

Example 2. For a non-zero constant b0, a rational function

γ(ϑ) =
b0ϑ

1 + b1ϑ
, ϑ ∈ [0, π], (1.6)

is an isotropic variogram on S∞ if and only if b0 > 0 and b1 ≥ 0. In fact, it follows from

Corollary 1 that b0 > 0 for γ(ϑ) to be increasing on
[
0, π

2

]
and that b1 > − 1

π
for γ(π) ≥ 0.

If b0 > 0 and 0 > b1 > − 1
π

, then

d

dϑ

(
γ
(π

2
− ϑ
)

+ γ
(π

2
+ ϑ
))

= −b0
{

1 + b1

(π
2
− ϑ
)}−2

+ b0

{
1 + b1

(π
2

+ ϑ
)}−2

> 0,

which makes Corollary 2 fail. If both b0 and b1 are nonnegative, we can apply Theorem 2

(ii) to show that (1.6) is an isotropic variogram on S∞. In this case, γ(ϑ) is increasing

on [0, π] and reaches its maximum at ϑ = π. For γ0 ≥ γ(π), γ0− γ(ϑ) is nonnegative and
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continuous on [0, π], and completely monotone, with

(−1)n
dn

dϑn
(γ0 − γ(ϑ)) = (−1)n

dn

dϑn

(
γ0 −

b0
b1

+
b0

b1(1 + b1ϑ)

)
= (−1)n

b0
b1

dn

dϑn
1

1 + b1ϑ

=
n!b0b

n−1
1

(1 + b1ϑ)n+1
≥ 0, ϑ ∈ (0, π), n = 1, 2, . . . ,

so that Theorem 2 (ii) applies.

Example 3. For a positive α, a power exponential function

γ(ϑ) = 1− exp(−αϑν), ϑ ∈ [0, π], (1.7)

is an isotropic variogram on S∞ if and only if ν ∈ (0, 1] and α > 0. As is verified by

Du and Ma (2012), γ(ϑ) = 1 − exp(−αϑν), ϑ ∈ [0, π], is an istropic variogram on S∞,

under the conditions ν ∈ (0, 1] and α > 0. For the necessary condition, by Corollary 1,

the variogram being an increasing function on
[
0, π

2

]
implies α > 0. By Corollary 2,

d

dϑ

(
γ(
π

2
− ϑ) + γ(

π

2
+ ϑ)

)
= αν

(π
2

+ ϑ
)ν−1

exp
(
−α
(π

2
+ ϑ
)ν)
− αν

(π
2
− ϑ
)ν−1

exp
(
−α
(π

2
− ϑ
)ν)

≤ 0, ϑ ∈
[
0,
π

2

]
,

which implies,

(π
2

+ ϑ
)ν−1

exp
(
−α
(π

2
+ ϑ
)ν)

≤
(π

2
− ϑ
)ν−1

exp
(
−α
(π

2
− ϑ
)ν)

, ϑ ∈
[
0,
π

2

]
.

To guarantee this inequality on [0, π
2
], it is necessary that ν ∈ (0, 1].
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Example 4. For nonnegative constants λ, b0 and b1,

γ(ϑ) = b−λ0 − (b0 + b1ϑ)−λ, ϑ ∈ [0, π], (1.8)

is a variogram function on S∞. This can be confirmed by applying Theorem 2 (ii), with

(−1)n
dn

dϑn
(γ0 − γ(ϑ)) = (−1)n

dn

dϑn
(b0 + b1ϑ)−λ

= n!bn1 (b0 + b1ϑ)−λ−n ≥ 0, ϑ ∈ (0, π), n = 1, 2, . . . ,

where γ0 is a constant not less than γ(π).

Example 5.

γ(ϑ) = 1− exp(−αϑv), ϑ ∈ [0, π], (1.9)

is a valid variogram on S∞ if and only if v ∈ (0, 1] and α > 0. As is verified by Du and Ma

(2012), the stable variogram γ(ϑ) = 1 − exp(−αϑv), ϑ ∈ [0, π], v ∈ (0, 1], and α > 0 is a

valid variogram on S∞.Therefore, the sufficient condition is complete. For the necessary

condition, by Corollary 1, the variogram is an increasing function implies α > 0. By

Corollary 2,

d(γ(π
2
− ϑ) + γ(π

2
+ ϑ))

dϑ
= αv(

π

2
+ ϑ)v−1exp(−α(

π

2
+ ϑ)v)− αv(

π

2
− ϑ)v−1exp(−α(

π

2
− ϑ)v)

≤ 0, for ϑ ∈ [0,
π

2
]

since α, v are positive numbers, which implies,

(
π

2
+ ϑ)v−1exp(−α(

π

2
+ ϑ)v) ≤ (

π

2
− ϑ)v−1exp(−α(

π

2
− ϑ)v), for ϑ ∈ [0,

π

2
]
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To guarantee the inequality on the support of ϑ ∈ [0, π
2
], v ∈ (0, 1].

Through Examples 1 to 5, we demonstrate how to verify an isotropic variogram based

on those necessary and/or sufficient conditions. Next we construct a type of polynomial

variograms possessing a simple structure and hole effect.

Theorem 3. Let γ(ϑ) be a real polynomial of degree p on [0, π],

γ(ϑ) =

p∑
k=1

bkϑ
k, ϑ ∈ [0, π]. (1.10)

(i) If the coefficients of γ(ϑ) satisfy the following inequalities,

(−1)k
p∑
j=k

bj

(
j

k

)(π
2

)j−k
≤ 0, k = 1, . . . , p, (1.11)

then γ(ϑ) is an isotropic variogram on S∞.

(ii) If (1.10) is an isotropic variogram on S∞, then

(−1)k
p∑
j=k

bj

(
j

k

)(π
2

)j−k
≤ 0, k = 1, 2. (1.12)

(iii) When p = 2, a quadratic polynomial

γ(ϑ) = b1ϑ+ b2ϑ
2, ϑ ∈ [0, π],

is an isotropic variogram on S∞ if and only if b1 + b2π ≥ 0 and b2 ≤ 0.

It is known that an intrinsically stationary variogram γ(x) on R possesses a subadditive

property (see e.g. Schilling et al. 2012), which implies that γ(x) ≤ a0x
2, x ∈ R, for a
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positive constant a0. At the first sight, one might wonder if the polynomial structure

(1.10) contradicts such a subadditive property. Fortunately, the answer is no, since one

can deduce from (10) that γ(ϑ) ≤ a0ϑ, ϑ ∈ [0, π], where

a0 = max
0≤ϑ≤π

∣∣∣∣∣
p∑

k=1

bkϑ
k−1

∣∣∣∣∣ .
The development of Theorem 3 allows us to fit a polynomial type of variograms on all

spheres. In Section 5 we will show the advantage of this type of variograms in terms of

capturing the negative spatial correlation for long distance kriging.

1.3 Multivariate Isotropic Variogram Models on All

Spheres

This section deals with the matrix version of variogram models on all spheres, which

account for not only the dependence of a random field at different locations, but also

the interaction of multiple random fields observed on the same domain. An m-variate

random field {Z(x) = (Z1(x), . . . , Zm(x))′,x ∈ Sd} is said to be intrinsically stationary

and isotropic, if the mean of Z(x1) − Z(x2) does not depend on x1,x2 ∈ Sd and its var-

iogram matrix function γ(ϑ(x1,x2)) = (γij(ϑ(x1,x2)))1≤i,j≤m depends only on ϑ(x1,x2)

between x1,x2 ∈ Sd. The direct variogram γii(ϑ(x1,x2)) is the variogram of random field

{Zi(x),x ∈ Sd},

γii(ϑ(x1,x2)) =
1

2
var(Zi(x1)− Zi(x2)), i = 1, . . . ,m. (1.13)
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The cross variogram reflexes the cross dependence between random fields {Zi(x),x ∈ Sd}

and {Zj(x),x ∈ Sd} (i 6= j),

γij(ϑ(x1,x2)) =
1

2
cov(Zi(x1)− Zi(x2), Zj(x1)− Zj(x2)). (1.14)

Similar to the scalar case, we say that γ(ϑ) is an isotropic variogram matrix function on

all spheres if it is so for all Sd (d = 1, 2, . . .). An isotropic variogram matrix on all spheres

is characterized in the following theorem.

Theorem 4. For an m×m matrix function γ(ϑ) whose entries are continuous on [0, π],

the following statements are equivalent:

(i) γ(ϑ) is an isotropic variogram matrix function on S∞;

(ii) γ(ϑ) is of the form

γ(ϑ) =
∞∑
n=1

Bn {1− cosn ϑ} , ϑ ∈ [0, π], (1.15)

where {Bn, n = 1, 2, . . .} is a summable sequence of positive definite m×m matrices;

(iii) γ
(
π
2
− arcsinx

)
is of the form

γ
(π

2
− arcsinx

)
=
∞∑
n=1

Bn(1− xn), x ∈ [−1, 1], (1.16)

where {Bn, n = 1, 2, . . .} is a summable sequence of positive definite m×m matrices.

The next example is to extend theorem 3 part (iii) to multivariate case.
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Example 6. An m×m matrix function with quadratic polynomial entries

γ(ϑ) = B1ϑ+ B2ϑ
2, ϑ ∈ [0, π],

is a variogram matrix function on S∞ if and only if B1 +πB2 is a positive definite matrix

and B2 is a negative definite matrix. To apply Theorem 4 (iii), we employ the Taylor

series expansions of arcsinx and (arcsinx)2,

arcsinx =
∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
x2n+1, x ∈ [−1, 1],

and

(arcsinx)2 =
∞∑
n=1

22n−1((n− 1)!)2

(2n)!
x2n, x ∈ [−1, 1],

to rewrite γ
(
π
2
− arcsinx

)
as follows:

γ
(π

2
− arcsinx

)
= B1

(π
2
− arcsinx

)
+ B2

(π
2
− arcsinx

)2
=

π

2
B1 +

(π
2

)2
B2 − (B1 + πB2) arcsinx+ B2(arcsinx)2

=
π

2
B1 +

(π
2

)2
B2 − (B1 + πB2)

∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
x2n+1 + B2

∞∑
n=1

22n−1((n− 1)!)2

(2n)!
x2n

= (B1 + πB2)
∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
(1− x2n+1)−B2

∞∑
n=1

22n−1((n− 1)!)2

(2n)!
(1− x2n), x ∈ [−1, 1].

Clearly, the coefficient matrices in the last expansion are positive definite if and only if

B1 + πB2 and B2 are positive definite.

Corollary 3. For an m×m matrix function γ(ϑ) whose entries are continuous on [0, π],
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if there is a sequence of m×m positive definite matrices {Bn, n = 0, 1, 2, . . .} such that

γ
(π

2
− x
)

=
∞∑
n=1

Bn

((π
2

)n
− xn

)
, x ∈

[
−π

2
,
π

2

]
, (1.17)

then γ(ϑ) is a variogram matrix function on S∞.

This corollary is confirmed once (1.16) is verified. To this end, we use the Taylor series

of (arcsinx)n,

(arcsinx)n =
∞∑
k=0

aknx
k, x ∈ [−1, 1] , n = 1, 2, . . . ,

where {akn, k = 0, 1, . . .} is a summable sequence of nonnegative numbers for each n, and

obtain

γ
(π

2
− arcsinx

)
=

∞∑
n=1

Bn

[(π
2

)n
− (arcsinx)n

]
=

∞∑
n=1

Bn [(arcsin 1)n − (arcsinx)n]

=
∞∑
n=1

Bn

[
∞∑
k=0

akn(1− xk)

]

=
∞∑
n=1

(
∞∑
k=0

aknBk

)
(1− xn), x ∈ [−1, 1],

where the positive definiteness of
∞∑
k=0

ankBk is due to positive definiteness of Bk and

non-negativeness of akn for each n.

The condition in Corollary 3 is sufficient for γ(ϑ) to be an isotropic variogram matrix

function on S∞. An exponential type of variogram matrix function on S∞ based on this

corollary is derived in the next example.
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Example 7. An m × m matrix B = (bij) being positive definite is a necessary and

sufficient condition for the m×m functions

γij(ϑ) = exp
(π

2
bij

)
(1− exp(−bijϑ)), ϑ ∈ [0, π], i, j = 1, . . . ,m, (1.18)

to form an isotropic variogram matrix function on S∞. This can be verified via Corollary

3 with the help of the Taylor expansion of exp(x) =
∞∑
n=0

xn

n!
. In fact, for x ∈

[
−π

2
, π
2

]
,

plugging this expansion into (1.18) we obtain

γij

(π
2
− x
)

= exp
(π

2
bij

)
− exp

(π
2
bij

)
exp

(
−bij

(π
2
− x
))

= exp
(π

2
bij

)
− exp(bijx)

=
∞∑
n=1

bnij
n!

((π
2

)n
− xn

)
,

where the coefficient matrices 1
n!

B◦n are positive definite if and only if B is so. Here A ◦

B = (aijbij)m×m denotes entry-wise or Hadamard product of two matrices A = (aij)m×m

and B = (bij)m×m, and B◦n is the nth Hadamard power of B.

Example 8. For λ ∈ (0, 1], ϑλ is a variogram on S∞, as is shown in Du et al. (2013).

With an m×m positive definite matrix B0, B0ϑ
λ is a variogram matrix function on S∞,

by Lemma 2(i) of Du and Ma (2012). So is

γ(ϑ) = B0ϑ
λ + B1ϑ+ B2ϑ

2, ϑ ∈ [0, π], (1.19)

as the summation of B0ϑ
λ and B1ϑ+B2ϑ

2, provided that 2B1+πB2,B1+B2π are positive

definite and −B2 are negative definite (See Example 6).
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The variogram matrix functions in Examples 6 and 8 may be lack of flexibility when

fitting a real data set, but they may have a better performance for some intrinsic station-

ary processes. Example 7 is used in one of the simulation study in the next section to

demonstrate the advantage of our model.

1.4 Simulation Studies

Common random field simulation approaches in literature are typically conducted through

defining a valid covariance (matrix) first and the resulting field is often limited to be

stationary and Gaussian. In this section, we propose a new method to simulate scalar

or vector random fields on a sphere Sd (d ≥ 2) based on a series expansion of a random

field described in the following theorem, which is not necessarily Gaussian. The simulated

process will be used to assess models developed in previous sections.

For a positive constant λ, the ultraspherical or Gegenbauer’s polynomials P
(λ)
n (x)

(n = 0, 1, 2, . . .) can be defined through the following recurring formula

P
(λ)
0 (x) = 1,

P
(λ)
1 (x) = 2λx,

P (λ)
n (x) =

2(λ+ n− 1)xP
(λ)
n−1(x)− (2λ+ n− 2)P

(λ)
n−2(x)

n
, x ∈ R, n ≥ 2.

We further define p
( d−1

2 )
n (x) = P

( d−1
2 )

n (x)

P
( d−1

2 )
n (1)

as in Du et al. (2013). Let {αn, n ∈ N} be a

sequence of positive numbers defined by

αn =

(
2n+ d− 1

d− 1

) 1
2

, n ∈ N. (1.20)
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For a positive definite matrix B, denote its square root by B
1
2 , which is a matrix of the

same order of B such that B = B
1
2

(
B

1
2

)′
. An m×m identity matrix is denoted by Im.

Theorem 5. Assume that {Vn, n ∈ N} is a sequence of independent m-variate random

vectors with EVn = 0 and cov(Vn,Vn) = α2
nIm, U is a (d+1)-dimensional random vector

uniformly distributed on Sd and is independent of {Vn, n ∈ N}, Z0 is an m-variate random

vector, and {Bn, n ∈ N} is a sequence of m ×m positive definite matrices. If the series
∞∑
n=1

Bn converges, then

Z(x) =
∞∑
n=1

B
1
2
nVn

α−1n − P
( d−1

2 )
n (x′U)

(P
( d−1

2
)

n (1))
1
2

+ Z0, x ∈ Sd, (1.21)

is an m-variate random field on Sd, with the isotropic variogram matrix function

γ(x1,x2) =
∞∑
n=1

Bn

{
1− p(

d−1
2 )

n (cos(ϑ(x1,x2)))

}
, x1,x2 ∈ Sd. (1.22)

Expression (1.22) turns out to be a general form of isotropic variogram matrix functions

on Sd, according to Theorem 1 of Du et al. (2013). Theorem 5 enables us to construct

an intrinsic random field by simply simulating an independent sequence Vn, and uniform

distributed random vector U on Sd, while the resulting random field may or may not be

Gaussian. If Z0 does not have a second order moment, then (1.21) is not a second order

random field, but its increment is so. A random vector U uniformly distributed on Sd can

be formulated by U =

 V1(
d+1∑
k=1

V 2
k

) 1
2
, . . . , Vd+1(

d+1∑
k=1

V 2
k

) 1
2


′

, where V1, . . . , Vd+1 are independent

and standard normal random variables. One way to obtain a sequence of positive definite

matrices Bn is to repeat Hadamard product of a positive definite matrix. In simulation
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study, we always want to make sure the condition for model comparison is fair for all

models in check. Knowing the explicit form of covariance structure for a random field to

simulate from, may inevitably allow a researcher to prefer one model over another. By

Theorem 5, we attempt to remove this selection bias during the simulation study.

1.4.1 Simulation I

In the previous section, we develop a theory of building variogram models on all spheres.

Jeong and Jun (2015) argues the need to construct variogram specifically built for spheres,

even when matérn or other variogram can be valid on all spheres through this 2sin( θ
2
)

transformation. It is pointed out that correlation function exists in R3 cannot have value

less than -0.218. Matérn class is by far the most popular models for fitting spatial data on

Euclidean space due to its great flexibility and theoretical justification. Actually, matérn

class possesses a smoothness parameter, which governs differentiability of covariance func-

tion at origin, as a result it is capable of predicting well if there are many points near the

predicted locations.

In our simulation, suppose the data is generated from covariance function with hole

effect, which can generate negative covariance. One hundred locations are randomly gen-

erated on unit spheres. In order to make data more spread out, we follow Jeong and Jun

(2015)’s approach to sample the locations with percentages depending on the latitude,

roughly proportional to the area of each latitude band. The final number distribution of

points is (26, 24, 21, 16, 10, 3) for latitude (±[0, 15],±(15, 30],±(30, 45],±(45, 60],±(60, 75],±(75, 90])

degree. In this simulation study, we simulate mean zero Gaussian random field on S2 with

the following covariance structure.

C(t) = σ2α

t
sin(

t

α
), t > 0
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where C(0) = σ2, which is set to be 1 and α is set to be 0.2. By Theorem 4 in Du et al.

(2013), the hole effect model is valid on S2 by letting t = 2sin(ϑ/2). Also, we set α = 0.2.

We compare polynomial of order 2 variogram function (P2) developed in theorem 3(iii)

with Matérn variogram (MG), which is valid on S2 only when the smoothness parameter

is restrict to [0, 0.5]. Under chordal distance with transformation t = 2sin(ϑ/2), a Matérn

variogram is fitted as the third comparison (MC). Furthermore, power variogram (PL) is

also introduced to this comparison, which has a form of

γ(ϑ) = b0ϑ
λ, λ ∈ [0, 1], b0 > 0

.

Among 100 data points, we use 90 randomly selected data points as training data and

remaining 10 points for testing. The Cressie’s weighted least square is used for parameter

estimation. 100 replications of simulations are run to compare this four models. Table

(1.1) displays mean and standard deviations for Root Mean Square Error (RMSE) and

Continuous Ranked Probability Score (CRPS) of the prediction (See e.g. Gneiting and

Raftery (2007)). From Table 1, we observe Polynomial of order 2 model performs the

best with smallest RMSE and CRPS among the competitive models Matérn on spherical

distance, Matérn on chordal distance and power variogram model. Figure 1.1 shows an

example of empirical variogram along with the fit from those four models. It is clear that

polynomial type of variogram’s shape is model honoring that of empirical variogram even

in the near zero area. Note that the Hole effect model has negative covariance and the

realized data is often spread out across the sphere. We might expect the polynomial type

of model would work well when those conditions are met.
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Figure 1.1: The empirical variogram of hole-effect model simulated and four types of
variogram models’ fit

1.4.2 Simulation II

The cokriging procedure is a natural extension of kriging when multivariate spatial data

is concerned (Cressie 1993). Often times in a multivariate scenario, we are interested in

prediction of a primary variable, which has limited sample, then correlation with mul-

tiple auxiliary variables can be borrowed to improve prediction. Namely a variable of

interest can be cokriged at certain locations through data of itself and auxiliary variables

nearby. As in (Du et al. 2013), cokriging performance of some proposed models from

previous section will be evaluated in comparison with popular multivariate techniques
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Measure P2 MG MC PL
RMSE(SD) 1.133(0.327) 1.317(0.328) 1.255(0.343) 1.233(0.359)
CRPS(SD) 0.667(0.219) 0.766(0.193) 0.726(0.203) 0.710(0.215)

Table 1.1: RMSE and CRPS of four types of model in simulation I

such as linear model of coregionalization (LMC). LMC assumes that all direct and cross

variogram structures are linear combinations of the same uncorrelated basis components

observed at different spatial scales (IM et al. 2007). A exponential variogram with a par-

tial sill=1.1 and range parameter =5000 is selected to be the basic component of LMC in

this simulation study.

In this simulation, the data is generated through a bivariate Matérn variogram and

the first variable is the main variable. The direct variogram and cross-variogram have a

form of

γii(ϑ) = σ2(1−M(2sin(
ϑ

2
|νi, αi))) i = 1, 2,

γij(ϑ) = ρijσiσj(1−M(2sin(
ϑ

2
|νij, αij))) i = 1, j = 2,

where M(·|ν, α) is a Matérn correlation function with smooth parameter ν and scale

parameter α. The true value of parameters is ν1 = ν2 = ν12 = 1.5, σ1 = σ2 = 1, α1 =

2, α2 = 2.5, α12 = 3 and ρ12 = 0.185 based on the equation (12) and (16) in Gneiting et al.

(2010).

The first coordinate variable in (1.21) is set to be the primary variable for co-kriging.

In 100 replications of simulation, we randomly select 500 points on unit sphere each time

as sampled location. We choose 20 fixed locations in a regular grid for prediction with

latitude in {−π
3
,−π

6
, 0, π

6
, π
3
} and longtitute in {0, π

2
, π, 3π

2
} on unit sphere.

We will demonstrate the performance of the exponential type multivariate variogram
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Locations LMC ME Locations LMC ME
(Lon, Lat) IPE IPE (Lon, Lat) IPE IPE

(0,−π
3
) 0.00576 0.00264 (π, 0) 0.36335 0.00415

(π
2
,−π

3
) 0.02272 0.00264 (3π

2
, 0) 0.01578 0.00367

(π,−π
3
) 0.01006 0.00345 (0, π

6
) 0.0604 0.00339

(3π
2
,−π

3
) 0.00278 0.00205 (π

2
, π
6
) 0.00929 0.00191

(0,−π
6
) 0.04502 0.00368 (π, π

6
) 0.01847 0.00281

(π
2
,−π

6
) 0.01568 0.00300 (3π

2
, π
6
) 0.04892 0.00283

(π,−π
6
) 0.01807 0.00373 (0, π

3
) 0.05310 0.00145

(3π
2
,−π

6
) 0.04956 0.00399 (π

2
, π
3
) 0.01011 0.00285

(0, 0) 0.11012 0.00306 (π, π
3
) 0.06319 0.00370

(π
2
, 0) 0.56037 0.00151 (3π

2
, π
3
) 0.01803 0.00304

Table 1.2: Cokriged IPE for LMC and ME in simulation II

matrix function (ME) proposed in Example 7 by comparing with the LMC in terms of

Increase in Prediction Error (IPE), which is estimated by 1
N

∑N
i=1(Ẑ1i(x0)− Ẑtrue

1i (x0))
2.

Where N is the number of simulations, Ẑtrue
1 (x0) is the predicted value at location x0

using the true variogram matrix function for co-kriging, and Ẑ1(x0) is obtained using the

estimated variogram function (IM et al. 2007). Simply speaking, IPE measures the extra

mean squared prediction error introduced by using an estimated variogram rather than

the true one. Obviously the model with smaller IPE is preferred.

At each of 20 locations, we compare the IPE of the ME model with LMC for in

cokriging capability for this simulate dataset. Table (1.2) shows that the ME model

proposed performs uniformly better than the LMC at all locations. At some of the

locations, the ME’s IPE value is only as small as 10% of that of LMC.

1.4.3 Simulation III

Simulation I discusses univariate variogram and the multivariate extension is discussed

in simulation II. In this subsection We illustrate the application of theorem 5, which pro-
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Locations LMC ME Locations LMC ME
(Lon, Lat) IPE IPE (Lon, Lat) IPE IPE

(0,−π
3
) 0.01903 0.00363 (π, 0) 0.01985 0.00463

(π
2
,−π

3
) 0.01477 0.00256 (3π

2
, 0) 0.03689 0.00219

(π,−π
3
) 0.00798 0.00274 (0, π

6
) 0.02271 0.00257

(3π
2
,−π

3
) 0.00464 0.00215 (π

2
, π
6
) 0.01759 0.00369

(0,−π
6
) 0.03675 0.00342 (π, π

6
) 0.01453 0.00233

(π
2
,−π

6
) 0.02953 0.00274 (3π

2
, π
6
) 0.00453 0.00235

(π,−π
6
) 0.01082 0.00333 (0, π

3
) 0.0393 0.00215

(3π
2
,−π

6
) 0.02225 0.00422 (π

2
, π
3
) 0.02229 0.00657

(0, 0) 0.12779 0.00266 (π, π
3
) 0.01491 0.00215

(π
2
, 0) 0.00228 0.00275 (3π

2
, π
3
) 0.01559 0.00186

Table 1.3: Cokriged IPE for LMC and ME in simulation III

vides a method to simulate random field on the unit sphere directly from a stochastic

series. Through this approach, we can simulate non-stationary or non-gaussian process.

This method also allow a relatively fair comparison on the performance of exiting theo-

retical variogram and variogram proposed by this paper with less selection bias when no

covariance structure is specified in simulating from this constructed random field.

In our simulation study, we choose Vn as a sequence of bi-variate normal random

vectors with EVn = 0 and cov(Vn,Vn) = α2
nI2. According to equation (1.20), αn =

(2n + 1)
1
2 , n ∈ N with dimension d = 2. Let U be a random vector that is uniformly

distributed on S2 and Bn = B0
◦n, n = 0, 1, 2, . . . with a positive definite matrix B0 =1

2
1
4

1
4

2
3

.

We randomly sample 500 locations from the random field specified earlier based on

Theorem 5. Twenty fixed locations in a regular grid are chosen for prediction with lati-

tude in {−π
3
,−π

6
, 0, π

6
, π
3
} and longtitute in {0, π

2
, π, 3π

2
} on a unit sphere. At each of 20

locations, the estimated increase in prediction error based on both the ME model and

24



LMC are computed. Table 1.1 shows that the ME model performs uniformly better than

the LMC at all locations in IPE. At some of the locations, the ME’s IPE error is only

10% of LMC’s. This superiority over LMC has been found no matter how the data is

generated, as long as the empirical variogram roughly takes the shape of the theoretical

model proposed.

1.5 Data Analysis

With the advancement of techniques in data collection, the need to study large scale data

sets has received increasing attention. In order to demonstrate the application and per-

formance of polynomial-type variograms developed in section 2, we use the geopotential

height data set studied in Jeong and Jun (2015) and compare the model proposed in Theo-

rem 3 with those models selected in Jeong and Jun (2015). This global data set originates

from NCEP/NCAR reanalysis project (http://www.esrl.noaa.gov/psd/data/gridded/

data.ncep.reanalysis.html), which is using a state-of-the-art analysis/forecast system to

perform data assimilation using past data from 1948 to the present. A subset of this data

from June to August 2014 at 500 hPa level is used and located on regular grids with

144 longitude points and 73 latitude points. Geopotential height approximates the actual

height of certain pressure surface above mean sea level. It has been shown the geopotential

height at 500 hPa is a dominant parameter in controlling weather and climate condition

over the globe (Hafez and Almazroui 2015).

Following Jeong and Jun (2015), we remove the temporal effect by averaging over

three months of data on each location and stabilize the variance through a square root

transformation of the data. The modeling of the resulting data consists of mean structure

specification and covariance construction for the residual field after the mean is removed.
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Figure 1.2: Image plot of the residual after removing overall mean. The green dots are
sampled locations in one replication and the triangular is test site for this replication

Two methods are used to fit the mean structure: method 1 uses overall mean, method 2

is based on harmonic regression in latitude L as in Jeong and Jun (2015) with mean

µ(L) = β0 + β1 cos(
πL

90
) + β2 sin(

πL

90
). (1.23)

Figure 1.2 gives an image plot of the residual after method 1 is applied. The pro-

posed models in Theorem 3 will be assessed in terms of prediction by popular criteria of

Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Continuous Ranked

Probability Score (CRPS) (Gneiting and Raftery 2007) for the residual random field. To

this end, we repeat the following process 100 times. Each time we randomly sample 600

training sites with latitude between −20◦ and +50◦ and randomly select 200 testing sites

with latitude between −90◦ and −50◦. Training data is used to predict at testing sites

and the prediction criteria values are averaged over all simulations. Three competitive
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Figure 1.3: Distribution of square root geopotential height over latitude with fits in Har-
monic regression

models adopted in Jeong and Jun (2015) are used to compare with quadratic or polyno-

mial of order 2 model (P2) developed in Theorem 3 (iii). They are Matérn in spherical

distance (MG), Matérn in Euclidean distance (ME) and a convex sum of sine-power and

hole-effect model (C) defined in Jeong and Jun (2015). As we know, Matérn class of

variograms is by far the most popular model for fitting spatial data on Euclidean space

due to its great flexibility and theoretical justification (Stein 1999). The Matérn class

possesses a smoothness parameter, which governs differentiability of covariance function

at the origin, as a result it is normally capable of predicting well if there are sufficient

points near the predicting locations. However this type of model is valid on S2 only when

smoothness parameter falls in (0, 0.5] (Gneiting 2013). This model is identified as MG
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here. The model ME is referred to Matérn model on R3 restricted to S2 by the mapping

in equation (1.1), which inherits its differentiability properties and therefore its powerful

capability of interpolating well in general as shown in Guinness and Fuentes (2016). The

form of C model is converted to a variogram form as follows:

γ(ϑ) = σ2 − σ2{λ[1− (sinϑ)β] + (1− λ) cosϑ}, β ∈ (0, 2] and λ ∈ (0, 1) (1.24)

Table 1.4 contains the results of the four models above in terms of RMSE, MAE and

CRPS. In this sampling scheme, there is a gap between the training sites and testing

sites in about 30◦ degree of angle. Simulation study suggests that our polynomial type

of model has its advantage when data is relatively sparse on the sphere. This sampling

scheme will enable us to check how well the variogram fits when spherical distance is larger

than π
6

on a unit sphere. In Figure 1.4, we observe that the quadratic variogram behaves

differently from MC, MG and C model by bending a little bit when spherical distance

is larger than 1.5. Actually we can see that the proposed model outperforms the rest of

the models for this long-distance prediction as suggested in Table 1.2, which shows that

proposed (P2) model has smallest value in all RMSE, MAE and CRPS. One may argue

that the decreasing trend of the data from north to south hasn’t been adjusted and it

may cause empirical variogram ill-behaved. Next, by method 2 we place a more complex

structure on the mean and conduct model comparison in terms of prediction using the

residual field.

Figure 1.3 shows the harmonic regression fit for mean structure through equation

1.23. The trend is removed before we fit our varogram models. Figure 1.5 shows the

image plot of the residual field after the trend is fit using simple harmonic regression in

latitude similar to that in Jeong and Jun (2015) and the large scale trend is removed. As
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Measure P2 MG MC C
RMSE 4.058 5.707 5.444 5.690
MAE 3.943 5.584 5.317 5.567
CRPS 3.832 5.434 5.164 5.425

Table 1.4: Data analysis results with constant mean removed

Measure P3 MG MC C W
RMSE 1.329 1.785 1.871 1.864 1.420
MAE 1.195 1.603 1.688 1.680 1.264
CRPS 1.002 1.369 1.450 1.442 1.033

Table 1.5: Model comparisons after subtracting harmonic regression mean

in the case based on constant mean assumption by method 1, we still randomly select

600 training sites among latitude from −20◦ to +50◦ and sample 200 testing sites among

latitude from −90◦ to −50◦. Again we predict based on training data and repeat for 100

times. We compare the proposed polynomial of order 3 variogram (P3) in Theorem 3

with those models used in Jeong and Jun (2015) again. Those are Matérn in Euclidean

distance (MC), Matérn in spherical distance (MG), convex sum model in equation 1.24

(C) and C4-Wendland (W), which is a compactly supported variogram. The reason of

fitting a cubic polynomial instead of quadratic polynomial is suggested by the waved

shape of empirical variogram. In figure 1.6, empirical variogram goes up fast from 0 to

0.8, then level down until it goes up again after 1.7. The results are revealed in Table

1.5, which shows that cubic model (P3) on average has smallest value in all RMSE, MAE

and CRPS comparing with the other competitive models MG, MC, C and W. Again this

polynomial type variogram model has its advantage of capturing the irregularly waved

structure and has better capability in distant extrapolation.
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Figure 1.4: Empirical variogram fits after removing overall mean

1.6 Conclusion Remarks

While only unit spheres are mainly addressed in this paper, it can be shown that all

theorems work well for an arbitrary radius of a sphere. When the radius is r, the se-

ries expansion (5) holds with U replaced by a (d+1)-variate random vector uniformly

distributed on a sphere with radius 1
r
. We characterize the isotropic variogram models

on all spheres by giving the sufficient and/or necessary conditions. These conditions can

then be used to find new form of variograms on all spheres or to determine if an existing

variogram is valid on all spheres. Some efficient approaches are proposed to construct

a variety of variogram models including simple polynomial models. To identify the best

order for a polynomial model, we recommend first take a look at the empirical variogram.
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Figure 1.5: Image plot of residual after subtracting harmonic regression mean. The
green dots are sampled locations in one replication and the triangular is test site for this
replication

If the empirical variogram goes down significantly after reaching a certain spherical dis-

tance, one should consider quadratic polynomial. If not, a polynomial of order 3 could

have a better fit than order 2. When order increases to 4 or more, we generally find that

improvement through higher order is very small. Through the simulation study and data

analysis, we find that the proposed polynomial type of models can make a considerable

improvement in prediction when a distant forecasting or extrapolation on a sphere is con-

sidered. Though they do not have a good smoothness property near origin, which limits

its ability in near distance interpolation. In addition, a series representation of multivari-

ate random field on all spheres provides an effective way to simulate intrinsic stationary

spatial processes without presetting any analytical variogram expression. In this work,

we derive this representation and demonstrate its flexibility in comparing performance of

different variogram models.
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Figure 1.6: Empirical variogram fits after subtracting harmonic regression mean
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Chapter 2

Dynamic Modeling of Days Suitable

for Fieldwork Relative to Global

Climate Cycles using INLA

2.1 Introduction and motivation

In an effort to achieve high yields with low cost, all producers strive to plant and harvest

crops during optimal planting windows. When conducting field of operations, such as

tillage, planting, spraying and harvesting, time is important manner to maximize the profit

margin (Mark et al. 2014a). Days suitable for fieldwork (DSFW) is the count of work

days for farming operation within a week or a month. The rationale for being concerned

with DSFW is that during weather events that shorten DSFW, increased capacity from

larger equipment or additional units of equipment are needed to achieve a timely planting

or harvest of crops for a given number of acres (Mark et al. 2014a). This information
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is different with knowing wet or dry in the next day. Locally, DSFW gives famers an

expectation on how many days they could work in the field within a week or a month.

They can purchase more or less equipment or arrange people to join the farming operations

based on expectation of being under equipped with respect to planting or harvesting

machinary (Griffin and Kelley 2010).

Predicting the number days suitable for fieldwork (DSFW) and its implications on

agricultural production has been a topic of discussion in agricultural literature for more

than five decades (Mark et al. 2014b). Also, climate change poses a major challenge to

U.S. agriculture because of the critical dependence of the agricultural system on climate

and because of the complex role agriculture plays in rural and national social and economic

systems (Hatfield et al. 2014). However, the relationship between the climate change and

DSFW remains unexplored in the literature. To be specific, this chapter investigates the

influence of global Climate Cycles such as El Niño and La Niña on DSFW.

The El Niño Southern Oscillation (ENSO) is a naturally occurring phenomenon that

involves fluctuation of ocean temperatures in the equatorial Pacific. It has three stages, El

Niño, neutral and La Niña. When the sea surface temperatures are warmer than normal

central and eastern equatorial, El Niño happens. When the sea surface temperatures are

cooler than normal central and eastern equatorial, La Niña happens (Philander 1989).

One of the measure for ENSO is the Oceanic Niño Index (ONI), which is a standardized

index to observe periodicity of ENSO (Bamston et al. 1997). While impacts of ENSO are

well studied on various of subjects, a closer look at how ENSO changes farmer’s practice

is still significant to agricultural decision making.

Being able to predict DSFW and know if the global circulation phenomenon such as

ENSO’s impact on the DSFW has a real benefit from farmer’s day-to-day management

decision to the state level policy changes . Ultimately, solving this question will improve
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the efficiency all agriculture practice not only at a local farm scale but also at the state

level (Mark et al. (2014a,b, 2015)).

In most of the spatial/spatio-temporal problems, the regression coefficients are consid-

ered to be fixed over time and space. In certain applications, this may not be appropriate.

The coefficients may be expected to vary at different time or at different local or subre-

gion level (Gelfand et al. (2003)). For instance, ENSO may have a complex effect on the

DSFW. The way to define an El Niño events is when ONI has a high value continuously

over 3 month and the ONI each month is computed over a standardized temperature

changes over Niño 3.4 region(). The effect of DSFW would be different over time or over

both time and space. Therefore, if we assume the effect of ENSO does not change over

time, it is possible that the true effect may be cancelling out each other over time and

space and yield an insignificant effect overall.

State-space models, also known as dynamic models in the Bayesian literature, are

broad class of parametric models with time varying parameters where both, the parameter

variation and the data information are described in a probabilistic way (Ruiz-Cárdenas

et al. (2012)). According to Migon et al. (2005), dynamic models can be seen as a

generalization of regression models, allowing changes in parameter values throughout

time by the introduction of an equation governing the temporal evolution of regression

coefficients. In this research, we propose various type of dynamic models to illustrate

the complex effect of ENSO on DSFW over time and space through a computational

framework known as Integrated Nested Laplace Approximation (INLA).

INLA is proposed by Rue and Martino (2007) and Rue et al. (2009) to perform fast

full Bayesian inference through accurate approximation of marginal posterior and latent

variables for a subclass of structured additive model, named Latent Gaussian model. This

class of statistical models accommodate wide variety of models as long as the response is
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within exponential family. Regression (generalized regression) models, dynamic models

and spatial / spatio-temporal models are all belong to this class.

The reason to adopt INLA instead of MCMC in Bayesian estimation is because of

its computational reduction over MCMC. It’s obvious an approximated inference can

reduce computational time by magnitude comparing with a sample algorithm such as

MCMC. Moreover, MCMC’s error can be made aribitrarily sma;; for arbitrarily large

computational time. We also argue that INLA outperform MCMC algorithm for a given

computational cost. This is a big deal especially in the spatio-temporal models due to the

fact that the dimensionality in those models can be big but the computational cost for

inverting a matrix is in the scale of O(n3). So, the computational time for the dynamic

models we fit may decrease from days in MCMC to hours in INLA.

However, direct fitting a dynamic model in INLA is not straight-forward. Even

through, the INLA library under R has various latent models options and examples,

fitting a flexible dynamic models tailored to the data at hand could be a problem. Ruiz-

Cárdenas et al. (2012) provides some examples to fit dynamics models in INLA using a

data augmentation approach. However, it assumes the underlying spatial domain and

temporal domain is both discrete. Cameletti et al. (2013) introduces an approach for

continuous spatial domain and a discrete time domain, but the model they proposed only

has a dynamic intercept terms, which may be not sufficient enough for our purpose.

In this chapter, we will review basis of Bayesian dynamic models and how they can

be used to examine the effect of ENSO on DSFW. We will explore different dynamic

structures, extend and modify the models to the data at hand. To obtain a fast inference

in large amount of data, INLA is performed. Model fitting criterion such as Deviance

Information Criterion (DIC) is also computed.
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DSFW in 36 states
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Figure 2.1: The Map of 36 states in U.S. which has DSFW data available. The red dots
show the centroid points of each states.

2.2 Exploratory Analysis and Literature Reviews

2.2.1 Exploring the Data

The DSFW data is collected over 18 years (1996-2013) in United States (https://quickstats.nass.usda.gov/).

An averaged DSFW for all sampler regions are obtained by state government, but not

all states have DSFW data available in public. Only 36 states has sufficient data and

the location of those states are shown in Figure 2.1. For example, State of California

only have 4 years of data until 2013. Then, the State of California is truncated from our

dataset.

More than 50 years record of El Niño Southern Oscillation is available for our study.

Multiple measurements are taking to evaluate ENSO. One of the commonly used index,

the Oceanic Niño Index (ONI) measures the difference in sea surface temperature in the

Niño 3.4 region, which is considered to be most ENSO-representative (Bamston et al.

1997). For our research purpose, we only use ONI from the 1996 to 2013, which matches
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the period of available DSFW data.

Noting that DSFW is a weekly data but ENSO is a monthly data, we aggregated

weekly DSFW to monthly DSFW in order to match the same time scale. Furthermore

a percentage of monthly DSFW is used to account for the fact that each month has

different number of weeks and days. The following method is used to obtain our response

variable. First, DSFW is converted from original scale [0, 7] to percentage in [0,1] by

dividing 7. Then, as long as the first day of a week belongs to a month, the week is

assigned to this month in aggregation. At last, the mean of all weekly percentage of

DSFW within the same month is computed as monthly percentage DSFW. In addition,

the DSFW is mainly collected from the planting season to harvest season. There is very

little data during January, February, March and December in all states. Therefore, those

four months of data is removed from dataset. Hence, only 144 months present in 18 years

of data.

Besides the aggregation, a simple imputation is implemented for the missing values of

the data. The missing value is imputed using the average between the year before and

the after. If missing value show up consecutively in the data, the average between the

nearest neighbors is used for imputation.

Prior to the analysis of our data, a check of distribution of our data should be con-

ducted. Since the DSFW data is all converted to the percentage, the biggest concerned

is its normality. Figure 2.2 indicates the distribution of Percentage DSFW is left skewed.

Also, by the property of percentage, all data values are bounded by 0 and 1. The assump-

tion of normality seems to be invalid in this case. A transformation should be applied.

Baum (2008) demonstrates the logit transformation is one of the best way to deal with

percentage data. This transformation is applied to DSFW data. Figure 2.3 shows the

transformed DSFW data is much more bell shaped than percentage DSFW. The new
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Figure 2.2: A Histogram of Percentage DSFW

response will be used for the further analysis in this research.

After pre-processing of the data, an initial linear regression model with transformed

DSFW as response and ENSO as regressor is conducted. The time series of residual at two

randomly picked states, Oregon, Kansas are shown on the Figure 2.4. The significance of

ENSO is found in linear model with p-value= 0.00004 assuming the OLS assumption is
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Figure 2.3: A Histogram of Transformed DSFW

met. However, in fact residuals admit an autocorrelation and seasonality as shown ACF

and PACF plot of Figure 2.5. The Ljung-Box-Pierce tests for each states at lag 1 receive

p-value= 0.000216 and 1.5 × 10−9. It is a clear indication of presence of autocorrelation

given ENSO present in the model. Periodogram of Kansas is plotted in Figure(2.6) and

periodicity of around 0.125 is shown. It makes sense because there are 8 months per year
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Residual in DSFW at Kansas
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Figure 2.4: Time series for residual DSFW at Kansas and Oregon

after removing January, February, March and December.

To assess presence of spatial correlation structure in residual, a example of four

randomly picked time points, October 1997, May 2000, August 2006 and July 2013

is given and a cross-sectional spatial plot is presented in Figure 2.7 at all four time

point. Moran’s I tests of spatial randomness are conducted with resulting p-values
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Figure 2.5: ACF and PACF for residual at Kansas and Oregon

= 2.56 × 10−5, 1.6 × 10−3, 1.8 × 10−4 and 1.3 × 10−7. The significance of Moran I test

confirms the need to incorporate spatial autocorrelation among states in the regression

modelling. Figure 2.7 also demonstrates various patterns of clustering at different time

point. It indicates spatial structure may interact with time.

2.2.2 Bayesian Dynamic Models

Bayesian dynamic model as described in the introduction of this chapter is also known as

state-space model (Migon et al. 2005), which can be seen as a generalization of regression
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Figure 2.6: Periodogram for residual DSFW in Kansas

model. It consists of two parts, the observation equation and the state equation. By

allowing a time varying and space-time varying coefficient, the state equation governs the

temporal evolution of regression coefficients.

In the linear Gaussian case, the observation equation can be generally described by

equation 2.1. The equation can be seen to describe the relationship between the response

variable and predictors and underlying spatio-temporal processes. Noting that when a

state-space model is built for spatio-temporal data, the response variable yt is a vector

of dimension n where the number of locations is n and the number of time points is k.

Furthermore, the predictor x is also a vector, whose dimension depends on how many

predictors present in the model. The design matrix F is corresponding to the dimension

of x at each time point.

yt = Ft
′xt + νt, νt ∼ N(0,Vt), t = 1, . . . , k (2.1)

The State equation can be generally described by equation 2.2. It can be seen to
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Time=10/1997

[−0.17,0.25]
(0.25,0.41]
(0.41,0.65]
(0.65,1.14]
(1.14,2.19]

Time=05/2000

[−1.34,−0.73]
(−0.73,−0.44]
(−0.44,−0.09]
(−0.09,0.33]
(0.33,1.75]

Time=08/2006

[−0.65,0.1]
(0.1,0.31]
(0.31,0.52]
(0.52,1.24]
(1.24,3.26]

Time=07/2013

[−1.61,−0.8]
(−0.8,−0.18]
(−0.18,0.36]
(0.36,0.77]
(0.77,2.51]

Figure 2.7: DSFW data of 36 states in 4 time points

describe the underlying processes which govern the observed process. Noting that the

observed process can be governed by multiple processes, so that the there can be multiple

state equations. For each state equation, the current state vector xt is generally depends

on the previous states. It introduces a relationship between the parameters in the observed

equation but confines this relationship to have a markov property. In many cases, the

state equation is used to specify parameters which are varying at different space and time.

It is not estimable if every space and time has their own coefficients. The state equation

serves as a restriction to allow estimation but still maintain flexibility of the model. On

the other hand, the model is specified by {Ft,Gt,Vt,Wt}. People may let Vt = V and

Wt = W, which means the covariance for the innovation process does not change over

time. This assumption is adopted by this research as well to reduce complexity of the
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model.

xt = Gtxt−1 + ωt, ωt ∼ N(0,Wt), t = 2, . . . , k (2.2)

2.2.3 Gaussian Markov Random Field

In view of the fact that Days Suitable for Fieldwork (DSFW) are collected on an irregular

lattice on space and evenly spaced lattice on time, we will first consider the data as a

realization of a discrete spatio-temporal stochastic process. To properly study the inter-

active relations of multiple spatio-temporal processes, a complex hierarchical Bayesian

model will be applied and Gaussian Markov Random Field plays a central role in this

framework (Rue and Held, 2005).

Any finite dimensional subset of a Gaussian Random Field xs, s ∈ D, x = (x1, x2, . . . , xn)T ,

is an n-dimensional random vector following a multivariate normal distribution, i.e. x ∼

N(µ,Σ). Markov property establishes that the fully conditional distribution of a random

variable xi depends only on its neighborhood values, i.e.

p(xi|{xj : j 6= i}) = p(xi|{xj : j ∈N i})

where N i is neighborhood of variable xi. Conditional independence is an intermediate

step between independent and full dependent structure. Gaussian Markov Random Field

is Gaussian Random Field with Markov property and the local specification can determine

the joint distribution (Rue and Held, 2005). One of the simplest GMRF is the conditional

autoregressive of order 1 process in one dimensional space. It is often expressed as

xt = φxt−1 + εt, εt
iid∼ N(0, 1), |φ| < 1, (2.3)
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where t represents time. The assumption of conditional independence leads to a specific

full conditional form given as

xt|x1, ...., xt−1 ∼ N(φxt−1, 1), t = 2, . . . , n. (2.4)

The Markov property also produces a sparse precision matrix (inverted variance-

covariance matrix). Theorem 2.2 in Rue and Held (2005) provides a explicit link between

conditional independence and zero values in the precision matrix, i.e. precision matrix

Qij = 0 if and only if xi and xj are conditional independent upon x−ij. In spatial or

temporal case, the relationship between locations or time points usually is encoded to

a graph, let’s say G. This result indicates the nonzero pattern in precision Q can be

determined by the graph G and it is therefore convenient to specify the likelihood of a

GMRF x in the form of precision matrix as following:

π(x) = (2π)−n/2|Q|1/2exp
{
−1

2
(x− µ)TQ(x− µ)

}
. (2.5)

Usually only O(n) of n2 entries of Q are non-zero, so Q is sparse (Rue et al., 2009).

Cholesky decomposition can be used to factorize Q as LLT , where L is lower triangle

matrix. Thanks to the global Markov property (Theorem 2.8 in Rue and Held 2005),

the sparseness of precision Q is inherited to L. One of the primary computational cost

in sampling in the MCMC or estimation in Maximum likelihood approach is due to the

inverting variance-covariance matrices. While the approach for GMRF mostly directly

works on precision Q modeling and can somewhat mitigate computation intensity by

avoiding matrix inverse calculation.

The properties of GMRF not only provide a link between hierarchical models and

sparse matrix algorithm, but also indicate a significant computational reduction from full
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dependent structures. GMRF can be naturally implemented to MCMC algorithm, how-

ever, for large spatial or spatio-temporal data sets, MCMC exhibits poor performance in

term of effective sample size. In order to achieve a high effective sample size, a much longer

MCMC samplers may be required, which lead to an expensive computational cost. Inte-

grated Nested Laplace Approximation (INLA) is a fast alternative to MCMC. It reduces

computational time in magnitude and therefore provides a viable Bayesian inference.

2.3 INLA Based Bayesian Framework with Complete

Proof of Key Approximation

As it’s mentioned in the previous section, ENSO vs DSFW data contains 36 locations in

144 time points. Applying a Bayesian dynamic models using MCMC can be computa-

tionally intensive. Instead, we choose to use approximated Bayesian inference.

Integrated Nested Laplace Approximation (INLA) is an approximate Bayesian infer-

ence mostly for a subclass of structured additive model, named Latent Gaussian model.

Under this framework, suppose the distribution of response belongs to an exponential

family and the mean µi of the response distribution is linked to predictors in an additive

structure. Denote link function as g(·), then

g(µi) = β0 +
M∑
m=1

βmumi +
L∑
i=1

fl(zli), (2.6)

where β0 is the intercept; β = (β1, . . . , βM) is the linear effect of covariates u = (u1, . . . , uM)

and f = (f1(·), . . . , fL(·)) is a collection of functions defined in term of a set of covariates

z = (z1, . . . , zL). The term f(·) can be considered as a smooth function, a nonlinear effect

of covariates, time trends, seasonal effect, a random effect or a spatial random effect, etc.
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(Blangiardo and Cameletti, 2016). Latent Gaussian model can accommodate wide variety

of models, such as regression (generalized regression) models, dynamic models and spatial

and spatial-temporal models are all Latent Gaussian model. Note that the functional

term f(·) increase flexibility for the form of covariates.

The latent field x contains all latent Gaussian variables, say {f(·)}, {β} and {ε}. Due

to Gaussian distribution and discrete indexed nature of x, x is often structured to be a

GMRF. All properties of GMRF therefore applies to latent field x and the parameters

in marginal distribution of x, for example θ in precision Q, are hyper-parameters. A

vector of all hyper-parameters denoted as θ do not need to have a Gaussian prior. The

observed process y, latent field x and hyper-parameters θ with their associate distributions

conditionally specified constitute a Bayesian hierarchical model.

For the simplicity, we assume our response or a transformed response follows a normal

distribution. Hence, let’s define a Bayesian hierarchical model as three stages,

The data model : yi|x,θ
iid∼ N(β0 +

∑M
m=1 βmumi +

∑L
i=1 fl(zli), σ

2
ε I),

The latent field: x|θ ∼ N(µx(θ),Q−1x (θ)),

The hyper prior: θ ∼ π(θ).

Note that all parameters such as β0, βm, fl(·) are included in x for each data point and

all hyper-parameters such as σ2
ε and parameters used to define fl are all included in θ.

Each observation yi, i ∈ I is conditionally independent given x and θ. The latent field can

have a very large dimension. Since it is assumed to be a GMRF with a sparse precision

matrix Qx(θ), the computation reduction is achieved. The hyper-prior is pre-determined

and usually a vague prior.

The common objective of Bayesian inference are marginal posterior distributions for

each element of latent field x and for each element in the hyper-parameter θ. That is,
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π(xi|y) =

∫
π(xi|θ,y)π(θ|y)dθ (2.7)

and

π(θj|y) =

∫
π(θ|y)dθ−j. (2.8)

One of the key steps of INLA is to construct nested approximations Rue et al. (2009),

π̃(xi|y) =

∫
π̃(xi|θ,y)π̃(θ|y)dθ (2.9)

and

π̃(θi|y) =

∫
π̃(θ|y)dθ−j. (2.10)

Here, π̃(·|·) is an approximate conditional density of its arguments. First, INLA is going to

approximate π(θ|y). The following proposition explains the form of this approximation.

Proposition 1.

π̃(θ|y) = C
π(x∗(θ),θ,y)

π̃G(x∗(θ)|θ,y)
(2.11)

Where C−1 =
∫ ∫

π(x,θ,y)dxdθ, π̃G(x|θ,y) is the Gaussian approximation of π(x|θ,y).

x∗(θ) is the mode of the conditional for x for a given θ.

In fact, Rue et al. (2009) used the Proposition 1 form of (2.11), roughly mentioning

the connection with Tierney and B. Kadane (1986). But there is no explicit proof of this

relationship in proposition 1 above, to the best of our knowledge. Hence, we intend to fill

this blank with detailed proof given in the appendix.
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Second, π(xi|θ,y) is computed by Laplace approximation again.

π̃(xi|θ,y) =
π((xi,x−i)|θ,y)

πGG(x−i|xi,θ,y)

=
π(x,θ|y)

π(θ|y)

1

πGG(x−i|xi,θ,y)

∝ π(x,θ|y)

πGG(x−i|xi,θ,y)

≈ π(x,θ|y)

πGG(x−i|xi,θ,y)

where πGG(x−i|xi,θ,y) is the Gaussian approximation to full conditional of x−i and

x∗−i(xi,θ) is its mode point. Usually, the random variable x−i|xi,θ,y is reasonably normal.

However, it can be computational expensive since π(x−i|xi,θ,y) has to be recomputed

for each xi. Some dimensional reduction technique is required to speed up computation.

Also, a simplied Laplace approximation is a default in INLA algorithm instead of Laplace

approximation. The simplified Laplace approximation is based on Taylor’s series expan-

sion of the Laplace transformation π̃(xi|θ,y). The more details is shown in originial INLA

paper at (Rue et al., 2009).

A critical aspect of INLA is to explore π̃(xi|θ,y) and π̃(θ|y) in a ”nonparametric” way.

Once we get π̃(xi|θ,y) and π̃(θ|y), the integral in equation (2.7) can be approximated by

π̃(xi|y) ≈
∑
k

π̃(xi|θk,y)× π̃(θk|y)×∆k (2.12)

for some relevant integration points θk with a corresponding set of weights ∆k. The choice

of weights ∆k is also given in (Rue et al., 2009). More details of some of the proof in

Laplace Approximation behind the INLA algorithm is given the in appendix.

INLA outperforms all other MCMC alternatives in computation speed. Operationally
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we use INLA library (http://www.r-inla.org/) of R-software (R Core Team, 2018) for the

estimation and implementation of the Bayesian dynamics models we developed in the

later section.

2.4 Proposed Dynamics Models in Discrete Spatial

Domain

Starting from this section, a more delicate analysis of the DSFW will be conducted and

the results from INLA estimation will be shown and compared. It has been determined

that the response variable, DSFW data is collected and averaged across each state and

each month and its distribution is normal after the transformation. From the aspect of

agriculture economics, we need to think two questions. One is if the spatial process of

DSFW is a discrete or a continuous process. Another is if the impact of ENSO has a lag

effect on the DSFW and how long is the lag.

One can argue that it is reasonable to describe the spatial domain of DSFW in an

irregular lattice, which is simply the geographical map of each states. Others can argue

that DSFW continuously distributed over the entire United States, as long as there is a

farm. However, the way we are sampling the data, which is the data collection agency

aggregated the DSFW data to each state in space, causes a discrete space-time model to

be more make sense and more interpretable. In this section, we will work on our dynamics

models in discrete spatial domain.
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2.4.1 Model Without Time Varying Coefficients

In model 1, we are going to assume the coefficient of ENSO over DSFW does not change

over time and space. i.e. Denote

yt = Υ + ztβ + ξt + εt, εt ∼ N(0, σ2
ε I) (2.13)

ξt = αξt−1 + ωt, ωt ∼ PGMRF (0,W−1) (2.14)

Where yt = (yt1, . . . , ytS)′ is a vector the transformed DSFW at time t = 1, . . . , 144,

s = 1, . . . , 36; zt is the ENSO Oceanic Niño Index on time t; Υ is the intercept of the model

and β is the main effect of DSFW; εt is the Gaussian measurement error term since a

Gaussian distribution is assumed for response. ξt describes the underlying spatio-temporal

process. This process is governed by the state equation 2.14. At each time t, the error

vector ωt = (ωt1, . . . , ωtS)′ follows a Proper Gaussian Markov Random Fields(PGMRF)

(See e.g. Vivar and Ferreira 2009). Matrices W describes the spatial covariance structure

of the state at time t. Precision matrices W−1 are modeled as W−1 = τ(I− φ
λmax

C) and

C is a structure matrix defined as

Ck,l =


ck, if k = l,

−hk,l, if k ∈ dl,

0, otherwise,

where dl is the set of neighbors of area l, hl,k > 0 is a measure of similarity between areas

k and l, if area k and l are adjacent then hl,k = 1; ck =
∑

l∈dk hk,l; λmax is maximum

eigenvalue of matrix C; τ is a scale parameter and 0 ≤ φ < 1 controls the degree of spatial

correlation.

52



The observation equation in model 1 assumes the ENSO and DSFW has a linear re-

lationship. The state equation is a typical Autoregressive of order 1 process (AR1). AR1

process is very commonly used for creating a stationary dependent structure which is only

conditionally depends on 1 previous state. This type of structure fall between an indepen-

dent assumption and fully dependent structure. It gains a lot of computational advantage

but also has certain degree of flexibility. This is the reason why many practitioners use

this process and we choose this process to begin with.

Besides, there is a spatial pattern within the state vector which is described in W.

The initial state is assumed to be ξ1 ∼ N(0, (τ(1 − α2)))−1. It is a similar set-up with

Cameletti et al. 2013’s equation (1) and (2). The differences is they used Stochastic

Partial Differential Equation approach to construct a continuous spacial domain. The

form of the posterior distribution is therefore given in equation (8) in Cameletti et al.

2013.

Fitting this model using INLA, we get a posterior mean for the effect of ENSO (β)

as -0.077 and 95% credible interval (-0.108, -0.046). The credible interval of the effect of

ENSO does not include 0. This indicates seems like the effect of ENSO is significant at

5% level. The DIC for this model is 13432.77. The model suggests there is a negative

relationship between ENSO and DSFW, means that when then ENSO ONI is decreasing,

the DSFW would increase on average. In the line with the previous discussion, the

relationship between DSFW may be more complex than a simple linear relation. The

intercept of the observation equation is affect by a ”fix” part, the β0 and a ”random”

part, the ξt. The dynamic of the model comes from the time varying coefficients ξt which

can be considered as a random intercept. The random intercept is only able to reflex the

dynamic nature of DSFW itself, not the relationship between DSFW and ENSO.
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2.4.2 Model With Time Varying Coefficients

In the next, model 2 will add a time-varying coefficient to describe the dynamic relation-

ship between ENSO and DSFW. To do so, another state equation is added to the model

as follow,

yt = Υ + ztβt + ξt + εt, εt ∼ N(0, σ2
ε I) (2.15)

ξt = α1ξt−1 + ωt, ωt ∼ PGMRF (0,W−1) (2.16)

βt = β0 + α2βt−1 + ε2t, ε2t ∼ N(0, σ2
ε2

) (2.17)

The observation equation 2.15 is almost the same with observation equation 2.13

besides the coefficient β is able to change over time. The state equation 2.16 is the

same with state equation 2.14 in the previous model. The second state equation 2.17

is to regulate the time-varying coefficient βt to form a (AR1) patten. However, the

difference between the state equation 2.16 and 2.17 is the intercept. Since state equation

2.16 describes underlying spatio-temporal random effect in the observation equation, the

expectation of the process should be 0. However, the coefficient of the ENSO on DSFW

may be away from 0. This is exactly what we want to test for this study. Hence, an

intercept β0 is add to the state equation 2.17.

Fitting model 2 using INLA, the DIC of the model 2 decrease to 8999.002, which

indicates the fit is much better than model 1. The posterior mean for the main effect β0

of ENSO is 0.214 with a 95% credible interval [0.126, 0.304], which means the effect of

ENSO is significant over DSFW. Figure 2.8 demonstrates the posterior mean of coefficients

βt of ENSO over time and compare with the ENSO itself. It seems that the oscillation of

the coefficients for ENSO is very steep and potentially it has a lag between the peak of

ENSO and peak of its coefficients.

54



0 20 40 60 80 100 120 140

−
4

−
2

0
2

4
6

ENSO and its coefficients over time

time

E
N

S
O

ENSO
Coefficients

Figure 2.8: The ENSO and the posterior mean of its coefficients over time

2.4.3 Model With Space and Time Varying Coefficients

Fellowing the thoughts in the model 2, it is natural to think the effect of ENSO may have

a spatio-temporal pattern. Since the El Niño and La Niña happened over pacific ocean,

it is reasonable to assume the effect of ENSO may be different from west coast to east

coast. However, the problem is that ENSO is an index for each month over the globe.

As a result, the ENSO isn’t measured over different locations. If we want to evaluate

ENSO’s impact on different space, an assumption must be made. We are going to assume

the effect of ENSO is connected the same way with the DSFW itself. Denote model 3 as

following,
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yt = Υ + Ztβt + ξt + εt, εt ∼ N(0, σ2
ε I), (2.18)

ξt = α1ξt−1 + ωt, ωt ∼ PGMRF (0,W−1), (2.19)

βt = β0 + α2βt−1 + ε2t, ε2t ∼ PGMRF (0,W−1), (2.20)

where the observed process yt is assumed to be governed by two processes, the intercept

process has a state equation 2.19 the same with state equation 2.14 and 2.16 in model

1 and model 2; Zt is a matrix with the zt value on the diagonal, otherwise 0; The effect

βt = (βt1, . . . , βtS)′ becomes a vector which represents a vector of coefficients at each

time point. Within a time point, each elements of the vector represents an coefficient

for a single location. This process is governed by the state equation 2.20 with a spatial

covariance structure W same with state equation 2.19. Since a new process is added to

the effect β of the model, the joint posterior density has to be computed. The details of

the joint posterior is included in the appendix.

Fitting the model in INLA, the DIC of model 3 is 13402.2, which is in-between model 1

and 2’s DIC. Three time points are randomly selected (34,64,91). Figure 2.9 demonstrates

the posterior mean of effect over the space. Even though the spatial patterns seems to

be different at each location, there is no obvious pattern inherited through time. In this

method, there is an different parameter for the effect of ENSO at every ENSO at each time

and space. One may argue that this is an over parameterized model and the increasing

DIC provide evidence to support the statement. We will only demonstrate the results of

this model and continue to explore in another way.
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Figure 2.9: The posterior mean of ENSO coefficients over space at the time point 34, 64
and 91

2.5 Proposed Dynamics Models in Continuous Spa-

tial Domain

For a practitioner in spatial/ spatio-temporal models, it is sometimes reasonable to assume

a continuous spatial domain rather than discrete domain. When the predicted location

is specified but not on the lattice or one want to has a more complexed spatio-temporal

covariance structure, a model built on the continuous spatial domain is in need. In this
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research, one can argue that DSFW is a continuous spatial process since there are farms

almost everywhere over the United States. The sampled DSFW is an averaged results

from many farms in a state and many states the USDA does not provide DSFW in a

finer spatial resolution than the state level. It forces us to consider a lattice at the state

level in the previous section. The purpose of this section is to retain a continuous spatial

domain from the sampled DSFW data and then built a model on top of it to see if any

improvement may be obtained through this process.

A problem in a continuous spatial domain usually requires a much bigger computa-

tional burden than a in a discrete spatial domain. To reduce the computational burden

associated with GF, Lindgren et al. (2011) provides an explicit link between Gaussian

Random Fields (GF) and Gaussian Markov Random Fields (GMRF) using stochastic

partial differential equations (SPDE). In this approach, the GF is discretised by Delau-

nay triangulation and the new discrete random field is considered to be a GMRF. The

SPDE technique redefines the Matérn GF as a finite linear combination of basis func-

tions on each triangulated vertices. Hence, the spatial/spatio-temperal random effect is

approximated by a basis B, which is a sparse matrix with unit elements for matching

triangle vertices and zero’s elsewhere (Lindgren et al. 2011). The computation reduction

happens on the zero pattern of precision matrix (Rue et al. 2009). GMRFs have very

good computational properties, which is of major importance in Bayesian methods. This

is further enhanced by the link to INLA. Cameletti et al. (2013) provides an example in

continuous spatial domain and discrete time using SPDE approach in INLA, however, it

only contains an intercept process and the effect of coefficients are considered not changing

over time and space. In later part of this section, I have

In Cameletti et al. (2013), the spatial domain is subdividing into a set of non-intersecting

triangles, where any two triangles meet in most one common edge or corner. Three cor-
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ners of a triangle are named as vertices. The initial vertices are placed at the location

where the data are collected or the location you want to predict. Additional vertices are

added to satisfy the overall constraints of the triangles, such as maximally allowed edge

length, and minimally allowed angles. This is the standard solution in engineering for

solving partial differential equations using finite element method. In this research, the

initial vertices are placed at the centroid point of each states, where is assumed to the

location DSFW observed. However, we does not place additional triangles inside of the

spatial range of United States. Since the location of each states forms a natural lattice,

we does not want to artificially separate the natural neighborhood by adding additional

vertices within the map.

Figure 2.10 demonstrates this Delaunay triangulation. The spatial domain contains

54 vertices. The red dots are the assumed locations for each DSFW observations, which

are the centroid points of each states. To avoid a boundary effect, the triangulated region

is a little bit bigger than the original spatial domain, so that additional vertices are added

outside of the border.

Lindgren et al. (2011)’s link from GF to GMRF works well if the GF has a matérn

covariance structure. Denote X(s) = x(s), s ∈ D ⊆ R2 denotes a GF with a matérn

covariance function. In particular, the precision matrix Qs of the GMRF is defined by

Equation (10) of Lindgren et al. (2011) as a function of κ2 and smoothness 0 < α ≤ 2.

The ν = α − 1 is the smoothness parameter commonly used for the matérn covariance

function. The SPDE approach essentially uses a finite element representation to define

this field as a linear combination of basis functions defined on a triangulation of the domain

D (Cameletti et al. 2013). Given the triangulation, the basis function representation is

given by

X(s) =
n∑
l=1

ψl(s)ωl, (2.21)
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Constrained refined Delaunay triangulation

Figure 2.10: Delaunay triangulation for the spatial field of DSFW. Centroid points of
each states are red dots and a convex hull of the border is draw in red line.

where n is total number of vertices, ψl(s) are the basis functions and ωl are Gaussian

distributed weights. The functions ψl(s) are chosen to be piecewise linear on each triangle,

i.e. ψl(s) is 1 at vertex l and 0 at all other vertices.

Hence, we assumes DSFW follows a GF with matérn covariance function and but

the smoothness parameter has to be set first. In this research, multiple smoothness

parameter is tried out and it was found that it does not influence the resulting model

and the conclusion too much. For simplification, we set the smoothness parameter of all

SPDE model to be 1.5, which is corresponding to a matérn field with 0.5 smoothness.
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2.5.1 Extending the First Model

Collecting all the observations measured at time t in a vector yt = (yt1, . . . , ytS)′, we write

model 4 as following,

yt = Υ + ztβ + ξt + εt, εt ∼ N(0, σ2
ε I) (2.22)

ξt = αξt−1 + ωt, ωt ∼ N(0,Q−1s ) (2.23)

The set-up of the model 4 is very similar with model 1 except that the assumption that

ξt is spatial-temporal process in a continuous spatial domain and discrete time domain.

This is also exactly the same model with equation (1) and (2) in Cameletti et al. (2013).

The covariance structure is not a PGMRF but approximated by the SPDE approach. We

also need to assume the covariance structure stays the same over time, which is the same

assumption previously presented in the discrete time.

Fitting model 4 in INLA, the DIC values is 11950. The posterior mean for the β is

-0.068 and 95% creditable interval is (-0.267, 0.130). The creditable interval contains zero,

which indicates a non-significant effect of ENSO over DSFW. This result contradicts with

the result we have in model 1-3. However, as the DIC increases significantly from the

best previous model (model 2), we continue to extend our model to have a better fit.

2.5.2 Extending Model with Time Varying Coefficients in Con-

tinuous Domain

The first extension from model 1 is a used model in Cameletti et al. (2013). Our contri-

bution in this section is to extending model 4 and apply a time-varying coefficients for

ENSO using INLA. Similarly to model 2, the coefficient β is able to change over time.
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The state equation 2.25 is the same with state equation 2.23 in model 4. The second state

equation 2.26 is to regulate the time-varying coefficient βt to form an AR1 pattern. An

intercept β0 for the βt process is added to the state equation to allow the process mean

deviate from 0.

Hence, model 5 can be written by

yt = Υ + ztβt + ξt + εt, εt ∼ N(0, σ2
ε I) (2.24)

ξt = α1ξt−1 + ωt, ωt ∼ N(0,Q−1s ) (2.25)

βt = β0 + α2βt−1 + ε2t, ε2t ∼ N(0, σ2
ε2

) (2.26)

Model 5 corresponds to the model 2 in the previous section. Fitting model 5 in INLA,

the DIC value is 11937.67. The main effect β0 has posterior mean of 0.067 and 95%

creditable interval (-0.204, 0.337), which is not a significant effect over DSFW. Figure

2.11 demonstrates the posterior mean of ENSO’s coefficients βt over time. The ENSO’s

time varying effect shown in figure 2.11 seems to be less than the one in model 2, comparing

with figure 2.8. The DIC value of model 5 is slightly better than model 4, but still much

bigger than model 2.

2.5.3 Extending Model with Space and Time Varying Coeffi-

cients in Continuous Domain

Continuing the line of thoughts and for the same reason mentioned in model 3’s work, we

can extend the effect with a coefficient changing over time and space. Now, the effect of

the ENSO( i.e. β) is assumed to have a continuous spatial process in every time point.

We are also going to assume this spatial domain is connected the same way with DSFW
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Figure 2.11: Under SPDE model, the ENSO and the posterior mean of its coefficients
over time

itself. From temporal evolution side, the same AR1 structure is used with state equation

2.29.

Thus, model 6 can be written as

yt = Υ + Ztβt + ξt + εt, εt ∼ N(0, σ2
ε I), (2.27)

ξt = α1ξt−1 + ωt, ωt ∼ N(0,Q−1s ), (2.28)
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βt = β0 + α2βt−1 + ε2t, ε2t ∼ N(0,Q−1s ), (2.29)

Model 6 corresponds to model 3 in the previous section, except the spatial covariance

structure W is replaced by a Qs
−1. The new covariance structure is also approximated by

the SPDE approach introduced earlier. Fitting the model 6 in INLA, the DIC is 11862.56.

The posterior mean of the ENSO’s main effect is -0.073 with 95% creditable interval (-

0.343, 0.196). Figure 2.12 presents the posterior mean of ENSO’s effect at time point 34,

64 and 91. To compare with the result in the discrete spatial domain, we select the same

time with figure 2.9. The result in figure 2.12 seems to be very different with figure 2.9

and also it seems to have certain level of randomness among different time.

In this section, three models are constructed to try to improve the results from the

previous section and provide means for prediction in any point in space. However, the

results by considering a continuous spatial domain is not as good as considering a discrete

spatial domain if we use DIC as model selection criterion. Instead of giving ENSO a

significant effect over DSFW in model 1-3, model 4-6 suggests otherwise. One can also

argue that the DIC among model 4-6 is significantly higher than the best model (model

2), so that the result is not as trustworthy as model 2. At this point, the main reason

to develop a continuous spatial model for this type of problem is the prediction. Given

the predicted location, we only need to add those location as vertices in the Delaunay

triangulation and then fit the model again. Then, the prediction can be easily computed.

We will not demonstrate this in this research.

2.6 Extending Model with Lag Effect

From the previous section, we determine the model 2, which is a time-varying coefficient

model for ENSO over DSFW, is the best model according to the lowest DIC value. From

64



under −0.046
−0.046 to −0.002
−0.002 to  0.045
over  0.045

under −0.046
−0.046 to −0.002
−0.002 to  0.045
over  0.045

under −0.046
−0.046 to −0.002
−0.002 to  0.045
over  0.045

Figure 2.12: Under SPDE model, the posterior mean of ENSO’s coefficients over space
at time 34,64,91

the exploration of figure 2.8 and figure 2.11, we also find that a potential lag effect may

exist between ENSO and DSFW. In this study, we add the lag effect to the model 2. The

lag 1,2 and 3 coefficients are created by shifting ENSO data by 1 month, 2 months and 3

months. The model 7 can be described by observation equation 2.30 and state equation

2.31 and 2.32. The new fixed effect is the lag effect with length p. We start with length

3 and go though a backward elimination procedure.
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Measure Step 1 Step 2 Step 3
DIC 8766.76 8759.78 8759.38

Main (SD) 1.075* (0.211) 1.150* (0.208) 1.871*(0.100)
Lag 1 (SD) -1.050* (0.388) -0.975* (0.392) 1.688*(0.103)
Lag 2 (SD) 0.442 (0.391) -0.021 (0.226)
Lag 3 (SD) -0.297 (0.207)

Table 2.1: Backward Elimination of the lag effect in ENSO

yt = Υ + ztβ0 + zlag(p)βlag(p) + ztβt + ξt + εt, εt ∼ N(0, σ2
ε I), (2.30)

ξt = α1ξt−1 + ωt, ωt ∼ PGMRF (0,W−1) (2.31)

βt = α2βt−1 + ε2t, ε2t ∼ N(0, σ2
ε2

) (2.32)

At the first step, the main effect and all three lags are all put into the model. Table

2.1 demonstrate the posterior mean and standard deviation of the fixed effects. Clearly

in step 2, the lag 3 effect is removed and then we fit the model again. In step 3, lag 2

effect is removed as well. Hence, it is determined length of lag is 1 month.
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0
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−1.5 −1.0 −0.5
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Figure 2.13: Posterior densities of the fixed effect in the final model

The posterior densities for the fixed effect of our final model is presented in figure 2.13.
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Figure 2.14: Posterior densities of the time varying coefficients in the final model

The time-varying coefficients and its posterior credible bond is presented in figure 2.14.

All posterior densities of hyper-parameters are given in figure 2.15 .

2.7 Summary, Conclusion and Further Discussion

In this chapter, we demonstrate spatio-temporal modeling of the relationship between

DSFW and ENSO using Bayesian approach. The INLA is used for computing posterior

inferences. Both discrete spatial domain and continuous spatial domain analysis are

demonstrated. One may argue the advantage of one model over another. We use the

DIC result which is given for each model as a guideline for our model selection and select

model 2 to proceed our inference. We also add a lag effect to evaluate the lagged response

from the DSFW. The analysis demonstrate the significance of the lag effect.

The final model’s DIC value is 8759.38. The main effects of ENSO shows a significant
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Figure 2.15: Posterior densities of the hyper parameter in the final model

positive effect over DSFW, however the true effect of ENSO should combine the main

effect with the time-varying effect. This summation determines the positive or negative

association and the magnitude at each time points. The respond of DSFW upon the

fluctuation of the ENSO could be lagged by 1 month. But, we didn’t observe any obvious

pattern for the effect of ENSO among the spatial domain of the United States.

Beside making inference for our model, we also did a little comparison between a

dynamic models in discrete spatial domain and continuous spatial domain. The continuous

spatial domain allows a more flexible neighborhood structure which takes into account for

more information than the first order neighborhood structure in the discrete domain. Also,

you can put more (less) vertices into the Delaunay triangulation to increase (decrease)

resolutions at will. One can also provide a specific prediction at any point, comparing

with the prediction using grids in the discrete domain. Even through the advantage of

continuous spatial domain model does not show in this particular problem, this framework

still weights a lot for future exploration.

Moreover, how to choose if coefficients change over time or over time and space can

depend on the DIC value. It can also depend on if the result is interpretable and how

much details one wants to put into the model. The advantage of the dynamic models is the
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fit may be better than other type of the models. As a result, it can be hard to interpret

the results. In our research problem, we can interpret the time-varying coefficients as

the effect of ENSO changed over time. In other scenarios, the time-varying coefficients

may not be interpretable. In that case, we will not suggest a time-varying coefficients

model. Still in practice, one may favor one to another, but we want to provide solutions

in multiple ways and allow researchers to tailer those models to the data at hand.
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Appendix A

Appendix

Proof of Theorem 1

Statement (ii) implies (i) because of Theorem 2 of Bochner (1941) and Theorem 3 of

Schoenberg (1942). Lemma 2 of Bingham (1973) indicates that (i) implies (ii).

The equivalence between (iii) and (iv) is given by applying ϑ = π
2
− arcsin(cosϑ),

so that γ(ϑ) = γ(π
2
− arcsin(cosϑ)). Define g(x) = γ0 − γ

(
π
2
− arcsinx

)
, where γ0 ≥

max
0≤ϑ≤π

γ(ϑ). Then

g(x) = γ0 − γ
(π

2
− arcsinx

)
,

g(x)− g(−x) = γ
(π

2
− arcsinx

)
− γ

(π
2

+ arcsinx
)
,

from which the absolute monotonicity of functions in (iii) implies those in (iv), and vice

versa.

Next, we will show that (ii) and (iii) are equivalent. First, (iii) can be derived from
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(ii) by letting

g(x) =
∞∑
n=0

bnx
n, x ∈ [−1, 1],

where the right-hand series absolutely converges to a continuous function on [-1, 1], since

{bn, n = 0, 1, 2, . . .} is assumed to be a summable sequence of nonnegative numbers.

Clearly, g(x) is absolutely monotone on [0,1]. So is

g(x)− g(−x) =
∞∑
n=1

(1− (−1)n)bnx
n = 2

∞∑
n=0

b2n+1x
2n+1, x ∈ [0, 1].

Second, suppose that (iii) holds, g(x) is continuous on [-1,1] and absolutely monotone

on [0,1], and that g(x)−g(−x) is absolutely monotone on [0,1]. By Theorem 3a of Widder

(1941), page 146, g(x) possesses a Taylor series

g(x) =
∞∑
n=0

g(n)(0)

n!
xn, 0 ≤ x ≤ 1, (A.1)

with g(n)(0) ≥ 0, n = 0, 1, . . . . What remains to prove is that (A.1) holds on the interval

[−1, 0] as well, based on which (1.3) is obtained from (1.4) directly. Since g(x) − g(−x)

is absolutely monotone on [0,1], it possesses a Taylor series

g(x)− g(−x) =
∞∑
n=0

bn
n!
xn, 0 ≤ x ≤ 1,

where

bn =

 0, n is zero or even,

dn

dxn
(g(x)− g(−x))

∣∣
x=0

= 2g(n)(0), n is odd.
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Taking the difference between g(x) and g(x)− g(−x) results in

g(−x) = g(x)− {g(x)− g(−x)}

=
∞∑
n=0

g(n)(0)

n!
xn − 2

∞∑
n=0

g(2n+1)(0)

(2n+ 1)!
x2n+1

=
∞∑
n=0

g(2n)(0)

(2n)!
x2n −

∞∑
n=0

g(2n+1)(0)

(2n+ 1)!
x2n+1

=
∞∑
n=0

g(n)(0)

n!
(−x)n, 0 ≤ x ≤ 1.

In other words, the Taylor series expansion (A.1) of g(x) holds on the whole interval

[−1, 1].

Proof of Theorem 2

(i) It is known that f1(f2(x)) is absolutely monotone on [a, b], if f1(x) and f2(x) are

absolutely monotone on [a, b] and a ≤ f2(x) ≤ b (see, e.g., Theorem 2a, page 146 of Widder

(1941). Notice that f2(x) = arcsinx is absolutely monotone on [0, 1] and 0 ≤ f2(x) ≤
π
2
, x ∈ [0, 1]. As a consequence, the absolute monotonicity of f1(x) = γ0 − γ

(
π
2
− x
)

implies that of f1(f2(x)) = γ0 − γ(π
2
− arcsinx). Similarly, the absolute monotonicity of

γ(π
2

+ arcsinx)− γ(π
2
− arcsinx) is obtained. By Theorem 1(iv), γ(ϑ) is a variogram on

S∞.

(ii) Under the completely monotone assumption, γ0− γ(ϑ) is nonnegative and contin-

uous on [0, π], and

(−1)n+1γ(n)(ϑ) = (−1)n
dn

dϑn
(γ0 − γ(ϑ)) , n = 1, 2, . . . ,
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are nonnegative and decreasing on (0, π). Thus,

(−1)n+1γ(n)(x) ≥ 0, x ∈ (0, π), (A.2)

and

(−1)n+1γ(n)
(π

2
− x
)

+ (−1)nγ(n)
(π

2
+ x
)
≥ 0, x ∈

(
0,
π

2

)
, n = 1, 2, . . . . (A.3)

Next we apply the above two inequalities to show that the condition in Part (ii) entails

that in Part (i).

It follow from (A.2) that

dn

dxn

(
γ0 − γ

(π
2
− x
))

= − dn

dxn
γ
(π

2
− x
)

= (−1)n+1γ(n)
(π

2
− x
)
≥ 0, x ∈ (0, 1), n = 1, 2, . . . ,

i.e., γ0− γ(π
2
− x) is absolutely monotone on [0, 1]. Applying inequality (A.3), we obtain,

for an even n,

dn

dxn

(
γ
(π

2
+ x
)
− γ

(π
2
− x
))

= γ(n)
(π

2
+ x
)
− (−1)nγ(n)

(π
2
− x
)

= (−1)nγ(n)
(π

2
+ x
)

+ (−1)n+1γ(n)
(π

2
− x
)

≥ 0,
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and, for an odd n,

dn

dxn

(
γ
(π

2
+ x
)
− γ

(π
2
− x
))

= γ(n)
(π

2
+ x
)
− (−1)nγ(n)

(π
2
− x
)

= 2(−1)n+1γ(n)
(π

2
+ x
)

+
{

(−1)nγ(n)
(π

2
+ x
)

+ (−1)n+1γ(n)
(π

2
− x
)}

≥ 0.

The proof is completed by applying Theorem 2 (i).

Proof of Theorem 3

(i) Since (1.10) is a polynomial, both γ
(
π
2
− x
)

and γ
(
π
2

+ x
)

are polynomials, and, from

the binomial theorem with b0 set to be 0,

γ
(π

2
− x
)

=

p∑
k=1

bk

(π
2
− x
)k

=

p∑
k=0

bk

k∑
j=0

(−1)j
(
k

j

)(π
2

)k−j
xj

=

p∑
k=0

akx
k,

γ
(π

2
+ x
)

=

p∑
k=0

(−1)kakx
k, x ∈

[
0,
π

2

]
,

where

ak = (−1)k
p∑
j=k

bj

(
j

k

)(π
2

)j−k
, k = 0, 1, . . . , p.
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Take γ0 ≥ a0 = γ(π
2
) =

p∑
j=1

bj
(
π
2

)j
. Under the assumption (1.11), ak and ak − (−1)kak

(k = 1, 2, . . . , p) are nonpositive, so that

γ0 − γ
(π

2
− x
)

= γ0 − a0 −
p∑

k=1

akx
k,

and

γ
(π

2
+ x
)
− γ

(π
2
− x
)

=

p∑
k=1

((−1)kak − ak)xk

have all coefficients being nonnegative, and thus are absolutely monotone on [0, π]. By

Theorem 2 (i), γ(ϑ) is an isotropic variogram on S∞.

(ii) Given an isotropic variogram γ(ϑ) on S∞, it follows from Corollary 2 that

h1(x) = γ
(π

2
+ x
)
− γ

(π
2
− x
)

=

p∑
k=1

((−1)kak − ak)xk

is increasing on
(
0, π

2

]
. In particular, h1(x) ≥ 0 = h1(0), x ∈

[
0, π

2

]
, from which we obtain

0 ≤ lim
x→0+

h1(x)− h1(0)

x
= −2a1.

Also, from Corollary 2,

h2(x) = γ
(π

2
+ x
)

+ γ
(π

2
− x
)

=

p∑
k=0

((−1)kak + ak)x
k
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is decreasing on
(
0, π

2

]
, so that h2(x) ≤ h2(0), x ∈

[
0, π

2

]
. As a consequence,

0 ≥ lim
x→0+

h2(x)− h2(0)

x2
= 2a2.

(iii) This follows directly from Parts (i) and (ii), as a particular case p = 2.

Proof of Theorem 4

The equivalence of (i) and (ii) is established by Du et al. (2013). The equivalence of (ii)

and (iii) is given by letting x = cosϑ and ϑ = π
2
− arcsin(cosϑ). Thus,

γ(ϑ) = γ
(π

2
− arcsinx

)
=
∞∑
n=1

Bn(1− xn), x ∈ [−1, 1], (A.4)

where {Bn, n = 1, 2, . . .} is a summable sequence of positive definite m×m matrices.
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Proof of Theorem 5

First we need verify that the infinite series of right hand side of (1.21) converges in mean

square sense by Cauchy’s criterion. For any positive integers n1, n2, we have

E

n1+n2∑
i=n1

B
1
2
i Vi

α−1i − P
d−1
2

i (x′U)

(P
d−1
2

i (1))
1
2

n1+n2∑
j=n1

B
1
2
j Vj

α−1j − P
d−1
2

j (x′U)

(P
d−1
2

j (1))
1
2

′

= E

n1+n2∑
i=n1

n1+n2∑
j=n1

B
1
2
i (ViV

′
j)(B

1
2
j )′

α−1i − P
d−1
2

i (x′U)

(P
d−1
2

i (1))
1
2

α−1j − P
d−1
2

j (x′U)

(P
d−1
2

j (1))
1
2


=

n1+n2∑
i=n1

n1+n2∑
i=n1

B
1
2
i E(ViV

′
j)(B

1
2
j )′E

α−1i − P
d−1
2

i (x′U)

(P
d−1
2

i (1))
1
2

α−1j − P
d−1
2

j (x′U)

(P
d−1
2

j (1))
1
2


=

n1+n2∑
i=n1

B
1
2
i E(ViV

′
i)(B

1
2
i )′E

α−1i − P
d−1
2

i (x′U)

(P
d−1
2

i (1))
1
2

α−1i − P
d−1
2

i (x′U)

(P
d−1
2

i (1))
1
2


=

n1+n2∑
i=n1

α2
iBiE

α−2i +
(P

d−1
2

i (x′U))(P
d−1
2

i (x′U))′

P
d−1
2

i (1)
− 2α−1i

P
d−1
2

i (x′U)

(P
d−1
2

i (1))
1
2


=

n1+n2∑
i=n1

Bi +

n1+n2∑
i=n1

α2
iBi

(P
d−1
2

i (x′x))

α2P
d−1
2

i (1)
− 0

= 2

n1+n2∑
i=n1

Bi

→ 0, n1, n2 →∞,

where the second equality holds because {Vn, n ∈ N} and U are independent, the third

and fifth equalities follow from Lemmas 2 and 3 of Ma (2016), and the last one is due

to the convergent assumption of
∞∑
n=1

Bn. Hence Z(x) in (1.21) is well defined. Now the

variogram matrix function of {Z(x),x ∈ Sd} is given by
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γ(x1,x2) =
1

2
E(Z(x1)− Z(x2)− E(Z(x1)− Z(x2)))(Z(x1)− Z(x2)− E(Z(x1)− Z(x2)))

′

=
1

2
E

 ∞∑
n=1

B
1
2
nVn

α−1n − P
d−1
2

n (x′U)

(P
d−1
2

n (1))
1
2

− ∞∑
n=0

B
1
2
nVn

α−1n − P
d−1
2

n (x′U)

(P
d−1
2

n (1))
1
2


 ∞∑
n=0

B
1
2
nVn

α−1n − P
d−1
2

n (x′U)

(P
d−1
2

n (1))
1
2

− ∞∑
n=0

B
1
2
nVn

α−1n − P
d−1
2

n (x′U)

(P
d−1
2

n (1))
1
2

′

=
1

2
E

 ∞∑
n=0

B
1
2
nVn

P d−1
2

n (x2
′U)

(P
d−1
2

n (1))
1
2

− P
d−1
2

n (x′1U)

(P
d−1
2

n (1))
1
2

 ∞∑
n=0

B
1
2
nVn

P d−1
2

n (x2
′U)

(P
d−1
2

n (1))
1
2

− P
d−1
2

n (x1
′U)

(P
d−1
2

n (1))
1
2

′

=
1

2

∞∑
n=0

B
1
2
nE(VnV

′
n)(B

1
2
n )′(P

d−1
2

n (1))−1E[(P
d−1
2

n (x2
′U)− P

d−1
2

n (x1
′U))(P

d−1
2

n (x2
′U)− P

d−1
2

n (x1
′U))]

=
1

2

∞∑
n=0

α2
nBn(P

d−1
2

n (1))−1

P d−1
2

n (x2
′x2)

α2
n

+
P

d−1
2

n (x1
′x1)

α2
n

− 2
P

d−1
2

n (x2
′x1)

α2
n


=

∞∑
n=0

Bn

1− P
d−1
2

n (x2
′x1)

P
d−1
2

n (1)


=

∞∑
n=0

Bn(1− p(
d−1
2

)
n (cosϑ(x1,x2))),

where the first two equalities follow because Z0 cancels out and E(Z(x1) − Z(x2)) is

zero. The next two equalities hold due to independence of {Vn, n ∈ N0} and U. Then

the last three equalities result from the properties of ultraspherical polynomials specified

in lemma 2 of Ma (2016). Actually the variogram matrix (1.22) is the ultraspherical

polynomial expansion of a valid variogram on all spheres by equation (6) and (10) in Du

et al. (2013).
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Proof of Proposition 1

Let’s denote π(·|·) as the conditional density of its arguments. The common objective of

Bayesian inference is the posterior distribution. This posterior distribution can be shown

as

π(x,θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi|xi,θ) (A.5)

∝ π(θ)|Q(θ)|n/2exp(−1

2
xTQ(θ)x +

∑
i∈I

logπ(yi|xi,θ)) (A.6)

Prior to introduce the Integrated Nested Laplace Approximation, we introduce the

Gaussian Approximation first. In this setting, exp(−1
2
xTQ(θ)x +

∑
i∈I logπ(yi|xi,θ)) is

the primary part to be approximated. Matching the mode and curvature at the mode,

the resulting approximation is

π̃(x|θ,y) ∝ exp(−1

2
(x− µ)T (Q + diag(c))(x− µ)) (A.7)

where µ is the mode of π(x|θ,y). Note that both µ and Q depend on θ. The terms

of vector c are due to the second order terms in the Taylor expansion of
∑
logπ(yi|xi) at

the modal value µ and these terms are zero for approximation.

In those cases where dimension of θ is small, it is possible to derive an independence

sampler by reusing equation A.7 to build an approximation of the marginal posterior for

θ.
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π(θ|y) =

∫
Cπ(θ,x|y)dx (A.8)

= C

∫
π(θ,x,y)dx (A.9)

= C

∫
π(θ,x)π(y|x,θ)dx (A.10)

= C

∫
π(θ,x)exp(logπ(y|x,θ))dx (A.11)

Laplace approximation can be applied to function of x in the integrand above with

fixed θ as in equation (4.1) in Tierney and B. Kadane (1986). Then marginal poster

density of θ can be written as

π(θ|y) = Cdet|Q(θ)|1/2π(θ,x∗)exp(logπ(y|θ,x∗)) (A.12)

where x∗ is the mode of the full conditional for x for a given θ. This is equivalent to

equation (3) at Rue et al. (2009) since π̃G(x|θ,y) is the normalizing constant of equation

A.12. Based on this idea, the INLA is developed as the section 2.2.3 demonstrated.

Posterior Distribution of Model 3

At first, the hyper-parameter θ = (θ1,θ2)
′ is split into θ1 and θ2 which are the parameters

involved in each individual state equation. Assume two state equations are independent

with each other, the posterior distribution can be derived as

π(θ, ξ,β|y) ∝ π(y|ξ,β,θ1,θ2)π(ξ|θ1)π(β|θ2)π(θ1)π(θ2) (A.13)
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where π(·) denote the probability density function, y = {yt}, ξ = {ξt},β = {βt} with

t = 1, . . . , T = 144. The number of dimension at each time point is d = 36. The prior

distribution is assumed to be independent as well. The equation A.13 can be written as

π(θ, ξ,β|y) ∝ (
T∏
t=1

π(yt|ξt,βt,θ1,θ2))(π(ξ1|θ1)
T∏
t=2

π(ξt|ξt−1,θ1))

×(π(β1|θ2)
T∏
t=2

π(βt|βt−1,θ2))π(θ1)π(θ2)

From equation 2.27 ,2.19 and 2.20, it follows immediately that the join posterior

distribution is given by

π(θ, ξ,β|y) ∝ (σ2ε )
− dT

2 exp(− 1

2σ2ε

T∑
t=1

(yt −Υ− ztβt − ξt)′(yt −Υ− ztβt − ξt))

×(
σ2ω1

1− α2
1

)−d/2|W |1/2exp(−1− α2
1

2σ2ω1

ξ′1Wξ1)

×(σ2ω1
)d(T−1)/2|W |(T−1)/2

×exp(− 1

2σ2ω1

T∑
t=2

(ξt − α1ξt−1)
′W (ξt − α1ξt−1))

×(
σ2ω2

1− α2
2

)−d/2|W |1/2exp(−1− α2
2

2σ2ω2

β′1Wβ1)

×(σ2ω2
)d(T−1)/2|W |(T−1)/2

×exp(− 1

2σ2ω2

T∑
t=2

(βt − β0 − α2βt−1)
′W (βt − β0 − α2βt−1))

×π(σ2ω1
)π(σ2ω2

)π(α1)π(α2)
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