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INTRODUCTLION

In the past few years, openings in the webs of steel beams for access to
or passing of utility components have been a much discussed subject.

In the construction of multistoryed steel buildings, openings through
the webs of wide flange beams are frequently necessary to acconmodate the
passage of ductwork for heating, ventilation and air-conditioning. This
helps in reducing the height of each story and thus significant savings
are realized through the reduction of the materials used.

When a portion of the web is removed, the beam may be weakened in
the vicinity of the opening and often it becomes essential to reinforce
the hole. A considerable amount of analytical and experimental work has
been done on this topic yielding several theoretical solutions which have
been verified.

The pufpose of this study was to use the finite element method of
analysis to observe the behavior of steel beams with reinforced eccentric
web openings under ultimate load conditions, using a computer program
developed at the Illinois Institute of Technology (1). The objective
was to obtain the ultimate load data, the yield patterns and the modes
of failure and to comparc them with the results of an experimental program
carried out at Kansas State University (2).

Five W-shape steecl beams with eccentric rectangular web openings
were tested, all but one being reinforcedlat the opening. In all cases,
the moment to shear ratio was 30 inches and the eccentricelty was 2 inches.
The variables in the analysis were the reinforcing area, the opening length

and the opening height.



LITERATURE REVIEW

In 1932, Muskhelishvilli (3) introduced the application of the conformal
mapping technique and complex integration to plane problems of the theory of
elasticity and in particular to the problem of the stress distribution in a
plane or thin plate which is weakened by any type of hole.

Iﬁ 1950, Joseph and Brock (4) used this complex variable method to
obtain an exact solution for the stress concentrations around small openings
of several shapes subjected to pure bending. The problem of stress concentra-
tion due to such openings has been much studied and many papers concerning
this problem have been published (5,6,7).

Using the same method of complex variables Heller, Brock and Bart (8),
in 1958, presented a solution for the stress around a rectangular opening with
rounded corners in a uniformly loaded plate. 1Im 1962 (9), they modified the
‘procedure and obtained stress distributions due to bending with shear.

Snell (10), in 1962, used the finite element method to study the effects
:0f wvarious reinforcing configurations for rectangular openings in plates
subjected to uniaxial tension. His work was published in 1965,

In 1963, MuCutcheon, So and Gersovitz (11) submitted a report describing
the test program carried out at McGill University. Tests were performed on
beams with unreinforced circular openings and theoretical versus measured
strains were indicated.

Segner (12,13) conducted tests on six A36 steel WF beams having
rectangular openings of various siées; The openings were all centered om
the neutral axis of the beams and many different reinforcing schemes were
investigated. His theoretical approach was based on the theory that a

member having such openings centered on the neutral axis acts as a



Vierendeel truss and thus has a point of contraflexure at mid-length of each
opening above and below the opening in the tee-section.

An analytical method for calculating stresses around elliptical holes
in a wide~flange beam under a uniform load was presented by Bower (14,15) in
1966. The applicability of the analysis depends on the hole size and on
the magnitude of the M/V ratio at the hole. Later in the same year, he con-
ducted tests on simply supported wide-flange beams with and without cantilever
action having circular or rectangular web openings loaded by concentrated loads.

A-comparison of the stresses from the elasticity solution to the experi-
-mental tangential stress measurements, for cases of pure bending and bendiﬁg
with shear, was conducted by Redwood (16), in 1967. There seemed to be a
good agreement for cases of pure bending but the stresses were underestimated
-when shear was present.

In the same year the ultimate moment capacity of a beam was investigated
by Redwood and McCutcheon (17) using several test specimens. The parameters
investigated were shape, number of openings, and the ratio of moment to
shear at the opening. The results showed that large reductions in ultimate
capacity occur and that the size of those réductions increases with the amount
of shear present. Openings that were circular seemed to perform better than
rectangular openings and the presence of a second opening nearby seemed to
further reduce the strength of the beam.

In 1968, Redwood and McCutcheon (18) reported on tests to failure of
‘wide-flanged steel beams containing one or two unreinforced openings.
Different shear to moment ratios were investigated. The openings were of
various shapes but all had the same height which was 57% of the beam depth.

The experimental results indicated that under pure bending the moment capacity



of the beams with one or two openings could be calculated based on the plastic
modulus of the net section through the opening. The presence of shear reduced
the moment capacity of the beam at the opening below that for pure bending.
The reduction was a function of the opening shape, dimension, the spacing of
openings and the shear to moment ratio. When a single rectangular opening

was present, the moment capacity of the beam was reduced to approximately 40%
of Mp, but when an identical opening was added at a spacing equal to the
opening depth, only a small additional reduction resulted. At an M/V ratio

of 0.425, the moment capacity reduced to 647 to 72% for both simple and

double circular openings.

Also in 1968, Bower (19) suggested criteria for elastic, plastic and
buckling design. He concluded that, for elastic design, beams with web holes
should be designed using the same basic factors of safety against yielding as
in the AISC specifications, except that the maximum allowable bending and
shear stresses should be computed using the actual stresses causing yielding
at the hole rather than nominal beam stresses. TFor plastic design, beams
with web holes should be designed using the AISC load factor of 1.70, except
that the maximum allowable loads should be computed using the actual ultimate
strength of the beam at the hole rather than the strength of the gross beam.
For large spacings of holes, the effects of each hole should be computed
individually. For more than two adjacent holes, the Vierendeel frame analysis
should be used while for geometrically dissimilar adjacent holes a frame
analysis may be used. With regards to buckling, the same type of buckling
analysis should be used as in case of beams without web holes, so long as the
edge of the hole is at least four inches from the edge of bearing. When a
hole is located in a region of pure bending, the possibility of vertical
flange buckling could be checked by assuming that the compression T-section

at the hole acts as a column.



In the same year Redwood (20) presented a method of deriving an inter-
action curve relating moments and shears, as well .as a simplified, slightly
conservative solution to obtain an approximation to the interaction curve.
Bower (21) provided the information on the plastic behavior of beams with
web openings along with equations predicting their ultimate strength. As
the load on the beam increases, the first yielding in the vicinity of the
hole occurs at the corners because of the stress concentration at that
location.

In 1969, Cheng (22) experimentally analyzed the stresses around a
rectangular web opening in a W shape beam using the photostress method and
electrical resistance strain gage technique.

Several papers (23,24,25,26) have been published concerning the plastic
behavior and ultimate strength of beams with web openings.

In 1970, Congdon and Redwood (27) conducted an investigation concerning
the plastic analysis of reinforced openings through beam webs based on the
assumptions of perfectly plastic material behavior. A series of tests were
carried out to determine the effects of M/V ratio, reinforced area, hole
aspect ratio, ratio of hole depth to beam depth, and location of reinforcement
on the beam behavior. The experimental results confirmed the assumption of
simple stress distribution at failure. An equation for obtaining the area
of reinforcement to take up the maximum'shear capacity was also provided.
The effects due to one-sided reinforcement for the web opening were not
much different from those obtained from reinforcements on both sides of
the web at critical points.

An analytical method of determining the moment carrying capacity of

beams with eccentric rectangular web holes was given by Richard (28) in 1971.



The effects of varying the opening eccentricity, opening length and
opening height were investigated. By increasing the opening eccentricity,
the moment carrying capacity for high shear values increased. As the opening
length and opening height increased, the moment carrying capacity decreased.
When the opening height became larger than the opening length, the moment
carrying capacity of the beam increased. It was also found that the shear
forces were unequally distributed across unequal web areas.

In 1972, Cooper and Snell (29) performed tests on beams with reinforced
web openings and confirmed the validity of the Vierendeel Analysis for the
estimation of the normal stresses in the vicinity of the hole. Ultimate load
tests were run on three beams and the results were consistent with the
predictions obtained from the ultimate strength theory for reinforced web
openings presented in Ref. (26).

Frost (30), 1973, conducted an experimental investigation on eight beams
to determine their ultimate strength. The web openings were tested with an
eccentricity of 1 in. and 2 in. and with the moment to shear ratio at the
hole at values of 0 in. and 40 in. The Vierendeel Method was used for the
theoretical analysis and several different formulas for determining the shear

force distribution were presented and compared.



THE FINITE ELEMENT METHOD

The concept of the finite element method was originally introduced by
Turner, et al. in 1956 (31). The method has proved to be-quite convenient
from an automation point of view, for the solution of problems in continuum
mechanics. The first applicatlons were in plane stress problems (32).

0. C. Zienkiewicz and Y. K. Cheng (33) also prescnted the theory necessary
for the analysils of a plane elastic continua. The finite element metheod has
since then been extended to axi-symmetric stress analysis, flat plate bending,
three-dimensional stress analysis and shell analysis.

The basic concept of the finite element method is that every structure
may be considered to be an assemblage of individual structural components or
elements. A plane continuum is divided into elements interconnected
at a finite pnumber of ncdes. Certaln approximations have been introduced
into the formulation of this discretization of the original continuum and the
evaluation of element properties. Judgement is reguired in making the proper
subdivisions, such as element shape and degree of freedom, so that the
substitute structure can simulate the actual structure. It is also important
to choose a suitable displacement function which can satisfy the requirements
of displacement continuity between adjacent elements. All of these factors
will determine whether the substitute structure is stiffer or more flexible
than the real structure and to what degree the approximation simulates the
behavior of the actual structure. |

In brief, the finite element analysis of an elastic continuum has the
following characteristics:

(1) Structural discretization

(2) The necessity for choosing an appropriate displacement function.



(3) The evaluation of element properties
(4) The assemblage of finite clements and the following of standard
displacement method procedures.
In applying this method, the following requirements must be satisfied
simultaneously.
(1) Force equilibrium in each element
(2) Displacement compatibility at nodal points between adjacent elements
(3) The internal forces and deformations are related through the
geometric and materia; property characteristics.
Various shapes of finite elements were employed in these analyses. In
general, applicable rectangulﬁr elements give a little better approximation
of stresses and deflections for a given nodal pattern than trlangular elements,
because they employ a closer deformation approximation. However, the use of
quadrilateral elements could entail arithmetieal difficulty and consequently
a disproportionate increase of computing time in deriving the element
characteristics. Because of the greater adaptability of the triangular shape
in fitting arbitrary boundary geometrics, triangular elements have been used

more widely in the development of general purpose analysis programs.



THE FINITE ELEMENT PROGRAM

Introduction

The computer program used (1) in this project is for the stress
analysis of plane structures in the elastic-plastic range by the finite
element method. It was developed jointly by the Illincis Institute of
Technology Research Institute and the Air Force Flight Dynamics Laboratory.
The program can handle batr and triangular plate elements so that it is
applicable to trusses and to the analysis of in-plane stresses in reinforced
plates. The material behavior is assumed to be isotropic and the user has
a choice of three types of stress-—strain laws namely Ramberg«Osgéod, Goldberg-
Richard and the Bilinear laws. In this project the Bilinear law has been
used. The program is developed to handle up to ten different materials.

A pumerical step by step procedure for obtaining solutions which
satisfy the requirements of the incremental theory of plasticity for
materials which obey the Mises yield condition and the associated flow
rule is used in the program. At each step in the solution, an iterative
procedure is used to find the correct values of the strain increments.
Changes in plastic strain are accounted for by the addition of fictitious
plastic forces to the actual loading on the structure in such a way that
the deflections of the structure under the modified loading with assumed

-elastic behavior are equal to the actual deflections.

Element Properties

The two types of elements used in the analysis (the bar and the triangular
plate) are shown in Fig. (1). The coordinates of the end points of the bar
and the vertices of the triangle are referred to a fixed coordinate system

" 4in a plane. The nodes of each element are numbered in the anti-clockwise
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direction as shown in the figure. The geometry of the structure is determined
by specifying the x and y coordinates of each node, with respect to a fixed
set of coordinate axes and by specifying the thickness of the triangular
element or the cross-sectlonal area in the case of a bar element., The
cartesian components of the nodal displacements for-each of these elements
comprise the element displacement vector X. The total element strain desig-
nated by the vector e can be expressed in terms of the nodal displacement by
an equation of the form
e = BX
The stresses are related to the elastic strains by Hooke's Law

e
o = (Ce

The nodal forces, F, corresponding to given displacement, X, are found by

the principle of virtual work.

Elastic~Plastic Analysis:

In the elastic range of material behavior the equilibrium equations for
a structure composed of plate and bar elements of the type considered can be
written as

F=KK (1)

where the force and displacement vectors now have as their components, the
cartesian components of force and displacement at all the nodes and K is the
assembled stiffness matrix for the whole structure. The solution of Eq. (1)
for the unknown displacement is given symbolically by X = K—l F.

The displacéments known, the element strain and stresses can be obtained.
However, when the stresses reach the intensity required to cause plastic flow,
it becomes necessary to determine the increments of plastic strain caused by

_the load increment. The material is assumed to obey the Mises yield condition

and the associated flow rule. For plane stress the following equations apply:
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- _ 2 2 2..1/2 _ . -p
o (ax OLUY + cy + Brxy) = H(e") (2)
_ 2 2 2
8P = 2 (AP 4 acPacP 4 2?4+ 1 yP) (3
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y 25 y X
A.YP = 3 é.g__. T
Xy 3 Xy J

where o and e° are the effective stress and the effective plastic strain,
respectively, and where H(Ep) is the stress-plastic strain relation for
-uniaxial stress.

If it is assumed that the response of the structure to the removal of
a load increment will be completely elastic then Equation (1) can be modified

to account for plastic flow as follows

KX = F + FF (5)
where X and F are the displacement and load after the application of the
increment and FP is the vector of plastic forces corresponding to the plastic
strains. The plastic strain increments caused by the increment of load must
satisfy Equations (4) and for an element undergoing ﬁlastic flow the stresses
must satisfy the yield condition (Equation (2)).

In general, the following steps give the iterative method used to
obtain solution. For the detalls refer to the program in Appendix I:
1. An increment is given to the applied loads.
2. New values of displacement are found from Equation (5) using the
current values of the plastic forces (these will be zero for the

first step).
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3. The displacements are used to compute total straims, elastic
strains, stresses, and the effective stress.

4. If the new value of the effective stress is greater than the largest
previous value, the element is plastic and the effective stress is
used to determine a new value of the effective strain.

5. Plastic strain increments computed from Equations (4) are added to
the current values of the plastic strain and new values of the
plastic forces are calculated,

6. If the increment in effective plastic strain is sufficiently small
the iteration is complete and a return to step 1 is made, if not a
return is made to step 2 and a new cycle begun.

This procedure is applied to each of the elements and the decision to
start a new step (apply a load increment) is based on the largest plastic
strain increment found among all the elements.

An important feature of the method is the way in which the effective plastic
strain is computed from the new value of the effective stress at each iteration.

P

If the inverse of Equation (2) is used to give ef as a function of ¢ the solu-

tion may become unstable. This becomes obvious when one considers the case

of the elastic, perfectly plastic material for which the inverse of the

function H(Ep) does not exist. To avoid this difficulty, the total strain
-p

€y is taken equal to the sum of the value of ¢° computed in the previous

iteration and o/E.

The stress—-strain law can be written in the form

=
Paain )
mI1
o
-
!
=]

or _ €& " 7% (6)



13

The new value of £F can be found from Equation (6) without difficulty.

The c¢riterion used in Step 6 of the iterative procedure given above, to
decide whether the plastic strains have been determined with sufficient
accuracy, is the size of the ratio of the increment in effective plastic
strain to o/E. This ratio is a measure of the difference between the
ordinates to the theoretical stress-strain curve and the curve that is

actually being used at that step in the calculations,



14

LABORATORY EXPLRIMENTS

Ultimate load tests were conductéd on five A36 steel beams, two of which
were W16 x 45 shapes and three were W16 x 40 shapes. Though the length of the
beam was not the same iIn all the cases, the moment-to-shear ratio, M/V, at
the centerline of the opening was kept constant at 30 inches. The test set up,
as depicted in Fig. 2a, consisted of simple supports at the ends and a con-
centrated load applied at midspan. A varilable, X, describes the variation of
the span length as illustrated in the figure and tabulated in Table 1 for the
various test specimens. Beams 3 and 4 are not listed in Table 1 since they
were subjected to elastic tests only.

The size of an opening, one of the experimental variables, is given by
half its length, a, half its depth, h, and the corner radius, r. Table 1 gives
these values for each of the test specimens. However the eccentricity of the
opening, that is the distance between the mid-depth of the beam and the center-
line of the opening was 2 inches for all the beams. The eccentricity was
towards the compression flange in Beams 1, 2 and 5. In Beams 6 and 7, it was
towards the tension flange.

Except for Beam 1, all Beams were reinforced at the opening with two bars,
one above and one below the opening and at a distance 1/4 iInch from the edge
of the opening. Beam 5 was relnforced on both sides of the web and the others
on one side only. Figure 2b shows the general layout of the reinforcement
used. The reinforcement was comprised of bars 2 x 1/4 inches which were
congidered as the practical minimum size in accordance with the AISC Specifi-
cations {34)., In all cases the reinforcement was extended 3 inches beyond the
edges of the opening. This 3 inches was calculated to be sufficilent to

develop the strength of the bar using a 3/16 inch fillet weld.
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Bars of 3 x 1/2 inches, welded to the web and the flanges with a 3/16
inch fillet weld served as bearing stiffeners in all the beams. All except
.Beam 1 were provided with bearing stiffeners at the supports and at the load
point. Beam 1 was provided with bearing stiffeners only at the load point.

In Beams 2 and 5, cover plates were attached with 1/4" fillet welds to
both the flanges at the centerline of the beam. The function of these cover
plates was to strengthen the beam at the center-and force the failure to occur
at the opening. Table 1 gives the dimensions of the cover plates. In Beams
1, 6 and 7 no cover plates were used because the opening sizes and the spans
used were such that faillure occurred at the opening before a plastic hinge
could form at mid-span.

The actual statié yield stresses were determined from tensile tests on
coupons which were cut from the web and flanges. Similar tests were also
conducted to obtain the static yield stresses of the reinforeing bars. The
average static yield stresses and the maximum deviation from the average are
listed in Table 2.

Load was applied in inecrements with a Tinius-Olsen screw type machine
until specified deflections were reached, and the load then allowed to drop
off to the static level. A detailed description of the experimental work can
be found in Ref. (2). The experimental ultimate loads were measured and the
load-deflection curves plotted. The ultimate loads were corrected for strain

hardening and the corrected values are given in Table 6.
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PREPARATION FOR COMPUTER ANALYSIS

Idealization

In order to apply a plane stress finite element method to a three-
dimensional structure, certain medifications must be made. The procedure
followed was to substitute equivalent bar members pin-connected to the appro-
priate nodes of the plate elements for the flanges and reinforcing bars.

These bar members do not have an associated thickness but have one dimensional
materilal properties which can transfer only axial forces.

To find the equivalent flange element, therefore, there is a conflict
between maintaining the area of the flange and maintaining the moment of
inertia of the beam. Since retaining the actual strength of the beam is more
important compared to maintaining the actual area, the equivalent flanges were
determined in such a way that the moment of inertia was kept a constant,

Fig. 3.

The moment of inertia, I, of the beam is given as:

3
t k T 2
e el oo 3 ol .
I=1 (d - 2t.) +2{bf 75 T bp te [2 2]}

and the moment of imertia, qu, of the equivalent idealized beam is given as:

eq 12 eff (2

1f qu = 1, then the effective flange area, Aeff’ of the idealized beam

is given as

Befg T 2 6

where t_ is the web thickness of the actual and idealized beam sectlons, d

is the total depth of the beam, t . 1s

is the thickness of the flange and bf

£

the width of the flange. The idealized propertics of the beams are listed

in Table 3.
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The bar elements representing the flanges had to be increased in the
corresponding length of the beam to account for the cover plates. The actual
modified moment of inertia of the beam at that section is

I =14 I
c

mod p

d da'. 2
where Icp = ZACP (5-— E“J ;3 being the moment of inertia of the cover plates

about the x-axis of the beam,
d' = thickness of the cover plate.

The equivalent modified moment of inertia is given as 1T =
eq.mod.
3

t:d
W

12

ER Z{Amod (d/2)2}. If I then the modified area for the

eq.mod - Imod
flange elements to account for cover plates 1s given by

t d
. 21 W d'<2
Amod B d2 6 *# Acp(l d )

The idealization using a plane stress procedure to simulate the beam
behavior was similar for one and two sided reinforcement. This is based on
the conclusions of other investigators (27,2%), that one sided reinforcement
has no significant effects different from those of two sided reinforcement.
Therefore, the results of the study can represent both types of reinforcement
with the same total cross-sectional area. The equivalent reinforcing elements
were ohbtained by replacing the reinforcement by bars which have the same loca-

tion and cross—-sectional area as the reinforcement and shown in Fig. 3b.

Discretization

Though no general rule can be stated as how to best disect a given
structure, it is obvious that the accuracy improves as the size of the

mesh decreases. Good results are frequently obtained wlth rather coarse
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subdivisions Ref., (35). Consider a case of a deep rectangular beam
subjected to pure bending. Two types of rectangular discretizations are
shown in Fig. 4. Now, the assumptions of the beam theory states that plane
cross-sections remain plane in bending though the axial fibers of the beam
become curved. Thus in order to best approximate the straight transverse
sectiong and the curved axial sections that occur during deformation, the
discretization (b) in Fig. 4 is preferred over tle discretization (a).

From the results of the examples considered in Ref. (35), it is found that
if triangular elements are well formed, i.e. essentially equilateral, better
results are expected, The poorest overall displacement patterns are produced
with the discretization which contains many weak triangles.

Keeping the above mentioned points in mind, the test beams were divided
into a mesh of triangular and bar elements as given in Table 3., Smaller
triangular clements were used near the opening in order to get a better picture
of the yield pattern near the opening. The rounded corners of the hole were
approximated by the best suited triangular elements. The element configuration
for the fillets at the corners of the opening were slightly different in beams
6 and 7. This change made no significant difference in terms of the yield

pattern or the ultimate load.

So0lid Beams

A regular beam without any opening was called a solid beam. Every beam
with an opening had a corresponding solid beam. Test runs, by the finite
element method only, were made on each of the solid beams in order to aid
in comprehending the effects of the openings. The details of the idealization

of the solid beams are glven in Table 4.
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PRESENTATION Q' RESULTS

The solld beams were tested first, in order to get an idea of the ultimate
capacity of the beams without an opening. Table 5 gives the leoading details
of the beams with the opening and the solid beams.

The actual experimental ultimate loads, the ultimate loads corrected for
strain hardening and the ultimate loads obtained from the finite element
analysis are given in Table 6.

From the computer output, the yielded elements were determined and were
then plotted in order to show the yield patterns., A triangular element having
any effective strain.was considered ylelded. With an error tolerance of 0.03
in the effective strain the effective stresses of the yilelded elements were
not exactly equal to the yield stress of the material but rather close to it.
For a bar element to yield, its stress value must reach the yield point,
however, due to the error tolerance used, it was decided to consider a bar
element yielded whenever its stress was within 0.15 kip/in2 of the yield stress.

The usual sign convention is used in the program, namely tensile stresses
are positive and compressive stresses are negative. If the stresses in both
the directions, that is x and y, are positive then the element is considered to
have been yielded in tension and likewise, in compression if both are negative.
But if the stress in one direction is positive and in the other direction 1is
negative, the element is considered to be yielded in a combination of tensile
and conmpressive stresses. Compressive yiélding is shown by horizontal lines
while tensile yielding is shown by verticle lines. A combination type of
yielding is shown by solid shading.

Since the elements near the opening are very small, the figures showing

the yleld patternrhave been divided into two types. One showing the enlarged
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view in the vicinity of the openiup and the other showing the remaining

portion of the beam. HNone of the stiffeners in any of the beams were close

to ylelding.

Hence they have been owmitted in order to simplify the figures.

The yield pattern for the wltimate load is shown for all the beams.

Additional plots for intermediate loads are also shown for beams 1, 2 and 6.

The detalls of the figures are given below:

Figure

Figure

Figure

Figure

Figure

Tigure

Figure

Figure

Figure

Figure

Filpure

Figure |

Figure

5:

61

10:

11:

12:

13:

14

15:

Yield pattern for Solid Beam 1 at uliimate load of 144 kips.

Yield pattern in the vicinity of its opening for Beam 1 at a
lcad of 80 kips. No other elements in the Beam have yielded
at this load.

Yield pattern in the vicinity of its opening for Beam 1 at &
load of 96 kips. No other elements being yielded in the Beam.

Yield pattern in the vicinity of its opening for Beam 1 at a
load of 112 kips. No other elements being yielded in the EBeam.

Full view of Beam 1 showing yield pattern at.ultimate load of
144 kips.

Yield pattern in the vicinity of its opening for Beam 1 at
ultimate load eof 144 kips.

Yield pattern for Solid Beam 2 at ultimate load of 168 kips.
There are cover plates at midspan and stiffeners at the
supports. This being the only difference between Sclid Beam 2
and Solid Beam 1.

Yield pattern in the vicinity of its opening for Beam 2 at a
load of 96 kips. No other elements being yielded in the Beam.

Full view of Beam 2 showing yield pattern at a load of 144 kips.

Yield patitern in the viecinity of its opening for Beam 2 at a
load of 144 kips.

Full view of Beam 2 showing yield pattern at ultimate load of
152 kips. ,

Yield pattern in the vicinity of its opening for Beam 2 at
ultimate load of 152 kips. ‘

Yield pattern for Solid Beam 5 at ultimate load of 144 kips.



Figure

Figure

Figure

Figure
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Figure
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19:

20:
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22:

23:

24:

25:

26:
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Full view of Beam 5 showing yield pattern at ultimate load
of 128 kips.

Yield pattern In the vicinity of its opening for Beam 5
at vltimate load of 128 kips.

Yield pattern for Solid Beams 6 and 7 at .ultimate load of

112 kips. Since the only difference between Beams 6 and 7

is in the size of the opening, there is no difference between
the Solid Beams 6 and 7.

Yield pattern in the vicinity of its opening for Beam 6 at a
load of 54 kips, no other elements being yielded in the Beam.

Yield pattern in the vicinity of its opening for Beam 6 at
a load of 72 kips. No other elements in the Beam have yielded

at this load.

Tull view of Beam 6 showing vield pattern at ultimate load of
84 kips. None of the flange elements have yielded. Since a
100 iterations per step have been reached with an error
tolerance of 0,03, the Beam is considered to have been yielded
in a practical sense.

Yield pattern in the vicinity of its opening for Beam 6 at
ultimate load of 84 kips.

Full view of Beam 7 showing yield pattern at ultimate load of
96 kips. Here again none of the flange elements have yielded.
For the same reason as in Beam 6, the Beam is considered to
have been yielded in a practical sense.

Yield pattern in the vicinity of its opening for Beam 7 at
ultimate load of 96 kips.
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DISCUSSTION

Ultimate Loads

The ultimate loads obtained from the finite element results are given in
Table 6. The accuracy of these ultimate loads depends on the size of the load
increments used in the analysis. The smaller the increment size the better
the accuracy, but the cost of running the computer program increases as the
increment size is decreased. The ultimate load predicted by the finite element
wmelthod is an upper bound value. Theoretically it should satisfy the inequality:

true FE
u

< Pu g (Putrue

P + 1)
where i = increment size.

The experimental ultimate loads corrected for the effects of strain
hardening (2), along with their ratios to those obtained from the finite
element method are also listed in Table 6. These ratios indicate that the
values predicted by the finite element method are within 67 of those obtained
experimentaily in all cases.

A further comparison of the finite element results is made with those
obtained from an ultimate strength analysis (2). These theoretical ultimate
loads were found through the use of interaction diagrams which were obtained
from a computer program developed by Wang (36). Once again fhe ratios of the
theoretical and the finite element ultimate loads show a good correlation.
“Thus it can be concluded that the finite element method predicts the ultimate
loads with reasonably good accuracy.

The ultimate loads of the solid beams and their ratios to the ultimate
loads of the beams with the openings ave also given in Table 6. These ratios

ghow the reductions in the load carrying capacities of the beams due to the

web openings. The value of this ratioc for Beam 1 is 1.00, thus indicating that



23

the opening has very little or no effect on the ultimate load of the beam
under the existing conditions. This is consistent with the experimental

findings (2).

Yield Patterns and Modes of Fallure

To begin with, a brief discussion of the effects of secondary moments will
aid in a better understanding of the yield patterns.

Consider a section of a loaded beam at the opening. See Fig. 27a. The
high moment edge of the opening is at the right, and hence primary moment
M, > M.. Equilibrium requires that 2aV = M, - M.. The shear forces Vt and

2 1 2 1

VB are distributed to the top and bottom of the opening, Fig. 27b. To maintain

equilibrium, secondary moments Mﬁ and Mg are generated,

where 2M§ = ZaVT

and N = 2av;
Thus the individual sections, above and below the opening, behave as fixed
ended beams. Due to the secondary moments there exists compressive normal
stresses in the regions near b, d, £ ;nd h and tension in the region near
a, ¢, € and g. Due to the primary moment effects only, the enfire section
above the opening is in compression while the entire section below the opening
is in tension. Therefore the corners of the opening at the low moment edge,
namely d and e, yield first due to the additive effect of the primary and
gecondary moments. At the corners c and f the effect of the primary and
secondary moments is Iin the opposifé éense and hence the yielding 1s not
so pronounced.

Figures 7 and 12 show the plots of the ﬁielded elements of Beams 1 and 2.

at a load of 96 kips. The number of elements ylelded in the reinforced case,
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that is beam 2, is nearly half that of the unreinforced case, that is, Beam 1,
The effect of the reinforcement is such that the yielding is limited to the

area in the web between the reinforcement and the edge of the opening. In

both cases there is greater yielding at the low moment edge because of the
sécondary moment effect. Yield patterns for the same beams at a load of

144 kips are shown in Figs., 10 and 14. While this is the ultimate load for

the unreinforced case, the reinforced case is B kips below its ultimate load.

In general there exists a greater amount of yielding in the unreinforced case
with a substantial amount of yielding in the flanges, though, there is very
littlie flange yielding at this stage in the reinfofced case, This is attributed
to the cover plates. The flange yielding in Beam 2 is only on the tension

side, between the opening and the end of the cover plate.‘ A closer look at

Fig. 10 reveals the existence of a compression element in the tension region.
This is due to the secondary moment effect. There are no stiffeners at the
supports in Beam 1 and hence the elements at the supports have yilelded. This

is not so in the Solid Beam 1 because of larger elements used in the discretiza-
tion of the Solid Beam., Solid Beam 2, Fig. 11, has a greater moment carrying
capacity because of the cover plates at mid;span. The ultimate load for solid
Beam 2 being higher, the number of elements yielded in Solid Beam 2 is
substantially greater than in Solid Beam 1.

Figures 17 through 19 are for Beam 5 and reveal.a reduction of 16 kips in
the ultimate load due to the opening. Once again in this case the cover plates
prevent flange element yielding at mid-span. The quantity of reinforcement
used being large, there is no yielding in the reinforcement.

Looking at the yield patterns of Beams 6 and 7, Figs. 23 through 26, a
great deal of similarity is observed. There is very little yielding at midspan

and the failure in both cases is essentially at the opening.
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In all the solid beams it can be observed that the yielding is more
extensive towards one side of the centerline even though the loading and
support conditions are symmetrical, see Figs. 5, 11, 17 and 20. This is
due to the asymmetric element configuration. If the elements were symmetric
about the centerline, then the yielding also would be symmetrical. The
failure is a typical one hinged mechanism, with the plastic hinge developing
at midspan under the load.

In all the beams the first sign of yielding is observed in the web
adjacent to the corners of the opening. These yielded zones enlarge as the
load increases. At the ultimafé load the yielding takes up a pattern which
can schematically be shown as in Fig. 28. This type of a pattern gemnerally
confirms that a four hinged mechanism develops at failure as assumed in the

theoretical analysis (36).
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CONCLUSTONS

From the comparison of the results obtained by the finite element method
with the experimental and theoretical values, the conclusions reached were:

1) The ultimate loads obtalned from the finite element analysis are
in reasonably good agreement with those obtained from the experi-
ments and also with those obtalned theoretically from an ultimate
strength analysis.

2) The yield patterns at vavious loads agree closely with those obtained
in the experiments.

3) The failure at the opening is a four hinged mechanism as assumed in

the theory, with a plastic hinge at each corner of the opening.
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APPENDIX 1

Details of the Computer Program

A brief description of the Fortran IV program for the elastic-plastic

analysis of plane structures composed of bar and triangular plate elements is

given here.

Table AI-I. TInput Data Format

Card 1 TITLLE CARD (72H)
Any alphanumeric information

Col 1-72
Card 2 PROPERTIES . CARD
Col 1-5 NNODE -
6-10 NELEM -
11-15 ILAW -
16-20 IUNLD -
21-25 MAT -
26~-30 MAXBND-
31-35 NBC -

Card 3 MATERTAL PROPERTIES

Col 1-15
16-25
26-35
36-45

EE -
LEL
PRR
FE2

(1415)

number of nodes {(maximum 450)

number of elements (maximum 800)

1 Ramberg-Osgood Law

2 Goldberg-Richard Law

3 Bilineayr Law

1 Unloading following loading

0 Loading only

number of materials used (maximum 10)

maximum bandwidth, MAXBND = 60

for this program

number of boundary conditions with prescribed
displacement. The maximum number is 30 in this
program.

CARDS (E15.8, 3¥10.5)

modulus of elasticity

secant yield stress, ultimate stress, yield stress
Poisson's ratio

shape parameter, plastic modulus

Card 4 CONTROL CARD (6I5, F10.0)

Col 1-5
6-10
11-15

16-20
21-25
26-30
31-40

NDIV -
NIT =
NPRINT-

KSTART -
KSTOP -
NLOAD -
TOL -

number of load increments

maximum numbey of iterations per step

print output for each NPRINT increment.

(e.g., if NPRINT = 3, for increwments 3, 6, 9 etc.)
number of increments at which solution is to start
number of increments at whiech solution is to stop
number of nodes at which loads are specified

error tolerance
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Table AI-I (Continued)

Card 5 NODE CARDS (415, 5F10.0)

Col 1-5 Node number
6-10 IBCKX = 1, if displacement in x-direction is specified
11-15 IBCY 1, if displacement in y-direction 1s specified

o

16-20 IBCS 1, 1f slope is specified
21-30 XCORD = x coordinate of the node
3140 YCORD - v coordinate of this node
41-50 Bcl ~ specified displacement in x~direction
51-60 BC2 ~ sgpecified displacement in y~direction
61-70 BC3 -~ specified slope at the node
Card 6 ELEMENT CARDS (515, F10.0)
Col 1-5 Element number
6-10 I1 - mnodes defining the element
11-15 12 ~ nodes defining the element
16-20 i3 - nodes defining the element
21-25 NTYPE - material type
26-35 Z -~  element thickness or crossg—section area

Card 7 LOAD CARDS (I5, 2F10.0)

Col 1-5 Node number
6~15 x—component of force
16~25 y—component of force

The program uses a subroutine for the solution of simultaneous equations
in band form written by Professor E. L. Wilson of the University of California.
Creat economies in storage requirements and in time required for sclution are
achieved in this way.

Three types of stress-strain laws are available for use in the computer

program. Each of them is a three parameter law and is given below:
1. Ramberg-0sgood Law

C Loy e
t E 7E
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in which
E - Young's modulus

0, — secant yleld stress (stress at which the secant modulus = 0,7E)

1

n -~ shape factor

2, Goldberg~Richard Law

Est n ~-1/n
G=E€t{1+T }
u
in which
E - Young's modulus
g - maximum stress
u
n — shape factor
3. Bilinear Law
¢ = Ee for o < @
t y
oy
i = Gy * El{et % ] for o 3.Uy
in which
E - Young's Modulus
cy - yileld stress
E, ~ slope of the plastic portion of the stress-~strain curve.

1

The correspondence between the program variables and the stress-strain law

parameters for each of three laws is given in Table AI-II,
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Table AI-II

Program Variables

Stress Strain Law

ILAW E EE1l EE2 PRR
Ramberg-Osgood 1 E oy n v
Goldberg~Richard 2 E % n v
Bilinear 3 E o E v
y 1

Correspondence Between Program Variables and Stress
Strain Law Parameters.

The displacement component in the x and y direction can be specified at
any node or a node can be required to move along a line with a specified slope.

The x and y components of load can be specified at any node. Distributed
loads must be treated as concentrated at the nodes.

The number of equalrincrements into which the applied loads and specified
displacements are to be divided is specified as input.. It is also necessary
to specify the number of the increment at which the solution is to start. For
example, if a number of increments NDIV = 20 is specified and a value of the
starting increment KSTART = 5 is used, one quarter of the load (displacement)
will be applied in the first step, the rest in 15 equal increments. TIf it
is desired to stop the sclution at an intermediate step a value of KSTOP may
be specified. If the unloading solution is desired the value 1UNLD = 1 is
used,

An error tolerance must be specified as input. After each cycle of
iteration the maximum error among all the elements is compared with the
specified tolerance. If the tolerance is met the next load increment is

applied, if not, the iteration is continued. If the tolerance on error is
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is not met when the allowable number of lterations 1s reached the solution
is stopped.

The nodal forces and displacements, the maximum error and the number
of the element in which it occurs are printed out at the end of each increment.
The cartesian components, principal values, and direction of stress and strain
are printed out at the user's option by specifying a value of NPRNT as input.
For example, a value of NPRNT = 3 will cause the stresses and strains to be
printed out for increment numbers divisible by three, The directions of the
principal axes of stress are defined by

i i e BT T L
¢—-—2tan UX-UY ] 2<¢<2

The value of ¢ in degrees is printed out. In the case of strain the principal

directions are defined by

1. -1y _n T
§ = =7 tan £, = ¥y 7 < $ < 2

This value is also printed cut since in general the prinecipal axes of stress
and total strain do not ceoinclde when plastic flow has taken place.

The effective stress and the effective plastic strain are also given
as output for each element.

An example problem of a cantilever beam has been worked out to illustrate
the uce of the finite element program.

The Fortran IV source program is listed along with the input data and

the output of the example problem,
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an
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50
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70

RO

9n

FLASTIC PLASTIC FINITF FLFMFNT PRNOGAM
WEITH THREF STHESS STRAIR AW OPTINNS

COMMONLANDS  FREIIO)aFFY{T0T,EF2{10)PRRILD)

CAMMNON  FoCLeGl1F2 PRIEPRGXP1,Y213X31,Y 31 eX32,:Y379XERR,
NZyNELEM KEL TLAMWyMAT ¢NHG
BLAOOANYBC L3031 TARIINT 4201, IFIX(2),

X(900) XCORND(A4BO ) Y{450), ICONF[420),
FPlann),F(9nn),

-~ U N

MNONE , MRAND
DIMENSTON JX{80N,3),FE (90N}

FOUIVALENGFE (JX,11)

FOUIVALFNGE (IFIX(1),IRCX)s(IFIX(2),1RCY)

% READ AND PRINT DATA ks

10 RFAD {5,20,FND=700}

I1NNE=1

FORMAT (T 2H RN INFORMAT ITON

] )

WRITE (6430)

FNRMAT(1H1)

WRITF {6.70)

READ(S,40) NNNNEGNELEM, 1L AW, TUNLD,MAT yMAXBND 4 NRC
FORMAT(1415) .
REAN{5,50) (FE{I}sEEYI(])
FORMATIELS .8 43F100.5)
READ{S 60 INDIV,NIT+NPRNT 4 KSTART,,KSTOP,NLOAD, TOL
FORMAT(G6IBFIN, D)

IF{KSTNP.FO.N) KSTOP=NNTV

G TNITN,90,110) , TLAW

+PRR{TVLEE2({I)y1=1,MAT)

WRITE(HBO) (T,FEF(T),EFI (T 4FE2(T)3PRR{T)+TOL,I1=1,4MAT)

FAORMAT [ IHN1I4X1RHRAMBERG NSGONN LAW/ :

115X, 30HMATER J AL mm—m o m e e 13/ B
215X30HMODVLNS NF ELASTICITY=mememem—m— El7?.4/
B1SXIFOMSECANT YIELD STRESS—m——m—m— e E12.4/7
H15X3NHSHAPE PARAMFTEFR=—mmmm—m e EY2.4/
515X30HPNTSSINTIS RATINm—mmmmmmmm e FR,4/

615 X3NHERRNR THELFRANCE—————mm e FHad)

GN 1O 130

WRITE(E INNY (T4 FEL(T) 3 FEVLINZEF2(T)4PRRIT) »TOL,T=1,MAT)

100 FORMAT(IHNTIAXZ2OHGNLDRERG RICHARD LAW/
 1IBX g AOHMATFRI AL mm e e e e 13/

ZISXINHMONULUS NF ELASTICITY ——=seeem E12.4/
FIEXAINHSECART YTELD STRESS———em—memee E12.4/

4H15X30HSHAPF PARAMETER———————wmmm e F12.4/ o
515X30HPNISSIINIS RATJNmmm—mmm e FB.&4/

H15XA0HERRNR TOLFRANGE———— e e m FB.%)

GO 70 130

130 WRITE {6,140 )NNGDE (NFLEM,NDIV,NTT
140 FNRMAT(1HNL14X3NHNMA, NF NMINFS

110 WRITE(6,120) tI1FE{IJ,EEl(I),EER}IJ,PRRIII;TUL}1=1.MAT}
120 FORMAT(LIHNTAXTI2HRILINEAR | AW/

115X 30HMATERTAL —s—mmm s e e -——= 13/
215X3A0HMONULUS (IF FLASTICITY—smm———— E12.4/
315X30HSECANT YIFLD STRESS——=m—c——eu El17.4/
LI15XANHSHARPF PARAMETFRemmmm e e - F12.4/
S16XINHPNTISSOMNIS RAT[(fmmmm e e e FR.a/
HISXINHERRNR TOLERANCEF = me e m s e FRed)

LH(RON) S I2{RON) L T3(ABON) NTYPE{8ON),Z(BO0),T4(RAN),
SEFLANN) sSET(RON) FEP{RNN) 4EXPL(BND) yEYP(RONY 4EXYP(HRDOY,

33

VFRT7000)
VERTIOON?
VERTOM) A
VERTOOH
VFRT000S

VFRTOO11

VERT70014
VERTO0OLY
VERTOUL A
VERTONOY

VERTODL W
VERTODZ2D
VERTONZ)
VERTOOZ2
VERTOOZ3
VERTODZ 4
VERTOOZY
VERTNDNO2 &
VERTOO27
VERTOOZH
VERTOOZY
VERTODOZRD
VER70O03]
VERTON3?
VERTOORA%
VERTOOD D4
VERTNONAY
VERTON4A
VFRTOO3 T
VERTYODY R
VERT70039
VERTOOAM
VERTO0A]
VERTOOG 2
VERTUOD4 A
VERTINO4GG
VERTOUALS
VERTOO4A
VERTONAHT
VERT00O4R
VERTOOGY
VERTOOSN
VERTONS]
VERTDOGL ?
VERTOOL3

CVERTONGLY

VERTON5Y
VERTO0NA
VERTO0ST
VERTFNDOSH
VERTON5Y

NNDDE =I4/]bX3UHNn; NE ELEMVERTNOAD
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1FNTS
PHNN, OF
DNoYse I=1,NRC
nO 150 =1,3
150 BRC{1.d)=0

1C=1

WRITE(A:1A0)

1640 FNRMAT E25HOROUNDARY COMNTTINON
120XTHESLINDING/IH 14XA4HCODETXSHYALUFOXS4HCODETXSHVALUEYXAHCINE
?TXSHVALUE)

NFLEFM =14/15X30KN0, OF STEPS

ITFRATIONS/STEPR

ARRAY/LOHD NODAL PTLSXLHX23X]HY

fakse NANDE CONRNDINATES AND BOIINDARY CONDITIONS s

170

180

19n

200

[aEnia

&

*#*#

210 FORMAT(51%,F10.0)

st e e

220

230
240
250

260

7?RND
290

Inn NNT INUE

no z2on =1 NNODE

READ{5,170) KeIRCX,TRCY, TRCSXCNRD(K),YIK),RC1,HC2,KC3

FORMAT({ATH,5F1N.0)
IF{IRCXFIRCY+TRCS.NFLO)
FORMAT (17 +3X+s3({TRLIPEYT.TY)
ICNDETKI=IRCS+1Nx]ACYHIONHIRCX
CIF{RCI+HCZ24BCALENLDL)
ICODE{K)=TCONE{K}-+ICx=1NNN
RCUIC,y1)=RC]

RC{IC+?)=RC?
RCUTC+3)=RC3

IC=1C+1

IF(IC.LELNACIGD TO 200
WRITE(6,190)

N T0 200

WRITE(6,1BN)K,IBCX,BCY IBCYRC2,IRCS,RC3

FARMAT (54H0 MORE THAN 29 NODRES HAVE NNN ZERD BOUNDARY CONDITIMNS)

G TN 620

CONTINUE

ELFMFNT PROPERTIES

READ(S 210 ) Ko TTUIKI 412K 2I3(K) ,NTYPE(K) yZ(K),J=1,NELEM)

N2=2%NNODE
DN 220 K=),.N2

Fikl}=0

IFINLOADL.FD.D) GO TO 250

N 230 K=1,.N0048D

READ (S, 240 ) J FU2%0-1),F(2%.])
FORMAT (15,27 10.0)

CONT INUE

WRITE (64 26N) Ky XCNARNDIK) s F2%K-11],

LNADS

YIK)F(2#K), ICNDE(K) 4 K=14 NNODE )

FORMAT ( 1OHO NMODAL PTAXTHX-COURDBXTHX=FNRCERXTHY -CONRDEXTHY-FUORCE

111X4HCNNE// 14X+ 13,5X4F15.4,115))

WRITFI(H 270}

270 FORMAT (1HO// /10X, 90HELFMENT
17 TYPF AREA DR THICK.,

NN 300 K=1,NELEM

TFE(I3(K)FD.NY)

IF{TI3(K).NELD)

FORMAT(
ENRMAT (

INITIALTZATION

NODE 1 NODE 2 NODE 3
T MATERIAL TYPE+//)

WRITFE(&,272H0)

KeTT(K)Y212(K) 413 (K)2Z(K)eNTYPE(K)
WRITE(6,290) KyTTIK)oT12(K)4I3(K)Z{K)sNTYPEIK)
HEXeh19, 11X 4 3HBARGF272,.5,114)

HEX 441911 X BSHPLATF EZ2N.5,114)

34

NPy =T14/15X30VERTONG]

VERTOOAM?
VERTOOAS
VERTO 64
VERTONAR
VFRT7DONMO
VERTOOG S
VERTO0A8
VERTONGY
VERTOOTO
VERTOOTY
VERTOO 2
VERTONTA
VER TN T4
VERTOO S
VERTOOT 6
VERTOOT Y
VFERTOOTR
VERTOOTY
VERTOORD
VERTONAL
VERTOOR?2
VERTOOHB3
VFRTUORSL
VERTONOHY
VFRTDORA

ERTDOBY
VERTOOBAR
VERTOOHBS
VERTOOYO
VERTOO9L
VERTOOY?
VERTONGD
VERTOOYS
VERTO(9IY
VERTODOE
VERTOOYY
VERTIODAR
VFRT7009Y
VERTOLI00
VERTOL]
VERTOLOZ
VERTOI0Y
VERTH]1NDG
VERTOLIO
VERTOLO6
VERYOLOT
VERTO10H
VERTOLOY
VFRTO110

ELEMENVERTOLLY

VERTN11?Z
VERTOL11%
VERTOL 14
VERTHLS
VFERY0114A
VIERTOD11Y
VERTO11H
VERTOLYIY
VERTOLZD
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330
340

XPIv=NDTV
G TO{320,340,340), 1L AW

CONT TNUF

DL 330 I=]14,MAT

F=FF{1)

F1=FF1(1)

F2=FF2(T)

CC=F1/F
Gi={7.naE/3,0)%x (1. 0/E2)uF 1ax(],0=-1.0/E2)
CALL TARLF(I}

CONTINUE

CNNTINUE

#k%% DETERMINE RAND WIDTH s

DO 350 K=1l4.NELEM

350

36N
370
3R

390

400

410

T4(K)=13(K)

TFII3(KILFRN.N) UX{K+3)=0X(Ks1)

J=n

NO 3RO k=] NELEM

DN 3RN 1=1,3

no 370 L=3,3

KK=TARS{JX (N, T)=gX(N,L})
TF{KK=J}37n,370,340

J=KK

CONTIMUE

CNONT INUE

MBAND= 2% ]+3

IF{MRAND .GT .MAXRND) WRITFE(6,390) MRAND
IF(MBANDL.GT.MAXRBND)Y GN TO 10
FORMAT(IHNINX20OHBAND WINTH TNO LARGESX6HMARAND=I4 )}
N 400 1=),MELEM

I3¢1)=14(1)

RO 410 I=14N2

NN 410 J=14,MBAND

RiTyd)=0N,

" CALCULATINN GF STIFFNESS MATRIX

Catl STIFF

wks REDUCE MATRIX o

CCALL SYMSOL(1)

35

VERTOL1ZY
VERTOL 22
VERTOIZY
VERTNDLZ26
VERTOT 2N
VERTIOT 26
VERTOLIA S
VERTOT 2R
VERTOE Y
VERTOI SN
VFER 7014}
VERTOLSY
VERTODTI34
VFRTOL 44
VERTN13M
VERTOL 34
VERT(O137
VERTOT A8
VERTO134
VER T a0
VERTNL4)
VERTO14 27
VERTUOYIAE
VERT O] 44
VERTO145
VERTOY 46
VFR70147
VERTO 148
VERTOL14G
VERTOLHD
VERTONIDI
VERTHLLZ
VERTOIOLA
VERT(GL 94
VERTO15BS
VERTDLNA
VERTOL1GY
VERTODLOR
VERTOISHY
VERTOLAD
VERTLA]
VERTNDT6HZ
VERTNT6HD
VERTO LA
VERTOL1AY
VERTOLAM

*kkk IMCREMENT LNADS,AND PLASTIC FORCES AND SULVE FOR DISPLACEMENTS%xVERTOLIAY

420

430

NN 43N 1=1,N2
FrP(l})=0
N TN 490

VERT0N1AD
VERTDL1AY
VERTNDL TN
VERTOLT]
VERTOY T2
VERTOYTS
VFRTIO174
VEPTOLTY
VERTOYI T4
VERTOLTFY
VERTOLTA
VERTOLTY
VERT0110



G40 WRTITE (64450 KU (T 4FE(2% =1 )y FE{20u] )4 X{2%]1=F1,X(2%]),1=1,NNINE) VER7O18Y
450 FOARMAT (THI?DX3HHEGRCES AND NTISPLACFMENTS FIIR O INCRFMENT 3 14/ /10OXAHNDOVERTOT X2

etz ls) oo

SO

INFOXTHX—FUKCFAXTHY=FNRCFYXAHX=DISPL,TXHHY=DISPL/ (9X T34 2F 1933 5X2FVERTULINRS
215.4 )}

46N

WRITE {A,460)XERRLKEL,LIT

FARMAT [ 13HNAX, FRANK =FR, 5,5X14HIN ELFMENT NO,T4,5X%X1 THND,

ITATINNST4)

VERTNT g
VERTO L HY

[TERVERTOY KA

VERYnlsY

A4TN TFIMON(KO,NPRNTIIAG0, 480,490 VERTO 80
4RO CALL NUTPT VERT7O1RY
TF(KOLFOKSTRRIGND TN 620 VERTO1490

Gy TN 500 VERTOT4]Y

490 TF{KN.EN.KESTOP)Y GCALL ODTPTY VER OO
IFIKOLEN.KSTOP)GN TN 620 VFRTOH1GS

500 KN=KO+[ANFEF VERTO194
Kll=KlU+] VERTNOL Y5
IF(KN=-NDTIV]IBLN,510:620 VERTO1 Y6

510 XKD=KD VERTD1GS
] no 520 I=1,M2 VERTOLGH
520 FE(I)=XKO/XNIVHF(T) VERTH1OY
B B3N K=1,NELFM VERTO2(0
530 SEF{K)=SFT(K} VERTOPD I
1T=0 VERTNZOZ

540 DN 570 I=1,MNODFE VERTO205%
IF(ICONEL]Y.FDLO) GO TO 570N VERTOZ20
CALL NDCNDF{ICNNELI s TRCS, IRCX, IRCY,ICs IXsTY4NRC) VERTNHZ20Y

N IF(IRCSMNELYI) GN T 550 VERTOZ206
ALF=RC{IC+3) VERTIOZ2O0Y
FP{UTX)=FP(IX)+ALF*FP(TIY) VERTOFOE
FP{IY)=D. VERTOZNY

560 NN 560 N=1,7 VFRTN2 )
1IF{IFIX(MN).MELT) GN TO 560 VERTTOZ
IR=TX+N=-1 VERTOZ212
FP{IRY=D. VERTOZ2L3

560 CONTIMNIE VER7NZ 14
570 CNRT INUE MERTOIZ1N
VERTOP) A

wzd SNLVE FOR DISPLACEMENTS ok VERTOZ LY
VERTOZ2]L R

NN 5RO T=] N2 VIERTUZ21Y

s5an X(I)=FE(T)+FP(T) VERTO220
CALL SYMSNL(?2) VFRTNZ 1
VERTO222

CALGCULATE TNTAL STRAINS,STRESSES AND PLASTIC VERTN223
FORCES ANMD STRAINS FNR EACH ELEMENT VERTOP2 4

' : VERYINZ?H

PN 590 F=1.M2 VERTD2ZA

590 FP{1)=n VERTNZ2T
XERR=0,0 VERTO?2? &
KEL=0 VERTDZZ24
CALL STRAINM VRO 40
VERTOZ31

#&k%k PICK LARGEST FRRNOR AND DFTERMINFE WHEN TU) REITERATE #okdiok VERTOUZ 42
; VERTN?3 4

IT=17+1
IF{XERR=TNLI44N, 4404600

CVERTG 244

VIFRTE 240
VERTOZ 46

ANN TE(TT=NITIBAOLALINAIN
A1O KD=NDTY VERTOZA(
TUNLDN=0 VERTOZS M

(20

L0 TO 440
JF(TUME N FN .0y 6N TN 10

VERTNDZ 449

CVERTHIZHD



700
710

10

cncon

C2222

In
20
30

D Ny -

LIFLA3 . EQ.0)
¥Y32=Y(J3)-Y(J2)

Y32=

JIFLIC.FRLGD)

41y

Bn Xi.=

A0

TUNLD=0
INNF==1
KSTOP=N
GH TN 440
WRITE {(65710)
FARMAT (/10X,13H JNR FINTSHED)
STOP
END
SURRNUTINFE FLEM{M)
COMMNNZADD Y/, FELIN) GFETLIN)ZEE2(10),PRR{1D)
COMMNN  FLCC+GYFP2sPR,FPR,X2T,¥Y21,X31,Y31,X32,Y324XFERR,
N2 ¢NFLEM KEL ¢ TLAWZMAT yNRC,
BLGNN,60) 4 ACI30,3) TARIINL W20, IFIX(2)
X{90N) L XCARND(450) Y1450 4 ICANE (45N,
FPIQNO),F{9nn),
TL(BNO)Y 2 T2 (RNNO) « I3(RBON) JNTYPE(BON) L2 (800) 2148001},
SFFIBNNO)SETIRNN)ZFEPIHON)4EXPLIBOD) yEYPIROD)yEXYP(BOO),
NNONDE ¢ MRAND
NDIMENSINN XX {(450)
FOLIIVALFNCE (XCNDRND,XX)
J1=11{M)
J2=12(M)
J3=13(M)
X2¥=XX{02)=XX(J1)
Y21=Y(J2)-Y(J1}
GO TO 10

Y3l=¥{Jd31l-Y(J1}
X32=XX(J3)-XX(J2)
X3I1=XX{03)=XX{J1)
RETURN
SORT{X21%%2+Y21%%2)
RETURN

END

SURRNUTINE NGCONE{ICONE + I3 IRCS s IRCKIRCY 4 IC s IX41YNHC)
DIMENSINN TCNODE{450)
IRCS=MOD{ICONE(T) 10)
TRCX=MOND{ICONE(T),,10N01/100
IRCY=MON{ICONE(TI )}, 10N) /10N
1C=MND(ICODE(1),100000) /1000
[X=2%]-1
1Y=1X+1
IC=NRC,
RETURM 3
END

PLASTIC STRAIN DNETERMINATION
SURRNUTINFE PNEW1 (ERPK,FFT,E.E14,E2)
J=1
XU=FFET
XL=0
EEPK= 5% {X|.+XU)
Y= EFPK+E1fF*FFPK&u(1.0IF?J-FFT
YP=1.0+F1/FE/EP%FFPK*x{1,0/E2~-1.00)
JeJ+1
IFLN=50)4n,40,100
IF(Y)50, 100,60
EFPK
G TN 70
Xl=FEPK

37

VERTO?241
VERTO 2472
VERTOZ243
VERTD? 464

VFRTO?2 40
FLM 001
ELM 000
FLm 00034
FLM DOOa

Fim
£l
FL
Elm
FLM
FLi
FLM
ELM™
ELm
FLmM
ELM
EL#
LM
Elm
L™

[SIARRY
011
(10N s
N3
0014
N1y
0Onlea
anL7
BB ES
nele
0020
0021
0027
Oneg 3
(N4
FLM On2s
FLM 0026
NCInoool
HCHDDOU 2
pCHnan3
NCON OO0
DCLHIO0OY
NCHDONGL 6
nennoon’y
(BIBIRISTSTERS
NCHNHNNY
DCHO LY
SINRIVIOR D]
ncHpon1 2
PNEWOOOT
PNEWOOO 2
PNEWOOOD
PNEWODO G
PNEWOS
PNEWOOOA
PNEWOOOTY
PREWONOR
PNFWOOOY
PNFWOOLH
PNF®ROUT]
PNEWODLZ
PNEWNHO1H

CPNEWNDD14



70

RN

an

N0

CTARL

C
C
G

XT=FEPK=Y/YP

TREIXU-XT )10, 1N, R0

TFIXT=XL)1041N0,90

FFPK=XT

NIFF=ARSIY/YP/EFPK)

IF(NIFF=.000NT1)100,100,20

RETHIRM

FND

STRAIN=PLASTIC STRAIN TARLF

SUHRRNUTINF TARLE(K)

CNMMONZADN/  EE(LIO}LERETLTIN)FF2{10)sPRR(1IN)

COMMON  EqCLeR1aF24PR{FPRXZ2T Y21 4X31,Y¥31,X32,Y32:XERR
N2 yMELFMyKFELy TLAWZMAT4NRC
R{GNN,6D) JHCIIN A, TAR{INT 4 20),TFIX(2),
X(900) XCORD(45N) Y (450), ICODE(450),

IY(RO0)},T2{(RON) L T3{ANN)4NTYPE(BNO),Z1BOO),T4(800),
SFREIANNY L SET{BON}LEFERP(RBOND) 4EXPLIBOOT 4EYP {80} 4EXYP(BOOD),

1
72
3
4 FPIONND)HFL9N0)
5
6
7

10

20

NNODE s MRAND

T12=2:=K

iIT1=1j2-1

TaR(1,111)=0,

TAR(1,112)=n,

nn 20 I=1,101

IF(1-))20,20,10

TAR{] L1 =FELNAT(I-1)%CC/5.

EF.T-:foﬂl 1 vII] )

CALL PNEWLIFEPK,EET+E4Gl1.F?)

TAR{1sI17)=FEEPK

CONTINUE

RETURN

FMD )

SURRNUTINE STIFF

COMMNNZANDNDS EF(10),EE1(10),FE2{(10),PRR{10)

COMMON  EsCCeGlsF24aPRIEPR,X?21,Y21,X31,Y31,4X32,Y32XERR,
NZyNELEMyKELy ILAYMAT<MRC,
RI9NNO AN RCI3N43)TARIINL 20),IFIX(2),
X(9NN )}, XCORD(450) .Y (450}, ICODE(450) 4
FP{90ON},F (900},
11¢RNN),T12(800),13({RNN) (NTYPE(BNO)+Z2(BD0O),]14(8D0),
SEF{RON)SSETIBNO)LEEP(BNN) yEXPLIBENQ)4EYP{BOOQ),EXYP{HOO),

NNDF , MBAND

DIMENSION FEP{Z2), INDDE{3]}LILNODET6)yNSK {646

FOUTVALENGF (IFIX{1)Y;IRCX)(IFIX{2),]1RCY)

ENUIVALENCE{INUDECL) yJU ) [INONDE{2) 3 22 (INODE(3)4J3)

N0 80D M=1 NELEM

J1=T1 (M}

Je=12(M)

J3=13(M)

CALL FLEMIM)

NTY=NTYPF(M)

F=FF{NTY)

PR=PRR{NTY)

IFLI3,ER0.0) GO TO 30

1FINTY.LF.MAT) G TNLO

GN TN 160

wkd STIFFMFESS MATRIX CALCULATINNS FOR TRIANGULAR ELFMENTS s

0 AMAT=6

38

PNEWHITY
PRNERDY 6
ProbErtoolt
PO T R
PR WO
PAEWOO 20
PNEEOOZ2 ]
PO 22
PLSTOO0)
PLSY LU
PLSTODOA
PLSYOQDO4G
PLSTOOON

PLSTOOL]
PLSTOOL Y
PLSTOO1 4
PLSTOO14
PLSTODLY
PLSTOOTA
PLSTOOLY
PLSTODLE
PLSTON1Y
PLSTOOZ0
PLSTUORL
PLSTODZ2?
PLSYOORA
PLSTOO G
S5TIFOOO]
ST1HuONZ
STIFGOOA
STIFNOO

STIFODTO
STIFOOT
STIHanLY
STIFUOL3
STIFOQOLA
STIFOOLS
STIFUDLA
STIFOOLY
STIFDOLH
STIFOD)Y
STIrONZ0
STIFOUA1
STIrOQOZ2
STIFO024
ST IS
STIENOZY,
STHron 26
STIFO0Z2S
STIFQUAH



[ Eo e |

AF=F&7 (M)
A123=X21%¥3]1-X3]1uY2])
A123=ARS(A}?3)

FTI1=AF/(2.0%A12%3% (1. 0=PR®XED))

FI?2=AF /{4, 0%A123% (1L N+PR))

NSK{1+1)= FTIHYRD%%D

NDSKI241}==FT1=PRAYI2NXAD

NSK{?4,2 )= ET1%X42%%57
BSK{3,1)=—FET1=Y31Y32

NSK{347)=s FTT#PREYZ]XXI?

NSK{3,3)=FT1=xyY3)%xp

DSK(4,1)= ET1®PR&EYIDEXI]

NSK(4 3 2)==ET1#X%] %X32

NSK {443 J=—FT1%PR&EY3]X3]

NSK{Gy&)= ETTwXB1%%2
NSK{5,1)= ETi#Y?21%Y32

DSK{G,2)==ET12PRAY2]xK32

NSK(5,3)==FT15YA1xY?]

NSK{5,4)= ET1*PRaY21%X31

CDSK{5,45)= ETIRY21%%2

NEK (641 )==~ETI¥PRAEYIPHXD]

NSK(64+2)= ET14X32%X21]

DSK({A43)= ETI*PR=RY31%X21

NSK[6,4)=-FET1xX3)1%X21

DSK{AH,5)=-ETL=PREY2]%#X2]

NSK{AhsbH)= ET1HX215%%2
no 20 I=1,0MAT
DN 20 J=1,JMAT
20 DSK{T,4)=NSK[J,1)
GO T 50

kA STIFFNESS MATRIX CALCUWILATIONS FOR BARS sk

3N FET1=7(M)*E/Y32%%3
FFP(1)=X?1
FEP{23)=Y21
N 40 f=1,7
nm an J=1,2

DSK{T+J)=FTI=FFP(])*FFP(.J]}

DEK(TI+2,J)=-NSK(].+.)
DSKIT4J+2)==~DSK(1,4)

40 DSK{142,J+2)=D8K(1,.1)

JMAT=4

+FET28XB P52
—ETPHY3PuX32
+ET 2532500

~ETP2%X32%X31 "

+ET25Y324X31
+ET %X %52
+ET2#Y31%X32
—ET2%Y31%Y32
~ET2#Y31%X31
+ET2HY3 1 %2
+ET25X3 75X 21
—ET2%Y32%X21
—ET2%X31%X2 1
+ET2#Y3)%X21
+RET2%X P 15D
~ET2%Y21%X32
+ET2Y 21%Y32
+ET2%Y21%X31
~ET2%Y721%6Y3]
~ET2%Y21%X21
+ET2%Y 714052

gk FNCORPORATION OF. EL EMENT MATRIGES INTO

COMPLETE STIFFMESS MATRIX %ok

50 JMAT2=0MAT/?
K=
PN &N 1=1,0MATZ2
nn an J=1,2
K=K+ 1

60 LNODE(K}=2%INONE(T )=2+.)

P RN T=1,JMAT

KI=LNODE(T)

nn AN d=1,JMAT

KJa=LNDNDE ()

TF{KI=KTIIRO,TOL70
T K=KJi-KI+1

RIKT KI=RIKI+KI+NSK(14.)

39

STIHODZ2Y
STIREODSN
STIFOOA)
STIF003 .
STTHOOFA
ST IR0 A
STIFNOEs
STIFO 36
STirunaf
STIFOO3R
STIrn3Q
STIFOG4D
STIFONA]
STIFUNA
STIFRO44
STIFOLO4G
STIFOD4Y
STIFOO4R
STIFOOAY
STIFOnAR
STIFOO4Y
STIFQOHO
STIFON51
STIFOOS2
STIFONSS
STIF60H"A
STIFOOLY
STIFONYA
STivonsy
STikFOOSH
STIFnDbLY
STIFOOAL
STIFOOO1
STIFOOG Y
STIFGOAZ
STIFONHA
STIFONGY
STIFODAR
STIFOOGY
STIFOOO6R
STIFNOAY
STEFOOTN
STIFOOTY
STIRONT?
STIFONTA
STIEFOOT4
STIFOOTY
STIFOD &
STIHOOTT
STIFONTR
STIFDOTY
STIFOO KO
STIFOOR]

COSTIFEDRY

STIFNDOHS
STIFOOHRA
STIFOORY
STIEFDORA
ST MM
STIFOOHRK



c
f
c

o

RD

CANT T NUF

wx5x DISPLACEMENT RUUNDARY CONNETINNG e

nn 150 i=1,.NNODE

TFEICONE(TYILFNLOY GN T 150

CALL DCODFLICONE, 14 IRCSa IRCK, JRCY S IC+IXa 1Y NRC)
IF{IRCS.NEFLYT)Y G T 110

A F=RCIIC.3)

BUTXeP)=RETX P IHALFR{ALFE{RIIY1)4+1)42.%K(IX42))
R{FXy?)==AlLF

R{IY,1)=1.

FIIX)=ALF=F{IY)+F{TIX)

Fl(1Y)=D

Kl=TX=MHAND®?

KU=TX+MRAMD=]

CJFIKL.LT.1)} KL=1

a0

1n0
110

120

130

140

150

160
170

TF(KULGT NP K =ND

NO 100 K=KL4KU |

TF(K . FOLIX.NR.KL.EDLTY) GO TN 100
IFIK.GT.IY) GO TO 9n

L=1X=K+1
R{KsL)=R(KsL)+ALFEB{K4L+1)
n‘K!L"']l:n-

GN TN 1nn

L=K=-T1%X+1 ] ,
RITXyL)=B{IXsL)+ALF*R(IY,L=1)
B{IYs.L~-13=0.

CONT INUF

NN 140 N=1,7

TFCIFIX(NILNELL) GD TO 14n
IR=IX+N-1

ML=TR~MRAMD+T

M= FR+MRAND =1

AFIMLLLT. 1) ML=1

IFI{MULGT N2 IMU=ND

NN 130 M=ME 4 MU

L=1R-M+]

IF{L.LE.Y) GO TO 120
FIM)=FIM)=B{M,L}*RCIIC,N)
H.(MFL):”-

N TN 130

L=M~TR+]
FIM)=F{M)-R{IR,L)*RCLIC,N}

CRUIR,L)=0.

CONT INUE

R{TR+1)=1.

FLIR)=HC(ICN)

CONT ENUE

CONT INLF

RETURM

WRITELAL1T70) M r

FARMAT (1THNLOX32ZHINVALID ELEMENT CODE ELEMENT ND.14)

STHP
END

CSURROUTINE SYMSNL (KKK)

COMMORZATNYS  EECIN) LEET 1IN} ER2{10),PRRETOY

COMMON  FeClaBlaFPsPRyFPRYX214¥214X31,Y31,X37,Y32,XERR,

N2 gNELFM o KFE Ly ILAW MAT 4 NR(,

40

STIEOORY
ST IO
SY1H00Y]
ST1HoDay
STIFN0GYY
ST1FNOYS
ST THOOUY
STIFOOYLG
L1 1vnavy
ST rEDNuy
ST IEOGYY
STIra)an
STIFDLM
ST1F1O2
STIFOL0NA
STIFN104
STIFDLOS
STIFDYOA
STIFODLOS
STIEDNLIS
STIFO10Y
STI+0110
STIFN111
STIHOLY?
STIFO11%
STIFn}lA
STIFED1 LS
STIFO116
STIFOL1YY
STIFO11R
STIF01)9
STIFO120
STIFN171
STIFO1 22
STIEOL23
STIFOLZ4
STIFOLZS
STIFNY A
STIFO127
STIFNLZH
STIFDLZ29
STIF] 30
STIFND13}
STIFO137
STIFNL3Y
STIFOL34
STIFND13Y
S§T1f00136
STIFOL3Y
STIFN13R
STIFOL13Y
STIF 140
STIFO141
STIFO142
STIFDY14 43
§5TIFO] 44
SYMSNN
SYmSnOnNZ
SYMSH0n3
SYHMSONOG



fe e le]

COo

10

720

an
4n
50

60

70
R0

“an

100

—
N

130

- N PN e

p BIUNN AN LRCI3N0,3 ), TARIIGT20) 4 TFIX{2?),

3 X{900) yXCHRD (45N, Y{450) ( TENDE (450) ,

& FPOYUNN) 4F(9NN),

5 JULRON) s T2{800 ), 13{RN0) JHMTYPF{RNN) 78O0}, 14 {800,

6 SEFLRON) W SETIRNN) ZEEPLANNY y EXPLIBDO) sEYP (DO} FXYP(BOO ),
¥ NNONE « MBANTY .

MM =N 2
MM=MBAND
GITO [10,60) KKK

REMDIICE MATRIX

O 50 N=14MN

NN 40 L=2 MM
C=RINGL)/BIN,T)
=N+ -1

IF{NMN-=T) 40,220,720
J=0

NN 3N K=l MM
J=d+1
RITed)=RIT4J)=CHR(N,K)
Q(NvL’=C

CONT INUE

GN TO 130

"RENDUCE VECTNR

DO RO N=1 4NN

PO 70 L=7 .MM

T=N+L-1

1IE(NN=T) 80,70,70

X (Th=X (I)=R(N,L}%X (N}
X (N)=X {N)/R(N,1)

RACK SURSTITUTION

N=MN

Na=N-1

IF(NY 100,130,100

DY 1720 K=24MM

L=N+K=1

FE{NN=L) 120,110,110

X O [NY=X (M)-R{N,K)=X (L}

n
n CONTINUE

GO TO 90
RETURN

END .
SURRNUTINE STRAIN B
COMMONZADD/  EF(I0) 4 FELOIM L FE210),PRRILIN) _
COMMON  FyCCaGT1¢F24PRyEPRX214¥214X31,Y31,X32,Y32,XERR,
NZ JMFLFM G KEL o T AW MAT GNRE,
R{YNNGAN) HC (AN )3 TAR( 1IN 420, IFIX(2),
XE900 )Y XOTRDIARN) Y (450), ICODEL450) ,
FRI9ON)F{900),
11(ROD), I12(R0N) L T3(RON) NTYPE{BON) ,Z(BONY,141800),
COSER(BO0) ,SETIHENN) G FEP(RNN) , EXPLIBN0 ) sEYPIBOD ), EXYP(A00),
NNNDF § MRARND ‘ -

41

SYssoilo
SYrsl ]
SYmsan] 2
SYmsnal 4
SYI'\S”(I i ‘4
SYMsSonis
SYymSaula
SYrisSnonl7
SYMSON 1.
SYMSOO1Y
SYMSOnza
Syrsonsl
SYHMSDNDZY
SYMSH023
SYMSNN e
S5YMSONZh
SYMHINZ2hH
SYMSOO02 T
SYMSENO 2K
SYuSOnzeg
SYmSnnAe
SYMSN03)
SYM&ON3
SYMSENG3A
SYMSO0 G4
SYymSnNisy
SYMSNN3A A
Symsnnzs{
SYMSDNIH
SYmMSOiA9
SYmSnoas
SYMS 004 ]
SYmSOO4 2
SYMS G 3
SYMANGas
SymSnngs
SYRSOD4 A
SYmSOOLY
SYMSOHO4R
SYmS0a49
SYMSNDOH{
SYMS0051
SYMSNNH 2
SYMSh A
SYMSNOYY4
STRMOMO
STRMODBNOZ
STHRMOONA
STRMONNA

STRMOO L)



e EnNe

10

NN 130 K=1,NFLFM
J1=2%T1(K)=1
d2=2%11(K)
JA=2A]2(K)=]
Ja=2%]2(K)
Jh=pu]3(K)-)
JE=22T13{K)

CALL FLEM(K)
NTY=NTYPE{K)
E=FEF(NTY)

E1=CF]1 (NTY)

F2=FE2( NTY)
CC=F1/E

PR=PRR{ NTY)
IF{TLAW.EDQLT )
TR{ILAWL.GTL1) G1=El
EPR=F/(]1.0~PR=PR) i
IFITI3(K}.EG.0) GO TO 60

G1={Tu#E /3, )01, /E2 ) HEL# (11, /E2)

Cwkdok TRIAMGULAR ELFMENT CALCHLATIONS e

A123=X21%Y3]1-X3)1%Y21

SN=A123/ARS(AL123)
EXT=(=Y32%X (1) +Y3LX(03)-Y21%X(J5))}/A123
EYT={ X32%X(J2)=X313xX(J&)+X21xX(J6))}/AL23
EXYT=(X32%X (U1 )=Y328X {2 )=X3TEX(J3)+YI 14X J4)

Ty aX21EX(U5)-Y21¥X(J6))/AL23

EXE=EXT-EXPL{K)
EYE=EYT-EYP(K)
EXYE=EXYT-EXYP (K]
SX=EPRx{FXE+PR=:FYE)

 SY=FPR¥ (FYF+PREFXE)

SXY=FE/(1.N+PRIFEXYE/2.D

SE=SORT [SX#X2-SX#SY+SY #2243 0% SX Y42 )
CRIT=ARS(SE)-SEF{K)

IFICRITYAN 40,20

EET=SF/E+FEP(K)

CALL STRSTNIEET,EFPK,SFETK ,NTY)

" NDEEP=FEPK-EFP(K)

EFEP{K)=FEFPK
SET(K)=SFTK _
EXPLIKY=NEEP/SFH{SX~SY /2. 0)+FXPL(K)
EYPIK)=DREEP/SEX(SY=SX/2.0)+EYP(K )
EXYP{K)I=3 ., 0%NEFP/SEXRSXY+FXYP (K)
ERR=E*NFFP/SFE '
ERR=ARS{FRH)

GO TO 50

FRR=D.0O

CONT INUFE

DY=Fa7 (K)/(1.0=PR:#E%2) /2, NxSN

T0P=FR7IK) /11 4D+PR) /4, 0%SN

FXPT=FEXPLI(K)

FYPT=FYP(X)

EXYPT=EXYP(K)

FP{J1)s-N1%Y32HEXPT-Q) #YI24PREFYPT402EX32%EXYPT+FP (J1)
FP(J?)= D1%X3IPuPREEXPT+O)=XI2HFYPT=N24YI2REXYPTH+FP (U2)
FPIJ3)= NIRYIIHEXPTHDL YA TaPREEYPT-022XILREXYPTHFP(J3)
FPIAA)==0F X3 HPREFEXPT=N1EXIIFYPTH+O2:AYI 1 xEXYPTHEP (34)
FP{J5)==0)RY2)HFEXPT=N1xY2 14 PREEYPT4N2X2 | REXYPTHFP(J5)
FP(JA)= OL%X21%PRUEXPTHO1HX2ISEYPT-02%Y2 xEXYPT+FP(J6)

42

STRNOOTY
STRNON 2
STERNODYA
STRNOD LA
STRNONTS
STRMNOODY 6
STRMODTY
STRMODT K
STRMOOT Y
STRNOOIZO
STRNONZ
STRNOOP?
STRANOOZ 4
STRNOO 24
STRNOO?2Y
STRNODZA
STRNOOZY
STRNOOZ R
STRNONZ Y
STRNODZD
STRNOOZ]
STRNOO3 2
STRNOO3 Y
STRN(H) 34
STRNMO3Y
STRNOO36
STRNNO3Y
STRN(OO3H
STRNOO3Y
STRNMOD4L(
STRNDOA T
STRNNOG?
STRNONA S
STRNGH 44
STRNNDO4S
STREOOAE
STRNODAT
STRNONDAG R
STRNDUAQ
STRNDOYLN
STRNO(Y]
STRMOOY 2
STRMOOY 3
STRMNO B4
STRNODSLS
STRNOD YA
STRNOOSY
STRINDOS R
STRNNOKHY
STRNNDAD
CSTRNONG]
STRNOOAHZ
CSTRNODDAS

L STRNDOKS

STRNOOGHS
STRNDOGOA
STRNONAT
STRMODAR
STRNNOGY
STRNOOYH



C

GnN T0O 110
woke RAR CALCULATIIOMG ook

60 FRT= (X215 (X {J3)-X(JY ) +Y2 1 (X J&)=X{J2)}) ) /Y3Pxu2
STRN=ARS{FFT=FXPIL (K)})
SIGN={FFT=FXPL{K))/STRN
SF=F#STRN
CRIT=SE-SFF{K)
FET=STRM+FFP(K)
IF{CRIT)IGN 90,70

70 CONT INUF
CALL STRETN(FETLFEPK,SFTK NTY)}
NEFP=FFEPK~-EFP(K)

RN FFEP{K)=FEPK
SET(K)=SFTK
EXPLIK)=FXPL{K)+SIANEDEREP
FRR=F=NEFP/SE
ERR=ARS(FRR)

GO TN 100
90 ERR=0N,0
100 CONT IMUE
C EXPT=EXPLI(K)
D]1=Fx7({K)/Y¥Y3?
FP{JY)=FP {1 )=01%X21%EXPT
FPIJ?2)=FP(J2)}-01%Y21%EXPT
FPIJ3)=FP [ J3)+01%X21%EXPT
FRP{JG)=FP{J6Y+0]2Y2)REXPT
110 TF(ERR=XERR}13N:130,120
170 XERR=FRR
KEL=K

130 CONT INDE

RETURMN
END
SUARNIITINE STRSTN{FETFFEPK,SFTK,4NTY)
COMMNNZANND/  FELI0)4FETLIN),EE2{10),PRRE(L10)
COMMON  FoCC NP1 sFZ22PRyFPRy X214 Y21, X31,Y31+X32,Y32,XERR,
1 N2 NFLFMGKEL, TLAWLJMAT ,NHE,
2 REYON L 60 RCI3N, 3, TARIINL,20),1FTX(2),
3 X{9NN) ¢ XCORD{ASH) Y {450) ICODF{450) ,
4 FP(oON}.FL9nNn},
5 TULBO0) L 12(800), 13 (80N) (NTYPF(RBON) LZ(BOD),14(800),
(] SEF(RND)ZSETIRNN) ,FEP{BON) ,EXPLIBON},EYP(BOO),EXYP{ROD]),
7 NNMONE,MBRAND
GN TOLINGB0,H0) , TLAW
10 J=5.0%FET/CC+] .0
NT2=2%NTY
NT1=NT?-1
IE()=-1N01)20.30,30N
20 FEPK=TAR{J,MT21+ (TAB(J+TNT2I=TAR(JyNT2V ) (FET-TAR(J,NTL} )}/
VETARCIHI G NTU)=TARLISNTI})
GN TN 40
30 CALL PNFWI(FEPK,FFET,E4G1,F2)
40 SEFTK=GYRFFPK*% (1 ,0/F2)
RETURN
£ SETK=FREFT /L1 4+ (ARS{FXFET /G )%xF2 )% (1. /E?)
FFPK=FET-SETK/F
RETURN
6n FC=G1/F -
IFIFFT=FCYTO, TN, RO

STRNGOT |
STREMGOT 2
STRNOOTS
STHNOO T4
STRNDOYS
STRNOD (6
STRMOOT T
STHRNDDY N
STRNONTY
STRMOO KO
STHNODH]
STEMOOB?
STRNNDORS
STRENOD AL
STRNOOHS
ST RN R&
STRNOORB S
STRNOOHH
STRNDDRY
STRNODYN
STRNOOOT
STRNOOYG?Z
STRNONY3Z
STRNOODYEG
STRMOOYS
STRNOOYA
STRNMOOOGT
ST RMOOYGH
STRNOOOY
STRNOLIOD
STRNGIOL
STRMNAOYO P
STRMO1G4
STRNOLOG
STRSNOOL
STRS0UDOZ
STRSONNE
STRSODOA

STRSODIN
STRSOO11
STRSONL?
STRS50013
STRSOO 1A
STRSOOLS
STRSNOLA
STRSOOTY
STRENOO1A
STRSOOLY
STRSONZN
STRYOG2
STRSDNZ 2
STRSNDNO2Y
STRSOO 24
STRSDNZ2Y
STRSNNDZ A



70 FEPK=0,

RO

SETK=F#EET
RETURN
EEPK=FET-FC
SFTK=61+E2*EFPK
RFTIHRN

END

172345 NUTPUT SHRROUTINFE

~ O B W e

SHRRNOUTINF NMUITPT
COMMDNZADD Y EF(10) o FELLIN)4FE2(1D),PRR(10)

CNMMON  F4CCaGl 4 R29PRFPRIXPT4Y2]14X319Y314X32,Y32,XERR,

MNZ G MELEM G REL , TILAW  MAT g MRG

X{9DN) 4 XLNRND(450) (Y (450, ICNODE(450)
FR{9ON]4F (90N},

NNMNDE  MBAND
L=0
NN 70 K=1,NELEM

C
C  #askx TRTIANGULAR ELEMENT CALCULATIONS ks

foy }

10

NTY=NTYPE(K)
F=FE(NTY)

PR= PRRINTY)
EPR=E/{1.~PR¥PR)
TIF(I3(K).FO.N) GO IO 70
CALL ELFM(K)
AlP?3=X21#Y31-X31xY21
J1=2%11(K)}-1
d2=2%11(K)
JA=2x12(K)-1
Je=2x]2(K)

CWJEE2ETAR(R) -

J6=2%]3 (K}
EXT={-Y32aX (01 +Y31X (I3 ~Y 212X (.05) )} /0123
EYT =0 X325X(U2)-X3LEX (4 )+ X21%X(J6) ) /A123
EXYT={X32%X {1 )=Y32xX(d2)=X3T15X(J3)+Y31=X(J4)
1 AX2IEX(I5)-Y21 %X (6D ) /AL23
EXE=EXT-EXPL(K}

FYF=EYT~FYPI{K)

EXYF=EXYT-FXYP(K)

. SX=FPR*(FXF+PR#EYF)

SY=FPR%(FYE+PRFXE )
SXY=F /() 0+PR)FEXYES? N
PEP=SORT( (5% (5X=SY) ) %2 +SXY%42)

PHI=. 5% ATANZ [ (=2, DESXY ), (SX=SY) )%57,29578
PH2= 5EATANZ ((=EXYT), (EXT=FYT))%57.29578

i PSI=.5%(5%X+5Y)

SIGE1=PS14+PF2 s =
SIGF?=PS1~PER T
PST1=.5%{EXTHEYT) :
PFT?=SORT{ (0% {EXT=FYT) )2k 2+EXYT*%2/4.0)
STRE1=PST1+PET?

STRE?=PST]1—-PFET?

PETZ2=2.0%PFT2?

N1=T1(K)

N2=12(K)

N3=13(K)

BLYNNL,ANY ZyBCI3AN,3 1, TARILINT 42D}, IFIX(2),

1V (RO, 12 (RDNY, TILARAN) NTYPE(RBND) ,Z{800), 14{800 ),
SEF{RON)SET(BNN),EFP{ROO)},EXPL{8ND),EYP{800),EXYP(800),
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STRSOO2 Y/
STRSDO 2
SIRSOUO2Y
STRS0O030
STRS0ODH)
S1e50042
STRS0D043
DTPLOOOY
OYPHOOG?
HTPLOO0S
NTRUOOOS
HTPUOO0Y

NTPUOOLL
nTruNN1?
NTPUOOT S
nTePHOni A
07200
nTPHO0LS
oTPUGNLY
OTru0OLH
HnTrPuUnN1O
nTPLON2H
NTPLNO 21
nypPuone2
NHTPUOOZ24
OTPUNO24
NnTPLOOZS
OYPUOD26
HTRPUOO 2T
NTPUNOZKE
NTPLO0RY
NTPUOOR0
OHTPUNO3
nTPUON32
NTRPUOORS
nTrPuUDO34
nTPUNO3s
nrTrPUONO3A
BTPUONS3TY
DTPUNN3Y
nTPUONZ3Y
HTPOOOLD
UTPUNOS 1
HTPUNONG Y
NTPLOOGS
f11ITrPUN4G4
NTPVOOSY
HTPUOOEGA
OTPUODS
OTPHON&GR
OTPONNGLY
NTPUOR0
LT PLHIONSA
ATPHONS 2

CNTPUOOSA



OO0
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XC=XCNRDINY)+(X21+X31)/3.0 HTRUODD A
YO=Y(NT)I+HIY2T14Y311/3,0 IHIRER
EPF=P %SNRT((EXPL (K )22+ FXPLIK)HEYP{K)+FYPIK) %424 EXYP (K )%%2 /4,1 /3. 0THUNOS6

1) 0 EaY
SF=SORT(SXHuD=SXHSY+SYRUZ+T (R SXY 422 ) HTrPHOOSR
L=L+1 HTPUODRY
TFIMON({L~1414))30,2N,30 ) OTPUDGAD

20 WRITF (A.460) NT RO 6]
1YT,STRF] 4STRF2,PFT? NTRHDDA S

40 FOARMAT(OHIFL. NG /BXTIHCHNRNDIMATES?PRX33HS T R E S S E S / ST R A DTPUODES
11 M S /BH PHITX1IHXBX1HYAXQH TAU-XX6EX9H TAU-YYEXYH TAU=XIITPUOOGS
PYRXTHMAXIMUMAXTHMINIMUMAXYHMAX SHEAR ) BTPIHGOGBG

60 FNRMAT(IHOIT+NPFR .3 4F9.3.1PHETS.4/1H DPF7.24F8.249%X1P6F)5.4) NTPUDOA S
WRITE(6,A0) SE.EPE . NTPHONAH

60 FORMAT (1M P3Huxdx FRFFECTIVE STRESS=E12.5,23Hx%%x%x EFFECTIVE STRAIOTPUOOGLE
1M=E172.5) NTPUOLTO

70 CNONT INUE HTPLUOGTL
) NTPUHODTZ .

C%%dks RAR CALCULATINNSG skalesexk e : NDTPIKINTS
NTPUONT4

J=n : TPHODTS

N0 120 K=1,NELEM . (FTPLIOOT A
NTY=NTYPFE (K] nipuULOTY
E=EE{ NTY) : : NTRPUNNTH
___PR=PRR( NTY) . o _ ' HTPUONOTY
J1=2%T1{K)=-1 NTPLONEO
J2=2%T11 (K} ; s OTRUODAE]
J3=2%]2(K)=1 ITPUGON2
Ja=2%12(K) DTPHDORS
TF(I3(K).NE,N) GO TN 120 NTPUOBORA

RO CALL FLEM(K) NTPUGHIHY
COEET=IX21H (X (I3 =X (JL) )Y U (X(JG)=X(J2}))/Y¥YB2%%2 OTPUDOHA
SF=Ex{EET-EXPL(K)) ONTPLHIOND AT
CSEMZK=SF®=Z(K) ] ) ) NTPUODRR
Ki=T1(K) NTPUNOHY
K2=12(K) NTPUOO QO
IF{J)100,9N,100 NTEUDY )

9N WRITE {64+130) HTPURNGY
J=1 HTPUNOGS

100 CONT INUE HTPUONOG
110 WRITFEIA 140K K1 +K24SEZFFTSEMZK NTPUHOYR
120 CONTINUE NTRPUONGA
130 FARMAT{YHORAR NI, &X10OHNANF NOS, 8XTHSTRESS AXTHSTRAIN ,4X, HTPunng
' 113HMEMRER FNRCES) - UTPUOOYR
140 FOARMAT(IHD 3IR,2E15.542X,F15,5) NnTPUOO9GY
RETURN NnTePLUO10D

END ‘ HTPUMLOE
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EXAMFLE PROPLEM NJ. 1 WIAXA0 "CAMTILEVER REAM'  LLTIMATE LuAD,

BILINFAR LAW

MATER] Al wmm oo e o i 1
— MODLLLS CF ELASTICTITY ~cmmamna 0.29€9F 05
SECANT YIFLD STRESS——mameomm «28C0E 02
SHAPE PARAMETLER-———————mwm=—a 0.0
e L PNESSIRYS RATIC—=ammmm e 0.3CCa
ERRCR TOLFRANCE—=m e €. 0380
e .. NOW CF KCDES L ANODE = 21
KO. DF FLFMENTS AELEM = 34
MC. TF STEPS NOIV = 20
e KC. CF ITERATICNS/STFE  NIT = 100
BOUNCARY CONDITICN ARRAY
NCCAL PT X ¥ SLIDING
tonE VALLE CCOF VALUE CaDE VALUE
1 1 I ) R R, 1. C.C . 0 0.0 .
2 1 6.0 1 ¢.C Q .0
3 1 ¢.0 1 0.0 v 0.0
... 4. D R P 1 c.c R 0.0
& 1 €.C 1 0.¢ 0 0.0
—NCOAL_PT__ X-(0eRD __¥=FCRCE . .. ¥=CCCRE . . Y-FORCE. . ... COpE .
1 a.c C.0 0.0 0.0 110
S SR | 1 | I . Cel 4,G000 0.0 110
3 0.0 0.0 8.00¢¢ 0.0 110
4 0.0 0.0 12.0000 .0 110
5. 0.0. eBisrnsnses wLEJCROE 4 2,0 o 11n :
[ 5.,0000 C.n 0.0 0.0 0
7 5. 0C00 C.0 4,0000 0.0 0
e e B e 25 000C 0.0 B, 0600 0.0 0
5 5.CC00 C.0 12,9900 0,0 0
10 £.0C00 C.0 16.CCCC C.u 0
11 " 10,0000 0,0 C.0 0,0 g
12 10.€0NQ €.0 4.0000 0.0 0
13 10,6600 0.0 g.coca u.0 o
o XA 0040000 C.0 12.0000 2.0 0
15 10.0¢00 C.0 16,0000 V.U 0
16 20.Cc00 0.0 c.¢ v, 0 o
ez b mersmsesre e BOAGERAE & & o =ue Bl 8,0700 0.0 0
in 20.6C00 €.0 16.000C 0.0 0
19 316.0000 G.0 0.0 U.0 0
sz e P e soe spas e GODE C.0 /.0000 v.0 0
21 3¢.0600 C.0 16,0006 =80, 0000 0
e e ELEMERT . . NCCE 1 NCCE 2 NNOE 3 ELEMENT TYPL AREA OR THICK. MATEREAL T1YPE
i 1. ¢ 0 BAR UL 32200E 01 1
2 1 & 2 PLATE UL 30TQCF 0N !
3 6 4 2 PLATE UL 3UTULE 0D 1
4 2 7 3 PLATE J. 30TUNE 0N 1



5 1 £ 3
(4] 3 E 9
7 3 g 4
A 4 S 1a
9 4 10 5
10.. § 10 . 0
11 & 1 c
12 [ 11 7
b } 5 P 11 12 1
14 7 12 13
15 7 13 8
- A6 g . 13 G
17 13 L4 9
18 9 14 15
e AS L _LE 10
20 10 15 0
i1 11 14 0

o erpeiiPiesnranes Tl s 18 12 -
23 16 17 12
24 iz i7 13

TN . (CNESSTNSPNUING, (1, | PNERROIRIED, Ly [V RRITERTITE, [ F ey

26 17 18 14
27 14 18 15
. 2815 _._ .. _.1d. 0
29 16 19 Q
30 16 19 17

21 14 20 S i
32 17 2¢ 21
33 17 21 18

34 . . CARRPOT- [, SURTPRPSNCNRE. | BRI

PLATE
PLATE

PLATE
PLATE
PLATE
BAR

BAR

PLATE
PLATEC
PLATE
PLATE
PLATE
PLATE
PLATE
PLATE
BAR

AR

PLATE |

PLATE
PLATE
PLATE
PLATE
PLATE
BAR

BAR

PLATE
PLATE
PLATE
PLATE

BAR

J.30TUOE
0. 30TU0E

Je30T00E
D.30700F
U, 30 TudGE
Va32200F
0.32200F
0.3u70CE
G 3UTUOE
U.30700F
0. 307T00F
Q. 30T00E
V. 30TUCE
U.3uiuQF
U.30TOGFE
Q.32200F
U.32200E
V. 3070CE
0.3070CE
0.3070Q0E
V. 307008
J.30TUOE
0.307TU0F
U.32200F
Ue3I2200E
0+ 30T00E
0.30700E
U.30700F
0430 TVOE
U.32200E

ng
a0
o]¢]
un
a0
DL
01
1o
03
00
na
0o
[¢Fs}
0o
no
ot
o1
04
a0
00
00
00
no
ol
D1
00

a0

oo
oa

o1

¢
:
£
i ‘ . :
! & ; :
P et e e e gt W g et e s ot Pt et Bt
i i ; : p

i
]
i
i
| i
; H
- et e gt gt

'
t
¥
-
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FOFCES AND CISPLACFMENTS FOR INCAFMEMT 19
- NODE Y~FCRCE x-CISPL. Y-0IsPL,

1 2.0 7.0 Q.0 Q.0

2 C.C 0.0 N0 0.0

- - i 0. 0.0 0.0 0.0

4 g.0 0.0 g.c U.9

5 c.C 0.0 0.0 v.0
SE——— 6. ¢ Y VI 0.0 =0.2947E-C1 =0.3395E-01
7 Q.0 0.0 =0.L416F-C1 =u.2olbE-0]
8 0.0 a.0 =0.1959F-03 —U.3000C-01
pReSSh RS R 0.0 .0 Q.1414%-C1L =J. 3585E-01
10 c.0 0.0 0.2568E-C1 ~0.3459E-C1
11 0.0 0.0 =C. 3525E-C1 =0.b0UGF=-N1
IS | | |2 1 - 0.0 ~C.tTALF-Ck ~Jd.64091F-0C1
13 0.C 0.0 ~0.3339E-03 =“U.uthsE-01
14 0.0 0.0 C.172CE-01 =0.064b9E-01
15 __. 0.0 _ 0.0 0.3584E=C1 C=0.65840-01
16 U. N 0.9 =0, 4316L-01 =U.1304E 00
17 ¢.0 0.0 =0.8716C~C3 =0.1£95F 00
RS UUUUI & : SOV ¢ L | B 0.0 L 0.4398E-GL =0.1307E CO
19 c.C 0.0 =Ce46EEF~CL =0.2400EF 00
20 0.0 0.0 0.10C2%-02 ~U.2425F 00
. WS | RPN 13+ [ ~16.000 C.40C9E-01 =V.2401L 0D

MAX. ERROR = 0.03939 IN CLEMENT NO. 9 NO. OF ITERATIUNS 100
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Example Problem

. To 1llustrate the use of the program a simple example of a cantilever beam
is worked out. The beam, a W16 x 40, is 36 inches long with a load at its
cantilevered tip.

The properties of the cross-sectlon are listed below: d = 16.0";

3

tw = 0.307; te = 0.503"; b, = 7.0"; Z = 72.8 in"; S = 64.6 in3.

f
Tor a yield stress of 36 ksi, the theoretical ultimate load can be
calculated as follows: The plastic moment of the section = Mp = Fyz. Equating

it to the externally applied load: Mp = PulL

Pu ='FY Z/L = 72.8k
Similarly, the load at first yield can be given bhy:

P_=TF_ S/L =64.6k
¥ ¥

Solution by the Finite Flement Method

To work out the example by the use of the finite element program, the
three dinensional beam is idealized into a two dimensional plane stress problem,
see Tig. AI-Ia. Having established 21 nodes in the cartisian coordinates, the
web is couwprised of 26 triangular elements of thickness 0.307 in. and the
flanges are simulated by & bar elements having a cross-sectional area of
3.22 sq. in.

The beam is fixed at the left end by specifying zero displacements in
the x and y directions for nodes 1 through 5.

The Bilinecar law was made use of with the material properties as follows:

Modulus of Elasticity = 29 x lO3 ksi
Yield Stress = 36 ksi
TPoisson's Ratio = 0.3

Plastic Modulus = (0.0
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Fig. AI-Ia, TIdealized Cantilever Beam.

Fig. AI-Ib. Yield pattern at ultimate load (76 kips).
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A total load of 80 kips was applied in 20 increments of 4 kips each.
KSTART was specified as 15 and therefore the solution started with a load
of 60 kips.

A maximum of 100 iterations per step and an error tolerance of 0.03 were
specified. At increment number 19, that is a load of 76 kips, the error in
element number 9 could not be reduced to less than 0.03 in 100 iterations
and therefore, the solution was stopped at that increment. The load of 76 kips
is considered as the ultimate load with an erroxr of 0.03 in the effective
plastic strain. A plot of the yielded elements at the ultimate load is
shown in Fig. AI-Ib. |

The choice of the maximum number of iterations per step and the ervor
tolerance is left to the individual and depends on the accuracy desired and
the computer time available. For the purpose of this project the above values

were selected based on a few trial runs.

Trial Runs

Two sets of trial runs were made. One on Beam 1 and the other on Selid
Beam 1. Table AI-ITI gives the details of these runs. The variables were,
number of nodes at which the load was applied, error tolerance and the maximum
number of iterations per step.

In the actual testiuvg of the beam the load was applied through a plate
1" x 6" x 7. To simulate this condition a three point loading was tried in
a few runs, with one half of the load applied at the center and one quarter
of the leoad at the other two points. As can be observed in the tables, the
.three point loading had no significant effect on the maximum number oflload

increments reached, the idea of 3 point loading was therefore abandoned.
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With the overall computer time available for the project as a limiting
constraint, a maximum of 100 iterations per step and an error tolerance of
0.03 gave a reasonably good prediction of the ultimate load and were selected
for the rest of the beams,

The execution time required to test a beam with the opening on the IBM

370 model 158 ranged from 7 to 9 minutes.

No. of Nodes No. of Increments  Specified Specified Maximum
Run  at which Load at which Ertrox Maximum No. Residual
¥o. is Specifisd Solution Tolerance of ITterations  Error
Stopped Per Step
Beam 1
1 1 15 0.02 20 0.0244
2 1 16 0.03 25 0.0457
3 1 17 0.03 50 0.0514
4 3 17 0.03 50 0.0528
5 1 18 0.03 100 0.1057
6 1 18 0.10 - 25 0.1640

Solid Beam 1

1 ’ 18 0.02 100 0.0708
2 3 i8 0.02 100 0.0288
3 1 18 0.03 20 0.0756
4 3 18 0.03 20 0.0323
5 1 18 0.03 1o0 0.0710
6% 1 21 0.03 100 0.0503
7 3 20 0.10 100 0.1354

* with cover plates and stiffeners at supports

Table AI-III. Trial Runs on Beam 1 and Solid Beam 1.
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APPENDIX III - NOTATIONS

cross sectional area of cover plate

effective flange area of idealized beam

modified area of flange element with cover plates
effective reinforcement areca of idealized beam

half the opening length

width of flange

overall depth of beam

thickness of cover plate

nodal force wector

vector of plastic forces corresponding to plastic strains
half the opening depth

moment of inertia of actual beam

moment of inertia of cover plates about the axis of beam
moment of inertia of equivalent idealized beam

moment of inertia of equivalent idealized beam at section with
cover plates

modified moment of inertia of beam at section with cover plates
size of load increment

stiffrness matrix

primary bending moments

secondary bending moment in the bottom section at the opening
secondary bending moment in the top section at the opening
experimental ultimate load corrected for strain hardening
ultimate load obtained from finite element analysis

theoretical ultimate load



Putrue

1?,u.s‘.olld

T
xy

true ultimate load

ultimate load of solid beam

radius of opening corners

thickness of flange

thickness of web

shear force at any section

vertical shecar force in the bottom section at the opening
vertical shear force in the top section at the opening
distance between center of opening and centerline of beam
element displacement vector

plastic angular strain

total element strain vector

effective plastic strain

total strain

plastic strain in x—d%rection

plastic strain in y-direction

element stress vector

effective stress

normal stress in x-direction

normal stress in y-direction

shear stress
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Beam Reinforcing bar
Beam Average F Maximum Average F MaxImum
(ksi) Deviation from (ksi) Deviation from
Average Fy (%) Average Fy (%)
1 43,17 3.96 ———— ——
2 42.79 2,17 39.42 2.38
5 40.80 2,82 38.28 0.29
6 40.80 2,82 30.96 0.16
7 2.82 30.96 0.16

40.80

Table 2. Static Yield Stresses.
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stiffener (in?)

Beam 1 2 5 6 7
Beam Type Wit x 45 W16 x 45 W16 % 40 W16 x 40 W16 x 40

Number of Nodes 302 302 296 341 341
Number of Elements 574 608 596 684 684
Web Thickness {in.) 0.346 0.346 0.307 0.307 0.307
Flangs Arey [in) 3.64 3.64 3.22 3.22 3.22
Modified Flange
Area for Cover —— 4,06 4.52 —— —_—
Plates (inz)
Area of
Reinforcement (in?) - 0.5 1.0 0.5 0.5
Axes of esch 3.0 3.0 3.0 3.0 3.0

Table 3.

Idealized Properties of Beams.
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Beam 1 2 5 6 & 7
Beam Type Wit x 45 Wl6 x 45 W16 x 40 W16 x 40
Number of XNodes 51 51 s1 51
Minbef G 98 102 102 102 .
iLements
Web Thickness 0.346 0.346 0.307 0.307
(in.)
Flange frea 3.64 3.64 3.22 3.22
(in%)
Modified Tlange
Area for Cover e 4.96 4,52 —
Plates (inz)
Area of each 3.0 3.0 3.0 3.0

stiffener (in?)

Table 4.

Idealized Properties of Solid Beams.



Increment Increment Increment Increment

Beam Size Number at Number at Number at
(kips) Start of First which Solution
Solution Yield Stopped

Beams with Opening

1 8 6 6 18
2 8 6 6 19
5 g 6 6 16
6 6 3 3 14
7 6 3 4 16
Solid Beams
1 8 6 13 18
2 8 [ 13 21
5 8 12 12 18
6&7 8 12 12 14

Table 5. Loading Details for Beams with Opening
and Solid Beams.



Beam 1 2 5 6 7
iiciggint (kips) 8 8 8 6 6
Put T (kips) 4 152 128 84 96

#pu" P (kips) 136 155 124 84 101
pu’ B /putFP 1.06  0.98 1,03 1.00  0.95
*pu %% (kips) 129 152 129 83 96
pul b /Py PEO 1.12  1.00 0.99 1.01  1.00
pit013 (1ipe) 144 168 144 112 112
pu’ b /puS0tid 1.00  0.90 0.89 0.75  0.86

#These values are obtained from reference 2.

Table 6. Ultimate Loads.
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Actual Structure

Discretization (a)

Discretization (b)

Figure 4. Discretization of a Deep Beam.
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KEY TO FICURES 5 THROUGH 26

Horizontal lines indicate compressive yilelding
Verticles lines indicate tensile yielding
Solid shading indicates a combination of compressive and tensile yielding

In figures showing a full view of a beam, the portion near the opening
has been omitted and is shown enlarged in the following figure.
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Figure 27. Secondary Moments.
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ABSTRACT

A finite element program was used to carry out ultimate load analyses
on five A36 steel beams with varying sizes of rectangular web openings.
Two of the beams were W16 x 45 shapes and three were W16 x 40 shapes.

In all cases the opening had an eccentricity of 2 inches and the moment
to shear ratio at the centerline of the opening was 30 inches. The
openings in all but one beam were reiniorced.

The ultimate loads hased on the [inite element analysis indicated
good agreement with those obtained experimentally and with thosc obtaincd
from an nltimzte strength analysis. 1ue yield patterns at wvaricus loads
also agree closely with those observed in the experimeﬁts. It was confirumed
that the failure at the orening ig a four hinged mechaniem as assuned in

the theory, with a plastic hinge at cach corner of the opening.



