
  

 

 

 

EFFECT OF SANITATION ON RESPONSES OF TRIBOLIUM CASTANEUM (HERBST) 

(COLEOPTERA: TENEBRIONIDAE) LIFE STAGES TO STRUCTURAL HEAT 

TREATMENTS 

 

 

by 

 

 

MONIKA BRIJWANI 

 

 

 

B.S., Dr. Y. S. P. University of Horticulture & Forestry, Solan, India, 1999 

M.S., Central Food Technological Research Institute, University of Mysore, Mysore, India, 2002 

 

 

 

A THESIS 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Department of Grain Science & Industry 

College of Agriculture 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2011 

 

Approved by: 

 

Major Professor 

Dr. Bhadriraju Subramanyam   



  

Copyright 

MONIKA BRIJWANI 

2011 

 

  



  

Abstract 

Heat treatment involves raising the ambient temperature of food-processing facilities 

such as flour mills to 50-60
o
C for killing stored-product insects. However, very little is known 

about the influence of sanitation on responses of stored-product insects to structural heat 

treatments. The impact of sanitation on responses of life stages of the red flour beetle, Tribolium 

castaneum, an economically important pest in flour mills, were investigated during three 24 h 

structural heat treatments of the Kansas State University pilot flour mill. Two sanitation levels, 

dusting of wheat flour (~0.5 g) and 2-cm deep flour (~43 g), were created in 25 plastic bioassay 

boxes each holding 50 eggs, 50 young larvae, 50 old larvae, 50 pupae, and 50 adults of T. 

castaneum in separate compartments. Five boxes were placed on each of five floors of the pilot 

mill during 13-14 May 2009, 25-26 August 2009, and 7-8 May 2010 heat treatments using 

forced air gas heaters. During the August 2009 and May 2010 heat treatments, 100 eggs or 100 

adults of T. castaneum were exposed inside each 20 cm diameter by 15 cm high PVC ring placed 

only on first and third floors and holding 0.1 (15 g), 0.2 (38 g), 1 (109 g), 3 (388 g), 6 (937 g), or 

10 (1645 g) cm deep wheat flour. Among the mill floors, first floor had lower maximum 

temperature. The first floor rests on a thick concrete foundation, did not get heated from both 

sides unlike other floors, and had poor air movement resulting in cold pockets (temperatures 

<50
o
C). Mortality of life stages was lower on first floor than other floors and adults were less 

susceptible than other life stages especially on first floor. In general, both these tests have shown 

that the mortality of T. castaneum life stages were influenced by how quickly temperatures 

reached 50
o
C, how long temperatures were held above 50

o
C, and the maximum temperature. 

Protective effects of sanitation were evident only if temperatures did not reach 50
o
C. However, 



  

removal of flour accumulations is essential to improve heat treatment effectiveness against all T. 

castaneum life stages during a 24 h treatment.  
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Chapter 1 - Insect management in flour mills using heat treatments 

 Abstract 

 Tactics to manage insect infestations in grain-processing facilities historically included 

the use of heat treatments and the fumigant methyl bromide.  The phase out of methyl bromide in 

the United States in 2005 because of its adverse effects on stratospheric ozone has generated 

renewed interest in heat treatments.  Scientific literature published during the last decade shed 

new light on the following areas: differences in susceptibility among different stored-product 

insect species to heat; identification of a heat tolerant stage of a species based on stage-specific 

susceptibility at different constant elevated temperatures; confusion on determining a heat-

tolerant stage during commercial heat treatments of grain-processing facilities; development and 

validation of a thermal death kinetic model to predict survival of insect life stages and determine 

the degree and duration of insect suppression obtained following a heat treatment intervention. It 

is well known that grain and grain products are poor conductors of heat, based on temperatures 

measured during facility heat treatments. However, data are lacking on the influence of 

sanitation on responses of stored-product insects to elevated temperatures, and this is a fruitful 

area for further research.  The research reported here is designed to address this question in a 

Kansas State University pilot flour mill subjected to three heat treatments during 2009-2010, and 

the test insect is the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), 

major pest of flour mills worldwide. 

Keywords methyl bromide alternative, heat treatment, sanitation, insect mortality   
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 Insects Associated with Flour Mills 

Flour mills are ideal habitats for supporting infestation by economically damaging stored-

product insect pests, because of year-round warm temperatures and constant availability of 

patchy food resources (Wagner and Cotton 1935, Smallman and Loschiavo 1952). Several mill 

surveys have documented the presence of stored-product insect species in moving mill stock 

(Wagner and Cotton 1935, Good 1937), static mill stock, and within and around milling 

equipment (Dyte 1965, 1966; Hosny et al. 1968, Rilett and Weigel 1956). Insect infestations 

were detected in mills that were in operation (Buchelos 1980, 1981; Salmond 1956, Salama and 

Salem 1973, Campbell and Arbogast 2004) or no longer in use (Williams 1961). In the United 

States, Good (1937) surveyed 19 flour mills in Kansas, Missouri, and Oklahoma during 1934 to 

1935 by taking 227-g (8-oz) samples monthly from 24 elevator boots and mill streams. He 

reported 30 different species from 17 of the 19 mills, representing 15 families in five orders.  

Four of the eight most abundant stored product insect species made up nearly 97.5% of the 

74,175 insects found in the samples, and these species were Tribolium spp. (84.6% of the total 

insects), the square-nosed fungus beetle, Lathridius (Laemophloeus) minutus (L.); rusty grain 

beetle, Cryptolestes ferrugineus (Stephens) (8%); and cadelle, Tenebroides mauritanicus (L.) 

(3.2%).  The lesser grain borer, Rhyzopertha dominica (F.); rice weevil, Sitophilus oryzae (L.); 

granary weevil, Sitophilus granarius (L.); and long-headed flour beetle, Latheticus oryzae ( 

Waterhouse), each of these constituted less than 2% of the total insects found. Salmond (1956) 

sampled mill stocks stored in bags, bulk, and within machines in a flour mill in the United 

Kingdom on six different occasions from August 1948 to September 1949. He found 85 species 

of insects, representing the orders Coleoptera, Lepidoptera, Diptera, and Hymenoptera.  The 
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Mediterranean flour moth, Ephestia (Anagasta) kuehniella (Zeller); broad-horned flour beetle, 

Gnatocerus cornutus (F.); and confused flour beetle, Tribolium confusum (Jacquelin du Val), 

were considered the most economically important species, because of their interference with the 

milling process and contamination of the finished products. Buchelos (1981), during October 

1978 to November 1980, monitored stored-product Coleoptera in two mills in Greece by using 

adhesive strips (75 x 5 cm) attached vertically to a wall 1 m off the floor. He reported 23 

different insect species, representing 13 different families. The five most abundant stored-

product species reported were T. confusum; S. oryzae; C. ferrugineus; the red flour beetle, 

Tribolium castaneum (Herbst); and the sawtoothed grain beetle, Oryzaephilus surinamensis (L). 

Campbell and Arbogast (2004) recently monitored stored-product insects inside and outside a 

flour mill by using both traps (commercial pitfall and sticky traps) and product samples during 

June 2001 to December 2003. They found 17 insect species, representing 12 families in 3 orders 

(Coleoptera, Hymenoptera, and Psocoptera). Captures of P. interpunctella adults in sticky traps 

and adults of the warehouse beetle, Trogoderma variabile (Ballion), were greater outside than 

inside the mill. However, captures of T. castaneum adults in pitfall traps were greater inside than 

outside the mill. They suggested movement of insects between the mill and the outside 

environment. Lack of an inbound inspection and keeping doors open are some of the factors 

contributing to re-infestation of the treated structures.       

Suggested pest management methods for flour mills involve stock rotation (Banks 1986), 

sanitation (Chowaniec 1986, Foulk 1990), aspiration, use of impact machines (Stratil and 

Wohlgemuth 1989, Watters 1991), crack and crevice treatment with residual products, and 

exclusionary tactics such as closing doors, using air curtains near entrances, and screening 
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windows. Space treatments include the use of the fumigant methyl bromide and fogging with 

several approved insecticides (Subramanyam et al. 1993).   

 Methyl Bromide Phase Out 

The United States is one of the signatories to the 1987 Montreal Protocol to phase out 

production and use of ozone-depleting substances to protect the stratospheric ozone. Protecting 

the stratospheric ozone is important for reducing the amount of UV-B radiation reaching the 

earth and for reducing the incidence of human skin cancers and cataracts (Makhijani and Gurney 

1995). According to the 1990 Clean Air Act Amendments the United States should satisfy its 

obligations under the Montreal Protocol. Methyl bromide, is controlled under the Clean Air Act 

as a Class I ozone depleting substance, and was intended for phase out by 2005 (40 CFR Part 82, 

Federal register Vol. 69, No. 246). The schedule for phase out was as follows: 1993 to 1998, 

freeze production and net imports at 1991 base levels (25,500 metric tons); 1999 to 2000, 25% 

reduction from baseline levels; 2001 to 2002, 50% reduction from baseline levels; 2003 to 2004, 

70% reduction from baseline levels; and 2005, 100% phase out, except for allowable exemptions 

such as critical use exemptions agreed to by the Montreal Protocol Parties. The United States 

Environmental Protection Agency (US-EPA) has established the critical use exemption (CUE) 

process to allow methyl bromide use for quarantine, pre-shipment, and certain industry groups, 

where technically and economically feasible alternatives are non-existent. The CUE process also 

provided adequate transition time for these groups to embrace and adopt methyl bromide 

alternative. The US-EPA has established a framework for assigning allowances for critical use of 

methyl bromide, and determining the quantities of exempted methyl bromide allowable under the 

Clean Air Act and the Montreal Protocol. In 2005, the US nominated about 536 metric tons of 
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methyl bromide for use in food- and feed-processing plants (40 CFR Part 82, Federal Register 

Vol. 69, No. 246, p. 76986), and the Montreal Protocol Parties reduced this amount to 483 metric 

tons, because of the availability of ProFume
TM

, an alternative fumigant registered in January 

2004 for use in processing facilities. Further reductions are anticipated in the amounts available 

for 2006 and beyond. The amount of methyl bromide nominated and approved by the Montreal 

Protocol Parties (United Nationals Environmental Programme Methyl Bromide Transitions 

Options Committee, UNEP MBTOC) since methyl bromide phase out has been steadily 

declining over time. For example, in 2006, 2007, 2008, and 2009, the critical use nominations for 

methyl bromide granted were 32.03, 26.61, 21.0, and 19.5% of 1991 baseline levels, 

respectively. The actual quantities nominated for food-processing facilities in 2006, 2007, 2008, 

2009, and 2010 were 529.6, 401.9, 362.9, 291.4, and 191.9 metric tons, respectively. The current 

nomination allowed in 2011 for use in the food-processing facilities is 135.3 metric tons.    

Presently, critical use exemptions are allowed for rice millers in all locations of the US 

who are members of the US Rice Millers Association, pet food manufacturing facilities within 

US who are active members of Pet Food Institute, Kraft Foods in the US, and members of the 

North American Millers’ Association, provided that the facilities being fumigated are older 

structures that cannot be properly sealed to use an alternative (ProFume
TM

), or the presence of 

sensitive electronic equipment prohibits use of an alternative (ECO2FUME
TM

, which has 

phosphine that is corrosive to copper). The US-EPA also determined that the rates required to 

kill eggs of stored-product insects is cost-prohibitive with alternatives (ProFume
TM

 ) than with 

methyl bromide. Therefore, heat appears to be a viable and cost-effective alternative to methyl 

bromide and other fumigant alternatives. The methyl bromide phase out has renewed interest in 
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the use of elevated temperatures or heat treatments, a technology that is 100 years old (Dean 

1911, Fields and White 2002). 

 The Use of Heat for Insect Management 

High temperatures were suggested as a practical means to manage insects associated with 

stored grain as early as 1762 (Monceau and Tillet 1962). Oosthuizen (1935) reviewed the early 

history of using high temperatures for stored-product insects. In France in the late 1800s, infested 

grain was exposed to high temperatures to kill insects in rooms equipped with special heating 

coils. Webster (1883) reported that larvae and pupae of S. cerealella were cooked when exposed 

to 60ºC for 9 h. Lintner (1885) reported that eggs, larvae, and pupae of T. castaneum can be 

killed when exposed to 49 to 54ºC whereas adults required 66ºC. Goodwin (1914) reported that 

13 stored-product insects in grain were killed after exposure for 1 to 2 h at 50 to 55ºC and 40 to 

50% RH.  The germination of the seeds was not affected when 50 types of grains and legumes 

were exposed for 2 h at 70ºC (de Ong 1919). These early studies did not provide enough detail to 

determine how the experiments were conducted and analyzed. It was Dean (1911) that first 

reported the use of heat for management of insects in flour mills. In a flour mill in Kansas 

subjected to a 7.5 h heat treatment from a steam heater, temperatures were measured at four 

locations on each floor, some in open areas and others in flour or in locations where flour would 

normally accumulate such as conveyer belts and spouts. The ambient mill temperature at the start 

of the heat treatment was 35.5ºC. The highest temperature recorded on the first floor was 38ºC, 

and the lowest was 34.4ºC at the bottom of an elevator boot. On the second floor a temperature 

of 37ºC was recorded at 8.89 cm in a sack of flour placed at 1.22 m above the floor, and the 

highest temperature recorded was 51ºC. On the third floor temperatures ranged from 46ºC in a 
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flour conveyer 1.83 m above the floor to 52ºC in an open area. On the fourth floor a temperature 

of 42ºC was recorded at 5.08 cm depth of flour in a conveyer belt; temperature in the open area 

was 48ºC. As temperatures increased the relative humidity in the mill dropped from 93% to 27%. 

The mill had natural infestation of T. confusum. Visual inspections showed that insects on the 

first floor were not killed while the treatment was partially effective on the other floors.  No data 

were presented on numbers of insects found. Therefore, observations on efficacy against insects 

are purely qualitative or, at best, speculative.   

A second heat treatment was conducted in the same mill three weeks after the first 

treatment, and the heat treatment lasted 24 h (Dean 1911). The starting mill temperature was 

32.2ºC. On the first floor, temperature measured in an open area was 40.5ºC and at a depth of 

10.16 cm in wheat a temperature of 35.5ºC was recorded. On the second floor the maximum 

temperature recorded was 56.4ºC and temperature at 7.62 cm in a sack of flour that was 91.4 cm 

above the floor the temperature recorded was 47.5ºC. The temperatures on the third floor ranged 

from 53.8 to 60.5ºC. On the fourth floor the temperatures ranged from 47.8 to 53.3ºC. The 

relative humidity for a majority of time was around 12%. After this treatment no live T. 

confusum were observed.   

Dean (1913) reported that several flour mills in Ohio, Nebraska, Illinois, Iowa, Indiana, 

and southern Canada have embraced heat to control insects. He reported lethal temperatures to 

be around 47.8 to 50ºC. No adverse effects were observed on floors, belts, and the mill 

machinery. Goodwin (1922) was the first to suggest using 50 to 60ºC for insect control in mills. 

He reported that insects die at low temperatures in dry air than in humid air. He suggested 

conducting a heat treatment during warmer times of the year, and recommended cleaning the 

mill prior to heat treatment, removing sacks of flour, and disassembling pieces of equipment for 
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improving heat treatment effectiveness. Additionally, sealing the building gaps, to prevent cold 

air infiltration, was suggested to retain heat. Goodwin (1922) gave four methods for determining 

heat energy requirements. Oosthuizen (1935) examined effects of high temperatures on T. 

confusum life stages at different relative humidities. At 44ºC, all 3-d-old eggs were killed in 19 h 

at 0% humidity, but complete mortality at 75% humidity took 24 h. At 46ºC at 0, 30, and 75% 

humidity complete egg mortality occurred in 150 minutes whereas at 100% it took slightly less 

than 50 min. Also, at 46ºC mature larvae did not pupate. He also found sex related differences in 

susceptibility at 44ºC and 0% RH, with virgin females being less susceptible than males. At 44 

and 46ºC he reported pupae to be more tolerant than eggs, old larvae, and adults. However, at 48 

and 50ºC adults were more tolerant than eggs, old larvae, and pupae. The oviposition rate and 

fertility were adversely affected by exposure of larvae and pupae, while adverse reproductive 

effects in adults were temporary. At approximately 41ºC effect on fertility was directly related to 

the exposure time. Oosthuizen (1935) also showed that when 150 g of flour of 10.2 cm flour 

depth was placed in a water bath at 10.2 cm depth at 51ºC, about 2.5 h were needed for the center 

of the flour to reach the water bath temperature. This suggested flour to be a heat insulator or a 

poor conductor of temperature.  

Pepper and Strand (1935) empirically measured temperatures attained at the surface and 

at various depths (2.54 to 22.86 cm) of a 0.372 m
2
 concrete block that was 25.4-cm thick. The 

surface temperature attained by the block when 1.6 kW/h heat energy was applied for 10 h was 

65.5ºC. The temperatures were inversely related to the depth of concrete. For every 1-cm depth 

of the concrete the temperature dropped by 1ºC.  They reported higher temperatures at all depths 

when fans were used to circulate the hot air than in still air. Pepper and Strand (1935) measured 

temperatures in two mills subjected to a 12 and 20 h heat treatment. They showed temperature 
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differences between the north, center, and south ends of each of the mill floors. Generally, 

temperatures were lower on the first floor and second floor compared with other floors. Pepper 

and Strand (1935) suggested an ambient mill temperature of 32.2ºC for conducting a heat 

treatment, to reduce the heat energy required. The target temperature during heat treatment was 

suggested to be around 54.4 to 60ºC. Based on heat-loss calculation, Pepper and Strand (1935) 

suggested the heat energy requirement to be 0.86 kW/h/m
3
. Current heat treatments at 

commercial facilities are done using 0.10 kW/h/m
3
. The high heat energy required in the former 

case could be due to leaks in the mill or mills made predominantly of wood. Pepper and Strand 

(1935) suggested measuring temperatures at the floor level and the use of fans to distribute heat. 

They suggested that the maximum ceiling temperature should not exceed 71.1ºC. In addition, the 

sprinkler heads installed should be able to withstand a temperature of 100ºC. Pepper and Strand 

(1935) were also the first to report on structural damage due to heat treatments such as cracks in 

wooden spouts. Like Dean (1911) they did not show any data on the efficacy of heat treatments 

on insects associated with mills. 

 Practical Heat Treatment of Flour Mills 

Heat treatment involves raising the ambient temperature of the whole or a portion of the 

facility to 50 to 60ºC and maintaining these elevated temperatures for 24 to 36 h (Imholte and 

Imholte-Tauscher 1999, Dowdy and Fields 2002, Wright et al. 2002). In facility heat treatments, 

gas, electric, or steam heaters are used to slowly heat the ambient air. The long heat treatment 

period (24 to 36 h) is necessary for heat to penetrate wall voids and equipment to kill insects 

harboring in them. Facility heat treatments are labor intensive, because grain and grain products 

within the facility should be thoroughly cleaned and products removed as they are poor 
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conductors of heat. Insects may hide in these materials and escape the heat treatment.  In the 

United States, many grain-processing companies such as General Mills, ConAgra, Cargill Inc., 

Kraft Foods, Quaker Oats (PepsiCo), New World Pasta, and Nestle Purina, among others, have 

been using heat treatments, on a limited basis, as an alternative to methyl bromide for more than 

a decade.   

During facility heat treatments, horizontal and vertical stratification of temperatures 

(Roesli et al. 2003, Mahroof et al. 2003a) results in non-uniform heating of various portion of the 

facility. Therefore, fans are used in strategic locations to minimize temperature stratification, and 

to uniformly heat facilities to ensure complete insect kill. The placement of fans is the art part of 

heat treatment, and during heat treatments, fans need to be moved to improve heat circulation 

and to eliminate cool spots (locations at <50
o
C). This can only be accomplished with temperature 

monitoring throughout the heat treatment period. 

The effectiveness of heat treatments against insects is determined by using specific life 

stages of stored-product insects in plastic vials or containers with some food (Mahroof et al. 

2003a). An indirect method involves using traps with lures or food-baits to determine insect 

population numbers, primarily of adults, before and after a heat treatment. This method would 

not only indicate the degree of suppression obtained after a heat treatment but also indicate the 

duration of effectiveness of a single heat treatment (Roesli et al. 2003).   

Mahroof et al. (2003a) exposed eggs, young larvae, old larvae, pupae, and adults of T. 

castaneum during heat treatment of Kansas State University pilot flour and feed mills. There 

were no clear cut trends of a particular life stage being heat tolerant, but a few adults and pupae 

survived the heat treatment compared with the other stages. However, in the laboratory at 

constant temperatures, Mahroof et al. (2003b) showed that the young larvae were more heat-
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tolerant than the other stages.  Boina and Subramanyam (2004) showed the old larvae of T. 

confusum to be heat-tolerant based on tests in the laboratory at constant temperatures. A thermal 

death kinetic model was developed and validated to predict survival of T. confusum old larvae 

during facility heat treatments (Boina et al. 2008). This model can be used to predict survival of 

old larvae of T. confusum based on time-dependent temperature data.  Mahroof and 

Subramanyam (2006) showed the old larvae (fifth instars) of P. interpunctella to be the heat 

tolerant stage, whereas in L. serricorne, eggs were found to be the heat-tolerant stage (Yu et al. 

2011). These two studies were also conducted at constant temperatures.  In the drug store beetle, 

Stegobium paniceum (L.), the young larvae were found to be heat-tolerant based on tests at 

constant temperatures (Hulasare et al. 2010).  

Identification of the heat tolerant stage is important, because these stages should be used 

in bioassays during facility heat treatments. Controlling the heat tolerant stage should ensure 

control all other stages; however, this assumption may not always be true. At 50 to 60ºC the 

young larvae of T. castaneum appears to be the most heat-tolerant of the species studied to date. 

Mahroof et al. (2003a) found young larvae to be susceptible during actual heat treatment of 

facilities whereas laboratory tests showed this stage to be more tolerant than eggs, old larvae, 

pupae, and adults. Similarly, Yu et al. (2011) were unable to find a heat tolerant stage of L. 

serricorne during heat treatment of a commercial facility. Such anomalous results can be a result 

of heat tolerance being influenced by heating rates (Beckett et al. 2007), and the influence of 

heating rates on stage-specific tolerance has been well studied during thermal disinfestations of 

stored grains (Beckett and Morton 2003) and not during heat treatments of structures. The impact 

of varying heating rates on heat tolerance among stages of a given insect species during heat 

treatments is a fruitful area for further research. 
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Roesli et al. (2003) used adult trapping data to indirectly determine susceptibility of 

different stored-product insect species. Following a heat treatment of a feed mill, adults of L. 

serricorne were not captured in traps; however adults of T. castaneum were captured within 2-4 

weeks. Trap capture data can indirectly indicate which of the species is more susceptible to high 

temperatures. 

Previous research has shown that flour is a poor conductor of temperature. However, 

there are no studies on the influence of sanitation or flour accumulations on efficacy of heat 

treatments against stored-product insects. Therefore, experiments were conducted in 2009 and 

2010 during three heat treatments of the Hal Ross flour mill at Kansas State University, 

Manhattan, Kansas, to evaluate the influence of sanitation on heat treatment effectiveness against 

life stages of T. castaneum—a pest that is of economic importance in flour mills.  

Specific objectives of this research were:  

1. To evaluate the efficacy of three heat treatments of the Hal Ross flour mill at Kansas 

State University and two simulated sanitation levels against eggs, young larvae, old larvae, 

pupae, and adults of T. castaneum. 

2. To evaluate the influence of two heat treatments and six flour depths on mortality of 

eggs and adults of T. castaneum on two mills floors. 

3. To determine the economics of three heat treatments of the Hal Ross flour mill. 
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Chapter 2 - Influence of sanitation on temperatures attained and 

mortality of Tribolium castaneum life stages in a pilot flour mill 

subjected to heat treatments 

 Abstract 

The influence of sanitation on responses of life stages of the red flour beetle, Tribolium 

castaneum (Herbst) (Coleoptera: Tenebrionidae), was investigated in a pilot flour mill subjected 

to three, 24-h heat treatments using forced-air gas heaters fueled by propane. Two sanitation 

levels, dusting of wheat flour and 2-cm deep flour, were created in 25 plastic bioassay boxes, 

each holding eggs, young larvae, old larvae, pupae, and adults of T. castaneum plus two 

temperature sensors. Data loggers (48) were placed on the five mill floors to record air 

temperatures. The time required to reach 50ºC, time above 50ºC, and the maximum temperature 

among mill floors and in bioassay boxes were measured. The maximum temperature in bioassay 

boxes and in the mill was lower on the first floor than on other floors. This trend was apparent in 

time required to reach 50ºC and time above 50ºC, especially in compartments with 2-cm deep 

flour. The mean ± SE mortality of T. castaneum life stages on the first floor was 55.5 ± 12.9 to 

98.6 ± 0.8%; it was 93.2 ± 6.7 to 100 ± 0.0% on other floors. Adults were the least susceptible 

stage. Mortality of T. castaneum stages in compartments with 2-cm deep flour was generally 

lower than those with flour dust. Costs for the three heat treatments ranged from US $ 25,605 to 

38,005. An effective heat treatment can be conducted within 24 h, provided the mill is sanitary 

and temperatures reach 50
o
C and are held above 50

o
C for several hours.   

Keywords  heat treatment, temperatures, sanitation, insect mortality, economics  
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 Introduction 

 The use of high temperatures or heat treatments for disinfesting food-processing facilities 

such as flour mills is not a new concept.  In the United States, the practical use of high 

temperatures, generated from steam, to control flour-mill insects was demonstrated by Dean 

(1911) and Goodwin (1912). Dean (1913) mentioned that heat treatments were embraced by 

several mills in Ohio, Illinois, Nebraska, Iowa, Indiana, and southern Canada as an effective 

alternative to fumigation with hydrogen cyanide, but did not provide details of temperatures 

attained, heat treatment duration, and efficacy against insects.  In this anecdotal report (Dean 

1913) it was assumed that mill insects were incapable of withstanding temperatures of 48.9 to 

50ºC for any length of time.  These observations have been empirically validated recently by 

several researchers (Wright et al. 2002, Dowdy and Fields 2002, Mahroof et al. 2003a, b; Roesli 

et al. 2003, Boina and Subramanyam 2004), who reported the temperatures for effective 

disinfestations to be in the range of 50 to 60ºC.  Dean (1911) reported higher temperatures 

among mill floors, and greater efficacy against insects solely based on visual observations, when 

the heat treatment lasted 24 h as opposed to 7.5 h.  For example, except for the first floor, 

temperatures on second, third, and fourth floors ranged from 47.5 to 60ºC during a 24-h 

treatment, but on these same three floors temperatures of 37 to 52ºC were observed during a 7.5- 

h treatment.  Dean (1911), during a 24-h heat treatment, and Goodwin (1912) during a 19.5-h 

heat treatment, of separate mills observed temperatures to be consistently lower on the first floor 

when compared with floors above it.  Both authors observed temperatures to be lower in grain 

and flour accumulations than in open areas of the mill.   



20 

 

 

The earlier work on flour mill heat treatments focused on temperature profiles observed 

within mills with anecdotal observations on insects.  It was unclear whether fans were used to 

distribute heat within the mill.  Pepper and Strand (1935) reported greater temperature 

penetration into a concrete block when fans were used to circulate heat than in still air, 

suggesting air movement to be an important factor in enhancing heat distribution.  They 

recommended the use of fans during mill heat treatments.   

Mahroof et al. (2003a), in an unreplicated trial, used eggs, young larvae, old larvae, 

pupae, and adults of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: 

Tenebrionidae)—a major pest of flour mills (Good 1937, Hagstrum and Subramanyam 2009)—

confined in plastic boxes (4.5 cm long, 4.5 cm wide, and 1.5 cm high) during heat treatments of 

pilot flour and feed mills at Kansas State University, Manhattan, KS.  In the feed mill, mortality 

of old larvae and pupae at the end of the heat treatment ranged from 30 to 50% only at two of the 

10 locations.  In 9 out of the 10 locations in the flour mill mortality of pupae was 78 to 95%, 

while that of other stages was 97 to 100%.  No consistent trends were observed among life stages 

in their susceptibility to heat, despite temperatures being ≥50ºC in a majority of the locations. 

However, under laboratory conditions at constant temperatures ranging from 42 to 60ºC, 

Mahroof et al. (2003b) found the young larvae of T. castaneum to be more heat tolerant than the 

other stages. Therefore, there is a need to confirm stage-specific susceptibility of T. castaneum 

life stages during practical flour mill heat treatments.   

None of the studies to date examined how temperatures attained on different mill floors 

influenced efficacy against mill insects.  This is particularly important since the floor in contact 

with the ground or foundation is not heated on both sides like the floors above it.  Roesli et al. 

(2003), through monitoring of specific stored-product insects in pheromone traps before and 
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after a feed mill heat treatment, observed captures of adults of T. castaneum within two to four 

weeks after a heat treatment on the first floor than floors above it.  This could be due to 

temperatures not reaching 50°C allowing insects to survive a heat treatment, immigration of 

insects into the mill through open entrances and windows, and/or insects being brought in on 

infested raw materials (Dean 1911, Roesli et al. 1993).  

Unsanitary conditions due to accumulations of flour within equipment and on the floor 

are common during continuous operation of flour mills.  Dean (1911), Goodwin (1912), and 

Pepper and Strand (1935) have shown that flour accumulations are slow to heat up  due to the 

fact that flour is a poor conductor of heat. The influence of sanitation or depth of flour on 

efficacy of heat treatments against life stages of stored-product insects in general, and T. 

castaneum in particular, is unknown.   

In the replicated trials reported here, temperatures attained on different mill floors and 

influence of sanitation (depth of flour) on susceptibility of eggs, young larvae, old larvae, pupae, 

and adults of T. castaneum were investigated during three heat treatments of a pilot flour mill. 

 Materials and Methods 

 Insect Cultures  

Cultures of T. castaneum were reared on a diet of wheat flour with 5% (by wt) brewer’s 

yeast. Each 0.94-L glass mason jar with 200 g of the insect diet was seeded with 100 T. 

castaneum adults. After infestation jars were closed with filter paper lids. To obtain eggs and 

young larvae, 50 unsexed T. castaneum adults of mixed ages were introduced into 150- ml 

plastic containers holding 30 g of flour that was sifted through a 250-µm opening sieve 

(Seedburo Equipment Company, Chicago, IL). These containers were incubated at 28
o
C and 
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65% RH. After 2 d, the adults were removed from the jars using an 841-µm opening sieve. The 

flour was sifted using a 250-µm sieve to retain the eggs. To obtain young larvae (first instars), 

infested containers were sifted after 6 d using a 250-µm sieve. Old larvae (sixth to seventh 

instars), pupae, and mixed age adults were separated using an 841-µm sieve directly from culture 

jars.  

 Insect Bioassay Box 

 Individual stages of T. castaneum were exposed to heat treatment in a rectangular clear 

plastic box that was 27 cm long, 17.5 cm wide, and 4.2 cm high with 12 compartments 

(Subramanyam 2010). Each compartment measured 8.3-cm long, 4.2-cm wide, and 3.7-cm deep. 

Two sanitation levels were simulated within the bioassay box. In the top row of compartments 

within a box, the 2-cm deep flour (43 g/compartment) simulated ―poor sanitation‖, and the 

bottom row of compartments with dusting of flour (~0.5 g/compartment) simulated ―good 

sanitation‖.  All flour used in the bioassay boxes was first sifted through a 250-µm sieve. Only 

10 of the 12 compartments were used for confining various insect life stages. In each 

compartment, 50 individuals of a life stage were introduced.  In the remaining two 

compartments, temperature sensors were placed (see below). The bioassay box and individual 

compartments had 1-cm diameter perforations that were covered by wire mesh screens with 177-

µm openings. Lids of each compartment also were covered with this mesh.  Perforations were 

made to facilitate heat distribution within bioassay box compartments. 

 Pilot Flour Mill 

 The Hal Ross flour mill, affiliated with the Department of Grain Science and Industry, 

Kansas State University, is a pilot scale mill that opened in October 2006. The mill has five 
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floors occupying a total volume of 9,628 m
3
. The foundation, floors, and walls are made of 

poured concrete with steel reinforcements. The 101.6-cm thick foundation has 1,486.2-metric 

tons of poured concrete with 59.9-metric tons of reinforced steel. All the exterior walls and the 

roof are insulated with 7.62-cm styrofoam insulation. There are two stairways made of 

galvanized steel; the one on the west side leads from the first floor to the roof while one on the 

east side leads from the first floor to the fifth floor. There is a 1,361-kg freight or personnel 

elevator. The first floor has a control room, manager’s office, maintenance office, meeting room, 

and restrooms in addition to the flour processing area. The dimensions of each floor are 15.3 m 

long and 27.5 m wide. Each floor has an extension on the north side that is 7.1- m long and 7.6-

m wide. The ceiling heights of the first, second, third, fourth and fifth floors are 3.7, 4.4, 4.1, 4.1 

and 4.7 m, respectively.  A 20.3-cm thick concrete between floors separates second through fifth 

floors. The weight of the milling equipment, predominantly made of steel, among the five mill 

floors is approximately 123-metric tons. The maximum daily flour mill production capacity is 

18.2- metric tons or 400 hundred weight (cwt). 

Five insect boxes were placed at various locations on each of the five floors in the flour 

mill (Table 2.1). Out of the 25 bioassay boxes, 13 were placed inside pieces of equipment and 12 

were on the floor.  The bioassay boxes that were not exposed to heat (control treatment), were 

infested similarly with all the life stages of T. castaneum, and were placed in a laboratory growth 

chamber at 28ºC and 65% RH.  

 Temperatures Monitoring of Mill Floors and in Bioassay Boxes  

To record floor-level temperatures during heat treatment, 48 HOBO® data loggers (Onset 

Computer Corporation, Bourne, MA) were programmed to acquire data every minute. The first 
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floor had 8 data loggers and the second through fifth floors each had 10 data loggers.  On each 

floor these data loggers were placed in a grid fashion. Humidity levels during heat treatment 

were not recorded, because previous research has shown that during heat treatments, humidity 

levels are ≤25% (Mahroof et al. 2003a, Roesli et al. 2003).  Data on the minimum and maximum 

outdoor temperature and humidity during each heat treatment were obtained online from a 

weather station in Northview, Manhattan, KS (http://www.wunderground.com), which is 1.8 

miles from the pilot flour mill. 

Temperature in each of 25 bioassay boxes placed within the mill was measured by 

SmartButton sensors (ACR Systems, Inc., Surrey, Canada). Two sensors were placed in each 

bioassay box to record temperatures every two minutes during the heat treatment. One sensor 

was placed in a compartment with flour dust and the other was placed in compartment with 2-cm 

deep flour, and both compartments did not have any insects. In the compartment with flour dust 

the sensor was visible and in the 2-cm deep flour the sensor was placed at a depth of 1 cm.   

 Heat Treatment 

 The Hal Ross flour mill was subjected to three heat treatments, each lasting 24 h, 

during13-14 May 2009, 25-26 August 2009, and 7-8 May 2010, using forced-air gas heaters.  All 

treatments were performed by a commercial heat treatment service provider (Temp-Air, Inc., 

Burnsville, MN). The mill vents were not sealed for heat treatments. Three direct-fired, forced-

air gas heaters from Temp-Air were used to heat the facility. Two heaters (THP-4500), with a 

maximum heating capacity of 1318.8 kW/h (4.5 million BTU/h), and one heater (THP-1400) 

with a maximum heating capacity of 410.3 kW/h (1.4 million BTU/h), were used for each heat 

treatment. The power requirement for THP-4500 heater was 460 V, 60 Hz, 30 Amp and 3 Phase, 

http://www.wunderground.com/
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whereas that for THP-1400 heater was 460 V, 60 Hz, 10 Amp and 3 Phase. The maximum 

discharge temperature at the outlet of the heaters was 93.3ºC with a minimum discharge 

temperature of 60ºC towards the end of the heat treatment. All gas heaters were fueled by two 

3,785-L propane tanks filled to 80% of the total capacity. Liquid propane from each tank passed 

through a vaporizer before it was utilized by the heaters. The THP-4500 and THP-1400 heaters 

can utilize 183.9 and 57.1 L/h of propane, respectively. The airflow rate for THP-4500 and THP-

1400 heaters was 708 m
3
/min and 212.4 m

3
/min, respectively.  The heaters were located outside 

the mill because of an open flame. The heaters when ignited heat the cold air outside and force it 

into the mill via a network of polyurethane fabric ducts. The THP-4500 heater was connected to 

91.4-cm diameter ducts and the THP-1400 heater to 60.9-cm diameter ducts. These ducts were 

placed from first to fifth floors and along both the stairways. The ducts had 15.3-cm diameter 

openings at regular intervals to serve as hot air outlets. There were a total of six air exchanges an 

hour during each heat treatment.  

Eight fans (Temp-Air, Burnsville, MN), with a fan blade diameter of 91.4 cm, were 

placed on each of the five floors for heat distribution.  Each fan had an airflow rate of 311.5 

m
3
/min.  The fan power requirements were 115V, 60 Hz, 8 Amps, and 1 Phase. Power load 

centers with a power capacity of 460V, 60 Hz, 60 Amps, 3 Phase were used to plug in the fans. 

A total of 24 fans were plugged into each load center.  The fan locations were changed as the 

heat treatment progressed to ensure uniform heat distribution by eliminating cool spots (locations 

where temperatures were <50
o
C).   
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 Insect Mortality Assessment  

  After 24 h of heat treatment, all bioassay boxes from the mill were brought to the 

laboratory and incubated at 28ºC and 65% RH. The number of live and dead adults was 

determined 24 h after collecting all bioassay boxes, and the mortality was expressed as a 

percentage based on the number dead adults divided by the total number of insects exposed (50). 

Immature stages were transferred into 150-ml plastic containers and reared to the adult stage.  

Percentage mortality of immature stages was calculated based on number of individuals that did 

not emerge as adults divided by the total number of individuals exposed.  Mortality of T. 

castaneum life stages in bioassay boxes for the control treatment was determined similarly. 

 Heat Treatment Costs 

 An economic analysis of the heat treatment was based on the actual fixed and variable 

costs incurred from billing records.  The fixed costs for each heat treatment comprised of the 

forklift rental, generator rental, diesel usage charges for the generator used to power the heaters, 

fan rental charges, cost of the fabric ducts, transportation costs for delivering heating equipment 

to the flour mill, and charges for four service technicians estimated at US $1,000/d for 3 d, which 

included set up prior to heat treatment, monitoring the heat treatment, tear down at the end of 

heat treatment, and the travel time.  The variable costs included a nominal consulting fee for the 

Temp-Air’s supervisor, and quantity of the actual fuel consumed for each heat treatment and 

current market price for the fuel.  

  Data Analysis 

  The time-dependent temperature data of each of the 48 HOBO® data loggers for each of 

the heat treatments was downloaded to a computer.  From these data, the starting ambient 
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temperature, time in hours required to reach 50
o
C from the starting ambient temperature, number 

of hours temperatures were maintained above 50
o
C, and the maximum temperature attained 

during the 24 h heat treatment were determined. These values were averaged by floor across all 

three heat treatments. Differences among floors in the time required to reach 50
o
C, time above 

50
o
C, or the maximum temperature were determined by one-way analysis of variance (ANOVA) 

and Fisher’s protected least significant difference (LSD) test using the GLM procedure (SAS 

Institute 2002). 

The starting temperature, time to 50
o
C, time above 50

o
C, and maximum temperature 

were also excerpted from the time-dependent temperature data within the bioassay boxes for 

each location and sanitation level for each heat treatment.  The starting temperature, time to 

50
o
C, time above 50

o
C, and the maximum temperature by floor and sanitation level, across all 

three heat treatments, for boxes placed within equipment and those placed on the mill floor were 

compared using two-sample t-tests (SAS Institute 2002).  The mean ± SE for time to 50
o
C, time 

above 50
o
C, and the maximum temperature across all three heat treatments by floor and 

sanitation level, irrespective of location, were plotted by floor and sanitation level.   

The mortality of T. castaneum life stages was corrected for mortality in corresponding 

control treatments (Abbott 1925). The mean ± SE corrected mortality data for eggs, young 

larvae, old larvae, pupae, and adults were calculated by floor and sanitation level.  These data 

were subjected to the GLIMMIX procedure (SAS Institute 2002) to determine differences among 

the fixed effects (life stage, flour depth, time to 50ºC, time above 50ºC, and maximum 

temperature) and an interaction effect (life stage and flour depth).  Box within a treatment was 

the random effect for this analysis. Mortality differences between the two sanitation levels for 
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the stage x flour depth was sliced by stage using the GLIMMIX procedure.  All statistical 

differences were considered significant at the α = 0.05 level.   

 Results 

  Temperature Data Outdoors and Among Mill Floors 

 The minimum and maximum temperature and humidity during the 13-14 May 2009 

treatment ranged from 10.2 to 27.5
o
C and 32 to 87%, respectively.  During the 25-26 August 

2009 treatment, temperatures ranged from 21 to 34.2
o
C and the humidity from 46 to 89%.  

Temperatures during the 7-8 May 2010 treatment ranged from 5.1 to 20.8
o
C and the humidity 

from 28 to 76%.  Despite variations in outdoor temperatures, mean ± SE ambient temperature 

among mill floors based on HOBO® data loggers at the floor level was essentially similar (F = 

0.34; df = 4, 138; P = 0.8501) and ranged from 27.2 ± 1.2 to 29.l ± 2.3.  The time to 50
o
C among 

the mill floors varied by 3.5 h, but these differences were not significant (F = 2.03; df = 4, 138; P 

= 0.0937) (Table 2.2).  Temperatures among mill floors were held above 50
o
C for 10.1 ± 1.4 to 

13.6 ± 1.0 h, and these minor differences were not statistically significant (F = 2.09; df = 4, 138; 

P = 0.0849).  The first floor attained lowest maximum temperature (53.6 ± 2.7) and the third 

floor attained the highest temperatures (59.3 ± 0.6), and differences among floors were not 

significant (F = 1.69; df = 4, 138; P = 0.1565).   

 Temperature Data from Bioassay Boxes 

 The starting temperature, time to 50
o
C, time above 50

o
C, and the maximum temperature 

data in compartments with dusting of flour for bioassay boxes within equipment were not 

significantly different (df = 13) from data in bioassay boxes placed at floor level on the first (t, 

range among variables = -1.55 to -0.25; P ≥ 0.1440), second (t = -0.98 to 1.27; P ≥ 0.2276), 



29 

 

 

fourth (t = -1.69 to -0.21; P ≥ 0.1140), and fifth (t = -0.64 to 0.84; P ≥ 0.4168) floor.  On the 

third floor, 50
o
C was attained in the compartments with dusting of flour in bioassay boxes within 

equipment in a mean ± SE (n = 9) time of 8.8 ± 0.6 h whereas those in boxes at the floor level (n 

= 6) reached 50
o
C in 11.9 ± 1.2 h.  This time difference was significant (t = -2.53; df = 13; P = 

0.0252).  Consequently, temperatures in these compartments within equipment were held above 

50
o
C for 15.0 ± 0.6 h compared to 11.9 ± 1.2 h for those at floor level (t = 2.57; df = 13; P = 

0.0234).  Both the starting temperature and the maximum temperature did not differ from one 

another in compartments with dusting of flour inside and outside the equipment (t, range 

between variables = -0.24 to 1.60; df = 13; P > 0.1325).  In compartments with 2-cm deep flour 

in bioassay boxes placed within and outside equipment, the starting temperature, time to 50
o
C, 

time above 50
o
C, and the maximum temperature were not significantly different (df = 13) on the 

first (t, range among variables = -1.65 to -1.08; P ≥ 0.1206),  second (t = -1.26 to 1.36; P ≥ 

0.1963),  third (t = -1.52 to 1.57; P ≥ 0.1415), fourth (t = -1.62 to 0.18; P ≥ 0.1286), and fifth (t = 

-0.60 to 1.70; P ≥ 0.1138) floor.  These results suggested that, with the exception of the third 

floor mentioned above, temperature variables measured in compartments with dusting of flour or 

2-cm deep flour within and outside equipment were essentially similar.  Therefore, further data 

analyses were conducted using information from all bioassay boxes without reference to their 

position within or outside equipment. 

The mean ± SE (n = 15, except for 2-cm deep flour treatment on the first floor where n = 

14), starting temperatures observed among mill floors in compartments with dusting of flour 

ranged from 24.7 ± 1.3
o
C (first floor) to 25.9 ± 0.6

o
C (third floor), and in compartments with 2-

cm deep flour the temperatures ranged from 23.5 ± 0.9
o
C (first floor) to 25.3 ± 0.5

o
C (third 

floor).   The time to 50
o
C, time above 50

o
C, and the maximum temperature in compartments 
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with dusting of flour and 2-cm deep flour are shown in Figure 2.1. On the first floor, the time to 

reach 50
o
C was longest in compartments with dusting of flour (mean ± SE, 15.5 ± 1.7 h), 

whereas it was longest in compartments with 2-cm deep flour on the fourth (16.2 ± 1.4 h), 

followed by those in the first floor (15.7 ± 2.1 h).  In general, compartments with 2-cm deep 

flour took 2 to 5 h longer to reach 50
o
C than those with dusting of flour. Also, there were 

differences among floors in the time required to reach 50
o
C, and this effect was not consistent 

between the two sanitation levels.  In several locations on each floor, and at the two sanitation 

levels, temperatures did not reach 50
o
C.  For example, in two compartments with dusting of flour 

on the first floor and two compartments on the fifth floor, temperatures failed to reach 50
o
C.  

Similarly, in compartments with 2-cm deep flour, on the first, fourth, and fifth floors six, one, 

and three locations failed to reach 50
o
C, respectively.   

Generally, temperatures were held above 50
o
C for 0.3 to 3.5 h longer in compartments 

with dusting of flour than those with 2-cm deep flour, and temperatures were held above 50
o
C 

only for ≤6.6 h on the first floor compared to 7.1 to 13.7 h in second through fifth floors.  The 

maximum temperatures attained ranged from 53.9 ± 1.7
o
C to 60.0 ± 0.7

o
C between the sanitation 

levels and among mill floors. In compartments with 2-cm deep flour, temperatures were 0.5 to 

2.0
o
C lower than those with dusting of flour.  Irrespective of the sanitation level, the maximum 

temperatures attained were lower in compartments on the first floor by 1.0 to 5.6
o
C compared 

with those on second through fifth floors.  
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 Mortality of T. castaneum Life Stages in Unexposed and Heat-Exposed Bioassay 

Boxes 

The mean ± SE mortality of old larvae, pupae, and adults in bioassay boxes that were not 

exposed to the heat treatment (control treatment) was ≤1.7%, but that of eggs and young larvae 

ranged from 12.0 ± 3.5 to 48.0 ± 6.1% (Table 2.3).  Eggs and young larvae in compartments with 

dusting of flour had higher mortality than those in 2-cm deep flour.  

The mean ± SE mortality of each T. castaneum life stage at the two sanitation levels 

ranged from 55.5 ± 12.9 to 98.6 ± 0.8% on the first floor (Table 2.4).  On the first floor, the 

mortality for each stage was lower in compartments with 2-cm deep flour than in compartments 

with dusting of flour, and the greatest magnitude of difference between the sanitation levels was 

observed only for adults.  On second through fifth floors, except in two cases, the mortality of all 

life stages at the two sanitation levels ranged from 98.4 ± 1.6 to 100.0 ± 0.0%.  The two 

exceptions were on the fourth floor where the mortality of old larvae and adults in 2-cm deep 

flour was 93.2 ± 6.7% and 95.6 ± 4.4%, respectively.  The mortality of different stages on 

second through fifth floors was 98 to 100%, so it was statistically impractical to compare floors 

or sanitation levels.  Therefore, only data from the first floor, where mortality of the different 

stages varied from 55 to 98%, was used to examine influence of sanitation on mortality of T. 

castaneum life stages. 

On the first floor, mortality differences among T. castaneum life stages were not 

significant (F = 2.20; df = 4; 63; P = 0.0796), but the mortality of the life stages between the two 

sanitation levels was significantly different (F = 5.86; df = 1, 63; P = 0.0184).  The life stage and 

sanitation level interaction was not significant, however (F = 1.97; df = 4, 63; P = 0.1101).  
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Therefore, differences between the two sanitation levels for each life stage were analyzed 

further. The mortality of eggs, young larvae, old larvae, and pupae on the first floor was not 

significantly different between the sanitation levels (F, range among stages = 0.34 – 1.72; df = 1, 

63 for each stage; P, range = 0.1944 – 0.5048).   Only the adult mortality was significantly 

higher in compartments with dusting of flour when compared with mortality in compartments 

with 2-cm deep flour (F = 10.66; df = 1, 63; P = 0.0018).  

On the first floor, the mortality of T. castaneum life stages at the two sanitation levels 

was not influenced by the number of hours required to reach 50
o
C (

2
 = 0.39; df = 1; P = 

0.5326), or number of hours temperatures were held above 50
o
C (

2
 = 0.02; df = 1; P = 0.8970), 

but were influenced significantly by the maximum temperatures attained (
2
 = 16.27; df = 1; P < 

0.0001).   

 Economic Analysis 

The propane consumed for heat treatments was lower during the August 2009 treatment 

compared to the May 2009 and May 2010 treatments (Table 2.5), because temperatures were 

warmer in August relative to May.  The propane cost was six cents higher in May, and the fuel 

costs for the heat treatments ranged from $1,871 to $2,397.  The labor charge of $480 for each 

heat treatment includes delivery, pickup and emptying the tank by a local company.  The mileage 

charge of $72 was also applied for delivery and pickup of the propane tank for each treatment.  

All other fixed charges for each heat treatment were for Temp-Air and included the following: 

forklift rental ($1,193), generator rental ($1,244), diesel for the generator ($532), transportation 

costs for delivering and picking-up the heaters ($1,725), and fan rental ($5,275). The $11,000 for 

the customized fabric ducts was a one-time cost, and this was included for the very first heat 
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treatment.  The same ducts were used for the next two treatments, and hence, the treatments costs 

for August 2009 and May 2010 were less.  The $12,000 for service personnel per heat treatment 

was for 4 technicians at the rate of $1,000/d for 3 d, and included travel, lodging, and time spent 

on site during heat treatments (12 h/shift).   The supervisor from Temp-Air was compensated for 

time spent in setting-up and monitoring the heat treatment, and these charges varied by heat 

treatment and ranged from $687 to $2,613 per treatment.  The supervisor decided to charge us 

only for a portion of his time during the last heat treatment.   The actual costs incurred by Kansas 

State University for the heat treatments ranged from $25,605 to 38,005, or $2.66 to $3.95/m
3
 

interior building space. 

Given that 7.12 kW/h of energy is produced from a liter of propane, the total energy 

required for the 24 h heat treatment of the mill during May 2009, August 2009, and May 2010 

was 37,750, 34,787, and 39,182 kW/h or 0.16, 0.15, and 0.17 kW/h/m
3
, respectively. 

 Discussion 

The mill has its own boiler which allowed the ambient mill temperatures among the five 

floors to be maintained between 27 and 29
o
C at the beginning of each heat treatment.  Therefore, 

temperature fluctuations outdoors only affected the amount of heat energy needed, and 

consequently the amount of propane consumed, during the three heat treatments.  The ambient 

mill temperatures at the beginning of the heat treatment were essentially similar. Also, the time 

to 50
o
C, time above 50

o
C, and the maximum temperature were not significantly different among 

the mill floors suggesting that the heat was uniformly distributed across all mill floors.  This was 

accomplished by proper placement of the fabric ducts and strategic positioning of fans.   

Additionally, air movement was facilitated by opening the hatch door to the roof and louvers in 
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the mill’s ventilation shafts.  Vertical and horizontal stratification of temperatures among mill 

floors is imminent during heat treatments based on observations from past studies (Mahroof et al. 

2003a, Roesli et al. 2003), and this study. The time to 50
o
C observed in our study was 

comparable to that reported by Mahroof et al. (2003a) during a 35-h heat treatment of a feed mill 

(6-19 h), but lower than that reported by Roesli et al. (2003) during a 37-h heat treatment of a 

feed mill (2-8 h). 

Although there were no significant differences, minor differences were observed in 

temperatures among the mills floors, especially with respect to the maximum temperature 

attained, which was lower on the first floor when compared with other floors. The reason for this 

may be that the first floor rests on a foundation made up of 1,486.2-metric tons of concrete, and 

unlike the second through fifth floors, is not heated from both sides (top and bottom). A linear 

regression analysis of Pepper and Strand’s (1935) data on heating of a 0.372 m
2
 concrete block 

of 25.4 cm thickness using 1.57 kW/h of heat for 10 hours, showed an inverse relationship 

between depth of the concrete and temperatures attained (r
2
 = 0.978).  Temperature at the surface 

of the concrete was 66
o
C and at a depth of 22.86 cm below the surface it was 40

o
C.  The mean ± 

SE y-intercept of the regression was 62.98 ± 0.48; the slope of -1.03 ± 0.43, indicated for every 

1-cm depth of concrete below the surface the temperature dropped by ~1
o
C.   

Another plausible reason is that the low maximum temperature observed could be due to 

loss of heat to unheated rooms on the first floor (office rooms and the mill control room).  Dean 

(1911) during a 7.5-h heat treatment of the flour mill observed that the temperature attained in an 

elevator boot on the first floor (34ºC) was lower than temperatures attained at 1.83-m above the 

second (51
o
C), third (52

o
C), and fourth (48

o
C) floors. During a 24-h heat treatment of the same 

flour mill, Dean (1911) reported temperatures of 36 to 40
o
C at 1.83-m above the first floor; 
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temperatures at the same height above the second, third, and fourth mill floors were 57, 54-60, 

and 53
o
C, respectively.  Goodwin (1912), during a 19.5-h heat treatment of a flour mill, 

measured temperatures in four to five different locations on each of three floors, including deep 

within flour.  Irrespective of the locations measured, the average temperature attained at the end 

of the heat treatment on the first, second, and third floor was 48, 56, and 58
o
C, respectively. The 

wide variation in temperatures observed among mill floors reported by Dean (1911) and 

Goodwin (1912) were not observed in our study, because fans were not used by these authors.  

Fans aid in uniform heat distribution as observed in this study, and as previously noted by Pepper 

and Strand (1935) in their laboratory study.    

The uniform heating of mill floors perhaps resulted in a more uniform heating observed 

in compartments with dusting of flour or 2-cm deep flour in four of the five floors, where lack of 

differences in temperature variables were observed in bioassay boxes placed within and outside 

equipment.  The temperatures observed in bioassay boxes cannot be directly compared with mill 

floor level temperatures, because bioassay boxes, especially those within pieces of equipment, 

were above the floor level and generally temperatures above the floor tend to be higher than 

those observed at the floor level (Dean 1911, Goodwin 1912).   

Sanitation had an impact on the time to 50
o
C, time above 50

o
C, and the maximum 

temperature. This is expected, because flour is a poor conductor of heat.  Dean (1911) at the end 

of a 7.5-h heat treatment of a flour mill reported that on the second floor, the temperature 

measured at 8.9 cm in a sack of flour was 41
o
C while that of the ambient temperature in the 

center of the room 1.83 m above the floor was 51
o
C.  Similarly, Goodwin (1912) reported that 

the temperature on the first floor at the end of a 19.5-h heat treatment of a flour mill was 44
o
C in 

flour at a depth of 12.7 cm whereas the temperature at 91.4 cm above the same floor was 61
o
C.   
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The mortality of T. castaneum life stages in the control treatment was high for eggs and 

young larvae, especially in compartments with dusting of flour, because very little food was 

available for these stages to survive to the adult stage. The corrected mortality of life stages was 

93 to 100% on second through fifth floors, except for the first floor where all stages survived.  

The survival of all stages was statistically related to the maximum temperature, which in general, 

was lower on the first floor compared to the other floors.  Adult survival on the first floor was 

greater in compartments with 2-cm deep flour than in compartments with dusting of flour. This 

can be attributed to six compartments out of 15 in 2-cm deep flour, across all three heat 

treatments on the first floor, in which temperatures did not reach 50
o
C.  Another reason for insect 

survival could be that temperatures above 50
o
C were maintained for ≤6.6 h on the first floor 

compared to other floors.   

In the current study, we found that adults on the first floor in 2-cm deep flour were the 

most heat-tolerant stage. Adults averaged 55% mortality whereas the other stages had mortalities 

of ≥82%. In an unreplicated heat treatment trial, where temperatures are dynamic over time, 

Mahroof et al. (2003a) found T. castaneum pupae in general to be more heat tolerant than adults.  

In bioassays at constant temperatures of 42, 46, 50, 54, 58, and 60
o
C, Mahroof et al. (2003b) 

found T. castaneum pupae to be more heat tolerant than adults only at 42 and 50
o
C based on time 

for 99% mortality (LT99).  Heat tolerance among insect life stages of T. castaneum, the confused 

flour beetle, Tribolium confusum Jacquelin du Val, and the Indianmeal moth, Plodia 

interpunctella (Hübner), varies with temperature (Mahroof et al. 2003b, Boina and 

Subramanyam 2004, Mahroof and Subramanyam 2006). Heat tolerance among insect life stages 

is also influenced by heating rates (Beckett et al. 2007), although majority of these data are based 

on heat treatment with grain and not facility heat treatments. During heat treatment of a food-
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processing facility, Yu et al. (2011) exposed eggs, young larvae, old larvae, and adults of the 

cigarette beetle, Lasioderma serricorne (L.), in bioassay boxes and could not consistently find a 

heat-tolerant stage based on mortality responses. However, by exposing eggs, young larvae, old 

larvae, pupae, and adults of L. serricorne at constant temperatures of 46, 50, and 54
o
C in the 

laboratory for variable time periods, Yu et al. (2011) consistently found eggs to be the heat-

tolerant stage.   

In case of T. castaneum, the young larvae are heat tolerant at constant temperatures of 50 

to 60
o
C (Mahroof et al. 2003b).  However, as mentioned above, during heat treatment where 

temperatures are dynamic over time, identifying a heat-tolerant stage becomes difficult (Mahroof 

et al. 2003a), because the rate of heating or behavioral responses of insects may influence heat 

tolerance. These aspects warrant further study.  

The antennal segments of T. castaneum adults can sense temperature gradients 

(Holsapple and Florentine 1972), and it is plausible that during heat treatment, the adults were 

able to sense the high temperatures and tunnel deep into 2-cm deep flour enabling greater 

survival compared to adults in compartments with dusting of flour on the first floor.  This 

observation is supported by the fact that the mortality of adults in compartments with dusting of 

flour on the first floor was comparable to, or slightly lower than that of, other T. castaneum 

stages, whereas the mortality of adults in 2-cm deep flour on the first floor was only 55%.   

In commercial heat treatments, the amount of heat energy used is typically 0.07 to 0.10 

kW/h/m
3
 (Bh. S., unpublished data), but in our pilot flour mill, the heat energy used was 1.5 to 

2.4 times greater than this figure (0.15 to 0.17 kW/h/m
3
).  The reasons are related to the mill 

being air tight (no windows) resulting in poor air circulation within the mill, and the only outlet 
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for the air within the building was through the hatch door leading to the roof and the ventilation 

louvers.   

The cost for the first heat treatment was higher, primarily because of the extra expense 

incurred for the fabric ducts. The costs reported here are for hiring an outside service provider 

for conducting heat treatments and are not typical of expenses incurred when facilities have pre-

installed heaters for regular heat treatments. The costs for service personnel would be 

independent of the facility size, because for any heat treatment, the number of people utilized 

would be the same. The fuel costs, in addition to being related to differences in outside and 

inside temperatures, were also related to temperature monitoring data.  The service provider used 

76 to 79 wireless sensors among the mill floors for temperature monitoring to ensure that 

temperatures have reached 50
o
C, were held above 50

o
C for several hours, and did not exceed 

60
o
C.  This proprietary data are therefore not mentioned in this paper. The cost of heaters was 

not included in the total costs, as these were provided gratis by the service provider.  The cost of 

the first heat treatment was about $4.00/m
3
 of the facility while that of the other two was 

$3.00/m
3
.  This is the first report itemizing heat treatment costs of three heat treatments in the 

same facility.  

In summary, the results presented in this study show that effective heat treatments can be 

conducted within 24 h, provided temperatures reach 50
o
C and are held above 50

o
C for at least 12 

hours, while avoiding temperatures exceeding 60
o
C.  Unlike previous experiments (Mahroof et 

al. 2003a), in this study, the adults of T. castaneum were found to be the most heat-tolerant stage, 

and adult survival was positively influenced by the presence of flour.  This finding 
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reinforces the need to conduct thorough sanitation prior to a heat treatment to improve heat 

treatment effectiveness against T. castaneum eggs, larvae, and pupae in general, and adults in 

particular. The cost of $3.00 to 4.00/m
3
 observed in this study was slightly higher compared to 

commercial facilities, because the mill was air-tight and the lack of free air movement did not 

allow mill floors to reach 50
o
C within a short period of time.  Despite a few limitations, our 

replicated trials provided new insights on factors affecting heat treatment effectiveness against T. 

castaneum life stages, along with detailed itemized heat treatment costs for propane-fueled 

forced-air gas heaters. 
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Figure 2.1  The mean + SE time to 50
o
C, time above 50

o
C, and the maximum temperature 

observed by floor in compartments of bioassay boxes holding dusting of flour or 2-cm deep 

flour during each of the three heat treatments. Each mean is based on n = 15/compartment 

unless otherwise indicated. On the first floor, n = 13 for compartments with dusting of flour 

and n = 9 for compartments with 2-cm deep flour. On the fourth floor, n = 14 for 

compartments with 2-cm deep flour.  On the fifth floor, n = 13 for compartments with 

dusting of flour and n = 12 for compartments with 2-cm deep flour.  Temperatures failed to 

reach 50
o
C in certain compartments and hence n < 15. 
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Table 2.1 Bioassay box locations among five floors of the Hal Ross flour mill 

____________________________________________________________________________ 

Floor Bioassay box number                  Location 

____________________________________________________________________________ 

First 1 Floor, southwest corner   

  2 Floor by door, south   

  3 Roller mill, inside motor compartment   

  4 Roller mill, on top of second break rolls   

  5 Floor, northeast corner 

Second 6 Floor, southwest corner   

  7 Floor, under the color sorter     

  8 Scourer aspirator, inside cylinder screen  

  9 Rebolt sifter, in the top screen  

  10 Floor, middle of the room    

Third 11 Floor, southwest corner  

  12 Cylinder separator, inside middle cylinder 

  13 Purifier, on top of screens in purifier 1   

  14 Mixer   

  15 Floor, middle of the room   

Fourth 16 Floor, southwest corner 

  17 Sifter, between two sieves 

  18 Diverter 

______________________________________________________________________________ 
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____________________________________________________________________________ 

Floor Bioassay box number                  Location 

____________________________________________________________________________ 

 19 Combi-cleaner, on middle screen 

  20 Floor, middle of the room 

Fifth 21 Floor, southwest corner 

  22 Carter day screen separator, middle screen 

  23 Technovator  

  24 Ingredient feeder 

  25 Floor, middle of the room 

________________________________________________________________________ 
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Table 2.2 Temperature parameters (mean ± SE) observed at the floor level during heat 

treatment of the Hal Ross flour mill 

____________________________________________________________________________ 

Floor  Time to 50
o
C (h) Time above 50

o
C (h) Maximum temperature (

o
C) 

____________________________________________________________________________ 

First
a
   8.9 ± 1.3 10.1 ± 1.4 53.6 ± 2.7 

Second   8.5 ± 0.9 13.6 ± 1.0 58.3 ± 2.2 

Third  10.0 ± 0.6 13.5 ± 0.6 59.3 ± 0.6 

Fourth 12.0 ± 1.0 11.2 ± 1.0 57.4 ± 0.8 

Fifth
b
   9.7 ± 1.0 12.3 ± 1.0 56.8 ± 0.8 

______________________________________________________________________________ 

 Each mean is based on n = 30 unless otherwise indicated. 

 a
n = 24. 

 b
n = 29, because one temperature data logger failed to record temperatures. 
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Table 2.3 Mortality of T. castaneum life stages in unheated (control) bioassay boxes 

______________________________________________________________________________ 

Life stage Mean ± SE mortality (%) 

   ____________________________________________________________ 

 Dusting of flour 2-cm deep flour  

______________________________________________________________________________ 

Eggs 48.0 ± 6.1 18.7 ± 2.6  

Young larvae 42.0 ± 14.5 12.0 ± 3.5   

Old larvae   0.7 ± 0.4   0.0 ± 0.0 

Pupae   1.6 ± 0.3   1.4 ± 0.4  

Adults   0.8 ± 0.3   1.7 ± 0.4    

______________________________________________________________________________ 

Each mean is based on n = 3. At each n, 50 insects of each life stage were placed in 

individual compartments in a bioassay box.   
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Table 2.4 Mortality of T. castaneum life stages in bioassay boxes placed on the five floors of 

the Hal Ross flour mill subjected to heat treatment   

______________________________________________________________________________ 

Floor Life stage                                    Mean ± SE mortality (%)
a
 

     ________________________________________________ 

 Dusting of flour 2-cm deep flour 

______________________________________________________________________________ 

First Eggs   98.6 ± 0.8   97.2 ± 1.6 

 Young larvae   98.0 ± 1.1     82.0 ± 6.9 

 Old larvae   93.1 ± 6.6
   

85.8 ± 6.7 

 Pupae   94.8 ± 6.7   85.0 ± 8.0 

 Adults   93.3 ± 6.7   55.5 ± 12.9 

Second Eggs 100.0 ± 0.0   99.8 ± 0.2 

 Young larvae   99.3 ± 0.5 100.0 ± 0.0 

 Old larvae 100.0 ± 0.0 100.0 ± 0.0 

 Pupae 100.0 ± 0.0 100.0
 
± 0.0

b
 

 Adults 100.0 ± 0.0 100.0 ± 0.0 

Third Eggs 100.0 ± 0.0   98.4 ± 1.6 

 Young larvae   99.3 ± 0.7   99.8 ± 0.2  

 Old larvae 100.0 ± 0.0   99.7 ± 0.3 

 Pupae 100.0 ± 0.0 100.0 ± 0.0 

 Adults 100.0 ± 0.0 100.0 ± 0.0 

______________________________________________________________________________ 
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______________________________________________________________________________ 

Floor Life stage                                    Mean ± SE mortality (%)
a
 

     ________________________________________________ 

 Dusting of flour 2-cm deep flour 

______________________________________________________________________________ 

Fourth Eggs 100.0 ± 0.0 100.0 ± 0.0 

 Young larvae 100.0 ± 0.0   99.2 ± 0.8
b
 

 Old larvae   99.0 ± 1.0   93.2 ± 6.7 

 Pupae 100.0 ± 0.0   98.9 ± 1.1 

 Adults 100.0 ± 0.0   95.6 ± 4.4 

Fifth Eggs 100.0 ± 0.0 100.0 ± 0.0 

 Young larvae    99.8 ± 0.2   99.5 ± 0.5  

 Old larvae    99.5 ± 0.3   99.3 ± 0.5 

 Pupae 100.0 ± 0.0 100.0 ± 0.0 

 Adults 100.0 ± 0.0 100.0 ± 0.0 

______________________________________________________________________________ 

 a
Each mean is based on n = 15 unless otherwise indicated.  

 b
n = 14. 
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Table 2.5 Itemized costs for each of the three heat treatments conducted in the Hal Ross 

flour mill 

______________________________________________________________________________ 

 Cost item Costs ($) for heat treatment conducted during: Total cost ($)   

 ____________________________________________         

 13-14 May 2009 25-26 Aug 2009     7-8 May 2010  

______________________________________________________________________________ 

Propane consumed (L) 5,299 4,883 5,500 15,682 

Price/L 0.38 0.38 0.44  

Propane cost 2,030 1,871 2,397 6,298 

Labor charge
a 
 480 480 480 1,440  

Mileage charge
a 
 72 72 72 216  

Forklift rental  1,193 1,193 1,193 3,579 

Generator rental 1,244 1,244 1,244 3,732 

Diesel (for generator) 532 532 532 1,596 

Transportation cost 1,725 1,725 1,725 5,175 

Fan rental
  

5,275 5,275 5,275 15,825 

Fabric ducting
b  

11,000 None None 11,000 

Service personnel
c 

12,000 12,000 12,000 36,000 

Supervisor’s fee
d 

2,454 2,613  687 5,754 

Total cost 38,005 27,005 25,605 90,615 

______________________________________________________________________________ 

 a
For delivering, recharging, and picking up the propane tanks. 
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b
A one-time charge for the customized-ducts.  The same ducts were used for the second 

and third heat treatments. 

c
Four technicians were paid $1,000/d each for 3 d. Costs included travel, lodging, and 

time spent on site during heat treatments (12 h/shift). 

d
Negotiable consulting fee. 

 

  



53 

 

 

Chapter 3 - Impact of varying levels of sanitation on mortality of 

Tribolium castaneum eggs and adults during heat treatments of a 

pilot flour mill 

 Abstract  

 The influence of sanitation on responses of life stages of the red flour beetle, Tribolium 

castaneum (Herbst) (Coleoptera: Tenebrionidae), an economically important pest in flour mills, 

were investigated in a pilot flour mill subjected to two, 24-h heat treatments. One hundred eggs 

or 100 adults of T. castaneum were exposed inside each 20-cm diameter by 15-cm high PVC 

ring holding 0.1-, 0.2-, 1.0-, 3.0-, 6.0-, or 10.0-cm deep wheat flour to simulate different 

sanitation levels that may exist in a flour mill. These rings were placed on the first and third 

floors of a pilot flour mill.  On the first floor, temperatures inside rings with eggs reached 50
o
C 

in 7 to 11 h only in 0.1- and 0.2-cm deep flour treatments.  In all other treatments the maximum 

temperatures attained were generally below 50
o
C and inversely related to flour depth.  Adults of 

T. castaneum on this floor were less susceptible than eggs.  The egg mortality decreased linearly 

with an increase in flour depth whereas that of adults decreased exponentially.  All eggs and 

adults in rings on the third floor were killed irrespective of flour depth, because temperatures 

inside rings reached 50
o
C in 15 to 17 h and were held above 50

o
C for 6 to 8 h with the maximum 

temperatures ranging between 55.0 and 57.0
o
C.  Although the protective effects of flour on 

survival of T. castaneum eggs and adults were evident only if temperatures did not reach 50ºC, 

removal of flour accumulations is essential to improve heat treatment effectiveness.   

Keywords  heat treatment, temperatures, sanitation, red flour beetle, efficacy assessment 
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 Introduction 

In the United States, elevated temperatures (50 to 60ºC) or heat treatments have been 

used for managing stored-product insects associated with flour mills (Dean 1911, Goodwin 1912, 

Beckett et al. 2007).  Heat treatment is a viable alternative to methyl bromide, a structural 

fumigant that was phased out in the United States in 2005 due to its adverse effects on 

stratospheric ozone (Dosland et al. 2006, Beckett et al. 2007, Hulasare et al. 2010, Subramanyam 

2010).  During heat treatments, all accessible areas of flour mill and equipment should be 

thoroughly cleaned to remove any accumulated flour, because these accumulations serve as 

insect harborage sites. Many stored-product insects have been reported within moving mill 

stocks, static mill stocks, and within pieces of equipment where products accumulate (Wagner 

and Cotton 1935, Good 1937, Rilett and Weigel 1956, Dyte 1965, 1966; Hosny et al. 1968).  

Grain and flour accumulations are poor conductors of heat (Dean 1911, Pepper and Strand 1935), 

and during heat treatments, insects can seek refuge in these accumulations and escape the lethal 

effects of high temperatures (Goodwin 1922).  Brijwani (2011) reported lower temperatures and 

greater survival of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: 

Tenebrionidae) life stages in 2-cm deep flour (43 g) than in flour dust (~0.5 g) during heat 

treatments of a pilot flour mill.  The survival of T. castaneum life stages was greater in bioassay 

boxes placed on the first floor of the mill than those placed on second through fifth floors 

(Brijwani 2011).  Of the temperature variables studied (time to 50
o
C, time above 50

o
C, and 

maximum temperature), only the maximum temperature significantly influenced survival of T. 

castaneum life stages. Additionally, on the first floor, adults were found to be less susceptible to 

heat when compared with eggs, young larvae, old larvae, and pupae.   
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The present study was designed to characterize the influence of six flour depths between 

0.1 and 10.0 cm, to simulate unsanitary conditions, on the mortality of an immobile stage (eggs) 

and mobile stage (adults) of T. castaneum, an economically important pest of flour mills (Good 

1937, Hagstrum and Subramanyam 2009). The impact of flour depths on survival of T. 

castaneum eggs and adults was evaluated on the first and third flour mill floors, because Dean 

(1911) and Goodwin (1912) reported temperatures during heat treatments to be generally lower 

on the first floor than those observed on floors above it.  

 Materials and Methods 

  Insect Cultures 

 Cultures of T. castaneum were reared on a diet of wheat flour with 5% (by wt) brewer’s 

yeast at 28
o
C and 65% RH. Each 0.94-L glass mason jar with 200 g of the insect diet was seeded 

with 100 T. castaneum adults. After infestation, jars were closed with filter paper lids. To obtain 

eggs, 50 unsexed T. castaneum adults of mixed ages were introduced into 150-ml plastic 

containers holding 50 g of flour that was sifted through a 250-µm opening sieve (Seedburo 

Equipment Company, Chicago, IL). These containers were held at 28
o
C and 65% RH for 2 d 

after which the adults were removed from the jars using an 841-µm opening sieve.  The flour 

was sifted using a 250-µm sieve to retain the eggs. Mixed age adults were separated directly 

from culture jars using an 841-µm sieve. The collected eggs and adults were used in heat 

treatment experiments.   

 Pilot Flour Mill 

 The Hal Ross pilot flour mill, belonging to the Department of Grain Science and 

Industry, Kansas State University, has five floors occupying a total volume of 9,628 m
3
. The 
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foundation, floors, and walls are made of poured concrete with steel reinforcements. The 

foundation is 101.6-cm thick and has 1486.2-metric tons of poured concrete and 59.9-metric tons 

of reinforced steel. All exterior walls and the roof have a 7.62-cm styrofoam insulation. There 

are two stairways made of galvanized steel; the one on the west side leads from first floor to the 

roof while one on the east side leads from first floor to the fifth floor. The dimensions of each 

floor are 15.3-m long and 27.5-m wide. Each floor has an extension on the north side that is 7.1-

m long and 7.6-m wide. The ceiling height of the first, second, third, fourth and fifth floors is 

3.7, 4.4, 4.1, 4.1 and 4.7 m, respectively.  A 20.3-cm thick concrete floor separates second 

through fifth floors.  The milling equipment made of steel among the mill floors weighs about 

123-metric tons. The maximum daily flour mill production capacity is  18.2-metric tons (400 

cwt). 

 Egg and Adult Bioassays 

 Polyvinyl chloride (PVC) pipes of 20-cm diameter and 0.82-cm thickness (Ferguson, 

Manhattan, KS) were cut to provide cylinder heights of 15-cm. A total of 36 rings were used in 

experiments. Prior to heat treatment, 12 rings each were placed on the first and third floors of the 

pilot flour mill. Another 12 rings were placed on the fourth floor of an old pilot flour mill located 

in Shellenberger Hall, Department of Grain Science and Industry, Kansas State University, to 

serve as the control (unheated) treatment. Elmer’s clay (Elmer’s Products Inc., Columbus, OH) 

was used at the ring base-floor junctions to prevent insects from escaping from underneath the 

rings. The rings on a given floor were placed at a distance of ~40 cm from one another. The same 

clay was used at the top end of each ring to hold in place a black cloth mesh cover with 0.6-mm
2
 

openings.  A temperature sensor (SmartButton; ACR Systems, Inc., Surrey, Canada) was placed 
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at the center of each ring on the floor to record temperatures at 1-min intervals. Temperatures 

were also recorded at 1-min intervals, outside the PVC rings on both the first and third floor.  Six 

SmartButton sensors were placed next to the ring on each floor.  

Six sanitation levels were simulated within these rings by adding a known quantity of 

wheat flour with 5% (by wt) brewer’s yeast (flour from now on). Approximately 15, 38, 109, 

388, 937, and 1,645 g of the flour were held in suitable size jars of 0.2- to 1.9-L capacity. One 

hundred eggs or 100 unsexed adults of mixed ages of T. castaneum were added on top of the 

flour in separate jars. These jars were carried to the flour mill where contents were gently 

transferred from the jars into the bioassay rings to create flour depths of 0.1, 0.2, 1.0, 3.0, 6.0, 

and 10.0 cm, respectively. On each floor, six rings were used for eggs and six for adults. To 

prevent insects from escaping the top ends of rings were closed with mesh screens.   

  Heat Treatment 

 The Hal Ross flour mill was subjected to a total of three, 24-h heat treatments between 

2009 and 2010 (Brijwani 2011), but the experiments to evaluate the impact of varying flour 

depths on mortality of T. castaneum eggs and adults were conducted during the second and third 

heat treatments (n = 2). The second heat treatment was performed on 25-26 August 2009 and the 

third on 7-8 May 2010 using forced-air gas heaters that were fueled by propane.  All treatments 

were performed by a commercial heat treatment service provider (Temp-Air Inc., Burnsville, 

MN). Two THP-4500 heaters (Temp-Air, Burnsville, MN) with 1318.8 kW/h heating capacity 

and one heater with 410.3 kW/h heating capacity were used for each heat treatment (Brijwani 

2011). The maximum discharge temperature at the outlet of the heaters was 93.3ºC with a 

minimum discharge temperature of 60ºC at the end of the heat treatment. The airflow rate for 
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THP-4500 and THP-1400 heaters was 708 m
3
/min and 212.4 m

3
/min, respectively.  The heaters 

were located outside the mill because of an open flame.  The hot air from the heaters was 

channeled throughout the flour mill by means of 60.9-cm fabric ducts with 15.3-cm diameter 

openings at regular intervals. These ducts were placed on the first to fifth floors and along both 

stairways.  Heat distribution was facilitated by use of eight fans (Temp-Air Inc., Burnsville, MN) 

on each floor. The fan had a blade diameter of 91.4 cm, with an airflow rate of 311.5 m
3
/min.  

Fan locations were changed as the heat treatment progressed to ensure uniform heat distribution 

by eliminating cool spots (locations at <50
o
C).   

 Sample Collection and Insect Mortality Assessment 

 At the end of each heat treatment, the rings from the first and third floors of the Hal Ross 

flour mill (heat-exposed) and from the fourth floor of Shellenberger Hall flour mill (unexposed, 

control) were lifted off the floor and all of the flour with insects was gently collected into a pan 

with the help of a soft brush and immediately transferred into labeled polyethylene bags. In the 

laboratory the contents of each bag were transferred into 0.2- to 1.9-L jars, labeled and incubated 

in the growth chamber at 28ºC and 65% RH.  Mortality of T. castaneum adults was determined 

24 h after incubating the samples at 28ºC and 65% RH, and expressed as a percentage based on 

number of dead adults out of the total exposed (100). The eggs were reared to the adult stage (45 

d) in the growth chamber, and egg mortality was based on number of adults that failed to emerge 

out of the total exposed. Mortality of eggs and adults in the control samples was determined 

similarly.      
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 Data Analysis 

In the control treatment, mean ± SE for minimum, maximum and average temperature at 

different flour depths were summarized.  The mean time-dependent temperature data at each 

flour depth for heat-exposed eggs and adults on the first and third floors of the Hal Ross flour 

mill were plotted as a function of time to show variations in temperature profiles observed.  Data 

from six SmartButton sensors placed outside PVC rings on the first and third mill floors were 

averaged separately for the 25-26 August 2009 and 7-8 May 2010 heat treatments.  Differences 

in the mean ± SE starting temperature, time (h) required to reach 50
o
C from the starting 

temperature, time (h) above 50
o
C, or the maximum temperature observed outside the rings 

between the first and third floor were determined using two-sample t-tests at the α = 0.05 level 

(SAS Institute 2002). In the PVC rings, the mean ± SE starting temperature, time (h) required to 

reach 50
o
C, time (h) above 50

o
C, and the maximum temperature were determined by floor and 

insect stage for each flour depth.  On first or third floor, significant differences (α = 0.05) in each 

of these variables among flour depths was determined using one-way analysis of variance 

(ANOVA) and Ryan-Einot-Gabriel-Welch (REGWQ) test (SAS Institute 2002). The mortality of 

T. castaneum eggs and adults at each flour depth on first and third mill floors were corrected for 

corresponding control mortality (Abbott, 1925). The relationship between corrected mean 

mortality of T. castaneum eggs or adults and flour depth were described using regression models, 

where mortality of these stages was <100%.  The corrected mean egg mortality as a function of 

flour depth was described by a linear regression (y = a – bx), whereas that of adults was 

described by an exponential decay model (y = Ax
-b

) (SAS Institute 2002).   
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 Results and Discussion 

The mean ± SE, minimum, maximum, and average temperatures observed on the floor 

next to PVC rings in the control treatment were 26.2 ± 2.7, 27.8 ± 1.7, and 26.8 ± 2.5
o
C, 

respectively.  In the same treatment, the minimum, maximum, and average temperatures varied 

very little and ranged within 26.0 ± 2.5 to 27.5 ± 2.0
o
C (Table 3.1). In the control treatment the 

mean ± SE mortality of T. castaneum eggs was 14.5 ± 4.5 to 24.0 ± 2.0%, whereas that of adults 

ranged from 0 to 1.5 ± 1.5% (Table 3.1). The egg mortality is generally around 10% (Sokoloff 

1974), but 16% mortality is not uncommon (Howe 1956).  Xue (2010) reported T. castaneum 

egg mortality to be around 25%, which was the highest mortality we observed.  The egg 

mortality data includes not only the mortality of the egg stage but also that of the larval and 

pupal stages.   

The starting temperatures observed on the first and third floors outside the PVC rings 

prior to heat treatment of the pilot flour mill were ~30-31
o
C, and these minor differences were 

not statistically significant (P > 0.05) (Table 3.2).  The third floor reached 50
o
C in 3.9 h faster 

than the first floor.  As a result temperatures above 50
o
C were maintained for 4.7 h longer on the 

third floor when compared with the first floor.  The maximum temperature attained on the third 

floor was 6.6
o
C higher than on the first floor.  The time required to reach 50

o
C, time above 50

o
C, 

and the maximum temperature were significantly different between the third and first floors (P < 

0.05).  Dean (1911) during a 24-h heat treatment and Goodwin (1912) during a 19.5-h heat 

treatment reported lower temperatures on the first floor of a mill than on floors above it.  

Goodwin (1912) measured temperatures in four to five different locations on each of three floors.  

Irrespective of the locations measured, the average temperatures attained at the end of the heat 
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treatment on the first, second, and third mill floors were 48, 56, and 58
o
C, respectively.  Mahroof 

et al. (2003a) and Roesli et al. (2003) reported differences in temperatures attained in different 

locations of flour and feed mill floors, primarily due to vertical and horizontal stratification of 

temperatures.    

The time-dependent temperature profiles within the rings on the first floor were more 

variable among flour depths than on the third floor, irrespective of the insect stage (Fig. 3.1). In 

general, irrespective of the floor and insect stage, the lowest temperatures were observed in rings 

with 10.0-cm deep flour. Temperatures did not reach 50
o
C in a majority of the rings on the first 

floor compared with the third floor. On the first floor, variation in temperature profiles among 

flour depths was smaller in rings with adults than in rings with eggs.  This difference is probably 

a location effect, since the rings were placed ~40 cm from one another. Additionally, the 

distribution of heat by fans could have affected some of the differences in temperature profiles 

observed within the rings.   

On the first floor, mean ± SE starting temperatures tended to be lower with an increase in 

flour depth, but differences (df = 5, 6) were not significant among flour depths for eggs (F = 

2.47; P = 0.1508) and adults (F = 3.95; P = 0.0624) (Table 3.3).  Except for flour depths of 0.1- 

and 0.2-cm with eggs on this floor temperatures did not reach 50
o
C in any of the other flour 

depths. In the case of eggs, the time required to reach 50
o
C in 0.1-cm deep flour was 1.6 times 

faster and temperatures above 50
o
C were held for 17 times longer than in 0.2-cm deep flour. The 

maximum temperatures were inversely related to flour depth, and significant differences were 

not observed in rings with eggs (F = 3.14; df = 5, 6; P = 0.0982), but were apparent in rings with 

adults (F = 104.80; df = 5, 6; P < 0.0001).  The significant difference observed in rings with 

adults was a result of little or no variation in mean maximum temperatures among flour depths.  
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The maximum temperatures among flour depths were more variable in rings with eggs and hence 

the lack of any significant differences.  The slow heating of the first floor and lower temperatures 

observed on the floor relative to the third floor (Table 3.2) combined with the insulating effect of 

flour did not result in temperatures reaching 50
o
C in rings with 1.0- to 10.0-cm deep flour.  The 

low temperatures observed on the first floor could be due to loss of heat to the concrete 

foundation which is in contact with the first floor (Pepper and Strand 1935).  Pepper and Strand 

(1935) reported an inverse relationship between concrete depth and temperatures attained.  They 

reported that for every 1-cm below the surface of concrete the temperature dropped by 1
o
C.  In 

Dean’s study (1911), temperature measured in an open area on the first floor was 40.5ºC, and at 

a depth of 10.16-cm in wheat a temperature of 35.5ºC was recorded.  On the second floor the 

maximum temperature recorded was 56.4ºC in an open area; however, temperature at a depth of 

7.62-cm in a sack of flour that was 91.4-cm above the floor a temperature of 47.5ºC was 

recorded.  

Both the T. castaneum egg and adult mortality were inversely related to flour depth 

(Table 3.3). The mean ± SE mortality of eggs on the first floor at six flour depths ranged from 

44.1 ± 25.7 to 91.2 ± 8.8% and that of the adults ranged from 1.0 ± 0.0 to 94.4 ± 5.6%.  The egg 

mortality was satisfactorily described (r
2
 = 0.912) by a linear regression (Fig. 3.2A). The mean ± 

SE intercept and slope values of the linear regression were 88.21 ± 3.18 and -4.15 ± 0.64, 

respectively.  The adult mortality as a function of flour depth was best described (r
2
 = 0.972) by 

an exponential decay model (Fig. 3.2B), and the mean ± SE of parameter A was 21.75 ± 4.28 and 

parameter b was -0.64 ± 0.09.  The inverse relationship between flour depth and mortality of T. 

castaneum eggs and adults shows the protective effect of flour on insect survival.  This 

protective effect was linear for eggs because the stage is immobile and therefore the adverse 
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effects as a function of flour depth tended to be linear. In contrast, adults are highly mobile and 

are capable of tunneling into flour (Hagstrum and Smittle 1980).  The highest adult mortality was 

observed in 0.1-cm deep flour because there was very little flour (15 g) for the adults to tunnel 

and escape the heat treatment, and as the flour depth or amount increased more adults may have 

escaped the adverse effects of the heat treatment by tunneling.  For example, as the flour depth or 

amount increased from 0.2 to 10.0 cm (38 to 1,645 g), T. castaneum adult density per unit ranged 

from 2.6 to 0.06 adults/g of flour.  The dispersive behavior of T. castaneum by tunneling deeper 

into the flour may have resulted in mortality decreasing exponentially with an increase in flour 

depth or amount.   

On the third floor, the starting temperatures, time to 50
o
C, time above 50

o
C, and the 

maximum temperature among flour depths varied very little (Table 3.4), and each of these 

variable was not significantly different (df = 5, 6) among flour depths in rings with eggs (F, 

range among variables = 0.07 - 0.75; P ≥ 0.6137) and adults (F, range = 0.24 – 3.42; P ≥ 

0.0831). The time to 50
o
C took 15 to 17 h, and temperatures above 50

o
C were held for 6 to 8 h, 

and the maximum temperatures were between 55 and 57
o
C, and these minor differences did not 

show any trends among flour depths.  Higher temperatures were observed on this floor compared 

with the first floor (Table 3.2), because this floor is heated from both the top and bottom. As 

mentioned previously, higher temperatures are generally recorded on floors above the first floor 

(Dean 1911, Goodwin 1912).    

On the third floor, the mortality of eggs and adults was 100%, irrespective of the flour 

depth (Table 3.4).  Complete control of eggs and adults on the third floor at all flour depths can 

be attributed to the high temperatures attained.  Although all eggs and adults were killed at all 

flour depths, it is still necessary during heat treatment of a flour mill to remove any spilled flour 
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accumulations from all accessible areas.  At temperatures ≥54
o
C, susceptibility differences 

among T. castaneum life stages tend to disappear (Mahroof et al. 2003b).   

In this study, adults of T. castaneum were observed to be less susceptible than eggs only 

on the first mill floor.  This finding is consistent with previous observations in replicated heat 

treatment trials that adults of T. castaneum are less susceptible to heat on the first floor of the Hal 

Ross flour mill in bioassay boxes when compared with other life stages (Brijwani 2011), but 

inconsistent with an unreplicated trial of Mahroof et al. (2003a).  In Mahroof et al. (2003a), eggs, 

young larvae, old larvae, pupae, and adults of T. castaneum were exposed to heat treatments in 

pilot flour and feed mills, and no consistent trends were observed in identifying a heat tolerant 

stage despite survival of old larvae and pupae in a few locations.  However, under laboratory 

conditions at constant temperatures ranging from 42 to 60ºC, Mahroof et al. (2003b) found the 

young larvae of T. castaneum to be more heat-tolerant than the other stages. Yu et al. (2011) 

were unable to identify a heat tolerant stage of the cigarette beetle, Lasioderma serricorne (L.), 

during heat treatment of a commercial facility, but experiments at constant temperatures of 46, 

50, and 54
o
C revealed eggs to be the most heat tolerant stage when compared with young larvae, 

old larvae, pupae, and adults.  Additional work is needed to determine heat tolerance of stored-

product insect life stages during heat treatments of facilities where temperatures are dynamically 

changing over time rather than at constant temperatures (Yu et al. 2011). 

In summary, the susceptibility of T. castaneum eggs and adults was inversely related to 

flour depths or sanitation levels, only when temperatures did not reach 50
o
C.  Although 

sanitation did not influence mortality of T. castaneum eggs and adults on the third floor, it is 

important to remove flour accumulations to improve heat distribution and effectiveness against 

T. castaneum life stages. 
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Figure 3.1. Mean (n = 2) temperature profiles observed during 24-h heat treatments at 

flour depths of 0.1 to 10.0 cm in rings infested with T. castaneum eggs and adults placed on 

the first and third floors of a pilot flour mill.   
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Figure 3.2. A linear regression model describing mean ± SE (n = 2) egg mortality (A) and 

an exponential decay model describing adult mortality (B) of T. castaneum as a function of 

flour depth in rings placed on the first floor of a pilot mill subjected to heat treatment. 
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Table 3.1 Temperature parameters and T. castaneum egg and adult mortality (mean ± SE) 

inside unheated (control) PVC rings at different flour depths 

______________________________________________________________________________ 

Flour   Temperature (
o
C)

a
   Mortality (%)  

depth  ___________________________________________ 

(cm) Minimum Maximum  Average  

______________________________________________________________________________ 

  Eggs 

0.1 26.0 ± 2.5 27.3 ± 1.8
 
 26.6 ± 2.3

  
14.5 ± 4.5

   
0.2

 26.3 ± 2.8 27.0 ± 2.5 26.6 ± 2.7 20.0
b
  

1.0 26.3 ± 2.8 27.3 ± 2.3 26.6 ± 2.7 17.0
b
 

3.0 26.3 ± 2.8 27.5 ± 2.0 26.8 ± 2.5 16.5 ± 0.5  

6.0 26.5 ± 2.5 27.5 ± 2.0 27.0 ± 2.4  20.0
b
  

10.0 26.3 ± 2.3 27.0 ± 2.0 26.7 ± 2.2 24.0 ± 2.0  

   Adults 

0.1 26.3 ± 2.3 27.0 ± 2.0
 
 26.6 ± 2.3

  
1.5 ± 1.5

   

 
0.2 26.3 ± 2.3 27.0 ± 2.0 26.5 ± 2.3 1.0 ± 1.0  

1.0 26.3 ± 2.8 27.5 ± 2.0 26.8 ± 2.5 0.5 ± 0.5 

3.0 26.3 ± 2.8 27.3 ± 2.3 26.9 ± 2.6 0.0 ± 0.0 

6.0 26.3 ± 2.3 27.3 ± 2.3 26.7 ± 2.2 1.0 ± 1.0  

10.0 26.3 ± 2.8 27.3 ± 2.3 26.8 ± 2.5 1.0 ± 1.0 

______________________________________________________________________________ 

Each mean is based on n = 2, unless otherwise indicated. 
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a
The mean ± SE for minimum, maximum, and average temperatures outside the unheated 

(control) PVC rings at floor level were 26.2 ± 2.7, 27.8 ± 1.7, and 26.8 ± 2.5
o
C, respectively. 

b
n =1. Certain rings were infested by resident T. castaneum populations in the mill 

resulting in greater than 100 adults. Data from these rings were therefore discarded. 
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Table 3.2 Temperature parameters (mean ± SE) outside the PVC rings during pilot flour 

mill heat treatment 

______________________________________________________________________________ 

Floor Starting  Time Time Maximum    

 temperature to 50ºC above 50ºC   temperature
   

  

 (
o
C)

 
(h)

 
(h) (

o
C)

 

______________________________________________________________________________ 

First 29.8 ± 4.6 15.1 ± 3.1 7.9 ± 2.4 52.0 ± 0.4  

Third 30.8 ± 4.2 11.2 ± 0.8 12.6 ± 1.0 58.6 ± 2.1  

t-value -0.26 2.70 -2.70 -6.63 

df 22.0 11.0
a
 11.6

a
 15.5

a
 

P-value 0.8010 0.0206* 0.0198* <0.0001*   

______________________________________________________________________________ 

Each mean is based on n = 2. 

a
Variances between the two groups were unequal (P < 0.05). 

*Significant (P < 0.05). 
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Table 3.3 Temperature parameters and corrected T. castaneum egg and adult mortality 

(mean ± SE) in PVC rings on the first floor at different flour depths during pilot flour mill 

heat treatment 

______________________________________________________________________________ 

Flour Starting  Time Time Maximum  Mortality (%) 

depth temperature to 50ºC  above 50ºC temperature
   

  

(cm) (
o
C)

a
 (h)

 
  (h)

 
 (ºC)

b 

______________________________________________________________________________ 

   Eggs 

 0.1 27.0 ± 1.0 6.6 ± 6.6 5.1 ± 5.1 51.5 ± 4.0 91.2 ± 8.8  

 0.2 26.0 ± 0.0 11.0 ± 11.0 0.3 ± 0.3 49.0 ± 1.5 89.4 ± 10.6 

 1.0 25.0 ± 0.0 -
c
  - 46.3 ± 0.3 78.3 ± 10.8 

 3.0 23.5 ± 1.0  -   - 44.0 ± 1.0 71.3 ± 19.2 

 6.0 23.0 ± 1.5 -  - 43.8 ± 1.3 70.6 ± 28.1 

10.0 22.8 ± 1.8 -  - 42.8 ± 1.3 44.1 ± 25.7 

    Adults 

 0.1 26.3 ± 0.3 - - 48.5 ± 0.0a 94.4 ± 5.6  

 0.2 25.8 ± 0.8 - - 47.5 ± 0.5a 59.6 ± 40.4 

 1.0 25.0 ± 0.0 - - 46.3 ± 0.3b 31.2 ± 26.6 

 3.0 23.8 ± 0.8 - - 44.3 ± 0.3c 2.5 ± 0.5 

 6.0 22.8 ± 1.3 - - 42.5 ± 0.0d  1.0 ± 0.0 

10.0 22.5 ± 1.0 - - 42.5 ± 0.0d  7.1 ± 0.0 

______________________________________________________________________________ 
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Each mean is based on n = 2. 

a
Differences among flour depths were not significant for eggs (F = 2.47; df = 5, 6; P = 

0.1508, one-way ANOVA) and adults (F = 3.95; df = 5, 6; P = 0.0624).   

b
Differences among flour depths were not significant for eggs (F = 3.14; df = 5, 6; P = 

0.0982), but significant for adults (F = 104.80; df = 5, 6; P < 0.0001).  For adults, means 

followed by different letters are significantly different (P < 0.05; REGWQ test). 

c
Temperatures did not reach 50

o
C. 
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Table 3.4 Temperature parameters and corrected T. castaneum egg and adult mortality 

(mean ± SE) in PVC rings on the third floor at different flour depths during pilot flour mill 

heat treatment   

______________________________________________________________________________ 

Flour Starting  Time Time Maximum  Mortality (%) 

depth temperature to 50ºC  above 50ºC temperature
   

  

(cm) (
o
C)

a
 (h)

b 
  (h)

c 
 (ºC)

d 

______________________________________________________________________________ 

   Eggs 

 0.1 27.0 ± 1.0 15.0 ± 0.2
 
 8.2 ± 0.4 

 
56.5 ± 1.5

  
100.0 ± 0.0

 
 

 0.2 26.0 ± 0.0 15.2 ± 0.4 7.8 ± 0.0 56.5 ± 1.5 100.0 ± 0.0 

 1.0 26.5 ± 0.5 15.3 ± 0.6 7.8 ± 0.3 56.8 ± 2.3 100.0 ± 0.0 

 3.0 23.5 ± 1.0 15.3 ± 1.8 7.3 ± 0.1 56.8 ± 2.8 100.0 ± 0.0 

 6.0 23.0 ± 1.5 16.9 ± 1.5 6.0 ± 0.8 55.3 ± 2.3 100.0 ± 0.0 

10.0 22.8 ± 1.8 16.5 ± 1.7 6.4 ± 0.8 56.0 ± 2.5 100.0 ± 0.0 

   Adults 

 0.1 26.5 ± 0.5 15.3 ± 0.3
 
 8.2 ± 0.4

 
 56.5 ± 1.5

  
100.0 ± 0.0

 
 

 0.2 25.8 ± 0.3 15.7 ± 0.1 7.8 ± 0.1 56.3 ± 1.3 100.0 ± 0.0 

 1.0 27.0 ± 0.0 15.7 ± 0.3 7.9 ± 0.3 56.5 ± 1.5 100.0 ± 0.0 

 3.0 27.0 ± 0.0 16.2 ± 0.2 7.3 ± 0.1 56.3 ± 1.3 100.0 ± 0.0 

 6.0 25.0 ± 1.0 17.4 ± 0.7 6.0 ± 0.8 54.8 ± 1.8 100.0 ± 0.0 

10.0 25.0 ± 1.0 17.1 ± 0.8 6.4 ± 0.8 55.3 ± 1.8 100.0 ± 0.0 

______________________________________________________________________________
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 Each mean is based on n = 2. 

a
Differences among flour depths were not significant for eggs (F = 0.75; df  = 5,6; P = 

0.6137; one-way ANOVA) and adults (F = 2.36; df  = 5,6; P = 0.1625). 

b
Differences among flour depths were not significant for eggs (F = 0.42; df  = 5,6; P = 

0.8208) and adults (F = 3.42; df  = 5,6; P = 0.0831).   

c
Differences among flour depths were not significant for eggs (F = 0.49; df  = 5,6; P = 

0.7714) and adults (F = 2.97; df  = 5,6; P = 0.1090). 

d
Differences among flour depths were not significant for eggs (F = 0.07; df  = 5,6; P = 

0.9947) and adults (F = 0.24; df  = 5,6; P = 0.9325).      

  


