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Abstract

Infectious disease modeling is crucial to optimize surveillance, preventative measures, and

resource allocation. Simulation with infectious disease models is very convenient when the

resource requirement for data collection and experimental studies are prohibitively high or

even unethical. A vast number of approaches have been proposed to model infectious disease

transmission from different perspectives. In this dissertation, we investigate network-based

disease models for efficient resource allocation, effective mitigation measures, and accurate

risk assessment. We also investigate a filtering-based parameter estimation and forecasting

framework, usable when proper incidence data is available.

First, we provide a guideline for developing a network-based model and simulation frame-

work for any infectious diseases. As an example, we provide a step-by-step method for

developing a spatially explicit model for infectious diseases with host demographic data. We

show how to devise effective mitigation strategies from simulation results using the spatially

explicit model.

Our second contribution is developing a parameter estimation framework using a se-

quential Monte Carlo filter, a compartmental disease model, and historical incidence data.

Parameter estimation for any infectious disease model is crucial for accurately informing

resource allocation and control measures. Our method is particularly important for its

adaptability to the availability of new incidence data of any epidemic. This parameter esti-

mation framework is not limited to epidemic models; rather, it can be used for any systems

with a state-space model.

Third, we propose an ensemble Kalman filter that provides dual state-parameter esti-

mates for infectious diseases. As an online inferential method, the ensemble Kalman Filter

can perform real-time forecast during an outbreak. The framework is capable of accurate

short to mid-term forecasts.



Fourth, we develop a risk assessment framework for infectious diseases with a compre-

hensive two-layer network— a permanent layer representing permanent contacts among in-

dividuals, and a data-driven layer for temporary contacts due to movements. We combine

the two-layer network with a compartmental model and implement a Gillespie algorithm to

identify the disease evolution and assess the spatial spreading risk. The proposed risk as-

sessment framework suggests some focal points (spatial) for disease preparedness, providing

critical directions to inform interventions in the field.

Finally, we investigate the strong correlation of the arthropod abundance and host inter-

action with vector-borne pathogen transmission, and we developed a risk assessment frame-

work using climate (average temperature and rainfall) and host demographic (host density

and movement) data, particularly suitable for regions with unreported or under-reported in-

cidence data. This framework consisted of a spatiotemporal network-based approach coupled

with a compartmental disease model and a non-homogeneous Gillespie algorithm. We have

identified the spatiotemporal suitability map, the spatial risk map, the significant-incidence

window, and peak incidence period. The outcomes of the framework comprise of weather-

dependent spatiotemporal suitability maps and probabilistic risk maps for spatial infection

transmission. This framework is capable of vector-borne disease risk assessment without

historical incidence data and can be a useful tool for preparedness with accurate human

movement data.



Network-based modeling for risk assessment of infectious disease

transmission

by

Md Mahbubul Huq Riad

B.S., Bangladesh University of Engineering and Technology, 2013

M.S., Kansas State University, 2017

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Mike Wiegers Department of Electrical and Computer Engineering
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2020

Approved by:

Major Professor
Caterina Maria Scoglio



Copyright

© Md Mahbubul Huq Riad 2020.



Abstract

Infectious disease modeling is crucial to optimize surveillance, preventative measures, and

resource allocation. Simulation with infectious disease models is very convenient when the

resource requirement for data collection and experimental studies are prohibitively high or

even unethical. A vast number of approaches have been proposed to model infectious disease

transmission from different perspectives. In this dissertation, we investigate network-based

disease models for efficient resource allocation, effective mitigation measures, and accurate

risk assessment. We also investigate a filtering-based parameter estimation and forecasting

framework, usable when proper incidence data is available.

First, we provide a guideline for developing a network-based model and simulation frame-

work for any infectious diseases. As an example, we provide a step-by-step method for

developing a spatially explicit model for infectious diseases with host demographic data. We

show how to devise effective mitigation strategies from simulation results using the spatially

explicit model.

Our second contribution is developing a parameter estimation framework using a se-

quential Monte Carlo filter, a compartmental disease model, and historical incidence data.

Parameter estimation for any infectious disease model is crucial for accurately informing

resource allocation and control measures. Our method is particularly important for its

adaptability to the availability of new incidence data of any epidemic. This parameter esti-

mation framework is not limited to epidemic models; rather, it can be used for any systems

with a state-space model.

Third, we propose an ensemble Kalman filter that provides dual state-parameter esti-

mates for infectious diseases. As an online inferential method, the ensemble Kalman Filter

can perform real-time forecast during an outbreak. The framework is capable of accurate

short to mid-term forecasts.



Fourth, we develop a risk assessment framework for infectious diseases with a compre-

hensive two-layer network— a permanent layer representing permanent contacts among in-

dividuals, and a data-driven layer for temporary contacts due to movements. We combine

the two-layer network with a compartmental model and implement a Gillespie algorithm to

identify the disease evolution and assess the spatial spreading risk. The proposed risk as-

sessment framework suggests some focal points (spatial) for disease preparedness, providing

critical directions to inform interventions in the field.

Finally, we investigate the strong correlation of the arthropod abundance and host inter-

action with vector-borne pathogen transmission, and we developed a risk assessment frame-

work using climate (average temperature and rainfall) and host demographic (host density

and movement) data, particularly suitable for regions with unreported or under-reported in-

cidence data. This framework consisted of a spatiotemporal network-based approach coupled

with a compartmental disease model and a non-homogeneous Gillespie algorithm. We have

identified the spatiotemporal suitability map, the spatial risk map, the significant-incidence

window, and peak incidence period. The outcomes of the framework comprise of weather-

dependent spatiotemporal suitability maps and probabilistic risk maps for spatial infection

transmission. This framework is capable of vector-borne disease risk assessment without

historical incidence data and can be a useful tool for preparedness with accurate human

movement data.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Broader impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Infectious disease transmission over complex networks . . . . . . . . . 7

1.6.2 Parameter estimation and forecasting with filtering methods . . . . . 10

2 Individual-based network model for Rift Valley fever . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Materials and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Modeling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Geographic structure and movement in the cattle contact network (CCN) 14

viii



2.2.3 Cattle contact network scenarios . . . . . . . . . . . . . . . . . . . . 18

2.3 Numerical simulations results and discussion . . . . . . . . . . . . . . . . . . 19

2.3.1 Simulation set I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Simulation set II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Simulation set III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Estimation of parameters and basic reproductive ratio using Sequential Monte Carlo

filter for Japanese encephalitis transmission . . . . . . . . . . . . . . . . . . . . . 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Japanese encephalitis compartmental Model . . . . . . . . . . . . . . 34

3.2.2 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Bootstrap particle filter . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.5 Auxiliary particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.6 Kernel density particle filter . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Materials and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Japanese encephalitis state-space model . . . . . . . . . . . . . . . . 39

3.3.2 Application of kernel density particle filter . . . . . . . . . . . . . . . 40

3.4 Simulation results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Short-term forecast and dual state-parameter estimation using ensemble Kalman

filter for Japanese encephalitis transmission . . . . . . . . . . . . . . . . . . . . . 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Materials and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Sequential data assimilation and filtering . . . . . . . . . . . . . . . . 48

ix



4.2.2 Kalman filter (KF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Ensemble Kalman filter: state estimation . . . . . . . . . . . . . . . . 49

4.2.4 Ensemble Kalman filter: dual state-parameter estimation . . . . . . . 51

4.2.5 Specifying parameter priors . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Simulation results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Dual State-parameter Estimation and Forecast . . . . . . . . . . . . . 53

4.3.2 Application of Control Measures . . . . . . . . . . . . . . . . . . . . . 56

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Risk assessment of Ebola virus disease spreading using a two-layer temporal network 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Risk assessment method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Two-layer temporal network . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Epidemics on two-layer temporal network . . . . . . . . . . . . . . . . 64

5.2.3 Adaptation of the Gillespie algorithm . . . . . . . . . . . . . . . . . . 66

5.2.4 Calculation of risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.5 Calculation of confidence interval . . . . . . . . . . . . . . . . . . . . 68

5.3 Application of risk assessment for Uganda EVD spreading . . . . . . . . . . 68

5.3.1 Two-layer temporal network for Uganda . . . . . . . . . . . . . . . . 69

5.3.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Risk assessment of vector-borne disease transmission using spatiotemporal network

model and climate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Materials and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 Risk assessment framework . . . . . . . . . . . . . . . . . . . . . . . . 90

x



6.2.2 Application of the risk assessment framework for Bangladesh dengue

incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 Spatiotemporal suitability of dengue transmission in Bangladesh . . . 100

6.3.2 Risk maps for dengue transmission in Bangladesh . . . . . . . . . . . 102

6.3.3 Serotype analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.4 Peak timing validation . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.5 Application of control measures . . . . . . . . . . . . . . . . . . . . . 111

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Summary and future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A Appendix A: An individual-level network model for a hypothetical outbreak of

Japanese Encephalitis in the USA . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Materials and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2.2 Network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2.3 Estimations and assumptions . . . . . . . . . . . . . . . . . . . . . . 148

A.2.4 Mathematical model summary . . . . . . . . . . . . . . . . . . . . . . 150

A.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B Reuse permissions from publishers . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xi



List of Figures

1.1 Diagram of a network model that consisting of a SEIR model and a network 8

2.1 Locations of cattle contact networks in the Kabale District . . . . . . . . . . 16

2.2 Overall structure of the network . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Comparisons among fractions of infected cattle for a homogeneous network

for three different values of k and lower range of β . . . . . . . . . . . . . . . 20

2.4 Comparisons among fractions of infected cows for the homogeneous network,

three different values of k, and upper range of β . . . . . . . . . . . . . . . . 21

2.5 Comparisons among fractions of infected cows for the heterogeneous network,

three different values of k, and lower range of β . . . . . . . . . . . . . . . . 22

2.6 Comparisons among fractions of infected cows for the heterogeneous network

for three different values of k and lower range of β . . . . . . . . . . . . . . . 23

2.7 Comparisons among fractions of infected cows for heterogeneous and homo-

geneous networks for lower range of β and a) k=0.01 and b) k=0.1 . . . . . 24

2.8 Comparisons among fractions of infected cows for heterogeneous and homo-

geneous networks for the upper range of β and a) k=0.01 and b) k=0.1 . . . 25

2.9 Fraction of cows in each compartment with a 95 percent confidence interval

for β=0.001 (top left), 0.005 (top right), 0.01 (bottom left), and 0.03 (bottom

right) and for a homogeneous network . . . . . . . . . . . . . . . . . . . . . 27

2.10 Fraction of cows in each compartment with a 95 percent confidence interval

for β=0.001 (top left), 0.005 (top right), 0.01 (bottom left), and 0.03 (bottom

right) and for heterogeneous network . . . . . . . . . . . . . . . . . . . . . . 28

xii



2.11 Peak infection time with infection rate and for outbreaks starting in loca-

tion/locations with (a) higher number of cows and (b) fewer number of cows 30

3.1 Cumulative number of infected in the Philippines and their corresponding

particle filter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Variability of the infection rate β with time . . . . . . . . . . . . . . . . . . 43

3.3 Variability of the basic reproductive ratio R0 with time . . . . . . . . . . . . 44

3.4 Cumulative number of infected in the Philippines with the forecast for the

last 5 data points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Parameter Estimates from the dual state-parameter estimation framework

with 95% confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 State estimates and forecasts from dual state-parameter EnKF framework . . 55

4.3 Squared error for estimates and forecasts using EnKF framework . . . . . . . 56

4.4 Effect of control measures in the disease spread . . . . . . . . . . . . . . . . 57

5.1 A generalized representation of the temporal network model at a specific time t 63

5.2 Node-transition diagram for exact/stochastic spreading process used in this

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Two-layer temporal network for EVD spreading in Uganda . . . . . . . . . . 71

5.4 Zoomed view of a district in EVD spreading network in Uganda. We chose

Kasese district for this visualization . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Average number of cumulative infected and average number of infected hu-

mans in the Uganda Ebola network for P0=0.7, σ=0.5 . . . . . . . . . . . . . 76

5.6 Risk map of Ebola spreading within selected 23 districts in Uganda for P0=0.7,

σ=0.5, and (a) β=0.2, (b) β=0.5, (c) β= 1.7, (d) β = 2.5. The map is colour

coded according to the risk of Ebola spreading. . . . . . . . . . . . . . . . . 78

5.7 Average number of cumulative infected and average number of infected hu-

mans in the Uganda Ebola network for P0=0.7, σ=0.1 . . . . . . . . . . . . . 79

xiii



5.8 Risk map of Ebola spreading within selected 23 districts in Uganda for P0=0.7,

σ=0.1, and (a) β=0.2, (b) β=0.5, (c) β= 1.7, (d) β = 2.5. The map is colour

coded according to the risk of Ebola spreading. . . . . . . . . . . . . . . . . 81

5.9 Average number of cumulative infected and average number of infected hu-

mans in the Uganda Ebola network for P0=0.1, σ=0.5 . . . . . . . . . . . . . 83

5.10 Risk map of Ebola spreading within selected 23 districts in Uganda for P0=0.1,

σ=0.5, and (a) β=0.2, (b) β=0.5, (c) β= 1.7, (d) β = 2.5. The map is colour

coded according to the risk of Ebola spreading. . . . . . . . . . . . . . . . . 84

5.11 Average number of cumulative infected and average number of infected hu-

mans in the Uganda Ebola network for P0=0.1, σ=0.1 . . . . . . . . . . . . . 85

5.12 Risk map of Ebola spreading within selected 23 districts in Uganda for P0=0.7,

σ=0.5, and (a) β=0.2, (b) β=0.5, (c) β= 1.7, (d) β = 2.5. The map is colour

coded according to the risk of Ebola spreading. . . . . . . . . . . . . . . . . 86

6.1 Network for Bangladesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Spatiotemporal suitability maps for dengue transmission in Bangladesh. . . . 101

6.3 Simulation results and risk maps for dengue transmission in Bangladesh for

a major outbreak. The left side panels are results of simulations started in

Dhaka, while the right side panels are results of simulations started in Chit-

tagong. Panels (a) and (d) show the dengue transmission dynamics; Panels

(b) and (e) present histograms of the number of simulations and infection size;

Finally, panels (c) and (f) display risk maps for dengue infection. . . . . . . . 104

6.4 Simulation results and risk maps for dengue transmission in Bangladesh for

a minor outbreak. The left side panels are results of simulations started in

Dhaka, while the right side panels are results of simulations started in Chit-

tagong. Panels (a) and (d) show the dengue transmission dynamics; Panels

(b) and (e) present histograms of the number of simulations and infection size;

Finally, panels (c) and (f) display risk maps for dengue infection. . . . . . . 107

xiv



6.5 Serotype analysis of dengue spreading in Bangladesh since 2000 The bar chart

presents the number of dengue cases with the circulating serotypes each year

in Bangladesh. The main bar color represents the dominant serotype, while

the border represents other circulating serotypes. . . . . . . . . . . . . . . . 109

6.6 (a) Comparison of peak time from our simulation with incidence data during

a minor outbreak in 2018; (b) Comparison of peak time from our simulation

with incidence data during a major outbreak in 2019. . . . . . . . . . . . . . 111

6.7 (a) Temporal spreading of dengue with control measures implemented; (b)

Spatial risk map of dengue spreading when control measures are applied. . . 112

A.1 The network layout of three locations for JE spreading. . . . . . . . . . . . 149

A.2 Estimated number of infected pigs with 95% confidence interval during fall

bird migration using a local fully connected network. . . . . . . . . . . . . . 153

A.3 Estimated number of infected pigs with 95% confidence interval during spring

bird migration using a local fully connected network. . . . . . . . . . . . . . 154

A.4 Comparison between the number of infections of the local fully connected

network during spring and fall migrations for increasing values of vectorial

capacity when a) r = 0.15, b) r = 0.3, and c) r = 0.5. . . . . . . . . . . . . . 155

A.5 Estimated number of infected pigs with 95% confidence interval during fall

bird migration using a local Erdos-Renyi network . . . . . . . . . . . . . . . 156

A.6 Estimated number of infected pigs with 95% confidence interval during spring

bird migration using a local Erdos-Renyi network. . . . . . . . . . . . . . . . 157

A.7 Comparison between the number of infections of local Erdos-Renyi network

during spring and fall migrations for increasing values of vectorial capacity

when a) r = 0.15, b) r = 0.3, and c) r = 0.5. . . . . . . . . . . . . . . . . . . 158

xv



List of Tables

2.1 Cows in different locations in the Kabale District; this data set was derived

from the UBOS Statistical Report 2012, Kabale District. . . . . . . . . . . . 15

2.2 Table shows maximum infected fractions of cows, peak infection time, and

rate at which that maximum is attained for a homogeneous network. . . . . 26

2.3 Table shows maximum infected fractions of cows, peak infection time, and

rate at which that maximum is attained for a heterogeneous network and a

single infected cow in the Kabale municipality. . . . . . . . . . . . . . . . . . 26

4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Districts considered in our Uganda two-layer temporal network . . . . . . . . 73

5.2 Classification of risk for our spatial locations based on the value of risk pa-

rameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Districts in the network and their associated risks for EVD spreading. . . . . 78

5.4 Districts in the network and their associated risks for EVD spreading. . . . . 81

xvi



Acknowledgments

I want to thank my advisor Dr. Caterina Scoglio and Dr. Lee Cohnstaedt for their

continuous support, guidance, and enormous endeavor in my academic progression. They

always allowed me to share my thoughts and problems — academic or otherwise– and tried

their best to guide me in overcoming them. It would be challenging for me to finish this

dissertation without their technical and editorial advice.

I owe my profound gratitude to my committee members, Dr. Don Gruenbacher and Dr.

Hongyu Wu, for their time and support. Sincere gratitude to Dr. David Renter for serving

as the chairperson of the examining committee for this doctoral degree.

Heartfelt thanks to my loving wife, Shiba, for her endless love and support. Her uncondi-

tional and unending support kept me going with my work and studies. I express my deepest

gratitude to my beloved sister and niece, Disha, for their unending support and encourage-

ment all through my career. Words are not enough to thank my beloved parents for their

eternal love and endless prayers. I take this opportunity to thank my family members for

moral support and devoted pieces of advice. Last but not least, all thanks to the Almighty

for allowing me to pursue my dream.

xvii



Dedication

To my parents

xviii



Preface

This dissertation, with the title “Network-based modeling for risk assessment of infectious

disease transmission” is submitted for the degree of Doctor of Philosophy in the Department

of Electrical and Computer Engineering at Kansas State University. The research has been

performed under the supervision of Prof. Caterina Scoglio. Most of the work is comprised

of the following set of published or submitted peer-reviewed journal and conference papers:

Peer-reviewed journal papers

• Mahbubul H Riad, Lee W Cohnstaedt, and Caterina M Scoglio. Risk assessment of

vector-borne disease transmission using spatiotemporal network model and climate

data with an application of dengue in Bangladesh. Submitted for publication.

• Mahbubul H Riad, Musa Sekamatte, Felix Ocom, Issa Makumbi, and Caterina M

Scoglio. Risk assessment of Ebola virus disease spreading in Uganda using a two-layer

temporal network. Scientific reports, 9(1):1–17, 2019. (Impact factor: 4.120)

• Mahbubul H Riad, Caterina M Scoglio, D Scott McVey, and Lee W Cohnstaedt. An

individual-level network model for a hypothetical outbreak of Japanese encephalitis in

the USA. Stochastic environmental research and risk assessment, 31(2):353–367, 2017.

(Impact factor: 3.09)

• Musa Sekamatte, Mahbubul H Riad, Tesfaalem Tekleghiorghis, Kenneth J Linthicum,

Seth C Britch, Juergen A Richt, JP Gonzalez, and Caterina M Scoglio. Individual-

based network model for Rift Valley fever in Kabale district, Uganda. PloS one, 14(3):

e0202721, 2019. (Impact factor: 2.870)

xix



• Caterina M Scoglio, Claudio Bosca, Mahbubul H Riad, Faryad D Sahneh, Seth C

Britch, Lee W Cohnstaedt, and Kenneth J Linthicum. Biologically informed individual-

based network model for Rift Valley fever in the US and evaluation of mitigation

strategies. PloS one, 11(9):e0162759, 2016. (Impact factor: 2.870)

Peer-reviewed conference papers

• Mahbubul H Riad, Caterina M Scoglio, D Scott McVey, and Lee W Cohnstaedt. Esti-

mation of parameters and basic reproductive ratio for Japanese encephalitis transmis-

sion in the Philippines using a sequential Monte Carlo filter. In 2017 IEEE Conference

on Control Technology and Applications (CCTA), pages 668-673. IEEE, 2017 (Accep-

tance rate: 63%)

• Mahbubul H Riad, Caterina M Scoglio, Lee W Cohnstaedt, and D Scott McVey. Short-

term forecast and dual state-parameter estimation for Japanese encephalitis transmis-

sion using ensemble Kalman filter. In 2019 American Control Conference (ACC), pages

3444–3449. IEEE, 2019. (Acceptance rate: 64%)

xx



Chapter 1

Introduction

1.1 Introduction

Infectious disease models provide guidelines in efforts focusing on understanding, risk as-

sessment, and control of current and potential outbreaks. A crucial factor in the infectious

disease model is incorporating the impact of pathogen and host-level interactions and eco-

logical, social, and demographic factors1–3. Mathematical modeling and simulation are very

convenient when the resource requirement for data collection and experimental studies are

prohibitively high. A vast number of approaches have been proposed to model infectious dis-

ease transmission from different perspectives. Some of these models are mechanistic models

of disease dynamics (compartmental models, differential equation models, complex network

models)4–10, statistical methods (regression model, hidden Markov model)11–16, and data-

driven methods for the forecasting (machine learning model)17–20. These models provide

important guidelines about disease transmission, spatial patterns, and mitigation measures.

While the history of the infectious disease model dates back to the eighteen century, most

of them focused on the statistical and mechanistic models3. While statistical methods have

the potential for rapid assessment of emerging situations, their success is crucially dependent

on the correctness of the data and the construction of statistical models to effectively capture

disease characteristics3;21. A limitation of the early statistical methods was the inability to
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record explicitly the disease characteristics rather than observing some possible indicators

of the disease. Mechanistic models, on the other hand, provides crucial insights about

critical factors in disease transmission systems22. Compartmental models can be explored

using powerful analysis techniques for ordinary or partial differential equations. Under the

mean-field approximation, assuming that the population is perfectly mixed and that every

susceptible has the same probability of becoming infected, the probabilities are equated to

the expected (mean) values of the corresponding variables in the population.

However, due to the complexity and the stochasticity of the disease transmission, most

available compartmental models are often only qualitative3;23. The qualitative results can

be very useful, especially when a large portion of the population is infected. However, they

cannot capture the comprehensive epidemiological realism. The strict mean-field approx-

imation and homogeneous mixing/contacts of the population in the differential equation

models are relaxed in complex network mechanistic models, which are alternatively called as

network-based models3;10. Contacts between individuals are influenced by a broad spectrum

of factors characterizing the transmission mechanisms of a particular disease. Understanding

the role of intricate contact patterns is of utmost importance to public-health measures and

policies for controlling disease outbreaks. Vaccination, quarantine, and use of antiviral drugs

on targeted parts of the population have to be carefully designed to efficiently combat an

emerged epidemic. Poor understanding of the infectious disease dynamics as these emerge

due to heterogeneous contact interactions may result in serious negative consequences. Over

the last years, there has been an intense effort in studying the interplay between the emergent

dynamics of infectious diseases and the underlying topology of the transmission network.

Therefore, network-based models have become very popular in recent times due to their

capability to incorporate heterogeneous contact structure of individual nodes. Extensive

research during the past decade has been devoted to capturing the network’s role and the in-

teraction of different system components on infectious disease transmission dynamics8;10;24–28.

However, there are various topics in network-based models that need further exploration. In

this dissertation, we focus on 1) providing explicit guidelines on developing spatially explicit

network-based models and suggesting mitigation measures, 2) exploring applications of well-
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known parameter estimation and forecasting methods in the context of stochastic disease

transmission model, and 3) assessing the risk of infectious disease transmission using realistic

network-based models.

1.2 Motivation

A crucial factor for the network-based model is the identification of valuable, and relevant

information in the model. However, this information is in general particular to the a disease,

a geographic location, demographic information, and environmental factors. Incorporating

irrelevant information will complicate the model without providing significant improvement

in the existing body of knowledge. Therefore, in this work, we provide guidelines for formu-

lating a network-based model with the application to specific diseases. Simulation results

from the network-based model are used to reinforce the knowledge of the disease dynamics

as well as suggesting effective mitigation measures. These network-based models will be use-

ful for public health policymakers when realistic information about the network and disease

transmission parameters are incorporated.

The realistic disease transmission parameters can be derived from the disease incidence

data for a specific geographic location. Essential methods for deriving the parameter are

based on filtering approaches such as the adaptation of particle filters and Kalman filters.

To estimate realistic parameters, we have developed a parameter estimation framework us-

ing sequential Monte Carlo filter from disease incidence data and have demonstrated its

effectiveness with an application. This parameter estimation framework can capture the

temporal variation of the parameter for specific diseases and incidence data. Once these

realistic parameter estimates are used in the network-based model, the simulation results

will provide guidelines for public health people in effective resource allocation.

We have also developed a dual-state parameter estimation framework from historical in-

cidence data adapting the ensemble Kalman filter for disease transmission models. The pre-

diction/forecasting of infectious disease is highly important for preparedness. The dual-state

parameter estimation framework can be used for simultaneously forecasting and estimating
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model parameters. The framework is capable of accurate short and mid-term forecasts for

infectious diseases.

Risk assessment of infectious disease plays a vital role in disease preparedness. The

contact and the connectivity among the host population call for a risk assessment method

using a network-based model. Therefore, we have developed network-based risk assessment

models for infectious disease. For diseases that are directly transmitted from an individual to

another, contact and movement structure plays a vital role in disease transmission. However,

the contact network topology keeps changing due to the movement of individuals. To account

for this changing network topology, we have proposed a two-layer temporal network for

risk assessment framework. The network has a permanent layer representing permanent

contacts among individuals and a data-driven temporal network for human movements. We

propose a Gillespie algorithm with a compartmental model to simulate the evolution of

disease spreading as well as to evaluate the risk throughout our network.

Finally, we have developed a risk assessment framework for vector-borne diseases, whose

transmission is dependent on a vector population. Vector-borne disease risk assessment is

crucial to optimize surveillance, preventative measures (vector control), and resource alloca-

tion (medical supplies). High arthropod abundance and host interaction strongly correlate

to vector-borne pathogen transmission. Increasing host density and movement increases the

possibility of local and long-distance pathogen transmission. We developed a risk assessment

framework using climate (average temperature and rainfall) and host demographic (host den-

sity and movement) data, particularly suitable for regions with unreported or under-reported

incidence data.

1.3 Broader impacts

This dissertation provides a generalized method for developing a network-based models by in-

corporating relevant components for a spatially explicit network. Simulation results demon-

strate the usefulness of the model for effective resource allocation and suggesting mitigation

measures.
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We investigate a method to derive realistic parameter values to be used in the network-

based model. The realistic parameters provide confidence for simulation results to be used

for practical purposes such as resource allocation and mitigation measures suggestion. We

also develop a short-term and mid-term forecasting framework, which is capable of providing

a picture of the severity of an outbreak in the near future. The applications of the parameter

estimation and forecasting framework are not limited epidemic model and can be used to

other models in engineering, biology, and data science.

We develop risk assessment frameworks for infectious diseases in the absence of incidence

data. We develop the risk assessment framework for both host-host and host-vector-host

transmission. These frameworks are based on the host demographic data (density, move-

ments) and climate data, and are a useful tool for providing guidelines to public health

personnel for new infectious diseases and in locations with unreported and under-reported

incidence data.

1.4 Contributions

Our contributions can be summarized as follows.

• Demonstrating the method for developing a contact network and simulating the infec-

tion spreading within a network with an application to Rift valley fever and Japanese

encephalitis transmission.

• Suggesting mitigation interventions during an outbreak from network-based model’s

simulation results.

• Developing a parameter estimation framework using sequential Monte Carlo filter and

using historical incidence data.

• Estimating basic reproductive ratio for infectious disease from historical incidence data.

• Adapting the ensemble Kalman filter (EnKF) for dual state-parameter estimation.
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• Performing short- and mid-term retrospective forecasting for Taiwan Japanese en-

cephalitis incidences and evaluate the accuracy of the forecast from the developed

framework.

• Proposing a two-layer temporal network with a static and a temporal/dynamic layer

incorporating both permanent and temporal contacts among individuals.

• Combining the Gillespie algorithm with the two-layer network to develop a frame-

work for risk assessment and applying the framework for the Ebola risk assessment in

Uganda.

• Modeling vectorial capacity for vector-borne disease transmission using climate data.

• Developing a spatiotemporal network model and a risk assessment framework for

vector-borne diseases implementing a non-homogeneous Gillespie algorithm.

• Creating spatiotemporal suitability maps and spatial risk maps for dengue spreading

in Bangladesh.

1.5 Organization

The concepts of network-based model and the guidelines for spatially explicit network formu-

lation and simulation framework are presented in Chapter 2 and Appendix A with applica-

tions for Rift valley fever and Japanese encephalitis, respectively. We describe the parameter

estimation framework using sequential Monte Carlo filter and its application for parameter

estimation and forecasting for Japanese encephalitis in Philippines in Chapter 3. Chapter 4

presents the dual state-parameter estimation and forecasting framework using the ensemble

Kalman filter, with an application for Japanese encephalitis forecast in Taiwan. In chapter 5,

we introduce a two-layer temporal network for risk assessment of infectious diseases directly

transmitted via physical contact. The application of the framework is demonstrated on a

possible Ebola outbreak in Uganda from the neighbouring Democratic Republic of Congo.

Finally, a risk assessment framework of vector-borne diseases is presented in Chapter 6 with
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host demographic information and climate data. Closing remarks with future direction on

this research are reported in Chapter 7.

1.6 Background

1.6.1 Infectious disease transmission over complex networks

In this section, we explain the infectious disease transmission over a complex network. As an

example, we have used Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model

to describe the basics of infectious disease spreading in a network.

The network of a selected population with N individuals can be represented by G =

{V,E}, where V represents the set of nodes, and E is the set of edges—possible means of

infection transmission between the nodes. This network is called the contact network as it

expresses the possible contact patterns of the nodes. The contact network is mathematically

expressed as the adjacency matrix A = [akl] ∈ RNXN is defined with the elements akl = 1 if

and only if (k, l) ∈ E else akl = 0.

Nodes influence each other through statistically independent pairwise interactions in most

network-based models. The combined state of all nodes in a network can be described as

a random variable XN(t) = [x1(t), x2(t), ..., xi(t)], where xi(t) is the state (compartment)

of node i at time t. The transition time from one state to another is expressed as an ex-

ponential distribution with a transition rate σn(xn → J), where J is the destination state

after the transition. This transitions can be node-based (dependent only on the node state

xi(t)) or edge-based (dependent on the combined network state XN(t)). The transition from

susceptible-exposed is edge-based, and a susceptible node becomes infected through interac-

tion with infected neighbors in the network. The transition from susceptible to infected and

infected to recovered happen automatically after a certain time. These inter-state transition

times are a random variable that can have any distribution. However, in the Markovian

process, these transition times are exponentially distributed with specific rates. Sahneh et

al. developed the generalized epidemic modeling framework(GEMF) for stochastic spread-
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ing processes over complex networks based on these independent pairwise interactions for

Markovian processes29;30. The overall structure of a network-based model is represented in

Figure 1.1.

 

S 

β δ γ 
E R I 

Figure 1.1: Diagram of a network model that consisting of a SEIR model and a network.
The bottom part within the rectangle represents the network, where each black dot is a node.
The line between two nodes represents the link— possibility of pathogen transmission from an
infected to a susceptible node. Circles in the top part represent the four compartments sus-
ceptible (S), exposed (E), infectious (I), and recovered (R) of a node, and arrows between the
compartments show the direction of transition for each node with rates driven by parameters
β (infection rate), δ (incubation rate), and γ (recovery rate).

In SEIR compartmental model, each network node can assume one of the four compart-

ments/states. The state occupancy probability after a time ∆t can be expressed as equations

(1.1- 1.3).

Pr[xi(t+ ∆t) = 2|xi(t) = 1, XN(t)] = βYi∆t+ o(∆t) (1.1)

Pr[xi(t+ ∆t) = 3|xi(t) = 2, XN(t)] = δ∆t+ o(∆t) (1.2)

8



Pr[xi(t+ ∆t) = 4|xi(t) = 3, XN(t)] = γ∆t+ o(∆t) (1.3)

In these equations, xi(t+∆t) = 1, 2, 3, and 4 express the probability of node i occupying

the susceptible, exposed, infected or removed state at time (t + ∆t), respectively. XN(t) is

the combined network state at time t. The transition rate from susceptible to an exposed

state is an edge-based transition. We express this parameter with an infection rate β. Yi is

the set of infected neighbors of node i within the network at time t. The parameter δ is the

incubation rate, which governs the transition from exposed to infected state. The transition

from infected to removed state is expressed with the recovery rate γ. Incubation rate δ and

recovery rate γ are node-based transition rates.

A simulation tool GEMFsim was developed for numerical simulation by implementing

the Gillespie algorithm with the Markovian process described in equations 1.1-1.330. The

Gillespie algorithm samples the earliest event among a set of independent (i.e., inter-state

transitions) events with exponentially distributed occurrence time31. For example, node n

will make a transition from state i to state j at a random time Tn which is exponentially

distributed with a rate rn. Since the inter-state transition of a node does not affect the

transition of other nodes, the transition time for each node can be generated by drawing a

random value from its corresponding distribution. We get a sequence of events by arranging

these transition times in increasing order. The Gillespie algorithm samples the time for

the earliest event by going through all the ongoing processes and the node that makes

the transition. The GEMFSim tool was developed to simulate the stochastic spreading

process with the Gillespie algorithm, as it is capable of simulating the Markovian dynamics

of a complex system. It provides a simulation tool for exact, continuous-time numerical

simulation of the spreading process over a complex network. Therefore, GEMFSim can

be used for understanding the spreading dynamics of infectious diseases within a complex

network-based model.
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1.6.2 Parameter estimation and forecasting with filtering methods

The primary purpose of the filtering methods in epidemic models is to characterize the

epidemiological system in the future from the initial information. The states of an epidemi-

ological system Xk, at time k is dependent on the observations up to time k. A variety

of methods in estimation theory enable the recursive estimation of system state variables

and the inference of model parameters32. Filtering methods, also known as sequential data

assimilation, have been widely used in different engineering and epidemiological designs and

forecasts. The ability of an epidemiological model to make accurate predictions depends on

the extent to which the model represents real-world transmission dynamics as well as the

proper specification of model parameters and initial conditions33. Filtering methods use the

available data to recursively inform and train the model so that current conditions are bet-

ter depicted and evolving outbreak characteristics (i.e., the trajectory of the epidemic curve)

are better-matched34. Some examples of filtering methods are different kinds of particle and

Kalman filters32;35, which are extensively used for parameter estimation and forecasting.
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Chapter 2

Individual-based network model for

Rift Valley fever1

2.1 Introduction

Rift Valley fever (RVF) is a zoonotic mosquito-borne disease caused by the Rift Valley

fever virus (RVFV; Phlebovirus : Bunyaviridae). It severely affects ungulate livestock and

wildlife but can also affect humans in RVF-endemic regions of sub-Saharan Africa and parts

of the Arabian Peninsula8;37. Major RVF outbreaks have been reported in Egypt (1977,

2003), Kenya (1997, 1998, 2006, 2007), Tanzania (2007), Somalia (2007), Saudi Arabia and

Yemen (2000-2001), Sudan (2007), Senegal (2013-2014), Mauritania (2010, 2012, 2013- 2014),

Uganda (2016), and Niger (2016)38–48. Potential economic impact and public and veterinary

health burdens due to RVF outbreaks have been documented38;47–50. Persistent heavy rain-

fall causing flooding is the most prominent precursor of RVF epizootics in East Africa, due to

flooded- ground pools stimulating massive emergence of transovarially RVFV-infected Aedes

mosquitoes51;52. The transmission cycle of RVFV initiates as the virus is introduced into

livestock by competent mosquitoes during blood feeding29;37;53. However, the West Africa

epizootic regions do not experience transmissions linked to elevated rainfall54. In these areas,

1 This chapter is a reformatted and slightly modified version of our published article36
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RVFV is most likely spread via movements of infected livestock from endemic areas. Live-

stock trading across different market areas may include infected cows that could disperse the

virus in the presence of competent mosquitoes55. Patterns of recent RVF activity in Uganda

support the hypothesis of RVFV spread linked to the cattle trade56. This event in Uganda

underscored the need to develop effective operational surveillance and mitigation strategies

to reduce or prevent spread among cattle operation locations. Mathematical/epidemic mod-

els offer the possibility to investigate RVFV and other infectious disease dynamics through

time, and may be used to devise mitigation strategies7. The potential impact of an RVFV

outbreak can be quantitatively assessed from simulations using epidemic models. The im-

portance of space in RVF endemicity in West Africa was demonstrated by placing a mosquito

habitat under surveillance to find the triggering point for an RVF epidemic57. Models showed

animals could infect humans and mosquitoes; however, humans cannot infect mosquitoes or

livestock58. A Bayesian spatial model for RVF spreading was proposed to investigate environ-

mental drivers that alter host and vector distributions59. In Kenya, an ecological niche model

was formulated to predict the distribution of RVF vector species under climate change60. An

individual-level network model was proposed to demonstrate the effect of network topologies

based on inter-farm cattle movement in the United States7. Two separate kernel functions —

exponential and power-law kernels— were used to model cattle movement within and among

farms in Riley County, Kansas. Between simulations with two kernel functions, widespread

epizootics from the power-law model were revealed, because cows were allowed to move to

distant farms. In contrast, the exponential model greatly restricted cattle movement to more

proximal farms, reducing the spread of the virus. In this study, we develop a network-based

epidemic transmission model to perform simulations. Simulation results provide an oppor-

tunity to investigate patterns of RVFV across locations in the Kabale District, Uganda. We

build upon a previous individual-based network model to investigate RVFV epidemiology in

the Kabale District using 2012 livestock data from UBOS57. This model considers livestock

as a spatially explicit factor in an individual-based network representing different locations

with the specific mosquito and environmental factors. Our goal is to investigate changes in

the epidemic size (total number of infected cows) for varying mosquito abundance, different
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initial conditions (single- or multiple-outbreak locations), cattle breed (indigenous or exotic),

and cattle movement. We are able to suggest several mitigation strategies to check/reduce

RVFV spread using simulation results from the individual-based network model.

2.2 Materials and method

2.2.1 Modeling framework

An RVFV modeling framework consists of two parts, a node transition graph, and a contact

network. The node transition graph consists of four compartments— susceptible (S), exposed

(E), infectious (I), and recovered (R). Each individual cow can be in only one of these four

compartments, and rates of transitions between compartments are driven by parameters β

(infection rate), δ (incubation rate), and γ (recovery rate). Figure 1.1 represents the spread

model’s conceptual core, showing the sequence of the progression of the RVFV infection in

a cow (node) through four compartments.

In the network model, the infection can spread if a susceptible node (i.e., a susceptible

cow) is in physical proximity with at least one infectious node. Specifically, one infectious

cow (node 1) will be able to transmit RVFV to a susceptible cow (node 2) only if there are

enough RVFV-competent mosquitoes to first bite the infectious cow (node 1) then, after an

appropriate period for the virus to disperse and replicate in the mosquito, bite a susceptible

cow (node 2)7. As stated before, links between cows in the network represent the possibility

of virus transfer via mosquitoes once cows are in physical proximity for a sufficient period.

We explicitly model cows, and mosquitoes are included in an aggregated way with a

transmission parameter from an infected animal to a susceptible one. This transmission

parameter is directly proportional to vectorial capacity, which includes mosquito abundance,

survival rate, vector competence, and feeding patterns7. Once a susceptible (S) node is in

the physical proximity of an infectious node, virus transfer takes place with infection rate β

and move the cow into the exposed (E) compartment. If a susceptible cow has Yi infectious

neighbors, then the probability of the susceptible cow to receive a virus transmission is
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βYi. Therefore, the total rate at which susceptible cows become infected is proportional to

the number of infectious cows in the neighborhood and the vectorial capacity of available

mosquito vectors. The cow’s transition from the exposed compartment (E) to the infectious

(I) compartment takes place at rate δ. It represents the time the pathogen will take, once it

entered into the host body, to replicate enough for the cow to become infectious – i.e., capable

of infecting a naive mosquito. Infectious cows finally transferred to the recovered/removed

compartment (R) with rate γ. We do not consider disease-induced mortality; the endpoint in

the simulation for an individual cow (node) is reached when it entered the R compartment.

Parameters δ and γ are specified according to the literature. For our simulations, we

invariably use the value of δ=0.33 day−1 (3-day incubation period) and γ =0.14 day−1 (7-

day recovery period)7. Infection rate β depends upon vector abundance as well as various

environmental factors and cannot be expressed with a single value. Therefore, we use a range

of β to explore various magnitudes of environmental factors as well as mosquito abundance.

The infection rate is proportional to the realized vectorial capacity of competent mosquito

species likely to be present in the study area.

After developing the individual-based SEIR network model for the Kabale District, we

carry out extensive simulations using GEMFsim developed by the Network Science and

Engineering (NetSE) group at Kansas State University29;30. We use the GEMFsim tool for

simulation because it is an individual-based model, which provides more accurate predictions

than meta-population models7;29;30.

2.2.2 Geographic structure and movement in the cattle contact

network (CCN)

We model the cattle movement network based on the local trading system for the Kabale

District while considering two different networks depending upon the relative susceptibility of

exotic and indigenous cattle. The cattle contact network consists of 20,806 cows (N) unevenly

distributed across 22 locations in the Kabale District of Uganda in 2012 (Table 2.1), which

is approximately 1,679 km2 (648 sq mi) in the western region of Uganda (UBOS).
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Table 2.1: Cows in different locations in the Kabale District; this data set was derived from
the UBOS Statistical Report 2012, Kabale District.

Location Number of Exotic Cows Number of Indigenous Cows Total
Bubale 1721 1580 3301
Bufundi 74 804 878
Buhara 215 837 1052
Bukinda 61 268 329
Butanda 24 403 427
Hamurwa 267 1083 1350

Hamurwa T/C 116 582 698
Ikumba 141 845 986

Kabale Municipality 336 600 936
Kaharo 87 578 665

Kamuganguzi 367 526 893
Kamwezi 187 1623 1810

Kashambya 68 721 789
Katuna T/C 304 271 575

Kitumba 187 692 879
Kyanamira 361 719 1080

Maziba 141 427 568
Muhanga T/C 42 276 318

Muko 38 872 910
Rubaya 180 1008 1188
Ruhija 8 382 390

Rwamucucu 71 713 784
Total 4996 15810 20806

Locations are represented by data from a sub-county, municipality (Kabale), or town

council (Hamurwa, Muhanga, and Katuna) boundary (Table 2.1). We extracted the longi-

tude and latitude of the centroid of each location from Google Maps to display in a GIS, as

shown in Figure 2.1. We have further addressed each of them only by location without any

distinction.

To capture the actual movement of cows in Uganda, we treat contact among cows (not

physically; instead, it was implicit contact via mosquitoes) differently depending on a geo-

graphic scale. Cows are assumed to move freely within each location, while their movement

is restricted between locations. We assume each cow had equal connection probability to all

other individual cows in that location via mosquitoes because of their proximity. We found
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Figure 2.1: Locations of cattle contact networks in the Kabale District; circles represent the
center of each location. Circles are color-coded to the total number of cattle in each location.
The bigger size of the circle represents higher numbers of cattle within a location.

that an Erdos-Renyi network best represents this relationship among cows within locations,

where each cow has an equal probability of connectivity (we assumed probability 0.7 for a

connected network) to any other cow30;61.

Transmission of RVFV from one location to another can happen via the movement of

cows for economic reasons, most commonly through sales at local market places. Therefore,

contact among cows, i.e., the possibility of virus transfer, is weighted in proportion to the

distances between locations for the local trading system. We accomplish this weighting

with an exponential distance kernel, expressed as e−kd. k is a constant, which scales the

probability of cows from different locations to be in contact and has a unit km−1, and d is

the distance between the origin and destination locations. We assume three different values

of k, 0.001, 0.01, and 0.1 to reflect low, medium, and high movement probability. However,
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the network is valid for any value of k. We model potential transmissions of RVFV that

resulted from movement; therefore, an infected transferred cow to a new location can infect

others via local mosquitoes at the destination location.

We visualize 20,806 cows across the 22 locations using the network visualization software

Gephi62 in Figure 2.2, but scale cattle population sizes across the network by a factor of 1
20

for clarity. It is important to note that scaling is only used for visualization and not model

simulations, which are performed with the full value of N .

Figure 2.2: Overall structure of the network; dense circular groupings of black dots repre-
sent different locations. The inset shows a close-up of two such groupings and one possible
arrangement of links within and between them. Long black lines connect some locations,
representing potential movement-related connections, and thus opportunities for mosquito-
mediated transmission of RVFV between cows from different locations. The inset expands
a small portion of the contact network showing the dense circular masses are made up of
small black circles, each representing 20 cows and corresponds to the nodes shown in the rep-
resentative contact network. Likewise, the black lines among these nodes represent possible
connections within and between locations in the inset.
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2.2.3 Cattle contact network scenarios

Cases in the literature indicated exotic cows showed more susceptibility to RVF than indige-

nous cows. In Kenya, indigenous cows exhibited mild symptoms from RVFV infection, and

these cows might develop lower viremia, which could significantly affect the transfer of the

virus to mosquito vectors63. However, we do not have specific information on the relative

susceptibility of indigenous compared to exotic cows for the Kabale District in Uganda. This

relative susceptibility can vary with the breed as well as origin. Therefore, we assume two

different network scenarios to capture the relative susceptibility of exotic versus indigenous

cow breeds while performing simulations with GEMF: a homogeneous and a heterogeneous

network. In the homogeneous network, we assume that all cows, indigenous or exotic, have

the same susceptibility to RVFV. Therefore, we use the total number of cows in each location

rather than differentiating them in two different categories.

In the heterogeneous network, we assume exotic cows are more susceptible to RVFV than

indigenous cows. Lacking proper knowledge about the relative susceptibility, we assume if

exotic cows have a susceptibility ζ, then indigenous cows had a susceptibility of µζ, where µ

had a value between zero and one. µ = 1 means a completely homogeneous network, while

µ = 0 means a network where indigenous cattle are immune to the RVFV pathogen. An

increase in the value of µ from the minimum would increase network homogeneity and vice

versa. For simulation purposes, we assume µ = 0.7, which indicates thirty percent less sus-

ceptibility of the indigenous cows than exotic. However, we use this value to demonstrate the

effects of heterogeneity in RVFV transmission in a qualitative manner. We have invariably

used a susceptibility ζ=1 for exotic cattle in this work. Therefore, a homogeneous network

can be considered as a network of only exotic cattle (susceptibility ζ=1).

Simulations are performed for a variety of initial outbreak conditions, such as a single

location versus multiple location outbreaks with varying cattle populations, infection rates,

and cattle movement probabilities. We configure the model to investigate and quantitatively

evaluate the relative impacts of mosquito control, livestock movement regulations, and diver-

sity in cattle populations. We explore different simulation sets, each consisting of a number

18



of simulation scenarios. For each scenario, we performed 100 simulations.

We present simulation results for different values of k as well as two ranges of infection

rate β. We investigate the number of cows in different compartments in the SEIR model

by choosing a set of values of β (0.001, 0.005, 0.01, and 0.03), and starting with an infected

cow in the Kabale municipality for each simulation. We choose a medium cattle movement

probability constant β=0.01 to reduce the number of simulations. We also conduct simula-

tions with different locations for the initially infected cattle, as well as single-location and

simultaneous multiple-location RVFV epizootic outbreaks. We configure the network with

values of k=0.01 and performed simulations for β=0.001, 0.005, 0.01, and 0.03 to reduce the

number of simulation scenarios.

2.3 Numerical simulations results and discussion

2.3.1 Simulation set I

In this set, simulations are initiated with a single infected cow in the Kabale municipality

and three values of k (0.001, 0.01, and 0.1), two ranges of β (0.0001-0.005 or 0.001-0.048),

and two network topologies (homogeneous and heterogeneous), producing four scenarios:

• Scenario 1: Homogeneous network and β range 0.0001-0.005

• Scenario 2: Homogeneous network and β range 0.001-0.048

• Scenario 3: Heterogeneous network and β range 0.0001-0.005

• Scenario 4: Heterogeneous network and β range 0.001-0.048

Scenario 1

The simulation for β ranging between 0.0001-0.005 (the lower range) is presented in Figure

2.3 for three different values of the exponential constant k and a homogeneous network. We

perform simulations for 100 days and recorded the fraction of infected cattle for each value

of β.
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Figure 2.3: Comparisons among fractions of infected cattle for a homogeneous network,
three different values of k, and lower range of β; blue dots shows the fraction of infected for
k=0.1, while red rectangles and green triangles show the fraction of infected for k=0.01 and
0.001 respectively. For the same value of infection rate, we always have more infected cattle
for greater values of k (0.1) than the smaller ones (0.01 and 0.001). Therefore, increasing
movement probability means more widespread epizootic. For example, the fraction of infected
cattle at β=0,005 was 0.399, 0.537, and 1 for k=0.001, 0.01, and 0.1, respectively.

From Figure 2.3, for k=0.01 and 0.001 it is evident that for β=0.005, the infection

reaches half the population after 100 days. However, almost all of the cows are infected in

the network after 100 days for k=0.1. A value of k=0.1 means extensive cattle movement

between locations, which makes the whole network infected. Therefore, network structure

plays a prominent role in RVFV spreading when the value of β is small.

Scenario 2

In the second set of simulations, we use a β ranging from 0.001 to 0.048 for the homogeneous

network. Simulation results using these values are presented in Figure 2.4 for all three

parameter values of k.

From Figure 2.4, it is indicative that the full network becomes infected very quickly for
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Figure 2.4: Comparisons among fractions of infected cows for the homogeneous network,
three different values of k, and upper range of β; fractions of infected for all three values of
k are almost overlapping, therefore, not sensitive to the movement probability. They reach a
value very close to one, i.e., the whole network becomes infected when infection rate β reached
0.01 for the three networks. Therefore, fractions of infected cows were also independent of
the infection rate.

this particular range of β irrespective of movement probabilities (k). Therefore, for a higher

abundance of mosquitoes and favorable weather conditions, the spread of infection does not

depend on the network structure and spread throughout the whole network very quickly.

Scenario 3

In this scenario, we repeat simulations for the heterogeneous network and lower β range and

presented simulation results in Figure 2.5. An increasing trend is observed in the fractions

of infected cows with an increase of β and k. For k = 0.001 and 0.01, there is little differ-

ence; however, for k=0.1 the increase of the infected fraction was faster with increasing β.

Therefore, cattle movement needs to be reduced during an epidemic outbreak.

Scenario 4

Simulation results for the heterogeneous network, and the upper range of β are shown in

Figure 2.6. For all three values of k, the fraction of infected cows reached one very quickly,
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Figure 2.5: Comparisons among fractions of infected cows for the heterogeneous network for
three different values of k and lower range of β; for k=0.001 and 0.01, the maximum fraction
of infected cows is less than 0.5 for the highest value of infection rate in the lower range.
This means that after the simulation period, half of the cows become infected. However, for
k=0.1, the fractions of the infected cow reach up to 0.8. Therefore, we needed to reduce the
value of k, i.e., cattle movement, to reduce the fraction of infected cows.

near a β value of 0.03. After that, all cows became infected regardless of the values of β and

k.

Trends of the fraction of infected cows for both homogeneous and heterogeneous networks

are similar in both lower and upper ranges of β. However, differences exist between fractions

of infected cattle from homogeneous compared to heterogeneous networks for the same value

of k and the same range of infection rate values. Comparisons between fractions of infected

cows for homogeneous and heterogeneous networks are shown in Figure 2.7 and Figure

2.8. Figure 2.7 shows comparisons between fractions of infected cows for homogeneous and

heterogeneous networks for the lower range of β values. It shows that the homogeneous

network has more infected cows for the same values of β compared to the heterogeneous

network. Lesser susceptibility of indigenous cows results in fewer infections among them.

Since we specify that indigenous cattle are less susceptible to infection, the heterogeneous

network results in fewer infected cattle than the homogeneous network where all cattle are

exotic and highly susceptible.
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Figure 2.6: Comparisons among fractions of infected cows for the heterogeneous network
for three different values of k and upper range of β; the fractions of infected reaches towards
one rapidly and when the value of infection rate is 0.03, the fraction of infected become one
for all three networks.

In Figure 2.8, the difference between the fractions of infected cows for two networks

is negligible when β >0.005. Therefore, lesser susceptibility of indigenous cows cannot

compensate for the higher mosquito abundance and results in a similar infection spreading

in both homogeneous and heterogeneous networks.

Comparisons between homogeneous and heterogeneous networks show reduced suscepti-

bility of indigenous cattle means fewer infected cows for lower mosquito abundance during

an RVFV epizootic. Therefore, higher proportions of indigenous cows across locations would

have the potential to reduce the numbers of infected cows and thus produce a more con-

tained epizootic. In summary, simulations with lower infection rates result in increased

fractions of infected cows with increasing movement probability. However, for high infec-

tion rates, the fraction reached one, and there is little difference in infected cattle fractions

while increasing movement probabilities. From these observations, we conclude that, for

low infection rates (low mosquito abundance), restricted cattle movement will reduce the
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Figure 2.7: Comparisons among fractions of infected cows for heterogeneous and homoge-
neous networks for lower range of β and a) k=0.01 and b) k=0.1.

number of infected cows. Higher infection rates infect the whole network, regardless of cat-

tle movement probability or mosquito abundance /infection rate. Therefore, for a period

of low mosquito abundance, cattle movement should be restricted to contain the epizootic

to a minimum level; whereas, periods of high mosquito abundance (high infection rates)

would require both mosquito control and cattle movement restriction. Comparisons between

fractions of infected for homogeneous versus heterogeneous networks suggest that diversity

in the network resulted in fewer infected cows for similar values of infection rates and cattle

movements.
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Figure 2.8: Comparisons among fractions of infected cows for heterogeneous and homoge-
neous networks for the upper range of β and a) k=0.01 and b) k=0.1.

2.3.2 Simulation set II

Simulations are conducted starting with a single infected cow in the Kabale Municipality,

using both homogeneous and heterogeneous networks with k=0.01 and for β= 0.001, 0.005,

0.01, and 0.03 for each network, and produced two scenarios:

• Scenario 1: Homogeneous network

• Scenario 2: Heterogeneous network

For each scenario, we assume four different β to represent the entire range of infection

rates used in the simulation set I. Instead of using different movement probability constants
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(k=0.001, 0.01, and 0.1) we choose k=0.01 for both homogeneous and heterogeneous net-

works.

Scenario 1

Simulation results for homogeneous network and single infected cow in the Kabale munici-

pality are presented in Figure 2.9. As β increase from 0.001 to 0.03, fractions of recovered

reached one very quickly. It is worth noting that ”fractions of recovered” means these were

the cows that had been infected in the first place. All infected cows moved to the recovered

compartment as we had not considered any disease-induced mortality in the model. There-

fore, the fraction of recovered cows was considered the cumulative fraction of infected cows

for our specific model.

Table 2.2: Table shows maximum infected fractions of cows, peak infection time, and rate
at which that maximum is attained for a homogeneous network.

Infection rate β Maximum Infected Fraction Peak Infection Time Rate
0.001 0.0095 45 2.1268e-04
0.005 0.065 87 6.919e-04
0.01 0.0806 64 0.0013
0.03 0.1345 31 0.0043

Scenario 2

Simulation results for a heterogeneous network with the initial condition of a single infected

cow in the Kabale municipality are presented in Figure 2.10.

Table 2.3: Table shows maximum infected fractions of cows, peak infection time, and rate
at which that maximum is attained for a heterogeneous network and a single infected cow in
the Kabale municipality.

Infection rate β Maximum Infected Fraction Peak Infection Time Rate
0.001 0.0056 60 9.333e-05
0.005 0.0365 100 3.6479e-04
0.01 0.0739 76 9.7690e-04
0.03 0.1181 43 0.0027
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Figure 2.9: Fraction of cows in each compartment with a 95 percent confidence interval
for β=0.001 (top left), 0.005 (top right), 0.01 (bottom left), and 0.03 (bottom right) and for
a homogeneous network; increasing β shows an increasing trend in the overall fractions of
infected (cumulative fractions of recovered).

Tables 2.2 and 2.3 shows that the rate at which the fraction of infected reached the

maximum is increased with increasing β. However, a trend appears that when the value of

β is minimal, i.e., β <0.005, the fraction of infected reached the maximum faster for both

homogeneous and heterogeneous networks than higher values of β (β >0.005). This faster

increase can be attributed to the fact that, when the value of β is minimal, the infection takes

a long time to reach distant locations. Therefore, cows in the Kabale Municipality becomes

infected within our simulation period of 100 days. The infection does not reach distant

locations, reinforcing the impact of reduced vectorial capacity in containing the outbreak.

The infection reaches distant locations at a slower rate than the rate of infecting local animals
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Figure 2.10: Fraction of cows in each compartment with a 95 percent confidence interval
for β=0.001 (top left), 0.005 (top right), 0.01 (bottom left), and 0.03 (bottom right) and
for heterogeneous network; increasing β shows an increasing trend in the overall fractions of
recovered (cumulative fractions of infected) which reaches to almost one for β=0.03.

with increasing β. However, when the infection reaches distant locations, higher numbers of

infected cows appear in the network. This is evident from the maximum fraction of cows,

which is higher than the maximum fraction of infected cows for β=0.001. However, when β

is significant (0.03), the time to reach the maximum is less than the time taken for β=0.001.

Simulation results indicate that an increase in the infection rate expedited the spread of the

epizootic in distant locations as well as the number of infected cows. Therefore, mosquito

control was crucial to contain the epizootic in the initial outbreak location while taking

proper measures to care for infected cows.
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2.3.3 Simulation set III

This simulation set consisted of the following four scenarios:

• Scenario 1: Infection starting at a single location (Bubale ) with the maximum number

of cows

• Scenario 2: Infection starting simultaneously at three locations (Bauble, Rubaya, and

Hamurwa) with the maximum number of cows

• Scenario 3: Infection starting at a single location (Muhanga T/C) with a minimum

number of cows

• Scenario 4: Infection starting simultaneously at three locations (Bukinda, Muhanga,

and Ruhija) with the minimum number of cows

The time to reach maximum infection for each scenario with infection rate β is shown in

Figure 2.11, which shows a summary of Scenario 1 and 2 simulations when the initial RVF

outbreak occurred in a single location or simultaneously at multiple locations, respectively.

The time required to reach maximum infection is shorter for simultaneous outbreaks,

regardless of the network structure than for single-location outbreaks for similar values of

the infection rate β(Figure 2.11(a)). The spreading of infection through the network is slower

in the heterogeneous network for both single and simultaneous outbreaks. Infections spread

slowly for the single-location outbreak in the network compared to the rate of spread in

simultaneous outbreaks, which is reflected by the higher peak incidence time. For β=0.001,

peak infection time was close to 100 days for all simulations except simultaneous outbreaks

in homogeneous networks (Figure 2.11(a)). This means the peak is not attained, and the

number of infected cattle was exponentially increasing. When β is increased to 0.01 (high

mosquito abundance), the time to reach the peak is reduced drastically for all single and

simultaneous outbreaks.

When the value of the infection rate increased to 0.005-0.03, there is a correlated decrease

in peak incidence time as the whole cattle network becomes infected very quickly (well before
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Figure 2.11: Peak infection time with infection rate and for outbreaks starting in loca-
tion/locations with (a) higher number of cows and (b) fewer number of cows.

a 100-day simulation period) irrespective of outbreak location(s). Outbreaks in locations

with a higher number of cows result in simultaneous virus introduction to distant locations

having numerous connections. Therefore, with the increase in mosquito abundance, peak

infection time decrease accordingly.

Figure 2.11(b) represents peak incidence time when the RVF outbreak occurred in loca-

tion(s) with fewer cows than other locations. For lower mosquito abundance (β=0.001), the

infection does not reach distant locations. Instead, it was quickly confined to the initial loca-

tion(s), as evident from smaller values of the peak infection time. However, with increasing

β, the peak time returns to its regular pattern, shown in Figure 2.11(a).

2.4 Conclusions

Recent RVFV activity in Uganda demonstrated the capability of the virus to spread into new

regions through livestock movements and underscored the need to develop effective mitigation

strategies to reduce transmission and prevent spread among cattle populations. We simulated

RVFV transmission among cows in 22 different locations of the Kabale District in Uganda

using real-world livestock data in a network-based model. This model considered livestock as

a spatially explicit factor in different locations subjected to specific vector and environmental
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factors. It was configured to investigate and quantitatively evaluate the relative impacts of

mosquito control, livestock movement, and diversity in cattle populations on the spread of the

RVF epizootic. We concluded that cattle movement should be restricted for periods of high

mosquito abundance to control epizootic spreading among locations during an RVF outbreak.

Importantly, cattle populations with heterogeneous genetic diversity as crossbreeds were

less susceptible to infection compared to homogeneous cattle populations. Given the same

initial conditions, the heterogeneous cattle population is less susceptible to infection than the

homogeneous population. Simultaneous outbreaks in different locations will result in more

infected cows at a faster rate of spreading compared to a single-location initial outbreak.
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Chapter 3

Estimation of parameters and basic

reproductive ratio using Sequential

Monte Carlo Filter1

3.1 Introduction

Japanese encephalitis (JE) is a vector-borne viral disease endemic to the large part of Asia

and the Pacific. It causes significant mortality among the human population every year.

Therefore, it became an important public health concern65. Infectious disease mathematical

models are developed to simulate outbreaks and empirically test possible mitigation strate-

gies that reduce transmission and prevent spreading66. The complex transmission process of

Japanese encephalitis can be expressed as a mathematical model– quantifying the interac-

tions between the host/vector species in different infectious states. Mathematical JE model

plays a very important role in a deeper understanding of the dynamics of the pathogen

spread and hence can contribute to the reduction or even completely stop the progression of

the spreading.

Mathematical disease models can be very simple compartmental models or more com-

1 This chapter is a reformatted and slightly modified version of our published article64, Copyright © 2017,
IEEE
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plex ones when required according to the specific disease67. Once an appropriate model is

formulated, that can be combined with different statistical or control systems framework

to acquire information about the disease spread and forecasting. A mathematical model of

JE should include environmental factors to accurately represent the biological transmission

cycle.

Mukhopaddhay et al. (1994)68, Ghosh et al. (1999)4 and Naresh et al. (2009)69 pro-

posed some important models. The authors divided concerned populations (vector, host,

or reservoir) in different compartments and expressed the epidemic dynamic with some dif-

ferential equations. The transition from one compartment to another depends upon some

transfer rates, which are expressed as parameters, dependent mainly on the biology of the

individuals and some other concerned species (mosquito, and birds ) and their density and

contact pattern. The success of these models depends crucially on the proper estimation

of parameters65. In all these models, the authors find an expression for calculating the

basic reproductive ratio. The basic reproductive ratio indicates the number of secondary

cases evolved from one single infectious case70. A very simple mitigation strategy for any

epidemic is concerned with this ratio. If we can reduce the basic reproductive ratio below

one, we can successfully prevent a disease from spreading. Therefore, a proper estimation

of the basic reproductive ratio is mandatory for the successful mitigation of an epidemic.

The reproductive ratio is a quantitative measure of the severity of the disease to the public

health authorities71.

All models mentioned above are deterministic, formulated based on simplified assump-

tions about the actual stochastic spreading process. Riad et al.65 proposed an individual

level stochastic model. Authors develop a model for a scenario of JE epidemiology in the

United States. Only one population—feral pigs in three spatial locations—is represented

at the individual animal level via a connected network and suggested mitigation strategy

from their simulations. However, all these models, whether deterministic or stochastic, are

crucially dependent on the estimation of parameters. The basic reproductive ratio is also

dependent on the model parameters. Therefore, we focus on estimating the parameters for

spreading JE from real-life incidence data.
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In this chapter, we formulate a susceptible-exposed-infected-recovered (SEIR) model for

the JE progression and use Sequential Monte Carlo (SMC) filter, an online inference method

to simultaneously estimate the disease state and parameters as new data about the disease

are available. In SMC, we iteratively sample from the posterior distribution of parameters

until the parameters converge to stationary values. As an example, we use monthly incidence

data of JE in the Philippines to estimate associated parameters with time. Sequential Monte

Carlo filter (particle filter) is particularly important for its inference to the nonlinear and

uncertain epidemic models. This method will allow us to estimate the parameters associated

with the SEIR model, which will eventually allow us to estimate the basic reproductive ratio

of the JE epidemic.

3.2 Background

3.2.1 Japanese encephalitis compartmental Model

In this chapter, we assumed a Susceptible-Exposed-Infected-Recovered (SEIR) model for JE

transmission in the Philippines. The model can be expresses as the following difference

equation-

St+1 = St − βStIt (3.1)

Et+1 = Et + βStIt − δEt (3.2)

It+1 = It + δEt − γIt (3.3)

Rt+1 = Rt + γIt (3.4)

In these equations, S, E, I, and R are called the states. Each individual human can be in

one of these four states. We have three parameters in this SEIR model- infection rate β,

incubation rate δ and the recovery rate γ.

In this compartmental SEIR model, the size of host population is assumed to remain

constant throughout the evolution time, i.e., P =S+E+I+R, and demographic effects are
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ignored. For our particular SEIR model, the basic reproductive ratio is- R0 = β/γ.

Many problems in science require estimation of the state of a system that changes over

time (time-series) using a sequence of noisy measurements made on the system34. The state-

space approach to time-series modeling focuses attention on the state vector of a system.

The state vector contains all relevant information required to describe the system under

investigation34. The state-space approach is convenient for handling multivariate data and

nonlinear/non-Gaussian processes, and it provides a significant advantage over traditional

time-series techniques for these problems34.

In order to analyze and make inference about a dynamic system, at least two models

are required: first, a model describing the evolution of the state with time (the system

model) and, a second model relating the noisy measurements to the state (the measurement

model)34.

3.2.2 State-space model

State-space models are usually used for analysis of dynamic data and general statistical

model. They are being increasingly used in epidemiology. The state-space model has two

parts— observation equation and state evolution equation shown in equations (3.5) and

(3.6), respectively.

yk ∼ py,k(yk|xk, θ) (3.5)

xk ∼ px,k(xk|xk−1, θ) (3.6)

In these equations, xk is the system state at time k, and yk is observational data, and the

θ denote the state-space model parameters. When data are collected sequentially, current

state and parameters distribution is then conditional on the data observed up to that time.

This distribution incorporates all state and parameter information up to time step k . It can

be updated recursively using Bayes’ rule:

p(xk, θ|y1:k) ∝ p(yk|xk, θ)p(xk, θ|y1:k−1) (3.7)
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Most of the time, the value of p(xk, θ|y1:k) cannot be calculated analytically, and we need

to use numerical methods such as extended Kalman filter, Gaussian Sum filter or Monte

Carlo versions (particle filter).

3.2.3 Particle filter

Particle filtering is an SMC inferential technique based on repeated use of importance sam-

pling. It aims to approximate the filtered distribution at time k through a weighted Monte

Carlo realization from this distribution in terms of I particles, i.e.

p(xk, θ|y1:k) ≈
I∑
i=1

wiδ(x
(i)
k , θ

(i)
k ) (3.8)

In equation (3.8), I is the number of particle, wi is the weight of that ith particle and∑I
i=1wi = 1. (x

(i)
k , θ

(i)
k ) is the ith particle location and δ is the delta function. Among, all

particle filters, the two basic ones are Auxiliary and Bootstrap particle filter. In these two

particle filters, we assumed that the distribution of parameters are known. Therefore, in the

description of these two filters, the parameters are not included.

3.2.4 Bootstrap particle filter

This is first successful particle filter. If we know the filtered distribution at time step k for

the equation (3.9), then we can find the distribution in time k+1 using the following step-

p(xk, θ|y1:k) ≈
I∑
i=1

wiδ(x
(i)
k , θ

(i)
k ) (3.9)

1) Sample an index j ∈ 1....i....I with associated probabilities w1
k, ....w

i
k, ....w

I
k

2) Sample x
(j)
k+1 ∼ p(xk+1|x(j)k ), and

3) Calculation of weights and renormalization:

w̄
(i)
k+1 = p(yk+1|x(i)k+1) and w

(i)
k+1 = w̄

(i)
k+1/

∑I
i=1 w̄

(i)
t+1
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3.2.5 Auxiliary particle filter

The main problem with the bootstrap particle filter is the small value of the weight when

p(yk|x(i)k ), which will reduce the effect of these particles in the approximation of p(xk|yk). In

the auxiliary particle filter, this problem is rectified using auxiliary weights. The following

steps are followed for auxiliary particle filter-

Step 1: Point estimate calculation: µ
(i)
k+1 = E(xk+1|xik)

Step 2: Auxiliary weights calculation:

ḡik+1 = w
(i)
k p(yk+1|µ(i)

k+1) and g
(i)
k+1 = g

(i)
k+1/

∑I
i=1 g

(i)
k+1

Step 3: a) Sample an index j ∈ 1....i....I with associated probabilities g1k+1, ....g
i
k+1, ....g

I
k+1

b) Sampling x
(i)
k+1 ∼ p(xk+1|x(j)k )

c) Calculation of weights and re-normalization:

w
(i)
k+1 =

p(yk+1|x
(i)
k+1)

p(yk+1|µ
(j)
k+1)

and w
(i)
k+1 = w

(i)
k+1/

∑I
i=1w

(i)
k+1

The point estimates above can be the mean or any other point estimate. In order to

simultaneously estimate the time-evolving states and fixed parameters using either the BF

or APF, it is necessary to incorporate the fixed parameters into the state with degenerate

evolutions72;73.

However, these aforementioned particle filters are prone to degeneracy due to the use of

fixed parameter values while using only the state variables as the primary concern. Liu and

West74 builds a particle filter based on the auxiliary particle filter and provides a general way

of fighting degeneracy in fixed parameters. This particle filter is called the kernel density

particle filter.

3.2.6 Kernel density particle filter

Kernel Density particle filter has advantages over other particle filters with respect to its

robustness against degeneracy as no fixed parameter set are used here. The Kernel density

particle filter is applied to update and estimate p(xk+1, θ|y1:k+1). At the initial time step k

= 1, weights for all particles are equal to I−1, and initial state and parameters are generated

by random sampling from a prior probability density functions p(θ0) and p(x0)
71;72.
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We present the steps followed for this filtering method to estimate the posterior distri-

bution in the following section.

The algorithm is following-

Step 1: m
(i)
k+1 = αθ

(i)
k + (1− α)θ̄k

θ̄ is a weighted sample mean and α is a parameter that controls the smoothness of the

estimation. The value of α has a complex structure α = 1− h2 and where h is expressed as

1− (3ξ−1
2ξ

)2 where ξ ∈ (0, 1)74.

Step 2: Mean Calculation: x
(i)
k+1: µ

(i)
k+1 = E(xk+1|x(i)k , θ

(i)
k )

Step 3: Calculation of auxiliary weights and re-normalization:

gik+1 = w
(i)
k p(yk+1|µ(i)

k+1);

g
(i)
k+1 = ḡ

(i)
k+1/

I∑
i=1

ḡ
(i)
k+1

Step 4: Repetition for all particles i = 1, 2..i..I

(a) sample an index j ∈ 1....i....I with associated probabilities g1k+1, ....g
i
k+1, ....g

I
k+1

(b) Parameter generation: θ
(i)
k+1 ∼ N(m

(j)
k+1, σ

p
k+1), σ

p
k+1 is the weighted sample covariance

for the parameters at each time step

(c) Sampling x
(i)
k+1 ∼ p(xk+1|x(j)k , θ

(i)
k+1)

(d) Calculation of weights and re-normalization:

w̄
(i)
k+1 =

p(yk+1|x(i)k+1, θ
(i)
k+1)

p(yk+1|µ(j)
k+1,m

(j)
k+1)

w
(i)
k+1 = w̄

(i)
k+1/

I∑
i=1

w̄
(i)
k+1

These particle filters are very efficient in parameter estimation and predicting future

dynamics. Any epidemiological model61 needs parameters to be estimated depending upon

the region for which the model is proposed. The effectiveness of knowledge obtained from the

epidemiological model is crucially dependent on the suitable parameter choice. Therefore, in

this article, we will focus on parameter estimation using Kernel density particle filter from
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the real incidence data. Although We propose this model for JE, however, our method has

the ability to be adapted for any epidemic model.

3.3 Materials and method

3.3.1 Japanese encephalitis state-space model

We propose the following set of stochastic difference equations to capture the stochasticity

in the spreading process–

Ek+1 = Ek + βIk − δEk − εβ + εδ (3.10)

Ik+1 = Ik + δEk − γIk − εδ + εγ (3.11)

Rk+1 = Rk + γIk + εγ (3.12)

In the above equations, the εc where c ∈ β, δ, γ, are random components which has a mean

zero and variance c/P 2 where P is the total population in the Philippines. In these equations,

we assumed the fraction of susceptible population remains at a constant value S = 1 as the

total number of incidence is very small compared to the total population. We assumed that,

our SEIR model follows a normal distribution. Therefore, the state-space model is–

(xk+1|xk, θ) ∼ Nτ (µ(xk, θ), σ(θ)) (3.13)

where Nτ represents truncated normal distribution of Ek, Ik and Rk.This distribution has the

mean µ and the variance σ(θ). The mean and the variance are expressed as the following–

µ(xk, θ) =


Ek + βIk − δEk

Ik + δEk − γIk

Rk + γIk

 (3.14)
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σ(θ) =
1

P 2


β + δ −δ 0

−δ γ + δ −γ

0 −γ γ

 (3.15)

In the above matrices the, P=100000000 is the total population. We used the data set

obtained from Lopez et al.75, which consists of the monthly confirmed JE cases from different

hospitals in the Philippines from March 2011-March, 2014. Although the total population

of the Philippines is 100000000, the confirmed infected cases are proportionally small. For

the observation equation of the state-space model of JE, we took the cumulative number of

infected people and expressed it as a log-normal distribution with a mean b1(Ik +Rk)
ζ and

variance Σ. In particular, b1 is a multiplicative constant, and ζ is a power-law exponent. We

choose their value to be 1.05 and 0.95, respectively. The variance was selected as 0.00088.

These values were selected according to Shahtori et al.71 and Sheinsen et al.72.

3.3.2 Application of kernel density particle filter

In this work, among all particle filters discussed in the background section, we used a kernel

density particle filter as we are particularly interested in the parameter estimation. Moreover,

it has advantages over other particle filters concerning its robustness against degeneracy72.

We apply a kernel density particle filter, to update and estimate p(xk+1, θk+1|y1:k+1). At

the initial time step k = 1, weights for all particles are equal to I−1, and θ0 (initial parameters)

and x0 (initial states) are generated by random sampling from prior probability density

functions p(θ0) and p(x0). As we have discussed in the background section, p(xk+1, θ|y1:k+1)

when the k + 1th observation becomes available. The kernel density particle filter we have

used in this article is an adaptation of that used in Sheinson at el.72 and Shahtori et al.71

for our particular case of JE in the Philippines.

The implementation steps for this particle filter is presented in the kernel density particle

filter section. Particle filter setup is crucially dependent on the priors, which will remove the

chance of overfitting the data76. Therefore caution and proper knowledge about the system
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are required before defining the priors.

Priors for parameters p(θ0)

The transfer of JE pathogen depends on the mosquito’s abundance, temperature, rainfall,

humidity, and various factors related to host species65. However, the incubation period γ is

5-15 days for the human population, and the recovery period is γ has a range of values 3-7

days77. Therefore, we use suitable beta distribution for them as we know the variability of

these parameters. However, to select the distribution of β and population in the exposed

class, we use the mean squared error (MSE) technique with 110 different combinations of

parameter and state priors to run the simulation. We use the combination that gives the

minimum MSE. We use random distribution for the prior of infection rate β as U(0.25, 0.70).

Priors for states p(x0)

We had a single infected individual at the beginning of the simulation in March 2011. There-

fore, we used a fixed value for the prior of the I, and it consists of one individual in the

infected state. However, the dataset does not contain any information about the recovered

and exposed class. For the exposed population, we took eight people in the exposed class.

This prior for an exposed class provides us the minimum squared error in combination with

β specified earlier. We do not consider any recovered individual initially as they did not

participate in the spreading process.

The data we use has the monthly new incidences of JE in the Philippines from Lopez et

al.75; however, the data were collected from different hospitals all over the country. Therefore

if there were some non-hospitalized cases, they are not reflected in the dataset75. We have

used the cumulative number of infected. Therefore that reflects the total number of infected

and recovered up to a specific time step k, beginning from March 2011.
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3.4 Simulation results and discussion

The filter is formulated with the priors previously described and I = 15000 particles for the

simulation of the posterior p(xk, θk|y1:k). The filter is set up to estimate the total number of

individuals in each month in each state, as well as the evolution of parameters with time. The

case data set is 37 months of JE cases, and therefore 37 different values of each parameter and

state are estimated using the filter. Our observation is the cumulative number of infected,

which we plot over time to compare the filter results and the actual cases (Figure3.1). We

have used a log-normal distribution for fitting the data using the filter; therefore, there is a

bias that makes the estimation look exponential.

Figure 3.1: Cumulative number of infected in the Philippines and their corresponding par-
ticle filter estimation.

We have presented the variability of infection rate β with time in Figure 3.2 as this

causes the number of infected to change seasonally and yearly. We can see several peaks

and valleys in Figure 3.2, which takes into account the mosquito abundance in different

seasons as well as in different years. For example, the peaks are always in the vicinity of the

summer, while the valleys are in the winter. However, in our simulation results, there are

42



some deviations in the peak incidence period. We are using only hospitalized cases that have

a high probability of being random. Therefore sometimes more cases may be reported to the

hospital in winter than summer. This is responsible for deviant results from the seasonal

pattern in JE incidences.

Figure 3.2: Variability of the infection rate β with time.

We have presented the basic reproductive ratio R0 in Figure 3.3. Here, we can see that the

value of R0 is always higher than one. Therefore, the disease is present year-round, confirming

the history of JE incidence in the Philippines and other tropical countries. Therefore, to

stop the disease spread, control measures should be taken until the estimates of R0 become

less than one. Figure 3.2 and Figure 3.3 shows that the variability in the value of β and R0

follow a similar trend. The reason behind this behavior is evident from the definition of R0

as it is expressed as β
γ
. The trend is almost similar because there is not much variability in

the denominator value, recovery rate γ of the infected human.
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Figure 3.3: Variability of the basic reproductive ratio R0 with time.

After estimating the parameters, we used the number of human cases concerning the

first 32 months as the training set and performed predicted for the next five months. The

prediction of the JE incidence for the estimated parameter set is shown in Figure 3.4 with

the actual data.

The analysis of our results identifies that there is a seasonal variability of β as well as

yearly variation (2011-2014). In Figure 3.2, we can see several peaks (April-August) and val-

leys, which indicates different years as well as different seasons. The peaks are always in the

vicinity of summer (April-August) while the troughs are near winter (October-February).

These peaks and valleys conform with the mosquito abundance during the corresponding

periods. The temperature and humidity do not have significant fluctuations in the Philip-

pines. This smaller fluctuation is reflected in β values, which varied between 0.471 and

0.482, a range of 0.011. The estimated basic reproductive ratio shows the value of 2.035-

2.085. The value is always more than one, which explains that JE will remain endemic in

the Philippines. Additionally, the calculated value of the R0 is comparable with the R0 value
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Figure 3.4: Cumulative number of infected in the Philippines with the forecast for the
last five data points. The data points reserved for the forecasting as well as the forecast is
highlighted in pink.

estimated for some diseases in the same Flaviviridae genre in countries with endemic cycles.

For example, dengue in Pakistan has a value of 3.08278, while the calculated value of R0 for

Zika has a value within the range 1.5-4.1 in the pacific islands (Yap, Micronesia, Tahiti and

Moorea, French Polynesia and New Caledonia). All these countries have similar weather as

the Philippines79. However, in temperate regions, the reproductive ratio is subject to much

more variability as temperature and humidity extensively fluctuate seasonally. This explains

the periodic outbreaks rather than year-long outbreaks. For example, in Italy, the estimated

value of R0 for West Nile Virus varied within 0.4-4.8 within a year, which is a closely related

flavivirus and has a similar transmission cycle as JE80. However, the fluctuation in R0 is not

very pronounced for our simulations for the weather being always amiable to the spread of

JE pathogen in the Philippines.

The most important control measure for any mosquito-borne disease is to reduce mosquito

abundance by applying insecticides and making people aware of using personal measures to

stay away from mosquito bites. Practical implementation and mathematical models have
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shown that implementation of these control measures significantly reduces the infection rate

β, which in turn reduces the basic reproductive ratio of R0.

Khan et al.78 calculated the basic reproductive ratio before and after using the control

measure for dengue in Pakistan. The authors show that the value of R0 changes from 3.0528

to 0.6293, becoming less than one. Therefore, a proper estimation of the reproductive ratio

can help the public health administration take control measures against an epidemic. Our

method of calculating the basic reproductive ratio at each time step once new incidence

data are available can be one crucial predictor in rationing the limited resources in epidemic

control. Once the application of control measures brings the R0 below one, the use of

resources can be reduced or withdrawn as the epidemic may die out soon.

3.5 Conclusions

We develop a sequential Monte Carlo filter to estimate the parameters in a stochastic model

of infectious disease transmission. The network-based model’s success crucially depends on

the proper estimation of the parameters. This parameter estimation method is particularly

important for its adaptability to the availability of new incidence data of any epidemic. As

an application of the method, we apply this particular method for Japanese encephalitis

transmission in the Philippines. Parameters estimated from the simulation of the particle

filter shows seasonal as well as yearly variation. The evolution of the basic reproductive ratio

is in compliance with the endemicity of JE in the Philippines. The state estimation from the

estimated parameters shows a similar trend as the incidence data. Therefore, this framework

is capable of estimating the realistic parameters for specific locations and infectious diseases,

which can later be used for other purposes, such as investigating and quantitatively evaluate

the relative impacts of different components in the network-based model.

46



Chapter 4

Short-term forecast and dual

state-parameter estimation using

ensemble Kalman filter1

4.1 Introduction

In most classical forecasting literature, constant parameters are used for the epidemic mod-

els. However, Shahtori et al. 2016 characterized and described temporal variation of the

parameters for Ebola progression in Central Africa71. Although the parameters of an epi-

demic model can be estimated in a batch-processing scheme or from empirical data, it is

not guaranteed that model behavior does not change with time82. Therefore, it is prudent

to adjust the model with time, which can be accomplished by simultaneous estimation of

parameters and states.

Several frameworks have been developed for the estimation of states and parameters for

physical process models. Although the development of interactive state-parameter estima-

tion using filtering methods is well established, their application to the field of epidemiology

is relatively new, pertaining to a high level of non-linearity in the epidemic model. The

1 This chapter is a reformatted and slightly modified version of our published article81, Copyright © 2019,
IEEE
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original Kalman filter works for linear systems, while the extended Kalman filter uses the

linear approximation of the non-linear systems. In 1994, Evenson proposed a Monte Carlo-

based Kalman filter called ensemble Kalman filter (EnkF). The EnkF has initially been

developed for dynamic state estimation and later adapted to be applied for parameter esti-

mation9;24;64;71–73.

This chapter focuses mainly on tailoring the dual state-parameter estimation method us-

ing EnKF to the vector-borne disease model with a specific data set of Japanese encephalitis

(JE) from Taiwan. A susceptible-exposed-infected-recovered (SEIR) model of JE is used with

the EnKF framework to simultaneous state-parameter estimation and for short- and mid-

term forecasting. Once the forecasting is done, they are compared with the real incidence

data to check the accuracy of the forecast. Forecasts for our specific data set are reasonable

for the short distance in the future. However, long-term forecasts result in a loss of accuracy.

We apply our filtering framework to forecast the epidemic to explore the efficacy of apply-

ing control measures during an epidemic. Simulation results show a reduction in mosquito

abundance will significantly hinder the epidemic growth during an outbreak.

4.2 Materials and method

4.2.1 Sequential data assimilation and filtering

The primary purpose of the data assimilation is to characterize the state of a system at some

future time from the information provided by the initial state. The states of an epidemiologi-

cal system xk, at time k is dependent on the observations up to time k. A variety of methods

in estimation theory enable the recursive estimation of system state variables and the infer-

ence of model parameters32. Sequential data assimilation, also known as filtering methods,

have been widely used in different engineering designs and forecasts. However, their use in

epidemiological model development has only been started in the last two decades. The abil-

ity of an epidemiological model to make accurate predictions depends on the extent to which

the model represents real-world transmission dynamics as well as the proper specification
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of model parameters and initial conditions33. The initial condition is model state variable

estimation at the start of a forecast. Filtering methods use the observations to recursively

inform and train the model so that current conditions are better depicted and evolving out-

break characteristics (i.e., the trajectory of the epidemic curve) are better-matched34. The

epidemic model can then be propagated into the future to make a more accurate and reliable

forecast.

4.2.2 Kalman filter (KF)

Kalman filtering is an algorithm that uses a series of measurements observed over time, con-

taining statistical noise and other inaccuracies. It produces estimates of unknown variables

that tend to be more precise than those based on a single measurement alone, by using

Bayesian inference and estimating a joint probability distribution over the variables for each

time-frame. The KF is a widely applied concept in time series analysis83.

In KF, the system equations are linear. However, if the system is not linear, then we

cannot use the KF. Therefore, an adaptation of the KF is used for dealing with nonlinear

systems. In this work, we consider another nonlinear state estimation approach known as the

ensemble Kalman filter (EnKF). In recent times, EnKF is widely used in weather forecasting,

where the models are of an extremely high order and nonlinear84;85, the initial states are

highly uncertain, and a large number of measurements are available.

4.2.3 Ensemble Kalman filter: state estimation

Ensembled Kalman Filter is introduced by Evensen (1994)86 to overcome the disadvantages

of the classical Kalman filters and Extended Kalman filters and later clarified by Burgers

et al. (1998)87. The ensemble Kalman filter (EnKF) is a suboptimal estimator, where the

error statistics are predicted by using a Monte Carlo or ensemble integration to solve the

Fokker-Planck equation88.

Like KF, in EnKF, we follow all the steps.
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xifk+1 = f(xiak , θk) + νik

where i = 1, 2, .....n and xifk+1 is the ith ensemble member forecast at time k + 1 and xiak

is the ith updated ensemble member.

With the forecasts obtained from ensembles, we can estimate the new measurements from

the following equation-

yifk+1 = h(xifk+1, θ) + wik

The actual observation for the k + 1th step is perturbed with Gaussian noise to get n

ensembles of the observation in the following manner-

yik+1 = yk+1 + ηik+1

where ηik+1 ∼ N (0,Σy
k+1) where Σy

k+1 = 1
n−1E

y
k+1 = [y1k+1 − ȳk+1, y

2
k+1 − ȳk+1, y

3
k+1 −

ȳk+1..............y
n
k+1 − ȳk+1].

Now, we form the expression for the error covariance matrix associated with the ensemble

forecast. To find the covariance, we first need to find the error matrices.

The ensemble error matrix around the mean will be Ex
k+1 = [x1fk+1−x̄k+1, x

2f
k+1−x̄k+1, X

3f
k+1−

x̄k+1..............X
nf
k+1 − x̄k+1], and the ensemble output error is Ey

k+1 = [y1fk+1 − ȳk+1, y
2f
k+1 −

ȳk+1, y
3f
k+1 − ȳk+1..............y

nf
k+1 − ȳk+1].

In the update step, we need to calculate the Kalman gain. The Kalman gain for the

EnKF is expressed as -

Kk+1 = Σxyf

k+1[Σ
yyf

k+1 + Σy
k+1]

−1

Σxyf

k+1 =
1

n− 1
[(Ex

k+1)(E
y
k+1)]

Σyyf

k+1 =
1

n− 1
[(Ey

k+1)(E
y
k+1)]
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Once we have calculated the Kalman gain, the only thing left is to update the states-

xiak+1 = xifk+1 +Kk+1(y
i
k+1 − y

if
k+1)

Therefore, step by step algorithm for ensemble Kalman filter is-

Forecast step:

xifk+1 = f(xiak , θ, k)

yifk+1 = h(xifk , θ)

Update step:

Kk+1 = Σxyf

k+1[Σ
yyf

k+1 + Σy
k+1]

−1

xiak+1 = xifk+1 +Kk+1(y
i
k+1 − y

if
k+1)

4.2.4 Ensemble Kalman filter: dual state-parameter estimation

In dual state-parameter estimation, we need to create some parameter ensembles at the

beginning. The parameter ensembles can be created depending on the empirical knowledge

about parameters. We need to specify the uncertainty about parameters in the priors. Once

the priors are specified, the parameter ensembles can be formed random samples from a

normal distribution and some kernel smoothing82.

θifk+1 = θiak + τ ik

where τ ik ∼ N (0,Σθ
k) where θiak is the parameter ensembles calculated in the previous time

step. The starting value for θiak are the ensembles of parameter priors.

If we write this in the ensemble form, it looks like-

θifk+1 ∼ N (aθiak + (1− a)θ̄ak, h
2V a

k )
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where

V a
k = var(θa)

and

θ̄ak =
1

n

n∑
i=1

θiak

In the above equation, a and h are some kernel smoothing parameters for the filter.

Where

a =
3ζ − 1

2ζ

and ζ = [0, 1] typically having a value in the range 0.95-0.99. The value of a and h has the

following relation
√

1− h2 82. Forecast step: Sample θifk+1 from

N (aθiak + (1− a)θ̄a, h2V a
k )

xifk+1 = f(xiak , θ
if
k+1) + νik

yifk+1 = h(xifk+1, θ
if
k+1) + wik

Update step:

Kθ
k+1 = Σθyf

k+1[Σ
yyf

k+1 + Σy
k+1]

−1

θiak+1 = θifk+1 +Kθ
k+1(y

i
k+1 − y

if
k+1)

xifk+1 = f(xiak , θ
ia
k+1)

yifk+1 = h(xifk , θ
ia
k+1)

Kx
k+1 = Σxyf

k+1[Σ
yyf

k+1 + Σy
k+1]

−1

xiak+1 = xifk+1 +Kk+1(y
i
k+1 − y

if
k+1)
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4.2.5 Specifying parameter priors

We need to specify the parameter priors for the filter estimation. Priors are selected based

on empirical data. Prior space for the parameter is formed by sampling from the uniform

distribution. From the empirical JE data, the incubation period and recovery period for

humans is 5-15 days with a central tendency of 7 days89. Therefore, the incubation rate

δ can be expressed as 1/7 day−1 or 7/7= 1 week−1 as we have our data every week. The

recovery period has also had a similar value. Therefore, we assume a uniform distribution

for incubation rate δ and the recovery rate γ, which will give us a value close similar to the

empirical value. The infection rate β can be a variable that changes widely depending on

the weather factors. Therefore we choose a wide range for the uniform distribution of β.

The uncertainties associated with the parameters are presented in Table 4.1.

Table 4.1: Parameters
Parameter Description Maximum Minimum

β Infection rate 0.01 3
δ Incubation rate 0.8 1
γ Recovery rate 0.8 1

4.3 Simulation results and discussion

4.3.1 Dual State-parameter Estimation and Forecast

Cumulative data of Japanese encephalitis incidence since January 2015-March 2017 is used

to explore the accuracy of the dual state-parameter estimation framework for vector-borne

diseases. The available data is weekly incidences of Japanese Encephalitis in Taiwan.

By combining a JE SEIR model with the dual state-parameter estimation framework,

we can estimate parameters and states simultaneously. Figure 4.1 represents the param-

eter estimated from the filter with a 95% confidence interval. The parameter varies with

time. Time variant parameters demonstrate a change in the model, which makes parameter

estimation necessary at each step in the model and the forecast.
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Figure 4.1: Parameter Estimates from the dual state-parameter estimation framework with
95% confidence interval.

Data is divided into two sections for state estimation and forecasting. We have used the

first 109 weeks of data to explore estimation accuracy using EnKF. We reserved the last

six weeks of data for forecasting. After 109 weeks of estimation, we use the forecasts for

each new time step as the actual observation for the next step, iteratively, with the EnKF

framework for estimating the parameters and forecasting. The resulting state’s estimates

are shown in Figure 4.2.

In Figure 4.2, we represent state estimates from the EnKF. Black dots in Figure 4.2

represents the data points used for estimating the states and parameters, while green dots

represent data points reserved to check forecast accuracy.

The red line shows the estimations from the filtering framework. By visually inspecting

the plot, we can say that the estimation from EnKF closely follows the actual data. Looking

at the forecast, we can see that for the first four green points (four weeks), the forecasts from

the filter match very closely with the actual data. However, for the last two data points, the
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Figure 4.2: State estimates and forecasts from dual state-parameter EnKF framework.

filter underestimates the JE incidence estimating less infected individuals then the actual

incidences. The accuracy dual state-parameter estimation is demonstrated in Figure 4.3.

Figure 4.3 represents the mean squared error between the estimation and forecasts from the

filter with the actual incidence data.

In Figure 4.3, black dots represent the mean squared error in estimations while the green

dots represents forecast errors. Forecast errors for the first four data points have a minimal

value (green points), representing greater forecast accuracy. However, the higher forecast

errors for the last two weeks demonstrate the difference between the reported data and the

forecasts. From Figure 4.3, we conclude that our forecasting framework is accurate for short-
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to mid- (2-4 weeks) term forecasts. However, when doing long-term forecasting, the accuracy

starts deteriorating with future progressions.

Figure 4.3: Squared error for estimates and forecasts using EnKF framework.

4.3.2 Application of Control Measures

The infection rate β is the only parameter that is dependent on external factors such as

mosquito abundance for JE. Mosquito abundance is dependent on the weather, which makes

the infection rate β weather dependent.

Therefore, if we decrease the mosquito abundance by applying some control measures such

as spraying insecticide or killing larvae, this impacts virus transmission. To demonstrate the
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Figure 4.4: Effect of control measures in the disease spread.

effect of the control measure, we choose four different ranges of β, and simulation results

from our filtering framework are shown in Figure 4.4. From the 4.4, we can see a significant

reduction in the number of infected people for lower values of β.

4.4 Conclusions

This chapter presents the application of the EnKF for the simultaneous estimation of pa-

rameters and states for vector-borne diseases. The effectiveness of the EnKF in dual state-

parameter estimation is demonstrated using Taiwan Japanese Encephalitis data. Estimated
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parameters from the filter show temporal variances, which validates the need for a framework

that will simultaneously estimate the parameters while doing SEIR state estimations. The

temporal variability of the parameters is within a small range; however, that range of the

parameter needs to identify for the fruitful forecast of the diseases in general. Otherwise, we

will end up having an erroneous forecast. We explored the forecast horizon for JE using the

EnKF. The framework is capable of accurate short- to mid-term (two to four steps) forecasts.

However, for long-term forecasts, the accuracy starts deteriorating with time steps greater

than four. Therefore, from our work, we conclude that our filtering framework is capable of

accurate short to mid-term forecasts, even in the presence of a time-variant model. Applying

control measures such as insecticides to reduce mosquito abundance (infection rate) has a

conducive effect on reducing the epidemic size.
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Chapter 5

Risk assessment of Ebola virus disease

spreading using a two-layer temporal

network1

5.1 Introduction

Network models for infectious disease spreading and risk assessments have opened a new

era in management and containment of epidemics91–93. A large number of connectivity-

driven network models have been proposed for various infectious diseases. These models

are particularly well-suited for capturing essential system features where connections among

nodes in the network are long-lived94. An underlying assumption with these networks is long-

lived contact among individuals, which validates permanent links in the network without

oversimplification95.

Many models (both network and non-network) for infectious disease spreading have been

formulated assuming homogeneous long-lived connections among individuals. Compartmen-

tal models have been used in risk assessment, estimating the basic reproductive ratio, and

suggesting mitigation measures by fitting transmission dynamics with incidence data96–103.

1 This chapter is a reformatted and slightly modified version of our published article90
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However, long-lived connections are not suitable for systems with rapidly changing links95;104.

Highly contagious/infectious diseases are mostly transmitted from infected to susceptible

individuals via physical contact105. Therefore, contagious-disease-spreading models are cru-

cially dependent on contact structure among individuals in the network106. Considering a

network model of the human population, the assumption of constant contact with each other

is an oversimplification of reality. In general, contact structure among individuals changes

with time. These changes in contacts are not entirely random; instead, there is always a

pattern. For example, a contact pattern will change with changing frequency of occasional

or permanent partners for sexually transmitted diseases. Therefore, the change of perma-

nent partners can be a long-term process, and connectivity-driven network models work fine.

However, when considering the occasional partner change, the connectivity-driven network

will fail to capture the frequent change of partners. Several approaches have been proposed

for adapting network models with changing contact patterns. One of the earliest concepts is

the use of switching networks10;107. In this model, the contact network switches among some

predetermined network structures. This model accounts for a changing contact structure

with time. However, some predefined structures are required for this network model.

In the real world, contact structures are highly dynamical and evolve in time108. To

capture dynamic contact patterns in the network, the activity-driven network (ADN) has

been proposed94. ADNs are very powerful for studying the epidemic process when the

disease dynamic and contact evolution share a common time-scale109;110. The activity-driven

network provides the opportunity to incorporate different real-life scenarios, such as human

behavior, movement pattern in the network model110;111. ADNs also provide means to model

nodes that are likely to have contacts with the rest of the network94;112. Flexibility to

incorporate different features makes ADN suitable for real-life network models112;113. The

activity-driven network has been used to capture transmission dynamics of infectious diseases

in susceptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) model108;110.

Activity-driven networks (ADNs) have been widely used for EVD spreading as well.

ADNs overcome the simplifying assumption of long-lived and homogeneous contacts among

individuals93;109. Rizzo et al. used an ADN to emulate the dynamics of EVD in Liberia and
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offer a one-year prediction93. The effect on contact tracing on the spreading dynamics has

also been quantified using an ADN114;115. An activity-driven network has a limitation as it

randomly creates new links every time. Therefore, permanent links in the network are not

considered in the activity-driven network. Several modeling frameworks have been proposed

to overcome this problem with the ADN by coupling time-varying and static network compo-

nents. Lie et al. proposed a static-activity coupling network116, and Nadine et al. proposed a

framework superimposing an ADN to a static backbone network117. These networks integrate

persistent contacts with time-varying connections116;117. Vajdi et al. proposed a two-layer

temporal network incorporating both static/permanent links and temporal/occasional links

in two different layers25.

In this chapter, we develop a novel risk assessment framework using a two-layer network

with both static/permanent and temporal/occasional links in different layers. Our proposed

susceptible active-susceptible inactive-infected active-infected inactive-recovered (S Sa I IaR)

model, and the Gillespie algorithm. The two-layer network has a permanent layer reflecting

permanent contacts and a temporal layer that incorporates potential contacts. We adapted

the Gillespie algorithm with the S Sa I Ia R compartmental model and the two-layer network

to see the evolution of disease spread and risk assessment. As an example of the method, we

proposed a network model for Ebola virus disease (EVD) transmission in Uganda, including

23 districts based on human movement from a focal-bordering Ugandan district to Kampala.

Due to a recent Ebola outbreak in the neighboring Democratic Republic of Congo (DRC),

Uganda is at risk of Ebola introduction due to the entrance of an infected person. In the pro-

posed network, the permanent layer expresses contacts among family members while intra-

and inter-district contacts reflect potential contacts due to human movement. Simulation

results suggest that making people aware of reduced physical contact while traveling and

taking other preventive measures will reduce the number of EVD-infected humans. Results

show that some districts are more vulnerable to the risk of EVD spreading than others,

suggesting important guidelines for public health personnel in applying interventions and

prioritizing resource allocations. Assessed risks are probabilities of infection spreading for

our specific scenario based on generic and incomplete movement data, and any change in the
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network will result in different risks. Therefore, risk assessments in this work are just some

examples of the proposed novel risk assessment method. This chapter’s main contribution

is the novel, two-layer temporal network-based simulation tool for risk assessment of EVD

spreading, which can be used for practical purposes when incorporating accurate movement

data and model parameters.

The rest of the chapter is organized as follows. The risk assessment method section

describes the two-layer temporal network, SSaIIaR epidemics on the two-layer temporal

network, and adaptation of the Gillespie algorithm for risk assessment. Application of risk

assessment for Uganda EVD spreading showed an example for two-layer temporal network

use in Uganda, simulation results, and discussion. We summarize our conclusions and sug-

gestions drawn from these simulation results in the Conclusions section.

5.2 Risk assessment method

In this section, we propose a novel method for risk assessment using a two-layer temporal

network, S Sa I Ia R spreading model, and the adaptation of the Gillespie algorithm for a

temporal network.

5.2.1 Two-layer temporal network

We consider a two-layered network with a population of N individuals. In the two-layered

model, individuals can have links among them in both layers. The intersection of the two

network layers is assumed empty. We denote layers in the network as L1 and L2. In the

first layer, L1, links among individuals are considered permanent. Links in the second

layer, L2, are considered as potential links. In the subsequent section of this work, we

call L1 a permanent layer, while L2 is called a temporal layer25. Therefore, links in the

two layers will be referred to as permanent and potential/temporal links. Links in both

layers are established based on some certain probability distributions. Permanent links are

always active in the network, while potential links are activated with a probability only when
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individuals at both ends of the link are active simultaneously. Activation of individuals is

driven by an activity-firing rate (σ), as discussed in the ADN. In stochastic realization of the

network, once both nodes are active, the link between them becomes active with a Bernoulli

distribution having the probability P0. The generalized structure of the temporal network

is presented in Figure 5.1.

Figure 5.1: A generalized representation of the temporal network model at a specific time
t —white circles represent inactive nodes while red circles represent active nodes. Separate
rectangles represent two different layers. Dark solid lines show permanent links while dashed
lines show links in the potential layer. A potential link becomes active following a Bernoulli
distribution with the probability P0 when both ends of the link are active nodes.

In the permanent layer, a link can always transmit infection, whether it is active or not.

These permanent links are always present in the network. A link in the potential layer can

transmit the infection only when it connects two active individuals. If there is a link between

two nodes in the temporal layer, that link might be active or not, depending on the status

of the nodes. The potential link becomes active with a probability P0 only when both nodes

are active simultaneously. When one node in the active link becomes deactivated, the link
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vanishes. Therefore, the probability of infection transmission through the link becomes zero

again. The process of a node becoming active or inactive is assumed as a Poisson process with

a rate of σ. A node will stay active for an exponentially distributed period with an expected

value of σ−1. Thus we can assume a high value of σ for a specific node will reflect the reduced

duration of an active potential link. The parameter σ is referred to as the activity rate in

the subsequent sections of this chapter. Increased σ means an increased frequency of a node

changing its status, i.e., becoming active/inactive. For example, we assume an individual

becomes active once he starts a movement/trip and stays active until the trip is finished.

Therefore, decreasing σ means increasing the trip length and a decreasing frequency of this

kind of trip. Moreover, if a node does not participate in the occasional contacts, it never

becomes active, and σ is set to equal zero for that node. The temporal link disappears when

either of nodes in the link deactivates25. This temporal network is different from the widely

used, activity-driven network in the contact structure among individuals. In contrast with

the activity-driven network, there are permanent links, along with different temporal links,

in the proposed two-layer temporal network.

5.2.2 Epidemics on two-layer temporal network

In this section, we describe the modification of the SIR model for our two-layer temporal net-

work. The SIR model is a popular approach for studying infection spreading where infected

people die, or eventually recover and gain life-long immunity. For diseases such as chick-

enpox, and EVD, the SIR model can describe the disease’s dynamics and spread infection.

In the SIR model, each individual is either susceptible, infected, or removed/recovered. We

assume that infection and recovery processes are independent Poisson processes. A suscep-

tible node catches the EVD infection from an infected person, and this transition happens

with an infection rate β. Once a person becomes infected, he/she stays infected for a cer-

tain period, namely an infectious period. After the infectious period, individuals recover or

are removed from the infection. The rate at which an infected person leaves the infected

state is called the recovery rate, which is the inverse of the infection duration. The re-
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covery/removal rate is denoted as γ, which has a unit time−1. Up to this point, we have

discussed the basic SIR model. However, for our two-layer temporal network, we must also

consider the active/inactive status of the individual. Combining our temporal network model

and SIR spreading process, we have a total of six states an individual can occupy. However,

the recovered/removed population does not participate in disease transmission. Therefore,

their status does not have any impact on the disease dynamics, and we can combine active

and inactive recovered/removed compartments. Therefore, the model can be expressed as

a five-compartment S Sa I IaR model, where compartments are inactive susceptible, active

susceptible, inactive infected, inactive infected, and recovered.

If the probability of node i occupying inactive susceptible, active susceptible, inactive

infected, active infected, and recovered in the stochastic spreading process is expressed as

S, Sa, I, Ia, and R, respectively, then equations for the time evolution can be expressed as

follows:
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i
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Ri′ = γI ia + γI i (5.5)

aijk is the element of adjacency matrix Ak, where k=1 for the permanent layer and k=2 for

the potential layer. Equations 5.1-5.5 express stochastic equations for S Sa I IaR spreading.

The variable X ij
0 is a Bernoulli random variable that has a value of one with a probability

of P0. This random variable is drawn each time a pair of active nodes i, j with a potential

link between them occurs, regardless of their disease status. It can be translated to a real-
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life expression as follows: when both nodes in a potential link are active, the link can be

active with a probability of P0. We have presented an elaborate diagram illustrating how the

parameters in the exact equation drive the state transitions and state occupancy probability

in Figure 5.2.

Figure 5.2: Node-transition diagram for exact/stochastic spreading process used in this work
— each circle represents a compartment whose name is written inside the circle. Expressions
written over directional lines show probabilities of transition from origin to destination circle
(compartment).

Therefore, the model used in this work is stochastic, and the Gillespie algorithm was

adapted accordingly for this exact/stochastic process.

5.2.3 Adaptation of the Gillespie algorithm

Gillespie algorithm has been widely used to simulate stochastic processes for static network

(permanent contacts)7;36;61;118;119 and dynamic/time-varying networks (temporal/potential

contacts)25;120. However, our two-layer temporal network has both static and temporal
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contacts. Therefore, the Gillespie algorithm was adapted to the changed network state at

every time step retaining permanent contacts.

• Initialize the number nodes in the network (N), state transition matrices, the maximum

number of events, and the final simulation time. Find the transition probability Ri for

each node at the next time step and Rtot =
∑

j Rj, where j = 1, 2, ...N and keep track

of the status of the nodes (active/inactive)

• Find the time for the next event, which is exponentially distributed with a rate Rtot.

The second step is to select a node according to the probability distribution Pr(i) =

Ri/Rtot, which will make a state transition. Later we select a state where the transition

will happen.

• Increase the time by time calculated in Step 2. The main difference lies in the update

of transition rates for each node in the network once a transition occurs for our adap-

tation of the Gillespie algorithm. Nodes can change their status (active/inactive) and

change their states (susceptible, infected, recovered). Therefore, every time a transition

occurs, the status of the nodes needs to updated and recorded. When a node is in the

permanent layer, it’s transition probability has the impact of both layer’s neighbors.

However, when the node is in the temporal layer, it only has its neighbors’ impact on

the temporal layer. Therefore, the algorithm is modified to account for the network

with two different layer’s impact on the transition probabilities.

• Go back to Step 2 unless the stop condition is reached (maximum number of events,

the final time for simulation, or Rtot < Tolerance).

5.2.4 Calculation of risk

As the spreading process in our two-layer temporal network was highly stochastic, we per-

formed two hundred simulations for each combination of parameters. We kept track of each

node’s status and counted the numbers of simulations in which a particular node was in-
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fected. This count was later used to calculate the risk of EVD spreading in each district.

The formula to calculate spreading risk to a specific district is presented in equation (6).

Riskj =

∑Nj
n=1 In

NjNsimulation

(5.6)

Where, Riskj = Ebola spreading risk of district j, In = Number of simulations where

node n is infected, Nsimulation= Number of simulations, Nj= Total number of population in

jth district, and j = 1, 2, 3, ...., 23.

Once we calculate the risk, we can use any mapping software such as ArcGIS software to

create risk maps. Risk maps provide a visual representation of spreading risks.

5.2.5 Calculation of confidence interval

Our simulation framework is an event-based algorithm that randomly chooses the time when

the next event will occur and what that event will be. Therefore, these events are not

homogeneously time slotted. We perform a time regularization, where the temporal window

for simulation is divided into equal periods, and the number of events is calculated within

each period. We obtained the size/number of individuals in each compartment from events in

each period. We performed 200 simulations for each parameter set and recorded the number

of individuals in each compartment for all periods. Later, we found the range within which

95% of the simulation results fall in each period.

5.3 Application of risk assessment for Uganda EVD

spreading

We applied our risk assessment method for EVD in Uganda using a generalized movement

pattern and some specific model parameters. First, we formulated the two-layer temporal

network for Uganda. Later we used the network with the SSaIIaR model and the modified
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Gillespie algorithm to track the number of infected humans after a certain period and assess

the risk of EVD spreading to different spatial locations. Simulation results and discussion

for specific scenarios are presented later in this section.

5.3.1 Two-layer temporal network for Uganda

A recent Ebola outbreak in the DRC created a possibility of EVD infection in Uganda. We

proposed a two-layer temporal network for EVD spreading in Uganda. We have observed

the focus of Ebola preparedness by the ministry of health and partners to select a possible

point of entry for an Ebola patient from the DRC. We found the Kasese district was at

high risk of an EVD- infected person’s entry point. Therefore, we chose this district as our

point of entry. Once an infected person from the DRC entered into Uganda through the

bordering districts, he or she met susceptible people in that location. EVD-infected persons,

being highly contagious, can spread the infection to people they meet. People move from one

location to another for different reasons, and there is always a pattern for this movement.

We created a network based on people’s movement for different purposes such as fish trade,

cattle trade, and general movement. The movement pattern and districts in the movement

paths were obtained from confidential data provided by the ministry of health in Uganda.

We used these data to formulate an example of a human movement network for some selected

districts in Uganda. Human movement from one location to another is largely motivated by

three different purposes in Uganda:

1. Fish traders move in a southward direction from the point of entry.

2. General movement for shopping, visiting relatives, searching for work, or traveling for

various purposes starts at the point of entry. This movement goes all the way to the

capital city of Kampala. People mostly travel from rural areas to neighboring big cities.

They meet other people there, and this results in a certain mixing among individuals

from different locations. This mixing happens throughout this movement path. Several

of these movement paths are presented in Figure 5.3 with green arrows.
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3. Limited movements due to cattle trade are mostly local or between neighboring dis-

tricts. Long-distance cattle trade happens at the commercial scale and does not include

much movement of people as they move mostly via an organized transportation system.

We created a specific network for human movement from Kasese to Kampala based on

general movement information. This network was used to show an example of the method

developed for risk assessment. As we described in our temporal network section, we assumed

two layers in the network. The permanent layer consisted of contacts of each individual

within each household. Each family in Uganda has an average of six children121. Including

parents, we roughly assumed around eight people within each household. Therefore, we

assumed a population distribution where each household had five to ten members.

Within each household, we assumed permanent links among family members. Therefore,

links within each household constructed the permanent layer in the Uganda EVD spread-

ing network. The potential layer was formed by incorporating previously discussed human

movement. An individual becomes active once he or she is in movement and stays active

until he or she finishes the movement. Once a node is in movement (active), its potential

link can be activated if the other node in the link is active. This can be explained as fol-

lows: node i has potential links with a set of nodes named J throughout the whole network.

Therefore, once node i is active, potential links with any of the active nodes in J can be

activated following a certain probability. This link-activation structure is crucial in proper

representation of the contact structure. Two moving nodes (active) can meet each other in

different places such as transportation, marketplace, visiting sites. Usually, the movement

pattern between individuals follows a general structure. Within each location, a probability

exists that individuals encounter each other for various purposes. Inter-location contacts

also follow some structure rather than being completely randomized. People usually flock

into big cities or towns nearby where they encounter local active people or others coming to

that location. When this happens, if two of these active individuals have a potential link,

that link is activated with a certain probability distribution (Bernoulli distribution with

probability P0).
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Figure 5.3: Two-layer temporal network for EVD spreading in Uganda. The districts con-
sidered for our network model are colored in baize (23 districts). Small black oval shapes
represent individual human beings. This figure does not represent the actual network; rather,
it is a visual representation of the two-layer network. Each cluster of a human represents a
household, and black lines among them represent permanents contacts. Red lines represent
contacts in the potential layer. These links only become active when both individuals in the
link are active simultaneously. A link represents the possibility of pathogen transmission.
The green directional arrow represents the directions of human movements.

A zoomed up view of a portion of the network (Kasese district) is presented in Figure

5.4. This shows a scaled-down version of the actual network for visualization purposes.

Districts used in our Uganda network are presented in Table 5.1. We used the centroid

of each district to find distances between districts while formulating the network. However,

this is one realization of the network built using available movement data. Some Ugandan

districts are not included in our assessment; therefore, there may have been districts at high

risk that were excluded from the risk assessment performed in this study. We scaled the

population of each district in our network by 1,000 for computational purposes. As our main

purpose was to evaluate the risk of EVD, this scaling greatly reduced the computational
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Figure 5.4: Zoomed view of a district in EVD spreading network in Uganda. We chose
the Kasese district for this visualization. However, the population in the specific district
is scaled down for a comprehensible representation of the network. Small clusters rep-
resent individual households (permanent layer), and lines between clusters represent tem-
poral links. We created the network using Gephi-0.9.2 (https://gephi.org/) and the map
using ArcMap 10 (http://desktop.arcgis.com/en/arcmap/). We have used Inkscape 0.92.3
(https://inkscape.org/) to superimpose the map and network together.

complexity. We have incorporated previously discussed movement patterns along different

paths from one point of entry to Kampala in the network. These movements and their

directions are also shown in Figure 5.3. We considered all districts that were in movement

paths of any nature toward Kampala from Kasese. Although all bordering districts were at

risk of Ebola introduction, we focused on demonstrating the application of our method when

the initial infections were in the Kasese district.

In summary, our network for Ebola spreading in Uganda consisted of 23 districts where
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Table 5.1: Districts considered in our Uganda two-layer temporal network
Districts Population

Bundibugyo 224387
Bunyangabu 181200

Bushenyi 234440
Hoima 572986

Kabarole 469236
Kampala 1507080

Kamwenge 414454
Kanungu 252144
Kassanda 100038

Kasese 694992
Kyegegwa 159800
Kyenjojo 422204
Lwengo 267300
Masaka 297004
Mbarara 472629
Mityana 328964
Mpigi 250548

Mubende 684337
Mukono 594804
Ntorko 70900

Rukungiri 314694
Sheema 180200
Wakiso 1997418

the permanent layer incorporated contacts among individuals within a household. The po-

tential layer reflected contacts between individuals when both ends of the link were active

during movement and had a possibility of pathogen transfer between them.

5.3.2 Simulation setup

Upon formulating the two-layer network, we performed simulations with the SSaIIaR model

for EVD transmission using the Gillespie algorithm25;31. We conducted our simulations

with two major goals — to observe the progression of EVD spreading with time throughout

the network and evaluate the risk of spatial spreading for this specific scenario. In our

simulations, we had four different parameters. They were the rate at which individuals
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become active and inactive, generally called activity rate σ; the infection rate β; the recovery

rate γ; and the probability P0 of an active link between two simultaneously active individuals

in the potential layer. These values are hard to estimate, and due to high stochasticity

in the people’s movement pattern, movement parameters, i.e., (σ), cannot be expressed

with a single value. The infection rate β is also variable and takes different values for

different outbreaks depending on the contact pattern among individuals. We performed

simulations using multiple values of each parameter to explore the sensitivity of epidemic

size and transmission risk. For each parameter set, we calculated the number of infected

individuals with time and created risk maps.

We presented the number of infected individuals in each time step for each parameter

set. As we had multiple parameters, we chose the value of P0=0.7 and 0.1, which represented

a 70% and 10% chance of an active potential link between two active nodes. We chose σ=

0.1 and 0.5 for the activation/deactivation rate (activity rate) and 1
σ

is the average time

an individual is active. The value of σ has the following real-life explanation: a particular

individual becomes active in every 1
σ

days, and once active, he or she stays active for the

next 1
σ

days. For example, σ= 0.1 represents the frequency of a node being changing its

state (inactive to active, active to inactive) every ten days.

5.3.3 Results and discussion

We initiated our simulation with a single, active infected person in the Kasese district. We

tracked each node’s status in the network for 150 days to see how each node was changing

its status (inactive susceptible, active susceptible, inactive infected, active infected, and

recovered). At the end of the simulation time (150 days), the total number of infected

people in the outbreak was calculated, and the risk of a specific node being infected during

the outbreak was assessed.

To measure the progression and severity of EVD spreading, we tracked the number of

infected people and a cumulative number of infected people for 150 days. For any infection

spreading, some important measures are the size of the peak infection (maximum number
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of simultaneously infected individuals), time to reach that peak, and the total number of

infected within an outbreak (epidemic size)36. We designed our simulation to track both the

number and the cumulative number of infected at each time step. Our simulation results are

presented in the subsequent parts of this section. We had chosen values of infection rate β to

explore a varying range of transmission potential given contact with infected individuals. We

have calculated the 95% confidence interval from 200 simulations for the number of humans

in each compartment at each period and final epidemic size. For easier demonstration and

comparison, we have presented simulation results without a confidence interval in the Results

section.

Figure 5.5 represents the number of cumulative infected and infected humans for P0 =0.7

and σ=0.5, and a varying range of infection rate β.

Within Figure 5.5, the top graph represents the average cumulative number of infected

while the bottom plot represents the average number of simultaneously infected humans at

different time steps.

From Figure 5.5 (P0=0.7 and σ=0.5), it is evident that with the increase of β, infection

size increases rapidly. An increase of β from 0.2 to 0.5 increases infection size from 2,459 to

6,634. Therefore, a very small increase in transmission causes a huge increase in the number

of people infected with EVD. We assumed a 70% chance of pathogen transmission once an

active infected individual comes into contact with another active susceptible person in the

potential layer. Also, in this simulation set, the potential layer is assumed to be highly

active/mobile. People are assumed to become active and inactive within an average period

of two days.

The number of simultaneously infected people at a certain time is very important for

public health personnel122. More infected people means increased preparation of hospital

beds, doctors, and medical supplies123. Therefore, once an outbreak occurs, it is important

to have an idea about the maximum number of simultaneously infected people (size of the

peak infection)36. In Figure 5.5, the bottom plot shows simultaneously infected people at

each time step. In the plot, peak infection size also increases with β. However, when β=0.2,

the peak is not very pronounced, and the peak infection size is around 600. However, for
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Figure 5.5: (Top) Average number of cumulative infected and (bottom) average number
of infected humans in the Uganda Ebola network for P0=0.7, σ=0.5 —four different colors
represent the average number of infected humans for four values of β. Red, blue, green, and
magenta lines correspond to the number of infected humans for β = 0.2, 0.5, 1.7, and 2.5,
respectively.

other values of β, the peak is more pronounced, and the peak infection size is more than

2,500 for all other values of β. The time to reach the peak for β=0.2 is around 50 days. With

the increase of β, the infection plot becomes skewed to the left, meaning faster arrival at

peak infection size. Faster arrival to peak infection and greater value of peak infection size

indicates a widespread epidemic outbreak. Therefore, simulations for this specific parameter

set indicate a widespread and severe outbreak for β larger than 0.5, where more than 50%

of our total population in the network becomes infected.

For each parameter set, we had estimated the risk of EVD spreading to different spatial

locations from a single infected individual at the Kasese district. We had created risk maps

using ArcGIS for EVD spread to distant locations. We had used an equation for risk ex-
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plained previously to calculate the risk. The values of risk are classified into five different

categories, as presented in Table 5.2.

Table 5.2: Classification of risk for our spatial locations based on the value of risk parameter.
Risk Value of risk parameter

No risk or not considered 0
Low risk 0 < risk ≤ 0.2

Moderate risk 0.2 < risk ≤ 0.4
Medium risk 0.4 < risk ≤ 0.6

High risk > 0.6

Risk maps in Figure 5.6 show all neighboring districts in the southern part of Uganda,

although we have considered 23 districts. Therefore, some districts on the maps had not

been considered in our two-layer temporal network and, hence, have not been assessed for

risk.

Figure 5.6 shows a risk map for four selected values of β and P0= 0.7, and σ = 0.5. The

map is colored with a monochromatic color gradient, which increases with increased risk.

Therefore, districts that are white on the map are either not at risk (if considered in the

network model) or not considered in the network model.

From the risk map for β=0.2 in Figure 5.6, we can see that all of our selected locations

are at low or moderate risk as the infection rate is very low. However, some districts are at

comparatively higher risk than others are. For this specific scenario, with β=0.2, Bundibu-

gyo, Bushenyi, Kyegegwa, Kyenjojo, Masaka, Mpigi, and Sheema districts are at higher

risk than other districts in our network. However, the districts mentioned above are at a

moderate risk of Ebola spreading while other districts are at low risk for β=0.2. Increasing

the value of β increases risks proportionately, which can be seen from Figure 5.6. Color

gradients increase in risk maps with increasing β. In the risk maps for other values of β,

a similarity in risk is observed. This is evident from similar color gradients of districts on

all three maps for β=0.5, 1.7, and 2.5, which can be explained from the similar epidemic

size and comparable infection peaks for these values of β (Figure 5.5). Therefore, we have

similar infection spreading in these cases, and assessed risks are similar (not the same, but
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Figure 5.6: Risk map of Ebola spreading within selected 23 districts in Uganda for P0=0.7,
σ=0.5, and (a) β=0.2, (b) β=0.5, (c) β= 1.7, (d) β = 2.5. The map is colour coded
according to the risk of Ebola spreading.

they are in the same interval as presented in Table 5.2). There was an increasing trend in

the value of calculated risk parameters with an increase of β, although, on the map, they

are included in the same interval. Districts in the temporal network for β= 0.5, 1.7 and 2.5

with assessed risks are presented in Table 5.3.

Table 5.3: Districts in the network and their associated risks for EVD spreading.
High risk Bundibugyo, Bunyangabu, Bushenyi, Kanungu, Kyegegwa, Kyenjojo, Lwengo, Masaka, Mpigi, Sheema
Medium Risk Hoima, Kasese, Mbarara, Mityana, Mubende, Ntoroko, Rukungiri, Kassanda
Moderate risk Kampala, Kamwenge, Wakiso
Low risk Kabarole, Mukono

Table 5.3 shows that 10 of 23 districts are at high risk of EVD spreading during an

outbreak. With a current outbreak in the DRC, it is expected that bordering districts will

be at high risk of EVD spreading. However, our simulation results can incorporate movement
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data that shows non-bordering districts can also be at high risk due to the infected persons’

movement. This can be easily seen from Figure 5.6, where some non-bordering districts

demonstrate a high or medium risk of EVD spreading.

Figure 5.7 represents the number of infected individuals for P0 =0.7 and σ=0.1. σ = 0.1

means individuals are likely to become active and inactive with an exponentially distributed

time, which has an average of 10 days. Therefore, decreasing σ decreases the probability of a

human becoming active while increasing the time of him/her staying active. Peak infection

increases from 450 to 1,700 for our selected values of β=0.2 to 2.5.

Figure 5.7: (Top) Average number of cumulative infected and (bottom) average number
of infected humans in the Uganda Ebola network for P0=0.7, σ=0.1 — four different colors
represent the average number of infected humans for four values of β. Red, blue, green, and
magenta lines correspond to the number of infected humans for β = 0.2, 0.5, 1.7, and 2.5,
respectively.

Comparing simulation results presented in Figure 5.5 and 5.7 for similar values of β,

epidemic size, as well as peak infection, is always higher for higher values of σ. Higher values
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of σ can be translated to increased human movement in our network. As we are assuming

an active person is a traveling person, a higher σ for a person means frequent short trips,

while lower σ means infrequent longer trips. Higher σ decreases the time a human will be

in the active (mobile) state, while a lower value indicates the longer length of an individual

staying active25. Therefore, it is convenient to assume that while an infected individual is

active for a longer period, this will eventually spread the infection to more active individuals

in the potential layer124. However, our simulation results show otherwise. An increase in the

value of σ increases infection size as well as peak infection size (Figure 5.5 and Figure 5.7).

Therefore, our simulation results show the frequency at which individuals become active or

inactive dominates over the individual’s stay active. This is evident from the larger size of

the epidemic from the higher value of σ. For β=0.2, the cumulative number of infected after

1,607 is when it is 59, and we have σ=0.5. The value of the cumulative number of infected is

higher for other cases as well. The infection reaches its peak slowly (approximately 50 days)

irrespective of the value of the infection rate. Therefore, the lower value of the activity rate

σ means a lesser number of simultaneously infected people and a slower spread of infection

within the spatial locations (Figure 5.6 and Figure 5.8). As we discussed earlier, a lower

value of σ reflects the reduced movement of people. From comparisons between simulation

results in Figure 5.5 and Figure 5.7, it is evident that human movement is critical in the

severity and speed of EVD spreading. As frequent human movement (frequent short trips)

spreads EVD very quickly, reduced human movement may minimize the severity of the EVD

spread125. This is also evident from the risk map shown in Figure 5.8 for reduced σ. From

the map, we can see that Bundibugiyo, Sheema, and Masaka are three districts most at

risk of Ebola spreading for our specific network model. For these three districts, the risk of

spreading is comparatively higher than other districts, even when the value of the infection

rate is very low. For example, these districts are in a moderate-risk zone while others are in

a low-risk zone for β=0.2. However, with the increase of β, the value increases, and for our

highest value of β=2.5, these three districts are at a high risk of Ebola spreading. Table 5.3

presents districts in the temporal network for β= 2.5 with assessed risks.

During the network creation, some districts were assumed possible mixing places, which
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Figure 5.8: Risk map of Ebola spreading within selected 23 districts in Uganda for P0=0.7,
σ=0.1, and (a) β=0.2, (b) β=0.5, (c) β= 1.7, (d) β = 2.5. The map is colour coded
according to the risk of Ebola spreading.

makes them more vulnerable than others. Therefore, simulation results and evaluated risks

were obtained according to the network structure. An example of dependency on the network

structure is evident from Figure 5.6 and 5.8, showing the district of Kabarole at low risk

for all values of β, despite being a bordering district to DRC. This low risk for Kabarole

reflects the fact that this district was not considered as a mixing place in our network. This

demonstrates our method’s adaptability to specific data about each location in the network.

Table 5.4: Districts in the network and their associated risks for EVD spreading.
High risk Bundibugyo, Masaka, Sheema
Medium Risk Bunyangabu, Bushenyi, Hoima, Mbarara, Mityana, Mpigi, Kyegegwa, Kyenjojo, Lwengo, Kanungu
Moderate risk Kampala, Kamwenge, Wakiso, Rukungiri, Ntoroko, Mubende, Mityana, Kasese, Kassanda
Low risk Kabarole, Mukono

Comparing Table 5.3 and Table 5.4, it is evident that when we have a lower σ, risk
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decreases significantly. For the same values of β, lower σ reduces the risk of Ebola spreading.

When β=0.5 and σ=0.5, there are 11 high-risk districts. Decreasing the value of σ to 0.1

results in only three high-risk districts for β=2.5. For other values of β and σ=0.1, none of

the districts in our network model are at high risk. Therefore, reducing human movement

has shown a significant decrease in EVD spreading. However, reducing human movement is

not practical, as it cannot be controlled. Therefore, we focus on the parameter P0, which

expresses the possibility of pathogen transfer via an active potential link. P0 can be expressed

as the probability of an actively infected person spreading the virus to an active susceptible

person. The value of this parameter is dependent on direct physical contact between the

infected and the susceptible. In our previous set of simulations, we used P0=0.7. If we can

decrease the possibility of physical contact among humans in case of an outbreak, it would

be equivalent to a reduced possibility of virus transfer. To observe the impact of reduced

physical contact, i.e., lower P0, we conducted a simulation for a P0=0.1 reflecting only a 10%

possibility of pathogen transfer via an active link while one of the humans is infected.

Decreasing the probability of EVD spreading (i.e., P0) to 10% from 70% via a contact

in a potential layer significantly reduces infection size as well as numbers of simultaneously

infected humans. However, while changing the P0, similar values of σ are used as before.

Figure 5.9 shows cumulative infected humans for σ=0.5 and P0=0.1. For our lowest

value of β=0.2, the cumulative number of infected humans is 45 after 150 days. Increasing

β increased the value of cumulative infected humans to 1,274 for β=2.5. Therefore, the

number of cumulative infected humans is very low compared to cumulative infected humans

for similar values of β with P0=0.7. Besides, there is no pronounced single peak, while the

maximum simultaneously infected people go to around 400 for the highest-used value of β.

Therefore, decreasing P0 reduces the number of infected humans and, thus, the severity of

EVD spreading.

Figure 5.10 shows risk maps for P0= 0.1 and σ=0.5. It is evident from the maps that all

districts in our network are at low risk for EVD spreading for selected values of β.

Further decreasing the value of σ to 0.1 decreases the cumulative number of infected

humans as well as peak infection size. Figure 5.11 shows that when β is 0.2 and 0.5, the
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Figure 5.9: (Top) Average number of cumulative infected and (bottom) average number
of infected humans in the Uganda Ebola network for P0=0.1, σ=0.5 —four different colors
represent the average number of infected humans for four values of β. Red, blue, green, and
magenta lines correspond to the number of infected humans for β = 0.2, 0.5, 1.7, and 2.5,
respectively.

EVD does not spread at all and stays within the outbreak location with only two to three

infected persons. However, increasing the value of β increases the number of infected humans,

but the cumulative number of infected remains less than 150 even for our highest value of

infection rate (β = 2.5).

Figure 5.12 shows no risk of EVD spreading for β=0.2 and 0.5. However, with increasing

β, all our districts are at a low risk of EVD spreading.

Summarizing simulation results and risk maps presented in Figures 5.6-5.9, we can see a

significant reduction in the epidemic size and simultaneously infected humans when P0=0.1.

Therefore, a reduction in the probability of pathogen transfer via a potential link i.e., reduced

physical contact between humans while they are active/mobile, greatly reduces the number
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Figure 5.10: Risk map of Ebola spreading within selected 23 districts in Uganda for P0=0.1,
σ=0.5, and (a) β=0.2, (b) β=0.5, (c) β= 1.7, (d) β = 2.5. The map is colour coded according
to the risk of Ebola spreading.

of infected as well as the severity of EVD. It also reduces the risk of EVD spreading.

EVD spreads from physical contact with bodily fluids such as blood, feces, vomit, saliva,

mucus, tears, breast milk, urine, semen, sweat, etc. from infected persons. Therefore, a

susceptible person can only be infected with EVD if he or she comes in contact with these

bodily fluids from an infected human. So, if infected people are identified and moved to the

quarantine, and are restricted from travel, then the infection can be contained. However,

non-hospitalized people during early symptomatic stages keep moving for their daily lives

and spread the infection to people they come in contact with. Early detection in countries

where people are not very health conscious is challenging. Therefore, when an infected case is

found, the spread can be contained if the human movement is reduced significantly. However,

this is not practical as human movement cannot be controlled.

The activity rate (σ) can be translated to human movement within the network. There-
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Figure 5.11: (Top) Average number of cumulative infected and (bottom) average number
of infected humans in the Uganda Ebola network for P0=0.1, σ=0.1 —four different colors
represent the average number of infected humans for four values of β. Red, blue, green, and
magenta lines correspond to the number of infected humans for β = 0.2, 0.5, 1.7, and 2.5,
respectively.

fore an increasing activity rate means an increased but shorter duration of human movement.

From all simulation results, it is evident that an increase in activity rate increases epidemic

size as well as the speed of the infection to reach its peak. Therefore, an increasing activity

rate means severe and fast-spreading EVD. Simulation results suggest that short duration

but frequent human movement results in a greater number of infected humans and a higher

risk of EVD spreading than longer duration but a less frequent movement.

The probability at which infection spreads to susceptible people via a potential contact

(P0) has obvious impacts on epidemic size. Increasing P0 increases epidemic size irrespective

of the activity rate σ, which is evident from Figures 5.5, 5.7, 5.9, and 5.11. Comparing Figure

5.5 and Figure 5.9, as well as Figure 5.7 and Figure 5.11, for similar values of the activity rate,
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Figure 5.12: Risk map of Ebola spreading within selected 23 districts in Uganda for P0=0.7,
σ=0.5, and (a) β=0.2, (b) β=0.5, (c) β= 1.7, (d) β = 2.5. The map is colour coded according
to the risk of Ebola spreading.

decreasing P0 decreases the number of infected humans significantly. P0 can be translated

to the probability of physical contact of infected mobile humans with others. Therefore, our

simulation results conform to another mitigation strategy against EVD spreading, which is

staying away from contact with people whose status for EVD is unknown. The lower value of

P0 can be achieved by minimizing physical contact among people during movement/travel. If

people are aware of the risk of EVD spreading in their area and keep themselves from physical

contact with others, it will significantly reduce infected cases if there is an outbreak.

Risk maps show some districts, as shown in Table 5.3 and 5.4, are at higher risk of

Ebola spreading in our specific network scenario. The risk assessment provides important

information for Ebola preparedness, which includes setting up medical facilities as well as

employing different preventive measures against disease spreading. However, resources are
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limited, and it is always essential to find a way to utilize resources fruitfully. Our risk

only showed examples of our developed risk assessment method, where we have used very

limited generalized movement data. Although the proposed risk assessment method can

provide guidelines for public health people, it requires more accurate movement data to be

used practically in the field. Future work will include an evaluation of the impact of major

EVD intervention pillars (i. e., coordination, vaccination, surveillance, risk communication,

case management, and safe burials) on risk assessment, to provide a realistic picture under

multiple scenarios.

5.4 Conclusions

We present a novel method for risk assessment based on a two-layer temporal network. This

method can assess the risk of EVD spreading when accurate network data is available and

can be an important tool for public health people during an outbreak. We demonstrate an

application of our developed method using a two-layer temporal network formulated with

generic and incomplete movement data in Uganda. Simulation results from this two-layer

temporal network confirm that reduced physical contact with people while traveling, as

well as taking other preventive measures, decreases the risk of EVD spreading. Simulations

also show some districts are at higher risk than others in the scenario considered. The

identification of the risk provides public health personnel direction for prioritizing their

efforts to limit EVD spreading during an outbreak. However, assessed risks are crucially

dependent on the network structure and can only be fully trusted for resource allocation

once accurate, individual-level movement data in time and space are available.
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Chapter 6

Risk assessment of vector-borne

disease transmission using

spatiotemporal network model and

climate data

6.1 Introduction

In modern times, threats posed by infectious diseases have become a significant public health

concern due to the increasing connectivity126. Emerging infectious diseases (e.g., H7N9,

H5N1, and Ebola) as well as endemic diseases (e.g., dengue, chikungunya, measles), pose

a severe threat to human health and life127. Some infectious diseases have high mortal-

ity and morbidity rates (Ebola), and some of these diseases lack treatments or vaccines

(dengue)119;128. Infectious diseases are creating pandemics due to globalization. For exam-

ple, 2019 had experienced major dengue outbreaks in many countries in the world, including

southeast Asia and Latin America. Other emerging and endemic infectious diseases had also

shown to spread rapidly across the globe in recent times. Therefore, accurate risk assessment

of disease outbreak is very important for preparedness in this modern world. Risk has been
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defined as disease development probability within an individual in a specified time interval

by medical epidemiologists and health organizations129. Risk is also defined as the potential

adverse consequences of unwanted phenomena (disease/event)to human life, health, prop-

erty, or the environment130. Accurate risk assessment models have the potential to improve

epidemic prevention and control capabilities.

Due to the complexity in vector-borne diseases spreading, often risk is associated with

vector or host suitability, the basic reproduction number, vectorial capacity, vector preva-

lence, or incidence history129;131–133. One method to assess the risk is by detecting disease

outbreaks from surveillance data— a retrospective approach, which has a limitation of al-

lowing enough time for preparedness134. However, some areas have limited resources for

the surveillance system. Especially in developing countries, collected data may not be ade-

quate as most people chose not to use medical facilities unless they have severe conditions.

Therefore, disease surveillance data-dependent risk assessment is not always efficient with

unreported or under-reported incidences. Therefore, researchers have developed other risk

assessment methods to overcome the problem with retrospective methods. The impact of cli-

mate change on the vector survival, suitability and pathogen transmission has been assessed

for vector-borne diseases in numerous research135–143. Unfortunately, very limited researches

have included spatial and temporal heterogeneity of the weather conditions, population de-

mography, and movement information in the risk assessment models.

In this context, we develop a risk assessment framework incorporating the aforementioned

significant elements for vector-borne diseases. In this chapter, we focus on the mosquito-

borne diseases to demonstrate the risk assessment framework as they comprise the majority

of vector-borne diseases. This work has three major contributions. The first contribution is

the formulation of a spatiotemporal network-based risk assessment framework by incorpo-

rating climate data and demographic information, especially for regions with unreported or

under-reported incidence data. The second contribution is deriving a spatiotemporal suit-

ability map of competent mosquito species in the disease transmission with only temperature

data. The third contribution is the development of spatial risk maps for disease transmission,

showing the relative risk of each location compared to others. Additionally, the identification
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of the significant-incidence window and peak incidence period is performed by comparing

simulation results with data (when available). A serotype analysis is conducted to identify

contributing factors for the year-to-year difference in incidence data. This novel risk assess-

ment method is capable of incorporating both human movement and contact patterns as

well as impacts of weather factors in human-mosquito interaction.

Finally, an application of the novel framework is presented for dengue spreading in

Bangladesh. A spatiotemporal network is developed for human movement in Bangladesh

using demographic information, one-month, and two-month lagged climate (temperature

and rainfall) data. A map for the spatiotemporal suitability of human-mosquito interac-

tion as well as spatial dengue transmission risk maps are obtained from simulation results.

Simulation results matches closely with the significant-incidence window and peak incidence

period with Bangladesh dengue transmission dynamics. The year-to-year data variability

shows a correlation with the dominant serotype. The combined knowledge obtained from

the framework (i.e., significant-incidence window, the peak incidence period, risk map, and

spatiotemporal suitability map) provides a guideline to public health personnel in prioritizing

spatiotemporal resource allocation to reduce/prevent dengue transmission. Risk maps are

developed incorporating generalized human movement data in the spatiotemporal network

and have the adaptability to include actual and accurate movement data.

6.2 Materials and method

6.2.1 Risk assessment framework

Our novel risk assessment framework couples a spatiotemporal network-based approach with

a compartmental disease model and a spatiotemporal spreading algorithm. The risk assess-

ment framework has five different components. They are as follows-

• Compartmental model

• Pathogen transmission model with climate data
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• Spatiotemporal network

• Spatiotemporal spreading algorithm

• Risk calculation

Each of these components is described in subsequent parts of this section.

Compartmental model

Compartmental models express transitions of the host population from one disease state/compartment

to another10. These compartments are, for example, susceptible, exposed, infectious, recov-

ered, removed, vaccinated, and alert. Some parameters govern inter-compartmental tran-

sitions. The transition rate from susceptible to exposed/infected compartment (infection

rate) is the most crucial parameter for the vector-borne disease model. The infection rate is

correlated with climate/weather dependent factors such as vector abundance and host-vector

interactions. Therefore, we incorporate climate data in the infection rate for the developed

risk assessment framework.

Pathogen transmission model with climate data

The infection rate for vector-borne diseases has a complicated relationship with the envi-

ronment and the host. For example, mosquito abundance and their interaction with the

host population cause the transition from susceptible to infected (or exposed) states. When

the mosquito population is the vector for disease, temperature, and rainfall data are used

to develop the correlation between mosquito abundance and their interaction with the host

population. This relation can be expressed as vectorial capacity— a parameter governing

the spread of infection from an infected to a susceptible host via vectors. Vectorial capacity

is given as

Vc =
ma2bhbme

−µmn

µm
(6.1)
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where the vector parameters used are 1) the average daily vector biting rate (a), 2) the

probability of vector to human transmission per bite (bh), 3) the probability of human to

vector infection per bite (bm), 4) the duration of the extrinsic incubation period (n), 5) the

vector mortality rate (µm), and 6) mosquito vector density with respect to the host (m)144–146.

These parameters are specific for the mosquito species and the concerned disease. We choose

Aedes aegypti, one of the most competent mosquito species in transmitting dengue, Zika,

chikungunya, yellow fever, and other severe diseases to model the infection rate/vectorial

capacity. Except for mosquito vector density with respect to the host, all other parameters

in equation 6.1 can be calculated empirically using spatiotemporal temperature data146. The

following empirical formulas are used to calculate temperature-dependent parameters, where

T is the temperature in degree Celsius.

1) Biting rate (a): Liu-Helmersson et al. and Scott et al. developed the following

empirical equation from numerous experimental data to model the relationship between

temperature and average blood meal frequency of female A. aegypti 146;147.

a(T ) = 0.0043T + 0.0943(day−1) (6.2)

2) Probability of vector to human transmission per bite (bh): The empirical

equation for the probability of human infection was expressed with the following thermody-

namic function146;148.

bh = 0.001044T (T − 12.286)
√

32.461− T (6.3)

for (12.286◦C < T < 32.461◦C)

3) Probability of human to vector infection per bite (bm): Lambrechts et al.

derived the relationships between temperature and the probability of infection based on

empirical data for several A. aegypti -borne diseases.149.
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bh =


0.000729T − 0.9037 (12.4◦C < T ≤ 26.1◦C)

1 (26.1◦C ≤ T < 32.5◦C)

(6.4)

4) Duration of the extrinsic incubation period (n): An exponential function was

used to fit experimental data for the extrinsic incubation period149;150.

n(T ) = 4 + e5.15−0.123T (6.5)

5) Vector mortality rate (µm): Yang et al. developed a 4th order polynomial equation

fitting experimental data to model the mortality rate with temperature35.

µm(T ) = 0.8692− 0.1590T + 0.01116T 2 − 3.408 ∗ 10−4T 3 + 3.809 ∗ 10−6T 4 (6.6)

6) Mosquito vector density with respect to the host (m): The mosquito vector

density with respect to the host mostly depends on the rainfall. Therefore, in this article, this

parameter is expressed as proportional to the weekly average rainfall151. We have normalized

the average weekly rainfall in each location before using it in the vectorial capacity model.

Spatiotemporal network

To account for the spatiotemporal heterogeneity of the disease transmission risk with chang-

ing weather conditions, we propose a spatiotemporal network. The spatiotemporal network

is developed using host demographic information such as population density, distribution,

and movement. In this network, nodes represent individuals within spatially homogeneous

locations, and links represent movements within and between these locations. The network

is spatially explicit and has multiple temporal realizations to represent heterogeneities in

weather conditions with time and space. This network is then combined with a spatiotem-

poral spreading algorithm to simulate the spatiotemporal transmission of the infection. The

network is periodically updated to reflect the changing weather conditions in the spatiotem-

poral spreading algorithm.
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Spatiotemporal spreading algorithm

Nodes influence each other through statistically independent pairwise interactions in most

network-based models. Sahneh et al. developed the generalized epidemic modeling frame-

work(GEMF) for stochastic spreading processes over complex networks based on these in-

dependent pairwise interactions29;30. GEMFsim tool was later developed for numerical

simulation of GEMF-based models by implementing the Gillespie algorithm29. The com-

bined state of all nodes in a network can be described as a random variable XN(t) =

[x1(t), x2(t), ..., xi(t)], where xi(t) is the state (compartment) of node i at time t. The tran-

sition time from one state to another is expressed as an exponential distribution with a

transition rate σn(xn → J), where J is the destination state after the transition. This

transitions can be node-based (dependent only on the node state xi(t)) or edge-based (de-

pendent on the combined network state XN(t)). After a transition occurs, the combined

network state will change, and therefore edge-based transition rates will change. However,

node-based transition rates remain constant. GEMFsim accounts for changes in transition

rates due to the change in the combined network state. However, GEMFsim does not account

for the temporal variation of the transition rates due to external factors (weather conditions

or human activities).

The temporal variability of the transition rate is very crucial for simulating vector-borne

disease transmission. Therefore, it is required to adapt the Gillespie algorithm in GEMF-

sim to account for the changing rates. In this article, we incorporate the non-homogeneous

Gillespie algorithm in the GEMFsim, which works for exponential event distributions and

non-constant transition rates119;152;153. The modified spreading algorithm is capable of pe-

riodically changing transition rates to reflect the temporal heterogeneity of vector-borne

disease transmission.

Risk calculation

As the spreading process in our spatiotemporal network is highly stochastic, we need to

perform an adequate number of simulations. We keep track of each node’s status and count
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the numbers of simulations in which a particular node is infected. This count is later used

to calculate the risk of the spatial disease spreading. The formula for risk calculation is

Riskj =

∑Nj
n=1 In

Nsimulation

(6.7)

where Riskj is the spreading risk in location j, In is the number of simulations where

node n is infected, Nsimulation is the total number of simulations, Nj is the number of nodes

(individuals) in jth location. The calculated risk is normalized for comparison with the risk

of different spatial locations.

6.2.2 Application of the risk assessment framework for Bangladesh

dengue incidence

Dengue is transmitted by Aedes mosquitoes in tropical and subtropical regions and may

cause a wide range of manifestations from asymptomatic infections to deaths154. Arbovirus

transmission is known to be driven by the interplay of sex, age, and travel of individuals.

Additionally, the transmission also depends on the type of host community (urban/rural),

mosquito abundance, and the use of mosquito control measures155;155–157. Understanding the

relative importance of these factors is required for assessing the risk of dengue accurately.

There has been a recent dengue outbreak in Bangladesh with a record number of cases,

drawing close attention to assess the transmission risk. Bangladesh has a history of dengue

incidence dated back to 1960, and a major outbreak occurred in 2000158–160. Since 2000,

the Ministry of Health and Family Welfare of the People’s Republic of Bangladesh started

recording clinical cases, which are reported annually. Recent urbanization throughout the

tropical world has accelerated dengue spreading asAedes aegypti— primary vector for dengue

transmission— lives in densely populated human-made environments161. Bangladesh is a

densely populated country with rapid urbanization, which provides a conducive environment

for mosquito populations. Therefore, a risk assessment tool for dengue transmission has
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become very important in Bangladesh.

Several studies have used the historical time series data for reported dengue incidence.

However, getting accurate data on dengue infection is surprisingly difficult. Only 11–32%

infected people are likely to have symptoms with just a few being sick enough to require

formal medical care161;162. Misdiagnosis and under-reporting are common for cases requiring

medical care as well. Therefore, risk assessments based on clinical case counts are not

always useful, and may just reflect differences in access to healthcare, diagnostics, and the

ability to report cases163. Record keeping also requires significant resources, which are not

always available in Bangladesh. Therefore, our developed framework, which does not require

incidence data, can be a useful tool for assessing the spatial dengue transmission risk and the

spatiotemporal suitability in Bangladesh. The adapted framework for Bangladesh dengue

spreading is presented below.

Compartmental model for dengue

When dengue virus enter into the bloodstream of a susceptible person via infected mosquito

bites, the individual becomes exposed to the disease. After a specific time for viral replica-

tion, the exposed individual becomes infectious. The infectious individual finally transitions

to the removed state after recovery or death. Therefore, there are four specific phases/states

concerning the disease. These states are named as susceptible, exposed, infected, and re-

moved, and the model is called SEIR. The inter-compartmental transitions are independent

Poisson processes with transitions rates expressed in equations 6.8-6.10.

Pr[xi(t+ ∆t) = 2|xi(t) = 1, XN(t)] = βi(t)Yi∆t+ o(∆t) (6.8)

Pr[xi(t+ ∆t) = 3|xi(t) = 2, XN(t)] = δ∆t+ o(∆t) (6.9)

Pr[xi(t+ ∆t) = 4|xi(t) = 3, XN(t)] = γ∆t+ o(∆t) (6.10)
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In these equations, xi(t+∆t) = 1, 2, 3, and 4 express the probability of node i occupying

the susceptible, exposed, infected or removed state at time (t + ∆t), respectively. XN(t)

is the combined network state at time t. The transition rate from susceptible to exposed

state is an edge-based transition, which is also time-variant due to its dependency on weather

conditions. We express this time-variant parameter βi(t) with vectorial capacity for node i at

time t, which is calculated from spatiotemporal weather conditions. Yi is the set of infected

neighbors of node i within the spatiotemporal network at time t. The parameter δ is the

intrinsic incubation rate, which governs the transition from exposed to infected state. The

transition from infected to removed state is expressed with the removal rate γ. Incubation

rate δ and removal rate γ is node-based transition rates, whose values are assumed equal to

0.17 and 0.14 respectively, and are time-invariant in this work115;164. These values of δ and γ

reflect the means of exponentially distributed parameter values used in the spatiotemporal

spreading process.

Pathogen transmission model with Bangladesh climate data

Infection rate β is modeled with weekly average temperature and rainfall data in Bangladesh.

Climate data are collected from CLIMATE-DATA.ORG for Bangladesh165. The upazila

level spatial unit is used in this work for network development. Climate data are used

to calculate each parameter in the vectorial capacity equation 6.1. All these parameters,

except for mosquito vector density with respect to the host, are calculated from the weekly

temperature data. Mosquito vector density parameter is assumed proportional to the weekly

average rainfall, and a proportional constant is assumed to reflect a realistic outbreak scenario

in Bangladesh.

An urbanization factor is assumed to reflect the suitability of Aedes mosquito habitat for

dengue transmission. The population density is used to classify the urbanization level of each

location. Three urbanization factors are used to reflect backcountry (population density <

1000 per square kilometer), rural (1000 ≥ population density < 3000 per square kilometer),

and urban (population density ≥3000 per square kilometer) locations. The final infection
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rate used in simulating dengue transmission is equal to vectorial capacity multiplied by the

urbanization factor.

Spatiotemporal network

Developing a network is a crucial part of the risk assessment framework. The spatial structure

in Bangladesh is as follows-

• Administrative level 1 — 8 divisions

• Administrative level 2 — 64 districts

• Administrative level 3 — 544 upazila

For network development, we have used the administrative level 3 spatial resolution.

Therefore, Bangladesh is divided into 544 spatial locations before creating the network.

Population data are collected for each spatial location from the City Population website166.

The population in each location is scaled by 10,000 to reduce the computational burden

during simulations.

We assume an Erdos-Renyi network within each upazila, where links are created with a

probability of 0.2. Inter-upazila links are created using an exponential dispersion kernel. We

use the kernel function e−kD for link generation, where k is a constant, and D is the distance

between the source and destination location. We choose the value of k=0.1 for creating the

spatiotemporal network. District-level and division-level human movement, along with the

exponential dispersion, are incorporated to reflect the human movement patterns. District-

level human movement is incorporated by generating links between the capital city Dhaka

and all-district cities. Links are created between Dhaka and all-division cities to include

division-level human movements in the network. Figure 6.1 demonstrates a simplified outline

of the network.

Bangladesh is a small country, having only 147,500 square kilometers of area. However,

there is still some spatial and temporal difference between temperature and rainfall through-

out the country. This spatiotemporal weather variation is very important for accurately
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Figure 6.1: A simplified diagram for Bangladesh. Each black circle represents the network
within an upazila, while lines between circles express the human movement. Circle sizes are
scaled according to the human movement (node degree) for that location. Greater circle size
indicates a greater amount of human movement flow.

representing dengue transmission. We included a spatiotemporal heterogeneity in the cre-

ated network due to weather patterns, i.e., pathogen infection rates on each link. Literature

shows the correlation between a one-month and two-month lagged temperature, rainfall, and

dengue occurrence in Bangladesh167. The heterogeneity in the weather patterns is reflected

on a weekly value of infection rate (β) calculated using both one-month and two-month

lagged temperature and rainfall data.

We create two instances of the spatiotemporal network for two different outbreak types:
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first, major outbreaks spreading throughout the whole country, and second, minor outbreaks

spreading only within major divisional cities. We explicitly incorporate the district-level hu-

man movement for major outbreak scenarios with exponential dispersion kernel. Division

level human movement is incorporated for minor outbreak scenarios along with the expo-

nential dispersion. Upon developing the spatiotemporal network, we apply the stochastic

spreading algorithm for risk assessment.

6.3 Results and discussion

Assessed risk in this work is a combination of weather-dependent spatiotemporal suitability

and risk maps from the network-based model. Therefore, we present our results in the

following two sections such as-

• Spatiotemporal suitability of dengue transmission in Bangladesh

• Risk maps for dengue transmission in Bangladesh

6.3.1 Spatiotemporal suitability of dengue transmission in Bangladesh

Spatiotemporal suitability expresses the spatial and temporal suitability of the vector (mosquito)

survival and functioning in pathogen transmission. When comparing dengue epidemic po-

tential over time and space, it is preferable to use the relative vectorial capacity146. Relative

vectorial capacity is expressed as the vectorial capacity relative to the vector-to-human popu-

lation ratio and formulated as RVc = a2bhbme
−µmn

µm
. All parameters are temperature-dependent

in the relative vectorial capacity definition. A higher relative vectorial capacity indicates a

higher potential for the dengue epidemic. We calculate the relative vectorial capacity for

Aedes mosquito in Bangladesh to infer the suitability of dengue spreading. There exists a

threshold value for relative vectorial capacity beyond which Aedes mosquitoes can function

properly in transmitting dengue infection. A relative vectorial capacity greater than 0.6

indicates the suitability of dengue spreading146. The spatiotemporal suitability maps for

dengue spreading in Bangladesh are presented in Figure 6.2 for each month of the year. The
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relative vectorial capacity is found higher than the threshold value (0.61) for many months

of the year in almost all locations (red and yellow regions).

Figure 6.2: Spatiotemporal suitability maps for dengue transmission in Bangladesh based on
temperature. The map represents suitability in the following manner- green (lowly suitable),
yellow (moderately suitable), and red (highly suitable.)
.

It is evident from Figure 6.2 that months between January and March are poorly suited

for dengue transmission. In April, some southern parts of the country, as well as capital

city Dhaka, become highly suitable. The other parts of the country, except the north most

corner, become moderately suitable. Starting from May, the whole country becomes highly

suitable, and the situation remains similar until November. The most northern part of the

country becomes lowly suitable while the capital and southern part stays highly suitable in
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December. After December, the whole country becomes poorly suited again, which continues

until April.

Dengue incidence data since 2000 shows cases throughout the year, which supports our

results for the suitability of dengue transmission. Bangladesh is a tropical country, which

provides a suitable temperature for mosquito survival year-round. However, for temperate

regions with widely varying temperatures, mosquitoes may not be able to survive in the

coldest months.

6.3.2 Risk maps for dengue transmission in Bangladesh

The network-based model enables us to simulate the spreading process within the spatiotem-

poral network described above. Every year, the dengue outbreak in Bangladesh shows a dif-

ferent trend. Some years, cases are reported from most parts of the country, while some years

outbreaks are mostly limited within divisional cities. Depending on the spreading, outbreaks

are divided into two categories— major outbreaks with widespread dengue cases and minor

outbreak with cases mostly in some divisional cities. Therefore, two distinct simulation sce-

narios are assumed to match the two different outbreak types. Simulations are performed

with parameters calculated using both one-month and two-month lagged temperature and

rainfall data, which are presented in the subsequent parts of this section.

Scenario 1: major outbreak

A major outbreak is defined when dengue cases are widespread throughout the whole coun-

try. For major outbreaks, the network is generated with district-level human movements

incorporated. Dhaka is the capital of the country; therefore, frequent movements between

all district towns are assumed to and from Dhaka. We performed one-thousand iterations

for each scenario to account for the stochasticity in the simulation results. Simulations are

started with an entirely susceptible population with one infected human in the initial out-

break location. The initial outbreak location is also changed to see the impact of human

movements on the transmission risk. Simulation results for one-month lagged climate data,
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and two initial conditions— Dhaka and Chittagong outbreak starting are presented in Figure

6.3.

Figure 6.3(a) and 6.3(d) shows the fractions of infected people and cumulative infected

people with 95 % confidence interval when the simulation started in Dhaka and Chittagong,

respectively. The curve for the average number of infected shows two peaks in Figure 6.3(a)

and 6.3(d). The first peak refers to the rapid spreading within the vicinity of the initial

outbreak location, and the second peak represents the widespread outbreak. For novel

vector-borne diseases, the infections start with a single infected human or a single infected

mosquito. If we assume a single infected human started the infection, then the infection

will start locally with competent mosquitoes biting the infected person. As mosquitoes

have a short flying range, the infection will be local at the beginning, and this is evident

from the smaller initial peak. The size of the peak depends on the population size, level

of urbanization, and the area of the outbreak location. Being Dhaka densely populated, an

outbreak starting in Dhaka will result in a pronounced initial peak due to only the local

transmission (Figure 6.3(a)). We started our simulation in April as it is the first month of

high suitability for Aedes mosquito within a year for Bangladesh. However, the suitability

increases with time, as shown in Figure 6.2 and the infection starts spreading to distant

locations due to human movement as well as higher suitability. Hence, we have another

peak in August with numerous cases countrywide. Although Figure 6.2 shows all locations

are highly suitable from May to November, the underlying mosquito dependent infection

rate keeps increasing until August and attains higher values in June-August. Therefore,

despite human movements from Dhaka to other locations all year, due to the lower value

of infection rates, no widespread infections start until June. With the higher value of the

infection rate, the number of infected individuals keeps increasing from June and attains its

peak in August. Around 16% of the total population in the network becomes infected in

this outbreak scenario. Almost 70% of the total infection are observed within the period

of July-September. The peak consists of 2.5% of the entire population in our developed

network. These infected people during August may require hospital care, which will be a

huge burden on the healthcare system. Therefore, proper measures should be taken, and
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(c) (f)

Figure 6.3: Simulation results and risk maps for dengue transmission in Bangladesh for a
major outbreak. The left side panels are results of simulations started in Dhaka, while the
right side panels are results of simulations started in Chittagong. Panels (a) and (d) show
the dengue transmission dynamics; Panels (b) and (e) present histograms of the number
of simulations and infection size; Finally, panels (c) and (f) display risk maps for dengue
infection.
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more resources should be allocated for dengue healthcare during July-September. Figure

6.3(d) shows the dynamics when dengue infection started in Chittagong. Total fractions of

cumulative infected people and infected people during peak time are both significantly lower

for this outbreak scenario, which can be attributed to the fact that Chittagong is not very

densely populated as well as not well connected to the whole country as Dhaka. Therefore,

both the initial smaller peak and the second higher peak are smaller compared to the peaks

in the Dhaka outbreak scenario. When the infection starts in Chittagong, around 6% of the

population becomes infected compared to 16% in the Dhaka outbreak scenario. Therefore,

the infection starting location is a crucial determining factor of the extent and the epidemic

dynamics.

Figure 6.3(b) and 6.3(e) show the histogram with fractions of cumulative infected humans

in the Bangladesh dengue network and the number of simulations performed. The x-axis

represents fractions of infected humans in simulation, and the y-axis shows the number of

simulations where a particular infection size is obtained. Figure 6.3(b) shows that almost 80%

simulation results in 10-20% infected humans in the representative network when the initial

outbreak happens in Dhaka. This accounts for the narrower confidence interval in Figure

6.3(a). Figure 6.3(e) express around 20% probability of 10-20% human being infected. This

variability in the fractions of infected individuals accounts for the wider confidence interval

in the simulation results in Figure 6.3(d).

Transmission dynamics presented in Figure 6.3 are obtained using the network with

district-level human movement incorporated and one-month lagged temperature and rain-

fall data. However, when we perform simulations with two-month lagged temperature and

rainfall data, the simulation is started in May, and the peaks are a month delayed. The

analysis of Bangladesh dengue incidence data since 2000 showed the occurrences of peaks in

July-October158;159. Therefore, two-month lagged data also show significant similarity with

the actual incidence data. Risk maps are similar for both one-month lagged, and two-month

lagged data.
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Scenario 2: minor outbreak

Dengue infections are often confined within divisional cities, and a widespread outbreak

does not happen. Therefore, we propose another scenario where we explicitly incorporate

human movement from Dhaka city to other divisional cities along with the distance-based

exponential movement kernel. We call this scenario a minor outbreak as the infection does

not spread countrywide. We perform simulations for both one-month and two-month lagged

climate data.

The results are presented in Figure 6.4, when simulations are performed with one-month

lagged climate data and the same initial conditions as major outbreak scenarios, namely

starting simulations in Dhaka and Chittagong.

Figure 6.4(a) and 6.4(d) show a similar trend as shown in Figure 6.3(a) and 6.3(d).

For one-month lagged data, a major peak is observed in August with a rapidly increasing

infection within July- September. However, comparing Figure 6.4 and Figure 6.3, we can

see that both the value of the fraction of infected people during the peak infection time and

the whole outbreak period are smaller during minor outbreaks.

Human movement can also be considered as a crucial factor in the vector-borne disease

spreading, although the pathogen transmission does not happen via direct physical contact.

An exposed/infected person may move/travel to a different location and become infectious

after reaching the destination. That person can be bitten by a competent local mosquito and

may start a local outbreak in the destination location. Therefore, mosquitoes are responsible

for the local transmission, while human movement is mostly responsible for long-distance

pathogen transmission during a period of higher suitability. The reduction in the number of

infections in the minor outbreak scenario can be attributed to the reduced human movement

volume within the network than the major outbreak scenario.

It is evident from the comparison between panels (a) and (d) of Figure 6.4 and 6.3 that the

major dengue spreading period in Bangladesh is June-September. Finding this time window

for significant transmission is very crucial for public health officials. The identification of

the significant-incidence window will enable them to take prompt actions during the surge
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Figure 6.4: Simulation results and risk maps for dengue transmission in Bangladesh for a
minor outbreak. The left side panels are results of simulations started in Dhaka, while the
right side panels are results of simulations started in Chittagong. Panels (a) and (d) show
the dengue transmission dynamics; Panels (b) and (e) present histograms of the number
of simulations and infection size; Finally, panels (c) and (f) display risk maps for dengue
infection.
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of infection. The major action for controlling a vector-borne disease is always controlling

the vectors. Therefore, control measures need to focus mostly on the significant-incidence

months to reduce the mosquito population when resources are inadequate for the whole year.

Figure 6.4(c) and 6.4(f) show the normalized risk maps for dengue spreading during a

minor outbreak. It is evident from the figure that high-risk areas are confined within major

division cities and their nearby locations in contrast to Figure 6.3(c) and 6.3(f), where many

locations throughout the country are at high risk. This reduction in the spreading risk can

be attributed to the reduced human movement in the minor outbreak scenario. Therefore,

making people aware of the human movement’s impact on long-distance travel through social

media or radio/TV broadcasting would help contain the epidemic.

Simulations are also performed for two-month lagged climate data, and all the results are

similar to the ones obtained with one-month lagged data.

Our proposed framework is a generalized risk assessment tool based on climate and de-

mographic data, which can be used for risk assessment, especially in regions with unreported

or under-reported incidence data. Risk maps developed in this work are generated with the

generalized concept of human movement within Bangladesh. The framework can incorporate

more detailed and accurate human movement data. The incorporation of detailed movement

data will provide a more accurate assessment of the transmission risk of each location. Once

proper and accurate movement data is incorporated in the network, the control measures

should be applied to the high-risk areas first, followed by the medium and low-risk areas

depending on the availability of resources.

6.3.3 Serotype analysis

Since 2000, there are dengue cases every year in Bangladesh. However, the number of cases

varies from year to year. Importantly, the available data concern only hospitalized and

reported cases of dengue. In this section, we show the existence of a correlation between

the number of cases and the circulating DENV serotypes. Dengue fever can be caused by

any of four genetically related dengue virus (DENV) serotypes (DENV1, DENV2, DENV3,
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and DENV4)168. After recovering from infection with one dengue serotype, a person has

immunity against that particular serotype168. Unfortunately, the person can be infected

again with any of the remaining three dengue serotypes169. Subsequent infections often

put individuals at a greater risk for severe dengue illnesses than those who have not been

previously infected170. A bar graph of yearly dengue incidences in Bangladesh with serotypes

is presented in Figure 6.5.

Figure 6.5: Serotype analysis of dengue spreading in Bangladesh since 2000 The bar chart
presents the number of dengue cases with the circulating serotypes each year in Bangladesh.
The main bar color represents the dominant serotype, while the border represents other cir-
culating serotypes.

The primary bar color represents the dominant circulating serotype, while the border-

color represents the co-circulating serotypes. The x-axis shows the year, and the y-axis

shows the number of reported dengue cases in Bangladesh. The bar and border colors are

as follows- black for DENV1, blue for DENV2, red for DENV3, and green for DENV1,2,4
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together. The height of each bar corresponds to the number of cases in the corresponding

year. Figure 6.5 shows that the dominant circulating serotype was DENV3, with the other

three co-circulating, during the years 2000-2002. Within the period 2003-2016, DENV-2 was

the dominant serotype, and DENV-1 was co-circulating169. The DENV3 reemerging in 2017

resulted in a significant increase in the number of cases during 2018. However, DENV2 was

still the dominant circulating serotype in 2018169. If a serotype is circulating long enough

within a population, all recovered people may become immune to that specific serotype. An

increase in the number of cases in 2018 can be attributed to the reemergence of DENV3.

DENV3 became the dominant circulating serotype in 2019, which created an extreme and

unprecedented surge in the number of infections. More than a hundred thousand cases were

reported in 2019— which is more than double of combined cases in the previous nineteen

years— due to a vast susceptible population for DENV3 serotype. Currently, DENV3 is

already in circulation in Bangladesh. Neighboring countries of Bangladesh have all four

serotypes. Therefore, Bangladesh is always at risk for all four serotypes, including DENV4.

Healthcare personnel should be vigilant to identify dengue patients before the significant-

incidence period to identify the circulating serotypes. The introduction of a new serotype

will produce a surge in dengue infections with a high probability.

6.3.4 Peak timing validation

The yearly reported cases varied widely for dengue incidence in Bangladesh. For example,

there were 10148 cases in 2018, and more than a hundred thousand cases were reported

in 2019169;171. Therefore, there is high variability in year-to-year dengue cases. From the

serotype analysis in the previous section, this 2019 unprecedented increase can be attributed

to the DENV-3 circulation. The yearly number of dengue cases is a complex combination

of circulating serotypes, the movement patterns of the human population, and the measures

taken for mosquito control. For widely varying year-to-year case numbers, we used the peak

incidence time and the transmission dynamics to compare our simulation results with the

incidence data. Peak incidence happened mostly in August and September in Bangladesh169.
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Simulation results with one-month lagged climate data show incidence dynamics with the

major peak in August. Two-month lagged climate data resulted in a peak in September.

We compared our simulation with actual incidence data for 2018 and 2019 in Figure 6.6.

Figure 6.6: (a) Comparison of peak time from our simulation with incidence data during
a minor outbreak in 2018; (b) Comparison of peak time from our simulation with incidence
data during a major outbreak in 2019.

In 2018, the peak of the incidence data was observed in September, as shown in Figure

6.6(a). Simulation results for two-month lagged climate data show a peak in September in

accordance with 2018 incidence data in Figure 6.6(a). The disease dynamics from simulations

with one-month lagged climate data shows a similar trend with a coinciding peak for 2019

(Figure 6.6(b)).

6.3.5 Application of control measures

The application of control measures decreases the spatial spread as well as the number of

dengue cases during an outbreak. Main control measures include spraying insecticide and

adopting preventive measures to avoid mosquito bites. To stay away from mosquito bites,

one can wear clothes that cover most parts of the body, sleep under bed nets, and use

mosquito repellents. Decreasing the probability of mosquito bites per day as well as decreas-

ing mosquito abundance will check the widespread outbreak of dengue. To demonstrate the
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impact of the control measures, we performed our simulations with multiple reduced infec-

tion rates. Figure 6.7 shows the effect of a 50% reduction in the infection rate in the disease

dynamics and the corresponding risk map.

(b)

Figure 6.7: (a) Temporal spreading of dengue with control measures implemented; (b) Spa-
tial risk map of dengue spreading when control measures are applied.

Figure 6.7(a) shows the disease dynamics after the control measures implemented when

the infection started in Chittagong. The fraction of infected individuals is greatly reduced as

compared to Figure 6.4 and 6.3. Figure 6.7(b) shows the risk map for dengue transmission

after control measures have been applied. The high-risk areas now become confined within

the initial outbreak location and some areas in the capital city. The application of control

measures reduced both the risk of spatial dengue transmission as well as the total number

of cases. Therefore, proper application of control measures, especially during the significant-

incidence period identified from our simulation, would be very effective in reducing the

epidemic transmission.
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6.4 Conclusions

Climate data can be used to develop a generalized risk assessment framework for vector-

borne diseases together with demographic data— spatial distribution of individuals and

their movement patterns. Therefore, we develop a novel risk assessment framework with

a spatiotemporal network model and a non-homogeneous Gillespie algorithm using both

climate and demographic data. The assessed risk from this framework is comprised of spa-

tiotemporal suitability maps and spatial risk maps. Spatiotemporal suitability maps show

the spatial and temporal suitability of vector-borne transmission. Spatial risk maps represent

the disease transmission risk of each location compared to other locations on the map. This

framework also identifies the high risk or elevated risk-months as well as the peak incidence

period within a year.

Upon development, the framework is applied to the study of dengue transmission in

Bangladesh for major and minor outbreak scenarios. The difference between major and

minor outbreaks is defined by different levels of human movement to demonstrate the critical

role of human dispersal on widespread pathogen transmission. Reduced human migration

throughout the country will reduce the infection spread to divisional cities. We generate

the spatiotemporal suitability map and the risk maps for Bangladesh dengue transmission.

Simulation results also showed a similar significant-incidence window as well as the peak

incidence period with reported dengue incidence data in Bangladesh. Serotype analysis

indicates the importance of identifying circulating DENV serotypes before the significant-

incidence window. The possibility of a major outbreak is associated with the introduction

and reemergence of new DENV serotypes. Simulations of control measure applications,

such as mosquito control or other preventive behaviors, have shown a significant decrease in

the number of cases as well as risk. The proposed risk assessment tool provides guidelines

for public health officials to prioritize resource allocation and control measure application

according to the estimated risk.
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Chapter 7

Summary and future works

7.1 Summary

In this dissertation, we investigate infectious disease models through a network approach to

develop a general guidelines for network-based model formulation. We formulate realistic

network models for specific disease transmissions and simulate with a stochastic spreading

algorithm to help public health policymakers effectively allocate resources and suggesting

mitigation measures and risk assessment.

The stochastic spreading algorithm for the network-based models requires disease trans-

mission parameters, which are specific to the disease, spatial location, and the historical

incidence data. We develop a parameter estimation framework using a sequential Monte

Carlo filter to estimate the parameters. This method is a real-time parameter estimation

framework, capable of incorporating the new incidence data upon its availability. We adapt

an ensemble Kalman filter (EnKF) for simultaneously estimating the disease transmission

parameters as well as for forecasting the number of new cases. Being the ensemble Kalman

filter being an online inferential method, it can perform real-time forecasts during an out-

break. The framework is capable of accurate short to mid-term forecasts.

We incorporate the changing contact structures among individuals due to movement with

a two-layer temporal network, namely a static and a temporal/dynamic layers. The static
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layer represents permanent contacts among individuals, while the temporal layer presents

the changing contact structures due to movement. The two-layer temporal network has

been combined with a compartmental model and the Gillespie algorithm for assessing the

spatial transmission risk of infectious diseases. The final results of the frameworks are spatial

risk maps and disease transmission dynamics. The spatial risk maps provide some high-risk

locations for public health personnel to focus concerning disease preparedness and mitigation

interventions. The disease transmission dynamics with the increasing human movement

demonstrates a growing burden in the healthcare facility during the peak incidence period.

Therefore, reducing the size of the peak infected human, alternatively known as flattening

the peak, is required to provide healthcare facilities to all infected humans.

We model the pathogen transmission from an infectious individual to a susceptible one

for vector-borne diseases with the vectorial capacity, which in turn is dependent on the

temperature and rainfall data. We developed a risk assessment framework using climate

(average temperature and rainfall) and host demographic (host density and movement) data

for vector-borne diseases. This framework is particularly suitable for the introduction of

vector-borne diseases in a new geographic location or regions with unreported or under-

reported incidence data. We also developed a spatiotemporal network that incorporates

the spatial and temporal heterogeneity of vectorial capacity. The outcomes of the risk

assessment framework are the spatiotemporal suitability map and the spatial risk map. The

framework also identifies the significant-incidence window and peak incidence period— two

critical factors for public health officers in identifying the time-frame to concentrate the

majority of the resource allocation. Both the aforementioned risk assessment framework and

the resulting risk maps are crucially dependent on the host movement and can be a useful

tool for preparedness with accurate host movement data.

7.2 Future works

We have performed a sensitivity analysis of parameters in Chapter 2 and Chapter 5. The

sensitivity analysis’s primary goal is to demonstrate the impact of crucial change in the host,
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vector, and environmental factors in the disease transmission dynamics. The sensitivity anal-

ysis satisfies the goal mentioned above of our network-based models, while calls for a further

specification in the parameters. In Chapter 3, we have shown the parameter estimation

framework using historical incidence data. However, the parameter estimation framework

needs to be incorporated within the network-based for the spatial location to provide more

accurate mitigation measures. Once the parameters are estimated for a specific model, then

the network-based model’s simulation results will be more useful for public health personnel.

However, the main challenge in the inclusion of the parameter estimation method in the

network-based simulation framework was the unavailability of accurate historical incidence

data. Another challenge is the high sensitivity of the filtering methods to the initial con-

ditions, which can be addressed with recently developed modified filtering methods. This

direction of future research will be fruitful, advancing the application of network-based or in

general epidemic models for practical purposes.

In Chapters 5 and 6, we have proposed risk assessment frameworks for disease transmis-

sion using network models. Although we applied the method for a specific location, we expect

this framework can be successfully applied to other locations. The network structure— an

element of crucial impact on the assessed risk, is variable depending upon the location.

Therefore, extending these risk assessment methods to other spatial locations with detailed

host demographic data can provide guidelines in risk assessment, and control of current and

potential outbreaks.
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and Zsolt Vizi. Transmission dynamics and final epidemic size of ebola virus disease

outbreaks with varying interventions. PloS one, 10(7):e0131398, 2015.

128



[99] Adnan Khan, Mahim Naveed, Muhammad Dur-e Ahmad, and Mudassar Imran. Esti-

mating the basic reproductive ratio for the ebola outbreak in liberia and sierra leone.

Infectious diseases of poverty, 4(1):13, 2015.

[100] Marcelo FC Gomes, Ana Pastore y Piontti, Luca Rossi, Dennis Chao, Ira Longini,

M Elizabeth Halloran, and Alessandro Vespignani. Assessing the international spread-

ing risk associated with the 2014 west african ebola outbreak. PLoS currents, 6, 2014.

[101] Abhishek Pandey, Katherine E Atkins, Jan Medlock, Natasha Wenzel, Jeffrey P

Townsend, James E Childs, Tolbert G Nyenswah, Martial L Ndeffo-Mbah, and Al-

ison P Galvani. Strategies for containing ebola in west africa. Science, 346(6212):

991–995, 2014.

[102] Ying-Hen Hsieh, Junli Liu, Yun-Huei Tzeng, and Jianhong Wu. Impact of visitors

and hospital staff on nosocomial transmission and spread to community. Journal of

theoretical biology, 356:20–29, 2014.

[103] Marco Ajelli, Stefano Parlamento, David Bome, Atiba Kebbi, Andrea Atzori, Clara

Frasson, Giovanni Putoto, Dante Carraro, and Stefano Merler. The 2014 ebola virus

disease outbreak in pujehun, sierra leone: epidemiology and impact of interventions.

BMC medicine, 13(1):281, 2015.

[104] Larry L Peterson and Bruce S Davie. Computer networks: a systems approach. Elsevier,

2007.

[105] Giuseppina La Rosa, Marta Fratini, Simonetta Della Libera, Marcello Iaconelli, and

Michele Muscillo. Viral infections acquired indoors through airborne, droplet or contact

transmission. Annali dell’Istituto superiore di sanita, 49:124–132, 2013.
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Appendix A

An individual-level network model for

a hypothetical outbreak of Japanese

Encephalitis in the USA 1

A.1 Introduction

The incidence of Japanese encephalitis (JE) has not been reported in the United States, but

this pathogen belongs to the Japanese encephalitis group, the same group of the West Nile

virus (WNV)173. Both these pathogens have a similar transmission cycle, which includes

birds and mosquitoes174. The occurrence of WNV in the United States generated exten-

sive research activities on its incidence data and transmission. Epidemiology of WNV and

incidence data are useful for understanding the hypothetical introduction and incidence of

JE in the United States. Therefore, careful observation of WNV epidemic models in the

USA plays a major role in finding important factors in our JE model. Numerous nonlin-

ear differential equation models —similar to those of JE— are available for WNV. Several

models have been proposed based on the contribution of birds to the WNV transmission

cycle. Rappole et al. modeled local and migratory birds spatially to understand their effects

1 This chapter is a reformatted and slightly modified version of our published article61;172
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of on WNV spread175. However, spreading pattern of WNV were not consistent with the

flying pattern of migratory birds but local birds. Other models, however, showed that the

migratory pattern of birds coincides with the spread of WNV in the United States68;176;177,

leading to positive and negative opinions about the importance of migration in the spread

of WNV. Therefore, although some researchers deny that migratory birds contribute to the

long-distance spread of pathogens, pathogens are likely to be transferred to new, distant

locations via them. Aforementioned are important articles on JE and WNV modeling but

may not provide comprehensive knowledge to determine which factors to include the model

for JE in the US. Most of these models include human populations, which does not have an

impact on the spreading process for being the dead-end hosts. Which is important because

infectious disease models need to incorporate sufficient details about the modeled system

to biologically and epidemiologically accurate outcomes178. Model parameters must still be

precisely selected. However, accurate estimate of these parameters is challenging and prone

to large errors in practice. If there are errors in these estimates, the prediction from the

model about disease dynamic will be misleading. Therefore, the tradeoff between the num-

ber of parameters and the inclusion of minute details make the predictive modeling very

challenging. In our individual-level network model, we limit the number of parameters. The

literature on JE mainly focuses on Southeast Asia and Pacific where the virus circulates

endemically as both a chronic risk in the south and outbreak hazard in the north. However,

due to differences in mosquito vector species, and host species, an outbreak in the United

States of America will likely have a different epidemiology. Our goal is to examine likely JE

transmission along the north-south bird migration route on the east coast of US in the event

of accidental or intentional introduction. Our disease model will elucidate the role and key

interactions between various native reservoir populations (insect, avian, and mammalian)

which may be involved in the pathogen transmission of this exotic virus in the US. Possible

mitigation strategies will be tested to determine the most likely to reduce pathogen spread

between geographic locations.

In this paper, we propose an individual-level network model of JE with probable US

host and vector species in three spatially separated locations. Populations are selected for
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our model based on extensive research about competent populations for JE in the US. We

explicitly model pig populations and implicitly model mosquito and bird populations to

examine JE epidemiology for our selected scenario. Though our proposed model is described

for only one migration route but has the ability to be adapted for other routes by selecting

alternate locations and host species on that route.

Our modeling approach is novel in its individual-level realization of feral pigs with

mosquitoes and birds as transmission medium. Contact network among feral pigs within

each location are created with two homogeneous network topologies- Fully connected and

Erdos-Renyi. However, we use a heterogeneous contact structure among local feral pigs and

distant feral pigs. This heterogeneity in the contact among local feral pigs is reflected using

different pathogen transfer rates from infected to susceptible pigs. Therefore, well-known

meta-population approach is not suitable for our network model. Heterogeneity in the con-

tact structure necessitates an individual-level model to describe the epidemiology of JE. Our

model being the individual-level, has the flexibility to incorporate the heterogeneity in the

network topology when specific data is available about contact structure among individual

feral pigs.

Our model results predict the maintenance of JE pathogen among birds once introduced

via a migratory bird even in the absence of feral pigs which eventually results in human

incidences. The number of humans infected with JE is comparable to WNV cases among

human in our selected location. An effective mitigation strategy against JE is deduced

from simulation results of our model. JE transmission can be reduced by lowering mosquito

abundance, but both mosquitoes and birds need to be limited/controlled to prevent pathogen

spread to distant locations especially in areas of high mosquito abundance.
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A.2 Materials and method

A.2.1 The model

We develop a model for a scenario of JE epidemiology in the United States in which only one

population—feral pigs in three spatial locations — is represented at the individual animal

level via a connected network. Our simulation model uses a generalized epidemic modeling

framework (GEMF)29 developed by the Network Science and Engineering (NetSE) group at

Kansas State University. We carry out extensive simulations, varying parameter values to

determine their effects on the overall number of infections (total number of pigs infected)

and to relate them to disease dynamics. Model scenarios that included fall and spring

migration periods of birds are considered for each of following two network topologies: local

fully connected and local Erdos-Renyi. In a local fully connected network, each feral pig is

connected to all other pigs in the same location while in Erdos-Renyi network, connections

between local feral pigs are random with a defined probability (Erdos and Renyi 1960). These

topologies are used to create links among feral pigs within an individual location while inter-

location links are created with a probability which ensured, at least, one link between them.

In a fully connected network, links are created from a single feral pig to all other pigs in

the same location. Therefore, if a location has K feral pigs, then it will have (K-1) links

connecting it to all other feral pigs there. For Erdos-Renyi network, the connection between

two feral pigs is created following three steps -

• from an infected pig to a susceptible pig via mosquito

• from an infected pig to a susceptible local bird and then from that infected bird to a

susceptible pig

• (iii) from an infected pig to a susceptible migratory bird and then from that infected

bird to a susceptible pig in a distant location

All transmissions occur by local competent mosquito blood feeding.
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The role of mosquito populations in JE transmission to pigs is expressed by a parameter

(β1) which is the vectorial capacity of focal putative US mosquito vectors. Vectorial capacity

β1 is given as

Vc =
ma2bhbme

−µmn

µm
(A.1)

where the vector parameters used are 1) the average daily vector biting rate (a), 2)

the probability of vector to human transmission per bite (bh), 3) the probability of human

to vector infection per bite (bm), 4) the duration of the extrinsic incubation period (n),

5) the vector mortality rate (µm), and 6) mosquito vector density with respect to the host

(m)144–146. These parameters are specific for the mosquito species and the concerned disease.

Infection rate that includes both mosquito and bird is expressed as β2. Transfer rate β2 is

dependent on β1 because this pathogen transfer also occurs via mosquitoes but the inclusion

of birds made it different than vectorial capacity (β1). Here, β2 is expressed as rβ1, where r

is the local bird’s contribution to pathogen spread with respect to the pig density. We refer

r as bird community parameter which is a nonnegative parameter with a maximum value

of 0.5 because transmission requires a minimum of four feedings when involving birds (pig

–mosquito-bird–mosquito-pig) compared to two feedings without them (pig –mosquito -pig).

When the bird population has an equal size to the feral pig population in a location, then the

maximum value of r is possible. If the bird population exceeds the pig population, then the

probability of an infected bird being bitten a second time decreases because alternate bird

and pig hosts will be plentiful decreasing the probability of a second feeding (host saturation).

Consequently, r decreases from its maximum value of 0.5 if the bird population is more or less

than the pig one. We assumed this as we considering no host preference among mosquitoes

due to lack of data about mosquito biting pattern among feral pigs and birds. However,

our model being individual-level has the flexibility to include host preference when specific

data is available. For our simulations, three different values of r for the bird community

parameter are used: r=0.15 (low bird numbers and species diversity), 0.3 (medium numbers

and species diversity) and 0.5 (high numbers and a diverse bird community). As three distant
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geographic locations are considered in this model, viremic migratory birds are the only means

of interstate pathogen transfer within our simulation period of a single migratory season (90-

day). However, a number of conditions are necessary— a bird must become infected in the

first location, travel to another location while remaining viremic and spread the infection

to mosquitoes. However, no exact method is available to determine the probability of the

occurrence of this event, but this is crucial for long distance spread of JE pathogen. This long

distance pathogen transfer occurs with a rate β3, which is dependent on β2 of the beginning

and ending or staging places of the migration and the number and diversity of migratory

bird’s species in the origin location. In summary, if there is link between two feral pigs,

pathogen transmission between them is possible and this transmission occurs with a rate—

• β1 if the link is between feral pigs within a location and pathogen transmission happens

via (pig-mosquito-pig) cycle

• β2 if the link is between feral pigs within a location and pathogen transmission happens

via (pig-mosquito-bird-mosquito-pig) cycle

• β3 if the link is between feral pigs in two distant locations

If there is no link between pigs (local or distant), the rate of pathogen transmission

is zero. Whether the pathogen transfer from an infected to a susceptible local pig will

happen with rate β1 or β2 is dependent on the respective bird community parameter. Links

among local pigs are assigned a pathogen transfer rate β2 with a homogeneous distribution

of probability r
r+1

. This ratio is assumed to reflect the relative abundance of birds with

respect to feral pigs. Rest of the links are assigned a pathogen transfer rate β1. However,

pathogen transmissions occur only if a sufficient number of JE-competent mosquitoes bite

the infected pig and, after an appropriate period of viral replication in the mosquito, feed on

a susceptible pig. Infection processes are statistically independent, therefore, the transition

rate for a susceptible node to the exposed state is the sum of transfer rates times the number

of infected neighbor nodes. The total rate at which an individual pig can become infected

is proportional to the number of infected pigs in the neighborhood and the population
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size (or density) of competent mosquito vectors. The exposed compartment represents the

delays for a susceptible individual to become infectious. An exposed node then become

infectious with a rate, δ. This parameter value is dependent only on the time taken by

the pigs to become infectious once they become exposed to JE pathogen. This parameter

can have a value in the range 0.25 day−1. It is kept constant at δ=0.4 day−1 (average)

for all simulations in this paper as pigs take 1-4 days to become infectious once exposed

to pathogen179. This constant value of is the mean of an exponential distribution used for

this parameter during simulation with GEMF. However, a change in this parameter will

change the speed of pathogen spreading from infected to susceptible pigs. Therefore, each

individual pig can be in one of the three compartments—Susceptible, Exposed and Infectious.

The transition of pigs from susceptible to exposed happens with rate β1, β2, β3 and from

exposed to infectious happens with incubation rate δ. For our model, we consider only one

infected pig at the beginning. We did not consider any recovered compartment, as pigs

remain infectious once infected. In the Susceptible-Exposed-Infected (SEI) model based on

GEMF, infection processes are independent Poisson processes as shown in 1.1- ??.

A.2.2 Network structure

Our network consists of three spatially separated locations: Miami-Dade County in Florida,

Carteret County in North Carolina, and Charleston County in South Carolina. These three

counties are selected because they provided WNV incidence data180, have an abundance of

feral pigs181, the highest number of observed bird’s species182, and proximity to coastal areas.

A simplified visualization of our model is presented in Figure A.1. Locations are selected

from three states to encompass a wide range of variability in weather and habitat. Within

each location, we consider a small geographical area of 60 sq mi or less as feral pigs roam

approximately 10-60 sq mi in search of food77. Florida contains more feral pigs and ardeid

birds than the other two locations. Birds and mosquitoes are highly variable from season to

season and throughout the year, therefore, selection of the appropriate time frame to simulate

is essential for accurate epidemiological estimations. Mosquitoes are abundant in the late
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summer (June-July) and early fall (August-September), crucial seasons for the simulation as

bird migration also occurs within this time period. Spring migration is northbound and takes

place at the end of the spring and beginning of the summer (April-June). At this period,

there is an abundance of birds migrating from the FL location to SC and NC locations but

lower mosquito abundance as it occurs before late summer—summer being the peak time

for mosquito abundance in all locations. Fall migration, however, occurs during late summer

and early fall (July-September), coinciding with an abundant mosquito population. This

time frame provides an abundance of mosquitoes, resident birds, and migrating birds in all

three locations, which are crucial factors in long-distance dispersal and local transmission of

JE.

The long-distance pathogen transmission is unidirectional—northbound during spring

migration between three locations and southbound during fall. Within each geographical lo-

cation, resident birds, mosquitoes, and pigs can move randomly in any direction. Pathogen

transfer is highly dependent on the migration pattern of birds as various species have distinc-

tive intervals between the staging places (places where birds take a break while migrating)

and unique flying speeds while migrating.

A.2.3 Estimations and assumptions

Pig population data used for our simulations are derived from the feral pig mapping system181

These published maps of the distribution and density of feral pigs throughout the United

States allow us to determine the estimated number of feral pigs in various locations. We

consider all three of our locations having a medium density of feral pigs— 10 animals per sq

mi182. Consequently, 600 pigs in FL (60 sq mi area), 500 pigs in SC (50 sq mi) and 300 pigs

in NC (30 sq mi) are selected. Therefore, our model contains a total of 1400 pigs (nodes in

the network) within the three locations. We start each simulation with a single infected pig

in the initial location of the bird migration. Therefore, we assume one infected pig in FL

and NC location respectively for spring and fall migration. Selection of other density (low,

high) of pigs would change the population in each location. Therefore we would have results
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Figure A.1: Purple shades in the map indicate the presence of feral pigs181 Green arrows
indicate directions of migration during fall migration period, and black arrows indicate the
direction of migration during spring migration period. Blue circles represent feral pigs, blue
lines represent direct links for possible transmission of the JE virus via mosquitoes, and
orange lines represent links for possible transmission via mosquitoes and birds.

with similar trends but different quantitative values.

In our model, we use a complex weighting system, a crucial factor in our simulation

model, as weights are used to reflect the heterogeneity in mosquito and bird populations

in different locations. Weights represent the temporal and spatial dependence of mosquito

vectorial capacity β1 in the different locations during fall and spring migrations. Mosquitoes

are abundant in all three locations during fall migration, but the FL location always contains

more mosquitoes than the other locations. Therefore, the selected weight ratio of FL: SC: NC

during fall migration is 3:2:1 (values are 1.5 β1, β1, and 0.5 β1 respectively) and 4:2:1 during
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spring migration (values are β1, 0.5 β1 and 0.25 β1 respectively). We chose mosquito vectorial

capacity values for our simulations in such a way that they remain within a realistic range

after the weighting183. Weights ratios reflect the relative abundance of mosquito within

each simulation period (fall and spring) while the value of weights represents the actual

abundance of mosquito. An important point here— this is just one scenario chosen for

simulation purpose in this model, it could have been chosen otherwise by reflecting the higher

abundance of mosquito during fall than spring migration period. In our result section, we

express all Figures only through β1 and r; However, different values of β1 in each location are

considered following the weighting system, as parameters are weighted with corresponding

weights of that location and season.

The values of r for NC, SC, and FL are weighted for all simulations with 22
22

, 20
23

, and 29
33

,

respectively. This set of weights are derived from a list of WNV- and JE-competent birds

of 33 total species and the availability of bird species from that list in the corresponding

locations. For example, the FL location contains 29 bird species out of the 33 competent

species, hence the weight 29
33

. The pathogen transfer rates β3 via migratory birds are expressed

with the vectorial capacity of two locations. The migration process being independent of the

origin and destination locations, β3 is expressed as the product of β2 of two locations and

weighted with the fraction of the number of migratory species for each location to the total

number of species. Therefore, the weights for β3 for FL, SC and NC are respectively 18
33

, 14
33

and 15
33

.

A.2.4 Mathematical model summary

A graph G = {V,E} is considered for the population of feral pigs and their potential infec-

tious dynamics among the three different spatial locations. The set of nodes V , with V =

1400, is given as V = VFL∩VNC ∩VSC with VFL = 600, VNC = 500 and VSC = 300. E is the

set of links among individual feral pigs within and between locations. For any node i ∈ V ,

δ=0.4 days−1 Each susceptible pig i ∈ V can infect each susceptible feral pig j ∈ V with

an infectious rate βi,j. Rate of pathogen transmission (incubation rate) among feral pigs
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within the same location. We have two cycles of pathogen transfer among feral pigs within

each location. They are— i) Pig –mosquito-pig cycle and ii) Pig-mosquito-bird-mosquito-

pig cycle. We have assigned transfer rates to links among feral pigs with one of these two

cycles. Distribution of transfer rates among local links is performed with a probability r
r+1

which is dependent on respective bird community parameter. The pathogen transfer rate

via (pig –mosquito-pig) cycle is- Fall migration period βinti,j,fall= 1.5β1, i, j ∈ FL βinti,j,fall= β1,

i, j ∈ NC βinti,j,fall= 0.5β1, i, j ∈ SC

Spring migration period βi,j.spring.int=β1, i, j ∈ FL βexti,j,spring= 0.5β1, i, j ∈ NC βexti,j,spring=

0.25β1, i, j ∈ SC

The pathogen transfer rate via (pig –mosquito-bird-mosquito–pig) cycle is- Fall migration

period

• βinti,j,fall= 1.5 rFLβ1, i, j ∈ FL

• βi,j.fallint.= rNCβ1, i, j ∈ NC

• βinti,j,fall=0.5 rSCβ1, i, j ∈ SC

Spring migration period

• βi,j.spring.int= rFLβ1, i, j ∈ FL

• βexti,j,spring= 0.5 rNCβ1, i, j ∈ NC

• βexti,j,spring= 0.25 rSCβ1, i, j ∈ SC

Where rFL = 29
33
r, rNC = 22

33
r, rSC = 20

33
r with r= bird community parameter. Rate of

pathogen transmission among feral pigs within distant locations (β3) are expressed as-

Fall migration period

• βexti,j,fall=
15
33

*0.5*1.5* rNCrFL β12, i ∈ NC , j ∈ FL

• βexti,j,fall=
15
33

*0.5 *1* rNCrSC β12, i ∈ NC , j ∈ SC

• βexti,j,fall=
14
33

*1*1.5* rSCrFL β12, i ∈ SC , j ∈ FL
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Spring migration period

• βexti,j,spring=
18
33

*1*0.25* rFLrNC β12, i ∈ FL , j ∈ NC

• βexti,j,spring=
14
33

*0.5*0.25* rSCrNC β12, i ∈ SC, j ∈ NC

• βexti,j,spring.=
18
33

*1*0.5* rFLrSC β12, i ∈ FL , j ∈ SC

Here i ∈ origin location of migration and j ∈ destination location of migration. Rates

are weighted with the ratio of migratory species number to total 33 species. The infectious

rates for other location pairs other than mentioned in the expression of β3 are zero because

bird migration is directional and is southbound during fall while northbound during spring

migration.

Pathogens transfer from infected to susceptible pig via these rates, if and only if they are

linked with each other. These links among pigs within each location are created according

to the two specified network topologies discussed earlier and with the very small probability

between pigs located in different spatial location. If there is no link between an infected and

susceptible pig, the infectious rate between them is zero. From expressions of all transfer

rates presented in this section, it is evident that all infectious rates eventually depends only

on mosquito vectorial capacity β1 and bird community parameter r.

A.3 Simulation results

We compared the total number of infected pigs for three different bird community parameters

(r) and increasing values of mosquito vectorial capacity (β1) during both the fall and spring

migration period using two different network types. Simulation results for a local fully

connected network and various bird community parameters (r = 0.15, 0.3, and 0.5) are

presented in Figure A.2-A.3.

The simulation starts with a single infected pig in the NC location for fall migration.

The infection spreading within a location did not start until vectorial capacity reached a

value of 0.0001. For r=0.5, the number of infections reached its maximum (1400 infected
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Figure A.2: Estimated number of infected pigs with 95% confidence interval during fall
bird migration using a local fully connected network. Japanese Encephalitis incidence in
pigs increases with vectorial capacity. The number of infections remains similar for all bird
community parameters until a vectorial capacity β1 =0.001, after which high bird community
parameter leads to significantly more infected pigs. For less diverse communities (r=0.15
and 0.3) a plateau around 300 infections until vectorial capacity 0.01 indicates that pathogen
spreading is confined within NC location, not spreading to SC and FL.

pigs) at the vectorial capacity of 0.1. For other values of r, however, the number of infected

nodes did not reach their maximum within our simulation period because the spread of the

pathogen to distant locations was highly dependent on bird community parameters. For

r=0.5, we observed a region (β1 =0.001-0.01) of slow growth rate around the 300 infected

of pigs, followed by a region where the number of infections reached maximum. For r=0.5,

we observed a region (β1 =0.001-0.01) of slow growth rate around the 300 infected of pigs,

followed by a region where the number of infections reached maximum.

Figure A.2 shows that an increase of r caused the number of infections to reach its

maximum value at a lower vectorial capacity compared with curves for low and medium r.

Because of the increased bird population, birds dispersed within a larger area in search of

food. This spatial spread of birds provided spatially separated mosquito communities the

opportunity to bite the same individual bird, making the pathogen transfer much faster.
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Figure A.3: Estimated number of infected pigs with 95% confidence interval during spring
bird migration using a local fully connected network. The number of infections remains almost
similar up to a vectorial capacity of 0.01 for all bird community parameters. A plateau is
pronounced around 600 infections after which the number of infections reached the maximum
for high and medium bird community parameters.

The number of infections at the end of the simulation period did not reach maximum (total

number of infected individuals = 1400) for r = 0.15 and 0.3 because the rate of pathogen

transfer was slow for lower bird community parameter. The number of infections in all cases

were bounded to reach a maximum of 1400 if the simulation ran for infinite time, given that

we assumed fixed population sizes and no recovery of the pigs. We began our simulation for

spring migration with one infected pig in the FL location, which consisted of a total of 600

pigs. The infection spreading began at a vectorial capacity of 0.00006 (Figure A.3). The

overall pattern of increasing numbers of infected pigs followed the same trend as fall migra-

tion. For both migration periods, the infection started increasing until reaching the number

of infections of the initial location, followed by a plateau. After the plateau, the number of

infections again started growing. The plateau was for all bird community parameters during

spring (Figure A.3) while that was only for medium and low bird community parameters

during fall migration (Figure A.2). The significant lower vectorial capacity in all locations
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during spring migration than fall was the main reason for this difference. Therefore, al-

though birds from the initial location were migrating, there were not a sufficient mosquito

population to initiate a transmission cycle in the second location, or migratory birds were

never infected in the origin location at all.

Figure A.4: There are plateaus around the number of populations of the initial location for
lower values of bird community parameter r for both migrations while there is no plateau
during fall migration for high bird community parameter. For spring migration the infection
reached the plateau at a lower value of vectorial capacity than fall.

Figure A.4(a)–A.4(c) showed that the numbers of infected pigs were always greater or

equal during spring than during fall migration. This was attributed to the introduction of

155



infection in a region of high migratory and local bird community parameter and mosquito

abundance. Figure A.4(a) shows that the infection did not reach the maximum value of 1400

because bird community parameter was much less which made the probability of pathogen

transfer to a distant location limited. For high bird community parameter, infection reached

the maximum around the vectorial capacity of 0.1 for both migration periods because in-

creased abundance of birds caused the infection to reach distant locations at a faster rate.

Same procedure as for the local fully connected was applied for the local Erdos-Renyi

network model, and simulation results are presented in a similar fashion in the following.

Figure A.5: Estimated number of infected pigs with 95% confidence interval during fall bird
migration using a local Erdos-Renyi network. Around 300 infected pigs, there is a plateau
up to vectorial capacity 0.01 for all bird community parameters. The number of infections
increases at almost at a similarly for high and medium bird community parameters after the
plateau.

In Figure A.5 and A.6 , an increasing pattern in the number of infections similar to the

local fully connected network was noticeable for fall and spring migration period respectively.

The total number of infected pigs attempted to reach the full population size of the initial

location. When the vectorial capacity reached at 0.01, numbers of infected pigs again started

increasing faster until it reached the maximum for higher bird community parameters. If the

vectorial capacity did not reach at 0.01, the rate β3 (the transfer rate from one to location
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to another) remains too insignificant to start an infection at a distant location, as mosquito

abundance in both locations was too small. However, when the vectorial capacity exceeded

that point (vectorial capacity 0.01), the number of infections demonstrated a faster increase

in high and medium bird community parameter.

Figure A.6: Estimated number of infected pigs with 95% confidence interval during spring
bird migration using a local Erdos-Renyi network. Around 600 infected pigs, there is a plateau
up to vectorial capacity 0.01. The number of infections increases almost in a similar fashion
for high and medium bird community parameter after the plateau.

Figure A.7(a)-A.7(c) showed plateaus in the number of infected individuals around the

initial location population of 300 for fall migration and 600 for spring migration. Following

the plateau for spring migration, numbers of infected individuals did not reach the maximum

value due to the low mosquito density in the SC and NC locations. For fall migration, how-

ever, following the initial slow pathogen transfer in the NC location, the number of infected

individuals increased rapidly to reach the maximum. This rapid increase was attributed to

the high mosquito density in all three locations, specifically in the SC and FL locations.

157



Figure A.7: Comparison between the number of infections of local Erdos-Renyi network
during spring and fall migrations for increasing values of vectorial capacity when a) r = 0.15,
b) r = 0.3, and c) r = 0.5. There are plateaus around the size of the population in the initial
location for all bird community parameters during both migrations. For spring migration,
the infection reached the plateau at a lower value of vectorial capacity than fall. The total
number of infections during spring migration does not reach the maximum for medium and
low bird community parameters while always reaches maximum for fall migration.

A.4 Discussion

Computational models (mechanistic transmission models) are very important tools as they

aid us in studying systems for which experimental studies are expensive or unethical184.

These models can replicate the behavior of a biological system based on actual, known prop-

erties of the system components185 and also have the ability to suggest mitigation strategies

158



against a disease and compare the relative merits and demerits among them186. To have an

impact in the disease control, these models need to be parameterized with sufficient biolog-

ical details and data of the species involved in pathogen spreading187;188. The vast majority

of compartmental models proposed for JE epidemiology included numerous parameters to

reflect the detailed interaction of pathogen transmission concerned populations and between

compartments within each population4;68;69;177. Success of these models is contingent upon

proper estimates of these parameters. Another very important approach is the statistical

modeling such as regression models and time series models based on prior data. In this

class of methods, a hypothesized relationship among variables are used which best suits the

available data. Model parameters are estimated by fitting the model with the data in the

statistical approach, while they are usually deduced from the biological characteristics of

host and pathogens in mechanistic approach. However, for the vast majority of systems and

particularly for biological systems, we lack reliable information about parameters. Statis-

tical models can be more accurate at predicting disease outbreaks in real time than other

models for parameters being estimated from incidence data. However, statistical models

can not suggest mitigation strategies. Therefore, to develop model in advance of any poten-

tial threat of an epidemic and to suggest mitigation strategies against a disease, mechanistic

approaches constitute the best option for modeling. In this paper, we were focused on formu-

lating a transmission model for JE in the USA and suggesting efficient mitigation strategies.

However, JE incidence has not been reported in the USA. Therefore we choose mechanistic

transmission modeling approach being a suitable model in the absence of incidence data.

From careful observation of all simulation results, it was evident that after the plateau (a

region of slow increase in number of infected pigs), pathogen spread was an increasing quan-

tity with bird community parameter. This demonstrated that the bird community parameter

motivates an expeditious increase in the number of infected pigs. This is due to the role of

birds as the long distance dispersal vehicle of pathogens189;190. Within each location, the

pathogen can spread via mosquito, but dispersal to distant locations are solely dependent on

birds as mosquitoes have small flying ranges191. However, an increase in the value of r cannot

function to its full extent until a certain value of vectorial capacity (0.01) is reached, as we
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can see from Figure A.2-A.7. Therefore, mosquito vectorial capacity is the primary factor,

and bird density and diversity is the secondary factor for the spread of the JE pathogen.

Comparisons of the average number of infected pigs during fall and spring migrations for our

two network models showed different trends. The average number of infections in the local

fully connected network was greater during spring than fall migration for all bird community

parameters, although they occasionally coincided at high and low values of vectorial capacity.

In the local Erdos-Renyi network, however, the increase in the pathogen spreading was much

faster during fall migration after initial plateau than spring migration. This contradiction

is essential for determining the closeness of our model to reality. As mentioned, JE has not

been introduced to the United States, so incidence data of WNV was used to determine the

model’s ability to portray accurately past incidences of a similar vector-borne disease. The

incidence data of WNV shows that most of the cases occurred between May and October,

peaking at the end of August to the beginning of September180. This period closely matches

the migratory pattern of the birds192. Spring migration typically occurs from April to June,

while fall migration typically begins at the end of July and continues until October for some

species. As the fall migration period coincides with peak occurrences of WNV incidences, fall

migration was identified as an important factor in the pathogen spreading. Mosquitoes were

also abundant in all locations during this period, leading to widespread infection. During fall

migration period, a faster increase in the number of infections than spring as well as total

infected cases for local Erdos-Renyi network closely resembled the peak incidence period of

WNV. Also, high mosquito abundance in all locations during fall migration period resulted

in a faster spreading in pathogen than spring migration, as demonstrated in the simula-

tion results (Figure A.5-A.7) obtained from local Erdos-Renyi network. However, the local

fully connected network resulted in more infections during spring than fall migration period.

Therefore, we used the maximum incidence period of WNV to decide which local network

topology better represents the epidemiology of JE in the US. All observed data about WNV

occurrences has a peak incidence period in August-September which is in fall migration pe-

riod. Therefore, as local Erdos-Renyi network gave us increased incidence in fall migration

period, we decided this model is better than a fully connected model for representing JE.
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However, we did not consider any quantitative comparison between our simulation results

and incidence data of WNV, as available data was for human incidences, not for feral pigs.

Another scenario of spreading JE among human population in the absence of feral pigs was

also considered. Human incidence can happen anywhere, even if feral pigs are not present

as migratory birds can spread the pathogen to distant locations. For human cases, we con-

sider Bronx County of New York as this location has incidences of WNV cases every year

since 2003 except 2004180 and therefore, has competent birds and mosquitoes to maintain

a transmission cycle for WNV and hence for JE. Therefore, we select a human population

of 600 in a small area in Bronx County, NY, to demonstrate the effect of migratory birds

in the spreading of JE pathogen in the absence of feral pigs. A weight of 26
33

was used for

r and vectorial capacity is weighted with 0.2 (assumed to reflect low mosquito abundance)

as infection in this location happens only during spring migration period of low mosquito

abundance. This weight is assumed to reflect lower mosquito abundance in the NY location

than the other three locations during spring migration. Simulations for local Erdos-Renyi

network in the Bronx County, NY, resulted in one infected human for maximum vectorial

capacity value (β1=0.6) used and high bird community parameter (r=0.5). Therefore, we in-

creased the vectorial capacity further and for a highest physical value of β1=1.54183, number

of infected cases reached up to three. Our simulation results (1-3 human cases) encompassed

the average number of WNV cases (2.38 human cases) in the NY locations since 2003180.

For medium and low bird community parameters, simulation results showed no human cases,

because reduced bird abundance made the transmission of the pathogen to distant locations

nearly improbable. Therefore, high mosquito abundance was required along with a high

bird’s density to transmit the pathogen to humans. Our simulation results showed if values

of vectorial capacity were less than 0.01, then the number of infections were almost inde-

pendent of the value of r since all values of r resulted in an identical number of infections.

Vectorial capacities greater than 0.01 caused a rapid increase in the number of infections in

connection with increased values of r. Mitigation strategies for an incidence of JE in the

USA can be effectively deduced from this trend. If mosquito vectorial capacity is less than

0.01, then insecticidal spray further reduce the mosquito population and the infection does
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not spread much and is contained within a small area (area of initial infection). For higher

values of β1 (more than 0.01), the number of infected is very sensitive to mosquito and birds

as seen from simulation results. Therefore the highest priority at that time should be to

control the birds as well as mosquito in that location to stop the distant spreading. Now

from the plateaus we see that, within that region, reducing the mosquito density or bird

density has no affect. This happens as all the feral pigs are infected at that time in the in-

troductory location of the epidemic and infected pigs don’t recover once infected. Therefore,

unless infected pigs are removed from there, they continue to infect susceptible mosquitoes

and birds in that location. For higher values of β1 (more than 0.01), the number of infected

is very sensitive to mosquito and birds as seen from simulation results. Therefore the highest

priority at that time should be to control the birds as well as mosquito in that location to

stop the distant spreading. Birds can be controlled by spraying the area around the bird

nests or rookeries. This would reduce the incidence of mosquitoes and the bird infections.

Another option is to vaccinate birds for the pathogens so they do not get sick. There are

also other novel methods that can be used to reduce bird exposure to mosquitoes. Culling

of birds should be used as an option of last resort.

A.5 Conclusions

Our individual-level network model of JE has three compartments and three parameters.

Weights assumed for bird community parameter can be deduced accurately if specific bird

and mosquito abundance data were available. Given that we have these data about birds

and mosquito, our approach reduces numbers of compartments and parameters that were

used in earlier JE models.

Our model is flexible to the inclusion of heterogeneity in the contact structure among

feral pigs as well as the host preference of mosquito. Meta-population and deterministic

models are not capable of reflecting the heterogeneity in model populations. The scarcity

of information about reservoir and vector population compelled us to use random network

structure in this paper. However, our model is a novel approach in modeling JE when
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specific population contact data is available. For the local Erdos-Renyi network, although

the infection starts at NC with fewer pigs (300 pigs) in fall than spring migration (600

pigs), the total number of infections increases much faster than spring migration for all bird

diversities. From the data of human WNV incidence, the total number of infected peaks

during fall migration period As well. The local Erdos-Renyi network simulation results in

a maximum number of infected pigs at a time period similar to maximal WNV incidence

for the specific geographic locations. Therefore, it can be deduced that local Erdos-Renyi

network better describes the epidemiology of JE in the USA.

This paper also investigated effective mitigation strategies against JE and found insec-

ticidal spraying can limit the infection within a geographical area of low mosquito vectorial

capacity. For high values of vectorial capacity, control of birds from the infected area is

required to reduce the spreading of JE to distant locations. These strategies can be applied

to stop human infections from occurring in the scenario of JE spreading in the NY location.

If the mosquito vectorial capacity is high in the NY location, then removal/control of birds

will necessarily prevent human infections according to the models..
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