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Abstract

The Weyl algebra is the algebra of differential operators on a commutative ring of poly-

nomials in finitely many variables. In [8], Hayashi defines an algebra which he refers to as

the quantized n-th Weyl algebra given by a deformation of the classical Weyl algebra. In

[21], Lunts and Rosenberg define β and quantum differential operators for localization of

quantum groups by deforming the relations that algebras of differential operators satisfy.

In [13], Iyer and Mccune compute the quantum differential operators on the polynomial

algebra with n variables. One naturally wonders “What is the relationship between the

quantized Weyl algebra and the quantum differential operators on the polynomial algebra

with n variables?” In this thesis we answer this question by comparing the natural repre-

sentations of Uq(sl2) emerging from each algebra. Additionally, we connect the differential

operators on the big cell of the flag variety of Uq(sln) with our deformed algebras. We also

show the relationship between these algebras of differential operators and those appearing

in the quantum Beilinson-Bernstein equivalence. Next we discuss analagous results in the

case of β-differential operators, as introduced in [21]. We consider both deformations on the

underlying coordinate rings, and of the algebra of differential operators. We relate these

results to the gluing problem for differential operators on noncommutative coordinate rings.

We collect some of the different deformations of the usual Weyl algebra, and compare them

based on a common bicharacter β. Finally, we show a geometric result need in order to

be able to glue deformed spaces and have their algebras of deformed differential operators

cohere.
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Chapter 1

Introduction

1.1 An overview

For commutative algebras, one has the usual definition of the algebra of differential oper-

ators. This algebra is a filtered, noncommutative algebra, containing the original commu-

tative algebra in the zero-eth degree. If we wish to consider a noncommutative analog of

these differential operators there are two main trajectories:

1. one can consider algebras which are noncommutative, and find their differential oper-

ators

2. one can consider differential operators which satisfy specific noncommutativity rules.

We will consider both. The former, we refer to as noncommutative spaces, as we think

of the noncommutative algebras as function rings on some “spaces”. The latter will be

deformations of differential operators, which will be used in relation to quantum groups.

We will also combine these two into a coherent picture.

These two considerations lead to three problems which I address in this thesis:

1. The relationship between the differential operators of Lunts and Rosenberg, which is

known to be necessary for a quantum analog of the Beilinson-Bernstein localization
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theorem, and a classical deformation of the Weyl algebra, and why they have similar

actions on quantum spaces. Henceforth, we refer to this as comparing Weyl algebras.

2. To what degree deforming algebras of differential operators and deforming the spaces

on which they act are related. This problem will be called twisting and untwisting in

the sequel.

3. How gluing pieces of these spaces together behaves with respect to differential opera-

tors, and how we might glue algebras of differential operators together to get sheaves

of quantum differential operator algebras on commutative spaces. We will identify

this as a gluing problem for the rest of this thesis.

1.2 Outline

Exploring the connections between a semi-simple Lie algebra g and Weyl algebras is a

classical story. In the particular geometric setting of the flag variety G/B of g, there are

(at least) two connections between the Weyl algebra and g:

(I). there is a morphism φ : U(g)/ ann(Mλ) � An for n = |Λ+|, the number of positive

roots of g, Mλ a Verma module, and U(g) the universal enveloping algebra of g. This

is the so-called Conze embedding.

(II). there is a morphism ψ : U(g)/ ann(Mλ) → Dλ(G/B), arising from the Beilinson-

Bernstein localization theorem, with Dλ(G/B) the twisted differential operators on

the flag variety.

In an unpublished note by Hodges and Smith [10], a morphism between An and Dλ(G/B)

which commutes with these two maps is established. In particular, An is isomorphic to the

twisted differential operators on the Schubert cell corresponding to the longest element of

the Weyl group of G, a subalgebra of Dλ(G/B).
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We begin this thesis by establishing an analagous morphism in the quantum case; i.e. be-

tween Aq(n), the quantum Weyl algebra, and Dq(Cq[n]), the quantum differential operators

on the big cell of the quantum flag variety for Uq(sln).

We consider Uq(g), the quantum group at q, for q not a root of unity. In [8], Hayashi

defined a deformation of An which we denote by Aq(n). In [8] and [24] it is shown that this

algebra, a deformation of the Weyl algebra, has a useful ring theoretic property known as

the generalized Weyl algebra structure. Further, for it exists an analog of (I), i.e., a mapping

Uq(sln)→ Aq(n).

In [21] a related deformation of the Weyl algebra, denoted Dq, is given by deformation

at the level of endomorphisms, on a ring using the so-called Grothendieck definition of

differential operators. In [21], [22], and [26], it is shown that the latter deformation preserves

much of the geometric structure and an analog of (II) for Dq holds.

We compare these two deformations from a purely algebraic point of view. In the classical

case one can use morphisms (I) and (II) to make statements about representation theory, so

we consider these statements in the quantum case. In particular, we see that representations

of Uq(g) induced by the quantum differential operators of [8] are reflected in the quantum

flag variety and those quantized differential operators of [21]. Note that this reconciles the

result of [9] and [17] with the results of [21] which were different approaches to finding

quantum analogs of (II).

Chapter 2 concerns itself with (I) and (II) and is organized as follows: it begins by

recalling the definitions of Hayashi’s quantum Weyl algebra as a deformation of the usual

Weyl algebras (Section 2.1), and the construction of quantum differential operators by Lunts-

Rosenberg, and the explicit construction by Iyer-McCune (Section 2.2); next we construct

explicitly the connection between Hayashi’s quantum Weyl algebra in the 1-dimensional case,

and the quantum differential operators on the affine line (Section 2.3); further, we extend

this relationship to the 2-dimensional quantum Weyl algebra, and the quantum affine line.

Since both of these geometries lead to Uq(sl2)-modules, we compare their representations,
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and prove that they are the same (Section 2.3.4). We conclude by extending these results

to Uq(sln) by constructing representations of Uq(sln) on quantum differential operators on

quantum affine spaces (Section 2.4).

Now equipped with q-differential operators on general rings, we are primed to consider

other deformations of algebras of differential operators. In [21], in the process of defining

the quantum differential operators, Lunts and Rosenberg define β-differential operators on

a graded noncommutative ring. If the ring is graded by an abelian group Γ, then β is taken

to be a bicharacter Γ× Γ → K for some ground field K. What we discuss in Chapter 2, is

when β is specialized to be qab for a and b are graded degrees of ring elements. This special

case is what the authors of [21] call q-differential operators and play the role in the quantum

case that differential operators serve in the classical case.

Recall that given a graded algebra over K, there is a natural deformation of that ring by

a 2-cocycle of the grading group. In particular, for a Γ-graded algebra R, and γ a 2-cocycle

in the group cohomology for Γ, we write Rγ for the noncommutative algebra with a new

multiplication

r ? s = γ(|r| , |s|)rs,

where concatenation is usual algebra multiplication, and |•| denotes graded degree.

A natural question when observing the definition of the ring of β-differential operators is:

“when will β-differential operators on a ring coincide with ‘untwisted’ differential operators

on a deformation of the ring?” A more precise formulation is: given a Γ-graded ring and γ

some 2-cocycle for Γ, is there a relationship between β, a bicharacter, and γ for Dβ(Rγ).

Chapter 3 is dedicated to proving the following result,

Theorem 1.2.1. (Dβγ (R))γ ' Dβ(Rγ)

where βγ is another bicharacter.

In Chapter 2, the relationship between the quantum Weyl algebra constructed in [8], and

the algebra of quantum differential operators on affine space and quantum affine space ([13],
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[14]) is indentified. Keeping with this theme, we define a similar β-Weyl algebra (modeled

after Aq(n)) and show that the morphisms existing in Chapter 2, also exist in this setting.

Further, we discuss the relationship between Dq(Cq[x1, . . . , xn]) and Dβ(C[x1, . . . , xn]). Fi-

nally, we show some “functoriality” properties of Dq(−) similar to those in [12], which are

useful for computation purposes.

For the last task of this thesis, we return to the geometry. We explore the gluing condi-

tions necessary for these deformed algebras. When considering algebraic spaces, localization

is the recipe for building sheaves of algebras from our algebras associated to rings of func-

tions. In our Chapter 2 discussion of sheaves of D-modules, we used the fact that localization

by a multiplicative subset, S−1, of a ring R, commutes with the functor D. D is the functor

which sends a quasi-coherent sheaf to a sheaf of D-modules. In light of Chapters 2 and 3,

we need to check three new cases: β-differential operators for commutative rings, differen-

tial operators for noncommutative rings, and β-differential operators for noncommutative

rings. In particular, if R is commutative, Sw a multiplicative subset, then for what pairs of

bicharacters (β, β
′
) is

S−1
w Dβ(R) ⊂ Dβ′ (S

−1
w R)?

And similarly for R noncommutative with Sw an Ore subset. We answer this question in

Chapter 4.

Another task of Chapter 4 is to compute our “quantum quotient rules”. Similar to the

quotient rule of differential calculus, these give computational rules for how to evaluate the

images of differential operators under localizations on functions involving rational functions

in the commutative and noncommutative settings.

However, the main utility of these computations is for gluing. This quantum analogy of

transition maps from differential geometry requires a cohesion of deformation parameters;

this thesis culminates in proving the existence and conditions for this cohesion. We tease

with a final section on an example of the kind of quantum space that might be built with

all these deformed geometries.
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So, to recapitulate, we show what deformations of differential operators have been in the

past, collimate them, generalize the notion, prove how they behave with deformed spaces,

and provide the tools to create some new spaces out of them.

1.3 Essential preliminaries on representation theory

Representations of a given algebraic object are structure-preserving self-maps of a vector

space which satisfy the algebraic relations of that object. One of our most prototypical

examples is a group action on a vector space as a group homomorphism:

G→ End(V )

for a group G. Here End(V ) is the ring of all linear transformations on a vector space V .

We will take G to be a connected simple reductive algebraic group, with g its corre-

sponding semisimple Lie algebra. For B a Borel subgroup of G, define:

Definition 1.3.1. The flag variety of G is the space of Borel subalgebras of g as identified

with the quotient variety, G/B. This is a projective variety with transitive G action, for G

a reductive algebraic group over C.

Remark 1.3.2. If we recall the notion of a flag manifold as the space of full flags in Cn, we

can see that the stabilizer under group action of the standard flag in Cn is a Borel subgroup.

Example 1.3.3. If G = SLn, then B is the upper triangular matrices in G.

Definition 1.3.4. The Gel’fand Model, R, associated to a Lie algebra, g, is defined as

a P+-graded algebra R := ⊕λ∈P+Rλ for P+ the dominant integral weights in h∗, with B

corresponding to the negative roots, and Rλ the highest-weight representation, with weight

λ. Further, we observe that this ring has its multiplication ⊗ given the by tensor product

of irreducible representations composed with projection onto its highest weight component,

i.e. Rλ ⊗Rµ → Rλ+µ, so R is a P+-graded algebra.
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Lemma 1.3.5. G/B ' Proj(R) with N-gradation by weights.

Returning to the flag description of the flag variety, we can define a geometric decom-

position. Fix a maximal torus T in G.

Definition 1.3.6. Let W be the Weyl group of G. For w ∈ W , define Fω for ω as a T -fixed

point of G/B corresponding to ω, i.e., Fω := ωF for F the standard coordinate flag, and

we define Cω := BFω = UFω. Call these orbits of B the Schubert Cells.

Definition 1.3.7. The Zariski closures Cω are called Schubert Varieties, as they are closed

subvarieties of G/B.

The main observation about the Schubert cells decomposition of G/B from the Bruhat

decomposition, G =
∐̇

w∈WBωB, is:

Proposition 1.3.8. G/B =
∐̇

ω∈WCω.

Additionally, we see that the Schubert varieties are built from subordinate cells:

Proposition 1.3.9. Cω =
⋃
ν≤ω Cν .

Definition 1.3.10. The big cell Uω0 , for ω0 the longest element of W , is the Schubert cell

associated to ω0. We will also be particularly interested in its translates. An important

aspect of big cells is that they are affine spaces isomorphic to AN for N the number of

positive roots of g.

Can one describe the Schubert cells of a flag variety G/B in terms of ideals of R?

Consider OX the structure sheaf of a scheme X. We recall some facts about intersections

of subschemes:

Definition 1.3.11. Consider X a scheme with cover {Ui | i ∈ I} and M ∈ OX −mod. We

have maps

ui : Γ(X,M)→ Γ(Ui,M),
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for all i. In the case when Γ(U,M) = M(U) then this is given by localization of rings. For

Uij the intersection of Ui and Uj,

Γ(Ui,M)→ Γ(Uij,M)← Γ(Uj,M)

we consider these transition maps from the embedded Uij in Ui to Uj.

We will also need to introduce classical D-modules; we recall from [6]. For a K-algebra,

R.

Example 1.3.12. We can see that the Leibniz rule is the condition for the degree 1 dif-

ferential operators. Assume that R consists of commutative ring of functions, and ∂ is a

degree one differential operator, if ∂ ∈ EndK(R)

∂(fg) = ∂(f)g + f∂(g),

for all f, g ∈ R, regarding f ∈ R and R ↪→ EndK(R) by left multiplication. We see that in

EndK(R):

[[∂, f ], g] = [∂, f ]g − g[∂, f ] = ∂ ◦ f ◦ g − f ◦ ∂ ◦ g − g ◦ ∂ ◦ f + g ◦ f ◦ ∂ = 0.

Definition 1.3.13. The algebra of differential operators on a ring R, D(R), is the set of

linear endomorphisms ∂, of R with some n ∈ N, such that [. . . [[∂, r0], r1], . . . , rn] = 0 for

any sequence {ri}1≤i≤n of ri ∈ R. This set has an algebra structure we we denote D(R).

It is easy to see a filtration on this algebra by N:

Definition 1.3.14. For ∂ ∈ D(R) and n such that [. . . [[∂, r0], r1], . . . , rn] = 0 for any

sequence {ri}0≤i≤n of ri ∈ A, then we say ∂ is a differential operator of degree at most n

and collect these into a set Dn. This filtration is called the D-filtration.

This is the correct definition to generalize to the noncommutative ring case.
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Definition 1.3.15. For X a affine algebraic variety over C, differential operators on X of

degree at most k, written DkX(X), are differential operators of degree k for the ring OX(X)

the ring of global sections.

We can also think of these as sheaves of algebras if we sheafify the presheaf of differential

operator algebras on the images of the open sets under the global sections functor. Denote

TX the tangent sheaf defined as the sheaf of algebras of derivations on the algebras of

functions.

Remark 1.3.16. We see that OX ↪→ (DX)0 ⊂ DX as sheaves. In fact, one can show that

OX and TX generate DX . Thus DkX ∈ OX −Mod.

Definition 1.3.17. For f ∈ OX(X), and Xf the principle open set of X defined by f ,

DX(Xf )
k = DX(X)k ⊗OX(X) OX(Xf ),

i.e. localization of differential operators is localization as OX-modules.

We will omit the subscript X if it understood.

Remark 1.3.18. D is quasi-coherent OX −Mod.

Definition 1.3.19. A D-module is a sheaf of D-modules, which by our previous remark

is an OX-module with TX actions. Localization is by extension of scalars. We denote the

category of left (resp. right) D-modules of X by DX −Modl, (resp. DX −Modr).

Definition 1.3.20. For an affine scheme X = SpecR, R a commutative ring, and M an R

module, we define the localization functor as the map which sends R−Mod→ OX −Mod

by extension of scalars:

M 7→ OX ⊗RM

which we see to be a sheaf of modules.

9



Definition 1.3.21. A variety is D-affine if each D-module in DX −Mod is generated by

global sections, or equivalently

Γ(U,DX) := DX(U) ' D(OX(U))

Remark 1.3.22. This can be rephrased as H i(X,DX) = 0 for i ≥ 1.

This is an analogue of Serre’s affine global sections theorem, that affine schemes are those

whose quasi-coherent sheaves are built by localizations of modules over the ring of global

sections.

Theorem 1.3.23. (Beilinson-Bernstein) G/B is D-affine, and if X is D-affine, then Γ :

DX −Mod→ D(X)−Mod and its adjoint, DX ⊗DX − : D(X)−Mod→ DX −Mod, is

an equivalence of categories.

Remark 1.3.24. One sees that those modules are naturally U(g)-modules by the fact that

G acts on G/B, and thus the localization functor above constructs a U(g)-module from a

D-module. This theorem is also true for sheaves which are twisted by weights λ and modules

of the form U(g)/ ann(Mλ). These twists are constructed as line bundles associated to the

weights and tensored with our sheaf.

Consequently, the theorem of Beilinson and Bernstein establishes our motivational con-

nection between algebras of differential operators and representations of Lie algebras.

1.4 Quantum algebras

We wish to consider noncommutative spaces, and above we sketched the connection to

representation theory. This thesis’ raison d’étre is to transition from classical representation

theory of Lie algebras, to the representation theory of quantum groups. It is precisely

the quantum geometries analogous to the flag variety which carry the noncommutative

10



nature, and necessitate the deformation theory we explore in this thesis. Where once were

algebraic schemes corresponding to lie algebras, now come algebraic stacks corresponding

to a deformation of the Lie algebras.

Quantum groups arise as a particular kind of deformation of the Hopf algebras asso-

ciated to the classical Lie algebras. For the noble ideal of self-containedness, we will now

outline an appropriately focused introduction to quantum groups. Additionally, we intro-

duce the essential geometric presentation of them which directs our gaze to noncommutative

geometry.

Let’s begin with some simple algebraic arguments and definitions. They will turn out to

be sufficient.

Define an algebra U(sl2) by generators and relations,

Definition 1.4.1. U(sl2) := C 〈e, f, h〉 / < he− eh− 2e, hf − fh+ 2f, ef − fe− h > which

we call the enveloping algebra of sl2.

And let us think of this algebra as its image embedded in D(C[x, y]),

Lemma 1.4.2. U(sl2) ↪→ D(C[x, y]r) ↪→ D(C[x, y]).

Proof. Consider e 7→ x∂y, f 7→ y∂x, h 7→ x∂x − y∂y. Then we need check that the following

relations hold:

x∂xx∂y − y∂yx∂y − x∂yx∂x + x∂yy∂y − 2x∂y = 0,

x∂xy∂x − y∂yy∂x − y∂xx∂x + y∂xy∂y + 2y∂x = 0,

x∂yy∂x − y∂xx∂y − x∂x + y∂y = 0.

so we are finished.

Remark 1.4.3. If we assume some ordering with x < y, this representation of U(sl2) on

the polynomial algebra C[x, y] recovers the familiar terminology that e is a raising operator,

f is a lowering operator, h preserves homogenous polynomial degree.
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Now we make an observation about this representation:

Remark 1.4.4. e · xny0 = 0 for all n, f · x0ym = 0 for all m, and h · xnym = (n−m)xnym

for all n and m. So for homogeneous degree r polynomials, C[x, y]r for any r, xr is the

highest-weight vector of weight r, yr is the lowest-weight vector of weight r, and xnyr−n is

an eigenvector for h for all n.

Moreover, let us recall that there is a geometric interpretation of C[x, y]:

Remark 1.4.5. C[x, y] =
⊕

nH
0(P1,O(n)), i.e., the homogeneous coordinate ring, i.e.,

P1 = Proj(C[x, y]). This is true more generally for projective spaces [7].

Lemma 1.4.6. P1 has an affine covering by two affine lines.

Proof. Consider A = C[x, y]. Then Ax = C[x, y][x−1], the localization by < x >, the

multiplicative set generated by x is graded. Taking the degree zero component yields

A(x) = C[y/x] =: C[t]. Similarly, Ay = C[x, y][y−1] is the localization by < y > so

A(y) = C[x/y] =: C[t−1]. Both spaces constructed by localizations are affine and are glued

by common localization, with the association t = y/x.

Definition 1.4.7. Define a C-algebra homomorphismψ : U(sl2)→ D(C[t]) generated by

e 7→ ∂t,

f 7→ −t2∂t,

h 7→ −2t∂t,

so e(t) = 1, f(t) = −t2, and h(t) = −2t.

We check that it is well defined.

Lemma 1.4.8. ψ : U(sl2) ↪→ D(C[t]) by e 7→ ∂t, f 7→ −t2∂t, h 7→ −2t∂t is an C-algebra

morphism.
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Proof. Let us check the relations:

he− eh− 2e 7→ (−2t∂t)(∂t)− (∂t)(−2t∂t)− 2(∂t) = 0,

hf − fh+ 2f 7→ (−2t∂t)(−t2∂t)− (−t2∂t)(−2t∂t) + 2(−t2∂t) = 0,

ef − fe− h 7→ (∂t)(−t2∂t)− (−t2∂t)(∂t)− (−2t∂t) = 0.

It is useful to investigate the kernel of ψ:

Lemma 1.4.9. Recall the Casimir element is c = (h− 1)2 + 4ef ; c− 1 lies in the kernel of

ψ.

Proof. Simply consider the image:

c− 1 7→ (−2t∂t − 1)2 + 4(∂t)(−t2∂t)− 1 = 0.

We have similar computations for the other affine patch, with parameter t−1. By our

earlier computation, we see that these patches glue together and respect our representations.

The global sections of the sheaf of algebras of differential operators, D, on P1 comprise a

subring of D(C[t]) ⊕ D(C[t−1]) with an identification by gluing. In particular, we write

Rt for the ring of differential operators on the affine line associated to localizing by the

multiplicative set generated by t (and Rt−1 vice-versa),

Γ(D,P1) = Rt ⊕Rt−1 ↪→ D(C[t])⊕D(C[t−1]).

This is precisely what we need to connect differential operators on open sets of the

flag variety with representations of the Lie algebra. Thus, the simplest example of the

localization theorem of Beilinson-Bernstein has been illustrated:
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Theorem 1.4.10. U(sl2)/ 〈c− 1〉 ' Rt ⊕Rt−1.

We have seen a low-brow approach to the Beilinson-Bernstein theorem which lifts this

isomorphism to the categories of modules. Now we move towards quantum groups.

1.4.11 Introduction to quantum algebras

Let q ∈ C \ {0,±1}. For a systematic introduction and proofs, one may consult a book on

quantum groups such as [19]. Throughout the thesis we use the notation [a, b]c := ab− cba.

Definition 1.4.12. Consider C 〈E,F,K±1〉 with relations

[K,E]q2 = 0,

[K,F ]q−2 = 0,

[E,F ] =
K −K−1

q − q−1
,

KK−1 = K−1K = 1,

and call this algebra Uq(sl2).

Proposition 1.4.13.
{
EnKmF l | m ∈ Z, l, n ∈ Z≥0

}
is a linear basis for Uq(sl2).

Definition 1.4.14. The quantum casimir is defined by cq := Kq−1+K−1q
(q−q−1)2

+ EF . It lies in

the center and for q not a root of unity it generates the center of Uq(sl2).

Now we consider a couple of the automorphisms of Uq(sl2),

Definition 1.4.15. Define a C-algebra automorphism Θ : Uq(sl2)→ Uq(sl2) such that

E 7→ F, F 7→ E, K 7→ K−1,

so Θ−1 = Θ, and ϑα,n,ν : Uq(sl2)→ Uq(sl2) for α ∈ C, n ∈ N, ν ∈ C such that

E 7→ αKnE, F 7→ να−1q−2nK−nF, K 7→ νK
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thus ϑ−1
α,n,ν = ϑνnα−1,−n,ν .

Lemma 1.4.16. If q is not a root of unity, Aut(Uq(sl2)) = C 〈Θ, ϑ〉, generated by two

elements [4].

Definition 1.4.17. Uq(sl2) is a Hopf algebra with Hopf structure (see [19] for a complete

definition),

∆(E) = E ⊗K + 1⊗ E,

∆(F ) = F ⊗ 1 +K−1 ⊗ F,

∆(K) = K ⊗K,

S(E) = −EK−1,

S(F ) = −KF,

S(K) = K−1,

ε(E) = ε(F ) = 0,

ε(K) = 1.

Remark 1.4.18. Recall that we call elements such that ∆(g) = g ⊗ g grouplike elements.

Proposition 1.4.19. The only automorphisms preserving the Hopf structure are ϑα,0,1. [4]

Proposition 1.4.20. Uq(sl2) ' Up(sl2) iff q ∈ {±p±1}.

Proof. One can check that the only grouplike elements are Kn for n ∈ Z. Then any pur-

ported automorphism must send K to Kn and it’s inverse likewise. By checking the adjoint

action by K, and its eigenvalues, the result follows.
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Remark 1.4.21. For q4 6= 1, consider C 〈E,F,K±1〉 with relations

[K,E]q = 0,

[K,F ]q−1 = 0,

[E,F ] =
K2 −K−2

q − q−1
,

KK−1 = K−1K = 1,

and call this algebra Ûq(sl2). Then Uq(sl2) ↪→ Ûq(sl2).

Remark 1.4.22. Another way to elucidate the relationship is to compare relations, note

Uq(sl2) with relations:

EF − FE = L,

LE − EL = q(EK +K−1E),

LF − FL = −q−1(FK +K−1F ),

(q − q−1)L = K −K−1,

KE = q2EK,

KF = q−2FK,

which are the same as our previous presentation. Then, q = 1 and K = 1 yields

EF − FE = L,

LE − EL = (2E),

LF − FL = −(2F ),

which are the relations of U(sl2).

Now we return to seeing Uq(sl2) in terms of a faithful representation of differential
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operators on some polynomial ring. Since we quantized our algebra, now we quantize our

polynomials.

Definition 1.4.23. Call Cq[x, y] the quantum plane, the C-algebra generated by x and y

and relation

[x, y]q = 0.

Remark 1.4.24. As Uq(sl2) descends to U(sl2) by specializing q = 1, Cq[x, y] becomes

C[x, y].

Proposition 1.4.25. There is an algebra homomorphism Uq(sl2) ↪→ EndC(Cq[x, y]) that

gives a faithful Uq(sl2)-module algebra.

Proof.

K(1) = 1, K(x) = qx, K(y) = q−1y,

E(1) = 0, E(x) = 0, E(y) = x,

F (1) = 0, F (x) = y, F (y) = 0,

yields the map. The action respects ∆, so for a ∈ Uq(sl2),

∆(a) =:
∑

a(1) ⊗ a(2),

the above action on generators is enough to prove our claim. To check faithfulness, we check

on a basis element. First, observe that

E(xiyj) = qi {j}−2 x
i+1yj−1, F (xiyj) = qj {i}−2 x

i−1yj+1, K(xiyj) = qi−jxiyj,

where {n}a := qna−1
qa−1

. Then,

(ElKmF n)(xy) = q−2n+3q−2m(1 + q−2)q−2(n+m)−3x2,
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so if ElKmF n = id, then l = m = n = 0.

Remark 1.4.26. Lest the reader think this is the only representation, in [4], the authors

show that there are several classes of non-isomorphic Uq(sl2)-module subalgebras in the

quantum plane.

Example 1.4.27. Let us check that this representation recovers our representation of U(sl2)

on the affine plane. We see that when q → 1 both E and F act the way we expected before.

Further, if we consider K = e~H , then apply(as before) ∂
∂~ to the K action we indeed recover

our analogous action of H.

We have made the necessary connections between our simple geometric interpretation

of U(sl2) as differential operators on the space P1 and our new algebra Uq(sl2). We could

work harder and even recollect our localization picture, but it will appear more naturally

later. An important(and later essential) difference between the two pictures, is that the

first picture had a real geometry, P1 and its line bundles, whereas our second only had an

implied geometry by an algebra that looked like line bundles on something.

1.4.28 Serre relations for U(sln)

The Serre relations form the relations between generators for U(g) for higher rank Lie

algebras. We will focus on sln but the definitions presented here, which depend only on the

generalized Cartan matrix, are the same for all Lie algebras.

Given A = (aij)i,j∈I a symmetrizable generalized Cartan matrix, with entries aii = 2 and

aij = 0,−1,−2,−3 when i 6= j,

Definition 1.4.29. gA is the Lie algebra associated to A is generated by {Ei, Fi, Hi}i∈I and

relations

[Hi, Hj] = 0, [Ei, Fj] = δijHi,

[Hi, Ej] = aijEj, [Hi, Fj] = −aijFi, i, j ∈ I,
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and for i 6= j, ad(E)(x) := [E, x],

ad(Ei)
1−aij(Ej) = 0

These iterated commutators form the so-called Serre relations.

Definition 1.4.30. Let U(gA) be the C-algebra defined by generators {Ei, Fi, Hi}i∈I and

relations

[Hi, Hj] = 0, [Ei, Fj] = δijHi, [Hi, Ej] = aijEj, [Hi, Fj] = −aijFj,

and

1−aij∑
k=0

(−1)k
(

1− aij
k

)
Ek
i EjE

1−aij−k
i = 0,

1−aij∑
k=0

(−1)k
(

1− aij
k

)
F k
i FjF

1−aij−k
i = 0.

This pair of relations are the Serre relations as they appear in the universal enveloping

algebra. See [11].

Remark 1.4.31. To arrive at the special linear Lie algebras, one should take the n × n

Cartan matrix

An :



2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1
. . . . . . 0

...

...
...

...
. . .

... −1

0 0 0 . . . −1 2


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Example 1.4.32. Let A1 = (2) so U(sl2) has {e, f, h} and relations

[e, f ] = 2h, [h, e] = 2e, [h, f ] = −2f,

which was what we saw before. Notice that we have one simple root, and W = 〈s1〉 =

{e, s1} = S2 the Weyl group. The Serre relations are trivial in this case.

Now we build our second standard example U(sl3).

Example 1.4.33. Let A2 :=

 2 −1

−1 2

 , so we have {E1, E2, F1, F2, H1, H2} as generators,

the relations of before, and we see that the Serre relations are,

[Ei, [Ei, Ej]] = 0, [Fi, [Fi, Fj]] = 0, i 6= j

For the simple roots we write α, β. Let

W = 〈s1, s2〉 = {id, s1, s2, s1s2, s2s1, s1s2s1} = S3,

be the Weyl group. Further, we have U(sl3), defined by the relations of before where the

Serre relations become

2∑
k=0

(−1)k
(

2

k

)
Ek
i EjE

2−k
i = 0 =⇒ EiEjEi =

EjE
2
i + E2

iEj
2

,

2∑
k=0

(−1)k
(

2

k

)
F k
i FjF

2−k
i = 0 =⇒ FiFjFi =

FjF
2
i + F 2

i Fj
2

.

Serre Relations for Uq(sln)

As before, the quantum Serre relations will provide the presentations of our algebras. First

we need a few definitions.
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Definition 1.4.34. [m]q := qm−q−m
q−q−1 the quantum integers, [m]!q := [m]q[m − 1]q . . . [2]q[1]q

the q-factorials.

Definition 1.4.35. Let Uq(gA) be the C-algebra defined by generators
{
Ei, Fi, K

±1
i

}
i∈I ,

and let qi = qdi(from the diagonalization of the Cartan matrix) with relations

[K±1
i , K±1

j ] = 0, [Ei, Fj] = δij
Ki −K−1

i

qi − q−1
i

, [Ki, Ej]qaij = 0, [Ki, Fj]q−aij = 0,

and

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qi

Ek
i EjE

1−aij−k
i = 0,

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qi

F k
i FjF

1−aij−k
i = 0.

This pair of relations are the quantum Serre relations for the quantized universal en-

veloping algebras Uq(gA).

Remark 1.4.36. Since roots, Weyl groups, weights, etc. are all built from generalized

Cartan matrix, they are shared by U(g) and Uq(g).

Example 1.4.37. We have Uq(sl3), defined by the relations of before where the quantum

Serre relations become:

2∑
k=0

(−1)k
(

2

k

)
qi

Ek
i EjE

2−k
i = 0 =⇒ EiEjEi =

EjE
2
i + E2

iEj
q + q−1

,

2∑
k=0

(−1)k
(

2

k

)
qi

F k
i FjF

2−k
i = 0 =⇒ FiFjFi =

FjF
2
i + F 2

i Fj
q + q−1

,

when i 6= j.

Remark 1.4.38. Notice that when q = 1 these relations become the Serre relations for

U(sl3).
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1.4.39 Building the quantum geometries

Recall from the previous section, for a complex reductive algebraic group G the flag variety

Fl := G/B and it is well known from Bruhat decomposition that Fl =
∐

w∈W BwB/B. In

particular, the Zariski closure BwB/B are called the Schubert varieties. If one considers

w0 the longest element of W , the Weyl group, this the cell Bw0B/B is called the big cell

which is an affine open and dense algebraic variety in G/B.. The elements w ∈ W of the

Weyl group translate this big cell to produce an affine cover of Fl. These translates of the

big cell denoted wBw0B/B.

Each big cell translate is isomorphic to C|Λ+|. Thus, if D denotes the sheaf of differ-

ential operators, then D(wBw0B/B) ' An, the n’th Weyl algebra (here n = |Λ+|). As

mentioned above, An are generalized Weyl algebras and have a convenient structure for

building representations.

In the Uq(g) setting, things are more complicated. First, there is not an obvious analog

of G. Thus, to obtain Flq we take instead the Gel’fand model
⊕

λ∈P+ Rλ with multiplication

given by projection to highest weight vectors as our ring of functions on Flq. This completely

algebraic description of the flag variety is due to Joseph [17]. The algebraic analog of our

Schubert cells, BwB/B, is a construction of Lusztig/De Cocini-Procesi([23], [3]), and is

constructed as an iterated Ore extension [15], denoted Uq[w]. Note that an iterated Ore

extension is, in some sense, two steps in complexity from a polynomial ring. For translates

of the big cell, Joseph constructed the appropriate algebras by localization [17], denoted Swq .

Further, Joseph and Gorelik showed that for w1 6= w0w2, that Sw1
q 6' Sw2

q [5].

Analogously to the classical case, [21] and [22] defined Dq as a sheaf of quantum dif-

ferential operators on Flq which satisfies a “quantum Beilinson-Bernstein localization” [26].

Whence we have returned to deformed algebras, from deformed spaces, which are associated

to deformed Lie algebras.
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Chapter 2

Deformations of differential operators

2.1 Hayashi’s quantized Weyl algebra

In [8], Hayashi introduces an algebra which is called the q-analog of the n-th Weyl algebra.

In particular, this is a one-parameter family of deformations of the Weyl algebra. We recall

the definition here for later use. We assume q is a non-zero complex number, not a root of

unity.

Definition 2.1.1. The q-analog of the Weyl algebra, Aq(n), is a C-algebra defined by gen-

erators ψi, ψ
†
i , ωi, ω

−1
i for 1 ≤ i ≤ n, with relations: i 6= j,

ωiωj = ωjωi, ωiω
−1
i = ω−1

i ωi = 1,

ωiψjω
−1
i = q−δijψj, ωiψ

†
jω
−1
i = qδijψ†j ,

ψiψj − ψjψi = ψ†iψ
†
j − ψ

†
jψ
†
i = 0, ψiψ

†
j − ψ

†
jψi = 0,

ψiψ
†
i − qψ

†
iψi = ω−1

i , ψiψ
†
i − q−1ψ†iψi = ωi.

Notice that like the Weyl algebra, Aq(n) = Aq(1)⊗ . . .⊗ Aq(1)︸ ︷︷ ︸
n

as algebras.

Remark 2.1.2. We have slightly modified the original notation by eschewing the minus

23



superscript.

As a generalization of the n-th Weyl algebra, Aq(n) acts on C[x1, . . . , xn] as a vector

space, analagously to differential operators.

Definition 2.1.3. For a monomial x(m) := xm1
1 . . . xmnn in C[x1, . . . , xn], with m = (m1, . . . ,mn) ∈

Zn≥0, we define the action of Aq(n) as

ωi(x(m)) = qmix(m),

ψi(x(m)) = [mi]q2x(m− ei),

ψ†i (x(m)) = x(m + ei),

ψi(1) = 0,

where ei := (δ1i, . . . , δni). If mi < 0 for any i then we fix x(m) = 0, and [mi]q2 the quantum

number for q2.

One can check that the relations in Definition 2.1.1 are satisfied so C[x1, . . . , xn] is an

Aq(n)-module. We note that ωi acts as a C-algebra homomorphism.

Theorem 2.1.4 ([8], §2.1). C[x1, . . . , xn] is an irreducible Aq(n)-module.

Example 2.1.5. When q → 1 and ωi 7→ id we see that A1(n) coincides with An the classical

Weyl algebras.

2.1.6 Action of Uq(sln)

Note that, for each n, homomorphism are also constructed in [8]: Uq(sln) → Aq(n) for the

purpose of producing representations of the quantized enveloping algebras (actually, for Lie

algebras of types A,B,C,D). These homormophism will appear again in the sequel chapter.

Theorem 2.1.7 ([8], §3.2). There exists a homomorphism of algebras πn : Uq(sln)→ Aq(n)
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given by:

Ei 7→ ψiψ
†
i+1, Fi 7→ ψi+1ψ

†
i , Ki 7→ ωi+1ω

−1
i ,

for all 1 ≤ i ≤ n, thus C[x1, . . . , xn] is a representation of Uq(sl2).

Definition 2.1.8. The representation of Uq(sln) on C[x1, . . . , xn] given by the morphism πn

is called the oscillator representation, denoted Vn.

This representation is not irreducible.

Theorem 2.1.9 ([8]). Let Vn be the Uq(sln)-module given by πn then

Vn =
∞⊕
r=0

V r
n , with V r

n =
⊕
|m|=r

Cx(m)

for m = (mi) ∈ Zn≥0 and |m| =
∑

imi. V r
n is an irreducible Uq(sln)-module with lowest

weight vector x(ren) of lowest weight (0, . . . , 0, r).

2.2 Quantum differential operators

Definition 2.2.1. (cf. 1.3) For a commutative K-algebra R, let EndK(R) be the set of all K-

linear abelian-group homomorphisms from R to itself. The algebra of differential operators

on R is the set of D ∈ EndK(R) such that there exists some n ∈ N such that

[. . . [[D, r0] , r1] , . . . , rn] = 0

for any sequence {ri}0≤i≤n of ri ∈ R. We write this algebra D(R).

Definition 2.2.2. Let Dn(R) be the subspace consisting of those D ∈ D(R) with n minimal

such that

[. . . [[D, r0], r1], . . . , rn] = 0
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for any sequence {ri}1≤i≤n of ri ∈ R. We call D ∈ Dn(R) a differential operator of degree

≤ n and the filtration D0(R) ⊆ D1(R) ⊆ . . . ⊆ D(R) is called the D-filtration D(R).

The algebra of differential operators can be generalized to a noncommutative K-algebra

R:

Definition 2.2.3. For r ∈ R, let λr ∈ EndK (R) and ρr ∈ EndK (R) be the operators:

λr : s 7→ rs ρr : s 7→ sr

for all s ∈ R, and define adr (z) = [λr, z] for all z ∈ EndK (R).

Remark 2.2.4. Notice we are using left actions and left adjoints here. This indicates

we are constructing left differential operators. We will assume this throughout the thesis.

This is especially important later when we have noncommutative rings, bimodules, and

deformed multiplications. Many of the definitions and constructions could be extended to

right actions, and in the bimodule cases left-right, and right-left actions.

For r1, r2 ∈ R and ϕ ∈ EndK(R) the actions by R on EndK(R), r1ϕr2 = λr1 ◦ ϕ ◦ ρr2
make EndK(R) an R-bimodule.

Definition 2.2.5. Let D̄0 = D̄0 (R) := {δ ∈ EndK (R) | adr(δ) = 0, ∀r ∈ R}. We know that

D̄0 is an K-vector subspace of EndK(R). However, EndK(R) is also an R-bimodule under the

R-action obtained via λr and ρr, thus we want to consider D0, the R-subbimodule generated

by D̄0.

Definition 2.2.6. D̄i (R) := {δ ∈ EndK (R) | adr(δ) ∈ Di−1, ∀r ∈ R} for i ≥ 1, andDi(R) =

RD̄i(R)R an R-bimodule. This array of sub-bimodules, Di(R) ⊂ Di+1(R), is called a D-

filtration of EndK (R), and the R-subbimodule D (R) =
⋃
Di (R) is the space of differential

operators of R. The elements are called differential operators.
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Remark 2.2.7. It is routine to verify that Di (R)Dj (R) ⊆ Di+j (R), thus D(R) is a filtered

algebra.

Recall that the set of derivations, Der(R), consists of those elements of D(R) satisfying

the Leibniz rule,

∂(r1r2) = ∂(r1)r2 + r1∂(r2),

and so Der(R) ⊂ D1(R). Finally, observe that λr and ρr generate D0, which is analogous

to the case of commutative rings. These facts are shown in [21].

We see that one can extend these notions to general R-bimodules M . M = EndK(R)

will be important for defining the quantum version.

Let R be a not necessarily commutative, associative algebra over a field K, and M be

an R-bimodule.

Definition 2.2.8. The center of M , Z(M), is defined as the R-bimodule generated by the

set {m ∈M | mr = rm ∀r ∈ R}.

In the commutative case, this set is automatically an R-bimodule.

Definition 2.2.9. Let M0 := Z(M). The D-filtration of M is defined as the filtration of

R-bimodules M0 ⊆M1 ⊆ ..., with

Mi = R {m ∈M | mr − rm ∈Mi−1∀r ∈ R}R.

we call
⋃
Mi the differential bimodule of M, written Mdiff.

Remark 2.2.10. This can be seen as a more familiar construction; consider the iterated

pullbacks

Z(M/Mi−1) �
� //

cart

M/Mi−1

Mi
� � //

π

OO

M

π

OO

Lemma 2.2.11. If R is commutative, HomK(R,R)diff = D(R).
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2.2.12 q-analog of differential operators

Definition 2.2.13. ([21]) Let Γ be an abelian group. For a Γ-graded K-algebra R =⊕
γ∈ΓRγ, M =

⊕
γ∈ΓMγ a Γ-graded R-bimodule, and a bicharacter(see 3.1) β : Γ×Γ→ K∗,

define the β-center of M as:

Zβ(M) := R {m ∈Ma, a ∈ Γ | a ∈ Γ,mr = β(a, b)rm for r ∈ Rb, b ∈ Γ}R.

Definition 2.2.14. We define Mβ,0 := Zβ(M) and for i ≥ 1 the R-bimodule, Mβ,i, is the

R-bimodule

R {m ∈M | ∃a ∈ Γ,mr − β(|a| , |r|)rm ∈Mβ,i−1 for r ∈ R}R,

Definition 2.2.15. If [m, r]β is written, it means that m and r are homogeneous and

[m, r]β := mr − β(|m| , |r|)rm.

These Mβ,i’s give a filtration. We call it the β D-filtration.

Definition 2.2.16. Since Mβ,0 ⊂ Mβ,1 ⊂ . . ., we call Di
β(M) := Mβ,i and Dβ(M) :=

lim−→Mβ,i and call these the β-differential bimodule of M, Mβ−diff. We define β-differential

operators as grHomK(R,R)β−diff(see 3.1) written Dβ(R), where grHomK(R,R) denotes the

K-submodule of HomK(R,R) spanned by homogeneous elements.

Remark 2.2.17. As before, we can use iterated pullbacks to define these Mβ,i in a more

systematic way:

Zβ(M/Mi−1) �
� //

cart

M/Mβ,i−1

M̃β,i
� � //

π

OO

M

π

OO

with Mβ,i := RM̃β,iR and lim−→i
Mβ,i =: Mβ−diff ↪→M .

Example 2.2.18. We expect that, as in the standard case, “derivations” are elements of
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D0. This carries over to the quantum case as follows: for a ∈ Γ and ϕ ∈ gr HomK(R,R)

such that

ϕ(rs) = ϕ(r)s+ β(a, dr)rϕ(s),

then ϕ ∈ D1
β(R).

Note that these definitions are for a general bicharacter β; we specify this next, but will

return to the general case in Chapter 3.

2.2.19 Quantum differential operators on C[x1, . . . , xn]

Remark 2.2.20. In [13] it is claimed that the algebra of differential operators on K[x] is

defined by the generators and relations given below. However, the result there is not true

as claimed. The relations claimed are contained in the ideal, but do not form a complete

set of relations for the algebra; the result is true for the algebra K[x, x−1]. The authors of

[13] have notified me of progress towards repairing this result. We state what is known.

Equip K[x] with the grading Γ = Z such that |xa| = a and bicharacter β(n,m) = qnm.

Let {n}q :=
qn − 1

q − 1
, here Dβ(R) will be written Dq(R) based on this bicharacter.

Definition 2.2.21. Consider the operators
{
x, ∂, dβ, dβ

−1
}

on C[x] such that

x(xn) := xn+1,

∂(xn) := nxn−1,

dβ(xn) := (1 + q + . . .+ qn−1)xn−1 = {n}q x
n−1,

dβ
−1

(xn) := (1 + q−1 + . . .+ q−(n−1))xn−1 = {n}q−1 x
n−1.

Remark 2.2.22. We modify the notation δβ
a

to da to avoid confusion.

The main result of [13], after the correction, is that:

Theorem 2.2.23. ([13]) There is a morphism of algebras Dq(K[x])→ K[x, ∂, d, d−1].

29



The erroneous claim in [13] deals with the relations that hold in this latter algebra. For

our purposes, we need only the morphisms existence, not a presentation of the algebra.

Definition 2.2.24. We need the additional operators σa, d
a, da for a ∈ Z such that

da :=

(
1− q
1− qa

)
d1(1 + σ1 + . . .+ σa−1),

which have actions

σa(x
b) := β(a, b)xb,

da(xb) := (1 + qa + . . .+ qa(b−1))xb−1,

da(x
b) := β(a, b)xb−1.

Theorem 2.2.25 ([13], §3.1). The following relations hold in Dβ(K[x]) for β(a, b) = qab:

dax− qaxda = 1,

daxdb = dbxda,

d−1 − qd = (1− q)d−1xd.

Remark 2.2.26. As stated before, other relations may exist. We will show later (2.4.21)

that da is indeed a β-differential operator in Dβ(K[x1, . . . , xn]) with Zn gradation, and will

write it in the aforementioned basis.

Theorem 2.2.27 ([13], §3.1). Dq(K[x, x−1]) is the algebra with generating set given by

{x, ∂, d, d−1} and relations R.

These results are extended to K[x1, . . . , xn] in that same paper. For {qi}i≤n trancen-

dental over Q and K containing Q(q1, q2, . . . , qn), consider K[x1, . . . , xn] with Zn grad-

ing, |xa11 x
a2
2 . . . xann | = (a1, a2, . . . , an) and bicharacter β((a1, a2, . . . , an), (b1, b2, . . . , bn)) =

qa1b11 qa2b22 . . . qanbnn . Define similarly differential operators as described in [13] where index on
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a differential corresponds to an element of the ordered basis.

Corollary 2.2.28. Dq(K[x1, . . . , xn]) � K[xi, ∂i, di, d
−1
i ] for i ≤ n. The kernel is similar to

R for indices up to n.

2.2.29 Quantum differential operators on the quantum plane

Remark 2.2.30. In the classical setting, a Lie algebra acts on the coordinate ring of the

flag variety of it’s Lie group by differential operators, and in the quantum case, by quantum

differential operators [22]. For the case of Uq(sl2) that analogously defined coordinate ring is

the quantum plane [17]. Hence, we get a representation of Uq(sl2), by differential operators

on the quantum plane. The Uq(sl2) example is worked out in [14], but we reproduce their

main results here to fix notation for our later comparison of this algebra to Hayashi’s 2-

dimensional quantum Weyl algebra. Compare to 1 where we described Joseph’s construction

of these spaces.

Definition 2.2.31. The algebra Q := K 〈x, y〉 /(xy − qyx) is the so-called quantum plane,

making Dq(Q) the algebra of quantum differential operators on the quantum plane. The

action of Dq(Q) on Q is defined by

dax(x
iyj) = {i}qa x

i−1yj, dby(x
iyj) = {j}qb x

iyj−1.

Remark 2.2.32. We diverge from the notation in [14] to be consistent with those in this

thesis.

Remark 2.2.33. Since Q is noncommutative, recall that λx(p) = x · p and ρy(p) = p · y,

and ∂x, ∂y are the partial derivatives with left action.

Lemma 2.2.34. [n]qq
n−1 = {n}q2 and {m}qa + qma {n}qa = {n+m}qa.

Proof. A simple computation.
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Theorem 2.2.35 ([14], §4.0.3). As graded K-algebras, Dq(Q) ' Dx ⊗K Dy for

Dx = K[λx, d
a
x | a = −1, 0, 1] ' Dq(K[x]),

Dy = K[ρy, d
a
y | a = −1, 0, 1] ' Dq(K[y]).

Remark 2.2.36. Observe that this is a result analagous to the classical case of Weyl algebras

where A2 ' A1 ⊗K A1.

2.2.37 Action of Uq(sl2) on Q

In [14] the authors construct a homomorphism Uq(sl2)→ Dq(Q) for the purpose of producing

representations of the quantized enveloping algebras.

Theorem 2.2.38 ([14], §5.5). There exists a homomorphism of algebras π̃2 : Uq(sl2) →

Dq(Q) given by:

E 7→ σxσ
−1
y λxdy(1 + σ−1

y ), F 7→ σyσ
−1
x ρydx(1 + σ−1

x ), K 7→ σxσ
−1
y ,

for all 1 ≤ i ≤ n, where σx(x
nym) = qnxnym and σy(x

nym) = qmxnym.

Definition 2.2.39. The representation of Uq(sl2) on Q given by π̃2 is called the quantized

standard representation, which we denote by Ṽ2.

Corollary 2.2.40.

Ṽ r
2 ↪→ K[x, y]

as homogeneous polynomials of homogeneous degree r. Ṽ r
2 is an irreducible highest-weight

representation of Uq(sl2) with highes-weight vector xr and highest weight (r, 1).

Proof. Compute the action of E and K on this vector. See [16] for information on the

representations of Uq(sln) and their weight theory.
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2.3 Comparing the algebras of Lunts-Rosenberg and

Hayashi

2.3.1 Comparing the algebras

When comparing the algebras Aq(n) and Dq(K[x1, . . . , xn]) we wish for the map to be

compatisble with the respective representations. We construct a map from Hayashi’s algebra

to quantum differential operators on polynomials.

Proposition 2.3.2. There is an algebra homomorphism Ω : Aq(1)→ Dq(K[x]).

Proof. Consider the extension by linearity of the map of the generators of Aq(1):

ω±1 7→ σ±1

ψ† 7→ x

ψ 7→ d1 − d−1

q − q−1
.

One needs to show that da is indeed a q-differential operator, for da the operator acting as

da(x
m) = β(a,m)xm−1,

with β(a, b) = qab, but we see that since |da| = −1 then

[da, x]β (xm) = da(x
m+1)− xda(xm) = (β(a+ 1, 1)− 1)σa(x

m).

Thus [da, x]β ∈ D0
β(K[n]). When β(a, b) = qab we have our result.

We wish to describe a similar result for differential operators on the quantum plane:

Proposition 2.3.3. There exists a K-algebra homomorphism Ωxy : Aq(2)→ Dq(Q).
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Proof. We construct Ωxy by restricting to the two sets which together form a generating

set for Aq(2). Then ω±1
1 , ψ†1, ψ1 map to Dx and ω±1

2 , ψ†2, ψ2 to Dy by Ω projecting onto the

respective sets.

We anticipate that these should be related since Aq(2) can be thought of as the quan-

tization of the differential operators on the commutative affine plane, and Dq(Q) can be

thought of as quantum differential operators on the noncommutative affine plane. How-

ever, this result is an indication that deforming the geometry and deforming the differential

geometry are independent for schemes.

2.3.4 Comparing the representations

A natural question to ask is “How does our algebra morphism, Ω, behave with respect to the

natural representations of these algebras?”. An immediate observation is that since both

Aq(n) and Dq are built with representations in mind (their natural representations on the

polynomial algebras on which they act), the morphism between these algebras should at

least respect these representations.

Lemma 2.3.5. Ω : Aq(1)→ Dq(K[x]) defines a Uq(sl2)-module structure on K[x].

And similarly,

Lemma 2.3.6. Ωxy : Aq(2)→ Dq(Q) intertwines the standard representations by differen-

tial action on K[x, y].

Lemma 2.3.7. The representations (π2, V
r

2 ) and (π̃2, Ṽ
r

2 ) of Uq(sl2) are ismorphic Uq(sl2)-

modules.

This has the following consequence:

Proposition 2.3.8. Ωxy commutes with an iso-intertwiner of Uq(sl2) representations.
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Proof. One simply checks that the map Ωxy respects the action of Uq(sl2). We see that since

the quantum group acts through Aq(2) and Dq(Q), respectively. Recall (cf. 2.2.38) that

E 7→ σxσ
−1
y λxdy(1 + σ−1

y ),

F 7→ σyσ
−1
x ρydx(1 + σ−1

x ),

K±1 7→ (σxσ
−1
y )±1,

so if we evaluate, recalling {a}b = qab−1
qb−1

,

π̃2(E)(xnym) = {m}−2 q
nxn+1ym−1,

π̃2(F )(xnym) = {n}−2 q
mxn−1ym+1,

π̃2(K)(xnym) = qn−mxnym.

We should recall that

π2(E)(xnym) = [n]qx
n−1ym+1,

π2(F )(xnym) = [m]qx
n+1ym−1,

π2(K)(xnym) = qn−mxnym.

Remember that [n]q := ( q
n−q−n
q−q−1 ). We want to construct an endomorphism, a, of Uq(sl2)

making the following diagram commute:

Uq(sl2)

a

��

π2 // Aq(2)

Ωxy
��

Uq(sl2)
π̃2 // Dq(Q)

and produce the same action on C[x, y]r the r-homogeneous components. This map a is
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easily described in terms of generators of Uq(sl2):

a(E) 7→ qK−1F,

a(F ) 7→ qKE,

a(K±1) 7→ K±1.

Remark 2.3.9. This recovers the ring-theoretic result obtained in [9] and [17] in the frame-

work of [21] and [26].

Remark 2.3.10. We notice that when q → 1, both the oscillator representation and the

quantum standard representation coincide with the standard representation of sl2. This is

essentially an artifact of the above and the fact that Dq and Aq coincide in the classical

limit.

We recapitulate this section with the following commutative diagram:

Uq(sl2)

O.R.

��

a //

π2

''

Uq(sl2)

Q.S.R.

��

π̃2

ww
Aq(2)

Ωxy //

ww

Dq(Q)

''
EndC(C[x, y]r)

(−)∗
// EndC(C[x, y]r)

.

2.4 Generalizing to Uq(sln)

2.4.1 Noncommutative projective varieties associated to quantum

groups

In [22] the authors construct a localization theory for Uq(g) analogous to the celebrated

Beilinson-Bernstein localization. In that work they construct the noncommutative flag va-
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riety for Uq(g) using noncommutative Proj [20]. They also show that there is a canonical

covering of the noncommutative flag variety by big cells, i.e., one that is quasi-affine. They

construct these cells using localization by Joseph sets. For this reason, one can think of the

quantum standard representation as the representation given by the quantized enveloping

algebra, acting on the big cells of its flag varieties through quantum differential operators.

Thus, the coincidence of the quantum standard representation, and the standard representa-

tion when q → 1, is even more natural considering that the standard representation emerges

from this process on the classical flag variety.

There are different notions of what noncommutative projective space should be ([1],

[25]), but it is satisfactory to work with the underlying graded noncommutative algebras

that replace rings of polynomials in commuting variables.

Remark 2.4.2. In the classical case, the covering by big cells (Weyl shifts of the big cell)

gives a nice affine cover of G/B by spaces isomorphic to AN for N the number of positive

roots of g. In [17], the author constructs Sw0 , the ring of functions of a Schubert cell, by

localization of Rq[G], the q-coordinate ring, followed by taking the degree zero component.

It is shown that Uq(n
−) is isomorphic to Sw0 as Uq(g)-Hopf module algebras. However, it

was also shown by Joseph that the other cells, Sw for w ∈ W , are localizations of Rq and

Sw1 6' Sw2 (2.1)

as algebras for w1 6= w2 and w1 6= w0w2. For the puposes of this paper, we restrict ourselves

to Sw0 , and will discuss the more general case (and gluing) in future work ([2]). Relations

and ring properties for Sw0 are discussed in [18] and [5].

Definition 2.4.3. Call Cq[n] := C 〈x1, . . . , xn〉 /(xixj = qijxjxi) quantum affine n-space

where qij = q−1
ji . We will assume in this thesis that qij = q for i < j.

Remark 2.4.4. Observe Cq[2] = Q.
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We wish to embed Uq(sln) ↪→ Dq(Cq[n]), but we recall that there are n− 1 embeddings

Uq(sl2) ↪→ Uq(sln):

Definition 2.4.5. For all 1 ≤ m ≤ n− 1 we define im : Uq(sl2) ↪→ Uq(sln) by

E 7→ Em,

F 7→ Fm,

K±1 7→ K±1
m .

Definition 2.4.6. For all 1 ≤ m ≤ n− 1 define K-algebra morphisms em : Aq(2) ↪→ Aq(n)

by

ψ1 7→ ψm,

ψ2 7→ ψm+1,

ψ†1 7→ ψ†m,

ψ†2 7→ ψ†m+1,

ω±1
1 7→ ω±1

m ,

ω±1
2 7→ ω±1

m+1.

Then by 2.1.9 we have the commuting diagrams for all 1 ≤ m ≤ n− 1

Uq(sl2)

π2
��

im // Uq(sln)

πn
��

Aq(2)
em // Aq(n)

.

2.4.7 Quantum differential operators on the quantum affine space

Similar to how we built the higher oscillator representations by completing our commutative

squares above, we will do the same for our quantum standard representations.

38



Definition 2.4.8. We define n− 1 K− algebra embeddings,

{sm : Dq(Cq[2]) ↪→ Dq(Cq[n]), (1 ≤ m ≤ n− 1)} ,

by

∂1 7→ ∂m,

∂2 7→ ∂m+1,

d±1 7→ d±m,

d±2 7→ d±m+1,

λ1 7→ λm

m∏
j=1

σj,

λ2 7→ λm+1

m∏
j=1

σj,

ρ1 7→ ρm

n∏
j=m+2

σj,

ρ2 7→ ρm+1

n∏
j=m+2

σj,

σ±1
1 7→ σ±1

m ,

σ±1
2 7→ σ±1

m+1.

Remark 2.4.9. Recall from 2.2.3, λi := λxi , and ρi := ρxi : left and right multiplication

respectively by xi.

Lemma 2.4.10. We have commutative diagrams for all 1 ≤ m ≤ n− 1:

Uq(sl2)

π̃2
��

im // Uq(sln)

π̃n
��

Dq(Cq[2])
sm // Dq(Cq[n])
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where π̃n is defined on generators by the images from these commutative diagrams. In

particular,

Em 7→ σmσ
−1
m+1λm

m∏
j=1

σjdm+1(1 + σ−1
m+1),

Fm 7→ σm+1σ
−1
m ρm+1

n∏
j=m+2

σjdm(1 + σ−1
m ),

K±1
m 7→ (σmσ

−1
m+1)±1.

The extra σ’s are simply there to make this morphism compatable with our embeddings

into quantum polynomials.

Proposition 2.4.11. π̃n is a homomorphism of algebras.

Proof. It suffices to check the quantum Serre relation in 1.4.37

EiEi+1Ei =
Ei+1E

2
i + E2

iEi+1

q + q−1

as operators on Cq[n]. We recall the action

Ei(x(m)) := {mi+1}q−2 q
mi(x(m + ei − ei+1))

under the map π̃n. For the duration of this proof, we omit the subscript of q−2 from the

{ }q−2 . Now

π̃n(EiEi+1Ei(x(m)) = q2mi+mi+1 {mi+1}2 {mi+2} (x(m + 2ei − ei+1 − ei+2)),

π̃n(Ei+1E
2
i (x(m)) = q2mi+mi+1−1 {mi+1} {mi+2} {mi+1 − 1} (x(m + 2ei − ei+1 − ei+2)),

π̃n(E2
iEi+1(x(m)) = q2mi+mi+1+1 {mi+1} {mi+2} {mi+1 + 1} (x(m + 2ei − ei+1 − ei+2)).
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We see that

{mi+1}2 {mi+2} =
q−1 {mi+1} {mi+2} {mi+1 − 1}+ q {mi+1} {mi+2} {mi+1 − 1}

q + q−1

using

{mi+1 − 1} = {mi+1} − q−2(mi+1−1),

{mi+1 + 1} = {mi+1}+ q−2(mi+1).

The version for Fi’s follows similarly.

2.4.12 Comparing the algebras for Uq(sln)

For Γ = Zn, with standard basis ei, as an additive group and |xi| = ei, with β(ei, ej) = qij,

we have

Proposition 2.4.13. The embedding Ωn : Aq(n) ↪→ Dq(C[n]) is an algebra morphism

sending

ω±1
i 7→ σ±ei ,

ψ†i 7→ λxi ,

ψi 7→
dei − d−ei
q − q−1

.

Proof. This follows as before: the operators dei send x(m) to β(ei,mi)x(m−ei) and we see

that they are elements of our ring.

Corollary 2.4.14. Our representations commute with the morphism Ω between algebras.

Proof. Follows from the definitions of our maps.

We see there should also be a “twisted Ω” for Aq(n) ↪→ Dq(Cq[n]) such that Ωxy = Ωq
2,
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Theorem 2.4.15. There is a homomorphism Ωq
n : Aq(n) ↪→ Dq(Cq[n]) realizing the diagram

below for all 1 ≤ m ≤ n− 1:

Uq(sl2)
im

yy

a //

π2

$$

Uq(sl2)
im

&&

π̃2

xx
Uq(sln)

πn %%

Aq(2)
Ωxy //

em

zz

Dq(Q)
sm

&&

Uq(sln)

π̃nxx
Aq(n) �

�

Ωqn

// Dq(Cq[n])

Proof. We simply consider the images of our previously defined maps. We see, by considering

the diagram for all m, that this map will be well defined.

2.4.16 D̃q(Bq(g)) and [14]’s generators and relations

Recalling the subalgebra D̃q(Bq(g)) defined in [26], we compare this with our aforementioned

observations.

Using the definition in [26] we can write D̃q(Bq(sl2)), thought of as the global quantum

differential operators on the quantum flag variety of sl2, in the generators and relations of

Dq(Q) computed in [14], the ring of quantum differential operators on the quantum plane.

Remark 2.4.17. Tanisaki uses Cq[G/N
−] for the Gel’fand model

⊕
λ∈P+ Rλ, and lx for left

multiplication. For λ, µ ∈ P+, denote (λ, µ) their inner product (see [16].)

Definition 2.4.18. We define D̃q(Bq(g)) as the algebra

C
〈
lϕ, ∂u, σλ | ϕ ∈ Cq[G/N

−], u ∈ Uq(g), λ ∈ P+
〉
⊂ EndC(CCq[G/N

−])

where

lϕ(ψ) = ϕψ, ∂u(ψ) = u · ψ, σλ(ψ) = q(λ,µ)ψ

for ψ ∈ Cq[G/N
−]µ.
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Now, recall that Cq[G/N
−] = R−q [G] of [18] in (9.5.5). We take now the special case of

g = sl2.

Now, from [14] we have that for Q with |x| = (1, 1), |y| = (−1, 1),

E(xiyj) = qi {j}−2 x
i+1yj−1,

F (xiyj) = qj {i}−2 x
i−1yj+1,

K(xiyj) = q(i−j)xiyj

and written in the generators of Dq(Q), these are (cf. 2.2.38)

K 7→ σxσ
−1
y , E 7→ σxσ

−1
y λxdy(1 + σ−1

y ), F 7→ σyσ
−1
x ρxdx(1 + σ−1

x )

Whence, we see that

Corollary 2.4.19. D̃q(Bq(sl2)) ↪→ Dq(Q) is an algebra morphism.

Remark 2.4.20. This shows that the algebra that Tanisaki used to confirm a quantum

version of (II) sits inside the larger algebra of quantum differential operators on the ring of

functions: it picks up the operators corresponding to multiplication by functions, by torus

action, and those differentials coming from quantum group action. In this case, its image

does not generate this larger ring.
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2.4.21 Aq(2), D̃q(Bq(sl2)), and the localization of the theorem of

Beilinson-Bernstein

We recall that Hayashi’s quantum Weyl algebra embeds into quantum differential operators.

In particular,

ω±1
i 7→ σ±|i|

ψ†i 7→ xi

ψi 7→
dei − d−ei
q − q−1

.

for i ∈ {1, 2} and |1| = (1, 1), |2| = (−1, 1).

Proposition 2.4.22. Aq(2) ↪→ D̃q(Bq(sl2)) compatable with Ω2.

Proof. We have shown that σ’s and ring elements are in the subalgebra, so we are left to

show that d2ei is. Observe that

de1 = (1− q−2)ρyEσx − λx

de2 = (1− q−2)λyEσy − ρy

as operators. By Lemma 4.1 of [26],

ρψ =
∑
p

λapψδbpκνσ−µ

for all ψ ∈ Bq(sl2)(µ)ν , so dei ∈ D̃q(Bq(sl2)).

Remark 2.4.23. This gives an alternative proof that dei ∈ Dq(Bq(sl2)).

In light of this fact, one may wonder if the previous proposition holds for the higher-

rank quantum Weyl algebras, and these subalgebras of the quantum differential operators

on quantum flag varieties. The main difficulty in checking this fact, is that there is not a
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nice description of the ring of functions for quantum flag varieties of higher rank. In the

case of sl2, we can easily compute the ring of functions to be the quantum plane. These

algebras are noncommutative and are described with multiplication by the projection to

highest-weight component of weight representations for the corresponding quantum groups.

One can get an idea for the ring structure of these algebras in ([[18], §9.1], [[17]]). Without a

description of the rings of functions, we are unable to compute the images of the generators

for Uq(g) in the algebras of quantum differential operators, and thus unable to check if the

higher-rank quantum Weyl algebras stay inside these rings.

Despite these difficulties,

Conjecture 2.4.24. Aq(n) ↪→ D̃q(Bq(sln)) commutes with Ωn.

Theorem 2.4.25. ([Conjecture 5.3, [22]], [Theorem 0.6, [26]]) The quantum analog of the

localization theorem of Beilinson-Bernstein is true for D̃q(Bq(g)).

Remark 2.4.26. This theorem combined with the previous proposition is suggestive about

the geometric nature of Aq(2).
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Chapter 3

Twisting and untwisting for

differential operators

In the last chapter we have seen that Dq(K[x1, . . . , xn]) and Dq(Kq[x1, . . . , xn]) are different,

but we wish to see how they can be related.

Example 3.0.27. As a simple example, if we recall that Cq(n) is a twist of C[x1, . . . , xn]

then we wish to give some idea of the question

Dβ(C[x1, . . . , xn]) '? Dβ′ (Cq(n))

which is obviously very related to our considerations for quantum differential operators.

Notice here that the twist that defines these “quantum polynomial algebras” corresponds

to the 2-cocycle given by γ(a, b) = qab. We should be careful with our assumptions on q, or

at the least, tell where it lives, but we will shirk that discussion as of now.
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3.1 Cocycle deformations of rings and modules

In 2.2.12 we introduced those differential operators defined by a β-twist. We will utilize

these differential operators in a more general context now.

Let Γ be an abelian group with operation written as addition and R :=
⊕

λ∈ΓRλ a

graded K-algebra, and write |x| = λ for the degree of x for x ∈ Rλ. We will consider a

bicharacter

β : Γ× Γ→ K∗

and we will consider a 2-cocycle

γ : Γ× Γ→ K∗

in group cohomology.

The main idea is to define Rγ as a deformed K-algebra of R. This means another

K-algebra with a finitely deformed multiplication, but the same K-linear structure. In

particular,

x ? y := γ(|x| , |y|)xy

where we assume (and for the rest of this discussion) that concatenation of ring elements is

multiplication in the original ring, x, y ∈ R homogeneous elements. The standard exercise

is to write down the associativity axiom for − ?− and arrive at the relation:

γ(|x| , |y|)γ(|xy| , |z|) = γ(|y| , |z|)γ(|x| , |yz|)

which is exactly the 2-cocycle condition. Note that we also can write this relation additively:

γ(a, b)γ(a+ b, c) = γ(b, c)γ(a, b+ c)

for a, b, c ∈ Γ.
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Problem 3.1.1. (cf. 3.2.15) For β and β
′

two bicharacters, is

Dβ(R) '? Dβ′ (R
γ)

for some choices of β, β
′
, γ? Here Dβ(R) are the β-differential operators as defined by Lunts

and Rosenberg ([21]).

3.1.2 Twisting modules

Let M ∈ R−GrMod, with grading
⊕

a∈ΓMa.

Definition 3.1.3. Mγ is defined as a twisted Rγ-module for M ∈ R −mod with the same

group structure, but twisted action

r ? x = γ(|r| , |x|)rx

for both r ∈ R and x ∈M homogeneous elements.

Definition 3.1.4. Let M be an R-bimodule, then we can define Mγ,γ for the bi-twist on

both sides by γ as

(r ? x) ? s = γ(|r|+ |x| , |s|)γ(|r| , |x|)rxs = γ(|r| , |s|+ |x|)γ(|s| , |x|)rxs = r ? (x ? s)

Thus Mγ,γ is an Rγ-bimodule. We sometimes will only write Mγ for Mγ,γ. We will always

assume both twists are the same.

Remark 3.1.5. Let R − GrBiMod be the category of graded R-bimodules which are

graded on both left and right by the same grading group.

Definition 3.1.6. We can think of this twisting as a functor. Let R−GrBiMod be those
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graded bimodules over R and the morphisms of degree 0. Then define

( )γ,γ : R−GrBiMod→ Rγ −GrBiMod.

Now we move to the level of Hom:

Definition 3.1.7. For M,N ∈ R−GrMod, we define

Homres
K (M,N) :=

⊕
a∈Γ

Homa
K(M,N)

for Homa
K(M,N) those maps of degree a, i.e., f(Mb) = Na+b for all b ∈ Γ.

Remark 3.1.8. Homres
K (M,N) is a graded R-bimodule. Then (HomK(M,N))γ,γ is a Rγ-

bimodule.

Similarly we also define another relevant Rγ-bimodule, Homres
K (Mγ, Nγ). We want to

know how Homres
K (Mγ, Nγ) and Homres(M,N)γ,γ are related.

In summary, we have three bimodules that we are considering

Homres
K (M,N) ∈ R−GrBiMod,

Homres
K (Mγ, Nγ) ∈ Rγ −GrBiMod,

(Homres
K (M,N))γ,γ ∈ Rγ −GrBiMod

and we already have a relation from the first to the last:

( )γ,γ : Homres
K (M,N) 7→ (Homres

K (M,N))γ,γ.

49



We also have a relation from the first to the second:

( γ, γ) : Homres
K (M,N) 7→ Homres

K (Mγ, Nγ).

3.1.9 Returning to Homres
K (M,N)

For f ∈ Homres
K (M,N), we have bimodule actions:

(rfs)(x) := rf(sx)

for x ∈M , r, s ∈ R, which gives an R−GrBiMod structure. We will deform this structure:

Definition 3.1.10. On (Homres
K (M,N))γ,γ, the Rγ-bimodule structure is given:

(r ? f ? s)(x) := γ(|r| , |f |)γ(|r|+ |f | , |s|)(rfs)(x)

for homogeneous elements.

Definition 3.1.11. So we wish to relate this structure to the structure on Homres
K (Mγ, Nγ):

(r · f · s)(x) := r ? (f(s ? x)) = r ? f(γ(|s| , |x|)sx)

= γ(|s| , |x|)γ(|r| , |f(sx)|)(rf(sx))

= γ(|s| , |x|)γ(|r| , |f |+ |s|+ |x|)rf(sx)

= γ(|s| , |x|)γ(|r| , |f |+ |s|+ |x|)(rfs)(x).

To relate these structures, we use an automorphism on Homres
K (M,N):

Lemma 3.1.12. For all f ∈ Homres
K (M,N) homogenous, define

fγ(x) := γ(|f | , |x|)f(x).
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for all x ∈M homogenous, then

( γ) : f 7→ fγ

is an K-linear automorphism of Homres
K (M,N).

Proof. This morphism has an inverse given by ( γ−1
).

Now, if we incorporate this morphism into our previous computation,

Lemma 3.1.13. (f ? s)γ(x) = (fγ · s)(x).

Lemma 3.1.14. (r ? f)γ(x) = (r · fγ)(x).

Theorem 3.1.15. There exists a K-linear homomorphism of Rγ-bimodules

τ γ : (Homres
K (M,N))γ,γ → Homres

K (Mγ, Nγ)

given by 3.1.12 and it is a natural isomorphism.

Proof. This is precisely the implication of the last two lemmas. Our inverse gives the

isomorphism.

3.2 Twisting and untwisting

We will define a set similar to the β-differential operators of [21]. The goal is to use these

as a prototype for the aforementioned comparison of twistings. Define β as a bicharacter

for Γ over K throughout. R is a K-algebra, M and N are R−GrMods.

Definition 3.2.1. We consider the set of β-differential morphisms from M to N as defined

inductively for n ≥ 0,

D
′

β(M,N)i :=
{
f ∈ Homres

K (M,N) | λβr (f) ∈ D′β(M,N)i−1,∀r ∈ R
}
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D
′

β(M,N)−1 := 0 where λβr we call the β-adjoint action by r:

λβr (f) := rf − β(|r| , |f |)fr

for all homogenous r ∈ R.

Definition 3.2.2. We could actually define a slightly more general version of the above for

M ∈ R−GrBiMod:

D
′

β(M)i :=
{
x ∈M | λβr (x) ∈ D′β(M)i−1

}
for all homogenous r ∈ R, this set we refer to as β-differential elements of M .

Remark 3.2.3. The definition of Lunts and Rosenberg in [21] coincides with

Dβ(M,N)i := RD
′

β(M,N)iR ⊂ Homres(M,N).

the main difference is that they generate an R-bimodule at every step, whereas D
′

β will be

considered set-theoretically.

Example 3.2.4. For M = R we can define D
′

β(R):

D
′

β(R)i ⊂ D
′

β(R)i+1

and

D
′

β(R) :=
⋃
i

D
′

β(R)i

with

D
′

β(R)iD
′

β(R)j ⊂ D
′

β(R)i+j

where D
′

β(R)0 is a K-algebra of R called the β-center of R. We observe that this D
′

β(R) is
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a filtered subring of R by this construction.

Remark 3.2.5. We notice thatD
′

β(M) is a filteredD
′

β(R)-bimodule forM a R−GrBiMod.

Additionally, there exists the associated graded K-algebra:

grβ(R) :=
⊕
i≥1

D
′

β(R)i/D
′

β(R)i−1.

Remark 3.2.6. We will use the notation to write M i
β := D

′

β(M)i.

We proceed using both bicharacter and cocycle twists and approach this question:

Lemma 3.2.7. If γ is a 2-cocycle, and Γ is an abelian group, then

(a, b) 7→ γ−1(a, b)γ(b, a)

is a bicharacter. For β a bicharacter,

βγ := β(a, b)γ−1(a, b)γ(b, a)

is also a bicharacter.

Proof. This follows easily.

Definition 3.2.8. λ
(γ,β)
r (x) := r ? x− β(|r| , |x|)x ? r for Mγ,γ if M ∈ R −GrBiMod and

Rγ. We call this the γ-twisted β-adjoint action by homogenous r in R.

Lemma 3.2.9. For r ∈ R, x ∈M ∈ R−BiMod, and λ
(1,β)
r := λβr ,

λ(γ,β)
r (x) = γ(|r| , |x|)λ(1,βγ)

r (x).

Proof. Note only that for a Γ-graded R-bimodule, M with γ-twist,Mγ,γ, has Rγ:

x ? r = γ(|r| , |x|)xr.
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So now we can ask the question: as Rγ −BiMod, do we have

D
′

β((Homres
K (M,N))γ,γ) ' D

′

β(Homres
K (Mγ, Nγ))?

Example 3.2.10. We have

D
′

βγ (Homres
K (M,N)) ' D

′

β((Homres
K (M,N))γ,γ)

and now

D
′

βγ (Homres
K (M,N)) ' D

′

β(Homres
K (Mγ, Nγ)).

Theorem 3.2.11.

D
′

β(Mγ)i := ((Mγ)
′

β)i = (M
′

βγ )
i =: D

′

βγ (M)i

For M
′

defined similar to D
′
, i.e. not generating a module at each step.

Proof. Follows directly from the lemma.

We have now shown how twisting interacts with the differential twisting for D
′
. We need

to put this in the context of Lunts and Rosenberg’s D.

3.2.12 The functor D
′

β

We can think of the construction above in terms of a functor from R − GrBiMod to

Rγ
β −GrBiMod. Note that here we mean Rγ

β := D
′

β(Rγ).

In particular, this functor should send R 7→ Rγ
β = D

′

β(Rγ). Keeping in mind that we

have defined the functor ( )γ,γ from R−GrBiMod to Rγ −GrBiMod , we can see how

to define this functor:

Definition 3.2.13. D
′

β( γ,γ) : R−BiMod→ K−Vect by

M 7→ D
′

β(Mγ,γ).
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which is K-linear, with morphisms being sent to composition with operators. Similar to the

classical functor of differential operators on an algebra.

3.2.14 Twisting LR Dq

We have set our two objects up very similarly, D
′

β(M) and Dβ(M). For D
′

β(M) we were

able to show 3.2.11 which essentially says that we can twist differential operators, or the

module. This however, is at the level of K-vector spaces. Recall that our functor D
′

β was

only a functor into K-vector spaces. By considering instead the modules as described by

Lunts and Rosenberg, we hope to get an analogue of our twisting and untwisting theorem.

The main difficulty appears in that when considering the bimodule generated by these

sets, we do not expect to maintain functoriality. Moreover, when we write down these

modules, we quickly see that they live in two different categories, R − GrBiMod and

Rγ −GrBiMod. However, we have a tool already for passing from one to the other. We

see that this tool will yield what we wish. We prove

Proposition 3.2.15. For any M,N ∈ R−GrMod

(Dβγ (Homres
K (M,N)))γ ' Dβ(Homres

K (Mγ, Nγ))

where we are thinking of the left side as the image under the functor ( )γ : R−BiMod→

Rγ −BiMod.

Proof. This follows from our previous work.

Example 3.2.16. Consider the 0’th βγ-differential part of a module M , for M an R −

GrBiMod:

Dβγ (M)0 = R
{
m ∈M | rm− β(|r| , |m|)γ−1(|r| , |m|)γ(|m| , |r|)mr = 0,∀r ∈ R

}
R.
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Similarly

Dβ(Mγ)0 = Rγ {m ∈Mγ | r ? m− β(|r| , |m|)m ? r = 0,∀r ∈ Rγ}Rγ

= Rγ {m ∈Mγ | γ(|r| , |m|)rm− β(|r| , |m|)γ(|m| , |r|)mr = 0,∀r ∈ Rγ}Rγ

= Rγ
{
m ∈Mγ | rm− β(|r| , |m|)γ−1(|r| , |m|)γ(|m| , |r|)mr = 0,∀r ∈ Rγ

}
Rγ.

Recall that these are the smallest R and Rγ bimodules generated by D
′

β(M)0 respectively.

Further, ( )γ : Dβγ (M)0 7→ Dβ(Mγ)0.

Lemma 3.2.17. ( )γ : Dβγ (M)1 7→ Dβ(Mγ)1.

Proof. We need only consider that Dβγ (M)1 is

R
{
m ∈M | rm− β(|r| , |m|)γ−1(|r| , |m|)γ(|m| , |r|)mr ∈ Dβγ (M)0,∀r ∈ R

}
R

so (Dβγ (M)1)γ is

Rγ
{
m ∈Mγ | rm− β(|r| , |m|)γ−1(|r| , |m|)γ(|m| , |r|)mr ∈ (Dβγ (M)0)γ,∀r ∈ Rγ

}
Rγ

which we saw in the example to be

Rγ
{
m ∈Mγ | rm− β(|r| , |m|)γ−1(|r| , |m|)γ(|m| , |r|)mr ∈ Dβ(Mγ)0, ∀r ∈ Rγ

}
Rγ.

Theorem 3.2.18. (Dβγ (M))γ ' Dβ(Mγ) for any M a R−GrBiMod. In particular,

R−GrBiMod

( )γ,γ

��

Dβγ // R−GrBiMod

( )γ,γ

��
Rγ −GrBiMod

Dβ // Rγ −GrBiMod

,
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as a diagram of functors, commutes up to natural isomorphism.

Proof. Induction on (Dβγ (M)i)γ using the last lemma.

3.3 A twisting functor

3.3.1 Functoriality of D
′

β(−γ)

Lemma 3.3.2. D
′

β( γ) is a functor from R−GrBiMod→ Vect.

Proof. First observe that ( )γ : φ→ φγ for φ : R → R
′

and φγ : Rγ → R
′γ, as a Γ-graded

K-algebra homomorphism, behave the same on underlying vector spaces. Now observe that

D
′

β(R)0 := {s ∈ R | r ? s− β(|r| , |s|)s ? r = 0,∀r ∈ R}

and notice that φ(D
′

β(R)0) is the set where

φ(r) ?
′
φ(s)− β(|r| , |s|)φ(s) ?

′
φ(r) = 0

which is D
′

β(φγ(Rγ))0. So we see that

φ(D
′

β(R)0) = D
′

β(φγ(Rγ))0 = D
′

β(φ(R)γ)0.

By induction we see this holds for all i and thus for D
′

β(R). A similar proof confirms it for

any R-bimodule M .

So the answer to the question of “how does it behave on morphisms”, is that the functor

ignores them. Since the morphisms are applied on the underlying set, and the functor forgets

the structure down to a subset, functoriality requires that it acts trivially on the morphisms.
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3.4 Generalizing the algebras of differential operators

3.4.1 β-Hayashi algebra

We wish to write down an extension of Hayashi’s algebra for a general bicharacter β. There

are two considerations to take into account:

1. The morphism Ω from Aq(1) to Dq(K[x]).

2. The action of Aq(n) on K[x1, . . . , xn].

The first suggests that our generalization to β should be thought of as follows, when Aβ(1)

coincides with Aq(1) it should be with β(a, b) = qab with Γ = Z, and we can use this map to

think of the degree of some elements. The second will give us an immediate representation

of Aβ(n) analogous to the oscillator representation. This will also be useful in giving us

reality conditions.

Example 3.4.2. We define the β-Weyl Algebra for a fixed bicharacter β of Γ, Aβ(1) as the

algebra generated by
〈
ψ, ψ†, ω±1

〉
and relations:

ωψ = β(1,−1)ψω, ωψ† = β(1, 1)ψ†ω,

ψψ† − β(2, 1)ψ†ψ = ω−2, ψψ† − β(−2, 1)ψ†ψ = ω2.

The action on C[x] is given by:

ω(xn) = β(1, n)xn, ω−1(xn) = β(−1, n)xn,

ψ†(xn) = xn+1, ψ(xn) =

(
β(2, n)− β(−2, n)

β(2, 1)− β(−2, 1)

)
xn−1.

We can check that this is a representation of Aβ(1) and is compatible with the definition

of Aq(1) when β(a, b) = qab.
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In the original definition of the oscillator representation, quantum integers were used.

We first will define a β-integer in the same way:

Definition 3.4.3. For any abelian group Γ and any bicharacter β : Γ × Γ → Z define the

β-integer by

[n]β(m,−) :=

(
β(m,n)− β(−m,n)

β(m, 1)− β(−m, 1)

)
,

for all n,m ∈ Γ, provided β(m, 1) = β(m,−1) for all m 6= 0 ∈ Γ.

So in our last example, we can rewrite, for Γ = Z

ψ(xn) =

(
β(1, n)− β(−1, n)

β(1, 1)− β(−1, 1)

)
xn−1 = [n]β(1,−)x

n−1.

This leads to our general definition:

Definition 3.4.4. The β-Weyl algebra with grading Γ = Zn, Aβ(n), is defined by generators

ψi, ψ
†
i , ωi, ω

−1
i for 1 ≤ i ≤ n, i 6= j, and relations:

ωiωj = ωjωi, ωiω
−1
i = ω−1

i ωi = 1

ωiψjω
−1
i = β(ei,−ej)ψj, ωiψ

†
jω
−1
i = β(ei, ej)ψ

†
j

ψiψj − ψjψi = ψ†iψ
†
j − ψ

†
jψ
†
i = 0, ψiψ

†
j − ψ

†
jψi = 0

ψiψ
†
i − β(2ei, ei)ψ

†
iψi = ω−2

i , ψiψ
†
i − β(−2ei, ei)ψ

†
iψi = ω2

i .

Now we define the β-Oscillator Representation of Aβ(n) on C[x1, . . . , xn]:

Definition 3.4.5. For x(m) := xm1
1 . . . xmnn a monomial in C[x1, . . . , xn], and m ∈ Zn≥0, we

define the action of Aβ(n) as

ωi(x(m)) = β(ei,m)x(m)

ψi(x(m)) = [m]β(ei,−)x(m− ei)

ψ†i (x(m)) = x(m + ei)
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where ei := (δ1i, . . . , δni) and m =
∑
miei ∈ Γ.

Then it is straightforward to check that Aβ(n) → EndC(C[x1, . . . , xn]) is a C-algebra

homomorphism.

3.4.6 Comparing Weyl algebras

We have some different notions of Weyl algebras that still need comparing. Here we discuss

the current understanding.

We begin by assuming as in [21], that q := [qij]n×n, qij = q−1
ji , Γ = Zn with standard

basis ei. Define the bi-character β by

β(ei, ej) = qij.

Further, consider Kq[n] := K 〈x1, . . . , xn〉 /(xixj = qijxjxi) which is Zn-graded with |xi| =

ei ∈ Γ.

Definition 3.4.7. From [21], we have the algebra W := K
〈
xi, ∂i, σi, σ

−1
i

〉
/R where R is

the relations

(xixj = qijxjxi), (∂i∂j = qij∂j∂i),

(σiσj = σjσi), (∂ixj = qijxj∂i + δij),

(σjxi = qijxiσj), (∂iσj = qjiσj∂i).

Definition 3.4.8. Let γ be a 2-cocycle of Γ, define the twisted multiplication of K[x1, . . . , xn]

by xa ? xb = γ(a, b)xa+b.

Definition 3.4.9. Let α : Γ×Γ→ K, a map, and σi(x
a) =: α(ei, a)xa, a ∈ Γ in accordance

with our above expectation.
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Then we compute:

[σi, xj]q(x
a) = σi(xj · xa)− qijxjσi(xa)

= (α(ei, a+ ej)− qijα(ei, a))γ(ej, a)xa+ej .

So, for the relation above to hold

[σi, xj]q = 0⇔ α(ei, a+ ej) = qijα(ei, a).

If we think of ∂i(x
a) := aix

a−ei for a = (a1, . . . , an) a multi-index, then we can similarly

compute:

[σi, ∂j]q(x
a) = σi(∂jx

a)− qji∂jσi(xa)

= (α(ei, a− ej)− qjiα(ei, a))ajx
a−ej .

So for the relations, above to hold,

[σi, ∂j]q = 0⇔ α(ei, a− ej) = qjiα(ei, a) ∀a ∈ Γ, i, j ∈ {1, . . . , n} .

These conditions give that

α(ei, ej) = qij,

and that α = β. By the definition of σi(x
a) we see that σi and σj commute. However, to

get our last relation,

(∂ixj = qijxj∂i + δij),
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we compute a bit more.

[∂i, xj]q(x
a) = ∂ixj(x

a)− qijxj∂(xa)

= (γ(ej, a)(ai)− qijγ(ej, a− ej)(ai))xa+ej−ei .

Now when i = j,

∂ixj = qijxj∂i + 1⇔ 1 = γ(ei, a)ai − γ(ei, a− ei)ai,

and for i 6= j,

∂ixj = qijxj∂i ⇔ γ(ej, a) = qijγ(ej, a− ei).

This last relation shows that

γ(ej, ei) = qji.

So β = γ = α.

We have simply shown what conditions are necessary for W to embed into Dq(Kq[n]),

we call this map Ξ. It is left to consider a similar embedding Aρ(n) the “β”-Hayashi

Weyl algebra corresponding to ρ into Dρ(K[n]), for an appropriate ρ. We recall that 3.2.15

suggests these algebras should be related by the isomorphism of twisted differential operator

algebras.

Since we have twisting-untwisting, we have a relation Dβ(K[n]) ' Dq(Kq[n]) for appro-

priate β. We have Ωβ
n : Aβ(n) → Dβ(K[n]) for that same β. We also have Ωq

n : Aq(n) →

Dq(Kq[n]). All together:

Aβ(n)

Ωβn
��

Aq(n)

Ωqn
��

Dβ(K[n]) ' // Dq(Kq[n])

.
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Chapter 4

Gluing for twisted coordinate rings

4.1 Localizing rings of differential operators

4.1.1 Localization of differential operators

We still assume that R is a Γ-graded, K-algebra and β : Γ × Γ → K∗ a bicharacter.

The first question about our modules Dβ(R), from the context of geometry, is if the respect

localizations by homogenous multiplicative (Ore resp.) sets, Sw. We recall from the classical

definitions of differential operators that localization preserves them. But we need to check

three new cases: β-differential operators for commutative rings, differential operators for

noncommutative rings, and β-differential operators for noncommutative rings. In particular,

if R is commutative, Sw a multiplicative subset, then for what pairs of bicharacters (β, β
′
)

is

S−1
w Dβ(R) ⊂ Dβ′ (S

−1
w R)? (4.1)

And similarly for R noncommutative with Sw being an Ore subset: multiplicative, left

cancellable, and for all r ∈ R, s ∈ Sw, there are r′ and s′ such that s′r = r′s. Throughout

this section, left multiplication by a ring element will eschew the λ notation, and will instead

just write the email concatenated on the left.
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4.1.2 Untwisted localization

First we recall a simple computation from the untwisted case.

Lemma 4.1.3. For R commutative, Sw ⊂ R a multiplicative set, ∂ ∈ D0(R) there is a

homomorphism S−1
w : D0(R)→ D0(S−1

w R), i.e., ∂ extends to the localized ring.

Proof. We consider g′ = g
fn

for g ∈ R, f ∈ Sw, then let S−1
w (∂)(g) = ∂(g) for all g ∈ R, and

S−1
w (∂)(g′) = f−nfnS−1

w (∂)(g′)

= f−n(S−1
w (∂)(fn · g′)− S−1

w ([∂, fn])(g′))

= f−n(∂(g)− 0)

= f−n∂(g).

We check for h′ = h
km
∈ S−1

w (R), k ∈ Sw, h ∈ R, homogeneous elements, [S−1
w (∂), h′](g′) =

S−1
w (∂)(h′g′)− h′S−1

w (∂)(g′) = k−mf−n∂(hg)− h′S−1
w (∂)(g′) = k−mf−n[∂, h](g) = 0.

Theorem 4.1.4. For ∂ ∈ Dk(R), ∂ extends to Dk(S−1
w (R)).

Proof. Exactly the same, but by induction, since S−1
w ([∂, fn]) ∈ Dk(S−1

w R). Thus,

S−1
w (∂)(g′) := f−n(∂(g)− S−1

w ([∂, fn])(g′)).

Following the computation in the lemma, S−1
w ([∂, fn]) is in Dk−1(S−1

w R), so we are finished.

We notice that our main technique is to write the image S−1
w (∂) as an element of S−1

w R⊗R

Dk(R). In fact, it can be shown that S−1
w R⊗RDk(R) ' Dk(S−1

w R) but for our applications,

only the inclusion is necessary.

64



4.1.5 β-Twisted version

Again, we make the assumptions that R is commutative, Sw is a multiplicative set of R,

g ∈ R, f ∈ Sw, g′ = g
f
, and now we will assume that β : Γ×Γ→ K∗ is a bicharacter, consists

of Sw homogeneous elements of R. Since our localization is by homogenous elements, we

assume that |S−1
w (∂)| = |∂|, and that |g′| = |g| − |fn|.

Lemma 4.1.6. There exists a bicharacter, β′, for Sw such that for all ∂ ∈ D0
β(R) then

S−1
w (∂) ∈ D0

β′(S
−1
w R), i.e., ∂ extends to the localized ring as a β′-differential operator.

Proof. Again, we write the image of ∂ under S−1
w as an element of S−1

w R⊗R D0
β(R):

S−1
w (∂)(g′) = β−1(|∂| , |fn|)f−n(∂(g)− S−1

w ([∂, fn]β)(g′))

= β(|fn| , |∂|)f−n∂(g).

We now want [S−1
w (∂), r′]β′ = 0 for all r′ ∈ S−1

w R and solve for β′. Consider r′ = r
hm

for

r ∈ R and h ∈ Sw.

0 = [S−1
w (∂)(g′), r′]β′(g

′)

:= S−1
w (∂)(r′g′)− β′(

∣∣S−1
w (∂)

∣∣ , |r′|)r′S−1
w (∂)(g′)

= β(|hmfn| , |∂|)h−mf−n∂(rg)− β′(
∣∣S−1

w (∂)
∣∣ , |r′|)r′β(|fn| , |∂|)f−m∂(g)

= h−mf−n
(
β(|hmfn| , |∂|)∂(rg)− β′(

∣∣S−1
w (∂)

∣∣ , |r′|)β(|fn| , |∂|)r∂(g)
)

Recalling [∂, r]β(g) = 0, we get

0 = h−mf−nβ(|hmfn| , |∂|)
(
∂(rg)− β′(|r′| ,

∣∣S−1
w (∂)

∣∣)β(|fn| , |∂|)β−1(|hmfn| , |∂|)r∂(g)
)
,
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so

β(|∂| , |r|) = β′(
∣∣S−1

w (∂)
∣∣ , |r′|)β(|fn| , |∂|)β−1(|hmfn| , |∂|)

= β′(
∣∣S−1

w (∂)
∣∣ , |r′|)β−1(|hm| , |∂|).

Thus we see that our inclusion holds when

β(|r′| , |∂|) = β′(|r′| ,
∣∣S−1

w (∂)
∣∣).

which is satisfied by β = β′.

Theorem 4.1.7. For ∂ ∈ Dk
β(R) then S−1

w (∂) ∈ Dk
β(S−1

w R).

Proof. As before in our lemma

S−1
w (∂)(g′) = β(|fn| , |∂|)f−n(∂(g)− S−1

w ([∂, fn]β)(g′)),

so again we compute

[S−1
w (∂), r′]β′(g

′) := S−1
w (∂)(r′g′)− β(

∣∣S−1
w (∂)

∣∣ , |r′|)r′S−1
w (∂)(g′)

= β(|hmfn| , |∂|)h−mf−n(∂(rg)− S−1
w ([∂, hmfn]β)(r′g′))

− β(
∣∣S−1

w (∂), |r′|
∣∣)r′β(|fn| , |∂|)f−n(∂(g)− S−1

w ([∂, fn]β)(g′)).

We proceed by induction, then

β(|r′| , |∂|) = β(|r′| ,
∣∣S−1

w (∂)
∣∣).
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So we have our base case from our lemma, and thus

h−mf−n (β(|hmfn| , |∂|)∂(rg)− β(|∂| , |r′|)β(|fn| , |∂|)r∂(g)) ∈ S−1
w (R)

is equal to

h−mf−nβ(|hmfn| , |∂|)([∂, r]β(g′))

of which [∂, r]β is in Dk−1
β (R). Hence, S−1

w (∂) ∈ Dk
β(S−1

w R).

4.2 Deformed and twisted differentiation rules

With all this twisting, and all this differentiation, we need for a summary of “quantum

quotient rules”. Here we collect formulas for localizations of differential operators. Note a

deviation from our previous notation, where γ is now the bicharacter we twist differential

operators by, and β is the bicharacter we twist our ring multiplication by. R is a commutative

ring, g, f homogeneous elements of R, f ∈ Sw.

This table summarizes our findings above:

S−1
w (∂)(g/fn) R Rβ

D(R) f−n∂(g) β(|fn| , |g|)f−n∂(g)

Dγ(R) γ(|fn| , |∂|)f−n∂(g) γ(|fn| , |∂|)β(|fn| , |g|)f−n∂(g)

with the assumption that |S−1
w (∂)| = |∂|.

4.3 Co-localization with respect to deformation

Here we discuss conditions for gluing β-affine spaces as defined above. We compute necessary

relations for localizations to agree on overlaps.
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4.3.1 Localization of β-affine patches

Consider the noncommutative ring Kβ[x1, . . . , xn] as the noncommutative ring generated by

variables x1, . . . , xn and relation

xixj = β(i, j)xjxi

where Kβ[x1, . . . , xn] is graded naturally by Zn and β : Zn × Zn → K∗. Notice that this

indicates β(i, j) = β−1(j, i). We consider the localizations by 〈xi〉 =: Si.

Remark 4.3.2. As before, in S−1
i Kβ[x1, . . . , xn] we have

x−1
i xj = β(j, i)xjx

−1
i .

Now we wish to take the zero-degree component, denoted ( )0, of these localized rings.

Lemma 4.3.3. Consider the morphism which sends xj/xi 7→ x̃j. There exists a bicharacter

βi : Z× Z→ K∗ such that S−1
i (Kβ[x1, . . . , xn])0 = Kβi [x̃i, . . . , x̃n] for x̃i = 1.

Proof. Observe

x̃jx̃k = (xj/xi)(xk/xi) = xjx
−1
i xkx

−1
i

= β(i, j)x−1
i xjxkx

−1
i

= β(i, j)β(j, k)x−1
i xkxjx

−1
i

= β(i, j)β(j, k)β(k, i)xkx
−1
i xjx

−1
i

= β(i, j)β(j, k)β(k, i)x̃kx̃j.

Define βi(a, b) := β(i, a)β(a, b)β(b, i) for all a, b ∈ Zn. We see that βi is also a skew-

symmetric bicharacter.

Now we need wish to consider conditions on β such that the order of iterated localizations

does not matter. This is a property that we expect of localization theories.
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Theorem 4.3.4. S̃−1
j (S−1

i (Kβ[x1, . . . , xn])0)0 ' S̃−1
i (S−1

j (Kβ[x1, . . . , xn])0)0 for S̃i := 〈x̃i〉

an Ore set.

Proof. Consider now two sets of generators x̃k := xkx
−1
i , the local coordinates on S−1

i (Kβ[x1, . . . , xn])0

and ỹk := xkx
−1
j the local coordinates on S−1

j (Kβ[x1, . . . , xn])0. Notice that we localize these

rings by Ore sets generated by our local coordinates.

We consider the morphism

ψ : S̃−1
j (S−1

i (Kβ[x1, . . . , xn])0)0 → S̃−1
i (S−1

j (Kβ[x1, . . . , xn])0)0

such that ψ(x̃k) = ỹkỹi
−1 and the map

φ : S̃−1
i (S−1

j (Kβ[x1, . . . , xn])0)0 → S̃−1
j (S−1

i (Kβ[x1, . . . , xn])0)0

such that φ(ỹk) = x̃kx̃j
−1 is its inverse.

We need to check the commutativity relations to confirm isomorphism:

βj(l, k)ỹkỹl =: ỹlỹk = x̃lx̃j
−1x̃kx̃j

−1 = βi(j, l)x̃j
−1x̃lx̃kx̃j

−1

= βi(j, l)βi(l, k)x̃j
−1x̃kx̃lx̃j

−1

= βi(j, l)βi(l, k)βi(k, j)x̃kx̃j
−1x̃lx̃j

−1

= βi(j, l)βi(l, k)βi(k, j)ỹkỹl

= β(i, j)β(j, l)β(l, k)β(k, j)β(j, i)ỹkỹl

= βj(l, k)ỹkỹl.
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4.3.5 Localization of γ-Differential operators on β-affine charts

Our goal was to glue differential operators on these spaces. We now check that the relations

above provide gluing conditions for a theoretical sheaf of γ-differential operators. In partic-

ular, we show that evaluating extended differential operators on co-localized rings produces

the same result, i.e., the functor computing twisted differential operators satisfy the gluing

condition for the n open charts of Pqn.

Theorem 4.3.6. Iterated localization of γ-differential operators on two β-affine charts in

alternating order are isomorphic induced by the isomorphism of the charts overlap:

S̃−1
j (S−1

i (Kβ[x1, . . . , xn])0)0 ' S̃−1
i (S−1

j (Kβ[x1, . . . , xn])0)0.

In other words,

S̃−1
j (S−1

i (Dγ(Kβ[x1, . . . , xn])0)0) ⊆ Dγ(S̃
−1
i (S−1

j (Kβ[x1, . . . , xn])0)0).

Proof. We need to check that S̃−1
j (S−1

i (∂))(x̃l) = S̃−1
i (S−1

j (ỹlỹi
−1)) and S̃−1

j (S−1
i (∂))(x̃lx̃i

−1) =

S̃−1
i (S−1

j (ỹl)). We provide only the first, as the second follows similarly.

S̃−1
j (S−1

i (∂)(x̃l) = γ(|xi| , |∂|)β(|xi| , |xl|)x−1
i ∂(xl)

and S̃−1
i (S−1

j (ỹlỹi
−1)) =

= γ(|ỹi| ,
∣∣S−1

j (∂)
∣∣)βj(|ỹi| , |ỹl|)ỹi−1S−1

j (∂(ỹl))

= γ(|ỹi| ,
∣∣S−1

j (∂)
∣∣)βj(|ỹi| , |ỹl|)γ(|xj| , |∂|)β(|xj| , |xl|)ỹi−1x−1

j ∂(xl)

= γ(|ỹi| ,
∣∣S−1

j (∂)
∣∣)βj(|ỹi| , |ỹl|)γ(|xj| , |∂|)β(|xj| , |xl|)β(|xj| ,

∣∣x−1
i

∣∣)x−1
i ∂(xl)

= γ(
∣∣xix−1

j

∣∣ , ∣∣S−1
j (∂)

∣∣)βj(∣∣xix−1
j

∣∣ , ∣∣xlx−1
j

∣∣)γ(|xj| , |∂|)β(|xj| , |xl|)β(|xj| ,
∣∣x−1
i

∣∣)x−1
i ∂(xl)

= γ(
∣∣x−1
j

∣∣ , ∣∣S−1
j (∂)

∣∣)γ(|xi| ,
∣∣S−1

j (∂)
∣∣)γ(|xj| , |∂|)β(|xl| ,

∣∣x−1
i

∣∣)x−1
i ∂(xl).
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Recall that
∣∣∣∂̃∣∣∣ = |∂|, then

S̃−1
i (S−1

j (ỹlỹi
−1)) = γ(|xi| ,

∣∣S−1
j (∂)

∣∣)β(|xl| ,
∣∣x−1
i

∣∣)x−1
i ∂(xl)

= γ(|xi| , |∂|)β(|xi| , |xl|)x−1
i ∂(xl).

Since this localization condition holds, we now have the freedom to glue noncommutative

charts together and allow the sheaf of γ-differential operators respect this gluing.

Conjecture 4.3.7. The functor Dγ satisfies the sheaf condition on the open sets of Pnβ,

where Pnβ has the noncommutative coordinate ring Kβ[x1, . . . , xn].

The point of these gluing theorems, and this conjecture, is to realize the potential of

noncommutative projective spaces mimicking P, Gr, G/B, and G/P . The work of Joseph

showed us that Fl has a noncommutative version Flq with a similarly defined coordinate

ring. Here, we thought about Pnβ by deforming the affine charts that build Pn. We then

worked on the sheaf of differential operators for the purpose of using twisting-untwisting to

relate them. Remember, we can get isomorphisms between algebras of deformed differential

operators on coordinate rings, and their deformations. This suggests a result like:

Conjecture 4.3.8. Dβ′(Pn) ' D(Pnβ) as algebras of global differential operators.

But don’t stop there, dear reader; Gr, G/B, and G/P have affine charts too.
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