
WEB GENRE CLASSIFICATION USING FEATURE SELECTION AND
SEMI-SUPERVISED LEARNING

by

ROSHAN CHETRY

B.TECH., UPTU, India, 2005

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2011

Approved by:

Major Professor
Doina Caragea



Copyright

Roshan Chetry

2011



Abstract

As the web pages continuously change and their number grows exponentially, the need

for genre classification of web pages also increases. One simple reason for this is given by the

need to group web pages into various genre categories in order to reduce the complexities

of various web tasks (e.g., search). Experts unanimously agree on the huge potential of

genre classification of web pages. However, while everybody agrees that genre classifica-

tion of web pages is necessary, researchers face problems in finding enough labeled data to

perform supervised classification of web pages into various genres. The high cost of skilled

manual labor, rapid changing nature of web and never ending growth of web pages are

the main reasons for the limited amount of labeled data. On the contrary unlabeled data

can be acquired relatively inexpensively in comparison to labeled data. This suggests the

use of semi-supervised learning approaches for genre classification, instead of using super-

vised approaches. Semi-supervised learning makes use of both labeled and unlabeled data

for training - typically a small amount of labeled data and a large amount of unlabeled

data. Semi-supervised learning have been extensively used in text classification problems.

Given the link structure of the web, for web-page classification one can use link features

in addition to the content features that are used for general text classification. Hence, the

feature set corresponding to web-pages can be easily divided into two views, namely content

and link based feature views. Intuitively, the two feature views are conditionally indepen-

dent given the genre category and have the ability to predict the class on their own. The

scarcity of labeled data, availability of large amounts of unlabeled data, richer set of features

as compared to the conventional text classification tasks (specifically complementary and

sufficient views of features) have encouraged us to use co-training as a tool to perform semi-

supervised learning. During co-training labeled examples represented using the two views



are used to learn distinct classifiers, which keep improving at each iteration by sharing the

most confident predictions on the unlabeled data. In this work, we classify web-pages of .eu

domain consisting of 1232 labeled host and 20000 unlabeled hosts (provided by the Euro-

pean Archive Foundation [Benczur et al., 2010]) into six different genres, using co-training.

We compare our results with the results produced by standard supervised methods. We

find that co-training can be an effective and cheap alternative to costly supervised learning.

This is mainly due to the two independent and complementary feature sets of web: content

based features and link based features.
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Chapter 1

Introduction

The goal of the project is to classify web-pages into different genres using co-training, a

semi-supervised approach. Feature selection using mutual information is performed as a

preprocessing step, to reduce the number of dimensions.

The exponential growth in the number of web pages over the years has increased the

complexity associated with the task of information retrieval on the web. We believe that

organizing the web pages into various categories can greatly improve the efficiency and ef-

fectiveness of information retrieval over the web. Taking classification to the ever increasing

world of web-pages has proven scopes of usage in information gathering, management, re-

trieval and other applications, and this plays a major motivational role for our work. For

example, web search, focused crawling, development of web-directories, topic-specific web

link analysis, contextual advertising, analysis of the topic structure of the web etc. are

the prominent fields which can be hugely impacted by automatic genre identification [Qi

and Davison, 2009]. Let us look at some of the major applications of automatic web genre

identification:

• Focused crawler: As proposed by Chakrabarti et al. [1999] crawlers can be aug-

mented with genre specific information to provide evidence for the crawl boundary to

perform domain specific crawling thus making the crawling process efficient when full
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crawl is not needed.

• Development of web directories: Web directories such as Yahoo and ODP provide

an easy way to browse for information within a specific domain. An automatic domain

identification system on the top of the classifier can greatly increase the efficiency of

such systems.

• Question and Answer systems: Question and Answer systems can also benefit

from automatic web genre identification. Apart from the usual question based clas-

sification system, automatic genre identification can be used to produce a set of web

pages if the category of the answer can be predicted.

• Improving quality of search results: Automatic genre identification can greatly

increase precision and recall of web search by efficiently negating the ill effect of query

ambiguity. For example, when a user searches with the keyword “apple”, he could

mean either the fruit apple or the company apple. But if the user knows the category

of the answers he is looking for (say, by selecting the category “company”), the problem

of ambiguity can be avoided as the search engine can now look for the results in the

web pages under the selected category. The search engine flipdog.com as shown in the

Figure 1.1, effectively uses automatic genre identification to classify web pages into

predefined categories.

• Other uses: Besides the well known applications of web genre classification, it can

be also used in the field of Ontology Annotation, Contextual Advertising [Goldstein

et al., 2007], Knowledge Base Construction (E.g., www.dmoz.org) etc.

2



Figure 1.1: Flipdog.com uses web genre classification to provide more specific results to the
users

The field of automatic genre identification has witnessed a lot of works done using super-

vised approaches to classification. Supervised approaches have been useful but they require

a large amount of labeled data. Because of the involvement of skilled human agents, the cost

associated with the acquisition of labeled data may render a fully labeled training set infeasi-

ble. It has been proved that unlabeled data, when used in conjunction with a small amount

of labeled data, can effectively improve the learning process [Abney, 2007] [Chapelle et al.,

2006]. This process of machine learning which make use of both labeled (generally of small

size) and unlabeled data (large size) is termed as semi-supervised learning. Semi-supervised

approaches are of great help when labeled data is very expensive as acquisition of unlabeled

data is relatively inexpensive. Now, specific to the world of web: the continuous growth,

as well as change in web pages makes it very difficult to create and maintain a significant

amount of annotated data available for supervised web genre classification task. Hence,

we will be using semi-supervised approaches in our work as it can produce considerable
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improvement in classification accuracy even with a small amount of labeled data.

One example of a semi-supervised learning technique is co-training. In co-training, we

learn two different classifiers from two different views (feature sets) of original data. Co-

training requires the views to be independent and complementary. The objective is to

transfer the knowledge from one classifier to the other one. Co-training first learns a separate

classifier for each view using any labeled examples. Then, we consider the best predictions in

each classifier on the unlabeled data and add them to the training set of the other classifier

in the next iteration. The process continues either to a fixed number of iterations or until

the unlabeled data is completed. An alternative approach is to model the joint probability

distribution of the features and the labels using EM approach. Nigam and Ghani [2007] have

shown that whenever there is natural spilt of features, co-training generally outperforms EM

approach of semi-supervised learning. We plan to perform classification with content based

and link based features, which give a natural split of the set of all features. Hence, our

semi-supervised learning approach is based on co-training.

In our work we plan to classify the web pages into: Spam, Educational/Research, Per-

sonal/ Leisure, Discussion, Commercial and News/ Editorial categories. Most of the pre-

vious works on genre classification are based on content based features. In our work we

will explore link based features along with content based features of the web-pages. Before

conducting the classification tasks we perform feature selection on all the feature views using

information gain and ranking. This helps to reduce the dimensionality of the feature set

and enables classifiers to work efficiently and effectively. We will compare the co-training

based semi-supervised approach to genre classification with a supervised approach.
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Chapter 2

Related Work

In the field of automatic genre identification, the work of Biber [1988] in which he explored

the linguistic variation found in different genres with the help of Biber tagger is regarded

as one of the pioneering researches. Biber did not exclusively work on automatic genre

identification, but his statistical approach of focusing on difference between different genres

based on computable features generated by Biber tagger inspired many researchers.

Karlgren and Cutting [1994] used more easily computable features such as POS coupled

with standard statistical techniques of discriminant analysis to perform categorization of

texts into pre-determined text genre categories.

Stamatatos et al. [2000] extensively worked on unrestricted text downloaded from www

without any manual text preprocessing or text sampling. They took full advantage of exist-

ing NLP tools in contrast to previous stylometric approaches (e.g., [Karlgren and Cutting,

1994]). They presented a set of small-scale but reasonable experiments in text genre de-

tection, author identification, and author verification tasks and showed that the proposed

method performs better than the distributional lexical measures, i.e., functions of vocabu-

lary richness and frequencies of occurrence of the most frequent words.

Santini et al. [2011] provided a more articulated description of web-genres. Their work

talks about the complexity of web pages, extremely rapid evolution of web and scarcity
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of automatically-extractable features are being some of the major challenges faced by re-

searchers in the field of genre classification. They put forward various approaches such as

multi-label classification, multi-resource feature extraction (e.g., bag-of words and bag-of-

links models combined) etc. to overcome these challenges.

Sharoff [2007] used POS tags to extract features and fed them into Support Vector

Machine (SVM) and Clustering (repeated bisections and graph clustering) based classifiers

to perform genre classification. He extended the work to a variety of languages: English,

German, Chinese and Russian. He successfully established the usefulness of language inde-

pendent model in the field of genre classification. The study also pointed out the scarcity

of web-annotated document as one of the major challenges in genre classification.

Mason et al. [2009] also used n-grams and their frequencies to classify web pages into

seven categories of genres namely blog, eshop, FAQs, front page, listing, home page, and

search page. The study shows the usefulness of n-grams method and also discusses the

variation in result as the feature set (the number of n-grams) is increased. They conclude

that increasing the number of most frequent n-grams beyond a certain threshold limit (500

in their work) does not change the precision and recall appreciably.

Kanaris and Stamatatos [2009] combined the feature set generated from variable length

character n-grams with information about frequent HTML-tags to perform genre identifi-

cation task. They showed that the classification accuracy increases when character n-gram

features are combined with structural features.

Levering et al. [2008] added visual features in genre classification task and successfully

proved that HTML and visual features in combination with URL features can perform better

than the textual features alone. The authors attribute this result to the fact that genres

are innately tied to the communicative intent of the media author and as the technology to

express that intent changes. The study further concluded that the visual features can be
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more useful when the corpus contains more noise.

Waltinger and Mehler [2009] tried to extract information from the web structure with

the idea that there should be strong connection among web pages of the same genre. He

worked on the idea of combining linguistic and structural features.

Lex et al. [2010] created an ensemble of three classifiers to predict unseen web hosts

where each classifier is trained on a different feature set. Using the ensemble approach they

were able to make use of several kinds of features.

Over the years researchers have realized that features used in general text classification

tasks would not alone perform well in case of genre classification. It has been proved that it

is very necessary to exploit the structural (HTML tags etc) and link (URL, web graph etc)

based features while performing genre classification task. Having said that it should also be

mentioned that researchers struggled to find enough annotated data to perform supervised

classification.

To overcome the bottleneck of sparse and costly labeled data (in case of supervised

learning) researchers started to make use of both labeled (generally a small amount) and

unlabeled data (very large amount) to train the classifier. The approach has been termed

as semi-supervised method of machine learning. As the semi-supervised approaches gradu-

ally began to improve, researches started looking at using the semi-supervised approaches

in problem domains where the features naturally divide into two disjoint sets. Blum and

Mitchell [1998] worked on a typical approach of semi-supervised learning where they clas-

sified web pages using two classifiers augmenting each other with patterns learnt as the

experiment progressed working on two different feature sets: one over the words that ap-

pear in the page and another over the words that appear in the hyperlinks to the page. They

named it co-training method of semi-supervised learning. Co-training setting demands that

the feature should naturally partition into two sets. They further proved that under the
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assumptions that (1) each set of features is sufficient for classification and (2) the two feature

sets are conditionally independent given the class, the co-training provides excellent result.

Riloff and Jones [1999] proposed a meta-bootstrapping approach to gather information

about geographic locations. They built two co-classifiers: one was term matching classifier

over word-tokens and the other was a context rule classifier based on the neighbor of the

tokens.

Yarowsky [1995] worked on word sense disambiguation using two classifiers simultane-

ously. One of the classifiers was entrusted the responsibility to learn the local context of the

word while the other classifier tried to learn the senses of other occurrences of the word in

the same document.

Collins and Singer [1999] proposed the co-boost algorithm to perform named entity

classification based on two classifiers learning the on the basis of the spelling of the entity

or the context in which the entity occurred.

Nigam and Ghani [2007] tried to analyze the effectiveness and applicability of co-training

and showed that if an independent and redundant feature split exists, co-training algorithms

outperform other algorithms using unlabeled data.

Semi-supervised approaches make use of unlabeled data in conjunction with a small

amount of labeled data and produce considerable improvement in learning accuracy. Labeled

data always comes with a much higher cost (skilled labor is needed to manually annotate

the examples). On the contrary, unlabeled data can be acquired relatively inexpensively.

Furthermore, co-training approaches to semi-supervised learning enable the researchers

to exploit the disjoint nature of the feature set (e.g., classifier can be chosen on the basis of

their proven record on a particular type of features, SVM is known to work efficiently with

text based features). This approach also helps to build a more accurate set of training labels

as only the most confident predictions of each classifier are used construct the training data.

In our work, we try to leverage the natural split of feature set (content based feature

8



and link structure based feature) under the proven co-training environment to perform web

genre classification and thus establish new grounds in the field of web genre classification.

Our work is different from the work by Blum and Mitchell [1998], as they did not extract

information from the link structure and used different categories (as opposed to genres) to

classify web pages.

9



Chapter 3

Problem Statement

3.1 Overview

As described in Chapter 1, web page classification is the process of assigning web pages to one

or more predefined category labels. In this work, we classify English Web hosts (ECMLP-

KDD Discovery Challenge Dataset 2010, [Benczur et al., 2010]) into a set of categories: Web

Spam, News/ Editorial, Commercial, Educational/Research, Discussion, Personal/ Leisure.

To deal with the large number of features, we perform feature selection and ranking using

information gain criterion. In this research, we use both supervised and semi-supervised

learning (co-training) on selected features of a random sample of the available training in-

stances. We will evaluate the models against the randomly sampled test instances for each

fold of training instances. In the end we will compare the performance of supervised against

the performance of semi-supervised algorithms.

Web genre researchers generally come across two sets of broad features: Content Based

Features and Link Based Features. Content based features are computed from the full

version of the content of the web pages. Link based features are computed from the web

graphs. Broad discussion of dataset and feature is provided in Chapter 5.

After feature selection we have 50 content based features (number of words in the home

page, average word length etc), 50 link based features (out-degree, pagerank etc), and 100,

400, 700 etc. up to 2800 tf-df based features. Thus, each experiment is conducted with

10



variable tf-df features in the range of 100 to 2800.

Based on the number of classes, classification problem can be broadly divided into binary

classification and multi-class classification types, where binary classification categorizes in-

stances into exactly one of two classes (as in Figure 3.1), and multi-class classification deals

with one of K classes (as in Figure 3.3). Here our problem is of multi-class type.

Figure 3.1: Binary classification

Based on the number of classes that can be assigned to an instance, classification can

Figure 3.2: Multi-class multi-label classification
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Figure 3.3: Multi-class single-label classification (Followed in our work)

be divided into single-label classification and multi-label classification. In single-label clas-

sification, one and only one class label is to be assigned to each instance (as in Figure 3.3),

while in multi-label classification, more than one class can be assigned to an instance (as in

Figure 3.2). The problem we are solving in this research work is single-label.

Based on the organization of categories, Web page classification can also be divided into

flat classification and hierarchical classification types. In flat classification, categories are

considered parallel, that is, one category does not supersede another, while in hierarchical

classification, and the categories are organized in a hierarchical tree-like structure, in which

each category may have a number of subcategories. Figures 3.5 and 3.4 depicts flat classi-

fication and hierarchical classification respectively. In our research work we are performing

flat classification.

Figure 3.6 depicts the basic flow of the project work.

12



Figure 3.4: Hierarchial classification

Figure 3.5: Flat classification (Followed in our work)

13



Figure 3.6: Basic flow of the project

3.2 Research questions

We formulate the following research questions to explore how our approach performs in

comparison with existing methods. These questions also incorporate the need to observe

the variation in performance as the number of samples and/ or features are varied.

• What is the overall performance of the supervised approaches? The overall performance

of different supervised approaches will serve as a baseline for the semi-supervised ap-

proach to be compared with. It would also help us to know how supervised approaches

deal with different features such as content based features, link structure based features

etc.

• How do the semi-supervised approaches perform by comparison with the supervised

approaches? As discussed in the Chapter 1, as the world wide web grows, researchers

find it difficult to create and maintain annotated data for web genre classification

purpose. Semi-supervised approaches have become more and more relevant in these

scenarios. We have used a semi-supervised approach in our work and performed a

14



comparison between semi-supervised approaches and supervised methods.

• How does the performance vary with the number of features? We will also explore

the variations in performance when the tf-df features are increased gradually. This

will tell us how supervised and semi-supervised approaches behave when the number

of tf-df features is increased.

• How do the semi-supervised approaches perform when number of unlabeled instances

is varied? We explore the variations in performance of semi-supervised approaches as

we increase the size of the unlabeled data set. This will suggest how much unlabeled

instances are required to get acceptable results.

• How do the semi-supervised approaches perform when the number labeled instances

is varied keeping the number of unlabeled instances constant? We would also like to

know how many labeled examples are required to achieve acceptable results in case of

semi-supervised approaches.
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Chapter 4

Methodology

In this project, we are performing genre classification of English web hosts belonging to

.eu domain using semi-supervised learning. The amount of labeled data on the web is

minimal and unlabeled data is huge. Thus, we believe that semi-supervised learning will

take advantage of the unlabeled data (along with small amount of labeled data) to learn

a predictive model to classify web pages according to their genre. The cost of the task in

comparison to supervised classification remains low as less labeled data is used. We select

co-training as the method of semi-supervised learning because it has been proved that co-

training is more beneficial than other established semi-supervised methods when the feature

sets used are independent and sufficient enough on their own to perform classification [Krogel

and Scheffer, 2004] [Nigam and Ghani, 2007]. Our feature sets contain content based and

link based features which can be sees as two independent and sufficient views of features.

To perform classification, we extract the link and content features from the available

data set. The data set that is used for this project is Discovery 2010 dataset (refer to

Chapter 5). Please refer to Figure: 4.1 for a high-level overview of the approach.

4.1 Feature construction

A dedicated database was created to store features extracted for present and future research

projects. The database holds content based features, link structure based features and tf-df

based features for 1232 labeled instances and 20000 unlabeled instances. 10 random folds of
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Figure 4.1: High-level overview of the experimental framework

training and test sets (refer to Chapter 5) were created out of the available labeled instances

and they were represented in separate tables in the database. The database also has separate

tables for the list of labeled hosts, list of unlabeled hosts and list of duplicate hosts (refer to

Chapter 5). It should be noted that the database was organized in such a way that makes

it easy to generate .arff files for both supervised and semi-supervised classification.

4.2 Feature selection

Lot of work has been performed in the area of feature selection. Some of the basic and

standard work in this field is done by [Kohavi and John, 1997]. Algorithms used to select

a subset of features from an overall feature set fall into three categories: filters, wrappers,

and embedded methods. Hsu et al. [2002] have focused on the design and configuration

of wrappers for relevance determination and constructive induction. They integrate these

wrappers with elicited knowledge on attribute relevance and synthesis. They also describe

a genetic algorithm approach used to perform attribute subset selection. Their experiments

suggest that wrappers result in better prediction accuracy as compared to filters. Das [2001]

has discussed in detail, the differences between filters and wrappers. He pointed out that
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even though wrappers perform better compared to filters in terms of identifying potential

subset of features for the classification task, they have massive computational expense and

tend to overfit with small training set.

Given the speed and success of filters on many datasets ( [Koller and Sahami, 1996], [Hall,

1999]), in this work, we use filter based feature selection to identify a subset of features and

use them to train supervised and semi-supervised algorithms. Specifically, we would like

to reduce the number of available features from links, content and tf-df and would like

to use only those which provide us the maximum information for the task of classifying

web pages according to the genre. We used Information Gain criterion and then applied

Ranker to rank the features. It has been proved that the information gain criterion gives

an estimate of a subset of features that will be useful for the classification task given the

entire feature set. This can be observed from many papers [Forman et al., 2003], [Mukras

et al., 2007], [Chapelle2 and Keerthi, 2008]. Thus in this work, we have used IG criterion

based Ranker algorithm (implemented in WEKA) to identify a subset of features and use

them in both supervised and semi-supervised environment for genre classification.

4.3 Semi-supervised learning: co-training

Supervised learning approaches need significant amount of labeled data. But, coming up

with large labeled datasets is usually costly and also requires a lot of time. In semi-supervised

learning, a small amount of labeled data is used with a large amount of unlabeled data to

construct a classifier that can be used to predict labels for new samples. Unlabeled data

is cheaper in comparison to labeled data and hence researchers emphasize the use of semi-

supervised approaches whenever label data is very costly. Co-training [Blum and Mitchell,

1998] is one such approach in the category of semi-supervised learning algorithms.

In co-training based semi-supervised learning, we use two independent views of the

data. Co-training algorithm requires two different feature sets to provide complementary

information about the samples. The intention is to learn two classifiers from the different
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(and complementary) feature sets and transfer the knowledge from one classifier to the

other. Co-training first learns a separate classifier for each view using any labeled examples.

It then considers the best predictions of each classifier on unlabeled data and adds them to

the training set of the other classifier in the next iteration. This can continue either for a

certain number of iterations or until all the unlabeled data is used.

There are two basic assumptions for co-training to work effectively [Blum and Mitchell,

1998]:

• Compatibility: Each of the feature sets should be sufficient for classification.

• Conditional independence: Given the class label, the different views are not de-

pendent on each other.

Next, we will describe the algorithm that we have implemented. We represent the labeled

data in two different views L1 and L2. In addition, we represent the unlabeled data in those

two views U1 and U2. To estimate the performance, we divide the labeled data into two

parts - one for training and another for testing. We select 10 different samples of these two

sets for cross-validation purpose.

The known labeled data (training set) is used to train two different classifiers, each on one

of the two views. These classifiers are then used to predict the unlabeled data UL1 and UL2,

where UL1 and UL2 are randomly selected instances from U1 and U2. The count of UL1

and UL2 can be variable. As a result, all the instances of UL1 and UL2 are predicted with a

certain probability. These instances are then sorted based on the probability of predictions.

Now, the best instances predicted by one classifier are deleted from both the unlabeled sets

and are added to the other training set. This is repeated for the other classified instances by

the second classifier. As a result, we will have new sets of training data for both classifiers.

With this training data, the whole process is repeated. The termination of the loop, as

mentioned before, can be either a fixed number of iterations or until the completion of all

the unlabeled data. We have considered the completion of unlabeled data as the termination
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point in this work. At the end of this iterative process, the algorithm produces two classifiers

trained on the both labeled and unlabeled data. These classifiers are then used in predicting

the test data set.

The pseudocode of the co-training algorithm used in our work is provided below:

Co-training [Blum and Mitchell, 1998]:

1: Input: a collection of labeled instances L and unlabeled instances U.

2: Represent L in two different views L1 and L2.

3: Represent U in two different views U1 and U2.

4: repeat

5: Use L1 to train classifier H1.

6: Use L2 to train classifier H2.

7: Randomly select ul1 from U1 and ul2 from U2.

8: H1 labels p positive and n negative instances from ul1.

9: Add most confident predictions of H1 to L2. Delete those instances from ul1.

10: H2 labels p positive and n negative instances from ul2.

11: Add most confident predictions of H2 to L1. Delete those instances from ul2.

12: Randomly select p + n instances from U1 to replenish ul1.

13: Randomly select p + n instances from U2 to replenish ul2.

14: until U1 and U2 are empty.

15: Output: two classifiers H1 and H2 capable of predicting labels of new instances.

The applicability of co-training as a semi-supervised approach has been well established

by [Blum and Mitchell, 1998], [Krogel and Scheffer, 2004], [Nigam and Ghani, 2007].
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Chapter 5

Experimental Setup

This chapter gives an insight into the dataset used in this work and the experiments con-

ducted to evaluate our approach of using co-training for web genre classification task. We

have conducted various experiments with several classifiers to investigate their performance

on genre classification tasks. This chapter is organized as follows: in Section 5.1, we describe

the raw data source. In Section 5.2, we describe the database creation and preprocessing. In

Section 5.3, we describe the random sampling method used along with statistics regarding

the label of instances. The feature set used in this work is described in Section 5.4 and

feature selection techniques are addressed in Section 5.5. Finally, we list the experiments

conducted in this work in Section 5.6.

5.1 Data files

The basic dataset is based on a crawl of the .eu domain provided by the European Archive

Foundation [Benczur et al., 2010]. The dataset contains a collection of annotated Web hosts

labeled by the Hungarian Academy of Sciences (English), European Archive Foundation

(French) and L3S Hannover (German) [Benczur et al., 2010]. In our work we have used

the data on English language. The base data for ECML/PKDD 2010 Challenge [Benczur

et al., 2010] was presented as several large files or libraries. The features should be ex-

tracted from those files according to the given host identification number or host name.

For features, we used three files named linkfeatures.csv with 178 link based features,
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File Name Description

linkfeatures.csv Contains link based feature values with host id

content.based.features.csv Contains content based feature values with host id

v2-host-tfdf.en.txt Contains TF and DF for each word id present in a host

top-terms.stopped.en Contains 50000 top english terms (Stop words removed)

DiscoveryChallenge2010.hostnames.txt Contains hostnames with host id

Table 5.1: Data files from ECML/PKDD 2010 Challenge Database

content.based.features.csv with 98 content based features and v2-host-tfdf.en.txt for

tf-df calculation for english words. The supporting files were: top.terms.stopped.en

containing 50000 top words, v2.en.labels-unified with labels for the hosts and Discov-

eryChallenge2010.hostnames.txt with host names and host ids. A summary of these

files is provided in the Table 5.1.

5.2 Database creation and preprocessing

First, the files mentioned in the Table 5.1 are uploaded to the database. Each file corresponds

to a particular table in the database. Database table tuning and data preprocessing are

performed in following steps:

• English Host Id Filtration: A filtration is performed on the database to keep only the

records pertaining to English language hosts.

• WWW Host Name: The raw data contains host names in www host name (host name

containing www e.g., www.yahoo.com) and non-www host name (host name without

www e.g., yahoo.com) formats with different host ids. Some host names are present

in both formats but with separate host ids. Filtration is performed to keep only the

www host name and corresponding host id to maintain uniqueness among host ids.

• Redirection Removal: Due to redirection some hosts got wrongly labeled by the an-

notators. Redirected hosts are removed with the help of the data provided in the
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Type Number of instances Percentage of total

Labeled 1232 5.80

Unlabeled 20000 94.20

Table 5.2: Instances in the database

redirect.csv file.

• Missing Values: In the case of missing numeric values a standard approach to replace

them by the mean of the non-missing values for the corresponding feature is followed

and records across the database are updated.

• Multi-Label Instances: We used a majority vote count to assign a single unique label

to instances with multiple labels.

5.3 Instances

The database holds content based features, link structure based features and tf-df based fea-

tures for 1232 labeled instances and 20000 unlabeled instances. As shown in Table 5.2,

5.80% of the total database instances are labeled and 94.20% of the database instances

are unlabeled thus the distribution resembling an environment of today’s growing web where

labeled data for web genre is very scarce.

Table 5.3 depicts the distribution of labels within the 1232 labeled instances. 10 random

folds of training and test set are created out of the labeled instances and they are represented

in separate tables in the database. Each fold contains 615 training instances and 314 test

instances. The class distribution, for training and test datasets in each fold, is similar to

the overall class distribution shown in Table 5.3. Figure 5.1 depicts one such distribution

for the training data in fold 1.
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Label Number

Spam 54

Discussion 68

Educational Research 451

News Editorial 57

Commercial 363

Personal Leisure 239

Table 5.3: Class distribution for labeled instances

Figure 5.1: Class distribution for training data in fold1 (615 total instances) resembles the
original class distribution shown in Table 5.3
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5.4 Feature set

There are three sets of features:

• Content based features: Computed from the full version of the contents. These

features include number of words in the home page, average word length, average

length of the title, etc. for a sample of pages on each host. These features are the

content-based features used in [Carlos et al., 2007]. There are 96 features in total.

• Link based features: These features are computed from the web graph and represent

link-based features for the hosts. This set includes in-degree, out-degree, PageRank,

edge reciprocity, assortativity coefficient, TrustRank, Truncated PageRank, estimation

of supporters, etc. It also contains simple numeric transformations of the link-based

features for the hosts. These transformations were found to work better for clas-

sification in practice than the raw link-based features. This includes mostly ratios

between features such as Indegree/PageRank or TrustRank/PageRank, and log(.) of

several features. There are 176 features in total. These features are the transformed

link-based features used in [Carlos et al., 2007].

• TF-DF based features: The host level aggregate term vectors of the most frequent

terms are found here. Top 50,000 terms were considered after eliminating stopwords.

Within each subcorpus, term frequency is computed over an entire host while docu-

ment frequency is computed at the page level.

5.5 Feature selection

We perform feature selection in two steps. As discussed in Chapter 4, we first perform filter

based feature selection using WEKA’s standard information gain and ranking algorithm.

We do this for each fold and select top 50 link based features, top 50 content based features

and top 100 to 2800 tf-df based features (words). In the second step of feature selection,
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we take average of all the 10 folds and come up with global top 50 link based features, top

50 content based features and top 100 to 2800 tf-df based features. It should be noted that

the selected content based features and tf-df based features are combined together to form

a more comprehensive content based feature set. We create .arff files separately for both

labeled and unlabeled instances.

5.6 Experiments

The following are the experiments reported in this work:

1. In the first experiment, we test the performance of the Naive Bayes (henceforth termed

as NB) and Support Vector Machine (henceforth termed as SVM) classifiers in super-

vised environment for all the 10 folds. This experiment is used as a baseline. This

experiment is, henceforth, referred to as Experiment 1.

2. In the second experiment, we test the performance of the NB and SVM classifiers in

a semi-supervised environment for all the 10 folds. We use co-training based semi-

supervised learning which requires a pair of classifiers. Here, we use 2 NB classifiers

for NB based co-training experiment and 2 SVM classifiers for SVM based co-training

experiment. It should be noted that we keep the labeled data constant and vary the

unlabeled data by using 1000, 5000, 10000, 15000, 20000 instances, respectively. This

experiment helps us to find how the semi-supervised approaches perform when the

number of unlabeled instances is varied. We also observe the result when the number

of tf-df features is gradually increased. This experiment is, henceforth, referred to as

Experiment 2.

3. In the third experiment, we repeat the Experiment 2, but we keep the unlabeled data

constant and vary the labeled data by using 200, 400, 600 instances, respectively. This

experiment helps us to understand how the semi-supervised approaches perform when

number of labeled instances is varied. We also observe the result when the number
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of tf-df features is gradually increased. This experiment is, henceforth, referred to as

Experiment 3.

It should be noted that all three experiments above are conducted with gradual increase

in tf-df features in the set, specifically 100, 400, 700, 1000, 1300, 1600, 1900, 2200, 2500,

2800 respectively. In each experiment, we build predictive models using train data that is

balanced using SMOTING [Chawla et al., 2002]. NB and SVM implementations provided

by the WEKA data mining software package [Witten et al., 1999] are used for all the

experiments.
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Chapter 6

Results

6.1 Notations used in this chapter

Table 6.1 depicts the notations to be followed in this chapter henceforth:

Table 6.1: Notations used to describe the classifiers

Notation Description
NB sup Naive Bayes in supervised environment

SVM sup Support Vector Machine in supervised environment
NB semi Naive Bayes in co-training environment

SVM semi Support Vector Machine in co-training environment
NB semi k Naive Bayes in co-training environment with k unlabeled instances

SVM semi k Support Vector Machine in co-training environment with k unlabeled instances
400w 400 word features
hp Home page
mp Page with maximum PageRank score for a particular host
div Division

6.2 Results of the experiments

In this section, we will show the results of the experiments described in Chapter 5. The

notations used are given in Table 6.1.
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6.2.1 Performance variation with the number of TF-DF features

The following experiments are performed to study the behavior of the classifiers when the

number of word features is varied. The results are shown in terms of AUC values. AUC

stands for Area Under the ROC (Receiver Operating Characteristic) curve. An ROC curve

plots the true positive rate (sensitivity) vs. false positive rate (1-specificity). The AUC value

measures the probability with which a classifier ranks a randomly selected true instance

higher than a randomly selected false instance [Fawcett, 2006].

1. Table 6.2 shows the results (AUC value) of supervised and semi-supervised experiments

when the number of labeled instances is constant , the number of unlabeled instances

is also constant (in this case, 1000) and the number of word features vary in the range

of 400 to 2800. There is a small increase in performance in almost all the cases when

the number of word features is increased. Note that for SVM sup performs better

than SVM semi for 2800 words. Next, we will study the performance as the number

of unlabeled instances increase.

Table 6.2: Results with 1000 unlabeled instances and word features varying from 400 to
2800.

Classifiers Learned 400w 1000w 1900w 2800w

NB sup 0.6089 0.6187 0.6252 .6299

SVM sup 0.6982 0.7009 0.7091 .7127

NB semi 0.611 0.613 0.626 0.629

SVM semi 0.7001 0.701 0.71 0.7113

2. Table 6.3 shows the results (AUC value) of supervised and semi-supervised experi-

ments with word features varying in the range of 400 to 2800 and number of unlabeled

instances being kept at 10000. There is consistent increase in performance in almost

all cases when the number of word features is increased. SVM semi provides better

performance than all other classifiers. Thus, with the increase in the number of un-
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labeled instances, we see a small improvement in the performance of co-training. (as

compared to the results in Table 6.2).

Table 6.3: Results with 10000 unlabeled instances and word features varying from 400 to
2800.

Classifiers Learned 400w 1000w 1900w 2800w

NB sup 0.6089 0.6187 0.6252 .6299

SVM sup 0.6982 0.7009 0.7091 .7127

NB semi 0.612 0.622 0.631 0.636

SVM semi 0.705 0.707 0.720 0.724

3. Table 6.4 shows the results (AUC value) of supervised and semi-supervised experiments

with word features varying in the range of 400 to 2800 and number of unlabeled

instances being kept at 20000. These results further enhance our observation that

the performance of co-training improves slowly as the number of unlabeled examples

increases (refer to Tables 6.3, 6.4). SVM semi with 2800 word features and 20000

unlabeled instances gives the best performance.

Table 6.4: Results with 20000 unlabeled instances and word features varying from 400 to
2800.

Classifiers Learned 400w 1000w 1900w 2800w

NB sup 0.6089 0.6187 0.6252 .6299

SVM sup 0.6982 0.7009 0.7091 .7127

NB semi 0.619 0.623 0.635 0.637

SVM semi 0.708 0.714 0.723 0.730

6.2.2 Performance variation with the number of unlabeled in-
stances

The following experiments are performed to further study the behavior of the classifiers

when the amount of unlabeled data is varied.
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1. Figure 6.1 shows the AUC values plotted when the number of word features is kept

constant at a value of 4000 and the number of unlabeled instances is varied from 1000 to

20000. The performance of SVM semi is comparable to that of the SVM sup when the

number of unlabeled instances is small. SVM semi gradually outperforms SVM sup

when the number of unlabeled instances increases. The AUC values corresponding to

SVM sup and NB sup are plotted to get a better picture of the comparison between

supervised learning and co-training based semi-supervised learning (given that they

do not use the unlabeled data, their corresponding AUC values are constant across all

unlabeled data set sizes).

Figure 6.1: AUC values when the number of word features is 400, while the number of
unlabeled instances varies from 1000 to 20000.

2. Figure 6.2 shows the AUC values plotted when the number of word features is kept

constant at 1000 and number of unlabeled instances is varied from 1000 to 20000.

When comparing with Figure 6.1, we can see that the AUC values have increased due

to the increase in the number of word features. SVM semi clearly outperforms other

supervised and semi-supervised methods of classifications.
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Figure 6.2: AUC values when the number of word features is 1000, while the number of
unlabeled instances varies from 1000 to 20000.

3. Figure 6.3 shows the AUC values plotted when the number of word features is kept

constant at 2800 and the number of unlabeled instances is varied from 1000 to 20000.

SVM semi has the best performance when using the largest number of word features

(2800) and the largest number of unlabeled instances (20000).

The poor performance of Naive Bayes classifier can be attributed to its dependence on the as-

sumption of conditional independence amongst the set of features. SVM is known to be very

good text classifier because of its ability to separate by increasing the dimensionality of the

data. In many cases SVM sup has performed better than NB semi. The consistent perfor-

mance of SVM semi can be attributed to the good separation of the feature set amongst link

and content based features, thus making the co-training more effective [Blum and Mitchell,

1998], [Nigam and Ghani, 2007]. SVM semi gives a small but consistent improvement over

SVM sup proving the effectiveness of co-training as a method of semi-supervised learning.
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Figure 6.3: AUC values when the number of word features is 2800, while the number of
unlabeled instances varies from 1000 to 20000.

6.2.3 Performance variation with the number of labeled instances

The following experiments are performed to study the behavior of the classifiers when the

amount of labeled data is varied, while the amount of unlabeled data is kept constant. Here,

we have set the number of unlabeled instances to 20000.

1. Figure 6.4 shows the AUC values plotted when the number of word features is kept

at 400 and the number of labeled instances is varied from 200 to 600. SVM semi

starts with a lower AUC value for 200 labeled instances but as the number of labeled

instances increases, SVM semi improves its performance. For NB semi, the AUC value

increases gradually as the number of labeled instances increase.

2. Figure 6.5 shows the AUC values plotted when the number of word features is kept at

1000 and the number of labeled instances is varied from 200 to 600. Again, we see the

same behavior as in 6.4 but slight increase in overall AUC values because of increase

in the number of word features.

3. Figure 6.6 shows the AUC values plotted when the number of word features is kept at
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Figure 6.4: AUC values when the number of word feature is kept constant at 400, and the
number of labeled instances is varied from 200 to 600.

Figure 6.5: AUC values when the number of word feature is kept constant at 1000, and the
number of labeled instances is varied from 200 to 600.
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2800 and the number of labeled instances is varied from 200 to 600.

Figure 6.6: AUC values when the number of word feature is kept constant at 2800, and the
number of labeled instances is varied from 200 to 600.

The increase in the AUC value for SVM semi when the number of labeled instances increases

from 200 to 600 shows the need for a minimum number of labeled instances required to

exploit the full capability of co-training. We need to perform more experiments to better

understand how many labeled examples could be enough for the classification task.
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Chapter 7

Concluding Remarks

The research in web genre classification has recently gained momentum and researchers are

now actively working on various fronts to make the process less costly and more effective and

efficient. In our work we tried to exploit the exclusive nature of the web, which is enriched

with very powerful heterogeneous feature sets with clear separation between them. We have

shown that a co-training based semi-supervised approach gives better performance over its

supervised counterparts when the feature sets are conditionally independent and sufficient

enough on their own to predict the labels. Co-training has been used many times with

content based features in the past. Here, we show that it also yields good results with link

structure based features. This is an encouraging result for genre classification of web pages.

Experiments were conducted with gradual increase in the number of word features and the

results showed that the performance of co-training based system increases as the number

of word features increases. For an example, with 2000 unlabeled instances, the AUC value

increased from .708 to .730 when the number of word features was increased from 100 to

2800. We have found that as the number of unlabeled examples increases, the performance

of the co-training slightly increases for both classifiers. For SVM based co-training, the

algorithm reaches an AUC value of .730 (20000 unlabeled instances) from .7001 (with 1000

unlabeled instances) when taking the average of the results for the 10 folds.

Top performances at individual class and fold level are as follows: For Spam class it

reaches an AUC value of .9 followed by educational/research .803, news/editorial .799.
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When we kept the number of unlabeled data constant and varied the number of labeled

instances, we noticed a considerable increase of the AUC value, when the number of labeled

data was increased from very low to average (or higher) number of instances. This shows

that the co-training method of semi-supervised classification requires a minimum threshold

of labeled instances for acceptable classification. It should also be mentioned that once

it reaches the threshold, the increase in labeled data might not greatly affect the perfor-

mance. It should be noted that both on individual class level and over all average level,

co-training outperforms supervised learning. In terms of feature selection, it was found that

the transformed features occupied more of the top 50 slots as compared to their traditional

counterparts. For example, log(trustrank/pagerank) appeared consistently (for all the folds)

within the top 10 slots as compared to trustrank or pagerank alone.

As part of future work, we plan to consider more than two classifiers in co-training based

systems, with TF-DF and NLP features seen as the third feature set.

We are also interested in performing multi-label classification as part of the future work.

We will rank the labels (in case of multiple labels) associated with a particular instance.

In addition to the features explored in this work, we plan to explore more features such as

HTML meta data, vision based features etc. We also plan to conduct experiments with more

unlabeled data and more tf-df features. More work is needed to find a labeled:unlabeled

ratio which can optimize the performance of the co-training setup.

Finally, the future work can also be extended to classify web pages in foreign languages.

The database used in this work has features extracted for major European languages. We

could leverage this database and existing experimental setup to perform web genre classifi-

cation for web pages in foreign languages.
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