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1. Introduction

Let D ⊂ R3 be a bounded domain with a connected C2-smooth boundary S, and D′ := R3 \ D be the
unbounded exterior domain.

Consider the Navier–Stokes equations:

ut + (u,∇)u = −∇p+ ν∆u+ f, x ∈ D′, t ≥ 0, (1)
∇ · u = 0, (2)
u|S = 0, u|t=0 = u0(x). (3)

Here f is a given vector-function, p is the pressure, u = u(x, t) is the velocity vector-function, ν = const > 0
is the viscosity coefficient, u0 is the given initial velocity, ut := ∂tu, (u,∇)u := ua∂au, ∂au := ∂u

∂xa
:= u;a, and

∇ · u0 := ua;a = 0. Over the repeated indices a and b summation is understood, 1 ≤ a, b ≤ 3. All functions
are assumed real-valued.

We assume that u ∈W ,

W := {u|L2(0, T ;H1
0 (D′)) ∩ L∞(0, T ;L2(D′)) ∩ ut ∈ L2(D′ × [0, T ]);∇ · u = 0},

where T > 0 is arbitrary.
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Let (u, v) :=

D′
uavadx denote the inner product in L2(D′), ∥u∥ := (u, u)1/2. By uja the a-th component

of the vector-function uj is denoted, and uja;b is the derivative ∂uja∂xb . Eq. (2) can be written as ua;a = 0 in
these notations. We denote ∂u

2

∂xa
:= (u2);a, u2 := ubub. By c > 0 various estimation constants are denoted.

Let us define a weak solution to problem (1)–(3) as an element of W which satisfies the identity:

(ut, v) + (uaub;a, vb) + ν(∇u,∇v) = (f, v), ∀v ∈W. (4)

Here we took into account that −(∆u, v) = (∇u,∇v) and (∇p, v) = −(p, va;a) = 0 if v ∈ H1
0 (D′) and

∇ · v = 0. Eq. (4) is equivalent to the integrated equation: t
0

[(us, v) + (uaub;a, vb) + ν(∇u,∇v)]ds =
 t

0
(f, v)ds, ∀v ∈W. (∗)

Eq. (4) implies Eq. (∗), and differentiating Eq. (∗) with respect to t one gets Eq. (4) for almost all t ≥ 0.
The aim of this paper is to prove the global existence and uniqueness of the weak solution to the Navier–

Stokes boundary problem, that is, solution in W existing for all t ≥ 0. Let us assume that

sup
t≥0

 t
0
∥f∥ds ≤ c, (u0, u0) ≤ c. (A)

Theorem 1. If assumptions (A) hold and u0 ∈ H1
0 (D) satisfies Eq. (2), then there exists for all t > 0 a

solution u ∈W to (4) and this solution is unique in W provided that ∥∇u∥4 ∈ L1
loc(0,∞).

In Section 2 we prove Theorem 1. There is a large literature on Navier–Stokes equations, of which we men-
tion only [1,2]. The global existence and uniqueness of the solution to Navier–Stokes boundary problems has
not yet been proved without additional assumptions. Our additional assumption is ∥∇u∥4 ∈ L1

loc(0,∞). The
history of this problem see, for example, in [1]. In [2] the uniqueness of the global solution to Navier–Stokes
equations is established under the assumption ∥u∥8L4(D′) ∈ L

1
loc(0,∞).

2. Proof of Theorem 1

Proof of Theorem 1. The steps of the proof are: (a) derivation of a priori estimates; (b) proof of the existence
of the solution in W ; (c) proof of the uniqueness of the solution in W .

(a) Derivation of a priori estimates

Take v = u in (4). Then

(uaub;a, ub) = −(uaub, ub;a) = −1
2(ua, (u2);a) = 1

2(ua;a, u2) = 0,

where the equation ua;a = 0 was used. Thus, Eq. (4) with v = u implies

1
2∂t(u, u) + ν(∇u,∇u) = (f, u) ≤ ∥f∥∥u∥. (5)

We will use the known inequality ∥u∥∥f∥ ≤ ϵ∥u∥2 + 1
4ϵ∥f∥

2 with a small ϵ > 0, and denote by c > 0 various
estimation constants.

One gets from (5) the following estimate:

(u(t), u(t)) + 2ν
 t

0
(∇u,∇u)ds ≤ (u0, u0) + 2

 t
0
∥f∥ds sup

s∈[0,t]
∥u(s)∥ ≤ c+ c sup

s∈[0,t]
∥u(s)∥. (6)

Recall that assumptions (A) hold. Denote sups∈[0,t] ∥u(s)∥ := b(t). Then inequality (6) implies

b2(t) ≤ c+ cb(t), c = const > 0. (7)
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Since b(t) ≥ 0, inequality (7) implies

sup
t≥0
b(t) ≤ c. (8)

Remember that c > 0 denotes various constants, and the constant in Eq. (8) differs from the constant in
Eq. (7). From (6) and (8) one obtains

sup
t≥0

[(u(t), u(t)) + ν
 t

0
(∇u,∇u)ds] ≤ c. (9)

A priori estimate (9) implies for every T ∈ [0,∞) the inclusions

u ∈ L∞(0, T ;L2(D′)), u ∈ L2(0, T ;H1
0 (D′)).

This and Eq. (4) imply that ut ∈ L2(D′ × [0, T ]) because Eq. (4) shows that (ut, v) is bounded for every
v ∈W . Note that L∞(0, T ;L2(D′)) ⊂ L2(0, T ;L2(D′)), and that bounded sets in a Hilbert space are weakly
compact. Weak convergence is denoted by the sign ⇀.

(b) Proof of the existence of the solution u ∈W to (4) and (∗)

The idea of the proof is to reduce the problem to the existence of the solution to a Cauchy problem
for ordinary differential equations (ODE) of finite order, and then to use a priori estimates to establish
convergence of these solutions of ODE to a solution of Eqs. (4) and (∗). This idea is used, for example, in [1].
Our argument differs from the arguments in the literature in treating the limit of the term

 t
0 (uns , v)ds.

Let us look for a solution to Eq. (4) of the form un :=
n
j=1 c

n
j (t)φj(x), where {φj}∞j=1 is an orthonormal

basis of the space L2(D′) of divergence-free vector functions belonging to H1
0 (D′) and in the expression un

the upper index n is not a power. If one substitutes un into Eq. (4), takes v = φm, and uses the orthonor-
mality of the system {φj}∞j=1 and the relation (∇φj ,∇φm) = λmδjm, where λm are the eigenvalues of the
vector Dirichlet Laplacian in D on the divergence-free vector fields, then one gets a system of ODE for the
unknown coefficients cnm:

∂tc
n
m + νλmcnm +

n
i,j=1

(φiaφjb;a, φmb)cni cnj = fm, cnm(0) = (u0, φm). (10)

Problem (10) has a unique global solution because of the a priori estimate that follows from (9) and from
Parseval’s relations:

sup
t≥0

(un(t), un(t)) = sup
t≥0

n
j=1

[cnj (t)]2 ≤ c. (11)

Consider the set {un = un(t)}∞n=1. Inequalities (9) and (11) for u = un imply the existence of the weak
limits un ⇀ u in L2(0, T ;H1

0 (D′)) and in L∞(0, T ;L2(D′)). This allows one to pass to the limit in Eq. (∗)
in all the terms except the first, namely, in the term

 t
0 (uns , v(s))ds. The weak limit of the term (unaunb;a, vb)

exists and is equal to (uaub;a, vb) because

(unaunb;a, vb) = −(unaunb , vb;a)→ −(uaub, vb;a) = (uaub;a, vb).

Note that vb;a ∈ L2(D′) and unaunb ∈ L4(D′). The relation (unaunb;a, vb) = −(unaunb , vb;a) follows from an
integration by parts and from the equation una;a = 0.

The following inequality is essentially known:

∥u∥L4(D′) ≤ 21/2∥u∥1/4∥∇u∥3/4, ∥u∥ := ∥u∥L2(D′), u ∈ H1
0 (D′). (12)
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In [1] this inequality is proved forD′ = R3, but a function u ∈ H1
0 (D′) can be extended by zero toD = R3\D′

and becomes an element of H1(R3) to which inequality (12) is applicable.

It follows from (12) and Young’s inequality (ab ≤ a
p

p + bq

q , p−1 + q−1 = 1) that

∥u∥2L4(D′) ≤ ϵ∥∇u∥
2 + 27

16ϵ3 ∥u∥
2, u ∈ H1

0 (D′), (13)

where ϵ > 0 is an arbitrary small number, p = 4
3 and q = 4. One has unaunb ⇀ uaub in L2(D′) as n → ∞,

because bounded sets in a reflexive Banach space L4(D′) are weakly compact. Consequently, (unaunb;a, vb)→
(uaub;a, vb) when n→∞, as claimed. Therefore,

 t
0 (unaunb;a, vb)ds→

 t
0 (uaub;a, vb)ds. The weak limit of the

term ν
 t
0 (∇un,∇v)ds exists because of the a priori estimate (9) and the weak compactness of the bounded

sets in a Hilbert space. Since Eq. (∗) holds, and the limits of all its terms, except
 t
0 (uns , v)ds, do exist, then

there exists the limit
 t
0 (uns , v(s))ds→

 t
0 (us, v(s))ds for all v ∈W . By passing to the limit n→∞ one proves

that the limit u satisfies Eq. (∗). Differentiating Eq. (∗) with respect to t yields Eq. (4) almost everywhere.

(c) Proof of the uniqueness of the solution u ∈W

Suppose there are two solutions to Eq. (4), u and w, u,w ∈W , and let z := u− w. Then

(zt, v) + ν(∇z,∇v) + (uaub;a − wawb;a, vb) = 0. (14)

Since z ∈W , one may set v = z in (14) and get

(zt, z) + ν(∇z,∇z) + (uaub;a − wawb;a, zb) = 0, z = u− w. (15)

Note that (uaub;a−wawb;a, zb) = (zaub;a, zb)+(wazb;a, zb), and (wazb;a, zb) = 0 due to the equation wa;a = 0.
Thus, Eq. (15) implies

∂t(z, z) + 2ν(∇z,∇z) ≤ 2|(zaub;a, zb)|. (16)

Since |zaub;azb| ≤ |z|2|∇u|, one has the following estimate:

|(zaub;a, zb)| ≤

D′
|z|2|∇u|dx ≤ ∥z∥2L4(D′)∥∇u∥ ≤ ∥∇u∥


ϵ∥∇z∥2 + 27

16ϵ3 ∥z∥
2

. (17)

Denote φ := (z, z), take into account that ∥∇u∥4 ∈ L1
loc(0,∞), choose ϵ = ν

∥∇u∥ in the inequality (13), in
which u is replaced by z, use inequality (17) and get

∂tφ+ ν(∇z,∇z) ≤ 27
16ν3 ∥∇u∥

4φ, φ|t=0 = 0. (18)

In the derivation of inequality (18) the idea is to compensate the term ν∥∇z∥2 on the left side of inequality
(16) by the term ϵ∥∇u∥∥∇z∥2 on the right side of inequality (17). To do this, choose ∥∇u∥ϵ = ν and obtain
inequality (18). It follows from inequality (18) that

∂tφ ≤
27∥∇u∥4

16ν3 φ, φ|t=0 = 0.

Since we have assumed that ∥∇u∥4 ∈ L1
loc(0,∞) this implies that φ = 0 for all t ≥ 0.

Theorem 1 is proved. �

Remark 1. One has (summation is understood over the repeated indices):

2|(zaub;a, zb)| = 2|(zaub, zb;a)| ≤ 18∥∇z∥∥|z||u|∥ ≤ ν∥∇z∥2 + 81
ν
∥|z||u|∥2.

Thus,

∂tφ+ ν(∇z,∇z) ≤ 81
ν
∥ | z || u | ∥2.
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If one assumes that |u(·, t)| ≤ c(T ) for every t ∈ [0, T ], then ∂tφ ≤ cφ, φ(0) = 0, on any interval
[0, T ], c = c(T, ν) > 0 is a constant. This implies φ = 0 for all t ≥ 0. The same conclusion holds
under a weaker assumption ∥u(·, t)∥L4(D′) ≤ c(T ) for every t ∈ [0, T ], or under even weaker assumption
∥u(·, t)∥8L4(D′) ∈ L

1
loc(0,∞).

In [1] it is shown that the smoothness properties of the solution u are improved when the smoothness
properties of f , u0 and S are improved.
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