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1. Introduction

Let D C R? be a bounded domain with a connected C2-smooth boundary S, and D’ := R3\ D be the
unbounded exterior domain.
Consider the Navier—Stokes equations:

u + (u, VYu=—-Vp+vAu+ f, ze€D t>0, (1
V-u=0, (2
u|lg =0, U= = uo(x). (3)

Here f is a given vector-function, p is the pressure, u = u(z,t) is the velocity vector-function, v = const > 0
is the viscosity coeflicient, ug is the given initial velocity, us == dpu, (u, V)u := uqd,u, Ogu = 8’9—;2 = Usq, and
V - up = Uq;q = 0. Over the repeated indices a and b summation is understood, 1 < a,b < 3. All functions
are assumed real-valued.

We assume that u € W,
W = {u|L*(0,T; H}(D")) N L>=(0,T; L*(D")) Nuy € L*(D' x [0,T)); V - u = 0},
where T' > 0 is arbitrary.
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Let (u,v) = [}, uqvadz denote the inner product in L*(D’), |lul| := (u,u)'/?. By u;, the a-th component
Ujq
: S
these notations. We denote g%a = (u2);a, u® = upup. By ¢ > 0 various estimation constants are denoted.

Let us define a weak solution to problem (1)—(3) as an element of W which satisfies the identity:

(ut,v) + (UgUpsa, vp) + V(Vu, Vo) = (f,v), YveW. (4)

Here we took into account that —(Au,v) = (Vu, Vo) and (Vp,v) = —(p,vee) = 0 if v € H}(D') and
V -v=0.Eq. (4) is equivalent to the integrated equation:

of the vector-function u; is denoted, and uj, is the derivative Eq. (2) can be written as ug,, = 0 in

2

/ [(us,v) + (UaUpa, V) + v(Vu, Vv)]ds = / (f,v)ds, YveW. (%)
0 0

Eq. (4) implies Eq. (), and differentiating Eq. (%) with respect to ¢ one gets Eq. (4) for almost all ¢ > 0.
The aim of this paper is to prove the global existence and uniqueness of the weak solution to the Navier—
Stokes boundary problem, that is, solution in W existing for all ¢ > 0. Let us assume that

t
sup [ 1flds < e, (o) < ¢ »
t>0 J0

Theorem 1. If assumptions (A) hold and vy € H}(D) satisfies Eq. (2), then there exists for all t > 0 a
solution w € W to (4) and this solution is unique in W provided that |Vul||* € L}, .(0,00).

loc

In Section 2 we prove Theorem 1. There is a large literature on Navier—Stokes equations, of which we men-
tion only [1,2]. The global existence and uniqueness of the solution to Navier—Stokes boundary problems has

not yet been proved without additional assumptions. Our additional assumption is | Vul|* € L}, .(0,00). The

history of this problem see, for example, in [1]. In [2] the uniqueness of the global solution to Navier—Stokes
equations is established under the assumption Hu||§4(D,) € L,.(0,00).

2. Proof of Theorem 1

Proof of Theorem 1. The steps of the proof are: (a) derivation of a priori estimates; (b) proof of the existence
of the solution in W; (c) proof of the uniqueness of the solution in W.

(a) Derivation of a priori estimates

Take v = u in (4). Then

1 1

(uaub;ayub) = —(Uan, ub;a) = _§<uaa (UQ);CL> = E(ua;ay u2) = 0;

where the equation u,., = 0 was used. Thus, Eq. (4) with v = u implies
1
20w, u) +v(Vu, Vu) = (f, u) < || fl[|ull (5)

We will use the known inequality [|ull||f|| < €[|lul|? + || f||* with a small € > 0, and denote by ¢ > 0 various
estimation constants.

One gets from (5) the following estimate:

(u(t), u(t)) + 21//0 (Vu, Vu)ds < (ug,ug) + 2/0 Ifllds sup ||u(s)|| < c+c sup [|u(s)|- (6)

s€[0,t] s€[0,t]

Recall that assumptions (A) hold. Denote sup,c(o 4 [[u(s)|| := b(t). Then inequality (6) implies

b2(t) < c+cb(t), c= const > 0. (7)



A.G. Ramm / Applied Mathematics Letters 49 (2015) 7-11 9

Since b(t) > 0, inequality (7) implies
supb(t) < c. (8)

t>0

Remember that ¢ > 0 denotes various constants, and the constant in Eq. (8) differs from the constant in
Eq. (7). From (6) and (8) one obtains

sup[(u(t), u(t)) + 1//0 (Vu, Vu)ds] < c. 9)

>0
A priori estimate (9) implies for every T € [0, 00) the inclusions
u€ L=(0,T; L*(D"), weL*0,T;H(D)).

This and Eq. (4) imply that u; € L*(D’ x [0,T]) because Eq. (4) shows that (us,v) is bounded for every
v € W. Note that L°(0,T; L?(D')) C L?*(0,T; L?*(D")), and that bounded sets in a Hilbert space are weakly
compact. Weak convergence is denoted by the sign —.

(b) Proof of the existence of the solution v € W to (4) and (x)

The idea of the proof is to reduce the problem to the existence of the solution to a Cauchy problem
for ordinary differential equations (ODE) of finite order, and then to use a priori estimates to establish
convergence of these solutions of ODE to a solution of Eqgs. (4) and (). This idea is used, for example, in [1].
Our argument differs from the arguments in the literature in treating the limit of the term fg (ul,v)ds.

Let us look for a solution to Eq. (4) of the form u" Z] 1 € ()¢ (), where {$;}52, is an orthonormal
basis of the space L?(D’) of divergence-free vector functlons belonging to HE(D') and in the expression u"”
the upper index n is not a power. If one substitutes «" into Eq. (4), takes v = ¢,,, and uses the orthonor-
mality of the system {¢;}72, and the relation (V¢;, Vé,,) = Andjm, where A, are the eigenvalues of the
vector Dirichlet Laplaaan in D on the divergence-free vector fields, then one gets a system of ODE for the
unknown coefficients ¢} :

6750% + V)\mcfn + Z (¢ia¢jb;a7 ¢mb)C?C§L = Jm; C:Ln(O) = (U'07 ¢’m) (10)
i,j=1

Problem (10) has a unique global solution because of the a priori estimate that follows from (9) and from
Parseval’s relations:

sup(u” (t), u™ (£)) = supz (11)

>0 05

Consider the set {u™ = u™(¢)}°2 ;. Inequalities (9) and (11) for v = u" imply the existence of the weak
limits ™ — w in L*(0,T; H}(D')) and in L°°(0,T; L?>(D")). This allows one to pass to the limit in Eq. (*)
in all the terms except the first, namely, in the term fg(u;‘, v(s))ds. The weak limit of the term (uguy.,, v)
exists and is equal to (uqUp,q, V) because

(uzug;avvb) = _(ugugavb;a) - _(uaubyvb;a) = (uaub;aavb)~

Note that vy, € L?*(D’) and ulu} € L*(D’). The relation (uguy ,,vp) = —(uqup, vba) follows from an
integration by parts and from the equation ug,, = 0.

The following inequality is essentially known:

lullzapry < 22l IVulP, Jlull = llullr2py,  w e Hg(D'). (12)
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In [1] this inequality is proved for D’ = R3, but a function u € H}(D’) can be extended by zero to D = R3\ D’
and becomes an element of H!(R3) to which inequality (12) is applicable.

It follows from (12) and Young’s inequality (ab < % + %, pl4+q1=1) that

7
@\IUIIQ, u € Hy(D'), (13)

where € > 0 is an arbitrary small number, p = 3 and ¢ = 4. One has uu}’ — uquy in L2(D’) as n — oo,

lullZs oy < el Vull® +

because bounded sets in a reflexive Banach space L*(D’) are weakly compact. Consequently, (ugug, o, vp) —
(UqUpsq, Vp) When n — oo, as claimed. Therefore, fg(ugu;};a, vp)ds — fot(uaub;a, vp)ds. The weak limit of the
term v fg (Vu™, Vu)ds exists because of the a priori estimate (9) and the weak compactness of the bounded
sets in a Hilbert space. Since Eq. () holds, and the limits of all its terms, except fot (u?,v)ds, do exist, then
there exists the limit f(f(ug, v(s))ds — fot (us,v(s))ds for all v € W. By passing to the limit n — oo one proves
that the limit u satisfies Eq. (). Differentiating Eq. (x) with respect to t yields Eq. (4) almost everywhere.

(¢) Proof of the uniqueness of the solution uw € W
Suppose there are two solutions to Eq. (4), u and w, u,w € W, and let z := u — w. Then
(z1,v) +v(Vz, V) 4+ (UgUpq — WoWpsq, V) = 0. (14)
Since z € W, one may set v = z in (14) and get
(21, 2) +v(V2z,V2) + (UgUpa — WaWhia, 2b) = 0, zZ=u—w. (15)

Note that (ugUp.q —WeWhia, 2b) = (ZaUbias 2b) + (WaZbia, 2b), and (We2bia, 25) = 0 due to the equation wg,q, = 0.
Thus, Eq. (15) implies

0(z,2) + 2v(Vz,Vz) < 2|(2aUbia, 2b)|- (16)
Since |zqup:q26| < |2|2|Vul, one has the following estimate:
27

(Gt 2] < [ JeVadde < el IVl < 190l (e V212 + 55 1412): (17)

Denote ¢ := (z,z), take into account that |Vu|* € Li,_(0,0), choose € = oy in the inequality (13), in
which wu is replaced by z, use inequality (17) and get
27

¢ +v(Vz,Vz) < 6,3 |Vul|*¢,  ¢li=o = 0. (18)

In the derivation of inequality (18) the idea is to compensate the term v||Vz||? on the left side of inequality
(16) by the term €||Vul|||Vz]|? on the right side of inequality (17). To do this, choose || Vu|le = v and obtain
inequality (18). It follows from inequality (18) that

27||Vu*
< — —o=0.
O < 1607 ¢, @li=o=0
Since we have assumed that ||[Vu|* € L}, .(0,00) this implies that ¢ = 0 for all ¢ > 0.

Theorem 1 is proved. (Il

Remark 1. One has (summation is understood over the repeated indices):
81
2| (20, 2)| = 2l (2ate, 20)| < B[ V2[[[2][ulll < w[[V2]* + —l]2]lul]*
Thus,

81
O +v(Vz,Vz) < 7|| |2 ]| u]|?
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If one assumes that |u(-,t)] < ¢(T) for every t € [0,T], then 0 <
[0,T], ¢ = ¢(T,v) > 0 is a constant. This implies ¢ = 0 for all ¢t >
under a weaker assumption ||u(-,t)||z2(py < ¢(T) for every t € [0,77], or
(s D1 (1) € Lioe (0, 00)-

loc

cp,»(0) = 0, on any interval
0. The same conclusion holds
under even weaker assumption

In [1] it is shown that the smoothness properties of the solution u are improved when the smoothness
properties of f, ug and S are improved.
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