Existence and uniqueness of the global solution to the Navier-Stokes equations

Alexander G. Ramm

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

A R T I C L E I N F O

Article history:
Received 27 February 2015
Received in revised form 12 April
2015
Accepted 12 April 2015
Available online 25 April 2015

Keywords:

Global existence and uniqueness of the weak solution to Navier-Stokes equations

Abstract

A proof is given of the global existence and uniqueness of a weak solution to Navier-Stokes equations in unbounded exterior domains. © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let $D \subset \mathbb{R}^{3}$ be a bounded domain with a connected C^{2}-smooth boundary S, and $D^{\prime}:=\mathbb{R}^{3} \backslash D$ be the unbounded exterior domain.

Consider the Navier-Stokes equations:

$$
\begin{align*}
& u_{t}+(u, \nabla) u=-\nabla p+\nu \Delta u+f, \quad x \in D^{\prime}, t \geq 0, \tag{1}\\
& \nabla \cdot u=0, \tag{2}\\
& \left.u\right|_{S}=0,\left.\quad u\right|_{t=0}=u_{0}(x) . \tag{3}
\end{align*}
$$

Here f is a given vector-function, p is the pressure, $u=u(x, t)$ is the velocity vector-function, $\nu=$ const >0 is the viscosity coefficient, u_{0} is the given initial velocity, $u_{t}:=\partial_{t} u,(u, \nabla) u:=u_{a} \partial_{a} u, \partial_{a} u:=\frac{\partial u}{\partial x_{a}}:=u_{; a}$, and $\nabla \cdot u_{0}:=u_{a ; a}=0$. Over the repeated indices a and b summation is understood, $1 \leq a, b \leq 3$. All functions are assumed real-valued.

We assume that $u \in W$,

$$
W:=\left\{u \mid L^{2}\left(0, T ; H_{0}^{1}\left(D^{\prime}\right)\right) \cap L^{\infty}\left(0, T ; L^{2}\left(D^{\prime}\right)\right) \cap u_{t} \in L^{2}\left(D^{\prime} \times[0, T]\right) ; \nabla \cdot u=0\right\},
$$

where $T>0$ is arbitrary.

[^0]Let $(u, v):=\int_{D^{\prime}} u_{a} v_{a} d x$ denote the inner product in $L^{2}\left(D^{\prime}\right),\|u\|:=(u, u)^{1 / 2}$. By $u_{j a}$ the a-th component of the vector-function u_{j} is denoted, and $u_{j a ; b}$ is the derivative $\frac{\partial u_{j a}}{\partial x_{b}}$. Eq. (2) can be written as $u_{a ; a}=0$ in these notations. We denote $\frac{\partial u^{2}}{\partial x_{a}}:=\left(u^{2}\right)_{; a}, u^{2}:=u_{b} u_{b}$. By $c>0$ various estimation constants are denoted.

Let us define a weak solution to problem (1)-(3) as an element of W which satisfies the identity:

$$
\begin{equation*}
\left(u_{t}, v\right)+\left(u_{a} u_{b ; a}, v_{b}\right)+\nu(\nabla u, \nabla v)=(f, v), \quad \forall v \in W . \tag{4}
\end{equation*}
$$

Here we took into account that $-(\Delta u, v)=(\nabla u, \nabla v)$ and $(\nabla p, v)=-\left(p, v_{a ; a}\right)=0$ if $v \in H_{0}^{1}\left(D^{\prime}\right)$ and $\nabla \cdot v=0$. Eq. (4) is equivalent to the integrated equation:

$$
\begin{equation*}
\int_{0}^{t}\left[\left(u_{s}, v\right)+\left(u_{a} u_{b ; a}, v_{b}\right)+\nu(\nabla u, \nabla v)\right] d s=\int_{0}^{t}(f, v) d s, \quad \forall v \in W . \tag{*}
\end{equation*}
$$

Eq. (4) implies Eq. (*), and differentiating Eq. (*) with respect to t one gets Eq. (4) for almost all $t \geq 0$.
The aim of this paper is to prove the global existence and uniqueness of the weak solution to the NavierStokes boundary problem, that is, solution in W existing for all $t \geq 0$. Let us assume that

$$
\begin{equation*}
\sup _{t \geq 0} \int_{0}^{t}\|f\| d s \leq c, \quad\left(u_{0}, u_{0}\right) \leq c \tag{A}
\end{equation*}
$$

Theorem 1. If assumptions (A) hold and $u_{0} \in H_{0}^{1}(D)$ satisfies Eq. (2), then there exists for all $t>0$ a solution $u \in W$ to (4) and this solution is unique in W provided that $\|\nabla u\|^{4} \in L_{\text {loc }}^{1}(0, \infty)$.

In Section 2 we prove Theorem 1. There is a large literature on Navier-Stokes equations, of which we mention only [1,2]. The global existence and uniqueness of the solution to Navier-Stokes boundary problems has not yet been proved without additional assumptions. Our additional assumption is $\|\nabla u\|^{4} \in L_{l o c}^{1}(0, \infty)$. The history of this problem see, for example, in [1]. In [2] the uniqueness of the global solution to Navier-Stokes equations is established under the assumption $\|u\|_{L^{4}\left(D^{\prime}\right)}^{8} \in L_{\text {loc }}^{1}(0, \infty)$.

2. Proof of Theorem 1

Proof of Theorem 1. The steps of the proof are: (a) derivation of a priori estimates; (b) proof of the existence of the solution in W; (c) proof of the uniqueness of the solution in W.
(a) Derivation of a priori estimates

Take $v=u$ in (4). Then

$$
\left(u_{a} u_{b ; a}, u_{b}\right)=-\left(u_{a} u_{b}, u_{b ; a}\right)=-\frac{1}{2}\left(u_{a},\left(u^{2}\right)_{; a}\right)=\frac{1}{2}\left(u_{a ; a}, u^{2}\right)=0,
$$

where the equation $u_{a ; a}=0$ was used. Thus, Eq. (4) with $v=u$ implies

$$
\begin{equation*}
\frac{1}{2} \partial_{t}(u, u)+\nu(\nabla u, \nabla u)=(f, u) \leq\|f\|\|u\| . \tag{5}
\end{equation*}
$$

We will use the known inequality $\|u\|\|f\| \leq \epsilon\|u\|^{2}+\frac{1}{4 \epsilon}\|f\|^{2}$ with a small $\epsilon>0$, and denote by $c>0$ various estimation constants.

One gets from (5) the following estimate:

$$
\begin{equation*}
(u(t), u(t))+2 \nu \int_{0}^{t}(\nabla u, \nabla u) d s \leq\left(u_{0}, u_{0}\right)+2 \int_{0}^{t}\|f\| d s \sup _{s \in[0, t]}\|u(s)\| \leq c+c \sup _{s \in[0, t]}\|u(s)\| . \tag{6}
\end{equation*}
$$

Recall that assumptions (A) hold. Denote $\sup _{s \in[0, t]}\|u(s)\|:=b(t)$. Then inequality (6) implies

$$
\begin{equation*}
b^{2}(t) \leq c+c b(t), \quad c=\text { const }>0 . \tag{7}
\end{equation*}
$$

Since $b(t) \geq 0$, inequality (7) implies

$$
\begin{equation*}
\sup _{t \geq 0} b(t) \leq c \tag{8}
\end{equation*}
$$

Remember that $c>0$ denotes various constants, and the constant in Eq. (8) differs from the constant in Eq. (7). From (6) and (8) one obtains

$$
\begin{equation*}
\sup _{t \geq 0}\left[(u(t), u(t))+\nu \int_{0}^{t}(\nabla u, \nabla u) d s\right] \leq c . \tag{9}
\end{equation*}
$$

A priori estimate (9) implies for every $T \in[0, \infty)$ the inclusions

$$
u \in L^{\infty}\left(0, T ; L^{2}\left(D^{\prime}\right)\right), \quad u \in L^{2}\left(0, T ; H_{0}^{1}\left(D^{\prime}\right)\right) .
$$

This and Eq. (4) imply that $u_{t} \in L^{2}\left(D^{\prime} \times[0, T]\right)$ because Eq. (4) shows that $\left(u_{t}, v\right)$ is bounded for every $v \in W$. Note that $L^{\infty}\left(0, T ; L^{2}\left(D^{\prime}\right)\right) \subset L^{2}\left(0, T ; L^{2}\left(D^{\prime}\right)\right)$, and that bounded sets in a Hilbert space are weakly compact. Weak convergence is denoted by the sign \rightarrow.
(b) Proof of the existence of the solution $u \in W$ to (4) and (*)

The idea of the proof is to reduce the problem to the existence of the solution to a Cauchy problem for ordinary differential equations (ODE) of finite order, and then to use a priori estimates to establish convergence of these solutions of ODE to a solution of Eqs. (4) and (*). This idea is used, for example, in [1]. Our argument differs from the arguments in the literature in treating the limit of the term $\int_{0}^{t}\left(u_{s}^{n}, v\right) d s$.

Let us look for a solution to Eq. (4) of the form $u^{n}:=\sum_{j=1}^{n} c_{j}^{n}(t) \phi_{j}(x)$, where $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ is an orthonormal basis of the space $L^{2}\left(D^{\prime}\right)$ of divergence-free vector functions belonging to $H_{0}^{1}\left(D^{\prime}\right)$ and in the expression u^{n} the upper index n is not a power. If one substitutes u^{n} into Eq. (4), takes $v=\phi_{m}$, and uses the orthonormality of the system $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ and the relation $\left(\nabla \phi_{j}, \nabla \phi_{m}\right)=\lambda_{m} \delta_{j m}$, where λ_{m} are the eigenvalues of the vector Dirichlet Laplacian in D on the divergence-free vector fields, then one gets a system of ODE for the unknown coefficients c_{m}^{n} :

$$
\begin{equation*}
\partial_{t} c_{m}^{n}+\nu \lambda_{m} c_{m}^{n}+\sum_{i, j=1}^{n}\left(\phi_{i a} \phi_{j b ; a}, \phi_{m b}\right) c_{i}^{n} c_{j}^{n}=f_{m}, \quad c_{m}^{n}(0)=\left(u_{0}, \phi_{m}\right) . \tag{10}
\end{equation*}
$$

Problem (10) has a unique global solution because of the a priori estimate that follows from (9) and from Parseval's relations:

$$
\begin{equation*}
\sup _{t \geq 0}\left(u^{n}(t), u^{n}(t)\right)=\sup _{t \geq 0} \sum_{j=1}^{n}\left[c_{j}^{n}(t)\right]^{2} \leq c . \tag{11}
\end{equation*}
$$

Consider the set $\left\{u^{n}=u^{n}(t)\right\}_{n=1}^{\infty}$. Inequalities (9) and (11) for $u=u^{n}$ imply the existence of the weak limits $u^{n} \rightharpoonup u$ in $L^{2}\left(0, T ; H_{0}^{1}\left(D^{\prime}\right)\right)$ and in $L^{\infty}\left(0, T ; L^{2}\left(D^{\prime}\right)\right)$. This allows one to pass to the limit in Eq. (*) in all the terms except the first, namely, in the term $\int_{0}^{t}\left(u_{s}^{n}, v(s)\right) d s$. The weak limit of the term $\left(u_{a}^{n} u_{b ; a}^{n}, v_{b}\right)$ exists and is equal to $\left(u_{a} u_{b ; a}, v_{b}\right)$ because

$$
\left(u_{a}^{n} u_{b ; a}^{n}, v_{b}\right)=-\left(u_{a}^{n} u_{b}^{n}, v_{b ; a}\right) \rightarrow-\left(u_{a} u_{b}, v_{b ; a}\right)=\left(u_{a} u_{b ; a}, v_{b}\right) .
$$

Note that $v_{b ; a} \in L^{2}\left(D^{\prime}\right)$ and $u_{a}^{n} u_{b}^{n} \in L^{4}\left(D^{\prime}\right)$. The relation $\left(u_{a}^{n} u_{b ; a}^{n}, v_{b}\right)=-\left(u_{a}^{n} u_{b}^{n}, v_{b ; a}\right)$ follows from an integration by parts and from the equation $u_{a ; a}^{n}=0$.

The following inequality is essentially known:

$$
\begin{equation*}
\|u\|_{L^{4}\left(D^{\prime}\right)} \leq 2^{1 / 2}\|u\|^{1 / 4}\|\nabla u\|^{3 / 4}, \quad\|u\|:=\|u\|_{L^{2}\left(D^{\prime}\right)}, \quad u \in H_{0}^{1}\left(D^{\prime}\right) \tag{12}
\end{equation*}
$$

In [1] this inequality is proved for $D^{\prime}=\mathbb{R}^{3}$, but a function $u \in H_{0}^{1}\left(D^{\prime}\right)$ can be extended by zero to $D=\mathbb{R}^{3} \backslash D^{\prime}$ and becomes an element of $H^{1}\left(\mathbb{R}^{3}\right)$ to which inequality (12) is applicable.

It follows from (12) and Young's inequality ($a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}, p^{-1}+q^{-1}=1$) that

$$
\begin{equation*}
\|u\|_{L^{4}\left(D^{\prime}\right)}^{2} \leq \epsilon\|\nabla u\|^{2}+\frac{27}{16 \epsilon^{3}}\|u\|^{2}, \quad u \in H_{0}^{1}\left(D^{\prime}\right) \tag{13}
\end{equation*}
$$

where $\epsilon>0$ is an arbitrary small number, $p=\frac{4}{3}$ and $q=4$. One has $u_{a}^{n} u_{b}^{n} \rightharpoonup u_{a} u_{b}$ in $L^{2}\left(D^{\prime}\right)$ as $n \rightarrow \infty$, because bounded sets in a reflexive Banach space $L^{4}\left(D^{\prime}\right)$ are weakly compact. Consequently, $\left(u_{a}^{n} u_{b ; a}^{n}, v_{b}\right) \rightarrow$ $\left(u_{a} u_{b ; a}, v_{b}\right)$ when $n \rightarrow \infty$, as claimed. Therefore, $\int_{0}^{t}\left(u_{a}^{n} u_{b ; a}^{n}, v_{b}\right) d s \rightarrow \int_{0}^{t}\left(u_{a} u_{b ; a}, v_{b}\right) d s$. The weak limit of the term $\nu \int_{0}^{t}\left(\nabla u^{n}, \nabla v\right) d s$ exists because of the a priori estimate (9) and the weak compactness of the bounded sets in a Hilbert space. Since Eq. $(*)$ holds, and the limits of all its terms, except $\int_{0}^{t}\left(u_{s}^{n}, v\right) d s$, do exist, then there exists the limit $\int_{0}^{t}\left(u_{s}^{n}, v(s)\right) d s \rightarrow \int_{0}^{t}\left(u_{s}, v(s)\right) d s$ for all $v \in W$. By passing to the limit $n \rightarrow \infty$ one proves that the limit u satisfies Eq. (*). Differentiating Eq. (*) with respect to t yields Eq. (4) almost everywhere.
(c) Proof of the uniqueness of the solution $u \in W$

Suppose there are two solutions to Eq. (4), u and $w, u, w \in W$, and let $z:=u-w$. Then

$$
\begin{equation*}
\left(z_{t}, v\right)+\nu(\nabla z, \nabla v)+\left(u_{a} u_{b ; a}-w_{a} w_{b ; a}, v_{b}\right)=0 \tag{14}
\end{equation*}
$$

Since $z \in W$, one may set $v=z$ in (14) and get

$$
\begin{equation*}
\left(z_{t}, z\right)+\nu(\nabla z, \nabla z)+\left(u_{a} u_{b ; a}-w_{a} w_{b ; a}, z_{b}\right)=0, \quad z=u-w \tag{15}
\end{equation*}
$$

Note that $\left(u_{a} u_{b ; a}-w_{a} w_{b ; a}, z_{b}\right)=\left(z_{a} u_{b ; a}, z_{b}\right)+\left(w_{a} z_{b ; a}, z_{b}\right)$, and $\left(w_{a} z_{b ; a}, z_{b}\right)=0$ due to the equation $w_{a ; a}=0$. Thus, Eq. (15) implies

$$
\begin{equation*}
\partial_{t}(z, z)+2 \nu(\nabla z, \nabla z) \leq 2\left|\left(z_{a} u_{b ; a}, z_{b}\right)\right| \tag{16}
\end{equation*}
$$

Since $\left|z_{a} u_{b ; a} z_{b}\right| \leq|z|^{2}|\nabla u|$, one has the following estimate:

$$
\begin{equation*}
\left|\left(z_{a} u_{b ; a}, z_{b}\right)\right| \leq \int_{D^{\prime}}|z|^{2}|\nabla u| d x \leq\|z\|_{L^{4}\left(D^{\prime}\right)}^{2}\|\nabla u\| \leq\|\nabla u\|\left(\epsilon\|\nabla z\|^{2}+\frac{27}{16 \epsilon^{3}}\|z\|^{2}\right) \tag{17}
\end{equation*}
$$

Denote $\phi:=(z, z)$, take into account that $\|\nabla u\|^{4} \in L_{l o c}^{1}(0, \infty)$, choose $\epsilon=\frac{\nu}{\|\nabla u\|}$ in the inequality (13), in which u is replaced by z, use inequality (17) and get

$$
\begin{equation*}
\partial_{t} \phi+\nu(\nabla z, \nabla z) \leq \frac{27}{16 \nu^{3}}\|\nabla u\|^{4} \phi,\left.\quad \phi\right|_{t=0}=0 \tag{18}
\end{equation*}
$$

In the derivation of inequality (18) the idea is to compensate the term $\nu\|\nabla z\|^{2}$ on the left side of inequality (16) by the term $\epsilon\|\nabla u\|\|\nabla z\|^{2}$ on the right side of inequality (17). To do this, choose $\|\nabla u\| \epsilon=\nu$ and obtain inequality (18). It follows from inequality (18) that

$$
\partial_{t} \phi \leq \frac{27\|\nabla u\|^{4}}{16 \nu^{3}} \phi,\left.\quad \phi\right|_{t=0}=0
$$

Since we have assumed that $\|\nabla u\|^{4} \in L_{l o c}^{1}(0, \infty)$ this implies that $\phi=0$ for all $t \geq 0$.
Theorem 1 is proved.

Remark 1. One has (summation is understood over the repeated indices):

$$
\left.2\left|\left(z_{a} u_{b ; a}, z_{b}\right)\right|=2\left|\left(z_{a} u_{b}, z_{b ; a}\right)\right| \leq 18\|\nabla z\|\| \| z\left\|u\left|\|\leq \nu\| \nabla z\left\|^{2}+\frac{81}{\nu}\right\|\right| z\right\| u \right\rvert\, \|^{2}
$$

Thus,

$$
\partial_{t} \phi+\nu(\nabla z, \nabla z) \leq \frac{81}{\nu}\left\|\left|z\|u \mid\|^{2}\right.\right.
$$

If one assumes that $|u(\cdot, t)| \leq c(T)$ for every $t \in[0, T]$, then $\partial_{t} \phi \leq c \phi, \phi(0)=0$, on any interval $[0, T], c=c(T, \nu)>0$ is a constant. This implies $\phi=0$ for all $t \geq 0$. The same conclusion holds under a weaker assumption $\|u(\cdot, t)\|_{L^{4}\left(D^{\prime}\right)} \leq c(T)$ for every $t \in[0, T]$, or under even weaker assumption $\|u(\cdot, t)\|_{L^{4}\left(D^{\prime}\right)}^{8} \in L_{l o c}^{1}(0, \infty)$.

In [1] it is shown that the smoothness properties of the solution u are improved when the smoothness properties of f, u_{0} and S are improved.

References

[1] O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.
[2] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North Holland, Amsterdam, 1984.

[^0]: E-mail address: ramm@math.ksu.edu.

