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Wave scattering problem by many bodies is studied in the case when the bod-
ies are small, ka � 1, where a is the characteristic size of a body. The limiting
case when a → 0 and the total number of the small bodies is M = O(a−(2−κ)),
where κ ∈ (0, 1) is a number, are studied. C© 2011 American Institute of Physics.
[doi:10.1063/1.3555192]

I. INTRODUCTION

Many-body scattering problem in the case of small scatterers embedded in an inhomogeneous
medium has been solved in Refs. 3 and 4 under the following assumptions:

ka � 1, d = O
(
a

2−κ
3

)
, ζm = h(xm)

aκ
, (1)

where a is the characteristic size of the small bodies, k = 2π/λ = ω/c0 is the wave number, and
c0 is the wave speed in free space, κ ∈ (0, 1) is a parameter one can choose as one wishes, d is
the distance between neighboring particles, h(x) is a piecewise-continuous function in a bounded
domain D ⊂ R3 with a smooth boundary S, �h = h2 ≤ 0, h = h1 + ih2, xm ∈ Dm is an arbitrary
point, Dm is a small body, Sm is its surface, N is the unit normal to Sm , 1 ≤ m ≤ M , M is the total
number of the embedded small bodies in D, the unit normal N points out of Dm , ζm is the boundary
impedance in the boundary condition,

∂u

∂N
= ζmu on Sm, 1 ≤ m ≤ M ; u = uM , (2)

and the distribution of small bodies in D is defined as

N (�) := 	Dm⊂�1 = 1

a2−κ

∫
�

N (x)dx[1 + o(1)], a → 0, (3)

where N (�) is the number of small bodies in an arbitrary subdomain � ⊂ D, N (x) ≥ 0 is a
piecewise-continuous function, and for simplicity it is assumed that Dm = B(xm, a) is a ball centered
at the point xm , of radius a. The scattering problem, solved in Refs. 3 and 4, consisted of finding the
solution to the equation,

[∇2 + k2n2
0(x)]um = 0 in R3 \

M⋃
m=1

Dm, (4)

satisfying boundary conditions (2) and the radiation condition,

uM = u0 + vM ,
∂vM

∂r
− ikvM = o(

1

r
), r := |x| → ∞. (5)
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Here, u0 is the solution to problem (4) and (5) in the absence of the embedded particles, i.e., the
solution for the problem with M = 0,

[∇2 + k2n2
0(x)]u0 = 0 in R3, (6)

where n2
0(x) is the refraction coefficient in the absence of embedded particles, n2

0(x) = 1 in the
region D′ := R3 \ D, and

u0 = eikα·x + v0,
∂v0

∂r
− ikv0 = o

(
1

r

)
, r → ∞, (7)

where α ∈ S2 is the direction of propagation of the incident plane wave, and S2 is the unit sphere
in R3.

We are interested in the behavior of the scattering solution as a → 0 and the wavenumber k > 0
is arbitrary fixed. In other words, the physical assumption that the dimensionless parameter ka is
very small, ka << 1, corresponds in our work to a study of the mathematical limiting procedure
a → 0.

It was proved in Refs. 3 and 4, that, as a → 0, the limiting field u does exist and solves the
equation,

[∇2 + k2n2(x)]u = 0 in R3, (8)

where

n2(x) ≡ n2
0(x) − 4πk−2h(x)N (x). (9)

Therefore, in the limit a → 0, under the constraints (1)–(3), the limiting medium, obtained by
the embedding of many small particles, has the refraction coefficient n2(x), given by (9). Since the
functions h(x) and N (x) are at our disposal, subject to the restrictions N (x) ≥ 0, �h(x) ≤ 0, it is
possible to create any desired refraction coefficient n2(x), �n2(x) ≥ 0, by choosing h(x) and N (x)
suitably.

It is assumed that the term “piecewise-continuous” function f in this paper means that the set
M of discontinuities of f is of Lebesgue’s measure zero and, if S is a subset of this set such that f
is unbounded on S, f |S = ∞, then f grows not too fast as x tends to S

| f (x)| ≤ c

[dist(x,S)]ν
, 0 ≤ ν < 3, c = const ≥ 0, (10)

so that the integral
∫

D f (x)dx exists as an improper integral.
This paper is related to:3 its goal is to develop a theory, similar to the one in Ref. 3, for a different

governing equation

L0u0 := ∇ · (c2(x)∇u0) + ω2u0 = 0 in R3, (11)

where the wave speed c(x) = c0 = const in D′ := R3\D, the complement of D in R3, and c(x) is
a smooth and strictly positive function in D. The speed c(x), in general, has S as its discontinuity
surface. In this case, Eq. (11) is understood in the distributional sense as an integral identity,∫

R3
(−c2(x)∇φ∇u0 + ω2φu0)dx = 0 ∀φ ∈ C∞

0 (R3). (12)

Alternatively, one may understand Eq. (11) as the following transmission problem:

L0u+
0 = 0 in D, u+

0 = u0 in D, (13)

L0u−
0 = 0 in D′, u−

0 = u0 in D′, (14)

u+
0 = u−

0 , c2
+(x)

∂u0

∂N+ = c2
−(x)

∂u0

∂N− on S. (15)

The transmission conditions (15) together with Eqs. (13) and (14) are equivalent to problem
(12). Existence and uniqueness of the solution to (13)–(15) was proved in Ref. 6.
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The scattering problem, we are interested in, can be stated as follows:

L0u = 0 in R3\
M⋃

m=1

Dm ; u = uM , (16)

∂u

∂N
= ζmu on Sm, 1 ≤ m ≤ M, (17)

u = u0 + v, vr − ikv = o(
1

r
), r → ∞. (18)

In Sec. II problem (16)–(18) is investigated and the limiting behavior of u as a → 0 is found.
We conclude this Introduction by a brief derivation of the governing Eq. (11).
The starting point is the Euler equation,

v̇ + (v,∇)v = −∇ p

ρ
, (19)

where v is the velocity vector of the sound wave, p = p(ρ) is the static pressure, ρ is the density,
and

∇ p = c2(x)∇ρ, (20)

where c(x) is the sound speed.
Let the material in D be initially at rest, v = v(x, t) be a small perturbation of the equilibrium

zero velocity, the density be of the form ρ = ρ0 + ψ(x, t), where ρ0 is the equilibrium density of
the material, which is assumed to be constant, and ψ and v are small quantities of the same order of
smallness.

The continuity equation is

ψ̇ = −∇ · (ρ0v), (21)

where the term ∇ · (ψv) of the higher order of smallness is neglected. Differentiating (21) with
respect to time yields

ψ̈ = −∇ · (ρ0v̇). (22)

Under the same assumptions about ρ = ρ0 + ψ(x, t) and v, the term (v,∇)v in (19) is of the
higher order of smallness and is, therefore, neglected. Multiplying (19) by ρ and neglecting the term
ψ v̇ of higher order of smallness yields the acoustic momentum equation,

ρ0v̇ = −∇ p. (23)

Substituting (20) in (23) gives

ρ0v̇ = −c2(x)∇ψ, (24)

where the relation ∇ρ = ∇ψ was used. This relation is exact for a constant ρ0.
Substituting (24) in (22) yields

ψ̈ − ∇ · (c2(x)∇ψ) = 0. (25)

If ψ = e−iωt u, then (25) reduces to Eq. (11).

II. THE SCATTERING PROBLEM

In this section, problem (16)–(18) is studied. Assumptions (1) and (3) are still valid.
Let G be the Green’s function for the operator L0,

L0G(x, y) = −δ(x − y) in R3. (26)

G satisfies the radiation condition
∂G

∂|x| − ikG = o(
1

|x| ) as |x| → ∞. (27)
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The following result from Ref. 5 will be used.

Theorem 1: In a neighborhood of a point of smoothness of c(x), one has

G(x, y) = 1

4π |x − y|c(x)
(1 + o(1)), |x − y| → 0. (28)

In a neighborhood of the point x ∈ S, where S is a smooth discontinuity surface of c(x), one
has

G(x, y) =
{ 1

4πc+(x) [r
−1
xy + bR−1 + o(1)], y ∈ D,

1
4πc−(x) [r

−1
xy − bR−1 + o(1)], y ∈ D′.

(29)

where

b :=c+(x) − c−(x)

c+(x) + c−(x)
, rxy := |x − y|, R =

√
ρ2 + (|x3| + |y3|)2, (30)

ρ =
√

(x1 − y1)2 + (x2 − y2)2. (31)

The origin of the local coordinate system lies on S, the plane x3 = 0 is tangent to S, c+(x) and
c−(x) are the limiting values of c(x) when x → S from inside (and outside) of D.

In Ref. 5, the operator L0 corresponds to the case ω = 0. However, in Ref. 3 it is proved that
adding to L0 a term q(x)G(x, y) with a bounded function q does not change the main term of the
asymptotic of G as x → y.

The solution to problem (16)–(15) is sought in the form

u = u0 +
M∑

m=1

∫
Sm

G(x, t)σm(t)dt. (32)

For any σm ∈ L2(Sm), the function u, defined in (32), solves Eq. (16) and satisfies the radiation
condition (15), since G does. Therefore, (32) will be the solution to problem (16)–(15) if σm are
such that the boundary conditions (17) are satisfied. Uniqueness of the solution to problem (16)–(15)
follows from essentially the same arguments as in Ref. 3, see the proof of Theorem 1 in Ref. 3.

The boundary conditions (15) imply

ueN + Amσm − σmc−1
m

2
= ζmue + ζm

∫
Sm

G(s, t)σm(t)dt, (33)

where

cm := c(xm), ζm = h(xm)/aκ ,

and

ue(x) := u(m)
e := u0(x) +

∑
m ′ �=m

∫
Sm′

G(x, t)σm ′ (t)dt. (34)

The field u(m)
e is called the effective (self-consistent) field. It is the field acting on the mth particle

from all other particles and from the incident field u0.
The operator Am is the operator of the normal derivative of the single-layer potential,

T σm :=
∫

Sm

G(x, t)σm(t)dt,

at the boundary S, and

∂T σm

∂N− = Aσm − σmc−1(xm)

2
, Aσm = 2

∫
Sm

∂G(s, t)

∂Ns
σm(t)dt, s ∈ Sm, (35)
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In Eq. (35), ∂T σm
∂N− is the limiting value of the normal derivative on Sm from outside of Dm .

Equation (35) is well known from the potential theory in the case c(x) = 1 and G(x, y) = eiωrxy

4πrxy
,

rxy := |x − y|.
If c(x) �= 1, then by Theorem 1, one may consider T and A as the operators, corresponding to

c(x) = 1, divided by c(xm), because c(s) is assumed smooth in D, and, therefore, it varies negligibly
on the small distances of the order a.

The basic idea of solving the scattering problem (16)–(18) is to use a representation of the
scattered field as a sum of single layer potentials and transform this representation to a sum of two
terms of which one is much larger than the other asymptotically, as a → 0, (cf. Ref. 3).

The approach is to reduce the solution of the many-body scattering problem by small bodies
to finding some numbers rather than the unknown functions σm , 1 ≤ m ≤ M . If M is very large,
it is practically impossible to use the usual system of boundary integral equations for finding the
unknown σm .

Let us rewrite Eq. (32) as follows:

u = u0(x) +
M∑

m=1

G(x, xm)Qm +
M∑

m=1

∫
Sm

[G(x, t) − G(x, xm)]σm(t)dt, (36)

where

Qm :=
∫

Sm

σm(t)dt, (37)

and prove that∣∣∣∣G(x, xm)Qm

∣∣∣∣ �
∣∣∣∣
∫

Sm

[G(x, t) − G(x, xm)]σm(t)dt

∣∣∣∣, a → 0; d1 < |x − xm |, (38)

where a � d1 � d.
The region d1 < |x − xm | clearly tends to D as a → 0. The main term of the asymptotics of the

function σm(t), as a → 0, does not depend on t ∈ Sm , it is a constant with respect to t depending on
a, equal to Qm

4πa2 . (see Ref. 3).
Let us explain why the above inequality (38) holds. Its left-hand side is O(|Qm |/|x − xm |),

while its right-hand side does not exceed maxz∈B(xm ,a) |∇zG(x, z)|a|Qm |.
One has

max
z∈B(xm ,a)

|∇zG(x, z)| = O(max{ 1

|x − xm |2 ,
k

|x − xm | }).

If |x − xm | � a and ka � 1, then 1
|x−xm | � a max{ 1

|x−xm |2 ,
k

|x−xm | }. Therefore, inequality (38) is
valid.

Let us choose the region |x − xm | � a to be |x − xm | ≥ d1, where d1 = O
(
a

2−0.5κ
3

)
, so one has

a � d1 � d as a → 0. We now want to prove that the input into the scattering solution u of the
terms in the second sum in Eq. (36), which lie in the region |x − xm | ≤ d1 is negligible as a → 0.

Since the distance between neighboring particles is O(d), one concludes that there is one particle
of radius a, centered at xm , and there are no other particles in the region a < |x − xm | ≤ d1 because
the distance between small particles is O(d) � d1. The input of one particle to the second sum in
(36) is the quantity of the order O(aa−2a2−κ ) as a → 0, i.e., O(a1−κ ). This quantity tends to zero
as a → 0. Here the term O(a−2) is the order of |∇zG(x, z)| when |z − xm | = O(a), and the term
O(a2−κ ) is the order of |Qm | [see (46) below]. This explains the order of the magnitude O(a1−κ ) of
the input of the particles which lie in the region a < |x − xm | ≤ d1 to the second sum in (36). Since
O(a1−κ ) is negligible as a → 0, one can neglect the second sum in (36) as a → 0.

Thus, the solution u of the many-body scattering problem can be written as

u = u0(x) +
M∑

m=1

G(x, xm)Qm, |x − xm | � a, (39)

with the error that tends to zero as a → 0.
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Consequently, the scattering problem is solved if the numbers Qm , 1 ≤ m ≤ M , are found. This
simplifies the solution of the many-body scattering problem drastically because Eq. (32) requires
the knowledge of the functions σm(t), 1 ≤ m ≤ M , rather than the numbers Qm , in order to find the
solution u of the scattering problem.

The next step is to derive the main term of the asymptotics of Qm as a → 0.
To do this, we integrate (33) over Sm and neglect the terms of the higher order of smallness as

a → 0.
One has ∫

Sm

ueN ds =
∫

Dm

∇2uedx = (∇2ue)(xm)|Dm |, |Dm | = 4πa3

3
, (40)

where the Gauss divergence theorem was applied and a mean value formula for the integral over Dm

was used.
Furthermore, ∫

Sm

Aσmds = − 1

cm

∫
Sm

σmds = − Qm

cm
, (41)

where (cf. Ref. 3)∫
Sm

Aσds := 1

cm

∫
Sm

ds
∫

Sm

∂

∂ Ns

1

4πrst
σ (t)dt = − 1

cm

∫
Sm

σ (t)dt. (42)

Thus, integrating (33) over Sm yields

∇2ue(xm)|Dm | − c−1
m Qm = ζmue(xm)|Sm | + ζm

cm

∫
Sm

dtσm(t)
∫

Sm

ds
1

4πrst
, (43)

where |Sm | = 4πa2 is the surface area of the sphere Sm and formula (28) was used, namely, we have
replaced G(s, t) by 1

4πrst

1
c(s) using the smallness of Dm , and we have replaced c(s) by c(xm) = cm

because |xm − s| ≤ a and a is small.
Using the identity∫

Sm

ds
4πrst

= a if |s − xm | = a and |t − xm | = a, (44)

one gets from (43) the following relation:

Qm(c−1
m + c−1

m ζma) = −4πζmue(xm)a2 + O(a3). (45)

If a → 0 and κ ∈ (0, 1), then

ζma = h(xm)a1−κ = o(1), a → 0,

the term O(a3) in (45) can be neglected, and one gets the main term of the asymptotics of Qm as
a → 0, namely,

Qm = −4πh(xm)ue(xm)c(xm)a2−κ [1 + o(1)], a → 0. (46)

Therefore, (34), (39), and (46) yield

ue(x) = u0(x) − 4π
∑

m ′ �=m

G(x, xm ′ )h(xm ′)ue(xm ′ )c(xm ′ )a2−κ [1 + o(1)]. (47)

Taking x = xm and neglecting o(1) term in (47), one gets a linear algebraic system for the
unknown quantities um := ue(xm), 1 ≤ m ≤ M ,

um = u0m − 4π
∑

m ′ �=m

G(xm, xm ′ )h(xm ′)c(xm ′ )um ′a2−κ . (48)

Let us now derive and use a generalization of the result proved originally in Ref. 3. This
generalization is formulated as Theorem 2 below.
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023519-7 Wave scattering by small bodies J. Math. Phys. 52, 023519 (2011)

Consider the sum

I = lim
a→0

a2−κ

M∑
m=1

f (xm), (49)

where the points xm are distributed in D according to (3).
Assume that f (x) is piecewise-continuous and (10) holds. If f is unbounded, that is, the set S

is not empty, then the sum (49) is understood as follows:

I := lim
δ→0

lim
a→0

a2−κ

M∑
m=1,dist(xm ,S)≥δ

f (xm). (50)

Theorem 2: Under the above assumptions, there exists the limit (49) and

lim
a→0

a2−κ

M∑
m=1

f (xm) =
∫

D
f (x)N (x)dx. (51)

Proof of Theorem 2 is given at the end of this paper.
Applying Theorem 2 to the sum (47), one obtains the following result:

Theorem 3: There exists the limit,

lim
a→0

ue(x) := u(x),

and the limiting function solves the equation,

u(x) = u0(x) − 4π

∫
D

G(x, y)h(y)c(y)N (y)u(y)dy. (52)

Applying operator L0, defined in (11), to (52) and using the relations

L0G = −δ(x − y), L0u0 = 0, (53)

one obtains the following new equation for the limiting effective field u:

L0u = 4πh(x)c(x)N (x)u. (54)

This equation can be written as

Lu := ∇ · (c2(x)∇u) + ω2u − 4πh(x)c(x)N (x)u = 0. (55)

Therefore, embedding many small particles into D and assuming (1)–(3) , one obtains in the
limit a → 0 a medium with essentially different properties described by the new equation (55).

Let us now prove Theorem 2.

Proof of Theorem 2:
Let S be the subset of the set of discontinuities of f on which f is unbounded, let the assumption

(10) hold, and let

Dδ := {x : x ∈ D, dist(x,S) ≥ δ}. (56)

Consider a partition of Dδ into a union of small cubes �p, centered at the points yp, with the
side b = a1/3. One has

a2−κ

M∑
m=1,dist(xm ,M)≥δ

f (xm) =
∑

p

f (yp)[1 + o(1)]a2−κ
∑

xm∈�p

1

=
∑

p

f (yp)N (yp)|�p|[1 + o(1)]

→
∫

Dδ

f (y)N (y)dy as a → 0.

(57)
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Here in the second sum we replaced f (xm) by f (yp) for all points xm ∈ �p. This is done with
the error o(1) as a → 0 because f is continuous in Dδ . In the third sum, we have used formula (3) for
� = �p. The last conclusion, namely, the existence of the limit as a → 0, follows from the known
result: the Riemannian sum of a piecewise-continuous bounded in Dδ function f (x)N (x) converges
to the integral

∫
Dδ

f (x)N (x)dx if maxp diam�p → 0. In our case,

diam�p =
√

3a1/3 → 0 as a → 0, (58)

so formula (57) follows.
From the assumption (10) with ν < 3, one concludes that

lim
δ→0

∫
Dδ

f (x)N (x)dx =
∫

D
f (x)N (x)dx. (59)

The integral on the right in (59) exists as an improper integral if ν is less than the dimension of
the space, i.e., ν < 3. Therefore, formula (51) is established.

Theorem 2 is proved. �
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