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SYNOPSIS

The basic column analogy method is applicable to beams, arches and

bents which do not have more than three redundant elements. Many continuous

frames and arches are outside of the limits of this restriction. The pur-

pose of this report is to show how this restriction may be relaxed so that

the column analogy method may be applied to continuous structures. An

additional purpose is to show that this method is an excellent technique

for use in structural analysis, especially for arches and gable frames.

This method requires many calculations. However, if these calculations are

written into computer programs, this method compares favorably with most

other methods. The examples in this report were chosen to show the effi-

ciency of this technique.



INTRODUCTION

The word analogy calls attention to a relation of iikness between two

things consisting of the resemblance not of the things themselves but of two

or more circumstances or effects. In this sense, the world is filled with

analogies since it requires only a slight exercise of imagination to dis-

cover such relations. Hardy Cross observed an analogy between a column

and a closed ring type flexural member or frame, and based on this analogy

he introduced the method of column analogy in 1930. This method is familiar

to most structural engineers, and is an excellent technique for solving

indeterminate structures, especially, for gable frames and arches.

Hardy Cross 1 column analogy method , as originally introduced, is

restricted to closed type structures with not more than three redundant

elements. However, it may be applied in continuous structures with more

(2)
than three redundancies if a modified concept is introduced. Yu explored

this extension in 1950. By introducing an ideal elastic support to the

structure as shown in Fig. 1(a), the entire structure may be reduced from

six to three redundancies, as shown in Fig. Kb). In view of this reduction

it is evident that the column analogy method can be applied to such struc-

tures.

The fundamentals of the extended method are shown in Fig. 1. The two-

span continuous structure can be replaced by two equivalent single-span

components, and the stresses in each span can be determined by the column

analogy method. However, some details must be considered before the appli-

cation of the method to frames such as the one shown in Fig. 1. If both

spans in Fig. 1 have external loads upon them, the analysis must be divided

into two steps. One step takes into consideration the external loads on



span 1 and the other considers the external loads on span 2. If span 1 is

to be analyzed first, the external loads on span 2 must !>r Liken away tem-

porarily so that "the elastic foundation CBD" can be converted into an

idealized bar, BB' . Then the method is applied to determim; the stresses

in each member caused by the external loads on span 1, as shown in Fiy,. 1(a)

and (b). Similarly, the stresses in each member caused by external loads on

span 2 can be determined as shown in Fig. 1(c) and (d). The final step is

to combine these two analyses.

W W
1 2

C

(a)

w w
1 2

Span 2 B

Span 1

(b)

B'

Span 2

(c) (d)

Fig. 1. Primary Features Of The Extended Method.



SIGN CONVENTIONS

Before going into the derivation of the method, it is necessary to set

up a sign convention. The sign convention includes:

(1) The bending moments in the column analogy are taken as positive

when they produce tension on the bottom of a beam or on the inner side of

an arch or bent, as shown in Fig. 2. Positive rotations are those produced

by positive moments.

outside

*•>

>, outside _

C )
inside

inside

outside

Fig. 2. Sign Conventions.

(2) Horizontal forces are positive if they pull away at the abutments

(i.e. tension in the girder of a bent).

(3) Positive shear is up on the left and down on the right side of the

section in question.

(4) Positive displacements correspond to positive forces. Positive

bending moment is positive force times positive distance.

(5) The moment diagram for each member will be plotted on the compres-

sion side of the member.



DERIVATIONS

(1) General Derivations for Symmetrical and Unsymmetrica I Sections

As shown in Fig. 3, a bent ABCD under load P is cut away at the left support

while the redundant reactions X, Y, and Z are applied at this support point.

X=H,

L/2 I ds

4i-

HZ=M. *

Y=V

L/2i

>y

H'
2

(a) (b)

X=l
,,y

TlrFT

D 'I-
Y=l

aI__

l=ra

(c) (d) (e)

Fig. 3. Effects Of External Loads And Dummy Loads At A.

Then the equations of consistent elastic deformation can be set up as

follows

:



d = = d + Xd + Yd + Zd , (la)
x x xx xy xz

d = = d + Xd + Yd + Zd , (lb)
y y yx yy yz *

d=0 = d'+Xd+Yd+Zd, (lc)
z z zx zy zz

where d , d , d = the total displacements in the directions of X, Y.
x y z r ' *

and Z respectively,

• i •

d , d , d = the displacements in the directions of X, Y, and Z
x y z

respectively caused by the applied load,

d , d , d = the displacements in the directions of X, Y, and Z
xx xy xz

respectively caused by the redundant force X = 1 ,

d , d , d = the displacements in the direction of X, Y, and Z
yx yy yz

respectively caused by the redundant force Y = 1 ,

d , d , d = the displacements in the directions of X, Y, and Z
zx zy zz r

respectively caused by the redundant force Z = 1 ,

X, Y, Z = the redundant forces, horizontal, vertical and

moment, respectively.

i i i

In Eqs. (la), (lb), and (lc), the quantities d , d , and d can be evalu-

ated by using the dummy unit load method as follows:

m =-y
i m =-x ; m = +1 ,

x J
y z

M a

d
x\ - I-if d8 ' -J if d8 «

»•'>

i

d
y

- J^ ds " -Jif d" ' (lb<)
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d = -zf ds = — ds ,
(lc )

z o El j El

where m , m , m = bendinc moments at any point in tho structure due to
x y z

X = 1 , Y = 1 , and Z = 1 respectively.

M the bending moment at any point in the structure which is caused

by the applied load.

El = flexural rigidity.

Neglecting the axial effects does not in general lead to significant errors

in the analysis. Therefore, the quantities d , d , d , d , ... etc.
xx yy xz zz

in Eqs. (la), (lb), and (lc) may be expressed in the following general forms

2

d
xx

=
J ii

ds =
j y ii

»

{ld >

d = ^ds = N 2 ^ CU>
yy J EI J EI

2
„ m

d = — ds = —
, (If )

zz j EI J EI

. P _x z . f ds ..'

,

d
xz

=
J TT^ dS =

-J y il
= d

zx •

(lg )

.on . . ,

d = -Jr^ d s = xy £? = d (lh )

xy j El J
J EI yx '

« m m . .

^ - V z ds _ , , .
.

'

d = —tz— ds = - x rr = d . (li )

yz J EI J EI zy

Thus, Eqs. (la), (lb), and (lc) become:

r y
2

ds [ xy ds P y_ds _ f
' ds _

X
J El *

Y
J EI

Z
o EI J

M y EI ° '

(2a)



P xy_ds P x_ds _X
J EI

Y
J EI

Z
' x_ds P • ds _ n (2b)

x f Y_ds P x_ds I* ds P ds _X
J EI

Y
J EI

+ Z
J EI

+
J

M
EI " ° ' (2c)

By solving Eqs. (la), (lb), and (lc) by Cramer's rule, the redundant

quantities, X, Y, and Z can be obtained.

X =

Y =

Z =

-d

-d

-d

xx

yz

zx

xy

yy

zy

J(d)

J(d)

xy

yy

zy

xz

yz

zz

d
XX

•

-d
X

d
xz

d
yx

i

-d
y

d
yz

d
zx

i

-d
z

d
zz

-d

-d

(3a)

(3b)

(3c)

J(d)

where

J(d) =

xx

zx

xy

d d
yx yy

zy

xz

yz

zz

(3d)



If the incremental area of the analogous column Is defined as the quantity

ds 1~ where ~ is treated as the width of the incremental aim, then the lnte-
El EI

gral terms in Eqs. (2a), (2b), and (2c) may be taken to define the quanti-

ties shown in TABLE I.

TABLE 1 DEFINITIONS OF AREA PROPERTIES

— =JdA = Total area of fictious strip - A d

i

——— =J(intensity of load) dA
J El

i

= Total load on the above area = P = d
z

* m x '

-z~r~ ds = Px = moment of load about y-y axis = M = -d
ei y y

' My '

-rrr~ ds = Py = moment of load about x-x axis = M = -d
EI xx
2

P x ds ? 2 . .
J—ZZ— = x dA = moment of inertia about y-axis =1 = d

j ei j y yy

2
as r z

; y dA = moment of inertia about x-axis =1 = d
xx

r y ds f* 2
TT:— - y dA = moment of inertia about x-axis =1 = d

J EI J x i

xv d s r~~bz— = xy dA = product of inertia =1 = d
EI m

' r xy xy

Since the origin of the coordinates in Fig. 3 was arbitrarily chosen,

it is possible to simplify Eqs. (la), (lb), and (lc) so that the three equa-

tions wiil reduce from 9 terms to 3 terms. If the quantities d = d
zx xz

„. and d = d = __ are considered as properties of the incre-JEI zyyzJEI r r

ds
mental area, —

, it can be seen that they will vanish if the origin of the
El

axis is translated to the "center of gravity" of the bent. Similarly, if

the axes are chosen to coincide with the principal axes of the bent, then
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f xv d s
the integral d = d - —~— which it can be seen is analogous to the

yx xy » El °

product of moment of inertia of the incremental area is also equal to zero.

Therefore, if the structure is symmetrical, the origin of the coordinates

can be chosen on the center of gravity of the structure with an axis of

symmetry. Then the quantities

d =d =d =d =d =d =0,
xy yx zy yz xz zx

and Eqs. (3a), (3b), and (3c) become

i i i

d d d

X = -f- '
Y = -f~ S Z = -f- ' (4)

xx yy zz

If the structural is unsymmetrical , the axes which were originally chosen at

the center of gravity of the structure are not necessarily the principal

axes, and therefore the quantities d = d and d = d will vanish
zx xz zy yz

but the quantity d = d may still remain. Then Eqs. (3) can be
xy yx

expanded to become

,
d

• i d-d -r*
d (- d d + d d ) x y d

x = -^ *—** V2^ = -* "=** •
(3a)

d (d d - d )

zz xx yy xy

,2
d

d _ -*y.
XX d

yy

, d

d - d 7*
y x d

XX

,2
d

d _ ^sy_

yy d
XX

d (- d' d + d' d )

Y = zz v xx x y_z_ m _ _i _xx
^ (5fe)

d (d d - d
2

)

zz xx yy xy

- d (d d - d ). d
7 z xx yy xy_ _ _z_

(5 }Z -
2 " d '

d (d d - d ) zz
zz xx yy xy
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The quantity d = d in the above expressions may also \v made to vnnish
xy yx

by rotating the axes to coincide with the principal axes. Ry substituting

the properties of TABLE I into Eq. (4), the quantities X, Y, and Z for

symmetrical structures become:

X = - = +

xx

M
x

1
X

(6a)

Y = -

yy

Mf
y

(6b)

Z = -

zz

P

A
(6c)

Similarly, Eqs. (5a), (5b), and (5c) for unsymmetrical structures become

X = -

M -
X

I

M -5*
y \

I
X

I
2

_xv_

I

M
= +

_x

i

(7a)

where M

Y = -

I - M
X y I

y

i

M - M _*y_

y X i
X

t

M
_y_

i -
i
2

_xy_

i

y

i (i
X

_xy_

i i
x y

(7b)

I - _xy.

where M

I

M - M ~ L̂
y x 1

I -
I
2

_xy
I
X

1 (1
y

jsy_

l i
x y
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Z = -

zz

P

A
(7c)

* x

„• z I

(a) (b)

Fig. 4. Application Of Rigid Bar.

Upon examination of the superposition equations (2a), (2b), and (2c), it is

found that if the axes were transferred from the left support to the elastic

center as shown in Fig. 4, the reactions at the left support could be

obtained by introducing a "rigid bar" to be attached from the support point

to the elastic center; the reactions will then act through the elastic

center. Since the "rigid bar" is undeformable, it does not change any of

the coefficients of the superposition equations. Hence, by applying the

statical equilibrium equations to the rigid bar as shown in Fig. (4b), the

equilibrium equations will be as follows:

LH = X = X , (8a)

£V = Y = Y , (8b)
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i

i,M =0; Z=-Z+Xy+Yx. (8c)

A comparison of Eq . (8c) with the flexural stress formula for a short

column,

M H

A I I
y

y x

reveals that if Eqs. (6a), (6b), and (6c) are substituted into Eq. (8c) and

if we let M = Z , we obtain the following result:
i

, M MNi=Z=£+-iL x + -X-y. (9)
i A I I

y x

This expression, then, yields the indeterminate moment for a symmetrical

structure. Equation (9) is identical with the column flexural stress for-

mula. If Eqs. (7a), (7b), and (7c) are substituted into Eq . (8c), the

indeterminate moment for an unsyrametrical structure becomes:

i i

M MM=Z=~ + -?-x + -X-y, (10a)
1 A

I I
y x

where

1

M
y

= M
y

- M
X

i
_xy.

i
X

i

M
X

= M
X

- M
y

I
xy

I
y

i

I
X

1
X

(i -
i
2

_xy_
I i ' •

UOb)

(10c)

(lOd)

x y
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T* - t n XV

y y Tl }
'

(10e)
x y

The above expressions set up the column analogy method for use with both

symmetrical and unsymmetrical structures. The final moment is the algebraic

sum of the determinate moment, M , and the indeterminate moment, M, .

s ' i

Kj, = M
g

- M
j[

. (11)

(11) Derivation of the Extended Formulae

The fundamental innovation of this method is to introduce a "substitute

member BB"' at B which takes the place of the "elastic foundation CBDE" to

support the bent FAB which is to be analyzed. This concept is shown in Fig.

5. The primary requirement of the method is that the elastic displacements

of the substitute member BB' and the elastic foundation CBDE must be identi-

cal. If the structure is cut at joint B, the redundant forces at this joint

are as shown in Figs. 5(c) and (d). If the substitute member BB' and the

elastic foundation CBDE are considered separately, the displacements of the

"elastic foundation" in Fig. 5(c) must be equivalent to those of the "sub-

stitute member" in Fig. 5(d).

The elastic displacements of the elastic foundation CBDE at joint B

caused by the unit redundant forces X = 1 , Y = 1 , and Z = 1 can be com-

puted by setting up superposition equations. Since each of these forces

at joint B may obviously produce three components of displacement, i.e.

horizontal, vertical, and rotation, the induced elastic displacements can

be expressed the same way as those in TABLE I. It is only necessary then

to consider the effect of the substitute member BB' here. As shown in
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(a) (b)

z

c\

Ittff

x

(c) (d)

Fig. 5. Concept Of Extended Method

Fig. 5(d), if the virtual work method is to be applied, the induced dis-

placements at B of the member BB* for a unit moment, Z = 1 , at B become

m = - y
x '

m = x
y

IT. unity ,



zx J EI J EI '

mm *

ds
»

d
zy

=
J ~fr

L ds =
J "El

, _ f _z z , P ds
d
zz " J EI

ds "
J E7

Similarly, for a unit horizontal force, X = 1 , at B:

2
m ,2

d
xx

=
J eT

ds c
J

y EI »

m m
d
xy

_ r _x y_ , r • • ds
"

J "ET^ ds =
"J x y il »

m m

'xz J EI J ' EI
r x v P ' ds

d " ds =
-J y ii •

and for unit vertical force, Y = 1 , at B:

-mm ' 'm m
d
yx

d r^ ds =

2 _
• 2

x

yy J El J EI
ds ,

16

_ m m _ '

, P _y z P x
d = -fr:— ds = — ds .

yz ^ EI j EI

A comparison of these quantities with those in TABLE I shows that the expres-

sions are identical. Therefore, the relationships between the displacements

of both member BB' and bent CBDE can be set up as shown in TABLE II.
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TABLE II
2

FORMULAE FOR A SUBSTITUTE MEMBER AT JOINT B

Loads at B Line Defl. at B
Elastic foundation

(CBDE)

Substitute member
(BB' )

X = 1

Y = Z =

Horizontal

Vertical

Rotation

xx

xy

xz

' 2 Ay ds
EI

r
x y

"
J EI

f
Y ds

J EI

ds

V ds
El

J EI

_ f
Y ds

J El

Y = 1

X = Z =

Horizontal

Vertical

Rotation

yx

yy

yz

f
5 y_

J EI

ds

J EI

r x'
2

J e~t

ds

ds

r * y
J EI

ds

fx ds
J EI

f
x ds

J EI

Z = 1

X = Y =

Horizontal

Vertical

Rotation

d = - r *-*
zx o EI

s

x ds
zy J EI

zz J EI

y ds
J EI

r

•

x ds
J EI

r
ds
EI
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The effect of the substitute member BB' must be the same as that of the

bent CBDE. From lines 7, 8, and 9 in TABLE II:

r ds
J EI

= A = d
zz •

(12a)

r ds
x • — = d = d , (12b)

J El yz zy

r ' ds
- y • — = d = d (12c)

o EI xz zx

In Fig. 5(d), the coordinates of the substitute member BB' are in terms of

i •

x and y referred to joint B as the origin, thus, from Eqs. (12)

d d

x = -3ts- = -** (13a)

J EI

d d

y = - 7—- = - "T
2

• (13b)
f ds d

J eT

It is obvious that Eqs. (13a) and (13b) give the coordinates of the

i

centroid of the elastic area of the substitute member BB . Then the elastic

properties referred to the elastic center of the substitute member BB can

be evaluated by translating the axes from the assumed position at B to the

new position at the centroid B . Thus the area properties at the centroid

of the member BB are evaluated to be:

•2 d
2

! = [2L_^s _ A ("V = d
_^z

(l4a)
gy J EI yy d

2Z

2 d
2

! = [
^-di-A (yV = d -"«

. (Ub)
gx J EI xx db zz
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= . [

«' y' els _ A (

-'

)(

-'

}
r ^ + isi^

J El J
\gxy J El ' xy ci

7.7.

Once these properties have been evaluated, the substitute member can be pro-

vided for the next bent of the continuous frame. In this case the axes

passing through B in member BB must be translated to the new origin of the

new substituted structure. The new coordinates of B of member BB after

translating the axes to a new origin, as shown in Fig. 5(d), will be:

x = x + x, , (15a)
D

y = y y b . U5b)

i

and the area properties of member BB after translating the axes must be:

- 2
d
vz

1 = I + A (x) = d r*5 + (x + x. ) d , (16a)
y gy yy <^

zz
° zz

- 2
d
xz

I = I + A (y) = d - -f* + (y y. ) d , (16b)
x gx xx d b zz

zz

d d

1 =1 A (x)(y) = - d
* 7

.

Y s
xy gxy ' xy d

zz

_• _•
+ (x + x, )(y + y, ) d . (16c)

b b zz

Equations (13) to (16) show that it is not necessary to know the flexural

rigidity EI of the substitute member BB . Also since the "substitute

member" is an ideal bar, it can be of any shape. The directions of the

redundant loads as shown in Fig. 5(c) and (d) are assumed to be positive.

The details of this method are shown in the examples, and the results hnve

been checked by the slope-deflection method.
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GENERAL PROCEDURES

(1) Subdivide the continuous structure into equivalent single-span's;

select one span (any span) of the subdivided structure as an elastic founda-

tion at a time.

(2) Determine the elastic properties of each subdivided span in turn.

(3) Consider all spans adjacent to the span which is to be analyzed

as its "elastic foundations."

(4) Replace the "elastic foundations" by substitute member with char-

acteristics such that a selected span of the substitute member is equivalent

to a span on the elastic foundations.

(5) Determine the elastic properties of the substitute members and

proceed with the application of the fundamental column analogy method.
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NUMERICAL EXAMPLES

Example 1:

The middle span of the three-span symmetrical bent, as shown in Fig. 6,

is loaded with a uniform load of 1 k/ft. Assuming that the bent is fixed at

the bases, determine the member end moments.

12'

k/ft.

1=24.33

1=48

1=32

24'

|CO

48' 24'
-H

Fig. 6. Loaded Three-span Symmetrical Bent.

Solution by the column analogy method:

(1) The analysis of the "elastic foundation EDCF" by the column anal-

ogy method is carried out as follows: Unit redundant forces are applied at

the joint C as shown in Fig. 6. The computations for the properties of the

bent EDCF and the corresponding moments caused by the unit redundant forces

are listed in TABLES III to IV. Since this structure is symmetrical, only
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one half of the structure is analyzed, and the results for the other half

can be obtained by symmetry. The analysis of bent EDCF is illustrated in

Fig. 7.

Y=l

• x
= 5.42

(a) Properties Of Bent EDCF.

X=l

EI

10.286'

(b) Moment Diagram And M/EI Diagram Due To

Redundant Force, X = 1 , Applied At Joint C,

Fig. 7. Analysis Of Bent EDCF.
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Y=l

M =0
s

EI
=

(c) Moment Diagram And M/EI Diagram Due To
Redundant Force, Y = 1 , Applied At Joint C,

Z=l yo 1

]) ^^ C
D_^-^—

c

—

I**"

-*"
—

'
c £

zz.
X

M

16

M

•4-
3.142

0.5

Tl fr

s

F -

i

EI F

r 1

+

10.286'

(d) Moment Diagram And M/EI Diagram Due To

Redundant Force, Z = 1 „ Applied At Joint C,

Fig. 7. Analysis Of Bent EDCF. (Continued.)
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Since the bent EDCF is unsymmetrical , the formulae for the M ' s which are

listed in TABLE IV can be calculated as follows:

X V

i
2

xy_
1 1
x y

= 0.127 x 0.028 = 0.0035

i
2

1 = I (1 - :
x
^ ) = 150.24

y y II
' ' x y

i
2

I =1(1- _ *

;

) = 34.55
x x II

x y

If X = 1 is applied at C (as shown in Fig. 7 (b)), then M = -23.24 ,

M = +41.144 , A = 1.75 , and P = +4 , and

I

M = M - M r2^ = -24.40 ,
x x y I

y

I

M = M - M r2^ = +44.1 ,

y x 1

* i

M M
M. = f+-fx+~y = 2.285 + 0.293 x - 0.706 y .

1 A
I I
y x

If X = 1 is applied at C (as shown in Fig. 7(c)), then M -1.571 ,

M = +5.143 , A = 1.75 , and P = +0.5 , and

,
I

M = M - M -f
3

- = -1.715 ,

x x y I
y
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M = M - M _!&.
x 1

+ 5.320

i i

M M
M = - + -^ x + — v
"i A

i i

y *

= 0.286 + 0.035 x - 0.0496 y

In order to complete the table, the formulae for the M.'s am listed in

TABLE IV. By using these formulae, the end moments of the bent EDCF are

evaluated in TABLE V.

The computation of deflections at joint C is based on the values

obtained in TABLE V, and is illustrated in Fig. 8. The results of the

computation are listed in TABLE VI.

1.869 C

32 V
16'

2.835
32

(a) M/EI Diagram for Comput-
ing Deflections at C.

d = ri (-1.869 x "Mr x « + 2.835
xx 32 2 3

16 2 x 16 , _ _,
x — x —~

) = + 5.07

d = r^ (-1.869 2.835) x ^xz 32 2

= + 0.244

C„ 0,591
32=E7 T

—/'

16'

0.203 /-*

(b) M/EI Diagram for Comput-
ing Deflections at C.

d =r^ (0.591 x » x * " 0.203
zx 32 2 3

16 2 x 16
, _ _ 0//x — x — ) = + 0.244

d = r^ (+0.591 - 0.203) x ^zz 32 2

= + 0.097

Fig. 8. Computation Of Deflections By The Conjugate Beam Method
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TABLE V END MOMENTS DUE TO REDUNDANT FORCES

PT. X Y M
S

x = :L

M M
S

Z = 1

M
i

M

E

D

C
CD

C
CF

F

-13.7144

-13.7144

+10.2866

+10.2866

+10.2866

-11.142

+ 0.858

+ 4.858

+ 4.858

-11.142

c

+ 16

+ 6.133

-2.339

+1.869

+1.869

+13.165

-6. 133

+2.339

-1.869

-1.869

+2.835

+ 1

+ 1

+0.354

-0.242

+0.409

+0.409

+1.203

-0.354

+0,242

-0.409

+0.591

-0.203

TABLE VI DEFLECTIONS OF JOINT C DUE TO THE END
MOMENTS SHOWN IN TABLE V •

Horizontal d
XX

: + 5.070 d
xy

= d
X7

-- + 0.244

Vertical d
yx

d
yy

= Ci

yz

Rotation d
zx

= + 0.244 d
zy

= d
7,7

= +0.097
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The properties of the substitute member CC can then be calculated from

Eqs. (12) to Eqs. (14).

ds
= A = d = + 0.097 ,

EI zz

_i d

x = —^ =
d

'

zz

-'
= . isz = . 0.J44 m _y d 0.097 ^°^ '

zz

1 = d - d (y'

)

2
= 5.07 - 0.097 (2.52)

2
4.51 ,

gx XX zz

I = d - d (x' )

2
= ,

gy yy zz

d d
xz

"gxy ~xy d
- d

xz vs =

zz

(II) Since the properties of the substitute member CC are known, the

i

"elastic foundation EDCF" can be replaced by the substitute member CC to

support the bent CBAGH. Similarly, the substitute member HH can also

replace the bent NHJK. The computations are listed in TABLES VII to IX.
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1
k/ft

3'

12'

2.52'

i i i i i
i ' i ii i i i 1

1
i i i 1 1 1 1

1

= 24.33
A

1=24.3

1=48 1=48

24'
4-

24'
u

•» x

(a) Properties Of Bent C CBAGHH .

k/ 1

i ' i ' i i ' 'Ml

288 k-'

M

1.125'

2.925'

10.02'

(b) The Determinate Moment Diagram and M/EI
Diagram Due To The Applied Load.

Fig. 9. Analysis Of Bent C CBAGHH .
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BAR

OIVEN DATA COMPUTED PRGPI RTIES

L I X Y A=f^2
J EI

AX AY 'y I

X

c'c

CB

BA

AG

GH

hh'

.

12. Ou

24.33

24.33

12.00

•

•

48. oO

24.33

24.33

48.(10

•

-24

-24

-12

+ 12

+ 24

+ 24

-8.52

+ 7.5

+ 7.50

-8.52

0.097

0.250

l.COO

l.GOO

0.250

0.097

- 2.34

- 6.U0

-12.00

+12.00

+ 6.0

+ 2.34

-0.83

+ 7.50

+ 7.50

-0.83

56. 16

144.00

192.00

192.00

144.00

56. 16

4.51

7.20

S9.60

5^.60

7.20

4.50

CCRR. TC CENTROID** -0.00 -66.03

^ 2.694 +13. 34 784. 32 76.59

REMARKS:

-¥r ° . '* *••«
.2 _2

** I = ^AX =0,1 = SAY = 66.03
y x

TABLE VIII ELASTIC LOADS AND FORMULA Mj^ DUF
TO APPLIED LOAD ON bENT C'CBAUHH

BAR P X Y A= f^
J EI

M
y

K'

X

C'C

CB

BA

AG

GH

HH '

.

+192.0

+192.0

.

-9.0

+ 9.0

-2.925

+2.925

0.097

0.250

1.000

1 .000

- .250

0.097

.

-1728.0

+1728.0

.

.

+ 561.6

+ 5 61.6

.

2. 384.

C

2.694 + 1 123.2

P K K
M; = £ + _Z x +_2E V = 142.48 + 14.66Y

1 a i *
i y

y X
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k-f t
As shown in Fig. 10(b), the moment, Z ~ 18.1 , has nlrendy been obtained

in TABLE IX; therefore the horizontal force, X , can then be computed by

taking the free body BC and setting up the static equilibrium equation

M = , that is:
B

X -
"- 1

; 2

157- 8 ? - 14.65
k

.

k k-f t
Thus, the redundant forces X = 14.65 and Z = 18.1 acting on bent

EDCF are shown in Fig. 10(a). The end moments for the bent EDCF can then be

obtained by multiplying X = 14.65 and Z = 18.1 times the corresponding

coefficients in TABLE V. The results are listed in TABLE X and also plotted

in Fig. 11.

H
14 65

k

7= 1Q i
K

». k k-' ^— it.03

KJ X=l4 - 65 l6 ' 1 <J

Z=18.1

O
k-'

X=14.65

E F

(a) (b)

14.65

(c)

Fig. 10. Redundant Forces X and Z At Joint C.



TABLE IX END MOMENTS CF BENT C C13AGMH

PT. X Y M
s

M .

l
M[ - M —M

s i

C CB

B

A

G

H
HG

-24

-24

C

+ 24

+ 24

-10,95

+ 1.05

+ 4.C5

+ 1.05

-10.95

+ 288

- 18.10

+157.87

+201.85

+157.87

- 18.10

+ 18. 10

-157.87

+ 86. 15

-157.87

+ 18.10

TABLE X END MOMENTS OF BENT EDCF

M
1

(k- 1

) M
2

(k-»)
(k-»)

POINT (DUE TO X=14.65 ) (DUE TO Z=18.1 ) M = M - + M m1 2

E +89.80 + 6.42 +96.22

D -34.25 - 4.38 -38.63

C
CD

+27.60 + 7.41 +35.01

C
CF

+27.60 -10.69 +16.91

F -41.70 + 3.76 -37.94
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86.15 k-«

96.22 37.94 37.94' 96.22 k-<

Fig. 11. Final Moment Diagram.

Example 2:

A skew frame with a curved member is loaded as shown in Fig. 12. The

center line of the curved member is expressed by the equation of the parab-
2

v
ola u = - "rrr referred to the u- and v-axis shown in Fig. 12. The section

of the curved member is assumed to be constant. Determine the end moment.

Solution by the Column Analogy Method:

(I) Analysis of the "elastic foundation ABCD" by column analogy method:

The unit redundant loads at joint C are shown in Fig. 13. The computing

procedures are the same as those in Example 1, and are listed in TABLES XI

to XV.
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15'

4- Jl

50 30'

Fig. 12. Loaded Skew Frame.

Y=l
i

18.03'

1=80 C

1=10 1=10

rfn

/}Z=1

-T— X=l

15'

30'

(a) Properties Of Bent ABCD.

Fig. 13. Analysis Of The Bent ABCD.
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X=l

M
-\ 1 1 . 25

D
18.687'

(b) Moment Diagram And M/EI Diagram Due To
Redundant Force X = 1 Applied At Joint C.

Y=l

4

D

M =0
8

(c) Moment Diagram And M/EI Diagram Due To
Redundant Force Y = 1 Applied At Joint C.

Z=l

18.687'

(d) Moment Diagram And M/EI Diagram Due To

Redundant Force Z = 1 Applied At Joint C.

Fig. 13. Analysis Of Bent ABCD. (Continued.)
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TABLE XIII END MOMENTS DUE TO REDUNDANT F0RCF3

J9

PT. X Y M
s

X = J

M
i

1

M M
s

Z = 1

M .

l
M

A

B

C
CB

C
CD

D

-21.313

-11.313

+18.687

+18.687

+18.687

-8.265

+6.735

+6.735

+6.735

-8.265 + 15

+2.9] 36

-3.0418

+3.4580

+3.4580

11.5940

-2.9136

+3.0418

-3.4580

-3.4580

+3.4064

+ 1

+ 1

+0.03375

-0.07125

+0.75077

+0.75077

4-1*12976

-0.03375

+0.07125

-0.75077

+0.24923

-0. 12976

TABLE XIV DEFLECTIONS OF JOINT C DUE TO ThE
END MOMETNS SHOWN IN TABLE XIII

Horizontal d = -

XX 12.5805 d =
*y

d =
xz

- 0.0386b

Vertical V d =
yy V

Rotation d = •

zx
- 0.03865 d =

yz
d =
zz

+ 0.0896
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By applying Eqs. (12) to (14), the properties of the substitute member CC

can be evaluated. The calculations are similar to those shown in Example 1,

and the results are listed in TABLE XV.

TABLE XV PROPERTIES OF THE SUBSTITUTE MEMBER CC

A = ^A
El

X y 1
gy

i
gx

1
gxy

+0.0896

-

+0.431 +12.5638

(II) Analysis of the curved part C CE as shown in Fig. 14. The

"elastic foundation ABCD" is replaced by the substitute member CC . The

curved member CE is divided into eight equal segments so that each segment

i

can be approximated by a straight member. The analysis of member C CE is

shown in TABLES XVI to XVIII.

1
10' 10' 10* 10' 10 10' 10' 10
!-^___ *f»

—
h

36.656' x=43.344«

Fig. 14. Properties Of C CE.
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TABLE XVII ELASTIC LOADS AND FORMULA FOR Mj_ DUE
TO APPLIED LOAD ON MEMBER c'cE

42

SEG. CTR. M
s Jei

rM ds
P=

|
s

J EI
X Y M

7
M
X

CC

CF

FG

GH

HJ

JK

KL

LM

ME

1

2

3

4

5

6

7

8

c

- 50

-150

-250

0.08 9

15.360

14.080

13.240

12.320

11.460

10.770

10.280

10.0 30

- 538.5

-1542.0

-2507.5

-36.656

-31.656

-21.656

-11.656

- 1.656

+ 8.344

+18.344

+28.344

+38.344

-31.529

-25.760

-14.600

- 5.000

+ 3.000

+ 9.400

+14.200

+17.400

+19.040

.

- 9867.67

- 43644.02

- 96147.58

.

- 7652.1

-26846.2

-47742.8

Y 97.630 -4588.0 -149659.27 -82241.1

M
i

My = -34521.73 Mx = +16534.02

-47.03 - 8.94X + 9.001Y

TABLE XVIII END MOMENTS ON MEMBER C
1

CE

PT. X Y M1
' S Mj_ M=M S - Mi

C

K

E

-36.656

+13.344

+A3.344

-31.96

+12.04

+19.24 -300

- 7.33

- 58.03

-258.57

+ 7.33

+58.03

-41.43
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10'

2 50
„.. 150" 1^300*-'

Fig. 15. Statically Determinate Moment Diagram
Of Curved Member C CE.

From TABLE XVIII and the formula for M , the redundant forces at joint

k-f t k
C are computed to be Z = 7.33 and X = 9.001 . The combined action

k k-f t
of X = 9.001 and Z = 7.33 is shown in Fig. 16. The end moments of

bent ABCD can be evaluated by multiplying X = 9.001 and Z B 7.33 to the

coefficients in TABLE XI11 correspondingly. The results are listed in

TABLE XIX and the moment diagrams are plotted in Fig. 17.

Z=7.33

n
k-'

X=9.001
X=9.001

(a) D (b)

Fig. 16. Redundant Forces X and Z At Joint C.
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TABLE XIX FINAL MOMENTS FOR bENT AbCO

POINT M
l

(k-») M
2

(k-») M - M, + M
2

(DUE TO X=-9.001 ) (DUE TO Z=-7.33) (k-»)

A +26.22 + 0.25 +26.47

B -27.41 -0.52 -27.93

C +31.10 + 5.51 +36.61

C +3. .10 -1.83 +29.27

D -30.65 + 0.95 -29.70

26.47";

41.43
k-»

Fig. 17. Final Moments.
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Example 3:

This example is the same as that in Example 2, it is solved by slope-

deflection method here to check the results obtained in Example 2.

Solution by slope-deflection method:

This method is used here to check the results of the previous solution

The properties of the curved member CE are first analyzed so that the fixed

end moments and stiffness factor can be determined. Having these values,

(3)
"the extended slope-deflection equations" " can be set up. The curved

member is also divided into eight equal segments as shown in Fig. 18.

Fig. 18. Properties Of Curved Member CE,
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TABLE XXI ELASTIC LOADS AND FORMULA V
±

47

STG f TR
•

M
S

D f
Mds

P= s

J EI

X Y M
y

M
X

KL

LM

ML

6

7

8

- 50

-15o

-250

- 538.5

-1542.0

-2507.5

+18.31

+28.31

+38.31

+14.21

+17.41

+19.01

9 8 5 7 • 94

- 4 3 6^4.02

- 96062.33

7625.1

- 26846.2

- 47667.6

^ 4588.0 - 82165.90 -149564. 3

A = 97.54 Mx = +15798.72 My = -33874.71

M
i

-47.03 - 8.69X + 8.67Y

*< 130 K-.
250'

Jrig. 19. Statically Determinate Moment Diagram,



48

From TABLE XX and the formula for M in TABLE XXI, the Hxed end

moments, fixed end thrust, and stiffness factors can be obtained as the

following.

m)L = -47.03 - 8.69 (-36.69) + 8.67 (-31.99) - + 5.33
k ~'

M
EC

= " (
~47 - 03 " 8.69(43.31) + 8.67(19.21)) - 300 = - 42.37

k ~*

F k
From the formula for M , since H^_, = + 8.67

i CE

2

r = L L
3 y

2
L

_ 80 80
3

(31. 99)
2

• 80
' ds „ 2 J „ 2 . 97.54 4(3900) 1872

ds

= 77.322

2

_L L
3 y 2

L
_ 80 80

3
19. 21

2
x 80

2 '
P ds " "

2 ,

+
. 2 . 97.54

+
4(3900)

+
1872

= 16.19

EC _
y
2

r L
_ (19.21) (0) (80)

°4 „ 2 .
" 1872

U

V ds
EI

CE y 2
r L

_ (19.21) (51.2) (80) _ __ _
C
4 „ 2 .

' 1872
7U ' U

v ds
EI

where C. = stiffness coefficient at the near end of the member CE with

respect to rotation at the near end.

C stiffness coefficient at the far end of the member CE with

respect to rotation at the near end.
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CE
C, = stiffness coefficient at end C of the member CE with respect

to horizontal displacement at C.

.EC
C. = stiffness coefficient at end E of the member CE with respect

to horizontal displacement at C.

Then the extended slope-deflection equations can be set up as follows:

18.03'

Fig. 20. Displacements Of Joints.

I 10 J? "h
M
AB " 2E

I
le

B " 3R) = 2E ^^ (9~
18.03 "B 18.03'

= ElU16B-°- 22 V
M
BA

2E 7 (20 n - 3R) = E (2.229 - 0.22 A.)LB B h

M
BC

2E f£ (29 D + ©_ + 3(-~r)) = E(10.679 D 5.339,, 0.355 A, )

M„ u = E(5.339 D + 10.679„ + 0.355 A,

)

Lb DC n

M
CD " 2E

15
(29

C
+ 3(

li
)} = E(2 - 676

C " °- 267 V
"DC

= E(1.339„ - 0.267 AL )



50

M
CE " T <

C
1»C " C

2°E - C
t

E

T> +
»CE

fr (77.3220. - 70 (Tr^T)) - 5.53 = E(0.966» - 0.0171 A.

)

-5.53

M
EC = f '^C + C

1
6
E - Cf r),+M

EC

= ~ (-16.19©,, - 0) - 42.37 = E(- 0.20240 ) - 42.37
oU C C

For joint moment equilibrium:

M
BA

+ V " ° J °
r

12.89© D + 5.33©„ + 0.135 A. = ,

B C h
(A)

MCB
+ M

CD
+ M

CE
=

° ; °
r

5.330 D + 14.3060„ + 0.0709 A, = 5.53
B C n

(B)

For shear equilibrium:

H
2

B

-» «* -

B

r «
2

t "2

V

C H2

r -£

Fig. 21. Shear Equilibrium.
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H
l Lr

(9
C

9
E

+
y2

J H
l

" 80 x 51.2
(6

C
+

3l.99
) 8, ° 7

= ECO. 0171 9„ + 0.000535 A. ) - 8.67
C n

M + M
H = -e£—

—

— = E(0.267 9 - 0.0356 A. )

o 15 C h

H o
= 77 (Mah M oa - v ' 10 > " E(-0.133 9n - 0.3556 e„ - 0.045137 A.

)

2 15 AB BA B C h

H - H
2

- H
q

= ; or

0.133 8 n 0.1057 ©„ + 0.081272 A. = + 8.67 . (C)
B C n

Solving the simultaneous equations (A) , (B) , and (C) , the solution is

obtained

:

e o = -.12713063/E ; ft = +0.33039816/E ; A. = +108.3343/E .

d C n

Therefore, the results are:

M
AB

= " 26 -

34k"'
' M

BA
= " 27 -

76k "'

'

H
BC

= + 27 -

76k"'
• M

CB
= + 35 -

2k "'

'

M
CD

= " 28 -''
8k "'

• "DC
• " 28 -°

4k "'

'

M
CE

= + 7 -°
5k"'

' M
EC

= " 43 -

03k"'
•
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CONCLUSIONS

It is evident that the column analogy method gives the combined effects

of sidesway and joint rotation. In frame analysis, such as gable frames and

arch problems, this method provides a direct and easily understood approach.

The comparison of the results of the column analogy method and the slope-

deflection method reveals that they agree very closely. The latter takes

considerably more time and may lead to confusion concerning the signs of the

rotations and the sidesways of the structure; while the former gives the

desired results more directly.

Although this report does not contain a numerical illustration of com-

puting the ordinates of influence lines, this method is a good tool for

computing the influence line ordinates for continuous frames with variable

cross-section.



53

ACKNOWLEDGMENT

The author wishes to express his deep appreciation to his major

professor, Dr. Robert R. Snell, for his aid, advice, suggestions, and

encouragement during the preparation of this report.



54

NOTATIONS

X, Y, Z = the redundant forces, horizontal, vertical, and rotation

respectively.

i i i

d , d , d = the horizontal, vertical, and rotation displacements dueX y Z

to the applied load.

d , d , d = the horizontal, vertical, and rotational deflections,
xx xy xz '

respectively, due to X = 1.

d , d , d = the horizontal, vertical, and rotational deflections due
yx yy yz

to Y = 1.

d , d , d = the horizontal, vertical, and rotational deflections due
zx zy zz

to Z = 1.

L = the length of the member.

EI = flexural rigidity.

A = total elastic area = ~
o EI

1,1,1 = moment of inertia of the elastic area about x- , y-axis
x y xy

and product of inertia about x- and y-axis.

i = moment of inertia of a single member.

M = the resulting bending moment at any point of a structure.

M , M = the statical moments of elastic load about x- and y-axis.
x ' y

J

M. = the indeterminate moment of the structure.

M ds
g

P = elastic load -I EI

C. = the stiffness coefficient at the near end of the member CE

with respect to rotation at the near end.

CE
C. = the stiffness coefficient at the end C of the member CE

with respect to horizontal displacement at C.
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C = the stiffness coefficient at the far end of the member

with respect to rotation at the near end.

EC
C. = the stiffness coefficient at the end E of the member CE

with respect to horizontal displacement at C.
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The column analogy, as introduced by Professor H. Cross In 1930, is

applicable to beams, arches, and bends of not more than three redundant

elements. This report presents an extension by the column mm logy method

which may be applicable directly to continuous frames, beams and arches.

Although these structures may have more than three redundants, this method

is still applicable if a proper extension is made. The ideas presented in

this report show that the column analogy is a convenient tool for analysis,

especially, for variable sections.

The characteristics of this method are such that the two structures in

Fig. A are equivalent as far as the redundant elements in span AB are con-

cerned. Span AB is assumed to be supported at B by the "elastic foundation

i

BCDE" which is converted to an equivalent elastic member BB . The extended

method is based on this type of substitution and is useful in many analysis

problems.

I

(a) Original Structure (b) Substituted Structure

Fig. A. Illustration Of The Extended Method.


