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CHAPTER 1
AN INTRODUCTICN TO LARGE-SCALE SYSTEMS
1.1 1Introduction

Just in the 1last decade has major research and
devalopment of large scale systems taken form. At least
Five distinct industries , aerospace , computing, powver,
semiconducter, and communications—-- call for the response of
recent activity in the large-scale systems area [ Palner,
1982 1. Resides these, there are other such systems which
will eventually present a great deal of challenge, such as
urban traffic network, digital communication network,
ecoloéical systems, and economic systems [Sandell, 1978 1.
Although the theory of large-scale systems has been studied
by Pearson, Tamura, and others over the past ten years, the
field of large-scale systems and their decentralized control
is still in its infancy [Singh, 1980 1. Because the
computational difficulties grow exponentially as the scale
of 13 system increases, some special techniques are needed to
deal with large-scale systems [Araki, 19787. The usual
procedures for optimizing large-scale systems are
deconposition and coordination. To decompose a system means
to divide a whole system into smaller ones, i.e., *to nake
the system behavior more tractable. VYet, it is necessary to
add som2 coordinate constraints to recover the original
structure before decomposition. In adding these

constraints, the model selected, or the algorithms
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implemented, will determine whether the result is global
optimum or not. These same determiners will also show if

the optimization process is stable or unstable.

1.2 Decomposition and decentralized control of a lacge-

- o o -_—— R mesmmE e - R T

A large-scale system can be viewed as many interconnected
subsystems, within which the interaction can be static or
dynamic. The overall systen consists of many input
variables, output variables, and state variables. Input
variables can be controlled to regulate both the state
variables and output variables., Also, performance of the
criteria for the large-scale system can be optimized by
means of regulation over the control variables. An
interconnected dynamical system is shown in Figq. 1.2.1. In
this figure, blocks of the same row represent variables in
the same subsystem but at different *ime instants. only
subsystems K and K+1 at time t , t#t,, t+2t, are shown in

this figure.

Due t5 the complexity and large dimension of -the total
systen, it is impossible to optimize it unless the
decomposition method is applied. This task becomes feasible
+hrough +the decentralized control algorithm fLi, 1982 1.
Decantralization implies that the various controllers in the
system are allowed only to measure sSome outputs and to
regulate sone inputs of the systen, thus providing

decaptralized control over the entire system [0Ozguner, 1982



N
+h
SYSTEM 1,2,4.0.4K-1
ee. —mm K+1 (%) = K+1(t+t0)-T.K+1(t+?*o) -
SYSTEM K+2.....N.ﬁ
Fiy. 1.2.1 : An Interconnected Dynamical Systen
1.3 RApproaches and algorithms for optimizatiom of large:

scale systen
The lecomposition technigue was originated by Dantzig-

Folfe for 1linear programmimg problems [Dantzig, 19791.

Later followed Arrow and Hurwicz's paper [Arrow, 196017,

makahara's algorithm [Takahara, 19647 on optimal control,
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and Lasdon etc.'s paper [Lasdon, 19651 on ‘'separable’
mathematical programming. There has been an 1increasing
intarest in the =Fo} called *two-level! optimization

algorithms., The basic idea in algorithms of this sort is to
separate whole problems into many 'independent' subproblems
and then solve the subproblems individually. Meanwhile, it
takas into account the interaction between subsystems by use
of coordinate coastraints, thus dividing the large systen
into smaller ones. The price paid here is that it might be
necessary to solve the same problems several times via somne
iterative schenes, This kind of technigue serves as a
starting point for the theory of largqe-scale system [Cohen,

19731, fDantzig, 19791.

since then, there have been several frameworks developed
to solve large-scale system problems through different
approaches, The first «class of methodé ircludes the
aggregation method [Howard, 19711 ard the perturbation
method "Kwathy, 19777 of model simplification. The first of
these methods assumes that a simplified model <can be
obtained by introducing a coarser state space description,
while the latter method ignores some dynamic interactions
within the system in order to simplify the model. The
second class of methods is the decentralized feedback
control and the multilevel method for deterministic control

[ sandel, 19781.

Most of +he decomposition schemes for large-scale systen
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fall into two categories: either ‘'hierarchical systen
formalism' or ‘approximation procedures?. The first
catagory includes goal coordination, model coordination, and
interaction principle, whereas the latter includes
successive approximate dynanmic programming, sinqular
perturbation +techniques ,and the N -couplirg technique,
[ Mesaroviec, 19701, [Wismer, 19711, [ Fahmoud, 19777, [ Larson,
1973 1, [ Kokotivie, 19711. 0f these latter two technigues,
both require an iterative scheme to ohtair the solution.
And in most cases certain conditions have to he met in order
to guarantes convergence to the optimal solution [Cline,

1977 1.

2f all these technigques stated in the last paragraph,
dynamic programming is the most powerful tool one can use to
solve problems with multi-stage decision processes, which is
a common phenomenon of large-scale systenm. Also, the bacsic
approach of the dynamic programming technique may be
snitable for implementing on a digital computer. However,
the usefulness of dynamic programming is severely limited by
the dimensionality of the problen. Despite +the more
advanced capability of modern computing facilities, mary
practical problems still can not be solved by dynamic
projramaing due ¢to the existing computational capabilities
limit., This is called the ‘'dimensionality difficulty!’
[ Bellman, 1962]. Freguently, some of +the decomposition
techniques have been used to overcome this difficulty. This

is explained in the followirg section.



1.4 Spatial dynamic programmipg 9

Jne new approach of the dynamic programming technigue
inteanded %o solve problems with high dimensionality was
developed by Robert E. Larsor in 1977 “Cline, 1977]. This
new approackh, called *spatial dynamic programming? (SDP),
can treat non-serial structured problems , as well as higqhly
irtaracted systems, more easily and efficiently. The haéic
idea of the spatial dynamic programming technique is to
treat the overall system as many smaller subsystems upon
which dynamic programming can apply. One requirement of SDP
is that the optimization probhlem itself has to be at least
weakly decomposable. 'Weak decomposibility' means that,

given the original problem as

JN{Q} = min F(EI'EZ""'EN)
(Ugseeoruy)

assume the values of some decision vectors u are given, for

instance 1if

~ A
{EK+1"""EN) = (Ugeq, 00 e BN

1

nin F{Uuq,Usg, e sty

(u, . ouy)

)

%:)

~
ther Jg (Ugsqoecrey

is still well defined for all K, K=1,2,3...,¥
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This property inmplies that the original problem can be
divided 1into many subproblems without disturbing the
original problem structure. This characteristic provides
the basis for SDP. The details of the SDP technique will be

explained in the following chapter.



CHAPTER 2

INTECDUCTION TO SPATIAL DYNAMIC PROGRAMMING
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Although spatial dynamic programming is a promisirg tool
to treat large-scale systems, some assumptions are needed
about the problem of concern. These assumptions are much
morz general than other optimization technicues whick may
require the probler to be linear, guadratic and so on. The
preliminary conditions needed to apply spatial dynamic
progyramming are demonstrated in the following section.

2.2 Separable, weakly decomposable, strongly decomposable

=*= = == —— e —— e = =y —4— R~} —_—— e e - =

Suppose a function F(x ,X ses+4X ) can be defined

by subfunctions f: , i.e. ,

F 1 {x 1 } = KO x0 : initial condition

th

Fo (X, oXq ) =25 (xp ,Fy (x4 D)

FN—I (xN_lpoou,xl } :fN-—i(xN—l’J:N—Z(XN-Z“"Xl

FN (XN ’---'xl ) = fN (XI‘J 'FN_].(XN_J-,..-'X]'
L = F X g s g K )
P (XN ' ;Xl ) N ( N Xy
where x° represents the initial conditions
And if F; is well defined for every 1, thern F is

separable [Cline, 19771.

)
)
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The f; are the separating functions of F . Note that F need
not be linear to be separable. This implies prohlems of
linear, guardratic, and even nonlinear forms could be
treated if they are separable. Furthermore, given *hat ¥ is
separable, and all its separating functions f; (x,y) are
non-decreasing with respect to y, or increasing with respect
to vy, then F is said to be weakly decomposable and strictly
decomposable respectively. If all f; (x,y) are nondecreasing
with respect +to both x and v, ther F is strongly
decomposable. The definitions given above are summerized in

the following table :

Table 2.2.1 Definition of decomposability

e B e s o T — -— et |

P is separable, f(x,y) are separating functions of T

#
! |
| |
| |
] }
1 |
}‘ s | ——1
] ] i |
] i 1 . ) -1
| All £; (x*+Y) | non-decreasing | increasing |
! | i |
| | | |
F s $ -1
| | | |
| | | |
| depends on i weakly { strictly §
| | )

: y only i decomposable { deconposatle |
i l | |
+ i — + - 1
| | | ]
| | { |
] depends on ] strongly ] ;
| i {

1 1 | |
] both x and vy | decomposable ] e e e ok ok |
L | ! |

—d

—— e e e s e s S B ——
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The above definitions are very important in finding the
necessary conditions for the ©problems in which thke SDP
nethod can be applied. The details of the decomposable

condition will be explained in the following paragraph.

Assume the rost general form of the mathematical

projramming problem can he defined as follows :

OPT P(xl.xz,...,xN; (X1,X2,...,XN}€ )
where OPT : the maximization or mirimizatiorn according
to a spesific cost or performance criterion
S : represents the set of variables which
satisfy constraints

(2.2.1)

Although the X's can be vectors, here they are assumed

scalers for simplicity.

Instead of using the form above, the problem car also he

presented in a 'separable form?', to implement the

decomposition procedure. That is :

OPT Fy(F{x ), K (X Yoeensf X))
(2.2.2)

subiect to :

Gm(qu(xN’ 'qN-lm(xN-ﬁ r--fgm[X]_’) 0 m=1,24ea-,sL

ewel = 0 =L+1,...,0
Cr I m XN I B nag) oo I X)) .

g (x }) <=0 m=M+1,c..,K
nm n

D=1,2,---,N
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In this more !'concrete!' fornm, constraints have been
divided into three catagories, because they will be treated
differently. An 'individual' comnstraint (not coupled with

other variables), such as : g__(x ) <=0, m=M+1,M+2,...,K,

nm" n

can he trarsformed without 1loss of generality into these

)y <= 0, m=I~1+1,M+2,..._,K}. This will

simplify the optimizing procedure by considering the

sets : X = { X 1 g

feasible region of the variable x without involving other
constraints and/or variables. The above prohlem is referred
to as +the principal problem and can h2 abbreviated as the

following :

P = 0PT { F(fy () Eg_qly gy T1lxg))

Gm[qu(xlﬁ)'qN—lm(xN—l)"")<=g
m=1,2,+0.,1

G (ONm (XN s I N-1nlXNeg ) reve) =)

n=L+1,L+2,...,0

and x € ¥, n=1,2,...70 [ Bs8..5)

It is time to find the sufficient conditions for
decomposition in both principal objective functions and
principal <constrant functions. Under these conditions,
principal problems can be decomposed into subproblems by

dyramic programming. Therefore the principal problem can be
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solved by combining iterative solutions to subproblems by
dynamic programming. Consider the real valued functions, Hp
{n=1,24...,8 and h,(n=2,3,..). Hnis defined in the subset of
ﬁi, while hi's are defined in the subsets of E . This 1is

shown in the following diagram. {Fig. 2.2.1)

HN:
————— > real valae
hN H HN '
x.  J  m———— > teal valiac
N
HZ: ----- > real valne
Hy xy, ) 00 > real value
em—==3 roal valuce
fy
P o i+ representation of function [ ani
Pizs 2.2.1 Schetmetie representatlol

its separating function h
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The formal definition can be stated as follows :

Def. The real value function H is said to be separate if and
only if there exist real value functions hp (

n=2,3,..-,8 ) such that

HAY oYy qoeee¥y) = Bulygehy (Vg soeeerb (Y E (Y ) )
(2.2.4)

That is, if it is separable, H is represented as follows

H(YNrYN_11-¢0rY1) = HN{YN'YN—]_"°"Y1)
(2.2.5)

while H, ( n=2,<«--,N) are iteratively defined as :

Bp{YneVpoqseeee¥q) = hp{VpelHp o (Y qreeery)d
{2.2.€)

The above functions hi's are referred to as the separat ing

funztions of H., For example, suppose that
B(x,v,2)= (x2 + loq (20 + y)1/2} e~z {2.2.7)
Here H is a separable function if it can be defined as

H{x,Y.,2) = HB{XIYJZ)
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= ha3{a3(z) JHp(y,x))

hB(QB(Z) lhBKQ2(Y) :Hl(x)))

qj(tj) = e—t3

112(":1,‘&:2} = { tl? + log {20 + 172)) -

hzitl,tz} = { tl + t2 y1/2

g2(to) log (20 + to)

-

-—12

Hq(tq)

It may he possible to express [ as different groups OF
iteratively related separating functiors; *hat 1s, i car be

represented as

sl

HN{XN'XN_l'.--'xl) Or

=]
1

HM(YM'YM-I""’YI) with different hn's and bm':

In this situa*ion, grouping +he variables and choosing

different functions to 'separate' the principal obijective

and principal constraint functions 1is an arbitrary oo,
unless the effectiveness of tte decomposition and/or
composition algorithm 1is taken in%to consileratior. Tkis

fact can be demonstrated with an exanmple as follows

If  H{(W,X,¥,Z) = W + X + y2+ z ,

tten H{w,XxX,y,2)} can ke represented as :

I (W,X,y,2) = (¥ + X + y?) + 2
or = (w + X + 7) + y?
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This separating procedure depends on th2 dimensionality for
each gronp of variables, which is essentially based or the
idea of thg reducing dimensionality of subproblems as much
as possible. The third method stated in (2.2.8) has proved

its effectiveness on the parallel processing algorithm.

Besiles the separable property shown above, the dynamic
projgramming decomposition technigue requires other
conditions on the principal objective function, as well as
constraint functions which would guarantee a 'smooth!
operation on the decomposition procedure. These are
weakly dJecomposable, strongly decomposable, strictly

decomposable and left-continuous conditiors.

The real valued function H is said to be weakly
decomposable if H is separable and all separating functions
hn(y,z) are nondecreasing with respect *o 2z, which is the
'cost-to-go' or 'performance~to-go! arguemant. If H i1is
separable and all its separating functions hnp(y,z) are non-
decreasing with respect to both y and z , then H is said *o
be strongly decomposable. Note here that weak
decomposibility is more general than strong decomposibility
because if a function is strongly decomposable with respect
to both y and z, then it has to be decomposable with respect

to z. For example

hi{y,z) = 0 for v and z < 0O
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=y + z for vy or z >= 0
Irn short, h{v,2) = y + =z is s+*rongly and lence weakly
decomposable, but Wiy, 2z = sin y + =z ig orly wealkly
decomposakble.
The separable function H is defined as strictly

decorposable 1if separating functious hyof H  are increasing

n ;
rather than decreasing. This property 1is preferred in
dynamic programming because it guarantecs an cyual or hetter

suboptimal solution from one stage to ano*her. For example

Hp (Vo VYpoqes==e¥q)

hn(yn'Hn-l(Yn-l'“"Yﬂ3 <= an

B 1 (YpoqeVpopereesVyq) (2.2.10)

= hn-]_(Vn-]_:Hn-Z(Yn—Zr---:Vl)) <= Zn-1m

The difference between Zemwmand 7, ,1is quaranteed by the s*trictly
decomposable property of Iyqand Ly, which assures the

suboptimal solution can be improved stage by stage.

A func+*ion f({x) is said +to be lef*-continnons ar poin* X
if £(x) approaches f{x7}) as x approaches x £from the left,

That is

iim  £ix) = £i{zx9) (2.2.11)

x===>x —

The separable functiosn @[ is said to he left-continuous when
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all of its separating functions are left-continuous. That

is

lim h (y,2) =tk (Y ,T)
y-->vy -
Z==>Z -

(2. 2. 12)

This property 1is essential in ttre computational aspect of
dynamic programming bcause of its implication that the

function is smooth. This is demonstrated by an example

Assuming the constraint hn(y,z} K= 7, is the upper
bound of hp(y »2 ) = 2z, and assuming the existing {Vo,zo)
satisfises hn (yo,zo) = 2z, then in searching *he possible
valae of vy and z from small to large value, the following

property {2.2.13) is desired :

l1im h (v,2) = h (y~,2z") = 7

y==-2>y ~
Z==>7 ~
(2.2.13)
Without these assunptions, it would be impossible to know

vhen to cease the searching process.

In the above, the weak or strong decomposibiltiy has been
defined as the nondecreasing or increasing property. Left-
continuity is defined as the continuity approach from the

left. These definitions, however, can be extended to the



monotony, or strict monotony, as well as +the right-

continuity of the separating functions, based on the same
idea. All the +heorem ancé corollary are valid as is, or

with only a miror modification. Tkis can he verified in *he

process 2% devising conditions for decomposibility.

To begin with, suppose the principal constraint functions
Gm (m=1,2,...,L) are weakly decomnposable and left-continuous
with separating functions hnm (n=2,3,.,N ,n=1,2,...,L) Tt i=

necessary to consider inequali*y constraints first

GNm {INm {XN) s ON-1p (XN=1) semesGqp (X1 )) <= Zp  (2.3:1)

Since GNp isweakly decomposable and left-continuous, thern,

GNm (INm (XN r N {XN-1) s =< s T (X1 ))

bm (INm (N) 7ON -l IN-m{XN-1) o= gy (X)) <= Im

(2:3.2)

Usually this constraint will no* be satisfied Ly all

18

values of g . (Xy), but only by some real nunhers. L=t VN

{m=1,2,4¢e4,sL) be the set of *Lese real nuobers, and deprote
its elements by yy, » then YNm € Vim while Vum C
R({ qu), where R is the range func+*ior values. Proceedirg

with this extension, *tke function hecomes :

b‘Nm (qu {me JhN-lm (qN-lm (XN-1 sea-y hlm 1;(‘{ 1m(3'31 ))ene)

= Gy (IN-gn(FN 1) rmmm s Gqp (Kg)) o ns)
= In (2.3.3)

This function may also represent
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- 7

ham (8nm(Xn ) Gn-1m(Bn-1m{xn-1)s - cv@1m{x1)).0) = Zppy

If qrmﬁxn)=xml is used, then there exists a real number 2',

to satisfy :

Ny {Vpme ') = Zpp

(2.3.4)

In other worids, for hrmﬁym{z" <= Zpp » Whkere y,me Vp o 1t
is impossibla to fini Z'tosatisgythis constraint, also, for
different ¥py € Vayp, @ different 2Z' may be found to satisfy

the sams constraint. For examples let
h(y,z) = y2 ¢+ 22 =2

if a= 0 then V

"
~—
o
—

if a>»=0 then ¢ -aly2 (= y <= alty/2 }

n
—~
-
-

(2.3.5)

Therefore z can always be found for tha specific value of a

and y whizh satisfy theconstraint.by selecting z fronm
]
2=1{z: - (a-y? )1/2<= z<= (a - y2 )1/2 }

In selactiny different upper bounds of constraint for
jifferent stages, the following two consecutive stages are

usel for demonstration.
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] —
hnm (ynm 2') = an Ynm € Vnm
hn—lm(yn-lm’Z ) = Zn-1m yh—lnle Vnm
{2.3.€)
If >ne finds 2 satisfying hnm ( ¥oise JZ' ) = an
then all Z = { zZ 2z &= 2 } will satisfy

the constraints because hnm is non-decreasing in 2' . It is
possible to fird a maximum in Z to satisfy the constrarnt.

is shown below :

z') = 2}

2 = max { Z2' 3 h -

n-im nm(ynmf
Then hnm(ghm(xn)’Gn—IJgh—lm(xn-l)'gn-lm(xn—l)“glm(xl))")<= B

f ® gnm(xn) and G, is bounded by  max [ Z }

The reason for finding the maximum Z' is

)
Gn-ln}gn-lm(xn-l)’gn-zm(xn-z)'""glm(xi)'"')

= hn“‘lm(g‘n—lm(xn_l)lGn_lm(gn_h) poene .glm(xl)) e & .)

{= Znim = max [.Z‘}
(2.3.7)

Herz the technique is illustrated by a numerical example ,

Objective : max H (uj.uz.ul) = u
i 2 2 2 _
subject to uy tfoug * u3 = 12

{2.3.9)
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Furtheraore, if :
H (u3|u2.u1) = HB(fB(uB)'fz(uZ)'fl(ul))
G (uj'ug’ul) = Gj(gj(uj):gz(uz)!gl(ul))
then Hand G may be represent2i as :
H3(f3(u3).f2(u2),f1(u1))
= h3(f3(u3).H2(f2(u2).f1(u1))) (2-3.9)
= h3(£5(u5) ny(E,(u,) 1y (£ ()
They may also be represented as :
G3(g3(u3).g2(u2).g1(u1))
(2.3.10)
These examples illustrate that H and G are separable, wken

convertiang the constraint

2 2 2 ¢
uy + u2 + u3 = 12
(2.3.11)
into a standard 'separated' form, it bhecomes
2 v taf By o m
h3(u3 *+ h, (ul. uz)) 3
(2.3.12)
2
Here Z3 is egqual to 12. By assuming V3 = ﬁj € ir3C

3{032}, it is easy to find Z, when 23(=12) and yg3 are fixed.

In this case, let Z, = max {z'; h'[yB, Z') <= 23} i
where GB? + Z' = 23, zZ' = 23 - 532 and max { ' 1} E 23 -
u32 = Z, are given.

\lthough the value of 63? is unknown for the time being,

it is still possible to search for Z;. That is, for all
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the possible value of 7,this feature provides the basis of
computational aspect of dynamic programeing. To demonstrate
the decomposition recursiveness of principal constraint
functions more clearly, two sats will bhe introduced : S and
s. Small s implies the parameter of the current stz2p, while

the largs S represents the steps already finished.

Sn(2n) = { (XnsXn-1+++»X1)1hp (80 (%) Gpn_g (En-1(xn-1)s

.....gl(xl))) = Zn. xiEXi (i=1.2,...,n)}

(2.3.13)
While Xi are feasible region for xj, Sn{Zp) has one more
2lement than its proceeding counterpart Sin-1{Zn-1) - This

gap is filled recursively by small s, , which is defined as

Sn = {%: gu{Xa) = yn, xeXn}

{(2.3.184)

However, S does not satisfy the constraint for all Voo
Only yeV will make the product meaningful; therefore, the

followngy relation is obtained : (U : union)

5,(2,) = U s (y) X S,_4(2,_4)

.

Yn € Y (2.3.15)

If hn is also non-decreasing with respect to an{xn), the
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relationskip is then defined as : Sp(¥) = [} ' gnlx)
<= Yn. and xn € Xn } From a compatational viewpoint,
this 1is effective because the of upper bound of the
decision space can be obtained. This definition will also
apply to ¢the principal equality constraint function. For

example , let
Gm(gNm(XN)'gN_lm(XN_I).----glm(xl)) = Z (m= M""l,...,L)

then define :

(

Enoim( Xy JreeeoByp(xg))) = 20 % € Xy )

Sn(zn) = { (xn'xn“'l'...'xl) H hn(xnign(xn)lGn_lm

(2.3.16)

According to the discussions stateld above, all the

constraints can be summarized in the following forms :

. Gm(m=1,2,...,K) <=2 is strongly decomposable
and left continuous,
Gm(m=K+1....,L)

Zm is weakly decomposable
and left continuous

Gm(m=L+1....,M)

Zm is strictly decomposable

(2:3.17)

This is to say that :

u3(u2 +u, ) < =244 hjl(x.y) = xy, hyy(x,y) = x +y
cos(u3 +sin(u1 +u2))< =240 h32(x,y) = cos(x+y)

hoo(x,y) = sin(x + ¥), hag(x,y) = x + ¥, hpslxy)=x*y
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2 2 2
1.13 + 1..12 + ul = le {2.3.18)
Aten searching for state variables (2's) and decision

variables (u's) which are constrained by the first class of

constraints, one will find that

Uyt Uy {= 221 i - then select 2 = max {Z' ;

21
4" = le/uj } for the specific value of Usq

(2.3.19)

Her2 Z,, 1s the upper bound of state space for the next
step. Meanwhile, searching the space of decision variables

is also bounded by some values, such as :

ug = 33 = max | u' ;i ou' o= Zyq Mlug o+ ug)}

{2.3.20)

The uppart bound for both state and decision variables exists
because of strong dacomposibility. For equality
constraints, decision variables have besn searched in almost
the sam2 manner as 1ineguality constraints. The only
difference is that the =state variable of the next step 1is
decilded by s2lecting decision variables at a current step as
equal, but not egual or less than some specific 7 value.
For example if u2 <= 1thenumay be searched from 1, 0.9;
0.8,..., but for u2z = 1, the u value can only be selected
as | or -1, which makes a difference from the computational

aspsct. Therefore the general form of S would be :
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Sn(zn) = { (xnvxn_ll---txl)i

Gnm(gnm(xn)’gn-lm(xn?i)""’glm(xl) = 2o
(mzlflgn -;pL)l

1]

Gnm(gnm(xn)’gn~1m(xn-1)'""glm(xl) znm

(m=L+l,...,0), %€ X; |
(2.3.21)

Inejuality constraints may still be grouped into these +*wo

classes :

Com{€nmtxy) 8 (x,_q)seeongypn(xgd) <= 20

nm' n n-1im
(m=1,2,...,K), which are strongly decomposable, and

Gnm(gnm(xn)lgn_lm(xnﬁl)' s 'glm(xl)) { = an
(m=K+1,...,L), which are weakly decomposable.

Thus the faorm of Sn will be written as :

- M
Sn(Zy) = 0 52

M : total number of
constraints

nm)

M M

= U 1N Syplypy) X N Sn—lm(zn-lm)}
m=1 m=1

ol

= U[{Ff% S'nm(ynm))rl(f% Snm(ynm))]

F eV, wl m=K+1
L 3
XN Sn—lm(zn-lm)»'Uklldsnm(ynm))x
m=1
™
(Jlnsn-lm(zn-lm)ﬂ]
M
where V, = X V. (2322}
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Thus

Pe 0T {F (000 fy_q (g g Yoo o £yl )0

2¢

the principal problem becomes

(XNeXp_qree29X1) € SN(QN)} (2.3.23)

far, >nly the decomposition of principal constraint

functions have been discussed; however, now decompositior of

the objective functions will be consideread.

Ssuppose the oprincipal objective function 1is strongly

decomposable with separating functiors  hp (n=2,3,...,8) .

One must define Fn(n=¥,2,...,u) in a separable ranner as
with principal constraint functions. Thus Pn{Zn)
(R=1,2,.00,1 ) and py(yy) " BE2, T e 3N is defined as

follows :

P,(Z,) = OPT [Fn(fn(xn).fn_l(xn_l).....fl(xl):(xn.....x1)6§42nﬂ
pn(xn) = OPT{fn(xn); xneSn(yn)} (2.3.24)
The reason the objective function ne=ds to bhe strongly

decomposable is that if it is strongly decomposable, any

improvement in py (¥Y}) will guarantee the solution *o be as

good as, by Kisashi Mine and Katsuhhisa Dhno (1970}, in the

last stage. Below is a theorm proved by Kisashi Mine and

Katsuhhisa Ohno (1970) :

Theorem. The principal objective funztion is strongly

decomposable with separating functions h {

N=2,3,...,8) ). Also for principal constraint
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functions 3m, which are strongly decomposgable for
m=1,...,K, weakly decomposahle for mn=K+1,...,L,
strictly decomposable for m=L#1,...,H, with the
separating functions hnm { =14 Pia v o s
N=2,3,0ee,N ) Then the principal problem can be
decomposed into subproblem and the following
recursive relations hold for pr=2,3,...,H.

Pn(gn) = BFT {hn‘pn(ln)’ Pn-l(zn—l)); Xnevn]

The proof can be shown as follows :

d
[an}

~—
il

n(Z, ok BB G A EIS I S T RS R N § 1 o TR S Jes,(2,))

I}

EFT B, [F,( xn)'Fn-l(fn-l(xn-l)'""fl(xl)) ;
(x
oPT {OPT {h, (£, (%) Fp_q (Epoq (Xpyog)seennfy(xg)))

(x
} Knevnl
opr {n (0PT {£ (x_ )iX €S (x, )} 0PT [F,_ (£, 4(x. ;).
""fl(xl))i(xr""'xl)
Sp-1lZpq)s Yn€ iy
CEI {hn(ph(xn)' Pro1(Znq)s LEVy) (2:3:25)

The above theorem indicates that under decomposibility and
left-continuous conditions, a principal oproblem can be

decomposed into subproblems
Pl(z'l)' Pz(ig)- pj(ij): ..... ' pN(‘YN)

To solve Py (Zy) at the first step, and pp(y,) at the second,
combine P1{21} with p2(y2) by hs to obtain P5 (Z5) - Ir. the
third step solve 93(23)' and again combine Py (Z5) with

p3(£3) by h13. This procedure will continuously arrive a*

preeee %) € U s(y)XS, (2, )}

n""’xl)e {Sn(xn)xsn-l(gn-lﬂ
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the firal solution PN{Zy). As an extension of the above

theorem, a corollary is given as follows :

Corollary. Assuming the objective function f 1is weakly
decomposable with separating functions hy,, then

the inequality constraint functions, 9, ( B<=L

¥ are weakly decomposable and left-continuous
with separating functions hpype. The equality
constraint functions g (m>L) are strictly

decomposable with separating functions hgm, as,

for n=2,3,+..,H8, and real valued vectors Zn =

(an Fee .,an)

The proof is omitted due to its similarity to the separating

form of the strongly decomposable problem.

Monotone property, instead of non-decreasing or
increasing, can be expected to serve as a sufficient
condition for decomposibility of a principal problen. The

only modification to this is to select a suitable >= or <=

as a proper or lower bound.
2.4 BProblem formulation

Assume that a control problem of a large-scale system can

be stated as follows :

X(t+1) = A()X{t) + B(L)U(H) * C(HHD(t),  X(0) = O

eFalliat §
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T(t+1) = E(t)X(t)

(2.4.2)

Herz X (t)y, ¥ (&), U {t}y, D (t) are state vectors, output
vectors, control vectors and disturbance vectors at time t,
respectively. The above problem is the most general form of
a linear dynamic interconmnected systen with disturbance.
As 1 matter »3f fact, the problem need not Le linear, it can
he juadratic or non-lirear, as long as it satisfies the
separable condition. Suppose this system is partitioned
into p subsystens, each subsystem 1 having W state
variables, and M control variables. SaééNK= N, andé%MK=
W, where N,M are the total numbers of state variables and
control variables of the whole systen. Furfhermore, in a

practical stationary system, control vactors can always be

assamed to be entering the ith subsystem only, and all

distorbance terms as D(t) = 0. Thus, th2 problem becones:
Xy (t+1) = A3;(2)X;(%) +§i§ij(t)§j(t) + By (£)U;(t)
0
£, (0) = X/ (2.4.3)
Ii(t+1) = Eii(t)ﬁi(t) 1i=1,2,...,p
{(2.4.4)

where the subindex i stands for the number of subsystenms.
Therefore the whole system can be viewed as partitioned in

the following way :
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9 ( % % ( .
X, (+1) LG W CORTRY MC7 WV b LC I - PPLC I
X (t+1)) _ A21(t)A22(t)t_.AEN_l(tjAZN(F) X,(t) B,,(t)
S O A T [
L N, N S S T I O R
.ﬁw(t+1% B Ni(t)sz(t){"ANN 1 CPIANNCEY 2t [ Eyn(tfU
(2.4.5)

The dotted lines show one of +the many possible ways of
decomposition ir this problem. ¥ote *that the decomposition
5f state vactors need not be consistent with control

vectors.

To achieve both the ease and efficiency of SDP, it is

suitable to assume the coupling terms le s will satisfy

%E rank { J(t)}< NJ vt,i

This coniition implies the degree of interaction, and 1is
1lso a sufficient condition to get a sparse interaction
matrix (to look into the degree of interaction on large-
scale systems,see [Douglas, 19827). Also, the state vectors
and control vectors are constrained according to:

Gy (% (t),uy (1)) 20 ¥ t,1

For the presupposition stated above, it 1is necessary to
assume a strongly decomposable F is given, and to denote the

objective function by J, thus the whole problem becomes:
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min J = F (EN(t).EN_l(t), oo %y (+))
subject to
X (t+1) = 4y (D)% (1) + 4; 5(t)x,(¢)

+ By (DY (1)

x.(0) = x; G (x;(£),U;(t)) o

]
o
=
|
>

(2.4,6)

where p 1is thg total number of subsystems, and 'T?
represents the final time state. Then the f;'s are
separating functions of the performance function F. The
control problem then becomes choosing a control and a state
in the sequence X ;(t), U; (t) so that J is minimal. Since F
is assumed to be strongly decomposable, it car be
represented as :

F(gN(t).gN_l(t),....gl(t)) F (A (t), (t Xl{t))

=t (x() pl(zp 1(1:) o))

Here 'p' is the number of the total subsystems.

As t and i proceed, strong decomposibility assures a sanme
or better solution than previous +*ime slots and stages.
Defining this problem as principle problsm P [Cline, 19771,
it is stated as

P = min [Fp(fp....fl): X; (e+1)= A, (£)X, () + B, (1)U, (1),

(%, (), U () € Z, ;

i= 1p2|3|o-||p| ‘t: 0,1,2....,'1‘—1}
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Where 2. represents the feasible set of Ei(t),gi(t) to

1

satisfy the constraints : Gi(ii(t).gi(t))<=0 (2.4.7)

This is a typical optimization cortrol problem defined in
decomposable mannher. In the following chapter, SDP is used

to sclve the control problem stated above.
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SPATIAL DYNAMIC PROGRAMMING ON OPTIMIZATION CONTROL PROBLEN

3.1 Algorithm of SDP

Vector -Z_= ( xi(i)' xi(Z)' LI ] Xi(T). u'l(l)f %.\(2)'..'ui(T)
, denoting the sejuence of state variables and control

;rariables iﬁ subsystem i, from time 0 to time T. Assuming
Z = (29,25,...,2y) , XO= (x?.'xg,...,xﬁ). N: no. of subsystem
where the latter denotes the initial conditions. Then the

equation (2.4.3), (2.45. 4) can be represented as follows :

FG“ aﬂ SR 7Y EJ T.m Ula LA mﬂ ?‘ld 7 “Atitol
8,8 - - Ban & + i Uaa +-+ Uan X | = o] i =
2 . F ) . A . ) g
Gzt - - BN ENJ Uu Us »- U XA
where (3.1.1)
i | =Bg (o) ) 'o.,q'm E P =Aje)
—Aiit1) baBi ) = j ' o o
Qi = | A ; -6 () &U ' 'At'j"j_ 'E - J 5
At i ~BialT-1) -AULT-i. )E
: J \ '
Then define 5 as :
- N 0
Si =Z Qijzj + Uijxj J-=1|2'oo.|NI
J=1 (3.1.2)

When S; represents all the constraints within subsystem i,
0ij's are the coupling factors, and U,J"s are terms related
to initial conditions. This egquation covers the time span

from t = 0,40, T-1. ["rom (3.1.1) ard (3.1.2), it is easy
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to show that:

> . (3.1.3)

3
SinZe Si is a function of {Zl, 22,..., %@:, it is necessary
to lefine function gi . Here gq;'s are functions of Zi

only.

The eguation (3.1.3) represents the constraints of whole
system, which is shov.lm above to be S(:[_I(g_i: y 9_2(2_21,...,
g N{ZN)) = 0. This result implies that the overall
constraints in the systems can be partitionéd into many
interconnected sets of consfraints in subsystenms. Because
of the additivity of  coupling terms, S is separable and
strongly deconposable with the separating functions hi(x,y)

= X+ YV, 1 =1, 2,000, M. In it's decomposable form, S cabh

be shown as follows :

S = (g (2 Bp(Zp)0 +ovr EylZy)

hy (B (Zygr + - 1By (Ep(Z,) 01y ()

(3.7.4)

Thenr the principle problem {2.3.7) beconzs :
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*d
"

min {F(f |fN_110--n:21f1)3 S(hN’hN‘]_"“'hl):O'
z;€ Z; |

min {F(pN(_Z_N)’pN_l(EN_l)t"’lpl(.z...l);s(gN(éN):---l
g1(§1)=0- .z_ié :z_j_}

(3. 1.5)

Both the performance functions and constraint functioas
are in their decomposable forms now. Those pl's, i=1,
2ewawy Wi are the reall-valued functions associated with
variables 1in every subsystem {vonder the assumption that
objective function 1is discomposable with the separating

function fi). The control problem may be restated as

. discovering the control sequence : [§1'§2""'&N]

such that min F, and will satisfy S=0, Zj€ Z4, The problen

fornulation is sunmmarized in the following :

- N

0

9323 * Uy

- = - ; 0

By - 37 g (8y) = | Q38 v UpiXy

’
»
.

" 0
vi2; * Uyidy
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i = 1,2..0..N

{3.1.6)

The recurrence relationship of the priincipal problem can
be divided into two parts: one for the performance criteria
function, the other for the constraints. For the objective

function F, The recurrence formula of SDP is as follows:

¥ oy i
hy (& _4)), 2;€%Z,, 1i=1,2,..., N}
Py( &) = Py(0) is the original problem

(3.1.7)

The above result has heen obtained as a theorem in Clinets

papar [Cline, 1977].
3.2 System aspects of SDP

The conditions required to implement the SDP are weak.
Only the d=composability has to be assured for both
objective function and constraints. As a matter of fact,

any arbitrary constraint set is sequential separable [Chong,
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1578 1. It can be shown that the separability and
monotonicity of the objective function constitutes the
sufficient condition for the application of dynamic

programnming.

Also, a global optimality theorem for SDP has been
proposed in 1978 [McEntire, 19787, which states that only a
weak form function is necessary ¢to guarantee the global
optimality of +the final solution. This 1is the extended
result [ Cline, 19777, in which the interaction term is
assumed to be additive. In the past, dynanric programming
kas been thought +to be useful on systems which do not
process a complicated feedback structure, or an intervined
network structure. That 1is, only systems with acyclic
structure would be good candidates for dynamic programming
[Aris, 1964]. Some conplex processes in chemical plants
with recycle streams, for example, seemed unsuitable to the
application of dynamic programming at that time [ Lee, 15€77,
because of 'dimensionality difficulty’. These problems may
become tractable by means of spatial dynamic programming,
because the ‘'recycled stream! can be treated as ab
interaction with other subsystems. Actually, SDP is =2
combining technique for decomposition and coordination.
Both of these (decomposition and coordination) are well-
developed technigues. 5DP decomposes the overall large-
scale system into a sequence of subsystems, applying dymamic
programming over each systen. Bach time this is to obtain a

suboptimal strategy rather than a gqlobal optimal strateqy,
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and suitakble coordination variabhles mnust be used to
compensate for interactions amoﬁg the subsysterms. ¥hen all
the subsysteas have been included, the global optimum will
be obtained, with the ease and efficiency of SDP residing in
the decomposition of‘whole system into smaller subsystenms.
Ideally, the SDP technigque can deal with the most general
stracture form of the large-scale systen with the following

configuration :

OUTPUT TO G
ss 1 ' q}' ?: %

OUTPUT TO i ie i
§5 2 S - er 4

= - - -

L]

CUTPUT TO L B,
S5 K : l
OUTPUT 10 - ——
55 K+l ‘ f
- — e bl B J | o il
: ‘ H
OUTPUT TO . T 1"
8§ M-l
: suus'frrm sun‘s:s‘rzn suns:sm SUBSYSTEM SUDSYSTEM suasvsmil
K+l
_ Y-l
QUTPUT TO
38 2
- y — -
= o - — — L)
OUTPUT TO
4 SN
oureut T0 A /
55 K+l
: *
- - - —-— :
OUTPUT TO \. : _J
$5 M-l e = o an gl - -
OUTPUT TO Ao _£ PRSP .& é ——a
-

Fig. 3.2.1 Large-scale System with M Subsystems
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Operator @ is wused for additive comnstraints, which can be
repldcei by other appropriate operators depending on the
separating function. The connection 1link in this figure
staads for the interacting terms between subsystens. Oonly
when these coupling terms are sparse can SDP show its
promising efficiency. By means of SDP, the optimal contirol
of the total system can be 1implemented by a series pf local
controllers, one for each subsystem {which means each
subsystem has its own set of control variables.)
Each subsystem then communicates with its dinteracting
subsystemns by state vwvariables. Thus, for a stationary

system, the two-level method is appropriate, as follows :

2-nd level
coordinator

Fig. 3.2.2 Two level method for stationary interacting

system with N subsystems

8ut for a dynamic systen, an additional level should bhe
included *o account for indices over the time sSpane. The

idea in the dynamic system 1is essen*tially equivalent to the
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' Three level method of Tamura' [Singh, 1980,17, T Singh,

1980,21, [ Tamura, 1873]. The optimation structure is as

follows:
3rd level
coordinatoy
i=1 1=2 el i=N
t =0, t=N t =0+« [t=N t=0].--|t=N

Fig. 3.2.3 Three level method for dynamical interacting

system with N subsystems

The lowest level 1in the above fiqure accounts for the time
span of the dynamic systen, the secondi level takes care of
the decomposition algorithnm, and +the top level serves as a
monitoring coordinator to supervise the interaction between

subsystems.

Given a set of possible values £for an interaction
variable, applied sDP will optimize *the current subsysten.
If a closed-fornm solution car be obtained for this

parameterized interaction, thenr the computation tasks would
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be reduced a great deal. An example is the derivation of
the Riccati equation for the LQ problem using the principle
of optimality and dynamic programming [ Li, 19831.
Furthermore, if the system can be assumed to bhe in a steady-
state, the design methodology becomes suboptimal but much
‘more computationally attractive [Li, 18821. Even if a
closed-form solution may not bLbe possible, computational
approaches provide attractive alternatives, such as dynanic
programming or the successive approximation techrique
[Bellman, 1962]. Bellman's technique is fairly easy to
implement. However, the problem 1is that the qglobal
optimality can only be guaranteed on some conditions,
although its convergence has been proved by R. E. Larson and
A. J. korsak in flLarson, 19701, [ Korsak, 13970]. Another
promising feature of SDP is the description of the state
variable, which may not be easily identified for some
optimization problems, In these situations, SDP combines
with descriptor variable theory to solve the large-scale

system problem [Larson, 1978].

3.3 Advantages and drawback of SDP

According to some control scientists! opinion, dynamic
programﬁing is not powerful enough to serve as ar unified
'structure' in solving optimal control problems of the
large-scale system [Sandell, 1978]. But, as the computer

technology evolves, capacities and speeds increase with the
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performance/cost ratio droping drastically. This trend
gives a new perspective for the application of SDP on large-
scale systens. Besides, the other advantages of SDP can be

summarized as follows:

a) Local controllers evaluate alternatives independently
and paralelly with other local controllers. a
central coordinator selects the optimal policy based
on the information given by local controller one at a
time. This kind of structure greatly reduces the
tdimensionality difficulty'.

b} No particular form is required for the "subsysten
description. Which can be linear, gquadratic, non-
linear, or even descriptor form. This feature
expands the potential application field without model
simplification. -

c) The purturbance can be viewed as interaction terns,
vhich are neither input variables rnor output
variables. This feature makes 8SpP applicable on some
special systems, such as the economic systems. This
vay, variables may affect many subsystems without
itself beinqg an input -or output variable of any
subsysten.

d)y Reconfiquration capability is excellent for SDP
implemenptation. In case of any failure of a
suibsystem, the interaction as well as the sequence
order can be adjusted to reflect the true situation.

This characteristic is very important for defense
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purposes.,
Since SDP treats interaction - variables
satisfactorily, the non-serial system can also be
dealt with with great ease. This property enables
SDP to be applied upon non-serial systems such as

river-pollution problems.

In spite of the advantages of SDP stated above, there are

also some drawbacks :

1)

b)

3.4

The efficiency of SDP depends heavily on the grouping
and sequencing of the variables, of which there is no
standard rule for effective decomposition and
sequence ordering. Only a few basic principles have
been proposed by [larson, 19791. Two of these are,
tI1f one subsystem affects a second subsystem but not
vice-versa, the latter subsystem should proceed the
former in the seguence.', and 'When the interaction
is sparse, then the decomposition is more

pffective. '.

Computational experiences from ¢the implementation of
SDP show that it is very important to choose
variables with great cave so as to avoid the 'curse of
dimensionality’. This drawback is similar to
classical dynamic progranmming.

Application

A water-treatment problem of 7-reach river 1is presented
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and solved by spatial dynamic programming [Chapter 47, which
adopts the model from Canmp, [ 19637, and Dobbins, [ 1964].
Another application of SDP on the same type of river

pollution control problenm, but with @ differeant model
[Kendric, 19701, was modified by Tamura l Tamura, 1975], and
has been worked out by Li [Li, 1982 1 with steady-state

approximations.

There are some other fields of the large-scale systen

which have been explored by SDP. They are:

1) Ballistic missile defense area [ Anton, 19787
2) Electric energy systems area [Stengel, 19791
3) Control of communication networks

4) Vehicle dispatching for transportation systens

5) Integrated control of multiple-process industrial plants

The initial results from these areas are 4mv& © successful

[Larson, 197917.

Essentially, the SDP structure is well suited for
decentralized control and distributed data processing. The
cnly gquestion remaining is to find out formal decomposition
rules and an efficient procedure for enumerating feasible
sets of interactions. This leads to the open study field of

SDP which still needs further exploration [McEntire, 197817.
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APPLICATION OF SDP ON WATER TREATHENT PROBLEM
4.1 Introduction

The topic of water quality control has received wide
attantion for the past twenty vyears. Many optimizing
trechniques, which are shown in the following figure, have

been developed to solve the problems in this category.

Optimization Techniques

|
| | |

Linear Programming Non-linear Non-linear
Programming Iterative
Method

T 1T 1 1
Simplex Cutting Branch Zero Geometric Dynamic Gradient Search

Plane Boﬁnd -one Prog. - Prog. Method Method

Fige 8.1.1 Classification of optimization techniques

Although these techniques have been implemented
successfully under their specific enviroments, they do have
their own drawbacks. For example, the linear programming
techuique can only ke applied to those problems with linear
structure. The gradient method suffers from the uncertainty

of the truely global optimum. Also, the dyramic programming
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technique is prokibited when thke non-serial structured
problem is of <corcern. All the other optimization
~ techniques, such as the geometric programming technique, the
search method, . etc., - . ' may reguire that some
specific structures of the problem itself are assuned.
Otherwise the optimum can not be juaranteed or the
computational tasks will be too involved to implement.
These shortcomings 1limit the prevailing uses of each

optimization technique in its specific environment.

In fact, the dynamic programming technique can be
modified to solve noan-serial structured problems. The basic
idea of this modification is to treat each interaction term
between subsystems as an individual state variable, since
each possible value of the interaction corresponds to a
specific state in the systen, Then the objective function
is optimized due to all feasible states by selecting the
best control policy at each stage. Proceeding stage by
stage, this method will obtain global optimum after all the
sbsystens have heen considered and all the possible values
of interaction have been examined. The only disadvantage
hera is the increasing number of state variables. This
increase makes the complexity of the problem worse, and nmay
involve the so called 'dimensionality difficulty' of dynamic
progranming, Therefore the problem may become too tedious
or even 1impossible to solve because of +the involved

computational tasks.
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The SDP technique introduced in the previous two chapters
are capable of dealing with the water treatment problens,
which are serial-structured in nature, in a more efficint
way without involving too much of the dimernsionality
difficulty . The basic idea of converting the interaction
terms into state variables is the same as that stated in
the last paragraph. The only difference is that here the
problem is optimized due to summation of the possible values
of all interaction variables instead of according to each
specific value in the individual state variable. This
feature gives the SDP technique the capability of overcoming
dimensionality difficulty . The SDP technique on water
treatment problem will be described in defail in the

following sections.

4.2 Ap example in water treatment problem To illustrate
the SDP approach, a hypothetical river system solved by Lee
[ Lee, 1972] is now solved by the spatial dynamic
projramming method. The system is shown schematically in

the following figure (Fig. 4.2.1)
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[
n
|

reach number

waste water discharge

Fig 4.2.1 Schematic representation of a rivgr system

Thers are six waste water dischargqe streams and seven

reaches. Fach reach may or may not have a tributary or a

waste water discharge. For example, reach five does not

Lave was*te water discharge ,
tributary. It 1is assumed
facilities exist and are cu
amount 2af BOD to satisfy
Howaver, as time proceeds,
will increase considerably
industrialwpollution. Thus,

additional treatment . . at a

The same river systenm data

usel here and are summarized

while
that

rrently

reach six does rot havea
waste water treatnent

removing a sufficient

the stream quality standard.

ohe can

anticipate that the BQD

according to the degqree of

it is necessary - = To do

ninimum cost.

used by lee [Lee, 189721 , arc

in the

following table (Table
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4.2. 1.
Table 4.2.7 System parameters and data

Reach 1 2 3 L 5 6 "
(Da?'s) +235 1.330 1.087  2.067 | .306 1.050 6.130
(MG";D% 5 37 8 14 --- 26 b1
(MGTDH 1355 1290 1360 296 310 --- ——
( mc?nj) 1360 1327 2695 310 3005 3631 3072
(mA;/il.)'; 10.20 9.95 9.00 9.54 9.00 8.35 8.17

plax
(mgr1) || 3+30 245 2.00  3.5%  2.50 2.35  4.17
(m“g%) 1.0 1.0 1.0 1.0 ——~ 1.0 1.0
(;;/l) 9.50 8.00 -—- 9.70 - s i
(mg/1) || 166 068 - 10 oo oo
(dlég"rs"l) 31 1 -36 .35 34 .35 .30
@Eﬁs-g 1.02 .60 .63 .09 .72 .14 .02
@238-1) -02 .03 .04 .04 .05 .06 .00
(én;y/:)t/ .85 14 .18 .05 .39 .07 .00
(mg/l/ 15 14 14 .11 .11 .13 .00
day )
150 248 408 240 1440 oo 2180 279
Removall| .67 .10 .26 24 —— .12 .26

These data include the flow data (Qi,Ti,%i),

DO concentrations,

{BWi,BTi,AWi,Al),

the BOD and

paraneters such as
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reach residence time length (ti), quality standard, {Dimax),
and other relevant constants(Kii ,Kiz,ki3, & , 4 ). The
coffecients of gquadratic cost function are also listed in
the above table, Three cofficients (ai,bi,ci) are obtained
by a typical quadratic fit of cost curve which is assumed to
be guadratic [ LlLee, 1972 1. This non-linear approach is
different from Loucks' [Loucks, 19¢7 1, in thattelinear
approach hés been used to describe the cost function,
presenting a more realistic representation of the cost

criterion.

The mathematic model used here, which governs +the
dynamical characteristic transition of system variables, is
adopted from Camp [Camp, 1963], which can be represented in

the following form :

| Jj _ y
B(t) = (B(0) - K_1+K3)exp(-(K1+ Kj)t) ® m
. (U4a2al)
D(t) = ~— K1 (B(0) - ——) .
K2 - (Kl + K3 ) _‘ K1+K3
. (exp((-K;y - K3)t) - exp(-Kpt))  +

Ky, 1 E ' )
‘T(;( ok~ kK )(1 - exp(-Kyt)) + D(0)exp(-Kot)

(8.2.2)
B{t), and D({t) represent the BOD concentration and the
oxyjen 3deficit at t=t along the reach. Tt' is the point at

which t length (residence time . lengthk) downstream from the
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initial point t=0, Ki and K3 represent +he deoxygenation
and sedimentation rate. K21 is the reaeration rate of DO
retornping to the strean. if represents the BOD addition rate
due to run-off and scour along the streanm, .E represents the
rate of oxygen production or reductionr due to ﬁlaﬁt
photosynthesis and respiration. The simpler Streeter-?helpsk
sag equations can be obtained by assunringl&,Ky are equal to
zero in equafions, {(#.2.7) and (4.2.2). The resulting

simpler equations are as follows :

B(t) = B(0)exp(-Kqt)

(4.2.3)
Kq
Ko-K4

D(t) B{0) (exp(-K1t)-exp(-Kat))+D(0)exp(-Kpt)

{4.2.9)

These two equations stated above are 1identical to the

‘transformation egquation!', the name used in c¢lassical
dynamic progranmning weﬁhcd. These equations govern the
dynamical feature of the system. Besides these two
equations, there are other equality constraints and

ineguality constraints which are encountered in +the water
treatment problem. By assuming complete mixing of the fluid
flow at all points where a tributary or a waste water
effluent enters a reach or streaq, and applying the material

balance, the eguality constraints can ke obtained as follows
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U= * W
(u. 2.5}
Qi : total flow quantity at reach i
Ti : tributary flow quantity at reach i
Wi : discharge waste water flow quantity at station i
g 7 Q_yB5_4(f) * T3Bpy * WyBy;
i
9
{6.2.6)

initial BOD concentration at reach i

Bi {0)
Bi(f) : BOD concentration at the end of reach i

BWi: BOD concentration of discharge waste water from station {

A; o (£) + TohAp, + WAy,
A (0) = =2

%y

(4.2.7)
Ai (0) : DO concentration at the beginning of reach i
A1 (f) : DO concentration at the end of reach i
AWL : Dﬁ concentration of wastewater from stationm i
Ai(o) = Ags - Di(o)
(4.2.8)

Asi : represents the DO satuation concentration at reach 1

Di(0) : DO deficit at the beginningof reach i
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The above equations {4.2.5 - 84,2.8) constitute the eguality
constrants of the water treatment problem concerned.
Moreover, the DO deficit, Di(t), at each point along feach‘
i, must not exceed the allowable maximuﬁ in that reach, that

is

Hr

D'i(t)
{4.2.9)
0 <= ¢t <= ti

ti : represents the total residence time of reach i

Because of the assumption that all tréatment facilities, a
minimom removal of 35% is imposed to insure the absence of
floating solids in the strean. Also, the maximum treatment
allowed is 90% due to practical equipment limitations, this
fact constitutes the second inequality constraiﬁt -
P?ln ¢ P, ‘ P?ax
(35%) (90%) .

Pi : water treatement degree at station i

p™™: practical lower bound of +treatment degree of water
tveatment
p : practical upper bound of treatment degree

The last inequality constraint is shown as :
< < max
0 = Byj B

(4.2.11)
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This constraint, representing BOD as the <concentration of
discharged wastewater, can not exceed the total BOD

concentration available for release at the station.

Finally, an obijective fugction needs to be defined to
complete the formulation of an optimization ﬁroblem. In
this problen, the objective is to minpimize the total
treatment cost due to the different degrees of treatment at

all stations. That is :

min y& = . gin o ( gfl C;(py))
1’ 23' 2 ? 1‘5

min Z (a; + b, + cip§ )
Py 1
ixs

{4.2.12)

ai,bil,ci: coefficients of quadratic cost function

Putting together the eguality constraints, the inequality
constraints, and also the objective functiuon, the water

treatment problem can be summarized as the following :

min ¢9 = min éil ( a; + b;p; + cipg )
ix5s

sub ject to :

B, (0) = Qs 1By _o (€5 )+TyByy+WB; (1-p,)
1 r——

Qi
a,(0) = Qy g8y g (851473 Agy #W; 4, (1-p,)
1

Q.

1
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sl )
Bi(O)exp(—KiI.tl) .
(K;,/(Kgp - Kii))Bi(O)(exp(-Kiltl)—exp(-Kizt)

0.35 £ p; £ 0.90

B, (%)

D, (t)

i, _ max
i = 1|2'3.-ou'?

s " + (4a2.13)
t - O'Ati|2 ti'-o-,ti-A i.ti

Since the obijective function and transforma*ion equations
{4.2.13) are both non-linear, the above problem is in fact a
non-linsar programming problem. It can not he solved by the
linzar programming technique. In this work the problem is

solved by the spatial dynamic programming technique; which

is, in fact, a modification of the +traditional dynanmic
projranming method with a different decomposition
algorithrer to divide the overall system 1in*to smaller
subsystems.

After a brief discfWssion of the drawbacks of straiqght
forward dypnamic programming as applied on water treatment
problems, the SDP algorithms and its application procedure

will be explained in detail in the following sectiorns.

4.3 The difficulties with  straightforward - dynanmic

The most obvious difficulty in applying a straight
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forward dynamic programming method onA water treatment
problems is that : the dynamic programming technique has its
limitationé applied only to serial-structured problenms,
while this problem itself ~ = has a non-serial
structure. If the river system does not not have too many
tributaries and branches, the classical dynamic programming

technique may be suitable in this application.

Assuming that non-serial structure has been converted to

serial structure, some additional state variables needed
to be created to represent the interaction terms between
subsystems. Next, the straight-forward dynamic programming
technique is applied to optimize the stages according to the
specific value of eachr individual state variable. The
profit gained from this conversion may not be: Justified
because the price paid may expose the problem to the so
called dimensionality difficulity of dynamic programming.
Thus, the problem becomes intractable because of the
computational complexity. It will be shown in the following
two sections how the SDP technique is revealed through its
organized decomposition algorithm by dividing the whole

system to smaller ones.
4.4 SDP algorithms

To solve the ahove problem by SDP methods, the first step
is to dacompose the overall system into a seguence of snall
subsystems. . The ease arnd zfficiency nmay depend on the

method of decomposition. However, as staled in the last two
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chapters, no existing algorithm will guarantee the best
decpmposition. The decomposition algorithm used here is the
sam2 as the reach number prqcedinq it. That is,  the whole
hypothetical river systen is decomposed into seven
subsystems, with each subsystem containing a Haterrtreatment
station and a reach. The exception is the fifth subsysten,
whizh has no water treatment station at all. However, for
the homogeneity of the procedure, a null water treatment
station is assumed to exist with the only possible treatment
degree being equal to 2zero. with +this decomposition

approach, the river system can be decompose as the following

figure (Fig. 4.8.17):

Fig. -4.4.1 Schematic decompostion of the hypothetical river

system

The coupling variables and the system parameters can also be

represented in the following block diagram. (Fig. 4.4.2)
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Fig. 4.4.2 Block diagram of system

Although the overall system has been decomposed into
seven subsystems, it is still a non-serial structured
problem. Therefore,  the straight fovward dynanmic
programming can not be applied unless a conversion from the

non-serial structure to a serial structure be imposed.

By introducing the set of interaction variables Agm,
whichk represent the interaction from subsysten i %o
subsystem 1, the non-serial problem can be converted to a

serial structure problen. This is shown in the following

{Fig. G.8.3)
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1 2 3 b4 5 6 o
{ {_JL& JL L ¥

—3>» ¢ interaction exists

Fig. 4.4.3 1Interaction among the sequence of subsystem

Now the whole system has been rearranged into the desired

serial structure.  This problem is a simple one because of

its weak 1interaction. For the most general form of the
intzracting structure, each subsysten should have
intaraction terms from, and to, all the other systens.
ﬁo#ever, this is‘not the case here. In +this problen,.

Bi{t), and ai(t), are treated as state variables; whereas,
Pi is the decision variables, while BTi, and ATi, if they
exist, are treated as initial conditions. This is because
.the state of the current reach is affected by +he terminal
state of coupling reaches. For example, the starting state
of reach 3 is influenced by the terminal state of reach 1
and 2; therefore, states at all time instants should be
included as state vectors rather than simply state
variables. By defining the state vectors Zi = (Bi{0), Bi(a
ti), ..., Bi(ti), Ai{0), Ai(Ati),..., Ai{ti), pi). and &} -
{BT¢ ,- AT; ), the system constraints can be represented as the

following:
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The matrix form of egn.(4.4.1) is: D22 + ﬂz’z 0. Here Q
stands for the interaction matrix of state, Z is the state
matrix, O is the interaction matrix of initial corditions,
and Z9 represents the initial condition matrix. The Q.,.Z, 8
and Z0 are sparse matrices, that is, many elements in the
matrix are 0's, making it possible to solve the problem with
the SDP while avoiding thedimensionality difficulty . In
order +o apply SDP in the same mannper as decomposition,

another vector. Si . must be defined . This is so that all
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the relsvant constraints are contained with respect to the

subsystem. Consequently, Si is defined to be:

‘0 .
1 jg,l jSzl + Uji_z_i 1“1’2|3'--o.?
(Gale2)
According this definition, equation (4.4.1) can be
represented as:
S =£2 +-52 + saa ¥ S7
0
= Q.:2, + U..27)
i=1 i=1 311 ji=1
=az+02z’ =0
(B.8.3)
Now, both the objective function IP = £§;Ci{pi} {4.2.12},

and the constraints  (4.4.3), are in their decomposable
forms. Because they are added +o satisfy the weakly
decomposability conditions, SDP car be applied. Herce the

H]

recurrence rzlation is formulated as follows :

ey
]

: 2
ey = MR (Uag * gl + ogPy )+ Jgoq (B - Sg))

E,
K+1 Sg + Tk

{4.4.3)

Hera Sk is the interaction from, or *o, subsystem k, while
Di's are the summation of the interaction from subsystem 1
to subsyster K. Based on the recurrence formnula (4.4.3),

this water treatment problem 1is readily optimized as the
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classical dynamic programming through the stage. The
detailed application procedure of SDP will be given in the

next section.

4.5 Application procedure

— . ——— i ——

In summarizing the problem formulation from the last few
sections, and by making the objective function and
constraints in recursive forms, the whole problem becomes :

= i = . . . 5
Pi(E'i) mg-n Ji {fl(pl('z‘l)'Pi-l( i-l) H

6

&= my(s4(2), hy (B 1)),

€ Z. i71,2,3,..0.7 § (5.5.7)

Here, P4 {0) represents the original problem; . while the fi's
and hi's are separating functions of the objective function

and constraints at subsystem i.

Because the transformation equation (4.2.,13) of Di is in
a ratker 'complex' exponential form, the numerical solution
approach is used instead of the closed form solution
approach. The basic theme for the numerical solution of SDP
is to obtain suboptimal policy for each given possible value
of an interaction. Thus, by combining the ©previous
suboptimal policy, with the current one, the current
suboptimal policy can be obtained. After all subsystens
have been included, apd every possible value has been

examined, the optimal policy will be achieved.
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Here, in +the following, three subproblems at different

stajes are given to illustrate the application procedure of

SDP:
J. = min (a, + b,p +cp2)
17 % 1 1Py 1Pq
1
o _
Sy = é% Q5929 * U2y =
j=1
Z,€ %4y

(4.5.2)
In substituting the numerical figures, the subproblem at

stage 1 becones:

i y 0 1
i1 Uys \ 11%1*’311?—3,1 2 )
el U 0 = |Q212,+U,.2 | =10 .. N
ol el I B R 121l 2.56566-.911765p:
. : . 2.38540-.847700p;
: : o, 20 8 hesE 274,698
Z + Z 00 2 ~a
971 | ¥71) 97121% 07181 | |07 Py
(4.5.3)
To find +he possible value of &1 is the equivalent of
searching for the possible value of pl. To do this Jg must

be found, wkich is suboptimal at stage 1. The feasible
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value of p, means the value 6f D¢ {t1l) will not exceed the
maximum allowable value, D, max, after a particular value of
p, has been chosen. Therefore, the lower bound, as well as
app2r bound, have to be determined according to the range of
Py - Then, the suboptimal policy of p.is found, given that
the specific value of 42. is between its lower and upper
bound. A sequence of p,{( o )} as a function of can be

obtained as a result of this stage.

» 2

Tg = min ( Cag + P * P ) * g g (o))
"

§K= E'K-1+ SK K= 2’3.4'}!.'6

{4.5.1)
At this stage, for a given &k , the feasible values of Sk
must be searched for to obtain . & ., (4.5.4). Because Jk-is
“a finction of 2, , the suboptimal solution up to the current

state has been erbedded in the last stage.

J7 = mén {(829406.? - 11845?097 + 196533.2p$) + JG(EG)}

{4.5.5)

A+t the last stage, 57 = 0 hecause of the formulation of the
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a feasible S . Thus, the suboptimal policy can be obtained
by enbedding results up to stage ¢ just as in previous
stajes. J7 in the present is the minimum value of the
objective function, while the optimal control sequence p

has to be traced backward according to suboptimal values of

the objective function at different stages.

In order to use the numerical method of SDP, a set of
initial values for the control variables p must be given to
start the searching process. In this work, all initial
values of p start at their lower bounds, 0.35, and end with
their common upper bounds, 0.90. Another numerical aspect
which needs to be determined is the gquantized incre ment
between the bounds, pi and ti. Various values of
incr ement have been used in this work. However, here only
the Streeter-Phelps model is used because of its simplicity.
The computational results are summarized in the section

follows. (computer program listing is shown in Appendix)

4.6 Yumerical resul

Using the data given in Table 4.2.1, this water treatnent
problem 1is solved by the SDP method. The result are
compared with lLee's {Lee, 18721, in whichthegradient
projéction nethod :as was used to solve the same problem.

This is sumparized in the following table: ({Table 4.6.1)
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Table 4.6.1 Numerical results of SDP with comparison to

gradient projection method (%)

Gradient ~ SDP SDP SDP

Reach Projection R R L. 1o S R g 1 ¢ i
Method increments  increments increments

1 65 62.5 62.5 69

2 54 50 50 50

3 42 45 by b1

4 90 91 90 90

5 e P i s

6 90 92 92 ok

7 50 50 50 50
Egiil 3,038,937 3,121,855 3,112,259 3,108,614

Approximately 0.5 minute, 2 minutes, ard 5 ninutes are
needed for 10 increaments, 50 increamentg and 100
increaments, respectively. In general, the nRore the
increment steps, the better the solution is. However, more

computation time is needed for the bhetter solution.
4.7 Discussion

The resul+ of the SDP technique on the water *reatment
via spatial dynamic programming is much better than
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the linear programmning method, and is at about the same
prezision order as the gradient projection method. Besides,
when using the gradient projection method, it is alnost
impossible to know how 'optimal’ has been obtained because
of the complex dinternal computation structure. This
presents the ©problem of knowing when to terminate the
optimizing process. On the other hand, the optimal is well
understood throughout the optimizing process of the problen
if sDP technique is applied. This is the promising feature
SDP adopts from the straight-forward dynamic proqramhinq.
As discussed in previous chapters, SDP can be applied on
complex 1interacting systems such as computer - -twork
systens, digital communication systems, and several others
differing from the water treatment problem solved here.

This creates a huge dimension for SDP in the future.
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ONCLUSION

Irn this report, past research on SDP has been sumnarized,
Als>, a 7-reaches river pollution control problem has been
solved by using SDP, The applications of SDP have been

addressed, and some unanswered questions presented.

Jptimal control over the large-scale system has been seen
in the past twenty vears and will hecome domirnant 1in the
future. Evolving under highly technological circumstances
the modern control system becomes more complex. SDP seens
to be a promising technique to handle these 1interacting
systems, because of its uniqueness in global optimality.
The only difficulty remaining is the formidable
computational tasks 1invlved in dealing with the highly
intz2racting dynamical systenms. Some computational-oriented
techniques, such as successive approximation, or grid-
coarsed estimation have been implemented to overcome this
difficulty. However, the use of these techniques will reach
subsptimality rather than global optimality. Devising an
algorithm by combining the sinplicity of a computational
task with the global optimality of SDP is a topic worth

studying in the future.

Jn the other hand, decomposition principles are not
tconcrete?', as is found from past research. Proposing the
nost effective decomposition rule for SDP presents another

challenge in the large-scale system optimization field.
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After these drawbacks have been removed, +the stochastic
problems for the large-scale interacting system will be
wortk studying, thus opening up yet anotker challernging

world for exploration.
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ABSTRACT

Computational difficunlty increases exponentially as the
dimansion of problem grows. This predicamen* prevails in
many fields which deal with the large-scale problenms, such
as traffic network, digital conmunication, ecological
systems, and economic systems. Linear programming, dynamic
programming, anrd other mathematical techniques have been
usel to solve this sort of problems, but fail to achieve
projressive results. Because these methods, either fail to
obtain global solution, or can pot be applied to non=linear
or non-serial structure problems, - they would be too
difficult to solve the large-scale problems of the real

world.

In this research, a new approach of dynamic prograening,

called Spatial Dynamic Proqramming {SDP) is employed to
overcome the difficulties. A seven-reached wa*ter trea*ment
problem is solved with the SDP technique. Al*hough *his

problem can be sloved by linear programming or gqradiert
projection method,‘ neither of +hemrm can obtain solution
for a “straightforward ' '~~~ problen. or the other tand,
SDP can solve the same problem without simplification. Tkhis
result not only proclaims SDP's conpetitiveness to other
methods, but also reveals SDP's uniqueness in dealing with a

highly interacted problen.

Computational work of a large-scale systen, although

greatly reduced by using the SDP *echnigue, is still’™ a



formidable task bhecause of the interacting nuture of the
systemr, Studies need to be done to find algorithms to carry
put SDP technigque ~more efficiently. Thus, c¢reating a

challenging aspect of the continuation of this research.



