EDITING AND SEGMENTING
DISPLAY FILES FOR CCLOR GRAPEICS

by

SHARLENE KAY MITCHELL

B.S., Kansas State University, 1968.
M.S., Kansas State University, 1971.

A MASTER'S REPORT
submitted in partial fulfillment of the

requirements for the degree

MASTER COF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1981

Appr‘()ved. by:%

Major Profgssor

¢ 'r-;' L —
e ii
2elz
P% TABLE OF CONTENTS
g¢!
H\C & page
Eegh .
List of FAgUPrES . . . & « & & o o s s = s s + o s s s o & 1V
Chapter One: Introduction .« « « o« o + o o « &« o o « o « & 1
A, OVervieW. « « + « + s o s o s o« 2 s s « s » « « o« o 1
B. Paper Organizatiofl. « « « « « s o o o« o« s s o = ¢ « 1
C. An Explanation of the Create Buffer 2

1. Bditing.

2. Segmenting

Results and Evaluation.
The Future . . . « «

SUMMAryY + o« s « o« « & &«

This Project in Relation to

Rationale for this Project. + « « ¢« v ¢« ¢+ ¢ « « « « 5

e i E B W om ® OE W m W § ¥ w B
Developments. . 8

10

12

13

* 8 & & @ = s . LI) . &

Chapter Two: Users' Guide « « + v &« « o « &+ = « « » « « o« 14

A. The EDIT and TABLET EDIT Keys . . « « « « « + « » » 14

B. The Segmenting Facility . « o « « « =« « & o ¢ + » o 16

C. Drawing Segmented Pictures Stored 20

D, SURMALY + +o o s o s s s 5 » s & s s a &« o s o s s

23

Chapter Three: Implementation . . « o « o« ¢ o « « & « + o 24

A, INtroduction. « « « o o « « o s o o = « + s o« + = « 24

1. Create Buffer Location and Size 24

2. Reading the Create Buffer. . . « « « o« o « « +» » 26

3. Reading the Color Byte . .

4., Determining the Machine State.

B. EDITING the Create Buffer . . .

1. Changes to the Original Driver

2. Variables and Flags.

» . e e » = @

3. Explanation of Code Sections in Editor . .

C. SEGMENTING the Create Buffer. .

* & & & e * 8

1. Changes to the Original Driver

2. Variables and Flags. . . . «

3. Explanation of Code Sections

D. Summary

Appendices.
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I

Appendix J

Bibliography.

® & & & & s s & @ . e @

(ANSI ASCII Chart). . .
("SEGDRAW™ Program) . .
("Lister" Program). .
(Color Byte Chart).
(Part1-Original Driver)
(Part2-Original Driver)
(Part3-0riginal Driver)

(Part4-Original Driver)

* ® = * = =

in Segmentor.

* = & ® @

(Extended Part2-With Editor Shaded)

(Extended Part2-With Segmentor Shaded).

26
29

30

. 30

32

- 33

36
36
38

. 39

41

42

k3

. 4y

45

. 46

y7
48
51
54

. 58
. 64

70

iii

LIST OF FIGURES

One: Relationship of User, Chromatics, and the

Programmed Driver . . « « « « o o « « o »

Two: Entries in Create Buffer which Produce
the Picture in Figure 3 . . « « « + & « =«

Three: Picture Produced by Commands in Figure 2.

Four: Example of Holes Which Develop in Drawings

Five: Examples of Extended Primitives.

Six: Keyboard Layout . « ¢« « o ¢ o « o o = o o

Seven: Pseudocode for Editing Capability

Eight: Pseudocode for Segmenting of Display File

Nine: Pseudocode for REDRAWing Segments.

Ten: Diagram of Memory Organization. . « . « « «

Eleven: Diagram of Locations of Color Byte and

Pointers to Create Buffer . . . « « « o+ &

Twelve: Diagram of Color Byte and What Each Bit
Represents. . ¢« + +« o o + o « & o a o 3+ &

Thirteen: Diagram of Color Byte AND &H55 Results

Fourteen: Diagram of Special Function Keys with

page

17,18,19

Corresponding Chromatics Input Number 31

Fifteen: Built-In Primitive Recognized by Chromatiecs . . 35

Sixteen: Default Conditions of the Screen. . . .

« » o 37

iv

CHAPTER ONE: Introduction

A. OVERVIEW

This report describes two extensions of a system driver designed
for the color graphics computer in the Computer Science Department. One
extension allows the user to edit drawings or text as they are being
developed. The second extension allows the user to create complex
pictures which previously coculd not be done because of limited buffer
space. This is accomplished by segmenting the create buffer and

maintaining these segments on disk storage.

B. PAPER ORGANIZATION

This first chapter is an introduction which explains the rationale
for the project, gives a short tutorial on what a create buffer is,
explains where this project fits into current developments here at
Kansas State University, and gives an overview of what was accomplished
with its results and an evaluation based on how well the implementation
works. The second chapter includes all information necessary for the
person who wants to use the editing and/or segmenting portions of the
driver developed for the Chromatics color graphics microcomputer. The
third chapter provides the internal design to either duplicate the

editing and segmenting processes or to modify them to include windows

other than 0. Appendices include the source code for the editing and
segmenting sections within the system driver, and other materials that

support or expand information found in the text of the paper.

C. AN EXPLANATION OF THE CREATE BUFFER

As shown in

r.
FPigure 1, the user D tver

enters commands !

through the keyboard

TABLET
and possibly the Chrom atl cs
tablet. The ﬁ' g Graphics SOjtware
KEYBOARD

commands are first I ! !

handled by the

syste driver Cm{e D
"’ E} Iisphy-)‘ékfzzﬂ
originally developed ﬂf er uﬁer

by Dillinger(Dil80)

which calls on the FIGURE 1: RELATIONSHIP oF USER,
Chromatics routines. CHROMATICS, AND THE PROGRAMMED
The display file DRIVER

and the refresh memory can each receive the picture developed by the
user. The display file is developed in the Chromatics CG1999 when the
CREATE key has been turned "on." The commands which include all
characters, mode codes, control characters, and plot submodes entered

into the terminal are placed in the display file (create buffer is the

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

term used by Chromaties). Chromatics uses ANSI ASCII code to represent
the input. If the display file is saved, the picture can be recreated
by stepping through the command sequence in the create buffer., Figure 2
provides a short example of entries in the create buffer when the user
has pressed a sequence of keys to produce the drawing in Figure 3. A
translation from ASCII to English is provided to help the user readily

understand the input. Appendix A provides the complete ANSI ASCII

chart.
1 gode roil off
1 made plot on
1186
1 mode background on
77 1 M
1 made blink off
50 | 2
1 mode whnite
67 | C
5517
1 mode backgrol
78 | N ground. ofF Column 1 gives the numbers found
1 made Black in the c¢reate buffer.
67 | C

2 | Column 2 gives the translation
2 | erase gace from ANSI ASCII (refer ta Appendix A

for further ANSI ASCII).

42 | » circle
sl 2z :
53] 5 x-coordinate Column 3 gives added interpretation.
24 <] i
21> The @or:;ontal lines divide the
531 ¢ -coardinate eqtr1es into separate commands.
TG ¥ (i.e. by pressing the WHITE key--
21 2 3 entries wers made).
83 1 9 radius
a8 1 9
839 back space
83 ¢k _space
3S back space
21 | mode cancel change to character
C
311
R
87 C
18 L
g 3
EQF end of file

Figure 2: ENTRIES IN CREATE BUFFER WHICH
Propuce THE PicTure IN FIGURE 3

Ficure 3: Picture Propucep BY CoMmanDs IN FIGURE 2

The refreshv memory has four entries (blink/non-blink, red, blue,
and green) for each dot on the screen. The screen is 512 dots by 512
dots (262,144 dots) in size. Because of its speed, the refresh memory
is used by the machine to constantly replace the picture on the screen
S0 the viewer does not see any decay of the picture (New79). Obviously
the create buffer will take much less space in storage if the user wants
"to save the picture to be shown later,

If the user has turned CREATE "off," an end-of-file (EOF) marker is
placed at the end of the commands in the create buffer. The picture can
be continued by APPENDing to it. The extended system driver has
simplified this task, the user merely presses the APPEND key. If the
useﬁ should press the CREATE key again, the pointers are reinitialized
and the create buffer starts at the beginning overwriting the previous

picture.

D. RATIONALE FOR THIS PROJECT

1. Editing

Often in developing a picture, people have problems with misspelled
text, the incorrect positioning of text or geometric figures, or
unexpected results due to incorrect commands. With our current machine
capabilities, the only options open to the user to correct the mistake
are:

1) to start over, which can be extremely disheartening, especially

in a detailed picture;

2) to remove the object or characters by blocking the area out by
filling it in with background color, which works as long as
there is no overlap of objects, However, as the picture is
reproduced at a later time, the mistake and the cover up have
been entered into the create buffer and are shown. The final
"static® picture does not show the mistake but it is not
possible to do away with lines or objects which overlap.

It would be extremely valuable to the users to be able to edit
their input. Two kinds of editing are needed:

1) the ability to remove any figure(s)/character(s) from the
picture. At this time, this particular capability is beyond the
scope of this project.

2) the ability to remove the most immediate {(last) entered
figure/character one at a time as far back as the user wants to
go. This is part of what this project does.

The editing capability needs to be easy to use so the novice user
can have the capability readily available to him/her. One key needs to
be defined for the editing function. By pushing the one key the user
can remove the previous character/figure from the screen by drawing over
it in the background color and removing the instructions from the create
buffer. By pushing the key repeatedly, many character(s)/figure(s) can
be removed. If any abnormalities develop in the design (see Figure 14)
the user can press the REDRAW key built into the machine. When the
REDRAW key is pressed, the screen is reiaitialized and the picture which
is stored in the create buffer is drawn on the screen., By having
removed the character(s)/figure(s) from the create buffer, the picture

is what it was before the last item(s) was entered.

(THE VECTOR WAS THE LAST
ENTERED PRIMITIVE.)

(THE VECTOR WAS REMOVED LEAVING

A WHITE LINE ACROSS THE FILLED
RECTANGLES BECAUSE THE BACKGROUND
COLOR USED TO REDRAW THE VECTOR
WAS WHITE.)

Figure U4: FExaMpLE oF Hores YHicH DeveLoe IN DRAWINGS

2. Segmenting

Another problem encountered by users is that the create buffer has
limited size. Only 16K ASCII characters can fit at any one time. In
making detailed pictures, especially if a BASIC program is already
taking up part of the memory space, the memory locations are not
available and an "out of memory error" results. As an example,
Chromatics supplied several sample pictures with the machine. Most of
them are very complex and will not fit into the create buffer if the
BASIC interpreter has been entered into memory. Therefore, it is not
possible to write a program having the samples shown in sequence.
Likewise, if one desires overlays, movement, or stream input from the
tablet, the space fills quickly. The solution to this was to have the
machine maintain segments of the create buffer on disk space and then
read through the segments as needed when producing the picture, thus
extending the length of the create buffer to the number of segments

which will fit on a disk.

E. THIS PROJECT IN RELATION TO CURRENT DEVELOPMENTS

A driver developed by Dillinger (Dil80) for the Chromaties CG 1999
has made many options available to the user in a much less complex
manner. Using Chromatics commands under program control, the interface
supresses Keys which would put an end to the program while redefining
some keys for new commands. The coordinate input for graphics

primitives is accepted in any of four modes: 1) from the keyboard as

digit coordinates; 2) from the keyboard as a cursor position; 3) from
the tablet, positicning from the four-button cursor on the tablet; and
4) from the tablet, positioning from the cursor on the screen.

Included within the driver is an interface with a program developed
by Yee (refer to Part3 and Partd in Appendices G and H) which extends
the primitives available to include: wide vectors, arrows, bubbles,
thickened rectangles, dotted lines, double headed arrows, and slanted
rectangles (see Figure 5). This program is a further extension of the

driver to include editing and segmenting of the create buffer.

=}
ncooﬂuau
@Uﬂ (dotted single headed arrow)

GUDG { wide

QDD‘}(dotted wide vector) vector)

(slant rectangle)

(double headed arrow)

Ficure 5: EXTENDED PRIMITIVES

F. RESULTS AND EVALUATION

This project was chosen because I had taken the graphies course
offerred by the Computer Science Department at Kansas State University
and readily recognized the need for the additions because of personal
experience, The project was a learning experience because of several
aspects; working with something already developed to make changes or
extensions, working with réference manuals with errors and misleading
information, and making the extension work in spite of the unforeseen
obstacles.

It became quite evident that working with an already developed
piece of software was a challenge especially when the editing extension
was not planned for when <the original driver was developed. The
original software was written with concern for the product on the screen
whereas the editing extension deals with both the product on the screen
and with the manipulation of the display buffer. The tablet input
compared to keyboard input is an example because a primitive entered as
tablet input puts the primitive symbol in the create buffer twice
whereas if entered through the keyboard the symbol is put in the create
buffer only once, Had the editor been part of the original plan one
edit key might have been enough.

The reference manuals (Chr78a), (Chr78b), (Chr79) had a great deal
of information, but they were not written for the beginner. Also, some
of the information is wrong or misleading. The Chromatics model owned
by Kansas State University would not support the MOD function. The STR$
function placed a blank in front of the number which was being converted

to a string. The INPUT statement would not enter the filename in the

10

segmentor. The machine would 1lock and could only be restored by
starting over and re-entering the BASIC program thereby losing the
picture.

When the first code was written for the editor, it was naively
short., Not all the "what if's"™ were taken into consideration, and there
are many. The editing code started out as a small section tacked onto
the bottom of the driver. It is now almost as large as the driver
itself.

By testing the extensions with five novice users, four of whom had
not previously seen the Chromatics machine, the extensions were found to
be fairly robust. Very little trouble was encountered in removing
character input. The editor takes cursor movements into consideration
and compensates for them. The one novice user who had used the
Chromatics in a very limited capacity had learned to draw pictures by
changing the background color and blocking out spaces with the space
bar. Since the editor treated the cursor movements as space finders, it
could back over an entire picture formed as previously mentioned without
finding a primitive or character. This was easily changed by making the
space bar appear to be a character. In many cases when instructions are
input which cannot be counteracted, the editor prints a message to press
REDRAW. When removing figure input, it was not possible to make all
editing successful with overdraws so it was necessary to put in
statements telling the user to press REDRAW. Not all of the situations
could be specified, so the user must be aware of what he/she has done
and press REDRAW if they have changed states or made movements which may
not be recorded in the display file., To be safe, the novice should do a

REDRAW whenever in doubt. It 1is not possible to back up for editing

11

purposes past the segment boundaries, so it is extremely important for
the user to be correct at those boundaries. When using tablet input, it
is necessary to turn the tablet "off" before editing. ; message had to
be added to tell the user to do so if they forgot. If the user presses
the wrong edit key, the changes may not be what is expected but the user
can recover easily by pressing REDRAW.

The segmentor works well in the enviromnment of the driver; however,
the system will not allow duplicate file names for BUF files. it is
very important for the user not to duplicate a previocus name when naming
their file, Another inconvenience arises because a separate program is

needed to DRAW the completed picture on the screen.

G. THE FUTURE

There are several further extensions which would be helpful. The
most obvious need is the ability to perform DOS (Disk Operating Systen)
commands from within the driver. This would provide the ability to DRAW
the segmented files from within the driver without the need of an extra
program or the need to know how many segments there are in a picture,
To accomplish this task, it would be necessary Lo put a "header" at the
beginning of each segment indicating whether or not another segment
follows it. Also the DOS command would need to be implemented by
defining a DOS key and collecting the necessary information to be able
to carry out the command, i.e. DOS"DRAW XANADU.

Another extension would be to trap errors such as the error of

12

naming a file the same name as one already on the disk. Another need is
the ability to segment files already on the disk so they can be shown
with the BASIC interpreter and program in memory.

One immediate problem is the lack of space. The current driver is
on the verge of using all the available memory space. The example of
the file in the Appendices I and J with numerous comments will not run
because an "out cof memory" error will occur. Additional memory could be
obtained by stripping out all comments and leaving out all blanks, but
that would make the program extremely difficult to read, especially for
someone who had not originally develcped the program trying to extend or

modify it.

H. SUMMARY

This chapter defined the problem and showed the need for editing
and segmentation. Since the term "create buffer” is used throughout the
paper, a short tutorial was given to explain what it 1is and o show
examples of what is contained in it. One section showed where this
project fits into current develcpments at Kansas State University.
Another section provided an explanation and an evaluation of the
results, Finally, some suggestions for further extensions which would
be helpful to users were given. In the next chapter, the user will be
given specific instructions which are necessary to use the previously

described extensions.,

13

CHAPTER TWO: Users' Guide

To draw pictures or enter text with the driver, refer to the User's
Guide, Chapter 2, "System Driver for Color Graphics Computer" Dby
Dillinger (Dil80). The following sections explain how to use the editor

and segmentor.

A. THE EDIT AND TABLET EDIT KEIS

The key CRTOS has been redefined to be an EDIT key and will now do
an overdraw of the last entered character/figure if one is using
keyboard rather than tablet input. The user merely presses this key
(see Figure 6). If the user wants to remove the next previously entered
character/figure, the user presses the key again, and so on.

To be able to use this extension, be sure to enter the primitive
command each time you enter the coordinates of a primitive because the
editor goes backwards through the entries in the create buffer until it
finds the entry which designates a primitive. If you have entered
numerous circles without re-entering the CIRCLE command, the editor will
erase the first circle entered after the CIRCLE command from the screen
but will have removed all subsequent circles from the create buffer. If
this happens, press REDRAW (see Figure 6) to bring the picture back to
what is in the create buffer.

There are several instances when it is not readily possible to

14

15

saweu SOILYWOUHD sajedlpul Bupsayia) ased ¥iddn
safueyd JaApsp pawwesdord sajeaipu) Auisayjay ased Jamoj

3
(ei, pERRA] we: ST 8 1NOAV] Q¥v0dA3)| :9 3uN9I4
+ |- uve 30¥ds
- ums | 7/ InnINg Al X]|Z | s
Sle |t } al<]> LY
. — wael (1] [T HIDa Qs]| v wn
9 1S |v =— |JNOH — { } £ M
n slal, * N [n @ |d O VALY 3 IMN] B | isi
n N Ly | av1 .
1y, % | 3 Il N v | - 1|1 |B8la)l9 st lEIS] L] 00K
m ERTTE| I T > ([L I B O O I
(V| - _
11IHM | MOTTIA EEEE_ a3y | NvAD | N3u9 | anmig | wovie | g | annowd| wwia | 1oy
] o NOVE | »
M9 | 1938 [woroaa| Wva A | wvax | 1oa | 107d | A-X |moonim| Liwx |mvya3au| wooz | 3iviua | so 1¥d| S0 wsia| S0 ndd
29 10102 . ¥OSHNI . 11p3_[Morse p |ypa jajqe)
Ad02 v |u03 1x31
TH INTH BT BT BTH ETH E7H BT _gw__m_“u_,_w_usﬁ_ﬁm sy Juapai asay | doos | 133y

TAOAVTI QATVOTAXIX

overdraw the figure/character on the screen. In these cases a message
will appear on the screen telling the user to press REDRAW. If you have
changed states (blink, fill, background, ete.) or color, changed from
plot to character input, or produced holes in your picture, press REDRAW
to get the picture to correspond with the entries in the create buffer.

The key CPUOS has been redefined to be a TABLET EDIT key (see
Figure 6). To edit tablet input, turn the tablet "off" by pressing the
TABLET/TEXT EDIT key, then press the TABLET EDIT key. If you have been
entering concatenated vectors or dots through stream mode, more will be
removed from the create buffer than shows on the screen so be sure to
REDRAW the picture to correspond with the create buffer, To continue
drawing with the tablet, press the TABLET key and continue.

Structured pseudocode of the action taken each time the EDIT/TABLET
EDIT keys are pressed are represented in Figure 7. Figrues T7A and 7B

aré expansions of sections in Figure 7.

B. THE SEGMENTING FACILITY

The ability to segment the create buffer will not be needed by most
users, and it will require no user input unless the need to use it
arises. Shortly before the create buffer runs out of space, a message
will appear on the screen asking the user to enter a name for the

picture (file). The wuser need only type in a name by following these

16

17

STOP THE CREATE BUFFER ENTRIES
FIND TOP AND BOTTOM OF PICTURE IN CREATE BUFFER
JIF BOTTOM = TOP
THEN RETURN TO WAITING FOR INPUT
EiL
DETERMINE COLOR STATUS
CHANGE FOREGROUND COLOR TO BACKGROUND COLOR
JE IN PLOT MODE

IHEN LOOK THROUGH THE CREATE BUFFER STEPPING
BACKWARDS UNTIL A PRIMITIVE OR THE TOP
IS REACHED (ALONG THE WAY CANCEL OUT
COLOR CHANGES)

JE BOTTOM NOT EQUAL TO TOP
JHEN REPRODUCE THE LAST PRIMITIVE
EL
ELSE REPRINT LAST CHARACTER
EL
RETURN COLOR TO ORIGINAL SETTING

PUT BOTTOM OF CREATE BUFFER POINTER BACK TO WHERE
LAST PRIMITIVE OR CHARACTER STARTED

RESTART THE PICTURE AT NEW BOTTOM

Ficure 7: PSEUDOCODE FOR EDITING

WHILE TOP NOT EQUAL TO BOTTOM AND BOTTOM NOT
EQUAL TO PRIMITIVE

START AT BOTTOM AND PEEK AT EACH LOCATION
IE CONTENTS OF BOTTOM NOT EQUAL TO A PRIMITIVE

THEN
1F CONTENTS EQUAL MODE
THEN PEEK AT BOTTOM + 1
IF CONTENTS = C
THEN POKE NULLS AT BOTTOM,
BOTTOM+1, & BOTTOM*2
EL
EL
DECREMENT BOTTOM
EL
ENDWHILE

Ficure 7A: EXPANSION OF PSEUDOCODE FOR (LOOKING THROUGH
THE CREATE BUFFER STEPPING BACKWARDS UNTIL A

PRIMITIVE OR THE TOP IS REACHED -- ALONG THE
WAY CANCEL OUT ANY COLOR CHANGE)

WHILE LAST ENTRY WAS A MODE CHANGE
IGNORE IT AND KEEP GOING BACK
ENDWHILE
IF BOTTOM NOT EQUAL TO TOP
THEN
BACKSPACE
REPRINT CHARACTER
BACKSPACE

Figure 7B: EXPANSION OF PSEUDOCODE FOR (REPRINT
LAST CHARACTER)

19

rules:

1. Names should begin with an alphabetic character.
2. Length of name must be no greater than 6 characters.
3. Use only alphanumeric characters.
4. If the user chooses a name previously used as a
file name on the user's disk, an error will
occur and the picture will be lost,

After typing in the name, press RETURN. At that time the driver
will take care of saving the first segment for the user and will save
the following segments automatically as the create buffer refills, See
Figure 8 for the pseudocode for saving the segments.

The REDRAW key has been trapped and takes care of putting the
segments 1in the create buffer in the proper order and redraws each

segment in sequence. See Figure 9 for the pseudocode for REDRAWing the

segments.

C. DRAWING SEGMENTED PICTURES WHICH ARE STORED ON DISK

The user must know the name of his/her file and how many segments

it has. To check the directory:

user: press RESET, press BASIC
machine response: Memory size?
user: press RETURN
machine response: Chromatics DISK BASIC Ver 3.0
Copyright (C) 1978 by Microsoft
1191 Bytes free
ok
user: type DOS"DIR/n (n is disk drive number)
user: press RETURN
machine response: (the disk directory is produced
on the screen)

20

21

WHEN CREATE FALG 1S TURNED “ON” SET FLAG TO INDICATE
THIS IS NOT A SEGMENTED FILE, SET SEGMENT COUNT TO 1

WHEN CREATE FLAG IS TURNED "OFF" BY USER, IF SEGMENT
COUNT IS GREATER THAN 1 THEN GO TO THE STORE SEGMENT SECTION

CHECK FOR MAXIMUM SIZE BEFORE EACH RPIMITIVE/CHARACTER
IS ENTERED INTO THE CREATE BUFFER IF GETTING NEAR THE
END THEN GO TO THE STORE SEGMENT SECTION

PUT EOF AT END OF FILE
1F SEGMENT =1
JHEN
MOVE CURSOR TO TOP OF PAGE
SET CONDITIONS SO IT WILL PRINT CHARACTERS

PRINT ”CREATE BUFFER SEGMENTING -- IF you wisH
TO CONTINUE, ENTER FILENAME"

STORE SEGMENT WITH FILENAME
ELSE
STORE SEGMENT FILENAME (SEGMENT#)
EL
INCREMENT SEGMENT #
START AT TOP OF CREATE BUFFER AND GO ON

Fieure 3: PSEUDOCODE FOR SEGMENTING OF DISPLAY FILE

IF FILE HAS NOT BEEN SEGMENTED
JHEN
REDRAW
ELSE
STORE CURRENT SEGMENT UNDER FILENAME(SEG #)
LOAD FIRST SEGMENT OF FILENAME
REDRAW FIRST SEGMENT
SET COUNTER WHICH WILL ACT AS SEGMENT NUMBER
WHILE FILENAME(COUNT) 1S FOUND
LOAD FILENAME(COUNT)
REDRAW F1LENAME (COUNT)
INCREMENT COUNT
ENDWHILE

EL
RETURN TO WAIT FOR NEW INPUT

Ficure 9: PSEUDOCODE FOR REDRAWING SEGMENTS

ra
ra

You will see your filename and if it has been segmented it will

also contain file(s) with number{s) preceding your filename.

Example: XANADU . BUF
2XANADU LBUF
3XANADU LBUF

You must also have SEGDRAW,BAS included in your directory. If it is not

in the directory see Appendix B for code.

Assuming you are still

in your picture being drawn

user:
user:
machine response:
user:
machine response:
user:
machine response:
user:

machine response:

This chapter was designed as a users' guide.

use the editor

and segmentor

in BASIC, the following interaction results

on the screen,

type DOS"LOAD SEGDRAW
press RETURN

ok

type RUN; press RETURN
WHAT IS YOUR FILENAME?
type filename, press RETURN
HOW MANY SEGMENTS7?

type number of segments;
press RETURN

{your picture will be
drawn on the screen)

D. SUMMARY

It explained how to

extensions, Pseudocode describing the

editor and segmentor was provided to show the flow of logic in producing

these extensions.
pilctures was

within the driver. The

explanation of how the editor and

The last

needed because

section which told how to draw segmented
the stored pictures cannot be drawn from
next chapter will give a more detailed

segmentor were added. It was written

for the person who might want to duplicate or modify the extensions.

23

CHAPTER THREE: Implementation

A. INTRODUCTION

To be able to implement this project, a number of questions were
addressed, several methods of reading input and output were learned, and
Chromatics, Inc. (Chr80) was consulted for further documentation of the
system. In the first section of this chapter, several questions and the
information received ffom Chromatics are explored. Sections B and C

describe the actual implementation.

1. Create Buffer Location and Size

Qne of the main purposes for ;eveloping the original driver was to
make the Chromaties CG 1999 as easy for the novice user to operate as
possible so the default command of carriage return 1is used when the
machine asks for "memory size." In the default case, the maximum amount
of space for the BASIC program is from &H43CO0 to &HTFFF or 16K. This
means that the create buffer will always begin at &HB8000. Whether it
starts at &H8000 or not, the create buffer will always end at &HTFFF,
see Figure 10. In the editing extension the address of the top of the
create buffer is read in case a user changed the memory size, Since the
end of the create buffer will always be at the same place whether or not
the starting point changes, a fixed address 1is used to determine how

full the create buffer was getting.

24

-

BASIC

PROGRAM

CREATE
BUFFER

L3cO

Y b 2d 2=

8000

rFrrr

Ficure 10: DiacrRAM OF MEMORY ORGANIZATION

25

2. Reading the Create Buffer

Being able to read what is in the create buffer is very important
to the person trying to edit the create buffer. To be able to remove
anything, it is first necessary to determine what is there, This kind
of information is not readily available in the reference manuals. Also
as the editor is being debugged, it is necessary to be able to see what
you have changed or removed.

To read what is in the create buffer it is necessary to find out
where it starts and where it ends. The starting location for window 0
is at 3B46 and 3BUT (see Figure 11). When PEEKing at those locations
the operator finds an integer in each position. To translate these
numbers into an address, multiply the contents of 3B47 by 256 then add
the contents of 3B46, Likewise, to find the ending location of that
picture for window 0 in the create buffer, one PEEKs at locations 3BA4
and 3B45.

After finding the beginning and end of the picture, the operator
can write a program which will PEEK at each location in the create
buffer, translate it from ASCII code to English, then print out each of
those entries. Appendix C is a program entitled T"LISTER"™ written
especially to do this process. As seen before, Figures 2 and 3 show an

example of a picture and its list of what was in the create buffer.

3. Reading the Color Byte
One must be able to determine what colors are being used so the
noverdraw" of the character/figure can be done in the background color.

This will save time in drawing as long as holes do not develop in the

26

27

AN

380D

COLOR BYTE

3835

A7 ON OR OFF

3B444&S5 3BLELT

LOCATION OF BOTTOM\y,
OF CREATE BUFFER < LocaTion oF Top
ENTRIES <) F CREATE BUFFER

3652

STATE INFORMATICN
(1.e. PLOT, BLINK,
ROLL, FILD)

Frcure 11: TiaAGram OF
LacaTions of Cotor BYTE

AND PoinTERS T0 CREATE

3UFFER

picture. After the "overdraw" has been done, the color setting will
automatically be restored to what it was before the editing was done.
If color changes were made during the last entry which was removed, the
color either needs to be set to what the user wants to go on with or the
REDRAW key pressed. Otherwise, the picture will continue on the screen
in the color set from the color which has been removed but the picture
in the create buffer will be the color preceding the color which was
removed.

The color information for window O is contained at location 380D
(refer to Figure 11). If the operator reads the contents of 380D by
using the PEEK instruction, the resultant value when printed cut is 0
through 255 in decimal integers. Appendix D gives the numbers with
their corresponding meanings. This integer 1is a translation of the
binary representation of "on" and "off" bits into decimal integers. The

8 bits each have the meaning shown in Figure 12.

! [
I GREEN 1 BLUE

| !
FOREGROUND BACKGROUND | FOREGROUND BACKGROUND | FOREGROUND BACKGOUND | FOREGROUND BACKGROUND

|
BLINK | RED
I

1 @ 1 1 g | 1 % 1

@ penoTES "OFF” IN THIS EXAMPLE: FOREGROUND--BLINKING RED
1 penoTES "oON” BACKGROUND--RED+GREEN+BLUE=WHITE

Ficure 12: Diacram oF CoLor ByTe anp WHAT EAcH BIT REPRESENTS

Therefore, an example of 00100110 means no blink, red &
blue=magenta foreground, and green background. The binary

representation 00100110 translates to 38 in decimal.

In programming the
Value of
editing function, it is color s;e:e:x;n 8HSS Background Calor
necessary to take the number 0 BLACK
1 BLUE
received from the PEEK 4 GREEN
operation and AND it with 5 CYAN
16 RED
&HS5. The results possible 17 MAGENTA
are shown in Figure 13 along 28 YELLOW
21 WHITE
with the color those numbers

Freure 13: Diasram of CorLor Byte AND
&H55 RESULTS AND WHAT THEY
REPRESENT

represent,

4. Determining the Machine State

When editing the create buffer, one must know whether the item
being removed is a character in text or a geometric primitive. In the
case of character removal the last character is removed. The only
additional checking needed is to make sure the last item is a character
and not part of a mode change or cursor movement, When removing
geometric primitives, the create buffer must be looked through stepping
backwards until the primitive is found.

The machine state information for window 0 is found at location
3B52 (refer to Figure 11, page 27). The operator reads the contents of
that location using the PEEK operation. The machine states available at

this location inelude blink/non-blink, fill/non-fill, roll/non-roll,

foreground/background, and character/plot. In editing, one must know
whether the machine is 1in character or plot mode. By ANDing the value
at 3B52 with &HY4, a boolean is developed which is "true" if in plot mode
and "false" if in character mode.

As a picture is being edited, it 1is possible to back over
plot/character mode changes. MODE G in the create buffer <turns plot

"on"™ and ASCII 21 is a "mode cancel™ which turns plot "off,."

B. EDITING THE CREATE BUFFER

1. Changes to the Original Driver

In the driver developed by Dillinger (Dil80), an array is set up in
Part1 (see Appendix E) to disable all the interrupts caused from
pressing the special function keys on the upper three rows of the
keyboard. A "bell"™ is entered for each key, then those keys which are
used in the driver are re-enabled or changed. The numbers in the array
corresponding to the special function keys are shown in Figure 14.

The CRT0S and CPUOS keys were not being used so they were selected
to be the EDIT and TABLET EDIT keys. It was necessary to differentiate
between regular editing and editing tablet input because the driver
printed the primitive twice when using tablet input. Also it was not
possible to use the tablet flag as a determining factor in editing each
kind of input because the tablet had to be turned "off" to edit the
picture,

Appendix I shows a copy of the T"extended"™ Part2 with those

30

I}

Freure 14:

Dracram oF SpecraL FuncTion Kevs wiTH CORRESPONDING

CHromMaTICS [NPUT HUMBER

peser | oo | [s e ww | | | m | s s n
T~ 199 244 216 193 208 194 205 160 161 162 163 164 185 166 167
%G’ ‘D‘I’Sirrﬂu; ﬂ;‘!ﬁtﬂs t‘.!lll’t. 1008 | REDRAW | XMIT |WINDOW CH;_S}M PL“T. nat 18AR C’;‘ﬂ;‘;‘t YECTOR | RECT [CIRCLE
218 196 212 129 250 215 213 247 245 130 149 145 146 151 155 154
v T T
[/0LL l BLINK | GROYND | FILL | BLACX | BLUE | GREEN CYAN RED 1M1G£“l YELLOW | WHITE
131 132 133 134 176 177 178 179 180 181 182 183
(LTI TTTTTT T P]]
PITTTT LT 111] [
CTITTTITITIT I I iy |]
CTTTTTTTITT |

additions and changes shaded which are necessary to do editing. Code
line 580 was added to take care of the problem which arises when the
edit keys are pressed without having turned off the tablet. Code lines
590 and 600 were added to re-enable the CRTOS key as the EDIT key and
the CPUOS key as the TABLET EDIT key.

In the T™handle primitives" section of Part2, lines of code were
added to print the primitives. For example, the code IF EF AND P=155
THEN PRINT CHR$(43); was added to print the rectangle if the edit flag
is true and the 1last primitive found was a rectangle. In the original
driver, the primitive handler returned to the point of waiting for the
next keyboard interrupt. Line 1110 IF EF THEN RETURN returns control
to the place from which it was ecalled in the "last primitive found"
section of the editor.

Changes were made to the "sub:;coord®™ section, lines 1380 through
1430. This subroutine collects coordinates and stores them in arrays to
be used in printing the primitive, If the edit flag is "true" then the

collection is re-routed to the editor.

2. Yariables and Flags Used

CNT used in conjunction with BIM to keep track of
which location in the create buffer is being

examined
EF 0" false boolean used as a flag to denote
"-1" frue that the editor as been entered

and then exited

BTM address of the bottom (end) of the create
buffer for window 0 computed from values in
&H3IB4YY and &H3BYS

32

TP

B1

T1

T2

zg ==

<,

4]
Y%
NBTM

c, D

coL

address of the top (beginning) of the create
buffer for window 0 computed from values in
&H3BU46 and &H3IBAT

value representing the background color
(refer to Figure 13)

"or false flag denoting that TABLET
".1" true EDIT key has been pressed and
first time being sent to editor

ngr false flag denoting that TABLET EDIT key
"=1M true has removed first occurrance of

primitive and this is the second time

through the editor

contents of location &H3B52 which contains
state information for window O

ASCII representation found at specified
locations in the create buffer

incremental counter

addresses used in the subroutine which
replaces mode changes with nulls

temporary variable which holds the value which
represents keyboard input for each primitive

variables used in calculating and holding
values which represent the address
to be placed in the bottom pointer

address of new bottom of create buffer after
last character/primitive is removed

variables used to hold values found in &H3B4Y4
and &H3IB4S

contents of &H380D which contains color
information

3. Explanation of Code Sections in the Editor

In initializing the "editor," lines 1910 through 1940,

CNT and EF are set.

values of

An end-of-file mark is put at the end of the create

33

buffer. The top and bottom of the buffer are determined.

Next the T"editor" branches to the subroutine which saves the
contents of the color byte and determines the background color and
returns to the editor. The foreground color is set to the background
color. The state of the machine is checked to see if it is in character
or plot mode.

The "character editor" section checks the create buffer for the
last character entered. It is necessary to check the last four entries
each time to see if it might be part of a mode change or cursor
movement. The ASCII representations (refer to Appendix A) 1 through 32
either have individual meanings or are not used. Except for 0 and 1
which are null and mode respectively, each entry is specific. Those
instructions which can be counteracted by another instruction are
counteracted. Those which have no corresponding opposite effect are
singled out and a message i3 sent to the users to let them know they
need to press REDRAW so the picture on the screen will correspond to
what is the create buffer. In the case of 21 which 1is "mode change,"
the "character editor™ switches control to the "primitive editor."™ The
last two entries are looked at because most mode changes are made up of
two entries, i.e. 1,77=ModeM=background on. The last three entries are
taken into consideration because color changes require three entries,
i.e. 1,67,49=ModeC2=blue. The last four entries must be inspected
Decause changes in letter size require four entries, i,e,
1,88,51,44=ModeX3,=make the width of the letter three times the usual
width.

The "primitive editor™ section checks back through the create

buffer looking for a primitive. If the combination 1, 77=ModeG=plot on

34

is encountered control is given to the "character editor" section. Mode
and color changes are replaced by nulls (0). When a primitive is
encountered, ASCII 33 through 43, see Figure 15, the control is given to
the "primitive handler™ of the "mpain driver®™ which draws the primitive

in the background color.

PrimiTIVE Cope ASCIT Cobe
X - Bar ! 33
Y - Bar ul 34
DoT . 37
VECTOR ! 39
CONCATENATED VECTOR { 4q
CIRCLE * 42
RECTANGLE + 43

Ficure 15: BUILT-IN PRIMITIVES RECOGNIZED
BY THE EDITOR

After the last character or primitive has been overwritten, the
pointers are changed so that the last entry is no longer part of the
create buffer, the beginning color is reinstated, the edit flag 1is
turned "off," APPEND is instated so the user can continue and the "main
driver" resumes waiting for keyboard input.

Several subroutines are used by the editor. One collects the
coordinates of the last primitive. One subroutine put nulls in the
create buffer to replace mode changes. Another subroutine prints out a
message to the user in a color different from the background color to

"press REDRAW."

35

C. SEGMENTING THE CREATE BUFFER

1. Changes in the Origipal Driver

Part2 of the original driver by Dillinger(Dil80) (see Appendix F)
does not consider the size of the create buffer, Refer to Appendix J
for a copy of the extended Part2 with changes and additions pertaining
to the segﬁenting process shaded.

Code line 470, SIZE=PEEK(%H3B45), checks to see where the bottom
of the create buffer is located. In line 480, IF SIZE>=254 THEN GOTO
2640, the address of the bottom of the create buffer entries is compared
to an address near the bottom of the allowable space. If the entries in
the create buffer have reached that address, the "main dpriver" sends
control to the ™ entor.m

Code line 440, IF SF THEN GOTO 2740 ELSE GOTO 450, was added to
route keyboard input to the " ntor™ if the segmentor is in the
process of naming the user's file, SF is the segment flag. Code line
760, IF K=215 AND SC=1 THEN PRINT CHR$(30);""M"CO™N~C2"N~"2~Q7~J H"L"E";
"“W000000511511";CHR$(28) ;CHR$(15) ;CHR$(12);""P~X1,7¥1,7G"L";
CHR$(27);"W"; ELSE IF K=215 AND SC>1 THEN GOSUB 2970 takes care of
initializing the screen to the beginning (default) conditions (see
Figure 16) so the picture drawn will correspond to the one drawn by the
user if the segment being redrawn is an unsegmented picture, If the
picture is segmented, control is routed to the "predraw segmented files"
section found in the "segmentor.”

In the "handle tes™ section of the "main driver™ changes were
made to the results of pressing the CREATE key. If a new picture is

being started, CREATE is pushed. At that time it is necessary to

36

ATTRIBUTE Screen CONDITION CoMMAND
COLORS BACKGROUND BLACK Mope M Mope (0
FOREGROUND GREEN Moce N Mope (2
CURSOR WHITE; tone @7
VISIBLE; tlope J
IN HOME posiTION CHRS(Z®)
CHARACTER MODE HORIZONTAL; Mope H
CHARACTER S1ZE Ix1 Mopoe X1, Mope Y1,
A7 OFF ConTrOL O
BLINK aFF Mope 2
ROLL OFF Hope P
FILL 0FF Mope L
BACKGROUND OFF ooe
QVERSTRIKE OFF ioDE L
CDORDINATE INPUT DECIMAL Mope E

WINDOW SIZE

FULL SCREEN;
CLEARED

Mope W 000 Q00 511 511
CHR$(12)

Freure 16: DerauLT CONDITIONS OF THE SCREEN

37

initialize the segment counter and the first file flag. If the picture
is segmented and CREATE is pressed, the picture is being ended and it is
necessary to route the processing to the segmentor to store that
segment. Code lines 1140 and 1150 handle these operations. If a
segmented file is APPENDed after CREATE is turned off it is necessary to
remove the copy of the current segment from the disk, otherwise an error
would result when an effort was made to put the appended segment on the

disk.

2. Variables and Flags Used

SF "Q" false segment flag denotes the segmentor
"-1" true has been entered and exited

SC segment counter keeps track of how many segments
in a picture; initialized to one (1) when a
picture is started

LO contents of location 3B52 which contains
state information for window 0

K keyboard input
SN$ filename entered by the user

S$ file number which is concatenated to the
front of filename for second and subsequent
files

C,D contents of addresses &H3BY46 and &H3IBAT
used to calculate the address of top of
buffer

TP the address of the top (beginning) of the
create buffer calculated from C and D
above

RD ngn false redraw flag denotes that
".1" true the segment, other than
the first segment, has been

stored already

38

3. Explanation of Code Sections in the Segmentor

Upon entering the segmentor, an "end of file"™ marker is put at the
end of the file in the create buffer and a flag (SF) is set to denote
entry. Next a check is made to see if the current segment is the first
segment. If it is the first segment, the next action is to set
conditions so a message is printed at the top of the screen informing
the user that the create buffer is segmenting and she/he has to enter a
filename to continue. The "segmentor™ branches back to the "pain
driver™ to receive keyboard input to collect the filename, After the
message about segmenting is printed, it was necessary to put in a short
FOR loop during which nothing is done, It merely takes up time so the
user has a chance to realize something is happening. Otherwise, the
user may end up with garbage as the filename.

The "collects filename™ section of the "segmentor™ is branched to
from the "main driver™ if the segmentor flag is true. The section
accumulates letters for a filename until the carriage return is pressed.
The section of code also takes into consideration backspaces so that if
a typing error occurs, a change can be made. The LEN and LEFT$
functions were used to take letters off the filename if a backspace
occurred,

After collecting the filename, the first file segment is put on the
disk and the segment counter 1s incremented, If the file being saved is
not the first segment, it is necessary to concatenate the segment number
to the front of the filename, It was necessary to convert the segment
number into a character string by using the STR$ function. Since the
STR$ function puts a blank character in front of the number and since

blanks cannot be part of a filename, it was necessary to perform the

39

MID$ function on the charater string to remove the blank., If a portion
of this particular segment has already been saved on the disk, it is
necessary to KILL the segment before saving the updated file with the
Same name. The redraw flag is turned "off" to indicate that the segment
is finished. The machine state is then determined, the segment is saved
on the disk, and the segment number is incremented.

If the segment being saved is the first segment, it is necessary to
reset initial machine conditions (refer to Figure 15) and to redraw the
first segment to remove the message printed at the top of the sereen,

To start a new segment, it is necessary to determine where the top
of the file starts and then put that address in the location which
stores the rpointer to the bottom of the file. The picture is then
appended to and the appended section starts at the top of the create
buffer.

A need which was very apparent when dealing with segmented files
was the need to change REDRAW. If the file has more than one segment
and the user presses REDRAW, it is necessary to store the cuprrent
segment, A flag is set to indicate that this file was stored, but since
it is not finished, it will be necessary to store it again. The flag is
necessary because the machine will not store a second BUF file with the
same name. As mentioned previously the STR$ and MID$ functions are used
to name the file. The first and subsequent segments are drawn by going
through all the segments one at a time until the current segment has
been redrawn.

After any redrawing of segmented files or storing of segmented
files, the segment flag is turned "off," the states are reinstated, and

control is resumed by the "main driver.”

40

D. SUMMARY

This chapter was written for the person who is interested in
duplicating or modifying the editing or segmenting extensions, In the
introduction section, several ideas were addressed which must be
understood before the extensions can be fully comprehended. The
sections dealing directly with each extension first explained what
changes had to be made to the "original driver."™ Then the variables and
flags used 1in the extensions were listed and explained. Lastly, the

code of the extensions was explained.

41

APPENDICES

42

APPENDIX A
ANST ASCII CHarT

nuil spce ool B ogg| g o sl "m
mode Pagl ! agl s l Pl '
"ul s ®oss gol " sl "4

#6 ‘al ‘wm 83 ¢ s °ns

$ a0 45| P oca saf "ol ‘' ome

Wl gl sl Foes sl Cm| "
e gl Yl S sl Pl Vel Two| "us
et #dﬁggﬁa 3| T fonm w| fml " ns
space aéz‘g'ﬁe?'k Ul ¥ssl " n s " w4l "1
tab g Tﬁf%ﬁ Pal %5 ' n. i sl T
~ * ol sl ! on ool sl "2
Tl ety *ggl sl Mo al “ | L
see g9l "opl | | ' 7 sl sl ' 1o
et 13| e o " s al " 93] ™ioa| 125
W 0Pyl el Tl Y m g4l " mo| ™12
ot sl el /gl el 0wl - el °m 127
NoTe: THIS CHART SHOWS CODES IN REGULAR

CHARACTER SET WITH A
TH INDICATE UNUSED

ENTRI
ANST

Rl

CODES.

OFF,

43

100
110
120
130
140
150
160
170
180
190
200

APPENDIX B
"SEGDRAW" ProGrAM

INPUT ™WHAT IS YOUR FILENAME";F$
INPUT "HOW MANY SEGMENTS";N
A$=F3

PRINT CHR$(12);

DOS"DRAW "+A$+".BUF

PRINT CHR$(27);"W";

FOR I=2 TO N
B$=MID$(STR$(I),2)

DOS"™DRAW "+B3+A3$+".BUF
PRINT CHR3$(27);"™W";

NEXT

44

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

A=PEEK(&H3BA4T)
B=PEEK(&H3B46)
C:(A'256)+B

D=PEEK(&H3B45)

EzPEEK(&H3B44)
F=(D¥256)+E

FOR X=C TO F
L=PEEK(X)

IF L=0 THEN PRINT
IF L=1 THEN PRINT
IF L=5 THEN PRINT
IF L=6 THEN PRINT
IF L=T7 THEN PRINT
IF L=8 THEN PRINT
IF L=9 THEN PRINT
IF L=10 THEN PRINT
IF L=11 THEN PRINT
IF L=12 THEN PRINT
IF L=13 THEN PRINT
IF L=14 THEN PRINT
IF L=15 THEN PRINT
IF L=21 THEN PRINT
IF L=22 THEN PRINT
IF L=23 THEN PRINT
IF L=25 THEN PRINT
IF L=27 THEN PRINT
IF L=28 THEN PRINT
IF L=29 THEN PRINT
IF L=30 THEN PRINT
IF L=31 THEN PRINT
IF L=32 THEN PRIHT
IF L=33 THEN PRINT
IF L=34 THEN PRINT
IF L=37 THEN PRINT
IF L=39 THEN PRINT
IF L=40 THEN PRINT
IF L=42 THEN PRINT
IF L=43 THEN PRINT

IF L>43 THEN PRINT

RESUME

APPENDIX C

"L1sTER” PROGRAM

P"NULL"
"MCDE"
"ONE DOT UP"
"DELETE CHAR"
"BELL"
!!Bsﬂ
nTABM®
HLFN
I'IVTII
"ERASE PAGE"
UCR'II
PAT ON™
"AT OFF"
"MODE CANCEL™"
"ONE DOT DOWN"
"INSERT CHAR"
"ONE DOT LEFT"
IIESCH
nHOME"
"CURSOR RIGHT"
HEOFII
"ONE DOT RIGHT"
nSPACEN
nY-~BAR"
"Y-BAR"
"moT"
"YECTOR"
"CONC VECTOR"
"CIRCLE"
"RECTANGLE"
CHR$(L)

45

NVOroon oOZcoXxomoom

BLACK

BLUE

GREEN

CYAN

RED

MAGENTA

YELLOW

WHITE

o 0O w e

46

APPENDIX D
CoLor BYTE CHART

BACKGROUND COLORS

BLUE GREEN CYAN RED MAGENTA YSLLOW WHITE
1 4 5 16 17 20 21
193129 196132 197 33 208> 208 Tes 210CeE 21149
L} 7 18 18 22 23
131 191 199 ><{13s 210 a6 iD><047 21£:><:1§o 15>051
ks = 5 Lol e 25
3 13 2 25 28 29
<137 w0 205 5<a 216>Isr i<y 220xise 220157
& i e R mos
203139 20642 163 218><iss 21 153 zzi:;n:j}s 223757159
75 78 75 90 91 3% 35
33 3% 37 49 52 53
225 >=C16t 226 ><C16e 2297155 16 wi>rr S 25 lst
>9'7< 100 10t >1;2< 113 >1§ 117
L] 38 kL 50 54 55
26y 230>=Cles 23117 24278 ;:><:§79 w8 27 ><8
99 102 103 112 113 118 119
41 sk 43 56 57 61
233169 236172 137 >3 28 ><gse 209 ><(i85 lss 253 >89
>n§‘ >x.§ 109 >12§ >1§ 124 125
&3 46 47 38 59 52
23571 B 29 50<Ces 251<er 256 ><0390 >i91
o7 >1§ 111 122 123 >‘a§ 127
A
CAEB
= NON BLINK

BLINK FOREGROUNG AND NON BLINK BACKGROUND
BLINK FOREGRCUND AND BLINK BACKGROUND
NON BLINK FOREGROUND AND BLINK BACKGROUND

APPEWNRIX E
PART1-OrRIGINAL DRIVER

10 MODEQFF

20

30
4o

PRINT CHR$(27);"IaF";CHRS$(27);"ID9";
PRINT CHR$(12);"P~G";
CLEAR 2000

50 DIM P$(127),C(15),X(60),¥(60)

55
60
70
80
90
100
110
120

130

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

AH$="VAR":D0O$="XD"
FOR I=0 TO 127
P$(I)=CHR$(T)
NEXT

FOR I=0 TO 24
READ J,P13%
P$(J-128)=P1§
NEXT

1

DATA 176,"~CO"
DATA 177,"~C1m
DATA 178,n"C2n
DATA 179,""C3"
DATA 180,"~Cy"
DATA 181,"=C5"
DATA 182,"~C6"
DATA 183,"~C7"
DATA 149,mgn
DATA 145,nIn
DATA 151,n'n
DATA 155, "+"
DATA 154,n&n
DATA 146,"("
DATA 245, m~y"
DATA 247, Wn"
DATA 250,"Zn
DATA 160," >a"
DATA 161,">b"
DATA 162," >c"
DATA 163,"~>d"
DATA 164," >em
DATA 165," >f"
DATA 166, >g"
DATA 167,">h"
DOS"CHAIN PART2"

47

410
420
430
440
450
460
470

480

490
500

510
520
530
540
550
560
570
580
590
600
610

620
630
640

650
660
670
680
690
700
710
720
730
T40
750
760
770
780
790
800
810
820
830
840
850
860
870

APPENDIX F 48

PART2-0Or1GINAL DRIVER

'————INTERRUPT HANDLER-===

ON ERROR#1 GOTO 440

GOTO 430

IF ERR=24 THEN K=INP(&H4A) ELSE ON ERROR#0 GOTO 0

IF K=&H80 THEN PRINT CHR$(30);CHR$(27);"Iag9";:STOP
LO=PEEK(&H3B52)

IF K=5 OR K=8 OR K=10 OR K=11 OR K=22 OR K=25 OR K=28

OR K=29 OR K=31 THEN IF (LO AND &H4) THEN PRINT CHR$(K);
:GOTO 1140

IF NOT FL AND NC<>0 THEN IF 48<=K AND K<=57

THEN ON CT+1 GOTO 1270,1280,1290

IF BF THEN IF 48<=K AND K<{=55 THEN BC=(K-48):BF=0:RESUME 1620
IF (FL=0 AND NC<>0 AND CT=0) THEN IF CHR$(K)="."

THEN C(I)=CURSX(0):C(I+1)=CURSY(0):I=I+2:IF I>=NC OR

NC=999 THEN RETURN ELSE RESUME

IF NC=999 THEN IF K=146 OR K=149 THEN NC=0:PRINT CHR$(7); :RETURN
'CATCH FOR CB

IF K<>215 AND CR THEN PRINT CHR$(27);™Q";

IF FL AND K=208 THEN IF PM THEN SP$="O":PM=0:PF=0 ELSE SP$="P":PM==1:PF==1
IF K>=129 AND K<=134 THEN ON K-128 GOTO 1000,1020,1040,1060,1080,1100
IF K>=176 AND K<=183 THEN PRINT P$(K-128);:GOTO 1130

IF K=4 THEN DO4="D"

IF X=2 THEN AH$="FIX"

IF K=3 AND NC<>0 THEN RETURN

IF NC<>0 THEN GOTO 1130

IF K>=160 AND K<=167 THEN PRINT "~U";:PLOT CURSX(0),CURSY(0):
PRINT CHR$(14);P$(K-128);CHR$(15);:GOTO 1130

IF K=216 THEN PRINT CHR$(7);:GOTO 1120

IF (LO AND &EL) AND K=34 THEN PR$=CHR$(K):PRINT CHR$(K);:GOTO 800
IF K>127 THEN PR$=P$(K-128):PRINT P$(K-128);CHR$(7);

ELSE PRINT CHR$(K);:GOTO 1130

IF K>=193 AND K<=196 THEN ON K-1902 GOTO 1490,1500,1130,1520
IF K=199 THEN GOTO 1510

IF K=149 OR K=146 THEN PRINT CHR$(7);:GOTO 740

IF K>=151 AND K<=155 THEN ON K-150 GOTO 780,1130,1130,870,780
IF K=145 THEN PRINT CHR$(7);:GOTO 850

IF K=244 THEN PRINT CHR$(7);CHR$(27);™Q"; :CR=-1

IF K=215 THEN PRINT CHR$(30);CHR$(12);CHR$(27);"W";

GOTO 1130

'eee-HANDLE PRIMITIVES-=~-

NC=999:GOSUB 1230:IF K=3 THEN NC=0:GOTO 980

IF CR THEN PRINT CHR$(2T7);™Q";

IF NOT FL AND NC<>0 THEN PLCT C(I-2),C(I-1):PRINT CHR$(30);
IF NC=999 THEN GOTO 740 ELSE IF FL THEN GOTO 420 ELSE RESUME 420
NC=4:GOSUB 1230:NC=0:IF K=3 THEM GOTO 980

GOTO 930

NC=34:GOSUB 1230:NC=0:IF K=3 THEN GOTO 980

IF CR THEN PRINT CHR$(27);m™Q";

PLOT C(0),C(1),C(3)

IF CR THEN PRINT CHR$(30);

GOTO 980

NC=3:GOSUB 1230:NC=0:IF K=3 THEN GOTO 980

GOTO 930

NC=3:GOSUB 1230:NC=0:IF K=3 THEN GOTO 980

880
890
900
910
920
930
quo
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

1150

1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

IF K>=48 AND K<=5T7 THEN 930 ELSE 890

IF CR THEN PRINT CHR$(27);"Q";

PLOT C{0),C(1):PLOT SQR((C(0)~-C(2))"2+((C(1)=C(3))/3QR(2))"2)
IF CR THEN PRINT CHR$(30);

GOTO 980

FOR M=0 TO (I-1) STEP 2

IF CR THEN PRINT CHR$(27);"Q";

PLOT C(M),C(M+1)

IF CR THEN PRINT CHR$(30);

NEXT

IF FL THEN 420 ELSE RESUME 420

'——=-HANDLE STATES----

IF CR THEN CR=0 ELSE PRINT CHR$(27);"C~P~G";:CR=-1

GOTO 1130

IF (LO AND &H4) THEN PRINT CHR$(21); ELSE PRINT "~Gn";

GOTO 1130

IF (LO AND &H2) THEN PRINT "~P"; ELSE PRINT "~R";

GOTO 1130

IF {LO AND &H40) THEN BL$="XB":PRINT "~2"; ELSE BL$="B":PRINT "~1";
GOTO 1130

IF (LO AND &H1) THEN PRINT "~N"; ELSE PRINT "~M~2";

GOTO 1130

IF (LO AND &H80) THEN FI$="XF":PRINT "~L"; ELSE FI$="F":PRINT "~F";
GOTO 1130

IF FL THEN FL=0 ELSE FL=-1:IF TF=0 THEN GOTO 1160

PRINT CHR$(30);CHR$(7);

RESUME

'eee—FINISH MAIN-=--

'eeeeSUB: TABLET INIT==--

SP$="0":PM=0

PRINT CHR$(30);CHR$(27);"R1C";CHR$(27);"OES5";CHR$(27); "IES";
IF CR THEN PRINT CHR$(27);™Qn";

TF==1

RESUME 420

1

'-—=uSUB: COORD===-
CT=0:I=0:F$="0":0X=0:0Y=0:0F$="0"

IF FL THEN 1310 ELSE 1260

RESUME 430

Z=100%(K-148) :CT=CT+1:RESUME

Z=Z+10%(K-48) :CT=CT+1:RESUME
C(I)=Z+(K-48):CT=0:I=I+1:IF I>=NC OR (NC=999 AND I=2)
THEN RETURN ELSE RESUME

1

'TABLET COORD

PRINT #;SP$;

RESUME 1340

IF NOT PM THEN INPUT #4;XX,YY,F$

INPUT #4;XX,YY,F$

PRINT #4;"S";

X1=INT(XX/4.3) :¥1=INT(YY/4.3)

IF 0X=X1 AND OY=Y1 AND OF$=F$ THEN 1450

IF NC=999 AND F$=M1" AND CR THEN PRINT CHR$(27);"Q";

49

1400

1410
1420

1430

1440
1450
1460
1470
1480
1490
1500
1510
1520
1539
1540
1550
1560

1570
1580

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780

50

IF (NOT PF OR NOT OC) AND NC=999 THEN IF F$="1" THEN PLOT X1,Y¥1:
PRINT CHR$(30);CHR$(7);:GOTO 1450

IF F$="4nm THEN NC=0:XK=3:RETURN

IF (NOT PF OR NOT OC) AND F$="1" THEN IF NOT PM THEN PRINT "3";
:PLOT X1,11

IF (NOT PF OR NOT OC) AND F$="1" THEN PRINT CHR$(7);:C(I)=X1:
C(I+1)=Y¥1:I=I+2:IF I>=NC THEN PRINT PR$;:RETURN ELSE 1450
PRINT "~Q";:PLOT X1,Y1

0X=X1:0¥=Y1:0F$=F$:PF=0:0C==1

PRINT #4;SP$;:GOTO 1340

1

!'=ee—EXTENDED PRIMITIVES----
CMD$="ARR":NC=5:G0TO 1530

CMD$="REC":NC=6:GOTO 1530

CMD$="VEC" ;:NC=5:GOTO 1530

CMD$="DARM:NC=5:G0TG 1530

IF FL THEN IF CMD$="REC" THEN NC=8 ELSE NC=6
GOSUB 1230:NC=0:XS=C(0):¥S=C(1):XN=C(2) :¥N=C(3):W=C(})
IF K=3 THEN RESUME 420

IF NOT FL AND CHR$(K)="." AND CMD$="REC" THEN NC=2:GOSUB 1230:
NC=0:C(6)=C(0):C(T)=C(1)

IF FL OR CHR$(K)="." THEN
W=INT(SQR((C(2)-C(4))"2+((C(3)=C(5))/3QR(2))"2))
IF FL OR CHR$(K)="." THEN IF CMD$="REC" THEN
C(5)=INT(SQR((C(4)=C(6))"2+((C(5)=C(T))/SQR(2))"2))
IF CMD$="REC" THEN HT=W:W=C(5)

IF FL THEN 1610 ELSE RESUME 1610

IF FI$="F" THEN BF=-1:GOTO 430

GOSUB 1660

IF CMD$="VEC" OR CMD$="REC" THEN DOS"CHAIN PART3
IF CMD$="ARR" OR CMD$="DAR"™ THEN DOS"CHAIN PARTY4
1

'eee=SUB: SAVE BACKGROUMD COLOR-=—-
COL=PEEK (&H380D)

BG=COL AND &H55

IF BG=0 THEN B1=0

IF BG=1 THEN B1=1

IF BG=4 THEN B1=2

IF BG=5 THEN B1=3

IF BG=16 THEN Bi=4

IF BG=17 THEN B1=5

IF BG=20 THEN B1=6

IF BG=21 THEN B1=7

RETURN

10

20

30

4o

50

60

T0

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

370

380
390
400
410
20
430
hug
450
460
470
480
490
500
510
520
530

APPENDIX G
PART3-0rRIGINAL DRIVER

'AUTHOR-MAXINE YEE

'PROGRAM-EGP(EXTENDED GRAPHIC PRIMITIVES)

'LANGUAGE-CHROMATICS BASIC VERSION 3.0

'PLACE-KANSAS STATE UNIVERSITY,DEPT. OF COMPUTER SCIENCE

'DATE-DEC., 1979

' THIS IS A PROGRAM FOR THE GENERATION OF EXTENDED GRAPHIC PRIMITIVES
SQ=5QR(2)
IF BL$="B" THEN PRINT"~1";ELSE PRINT n"=2"
IF CMD$="VEC™ THEN GOSUB 130:GOTC 110

IF CMD$="REC" THEN GOSUB T80

IF CR THEN PRINT CHR$(27);"™Q";

DO$="XD":W=1:PRINT "~M~C";CHR$(48+B1);""N";CHR$(30);:DOS"CHAIN PART2
1

' THIS IS A SUBROUTINE FOR DRAWING WIDE VECTORS
I=1

IF DO$="DM THEN GOSUB 360:RETURN

¥S=YS/SQ:IN=YN/Q

X=XN-XS

Y=YN=-YS

L=SQR(X"2+Y"2)

X(I+2)=XS-(W*Y)\L

Y(I+2)=YS+(WHX)\L

X(I+1)=XN-(W*Y)\L

Y(I+1)=Y¥N+(WEX)I\L

Y(I+2)=Y(I+2)*3Q

Y(I+1)=Y(I+1)%sQ

YS=YS#3Q:YN=YN#5Q

IF FI$<O"F" THEN GOSUB 1280 ELSE GOSUB 1360

*IF DO$="D" THEN GOTO 310 (WHY IS THIS LINE IN HERE? IT'S A COMMENT!)
PRINT CHR$(27);"Q";:PLOT XS,YS,XN,IN

PRINT CHR$(27);"Q";:PLOT XN, YN,X{(I+1),¥(I+1)

PLOT X(I+1),Y(I+1),X(I+2),¥(I+2)

PLOT X(I+2),Y(I+2),XS,YS:PRINT CHR$(30);

IF FI$="F" THEN XM#=(XS+X(I+1))/2:YM#=(YS+¥(I+1)}/2:GOSUB 1400
RETURN

(]

' THIS IS A SUBROUTINE FOR DRAWING DOTTED LINES
¥S=¥S/SQ:YN=1N/5Q

J=1

X(J)=XS

¥(J)=¥S

XB=XS:¥B=YS

D=12

SEG=D

SP=3EG\2

L1=SQR((XN-XS) "2+(IN=-¥S)"2)

IF L1¢SP AND CMD$="VEC"™ THEN RETURN

CO#=(XN-XS) /L1

SN#=(¥N-YS) /L1

K2=(L1\{SP+SEG)) #2+1

FOR J=1 TO K2 STEP 1

X(J+1)=XB+D*(CO#)

Y(J+1)=YB+D#(SN#)

51

52

540 '
550 'THIS SECTION OF CODE TESTS THE VARIOUS END POINTS OF A GIVEN LINE
560 E=J MOD 2
570 IF E=0 THEN IF (L1-D) <SEG

THEN D=L1:NEXT J

ELSE D=D+S3EG:NEXT J

ELSE GOSUB 1280

580 !
590 IF W<=1 THEN Y(J)=Y(J)#*SQ:Y(J+1)=Y(J+1)%¥SQ:GOSUB 740
600 IF W>1 THEN GOSUB 660
610 IF (L1-D)<=SP AND CMD$="VEC™ THEN RETURN ‘'REMAINING SEG TOO SHORT TO PLOT
620 D=D+SP
630 IF E=1 AND L1-D<¢=5P THEN RETURN
640 NEXT J
650 RETURN
660 !
670 'THIS IS A SUBROUTINE FOR DRAWING DOTTED WIDE LINES
680 XN=X(J+1)
690 YN=Y(J+1)
700 XS=X(J)
710 ¥S=Y(J)
720 GOSUB 170
730 RETURN
T40
750 'THIS IS A PLOTTING SUBROUTINE FOR A SINGLE DOTTED LINE
760 PRINT CHR$(27);™Q";:PLOT X(J),Y¥(J),X(J+1),¥(J+1) :PRINT CHR$(30);
770 RETURN _
780 'THIS IS A SUBROUTINE FOR DRAWING RECTANGLES
790 ¥S=YS/SQ:YN=YN/3Q
800 X=XN-XS
810 ¥=¥YN-YS
820 L=SQR(X"2+Y"2) 'CAL LENGTH OF GIVEN LINE
830 CO#=X/L 'CAL COSINE OF AN ANGLE
840 SN#=Y/L 1CAL SINE OF AN ANGLE
850 !
860 'FOLLOWING SECTION OF CODE CALCULATES THE VARIOUS COORD., OF THE RECTANGLE
870 !
880 I=1
890 X(I)=XS+W#CO#
900 Y(I)=YS+W#SN#
910 X(I+1)=X(I)-WH*SN#
920 Y(I+1)=Y(I)+W#*CO#
930 X(I+2)=X(I)+(W-HT)®*SN#
QU0 Y(I+2)=Y(I)+(HT-W)*CO#
950 X(I+3)=XS-HT*SN#
960 Y(I+3)=YS+HT#CO#
970 X(I+4)=XS+(L-W)*CO#
980 Y(I+4)=YS+(L-W)®SN#
990 X(I+5)=X(I+4)-WESN#
1000 Y(I+5)=Y(I+4)+W*CO#
1010 X(I+6)=X(I+4)+(W-HT)*SN#
1020 Y(I+6)=Y(I+4)+(HT=-W)*CO#
1030 X(I+7)=XN-HT#*SN#
1040 Y(I+7)=YN+HT#*CO#

1050 YS=YS#3Q:YN=YN#sQ

1060 Y(I)=Y(I)#sQ

1070 Y(I+1)=Y(I+1)%sQ

1080 Y(I+2)=Y(I+2)%3Q

1090 Y{(I+3)=Y(I+3)%5Q

1100 Y(I+4)=Y(I+l4)%3Q

1110 Y(I+5)=Y(I+5)%3Q

1120 Y(I+6)=Y(I+6)%3Q

1130 Y(I+7)=Y(I+7)%5Q

1140 GOSUB 1280:GOSUB 1160

1150 RETURN

1160 1!

1170 'THE FOLLOWING SECTION OF CODE PLOTS THE RECTANGLE
1180 PRINT CHR$(27);"Q";:PLOT XS, ¥S,XN,IN

1190 PLOT XN,¥N,X(I+7),Y(I+7)

1200 PLOT X(I+T7),Y{I+7),X(I+3),¥(I+3)

1210 PLOT X(I+3),¥(I+3),XS,¥S

1220 PLOT X(I+1),Y(I+1),X(I+5),Y(I+5)

1230 PLOT X(I+5),Y(I+5),X(I+6),¥(I+6)

1240 PLOT X(I+6),Y(I+6),X(I+2),Y(I+2)

1250 PLOT X(I+2),Y(I+2),X(I+1),Y(I+1):PRINT CHR$(30);

1260 IF FI$="F" THEN XM#=(XS+X(I+1))/2:TM#=(¥S+¥(I+1))/2:GOSUB 1400
1270 RETURN

1280 !

1290 'THIS IS A SUBROUTINE TO HANDLE THE PLOTTING ENVIRONMENT AND SET COLOR
1300 PRINT CHR$(27);"Q~M";

1310 PRINT CHR$(1);"C";CHR$(48+BC); 'SET BACKGROUND COLOR
1320 PRINT "™ Nm; 'BACKGROUND LIGHT OFF
1330 PRINT "~G";

1340 PRINT "'";CHR$(30);

1350 RETURN

1360 !

1370 'THIS IS A SUBROUTINE TO HANDLE THE PLOTTING ENVIRONMENT
1380 PRINT CHR$(27);"Q~G'";CHR$(30);

1390 RETURN

1400 !
1410 'THIS SUBROUTINE COMPLEX FILLS AN OBJECT
1420 PRINT CHR$(27);"™Q~U";:PLOT XM#,YM# 'MOVE CURSOR TO COORD
1430 PRINT "~Jnm;
1440 PRINT "~M"; 'BACKGROUND LIGHT ON
1450 PRINT CHR$(1);"C";CHR$(L48+BC); 'SET BACKGROUND COLOR
1460 PRINT "~N"; . 'BACKGROUND LIGHT OFF
1470 PRINT "~>";CHR$(32);CHR$(30); 'FILL OBJECT WITH SOLID COLOR
1480 RETURN
1]

1490

54

APPENDIX H

PART4-0RIGINAL DRIVER
10 I=1
20 SQ=SQR(2)
30 IF BL$="B" THEN PRINT"~1";ELSE PRINT "~2"
40 IF CMD$="ARR"™ THEN GOSUB 570:GOTO 55
50 IF CMD$="DAR"™ THEN GOSUB 1200
55 IF CR THEN PRINT CHR$(27);™Q";
60 DO$="XD":AH$="VAR":W=1:PRINT "~M~C";CHR$(48+B1);"~N";CHR$(30); :DOS"CHAIN PART2
70 IF DO$="D" THEN GOSUB 240:RETURN
80 X=XN-XS
90 Y=IN-YS
100 L=SQR(X"2+¥"2)
110 X(I+2)=XS-(WsY)\L
120 Y(I+2)=YS+(W#X)\L
130 X(I+1)=XN=-{W¥Y¥)\L
140 Y(I+1)=YN+(WEX)\L
150 IF FI$<>"F" THEN GOSUB 2010 ELSE GOSUB 2070
155 IF CR THEN PRINT CHR$(27);"Q";
160 IF DO$="D" THEN GOTO 180
170 PLOT XS, YS,XN,IN
180 PLOT XN,IN,X(I+1),¥(I+1)
190 PLOT X(I+1),Y(I+1),X(I+2),Y(I+2)
200 PLOT X(I+2),Y(I+2),XS,YS
205 PRINT CHR$(30);
210 IF FI$="F" THEN XM#=(XS+X(I+1))/2:¥M#=(YS+Y(I+1))/2:GOSUB 2090
220 IF DO$="D" THEN RETURN
230 RETURN
240 J=1
250 X(J)=XS
260 Y(J)=YS
270 XB=XS:YB=YS
280 D=12
290 SEG=D
300 SP=SEG\2
310 L1=SQR((XN-XS) “2+(IN-YS)*2)
320 IF L1<SP AND CMD$="ARR"THEN RETURN
330 IF L1<SP AND CMD$="DAR" THEN RETURN
340 CO#={XN-XS)/L1
350 SN#=(YN-YS)/L1
360 K=(L1\(SP+SEG))*¥2+1
370 FOR J=1 TO K STEP 1
380 X(J+1)=XB+D*(CO#)
390 Y(J+1)=YB+D*(SN#)
400 E=J MOD 2
410 IF E=0 THEN IF (L1-D) <SEG THEN D=L1:NEXT J ELSE D=D+SEG:NEXT J ELSE GOSUB 2010
420 IF CR THEN PRINT CHR$(27);™Q";
430 PRINT "tm;
440 PLOT X(J),Y¥(d),X(J+1),Y(JI+1)
445 PRINT CHR$(30);
450 IF W>1 THEN GOSUB 510
460 IF (L1-D)<=SP THEN RETURN
470 D=D+SP
480 IF E=1 AND L1-D<=SP THEN RETURN
490 NEXT
500 RETURN

510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
T40
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

IN=X(J+1)

¥N=Y(J+1)

XS=X(J)

YS=Y(J)

GOSUB &0

RETURN

X=IN=XS

Y=IN=-¥S)

L2=SQR((XN-XS) "2+(IN=-YS) “2)

WisW/2

SI#=Y/L2

CS#=X/L2

IF AH$="FIX" AND W1<=1 THEN GOSUB 870: GOTO T40
IF AH$="FIX" AND W1>1 THEN GOSUB 870

IF AH$="FIX™ AND DO4$="D" THEN 750

P=2

X{P)=XS+9/10%#X

Y(P)=YS+9/10%Y

X(P+1)=X(P)=Y/10

Y(P+1)=Y(P)+X/10

X(P+4)=X(P)+X/10

Y(P+4)=Y(P}=X/10

IF DO$="D" AND W1<=1 THEN 960

IF W1<=1 THEN GOSUB 2010:GOSUB 1000Q:RETURN
X(P+2)=X(P)-W1%sSIg

Y(P+2)sY(P)+W1#CS#

X(P+3)=X(P)+W1%51I¢

Y(P+3)=Y(P)-W1%CS#

X(P+5)=XS-W1%51}

Y(P+5)=YS+W1#CS#

X(P+6)=XS+W1%5I#

Y(P+6)=YS=-W1%CS#

IF DO$="Dn AND AH$="FIX"THEN 980

IF DO$="D™ AND AH$="VAR"THEN 980

GOSUB 2010:GOSUB 1060:GOSUB 1040:RETURN
RETURN

H=10

P=2

X(P)=XS+(L2-H) *C3¢

Y(P)=¥S+(L2-H) %31

X(P+1)=X(P)~-HE3I#

Y(P+1)=Y(P)+H*CS#

X(P+4)=X(P)+H#*3I#

Y(P+U4)=Y(P)-HE®CS#

IF DO$<>"D™ THEN T40

IF W1<=1 THEN GOSUB 2010:G0SUB 1010:XN=X(P):¥N=Y(P):GOSUB 240:RETURN
IF AH$="FIX" THEN 750

IF W1>1 THEN GOSUR 2010:GOSUB 1010:GOSUB 1140:GOSUB 280:RETURN
RETURN

1000 PRINT CHR$(27);"Q";:PLOT XS, ¥S,X(P),Y(P) _

1010 PRINT CHR$(27);"Q";:PLOT X(P+1),¥(P+1),X(P+4),T(P+4)

1020 PLOT X(P+4),Y(P+l),XN,IN

1030 PLOT XN, YN,X(P+1),Y(P+1):PRINT CHR$(30);

1040 IF FI$="F" THEN XM#=(X(P)+XN)/2:YM#=(Y(P)+IN)/2:GOSUB 2090

55

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580

36

RETURN

PRINT CHR$(27);"Q";:PLOT X(P+2),Y(P+2),X(P+1),Y(P+1)
PLOT X(P+1),Y(P+1),XN,IN

PLOT XN,IN,X(P+4),Y(P+l4)

PLOT X(P+4),Y(P+4),X(P+3),Y(P+3)

PLOT X(P+3),Y(P+3),X(P+6),Y(P+6)

PLOT X(P+6),Y(P+6),X(P+5),Y(P+5)

PLOT X(P+5),Y(P+5),X(P+2),Y(P+2) :PRINT CHR$(30);
RETURN

IN=X(P+3):IN=Y(P+3)

XS=X(P+6) :YS=Y(P+6)

Jd=1

XB=X{P+6) :YB=Y(P+6)

X(J)=X(P+6) :Y(J)=Y(P+6)

RETURN

X=XN-X3S

Y=YN-YS

L3=SQR((XN-XS) “2+(IN-1S)"2)

Wi=W/2

SI#=Y/L3

CS#=X/L3

IF AH$="FIX" AND W1<=1 THEN GOSUB 1540:GOSUB 2010:GOSUB 1700:RETURN
IF AH$="FIX"™ AND W1>1 THEN GOSUB 1540:GOTO 1440
P=2

X(P)=XS+9/10%X

Y(P)=YS+9/103Y

X(P+1)=X(P)-X/10

Y(P+1)=Y(P)+X/10

X(P+4)=X(P)+¥/10

Y(P+4)=Y(P)-X/10

I(P+5)=XS+X/10

Y(P+5)=Y3+Y/10

X(P+6)=X(P+5)-Y/10

Y(P+6)=1(P+5)+X/10

X{P+9)=X(P+5)+¥/10

Y(P+9)=Y(P+5)=-X/10

IF DO$="D" AND W1<=1 THEN GOSUB 2010:GOSUB 1710:GOTO 1920
IF DO$="D" AND W1>=1 THEN 1440

IF W1<=1 THEN GOSUB 2010:GOSUB 1700:RETURN
L(P+2)=X(P)-W1%51#

Y(P+2)=Y(P)+W1%CS#

X(P+3)=X(P)+W1%51#

Y(P+3)=Y(P)-W1%CS#

X(P+7)=X(P+5)=W1%SI§

Y(P+T7)=Y(P+5)+W1¥CS#

Z(P+8)=X{P+5)+W1¥SI#

Y(P+8)=Y(P+5)-W1%CS#

IF DO$="D" THEN GOSUB 2010:GOSUB 1710:GOSUB 1920:GOSUB 280 :RETURN
GOSUB 2010:GOSUB 1800:RETURN

H=12

P=2

X(P)=XS+(L3-H)*CS¢#

Y(P)=YS+(L3-H)#SI#

X(P+1)=X(P)-H®SI#

1590
1600

1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
203C
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140

57

Y(P+1)=Y(P)+H®*CS#

X(P+4)=X(P)+H¥®3I¢#

Y(P+4)=Y(P)-H¥CS#

X(P+5)=XS+H*CS¢#

Y(P+5)=YS+H®SI#

X(P+6)=X(P+5)-H#sSI#

Y(P+6)=Y(P+5)+HECS#

X(P+9)=X(P+5)+HESI#

Y(P+9)=Y(P+5)=H¥CS#

IF DO$="D" THEN GOSUB 2010:GOSUB 1710:GOSUB 1440
RETURN

PRINT CHR$(27);"Q";:PLOT X(P+5),Y(P+5),X(P),Y(P)
PRINT CHR$(27);™Q";:PLOT X(P+1),Y(P+1),XN,IN
PLOT XN, YN,X(P+4),Y(P+4)

PLOT X(P+4),Y(P+4),X(P+1),Y(P+1)

PLOT X(P+6),Y(P+6),X(P+9),Y(P+9)

PLOT X(P+9),Y(P+9),XS,¥S

PLOT XS,YS,X(P+6),Y(P+6):PRINT CHR$(30);

IF FI$="F" THEN XM#=(X(P)+XN)/2:¥M#=(Y(P)+YN)/2:GOSUB 2090
IF FI$="F" THEN XM#=(X(P+5)+XS)/2:M#=(Y(P+5)+YS)/2:GOSUB 2090
RETURN

PRINT CHR$(27);™Q";:PLOT X(P+2),Y(P+2),X(P+1),Y(P+1)
PLOT X(P+1),Y(P+1),XN,¥N

PLOT XN,YN,X(P+4),Y(P+4)

PLOT X(P+4),Y(P+4),X(P+3),Y(P+3)

PLOT X(P+3),Y(P+3),X(P+8),Y(P+8)

PLOT X(P+8),Y(P+8),X(P+9),Y(P+9)

PLOT X(P+9),Y(P+9),XS,¥S

PLOT XS,YS,X(P+6),Y(P+6)

PLOT X(P+6),Y(P+6),X(P+7),Y(P+T7)

PLOT X(P+T7),Y(P+7),X(P+2),Y(P+2) :PRINT CHR$(30);
IF FI$="F" THEN XM#=(X(P)+XN)/2:YM#=(Y(P)+YN)/2:GOSUB 2090
RETURN

IF W1<=1 THEN 1980

XS=X(P+8):YS=Y(P+8)

XN=X(P+3) : IN=Y(P+3)

XB=X(P+8) :YB=Y(P+8)

J=1:X(J)=X(P+8):Y(J)=Y(P+8)

RETURN

XS=X(P+5) :YS=Y(P+5)

XIN=X(P):YN=Y(P)

GOSUB 310:RETURN

PRINT CHR$(27);"Q~M";

PRINT CHR$(1);"C";CHR$(48+BC);

PRINT "~N";

PRINT "=G";

PRINT "'";CHR$(30);

RETURN

PRINT CHR$(27);"Q~G'";CHR$(30);

RETURN

PRINT CHR$(27);"Q~U"; :PLOT XM#,YM#

PRINT "~Jn;

PRINT n~Mn";

PRINT CHR$(1);"C";CHR$(48+BC);

PRINT "~N";

PRINT "~>";CHR$(32);CHR$(30);

400
40
420
430

432
435

4yo
450
455
460
470
480
490
500

510

520
530

540
550
560
570
580

58
APPENDIX I

ExTeENDED PARTZ-WITH EDITOR SHADED

'«we=INTERRUPT HANDLER-==--

ON ERROR#1 GOTO 430

GOTO 420

IF ERR=24 THEN K=INP(&H4A) ELSE ON ERROR #0 GOTO 0
]

'«=—-CHECE--IF IN SEGMENTOR, THEN ROUTE INPUT TO SEGMENTOR---
IF SF THEN GOTO 2740 ELSE GOTO 450

IF K=&HB80 THEN PRINT CHR$(30); CHR$(27);"IA9";:STOP

]

'ee==CHECK SIZE OF CREATE BUFFER=----

SIZE=PEEK(&H3B45)

IF SIZE>254 THEN GOTO 2640 'SIZE WAS 128 FOR TESTING'
LO=PEEK(&H3B52)

IF K=5 OR K=8 OR K=10 OR K=11 OR K=22 OR K=25 OR K=28 OR K=29

OR K=31 THEN IF (LO AND &HA4) THEN PRINT CHR$(K);:GOTO 1290

IF NOT FL AND NC<>0 THEN IF 48<=K AND K<=57 THEN ON CT+1

GOTO 1410,1420,1430

IF BF THEN IF 48<=K AND K<z55 THEN BC=(K-48):BF=0:RESUME 1740

IF (FL=0 AND NC<>0 AND CT=0) THEN IF CHR$(K)="." THEN
C(I)=CURSX(0):C(I+1)=CURSY(0):I=I+2:IF I>=NC OR NC=999 THEN

RETURN ELSE RESUME

IF NC=999 THEN IF K=146 OR K=149 THEN NC=0:PRINT CHR$(T);:RESUME
'CATCH FOR CB

IF K<>215 AND CR THEN PRINT CHR$(27);"Q";

IF FL AND K=208 THEN IF PM THEN SP$="0":PM=0:PF=0 ELSE SP$="P":PM==1:PF==1
IF K>=129 AND K<=134 THEN ON K-128 GOTO 1140,1170,1190,1210,1230,1250

585 TP (KE=212 0R_K=218) "AND:FL THEN PRINT CHR$(21);CHR$(30);CHR$(15)53

®-TURN 'OFF.TABLET BEFORE TRYING T0 EDIT ®;""G®;CHR$(27);"Q";:RESUME 3

(S L o

:590-IF K=212 THEN GOTO 1910 %
$6007IF K=218-THEN T1==1:GOSUB 1910:T25-1:GOTO 2270 %

610
620
630
640
650
660

670
680
690

700
710
720
725
730
T40
750
760

L g L p gt = B S S

IF K>=176 AND K<=183 THEN PRINT P$(K-128);:GOTO 1280

IF K=4 THEN DO$="D"

IF K=2 THEN AH$="FIX"

IF K=3 AND NC<>0 THEN RETURN

IF NC<>0 THEN GOTO 1280

IF K>=160 AND K<=167 THEN PRINT "~U";:PLOT CURSX(0),CURSY(0):
PRINT CHR$(14);P$(K-128);CHR$(15);:GOTO 1280

IF K=216 THEN PRINT CHR$(7);:GOTO 1270

IF (LO AND &HY4) AND K=34 THEN PR$=CHR$(K):PRINT CHR4(K);:GOTO 890
IF K>127 THEN PR$=P$(K-128):PRINT P$(RK-128);CHR$(7); ELSE
PRINT CHR$(K);:GOTO 1280

IF K>=193 AND K<=196 THEN ON K-192 GOTO 1610,1620,1280,1640
IF K=199 THEN GOTO 1630

IF K=146 THEN ‘PRINT CHR$(K-T16)}}CHR$(7);:GOTO 790

IF K=149 THEN PRINT CHR$(7);:GOTO 790

IF K>=151 AND K<=155 THEN ON K-150 GOTO 850,1280,1280,980,850
IF K=145 THEN PRINT CHR$(T7);:GOTO 950

IF K=244 THEN PRINT CHR$(7);CHR$(27);"Q"; :CR==1

IF K=215 AND SC=1 THEN PRINT CHR$(30);"~M~CO~N~C2~N~2~Q7~J~H"L~E";
"~W000000511511";CHR$(28) ; CHR$(15) ;CHR$(12) ; ""P~X1,~¥1,~G"L";
CHR$(27);"™W"; ELSE IF K=215 AND SC>1 THEN GOSUB 2970

59

770 GOTO 1280
780 '----HANDLE PRIMITIVES
790 NC=999:GOSUB 1370:IF EF "AND P=149 THEN PRINT CHR$(37):§
800 EETEF AND P=146 "THEN PRINT CHR$(34)3
810 IF K=3 THEN NC=0:GOTO 1120
820 IF CR THEN PRINT CHR$(27);™Q";
830 IF NOT FL AND NC<>0 THEN PLOT C(I-2),C(I-1):PRINT CHR$(30);
840 IF NC=999 THEN GOTO 790 ELSE IF FL THEN GOTO 410 ELSE RESUME 410
850 NC=4:GOSUB 1370: NC- 0:IF EF AND P=155 THEN-PRINT CHR$(43)}
86U EEESEF AND P=151 TEEN PRINT CHR$(39);t
870 IF K=3 THEN GOTO 1120
880 GOTO 1060
890 NC=4:GOSUB 1370:NC=0:IF. EF THEN PRINT CHR$(33); 4
900 IF K=3 THEN GOTO 1120
910 IF CR THEN PRINT CHR$(27);"Q";
920 PLOT C(0),C(1),C(3)
930 IF CR THEN PRINT CHR$(30);
940 GOTO 1120
950 NC=3:GOSUB 1370:NC=0
8585-IF EF ‘AND- P=145 THEN PRINT CHR$(33) sl
957 'IF EF AND P=146 THEN PRINT CHR$(34) 3
960 IF K=3 THEN GOTO 1120
970 GOTO 1060
980 NC=3:GOSUB 1370:NC=0:IF_EF THEN PRINT CHR$(42};%
990 IF K=3 THEN GOTO 1120
30005 IF "EF ‘THEN 060}
1010 IF K>=48 AND K<=57 THEN 1060 ELSE 1020
1020 IF CR THEN PRINT CHR$(27);™Q";
1030 PLOT C(0),C(1):PLOT SQR((C(0)=-C(2))"2+((C(1)=C(3))/SQR(2))"2)
1040 IF CR THEN PRINT CHR$(30);
1050 GOTO 1120
1060 FOR M=0 TO (I-1) STEP 2
1070 IF CR THEN PRINT CHR$(27);™";
1080 PLOT C(M),C(M+1)
1090 IF CR THEN PRINT CHR$(30);
1100 NEXT
£170°IF EF_THEN RETURN §
1120 IF FL THEN 410 ELSE RESUME 410
1130 '--=-HANDLE STATES
1140 IF CR THEN CR=0:PRINT CHR$(30); ELSE PRINT CHR$(27);"C"P~G";
:CR==1:IF SC<=1 THEN SC=1
1150 IF SC>1 THEN GOSUB 2840
1160 GOTO 1280
1170 IF (LO AND &H4) THEN PRINT CHR$(21); ELSE PRINT "~G";
1180 GOTO 1280
1190 IF (LO AND &H2) THEN PRINT "~P"; ELSE PRINT "~R";
1200 GOTO 1280
1210 IF (LO AND &H40) THEN BL$="XB":PRINT "~2"; ELSE BL$="B":PRINT "~17;
1220 GOTO 1280
1230 IF (LO AND &H1) THEN PRINT "~N"; ELSE PRINT "~M~2";
1240 GOTO 1280
1250 IF (LO AND &H80) THEN FI$="XF":PRINT "~L"; ELSE FI$="F":PRINT ""F";
1260 GOTO 1280
1270 IF FL THEN FL=0 ELSE FL=-1:IF TF=0 THEN GOTO 1310
1280 PRINT CHR$(30);CHR$(T);
1290 RESUME

1300 '"===<FINISH MAIN==--

1310 '"====SUB: TABLET INIT

1320 SP$="0":PM=0

1330 PRINT CHR$(30);CHR$(27); "R1C*;CHR$(27); "OES";CHR$(27);"1ES";

1340 IF CR THEN PRINT CHR$(27);™Q";

1350 TF=-1

1360 RESUME 410

1370 '====SUB: COORD

1380 CT=0:I=0:F$="0":0X=0:0Y=0:0F$="Q"

1390 IF FL THEN 1440 ¢ELSE IF:EF-THEN GOTO 254 ELSE 1400

1400 RESUME 420

1410 Z=100%(K-48) :CT=CT+1:IF EF THEN GOTO 2580 ELSE RESUME

1420 Z=Z+10#(K=48):CT=CT+1:IF EF “THEN GOTO 2580 ELSE; RESUME

1430 C(I)=Z+(K-48):CT=0:I=I+1:IF EF AND I<NC-THEN GOTO 2580 ELSE}
IF I>=NC OR (NC=999 AND I=2) THEN RETURN ELSE RESUME

1440 '====TABLET COORD

1450 PRINT #4;SP$;

1460 RESUME 1470

1470 IF NOT PM THEN INPUT #4;XX,YY,F$

1480 INPUT #4;XX,YY,F$

1490 PRINT #u;nsn;

1500 X1=INT(XX/4,3):¥1=INT(YY/4.3)

1510 IF 0X=X1 AND OY=Y1 AND OF$=F$ THEN 1580

1520 IF NC=999 AND F$="1" AND CR THEN PRINT CHR$(27);"Q";

1530 IF (NOT PF OR NOT OC) AND NC=999 THEN IF F$="1" THEN PLOT X1,Y1:
PRINT CHR$(30);CHR$(7);:GOTO 1580

1540 IF F$="4" THEN NC=0:K=3:RETURN

1550 IF (NOT PF OR NOT OC) AND F$="1" THEN IF NOT PM THEN PRINT CHR$(30);
ngm;CHR$(27);™Q"; :PLOT X1,Y

1560 IF (NOT PF OR NOT OC) AND F$="1" THEN PRINT CHR$(7);:C(I)=X1:
C(I+1)=Y1:I=I+2:IF I>=NC THEN PRINT PR¢;:RETURN ELSE 1580

1570 PRINT n~U";:PLOT X1,Y1

1580 0X=X1:0Y=Y1:0F$=F$:PF=0:0C==1

1590 PRINT #u;SP$;:GOTO 1470

1600 '====EXTENDED PRIMITIVES

1610 CMD$="ARR":NC=5:GOT0 1650

1620 CMD$="REC":NC=6:G0TO 1650

1630 CMD$="VEC":NC=5:G0TO 1650

1640 CMD$="DAR":NC=5:G0T0 1650

1650 IF FL THEN IF CMD$="REC" THEN NC=8 ELSE NC=6

1660 GOSUB 1370:NC=0:XS=C(0):YS=C(1):XN=C(2):¥N=C(3) :W=C(4)

1670 IF K=3 THEN RESUME 410

1680 IF NOT FL AND CHR$(K)="." AND CMD$="REC"™ THEN NC=2:GOSUB 1370:
NC=0:C(6)=C(0):C(7)=C(1)

1690 IF FL OR CHR$(K)="." THEN
W=INT(SQR((C(2)-C(4))"2+((C(3)-C(5))/3QR(2))"2))

1700 IF FL OR CHR$(K)="." THEN IF CMD$="REC" THEN
C(5)=INT(SQR((C(4)=C(6)) 2+((C(5)=C(T))/SQR(2))"2))

1710 IF CMD$="REC™ THEN HT=W:W=C(5)

1720 IF FL THEN 1730 ELSE RESUME 1730

1730 IF FI$="F" THEN BF=-1:G0TO 420

1740 GOSUB 1770

1750 IF CMD$="VEC" OR CMD$="REC" THEN DOS"CHAIN PART3

1760 IF CMD$="ARR"™ OR CMD$="DAR™ THEN DOS"CHAIN PARTY

»
1770 '==---SUB: SAVE BACKGROUND COLOR
1780 COL=PEEK(&H380D)
1790 BG=COL AND &HS5S5
1800 IF BG=0 THEN B1=0
1810 IF BG=1 THEN B1=1
1820 IF BG=4 THEN B1=2
1830 IF BG=5 THEN B1=3
1840 IF BG=16 THEN Bi1=4
1850 IF BG=17 THEN B1=5
1860 IF BG=20 THEN B1=6
1870 IF BG=21 THEN B1=T7
1880 RETURN
1885 !
FaoeEDITOR-~=—=Mitchel T}

1900 '
NOTeICNT=1 s PRINT CHR$(30) ;3EF==1%
#1920-BTM=(PEEK(2H3B45) #256) +PEEK (§H3B4)}
1930 TP=(PEEK(&H3BUT) #256) +PEEK(2H3BY46) %
49940-IF: BTM=1=TP.THEN. GOTO 2510

1945 1

g e OR:TO BG-COLOR}
m&mmw&&*pnmr*-c*-umsesmsmr,zr'*a

P e

935 '

M990 ="Y~===CHARACTER-EDITORY{

12000 M=PEEK(BTM-CNT}§

20:10: IF. BTM-CNT=TP+3 THER"GOTO 2510%

2020 N=PEEK(BTM-(CNT+1))

2030 IF M=21 THEN CNT=CNT+T:PRINT " G%;:GOTO 2270%

I2080"IF N=1-THEN: CNT=CNT+2:GOTO 2000 §

2050+ NN=PEEE (BTM-(CNT+2) ¥§

j2060-IF N=67 AND NN=1 THEN'A=BTM-(CNT+2):Z=BTM=CNT:CNT=CNT+3§
GOSUB. 2600:GOTO 2000 ESLE GOTO 2100 §

%2070 MN=PEEK(BTM-(CNT+3) } :MM=PEEK (BTM-(CNT+4)) §

12080 "IF MN=1"-THEN IF NN=88 OR NN=89 THEN IF N>=48 AND N<=5T" THEN?
-IF- M=h4 -THEN A=BTM-(CRT+3):Z=BTM-CNT:CNT=CNT+4:GOSUB 260Q3
"PRINT®~X1;"Y1,"5:GOTO" 2000 ELSE GOTO 21007 §

\2090-IF-MM=1 THEN IF MN=88 OR MN=89 THEN IF NN>=U8 AND NN<=57
“THEN -IF N>=48 AND N<=57 THEN IF M=43 THEN A=BTM-(CNT+4)%
‘Z=BTM-CNT:CNT=CNT+5:GOSUB_2600:PRINT®*"X1,~Y1,"; :GOTO 2000
*ELSE GOTO 2100%

t2100~IF M=0 OR M=T THEN- GOTQ 224G

2110 IF M=5 THEN PRINT CHR$(22);:GOTC 2240

¥2120° IF M=8 THEN PRINT CHR$(32);:GOTO 22407

#2130°IF M=6 OR M=9 OR M=12 OR M=13 OR M=23 OR M=27 OR M=28]

" JTHEN PRINT"~C";MID$(STR$(B1+1),2);CHR$(15);%
$mUSER NEEDS. TO PRESS REDRAW myw=Cr;MID$(STR$(B1),2) ; :GOTO 2240

#2t40=IF M=10:THEN PRINT CHR$(11);:GOTO 2240 %

$2150~IF M=11-THEN PRINT CHR$(10);:GOTO 2240 -g

#2160 IF-M=14 THEN PRINT CHR$(15);:GOTO 2240 ¢

$2170- IP.M=15 THEN PRINT CHR$(14);:GOTO 2240

"2180 IF M=22 THEN PRINT CHR$(S);:GOTO 2240 §

61

62

<2190 -IF M=25 THEN PRINT CHR$(31);:GOTO 2240 *

2200 IF M=29 OR M=32 THEN PRINT CHR$(8);:GOTO 22403

2210 °IF M=31 THEN PRINT CHR$(25);:GOTO 2240 %

%2220 IP M>=33 THEN PRINT CHR$(8);CHR$(M);CHR$(8); :GOTO" 2470%
-ELSE” CNT=CNT+1:G0TO 2000 %

22230 GOTD 2470%

2240 CNT=CNT+1:GOTO 2000 %

2250 1

2280 IF ‘J=TP+3 THEN-GOTC 25108

2290 M=PEEK(J)4

*2300°IF M=T THEN POKEJ;0%

:2310 IF-M>32 AND M<44 THEN GOTO"2360 %

2320 IF M=1_THEN N=PEEK(J+1) ELSE 2350%

#2330-IP N=71 THEN CNT=CNT+1:GOSUB 2610:PRINT"~C";MID$(STR$(B1);2) ;:GOTO 200G
42340 IF N=67 THEN A=BTM-CNT:Z=BTM-(CNT-2):GOSUB 2600 ELSE A=BTM-CNTZ

"Z=BTM-(CNT-1) :GOSUB_2600%

‘2350 CNT=CNT+1:GOTO 270§

2355 1

‘2360 *-=LAST-PRIMITIVE FOUND}

£2370- IF. T2 -THEN GOTO. 24403

2380~ IF M=33 THEN" P=145:GOSUB 950:GOTO 24405 AY<BAR"Y

2390 IF M=3% THEN. CNT=CNT+2:GOSUB 950:GOTO 244G 'Y BAR'g

2400 IF M=3T THEN P=149:GOSUB 2610:GOTO 2440% 'DOT* %

%2405 -IF M=40 THEN GOSUB 26 10:GOTC. 24408 *CONC VECTY
2410-IF M=32 THEN P=154:GOSUB 980:GOTO 2450 % *CIRCLE'}
2420 IF: M=43 THEN P=155:GOSUB 850:GOTO 2440 * *RECT ANGLE®
Eggg;?gg_-.—sg.m P=151:G0SUB" 850:G0T0 244G, YWECTOR®¥

'2H 40 X *<=="CHANGE"POINTERS & REPLACE COLOR &

*2850. IF-T1- THEN ‘Tt=0:CNT=CNT+1:RETURNY

*2460-IF T2 THEN T2:=0%

¥2070° NBTM=BTM-CNT

12880-A=NBTM/256 :X3=45%

2890 Y$=NBTM-(2569X%3

72500 POKE- 15172,Y%:POKE "15173,X%:POKE 14349,C0L%

£2510° PRINT CHR$(27);"Q"™; :EF=0}

2520 RESUME. §20%

2525 '

2530@*"-“‘* SUB3 COLLECT THE® COORD OF THE PRIMITIVE -
POREJ=BTM-CNT=T0=BTH-15

\2550“!&233:(J2

2560~ IF-M=Q ‘THEN GOTO 2580 *

2570 IF-M>=h§ AND M<=5T THEN K=M:ON CT+1 GOTO 1410,1420;1436

2580 NEXT &

2585 '

*2590" *===<=SUB:~PUT NULLS IN CB TO' REPLACE MODE CHANGES}

ﬁ2gcm "FOR J=A TO Z: POKE J,0: NEXT: RETURN _ §

26027 "

2605 :¥===<SUB ¢ 'CHANGE 'COLOR"AND TELL USER TO PRESS REDRAW-=<

2610 PRINT CHR$(1);CHR$(21);"~C";MID$(STR$(B1+1),2) ;CHR$(15);

-y

-® USER NEEDS TQ PRESS REDRAW "; :RETURN:

2620

63

'e==aSEGMENTOR---Mitchell

2630 '

2640
2650
2660
2670
2680
2690
2700

2710
2720

2725
2730

2740
2750
2760
2770
2780
2790

2800

2810
2820

2825

2830
2840
2850
2855
2860
2870
2880

2885
2890

2900

2905

2910

2920
2930
2940
2950

295%

2960
2970
2975
2980
2985
2990
3000
3010
3020
3030
3040
3050
3055
3060
3070

PRINT CHR$(30);:SF=-1

IF SC<>1 THEN GOTO 2840

PRINT "~2";CHR$(15);""P~X1,~Y1,"L"; '"INITIALIZE SCREEN CONDITIONS SO
PRINT CHR$(28);""M~CO~N~CT"; 'MESSAGE WILL APPEAR AT TOP LEFT
LO=PEEK(&H3B52)

IF (LO AND &HY4) THEN PRINT CHR$(21);

PRINT "CREATE BUFFER SEGMENTING If you wish to continue,

name your file ";

FOR I=1 TO 500 :NEXT 'DELAY

RESUME 420

1

'==a-COLLECTS THE FILENAME

PRINT CHR$(K);

IF K=13 THEN 2810

IF K=8 THEN L=LEN(SN$):SN$=LEFT$(SN$,L-1):RESUME 420
SN$=SN$+CHR$(K)

RESUME 420

1

'-—=-PUT FIRST FILE ON DISK
DOS"BUFF "+SN$+".BUF"
SC=SC+1:GOTO 2900

]

'ew-=PUT SUBSEQUENT FILES ON DISK
S$=MID$(STR$(SC),2)

LO= PEEK (&H3B52)

IF RD THEN DOS"KILL "+S$+SN$+".BUF":RD=0 'REMOVES PREVIOUS FILE WITH
DOS"BUFF "+S$+SN$+".BUF" 1SAME NAME IF STORED WITHIN
SC=SC+1 'THIS PICTURE PRODUCTION
GOTO 2910

!

'e«===SET INITIAL CONDITIONS FOR FIRST FILE

PRINT CER$(12);""M~CO~N~C2~2";CHR$(15);""P~X1,7Y1,~G"L";
CHR$(27);"W";
1

'====DETERMINE TOP OF CREATE BUFFER AND START A NEW FILE
C=PEEK(&H3BU6) :D=PEEK (&H3BUT)

POKE 15172,C:POKE 15173,D

PRINT CHR$(27);"Q";

GOTO 3070

1

'eeeoREDRAW OF SEGMENTED FILES

PRINT CHR$(30);CHR$(12);

IF RD THEN DOS"™KILL "+S$+SN$+".BUFM
S$=MID$(STR$(SC),2) :DOS"BUFF "+S$+SN$+", BUF"
IF NOT RD THEN RD=-1

DOS"DRAW "+SN$+",BUF"

PRINT CHR$(27);™i";

FOR I=2 TO SC

S$=MID$(STR$(I),2)

DOS"DRAW "+3$+SN$+" BUF"

PRINT CHR$(27);"W";

NEXT

]

'————TURN SEGMENTOR FLAG OFF, RETURN STATES, GO TO NEW INPUT
SF=0:POKE 9651 ,LO:RESUME 420

APPENDIX J %
EXTENDED PART2-WITH SEGMENTOR SHADED

400 '=-==~INTERRUPT HANDLER-=-=-

410 ON ERROR#1 GOTO 430

420 GOTO 420

430 IF ERR=24 THEN K=INP(&H4A) ELSE ON ERROR #0 GOTO 0

432 !

%35 :2=<i=CHECK—<IF "IN "SEGMENTOR, -TEEN- ROUTE “INPUT. TO_SEGMENTOR--= §
AN QIF: SE.THEN: GOTO-2740. ELSE GOTO 450§

450 IF K=&H80 THEN PRINT CHR$(30); CHR$(27);"IA9";:STOP

455

= SIZE OF _CREATE BUFFER===—="'§
m mmszx{&nanu 5%
480 1IF SIZE>254 THEN GOTO 2640 ='SIZE WAS 128 FOR TESTING}
490 LO=PEEK(&H3E52)
500 IF K=5 OR K=8 OR K=10 OR K=11 OR K=22 OR K=25 OR K=28 OR K=29
OR K=31 THEN IF (LO AND &HY4) THEN PRINT CHR$(K);:GOTO 1290
510 IF NOT FL AND NC<>0 THEN IF 48¢=K AND K<=57 THEN ON CT+1
GOTO 1410,1420,1430
520 IF BF THEN IF 48<=K AND K<=55 THEN BC=(K-48):BF=0:RESUME 1740
530 IF (FL=0 AND NC<>0 AND CT=0) THEN IF CHR$(K)="." THEN
C(I)=CURSX(0):C(I+1)=CURSY(0):I=I+2:IF I>=NC OR NC=999 THEN
RETURN ELSE RESUME
540 IF NC=999 THEN IF K=146 OR K=149 THEN NC=0:PRINT CHR$(7); :RESUME
550 'CATCH FOR CB
560 IF K<>215 AND CR THEN PRINT CHR$(27);™A";
570 IF FL AND K=208 THEN IF PM THEN SP$="0":PM=0:PF=0 ELSE SP$="P":PM==1:PFz=-1
580 IF K»=129 AND K<=134 THEN ON K-128 GOTO 1140,1170,1190,1210,1230,1250
585 IF (K=212 OR K=218) AND FL THEN PRINT CHR$(21);CHR$(30);CHR$(15);
"™ TURN OFF TABLET BEFORE TRYING TO EDIT "™;"~G";CHR$(27);"Q"; :RESUME
590 IF K=212 THEN GOTO 1910

600 IF K=218 THEN T1=-1:GOSUB 1910:T2=-1:G0TO 2270

610 IF K>=176 AND K<=183 THEN PRINT P$(K-128);:GOTO 1280
620 IF K=4 THEN DO$="D"

630 IF K=2 THEN AH$="FIX"

640 IF K=3 AND NC<>Q0 THEN RETURN

650 IF NC<>0 THEN GOTO 1280

660 IF K>=160 AND K<=167 THEN PRINT "~U";:PLOT CURSX(0),CURSY(0):
PRINT CHR$(14);P$(K-128);CHR$(15);:GOTO 1280

670 IF K=216 THEN PRINT CHR$(7);:GOTO 1270

680 IF (LO AND &H4) AND K=34 THEN PR$=CHR$(K):PRINT CHR$(K);:GOTO 890

690 IF K>127 THEN PR$=P$(K-128):PRINT P$(K-128);CHR$(T); ELSE
PRINT CHR$(K);:GOTO 1280

700 IF K>=193 AND K<=196 THEN ON K-192 GOTO 1610,1620,1280,1640

710 IF K=199 THEN GOTO 1630

720 IF K=146 THEN PRINT CHR$(K-116);CHR$(T);:GOTO 790

725 IF K=149 THEN PRINT CHR$(7);:GOTO 790

730 IF K>=151 AND K<=155 THEN ON K-150 GOTO 850,1280,1280,980,850

740 IF K=145 THEN PRINT CHR$(7);:GOTO 950

750 IF K=244 THEN PRINT CHR$(7);CHR$(27);"Q";:CR==1

760 IF K=215 AND-SC={JTHEN PRINT CHR$(30);""M~CO~N"C2"N-2"Q7~J"HTLTE"§
#~W00000051 151 1" ;CHR$(28) ; CHR$(15); ‘CHR$(12) ;" P~X1,-Y1, G LPg
CHR$(27);"W"; ELSE IF K=215 AND .SC>1.THEN GOSUB 2970£

770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
955
957
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

GOTO 1280

'eee-HANDLE PRIMITIVES
NC=999:GOSUB 1370:IF EF AND P=149 THEN PRINT CHR$(37);
IF EF AND P=146 THEN PRINT CHR$(34);

IF K=3 THEN NC=0:GOTO 1120
IF CR THEN PRINT CHR$(27);™Q";

IF NOT FL AND NC<>0 THEN PLOT C(I-2),C(I=1):PRINT CHR$(30);
IF NC=999 THEN GOTO 790 ELSE IF FL THEN GOTO 410 ELSE RESUME 410
NC=4:GOSUB 1370:NC=0:IF EF AND P=155 THEN PRINT CHR$(43);
IF EF AND P=151 THEN PRINT CHR$(39);

IF K=3 THEN GOTO 1120

GOTO 1060
NC=4:GOSUB 1370:NC=0:IF EF THEN PRINT CHR$(34);

IF K=3 THEN GOTO 1120

IF CR THEN PRINT CHR$(27);™Q";

PLOT C(0),C(1),C(3)

IF CR THEN PRINT CHR$(30);
GOTO 1120
NC=3:GOSUB 1370:NC=0

IF EF AND P=145 THEN PRINT CHR$(33);
IF EF AND P=146 THEN PRINT CHR$(34);
IF K=3 THEN GOTO 1120
GOTO 1060
NC=3:GOSUB 1370:NC=0:IF EF THEN PRINT CHR$(42);
IF K=3 THEN GOTO 1120

IF EF THEN 1060

IF K>=48 AND K<=57 THEN 1060 ELSE 1020

IF CR THEN PRINT CHR$(27);™Q";

PLOT C(0),C(1):PLOT SQR((C(0)=C(2))"2+((C(1)=C(3))/SQR(2))"2)
IF CR THEN PRINT CHR$(30);

GOTO 1120

FOR M=0 TO (I-1) STEP 2

IF CR THEN PRINT CHR$(27);™Q";

PLOT C(M),C(M+1)

IF CR THEN PRINT CHR$(30);

NEXT

IF EF THEN RETURN

IF FL THEN 410 ELSE RESUME 410

'———-HANDLE STATES

IF CR THEN CR=0:PRINT CHR$(30)s ELSE PRINT CHR$(27);"C~P~G";
:CR=-1:IF SCC=1"TEEN SC=1.§

§150:IF-SC>1.THEN GOSUB 28403

1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
124an

GOTO 1280

IF (LO AND &HY4) THEN PRINT CHR$(21); ELSE PRINT "~G";

GOTO 1280

IF (LO AND &H2) THEN PRINT "~P"; ELSE PRINT "~R";

GOTO 1280

IF (LO AND &H40) THEN BL$="XB":PRINT "~2"; ELSE BL$="B":PRINT "~1";
GOTO 1280

IF (LO AND &H1) THEN PRINT "~N"; ELSE PRINT "~M~2";

GOTO 1280

IF (LO AND &H80) THEN FI$="XF":PRINT "~L"; ELSE FI$="F":PRINT "~F";
GOTO 1280

IF FL THEN FL=0 ELSE FL=-1:IF TF=0 THEN GOTO 1310

PRINT CHR$(30);CHR$(7);

RESIIME

65

1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

1440

1450
1460
1470
1480
1490
1500
1510
1520
1530

1540
1550

1560
1570

1580
1590

1600

1610
1620
1630
1640
1650
1660
1670
1680

1690
1700

1710
1720
1730
1740
1750
1760

'eee=FINISH MAIN-=--

'ee==SUB: TABLET INIT

SP$="0":PM=0

PRINT CHR$(30);CHR$(27);"R1C";CHR$(27);"OES";CHR$(27); "IES";
IF CR THEN PRINT CHR$(27);"Q";

TF==1

RESUME 310

'e===SUB: COORD

CT=0:I=0:F$="0":0X=0:0Y=0:0F$="0"

IF FL THEN 1440 ELSE IF EF THEN GOTO 2540 ELSE 1400

RESUME 420

Z=100%(E-48) :CT=CT+1:IF EF THEN GOTO 2580 ELSE RESUME
Z=2+10%(K-48) :CT=CT+1:IF EF THEN GOTO 2580 ELSE RESUME
C(I)=Z+(E-U48):CT=0:I=I+1:IF EF AND I<KNC THEN GOTO 2580 ELSE
IF I>=NC OR (NC=999 AND I=2) THEN RETURN ELSE RESUME
'ewe=TABLET COORD

PRINT #4;SP$;

RESUME 1470

IF NOT PM THEN INPUT #4;XX,YY,F$

INPUT #4;XX,YY,F$

PRINT #4;n3n;

X1=INT(XX/4.3):¥1=INT(YY/4.3)

IF 0X=X1 AND 0Y=Y1 AND OF$=F$ THEN 1580

IF NC=999 AND F$="1" AND CR THEN PRINT CHR$(27);™Q";

IF (NOT PF OR NOT OC) AND NC=999 THEN IF F$="1" THEN PLOT X1,Y1:
PRINT CHR$(30);CHR$(7);:GOTO 1580

IF F$="4m THEN NC=0:K=3:RETURN

IF (NOT PF OR NOT OC) AND F$="1" THEN IF NOT PM THEN PRINT CHR$(30):
ng";CHR$(27);™Q"; :PLOT X1,Y

IF (NOT PF OR NOT OC) AND F$="1" THEN PRINT CHR$(T);:C(I)=X1:
C(I+1)=Y1:I=I+2:IF I>=NC THEN PRINT PR$;:RETURN ELSE 1580
PRINT ™ O";:PLOT X1,Y1

0X=X1:0¥=Y1:0F$=F$:PF=0:0C==1

PRINT #4;3P$;:GOTO 1470

'ew==EXTENDED PRIMITIVES

CMD$="ARR":NC=5:G0OT0 1650

CMD$="REC":NC=6:G0TO 1650

CMD4$="VEC":NC=5:G0TO 1650

CMD$="DAR":NC=5:GO0TO 1650

IF FL THEN IF CMD$=PMREC™" THEN NC=8§ ELSE NC=6

GOSUB 1370:NC=0:XS=C(0):YS=C(1):XN=C(2):IN=C(3):W=C(}4)

IF K=3 THEN RESUME 410

IF NOT FL AND CHR$(K)="." AND CMD$="REC"™ THEN NC=2:GOSUB 1370:
NC=0:C(6)=C(0):C(T)=C(1)

IF FL OR CHR$(K)="." THEN
W=INT(SQR((C(2)-C(4))"2+((C(3)-C(5))/SQR(2))"2))

IF FL OR CHR$(K)="." THEN IF CMD$="REC" THEN
C(5)=INT(SQR{(C(4)=C(6))"2+((C(5)=C(T))/SQR(2))"2))

IF CMD$="REC" THEN HT=W:W=C(5)

IF FL THEN 1730 ELSE RESUME 1730

IF FI$="F" THEN BF=-=1:GOTO 420

GOSUB 1770

IF CMD$="VEC"™ OR CMD$="REC" THEN DOS"CHAIN PART3

IF CMD$="ARR"™ OR CMD$="DAR"™ THEN DOS"CHAIN PARTY

66

1770

1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880

1885
1890

1900
1910
1920
1930
1940

1945
1950

1960
1970
1980

1985°
1990

2000
2010
2020
2030
2040
2050
2060

2070
2080

2090

2100
2110
2120
2130

2140
2150
2160
2170
2180

'ew==SUB: SAVE BACKGROUND COLOR
COL=PEEK(&H380D)
BG=COL AND &H55

IF BG=0 THEN B1=0
IF BG=1 THEN B1=1
IF BG=4 THEN B1=2
IF BG=5 THEN B1=3
IF BG=16 THEN Bi1=4
IF BG=17 THEN B1=5
IF BG=20 THEN B1=6
IF BG=21 THEN B1=T7
RETURN

'

1eeeaEDITORe==== Mitchell

1

CNT=1:PRINT CHR$(30);:EF==1
BTM=(PEEK(&H3B45) %256) +PEEK (&H3B4Y)
TP=(PEEK(&H3BU4T) #256) +PEEK(&H3BU6)

IF BTM-1=TP THEN GOTO 2510

{]

'ee=-CHANGE FG COLOR TO BG COLOR

GOSUB 1780 :PRINT"~C";MID$(STR$(B1),2);

'=~PLOT OR CHARACTER MODE

IF (LO AND &H4) THEN GOTO 2270

t

'eee—CHARACTER EDITOR

M=PEEK (BTM-CNT)

IF BTM-CNT=TP+3 THEN GOTO 2510

N=PEEK(BTM-(CNT+1))

IF M=21 THEN CNT=CNT+1:PRINT "~G";:GOTO 2270

IF N=1 THEN CNT=CNT+2:GOTO 2000

NN=PEEK(BTM=(CNT+2))

IF N=67 AND NN=1 THEN A=BTM-(CNT+2):Z=BTM-CNT:CNT=CNT+3:
GOSUB 2600:GOTO 2000 ESLE GOTO 2100
MN=PEEK(BTM-(CNT+3)) :MM=PEEK (BTM=(CNT+4))

IF MN=1 THEN IF NN=88 OR NN=8¢ THEN IF N>=48 AND N<=57 THEN
IF M=43 THEN A=BTM-(CNT+3):Z=BTM-CNT:CNT=CNT+4:GOSUB 2600:
PRINT" X1,~Y1,";:GOTO 2000 ELSE GOTO 2100

IF MM=1 THEN IF MN=88 OR MN=89 THEN IF NN>=48 AND NN<=57
THEN IF N>=48 AND N<=57 THEN IF M=44 THEN A=BTM-(CNT+4):
Z=BTM=-CNT:CNT=CNT+5:GOSUB 2600:PRINT"X1,~Y¥1,";:GOTO 2000
ELSE GOTO 2100

IF M=0 OR M=T THEN GOTO 2240

IF M=5 THEN PRINT CHR$(22);:GOTO 2240

IF M=8 THEN PRINT CHR$(32);:GOTO 2240

IF M=6 OR M=9 OR M=12 OR M=13 OR M=23 OR M=27 OR M=28
THEN PRINT™~Cn;MID$(STR$(B1+1),2);CHR$(15);

"USER NEEDS TO PRESS REDRAW ";"~C";MID$(STR$(B1),2);:GOTO 2240

IF M=10 THEN PRINT CHR$(11);:GOTO 2240
IF M=11 THEN PRINT CHR$(10);:GOTO 2240
IF M=14 THEN PRINT CHR$(15);:GOTO 2240
IF M=15 THEN PRINT CHR$(14);:GOTO 2240
IF M=22 THEN PRINT CHR$(5);:GOTO 2240

67

68

2190 IF M=25 THEN PRINT CHR$(31);:GOTO 2240

2200 IF M=29 OR M=32 THEN PRINT CHR$(8);:GOTO 2240

2210 IF M=31 THEN PRINT CHR$(25);:GO0TO 2240

2220 IF M»=33 THEN PRINT CHR$(8);CHR$(M);CHR$(8);:GOTO 2470
ELSE CNT=CNT+1:GOTO 2000

2230 GOTO 2470

2240 CNT=CNT+1:GOTO 2000

2250 !

2260 '====PRIMITIVE EDITOR

2270 J=BTM=CNT

2280 IF J=TP+3 THEN GOTO 2510

2290 M=PEEK(J)

2300 IF M=7 THEN PCKE J,0

2310 IF M>32 AND M<44 THEN GOTO 2360

2320 IF M=1 THEN N=PEEK(J+1) ELSE 2350

2330 IF N=71 THEN CNT=CNT+1:GOSUB 2610:PRINT"~C";MID$(STR$(B1),2);:GOTO 2000

2340 IF N=67 THEN A=BTM-CNT:Z=BTM-(CNT-2):GOSUB 2600 ELSE A=BTM-CNT:
Z=BTM-(CNT-1) :GOSUB 2600

2350 CNT=CNT+1:GOTO 2270

2355 !

2360 '=-=LAST PRIMITIVE FOUND

2370 IF T2 THEN GOTO 2440

2380 IF M=33 THEN P=145:GOSUB 950:GOTO 2440 'X-BAR!
2390 IF M=34 THEN CNT=CNT+2:GOSUB 950:GOTO 2440 'Y BAR?
2400 IF M=37 THEN P=149:GOSUB 2610:GOTO 2440 'DOT!

2405 IF M=40 THEN GOSUB 2610:GOTO 2440 *CONC VECT!
2410 IF M=42 THEN P=154:GOSUB 980:GOTO 2440 'CIRCLE!
2420 IF M=43 THEN P=155:G0SUB 850:GOTO 2440 '"RECTANGLE!
2430 IF M=39 THEN P=151:GOSUB 850:GOTO 2440 'VECTOR'
2h3s

2440 '--=-CHANGE POINTERS & REPLACE COLOR

2450 IF T1 THEN T1=0:CNT=CNT+1:RETURN

2460 IF T2 THEN T2=0

2470 NBTM=BTM=-CNT

2480 A=NBTM/256 :X%=A

2490 YZ=NBTM-(256#%X3%)

2500 POKE 15172,Y%:POKE 15173,X%:POKE 14349,COL

2510 PRINT CHR$(27);™";:EF=0

2520 RESUME 420

2525 !

2530 '===-SUB: COLLECT THE COORD OF THE PRIMITIVE

2540 FOR J=BTM-CNT TO BTM-1

2550 M=PEEK(J)

2560 IF M=0 THEN GOTO 2580

2570 IF M>=48 AND M<=57 THEN K=M:ON CT+1 GOTO 1410,1420,1430

2580 NEXT

2585 '

2590 '----SUB: PUT NULLS IN CB TO REPLACE MODE CHANGES

2600 FOR J=A TO Z: POKE J,0: NEXT: RETURN

2602 '

2605 '=-===SUB: CHANGE COLOR AND TELL USER TO PRESS REDRAW~==

2610 PRINT CHR$(1);CHR$(21);""C";MID$(STR$(B1+1),2);CHR$(15);
" USER NEEDS TO PRESS REDRAW ";:RETURN

69

2630 ' :
%2640° PRINT CHR$(30);:SF==1%
2650 IF SC<>1 THEN GOTO :aazm1
2660 PRINT ™~27;CHR$(15);"P~X1,YT,”L"; 'INITIALIZE SCREEN CONDITIONS SC:
“2670° PRINT CHR$(28);®™ M CO™N"CT"; 'MESSAGE WILL APPEAR AT TOP LEFTY
2680 LO=PEEK(&H3BE52).
2690 'IF (LO AND &H4) THEN PRINT CHR$(21)7
‘2700 PRINT "CREATE BUFFER SEGMENTING _If you wish to continue,;
.pame your file "}, '
rz'rmmn I=1 TO 500 :NEXE LSHECAYE
¥2720 RESUME 2202
2725 !
+2730*4<===COLLECTS THE FILENAME®:
°2740 PRINT CHR$(K)3
2750 IF K=13 THEN 28103
2760 IF K=8 THEN L=LEN(SN$):SN$=LEFT$(SN$,L-1):RESUME 42073
2770 SN$=SN$+CHR$(K):
*2780 ‘RESUME 424
2790 ¥
#8007 ¥====PUT FIRST FILE ON DISK %
#2810 DOS"BUFF "+SN$+".BUF®
*2820.SC=SC+1:GOTO 29005
2825 '
2830 "===<PUT SUBSEHQUENT FILES ON DISK’;
2840 S$=MID$(STR$(SC),2%
2850° LO=PEEK(&H3B52};
2855_IF RD THEN DOS'KILL “"+S$+SN$+®.BUF™:RD=U “'REMOVES PREVIOUS FILE WITH

2860-DOS"BUFF. "+S$+SN$+".BUF"S YSAMETNAME-IF STORED" WITHIN?
2870 S€=SC+1 § *THIS: PICTURE PRODUCTION §
2880 'GOTO 2910§

2885 !

2890 Y==<=SET INITTAL=CONDITIONS FOR FIRST FILEY

22900 PRINT CHR$(12);®~M~CO~N~C2~2";CHR$(15) ;" "P"X1, 11,”G"L";

2905 .?HBMZ?}‘ L L

{29107 *====DETERMINE TOP® OF ‘CREATE BUFFER™ AND START A NEW FILE
'2920 C=PEEK(&H3B46) :D=PEEK(&H3B4T)

2930 POKE 15172,C:POKE 15173,D%

‘2940 PRINT CHR$(27);"Q"3

2950 GOTO 307¢ %

2955 !

2960 Y==<=REDRAW OF SEGMENTED FILES

2970 PRINT CHR$(30);CER$(12) -

2975 IF RD" THEN DOS"KILL "+S$+SN$+".BUF"<

2980 ‘S$=MID$(STR$(SC),2):DOS"BUFF "+S$+SN$+" . BUF™;
2985 IF NOT RD*THEN RD==1%

2990 DOS"DRAW "+SN$+".BUFY,

3000° PRINT CHR$(27);™W";5

3010 FOR I=2 TO SC%

30207 5$=MID$(STR$(I),2),

3030 DOS"DRAW "+S$+SN$+".BUF®

BO4O. PRINT; CHR$(27); "W"};

3050 NEXT.

3055 !

30607 "*==<-TURN SEGMENTOR FLAG OFF, RETURN STATES, GO TO NEW INPUTY
3070 SF=0:POKE"9651,L0O:RESUME 4207

BIBL IOGRAPHY

70

Chr78a

Chr78b

Chr79

Chr80

Dil80

New79

71

BIBLIOGRAPHY

Chromatics Disk Software Reference Manual, Chromatics,
Inc., Atlanta, Ga., 1978.

Chromatics Preliminary Operator's Manual (Revised),
Chromatics, Inc., Atlanta, Ga., November, 1978.

Chromatics CG BASIC Reference Manual, CG File Handling
BASIC Version 3.0, Chromatics, Inc., Atlanta, Ga.,
January 24, 1979,

Chromatics, Inc., Mike Strother and Emerald Duncaﬂ,
private correspondence, July, 1980.

Dillinger, Marilyn McCord, System Driver for Graphics
Computer, 1980.

Newman, W. and Sproull, R. Principles of Interactive
Computer Graphics, Second Edition, McGraw-Hill Book Co.,
1979.

EDITING AND SEGMENTING
DISPLAY FILES FOR COLOR GRAPHICS

by

SHARLENE KAY MITCHELL

B.S., Kansas State University, 1968.
M.S., Kansas State University, 1971.

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1981

This report describes two extensions of a system driver designed
for the color graphics computer in the Computer Science Department. One
extension allows the user to edit drawings or text as they are being
developed. This extension is needed to remove misspelled or incorrect
positioning of text and incorrect or unexpected geometric figures. Two
keys are redefined as the EDIT and TABLET EDIT keys which are used to
remove the most recently entered character(s)/figure(s). The second
extension allows the user to create complex pictures which previously
could not be done because of limited buffer space. This is accomplished
by segmenting the display file and méintaining these segments on disk
storage. The segmenting facility will not require any action on the

part of the user unless the need for segmentation arises.

