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Abstract 

The diagnosis and prevention of bovine respiratory disease (BRD) is challenging due to 

the multifactorial nature of the disease.  Mannheimia haemolytica, Pasteurella multocida, and 

Histophilus somni are gram negative bacteria that are commonly considered three of the most 

important bacterial agents involved in the etiology of BRD; all three are also commensals in the 

upper respiratory tracts of healthy cattle.  However, despite decades of study, questions still 

remain regarding the transmission dynamics and characterization of these bacteria, the ability of 

diagnostic sampling methods to accurately portray the causative bacteria, and ways to mitigate 

the effects of risk factors for BRD such as long-distance transportation.      

 

Through our research, we have demonstrated how variable the culture results of a single 

nasopharyngeal swab can be and the challenges of using an individual culture to truly represent 

animal M. haemolytica status.  Additionally, comparison of the diagnostic performance of two 

antemortem sampling methods, nasopharyngeal swabs (NPS) and bronchoalveolar lavages 

(BAL), revealed high agreement, high negative predictive values of NPS for the presence of M. 

haemolytica, P. multocida, and H. somni in the lungs, and the potential for different 

susceptibility profiles from paired NPS and BAL samples.  As agreement and predictive values 

can vary with disease prevalence, interpretation of diagnostic test results should be done 

carefully and with due consideration of the sample population in which the test is being applied. 

 

 An investigation into cattle behavior following a relatively innocuous handling 

procedure indicated that some behaviors are altered after handling and restraint in a squeeze 

chute.  Additionally, we demonstrated that cattle with different temperament scores may have 



  

different activity levels and spend different amounts of time within 1 m of the hay bunk, grain 

bunk, waterer, and shed after handling.  Consequently, there is also the potential to improve upon 

disease detection algorithms by incorporating behavioral changes that may occur after handling 

events and the need for careful trial design when behavioral parameters are a trial outcome.  

Additionally, this study indicated that some behaviors may vary for calves that react differently 

when handled, which also has potential implications when behavior is considered a variable of 

interest.   

 

Examination of the potential for 1 mg/kg oral meloxicam administered pre-transport to 

mitigate the effects of long-distance transportation revealed that meloxicam did not have a 

statistically significant effect on the maintenance of leukocyte function or the reduction of 

inflammation during or after long-distance transportation in healthy steers.  Finally, a report on 

two separate experiments regarding the effects of 1 mg/kg oral meloxicam administered pre-

transport on the movement, feeding, and drinking behaviors and performance of transported and 

non-transported calves demonstrated that there was a significant day effect on behaviors in 

transported calves but meloxicam did not affect behavior or performance.  However, meloxicam 

did modify the effect of day on daily distance traveled in non-transported calves but there were 

no significant within-day comparisons between non-transported meloxicam and non-transported 

control calves.  These results do not provide evidence for the benefit of administering a single 

dose of 1 mg/kg oral meloxicam prior to long-distance transportation. 
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Abstract 

The diagnosis and prevention of bovine respiratory disease (BRD) is challenging due to 

the multifactorial nature of the disease.  Mannheimia haemolytica, Pasteurella multocida, and 

Histophilus somni are gram negative bacteria that are commonly considered three of the most 

important bacterial agents involved in the etiology of BRD; all three are also commensals in the 

upper respiratory tracts of healthy cattle.  However, despite decades of study, questions still 

remain regarding the transmission dynamics and characterization of these bacteria, the ability of 

diagnostic sampling methods to accurately portray the causative bacteria, and ways to mitigate 

the effects of risk factors for BRD such as long-distance transportation.      

 

Through our research, we have demonstrated how variable the culture results of a single 

nasopharyngeal swab can be and the challenges of using an individual culture to truly represent 

animal M. haemolytica status.  Additionally, comparison of the diagnostic performance of two 

antemortem sampling methods, nasopharyngeal swabs (NPS) and bronchoalveolar lavages 

(BAL), revealed high agreement, high negative predictive values of NPS for the presence of M. 

haemolytica, P. multocida, and H. somni in the lungs, and the potential for different 

susceptibility profiles from paired NPS and BAL samples.  As agreement and predictive values 

can vary with disease prevalence, interpretation of diagnostic test results should be done 

carefully and with due consideration of the sample population in which the test is being applied. 

 

 An investigation into cattle behavior following a relatively innocuous handling 

procedure indicated that some behaviors are altered after handling and restraint in a squeeze 

chute.  Additionally, we demonstrated that cattle with different temperament scores may have 



  

different activity levels and spend different amounts of time within 1 m of the hay bunk, grain 

bunk, waterer, and shed after handling.  Consequently, there is also the potential to improve upon 

disease detection algorithms by incorporating behavioral changes that may occur after handling 

events and the need for careful trial design when behavioral parameters are a trial outcome.  

Additionally, this study indicated that some behaviors may vary for calves that react differently 

when handled, which also has potential implications when behavior is considered a variable of 

interest.   

 

Examination of the potential for 1 mg/kg oral meloxicam administered pre-transport to 

mitigate the effects of long-distance transportation revealed that meloxicam did not have a 

statistically significant effect on the maintenance of leukocyte function or the reduction of 

inflammation during or after long-distance transportation in healthy steers.  Finally, a report on 

two separate experiments regarding the effects of 1 mg/kg oral meloxicam administered pre-

transport on the movement, feeding, and drinking behaviors and performance of transported and 

non-transported calves demonstrated that there was a significant day effect on behaviors in 

transported calves but meloxicam did not affect behavior or performance.  However, meloxicam 

did modify the effect of day on daily distance traveled in non-transported calves but there were 

no significant within-day comparisons between non-transported meloxicam and non-transported 

control calves.  These results do not provide evidence for the benefit of administering a single 

dose of 1 mg/kg oral meloxicam prior to long-distance transportation. 
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Preface 

The multifactorial nature of the epidemiology of bovine respiratory disease (BRD) is 

reflected in this compilation of work.  Chapter 1 begins with a review of antemortem sampling 

methods for establishing the presence of BRD pathogens including aspiration of nasal mucus, 

anterior nasal swabs, nasopharyngeal swabs, tonsillar washes, transtracheal sampling, and 

bronchoalveolar lavage sampling.  Investigations into our ability to characterize one of the most 

commonly implicated BRD pathogens, Mannheimia haemolytica, are explored in Chapter 2.  A 

comparison of the diagnostic agreement and predictive values of nasopharyngeal swab and 

bronchoalveolar lavage culture results is found in Chapter 3.  Chapter 4 details a study on the 

activity, eating, and drinking behavior of clinically healthy calves following a relatively 

innocuous handling event similar to what cattle may experience when examined for evidence of 

BRD.  Finally, Chapters 5 and 6 include investigations into the effects of long-distance 

transportation, a common stressor implicated in increasing BRD risk in feedlot cattle, on various 

markers of stress, inflammation, and leukocyte function as well as several behavioral parameters.     
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Chapter 1 - Review of Sampling Procedures for Bovine Respiratory 

Disease Pathogens 

 

 Introduction 

Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni are commonly 

considered three of the most important bacterial agents involved in the multifactorial disease 

process known as bovine respiratory disease (BRD).1  These gram negative bacteria are 

considered to be commensals in the upper respiratory tracts of healthy cattle1 but can become 

pathogens of the lower respiratory tract following stress, lowered immune function, or exposure 

to viruses.1-3  Although BRD has been the subject of decades of study, relatively little research 

has been aimed at defining the most appropriate methods for obtaining biological samples for 

subsequent culture and additional diagnostics.  The diagnosis of BRD is challenging for many 

reasons including our inability to correctly classify animals as sick or not sick before necropsy.4,5  

Likewise, diagnosing the causative agent of a particular case of BRD is also challenging given 

the imperfect ability of our diagnostic methods.6  Ultimately, there are many factors which play a 

role in whether or not a particular test will be positive for a specific agent or not.  The focus of 

this chapter is to review the available literature comparing the utility and diagnostic performance 

of some of the most commonly applied methods for obtaining respiratory tract samples for 

culture purposes.  Additionally, several manuscripts that did not compare sampling methods but 

which reported results from paired respiratory tract samples and provided enough data for this 

author (SC) to calculate either their positive and negative predictive values or the agreement 

between methods will also be discussed. 
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 Sampling methods 

 Various methods exist for obtaining an antemortem culture from cattle and they require 

varying amounts of skill, restraint, and/or sedation.  One of the most common and simplest 

methods is to aspirate7 a bit of mucus from the anterior nasal cavity or swab the same area with a 

guarded8 or unguarded nasal swab (NS).9  Another method employed in several papers is the 

tonsillar wash (TW) which involves inserting and immediately aspirating a wash solution from 

the tonsillar sinuses.7,10  More recently, nasopharyngeal swabs (NPS), which are either single or 

double-guarded swabs that are inserted deeper into the upper respiratory tract to obtain a sample 

of the nasopharyngeal region have been employed (Figure 3.1).6,11-14  Antemortem lower 

respiratory tract samples can also be obtained via several methods including transtracheal 

washes11,15 or swabs16 (TTS) and bronchoalveolar lavages (BAL) which can be performed either 

blinded17-21 or via endoscopic guidance.12   

 

Some details that must be considered when evaluating which sampling method is best 

include animal welfare considerations, degree of invasiveness, potential for cross contamination 

both within and between cattle, required equipment and ease of equipment sterilization, and the 

required skill level of the sample taker.  Certain methods also become relatively impractical if 

frequent serial sampling is needed.  Some researchers, including the author of this dissertation 

(SC), have found guarded NPS to be a simple method for obtaining an upper respiratory tract 

sample that requires relatively little in terms of equipment or restraint, and can be done quickly 

and frequently in large volumes.13  While it is true that some may consider the NPS more 

invasive than an anterior nasal swab, the author (SC) has observed that cattle are most reactive 

when swabs are guided within the first few inches of the nasal cavity but many tolerate the 
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advancement of a NPS past that point very well.  Another consideration when comparing upper 

respiratory sampling sites is the possibility that samples taken deeper in the upper respiratory 

tract may be preferred due to less environmental contamination (Personal communication, B. 

Lubbers Sept. 2016).   

 

When considering antemortem lower respiratory tract sampling techniques, BALs are 

often considered to be less invasive, quicker, and easier to obtain than TTS.18  Proponents of 

TTS are drawn to the fact that there is no contamination of the sample from the upper respiratory 

tract15,21 but Grey et al. demonstrated in 1971 that variable concentrations of M. haemolytica 

could be found in the tracheal air of individual clinically normal calves that also had M. 

haemolytica recovered from nasal swabs taken on the same day.22  Therefore, the possibility of 

tracheal contamination exists, at least for M. haemolytica, simply via normal respiration.  

Undoubtedly the potential for cross contamination between the nasal cavities and the lungs exists 

with unguarded BAL techniques, yet the use of a guard12 as described by Allen et al. has not 

been widely reported.  There are many variations on the BAL procedure including endoscopic12 

and blind techniques17,18,21; some involve sedation while others use varying methods of restraint 

depending on the size and age of the animal being sampled.  The author (SC) has found that, like 

NPS, most animals tolerate blind BALs well once the tubing has passed the first few inches of 

the nasal cavity and that an experienced person can perform a blind BAL in a few minutes.  For 

more discussion on blind vs. endoscopic BALs, see Chapter 3 of this dissertation.    
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 Evaluating the performance of sampling methods 

Although a detailed review of predictive values and kappa values are beyond the scope of 

this literature review, a brief introduction regarding their calculation, use, and limitations is 

warranted given their importance in the subsequent literature cited.  Predictive values are 

routinely misunderstood and often easily confused with the diagnostic sensitivity and specificity 

of a test.  However, they provide important information about the probability of disease given a 

positive or negative test result while taking into account both the sensitivity and specificity of the 

test used and the true prevalence of the disease in the sampled population.  Therefore, predictive 

values can change when the same tests are used within different populations with different 

prevalences (e.g., in healthy cattle vs. clinically ill cattle).  A positive predictive value (PPV) is 

interpreted as “the probability that given a positive test, the animal actually has the disease” 

while a negative predictive value (NPV) is interpreted as “the probability that given a negative 

test, the animal does not have the disease”.23  Predictive values were calculated by the author of 

this review (SC) as indicated in Dohoo et al.23  

 

It is important when comparing the results of two diagnostic tests to consider that there 

will always be some agreement between the two tests simply due to chance alone.23  The kappa 

statistic is a method for evaluating whether two tests agree with each other beyond what 

agreement could be expected due to chance but it is influenced by both the prevalence of the 

disease within the group of animals examined and the presence of bias.23,24  The kappa values 

calculated in this dissertation were calculated as described elsewhere23 and Exact McNemar’s P-

values were obtained for each kappa statistic using Stata (Version 12.1, StataCorp LP, College 

Station, Texas).  A significant Exact McNemar’s P-value indicates that there is evidence of 
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bias23,25 between the two tests and therefore the kappa value is biased.  The scale used to 

interpret the kappa values herein is the Landis and Koch scale26 where ≤ 0 indicates poor 

agreement, 0.01 to 0.2 indicates slight agreement, 0.21 to 0.4 indicates fair agreement, 0.41 to 

0.6 indicates moderate agreement, 0.61 to 0.8 indicates substantial agreement, and 0.81 to 1.0 

indicates almost perfect agreement.  More detailed information on the kappa statistic and its 

limitations can be found in the published literature.23,24,27-30   

 

 Organisms evaluated 

Of the three bacteria previously mentioned, the focus of the vast majority of the literature 

examined for this review revolves around the isolation of M. haemolytica which has been found 

in the lungs of cattle without lung lesions31, the oral cavity22, and in all areas of the nasal cavity32 

including the tonsils7,31, nasopharyngeal lymph nodes31, and nasopharynx.12  Various methods 

for differentiating between M. haemolytica isolates have been explored in the literature including 

serotyping14,33, antimicrobial susceptibility profiling34, plasmid identification34, PCR14, pulsed-

field gel electrophoresis (PFGE)6,14,35, as well as other advanced genomics methods.18,36,37  

Although some manuscripts discussed herein also explore the presence of P. multocida and H. 

somni, there is considerably less literature covering diagnostic performance in those organisms 

when compared to M. haemolytica. 

 

 Comparison of antemortem upper respiratory tract methods 

 Within the published literature, several challenge studies employing unique M. 

haemolytica strains provided culture results from two separate antemortem upper respiratory 

tract sampling methods.  Data reported by Frank & Briggs showed that, after infecting the tonsils 
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of calves with M. haemolytica, there were differences in their ability to detect M. haemolytica 

between nasal mucus samples and tonsillar wash samples taken bi-weekly over the course of 25 

days.7  The authors of that study did not formally evaluate PPV, NPV or kappa values but did 

provide sufficient data in the text and in Figure 1 of the manuscript for this author (SC) to do so 

(Table 1.1).  Although the sample size was small, the results of that study illustrate that M. 

haemolytica can be found in the tonsils even if it is not found in the nasal mucus.  Subsequent 

work done by Frank et al. in 1994 also indicated variability in recovery of M. haemolytica from 

the nasal mucus and tonsils of non M. haemolytica-vaccinated calves over time; calculations of 

agreement, PPV, and NPV were performed from the data provided by the authors (Table 1.1).  

Another study reported by Briggs et al. which examined 10 non-challenged calves placed in a 

pen with 4 calves who were challenged with a unique strain of M. haemolytica34 also provided 

enough data for comparison of nasal mucus and tonsillar wash samples (Table 1.1).  Again, 

variability in recovery of M. haemolytica from the two sample locations was apparent.       

 

 Comparison of antemortem upper and lower respiratory tract methods 

Challenge studies employing both upper and lower respiratory tract samples were also 

found in the literature.  One study examined the isolation of M. haemolytica from nasal mucus 

samples and BALs following challenge with M. haemolytica and vaccination in half the calves (n 

= 6 vaccinated, n = 6 controls).38  Variability in the recovery of the organism at given time points 

was reported between the vaccinated and control animals yet sufficient data was not reported to 

calculate agreement or predictive values.  In another report, even after aerosol challenge with a 

nalidixic acid resistant M. haemolytica isolate, there was variability in the recovery of the 

organism both within and between calves from tracheal and nasopharyngeal swabs taken 
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repeatedly during the first 23 hours after challenge.39  However, as the study comprised only 4 

calves in each treatment group, formal calculation of agreement or predictive values was not 

performed.    

 

As previously noted, Grey et al. examined the tracheal air of calves and compared the 

presence and quantity of M. haemolytica found in the tracheal air to the presence and quantity of 

M. haemolytica in the anterior nasal passages.22  Although the authors did not report any direct 

correlation in bacterial numbers between the two sampling sites, they did not obtain M. 

haemolytica from the tracheal air of calves if there were none in the nasal swabs.22  However, 

86% (6/7) of the nasal and tracheal air negative calves had M. haemolytica present in the oral 

swabs that were taken daily.22  Data from Confer et al.40 was used to calculate kappa values for 

anterior nasal and tracheal cultures obtained via the oropharynx from clinically healthy, low-risk 

calves and revealed slight to poor agreement for isolating M. haemolytica (Table 1.2).  

Calculations from the same data indicated that the PPV of a nasal swab compared to tracheal 

cultures was between 10% and 29%, whereas the NPV was higher at 88% to 95% (Table 1.2). 

 

 One study that specifically set out to compare an upper and lower respiratory tract 

sampling method for three major BRD pathogens was performed by Allen et al. in 1991.  The 

authors found moderate agreement between NPS and guarded endoscopic BAL samples in terms 

of M. haemolytica (kappa = 0.47), P. multocida (kappa = 0.61), and H. somni (kappa = 0.55) 

when all the calves (cases and controls) were considered together but also noted that there was 

considerable variability in where the true estimate of agreement should lie.12   Therefore, the 

authors concluded that NPS was not able to accurately predict BAL results in individual calves 
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and would be more appropriately used on the group level.12  Further calculations by this author 

(SC) of the PPV, NPV, and kappa values from data presented in the 1991 study also indicated 

variability in the performance of the two sampling methods when data for cases and clinically 

healthy controls were considered separately (Table 1.3).  Then, in another report concerning the 

same group of calves, Allen et al. also found that there was variability in both BAL and NPS 

culture results that were repeated over time.41  

 

Another study by DeRosa et al. examined paired anterior guarded nasal swabs and 

transtracheal swabs taken from calves with clinical BRD.  Their work demonstrated that it is 

possible to obtain different organisms from the two methods 31.6% of the time.16  Additionally, 

when a single M. haemolytica or P. multocida isolate from each paired positive sample was 

tested, there were instances where the minimum inhibitory concentrations were not within one 

twofold dilution of each other, though the authors indicated that from a therapeutic perspective, 

they were similar.16  However, when the genetic identity of all paired M. haemolytica and P. 

multocida isolates were compared via ribotyping, the ribotypes were not identical between the 

two methods in 30% of the positive paired samples.16  Further calculation of the kappa values for 

M. haemolytica, P. multocida, and H. somni from the paired samples taken in this study showed 

fair to poor agreement within organism for all three organisms (Table 1.2).  Additional 

comparisons of calculated predictive values also reveal that although the PPV of nasal swabs for 

M. haemolytica were almost perfect, the PPV was considerably lower for P. multocida and H. 

somni (Table 1.2).  Therefore, considerable variability exists in the ability of a guarded anterior 

nasal swab to predict whether M. haemolytica, P. multocida, or H. somni are in the lower 

respiratory tract. 
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In 2013 Timsit et al. reported only moderate agreement (kappa = 0.50) between repeated 

nasopharyngeal swabs and transtracheal aspirations for M. haemolytica and demonstrated that 

both clinically healthy and clinically ill animals could have M. haemolytica in the upper 

respiratory tract but not the lungs and vice versa.  They also noted that different M. haemolytica 

PFGE types could be obtained from 33% of the positive matched paired samples.11 The authors 

hypothesized that this difference may be explained by previous evidence provided by Briggs et 

al. that indicated that different M. haemolytica can be present in different parts of the upper 

respiratory tract within the same calf34 or that the sampling methods of only choosing one isolate 

per sample may have resulted in bias.  However, Timsit et al. examined multiple isolates (8-10 

colonies per sample) from a small subset of eight transtracheal aspirations and did not identify 

any PFGE diversity within a single transtracheal aspiration sample.11 

 

Overall, these reports point to considerable variability in the agreement of antemortem 

upper and lower respiratory tract sampling methods.  They also indicate that the ability of 

antemortem upper respiratory tract methods to predict what is in the lungs is suboptimal and can 

be quite poor depending on the population of cattle examined.  Additionally the comparison of 

bacterial isolates from paired samples indicate that it is possible to obtain organisms that are 

genetically different and that have different antimicrobial susceptibilities in the two locations.  

Therefore, even if an antemortem upper respiratory tract sample indicates the presence of a 

particular bacteria, the bacterial population in the lungs may be different.   
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 Comparison of antemortem upper respiratory tract and postmortem lower  

 respiratory tract sampling collection methods 

Barbour et al. compared anterior nasal swabs and post-mortem lung cultures of clinically 

ill and clinically healthy 3 month old Holstein calves and found M. haemolytica in the lungs of 

all sick calves that were necropsied (n = 5) but in only 16 of the nasal swab samples from sick 

calves (n = 34).42  Among the clinically healthy calves, no M. haemolytica was found in the 

lungs of the calves that were necropsied (n = 5) but it was found in 14 of the nasal swabs taken 

from clinically healthy calves (n = 40).42  However, information about direct comparisons of 

paired samples taken from individual calves was not available in this manuscript, and therefore 

inferences about the predictive values or agreement between the isolation of M. haemolytica 

from the anterior nasal passages before death and the lungs after death was not possible.    

 

In 2007, Godinho et al. compared nasopharyngeal swabs with postmortem lung lavages, 

lung swabs, and lung tissue sections for the presence of M. haemolytica in 20 calves with clinical 

BRD.  The authors reported that minimum inhibitory concentrations for tulathromycin of isolates 

from paired positive samples were within a twofold dilution and therefore considered 

equivalent.13  Additionally, when the authors compared the randomly amplified polymorphic 

DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE) of 9 positive paired NPS and 

lung lavage samples, they found that 8/9 were identical via RAPD and all were identical via 

DGGE.13  However, PPVs of NPS for lung lavages, lung tissue, and lung swabs ranged from 

50% to 100% while the NPVs ranged from 70 to 100% respectively as calculated by the author 

of this dissertation (SC) (Table 1.4).  Therefore, it seems that the comparison of an antemortem 

upper respiratory tract sample and some postmortem lower respiratory tract sampling methods in 
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clinically ill calves also point to the potential for disagreement regarding presence of the 

organisms.  However, limited data on the multiple methods evaluated and the potential for 

different results within populations of animals with different prevalences makes it difficult to 

make firm conclusions regarding the utility of antemortem upper respiratory tract samples when 

compared to postmortem lower respiratory tract samples. 

   

 Conclusions 

Over the years, studies have utilized different sampling methods to obtain samples for 

subsequent testing.  Study design, sample population demographics, sample sizes, and data 

reported are variable among the literature examined herein but the common theme is that upper 

respiratory tract samples are not perfectly predictive of what is found in the lungs; indeed, their 

predictive values and agreement vary between BRD cases and clinically healthy animals and 

between pathogens.  It is clear that the ecology of the three main bacteria involved in BRD is 

complex and that additional work needs to be done to better characterize the relationship of these 

organisms in the upper and lower respiratory tracts.  Without further knowledge of how these 

sampling methods compare, the usefulness and interpretation of the diagnostics performed on the 

samples is questionable.   
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Figure 1.1 – Schematic representation of the sampling location of a nasopharyngeal swab (NPS) in cattle.  Image created by Mal 

Hoover. 
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Table 1.1 – Summary of positive and negative predictive values (PPV and NPV, respectively) and kappa statistics of paired upper 

respiratory tract samples for Mannheimia haemolytica as calculated by the author of this dissertation (SC) from data obtained from 3 

challenge studies.  Calves in the Frank & Briggs study were challenged in the tonsils with M. haemolytica on day 0.  Cells containing 

“n/a” indicate that the predictive value was calculated as 0/0 which is undefined. 

 

Organism Animal status Study day 
Sample 

size 

Sample Type 

Kappa 

Exact 

McNemar’s  

P-valuea 

Reference 
Nasal mucus Tonsillar wash 

PPV 

(%) 

NPV 

(%) 

PPV 

(%) 

NPV 

(%) 

M. haemolytica Challenged 

Day 4 10 100.0 0.0 20.0 n/ab 0.00 0.01 Figure 1 and text   

Frank & Briggs, 

1992 

Day 7 10 100.0 0.0 10.0 n/ab 0.00 < 0.01 

All other daysb 10 n/ab 0.0 0.0 n/ab 0.00 < 0.01 
           

M. haemolytica; 

all serotypes 

Non-vaccinated 

for M. 

haemolytica 

Day 1 44 59.1 13.6 40.6 25.0 -0.27 0.09 Table 4                              

Frank et al., 

1994 

Day 8 44 68.2 54.5 60.0 63.2 0.23 0.63 

Day 29 44 85.7 50.0 44.4 88.2 0.29 < 0.01 
           

M. haemolytica 
Non-inoculated 

calves 

Day 7 10 14.3 100.0 100.0 33.3 0.09 0.03 Tables 4 and 5                

Briggs et. al., 

1998 

Day 14 10 28.6 66.7 66.7 28.6 -0.03 0.22 

Day 24 10 0.0 66.7 0.0 85.7 -0.18 0.63 

 
a A significant P-value indicates there is evidence of bias between the sampling methods and therefore the kappa value is biased. 

b Results between nasal mucus samples and tonsillar washes were identical on the remaining 5 collection days. 
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Table 1.2 – Positive and negative predictive values (PPV and NPV, respectively) and kappa values for nasal swabs compared to 

tracheal and transtracheal swabs.  In the first study, culture results for Mannheimia haemolytica were evaluated in clinically healthy 

calves.  In the second study, culture results for M. haemolytica, Pasteurella multocida, and Histophilus somni were evaluated in 

bovine respiratory disease (BRD) cases at the time of BRD diagnosis. 

 

Organism Animal status Study day 
Sample 

size 
Sample Type Kappa 

Exact 

McNemar’s 

P-valuea 

Reference 

    Nasal swab Tracheal swab    

    PPV 

(%) 

NPV 

(%) 

PPV 

(%) 

NPV 

(%) 
   

M. haemolytica 

All calves; 

clinically healthy 
Day 0 164 10.0 95.1 22.2 88.4 0.07 0.04 Table 2                            

Confer et. al., 

1983 
Group B; 

clinically healthy 

Before 

slaughter 
55 28.6 87.8 44.4 78.3 0.19 0.30 

           

    Nasal swab 
Transtracheal 

swab 
   

    PPV 

(%) 

NPV 

(%) 

PPV 

(%) 

NPV 

(%) 
   

M. haemolytica 

BRD Cases 
BRD 

diagnosis 

40 85.2 38.5 74.2 55.6 0.26 0.39 Table 1                          

DeRosa et al., 

2000 

P. multocida 40 37.5 90.6 50.0 85.3 0.31 0.73 

H. somni 40 0.0 97.4 0.0 97.4 -0.03 1.00 
 

a A significant P-value indicates there is evidence of bias between the sampling methods and therefore the kappa value is biased. 
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Table 1.3 – Positive and negative predictive values (PPV and NPV, respectively) and kappa values for nasopharyngeal swab (NPS) 

and bronchoalveolar lavage (BAL) samples obtained from bovine respiratory disease (BRD) cases, clinically healthy controls, and all 

calves.  In this study, paired samples were obtained from cases and matched controls on the day of BRD diagnosis; three organisms, 

Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni were cultured from the samples. Kappa values from all calves 

were reported by the original author but the remaining values were calculated by the author of this manuscript (SC) from data 

provided in the original manuscript. 

 

Organism 
Animal 

status 
Study day 

Sample 

size 

Sample Type 

Kappa 

Exact 

McNemar’s 

P-valuea 

Reference 
NPS BAL 

PPV 

(%) 

NPV 

(%) 

PPV 

(%) 

NPV 

(%) 

M. haemolytica 

BRD Cases 

BRD 

diagnosis 

59 66.7 96.0 75.0 94.1 0.66 1.00 

Allen et al., 

1991 

Controls 60 31.6 97.6 85.7 75.5 0.35 < 0.01 

All calves 119 42.9 96.7 80.0 84.6 0.47 < 0.01 
         

P. multocida 

BRD Cases 59 85.4 72.2 87.5 68.4 0.57 1.00 

Controls 60 75.0 84.4 80.8 79.4 0.60 0.77 

All calves 119 81.2 80.0 84.8 75.5 0.61 0.68 
         

H. somni 

BRD Cases 59 42.9 92.3 42.9 92.3 0.35 1.00 

Controls 60 75.0 100.0 100.0 98.2 0.85 1.00 

All calves 119 54.5 96.3 60.0 95.4 0.53 1.00 

 
a A significant P-value indicates there is evidence of bias between the sampling methods and therefore the kappa value is biased.  
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Table 1.4 – Positive and negative predictive values (PPV and NPV, respectively) and kappa values for antemortem nasopharyngeal 

swabs (NPS) and several postmortem lower respiratory tract sampling methods for Mannheimia haemolytica.  Calves in this study 

were all clinically ill with bovine respiratory disease (BRD) and were sampled at BRD diagnosis.  Values in this table were calculated 

by the author of this manuscript (SC) from the data provided in Table 1 of the original manuscript. 

 

Organism 
Animal 

status 

Study 

day 

Sample 

size 
Sample Type Kappa 

Exact 

McNemar’s 

P-valuea 

Reference 

    NPS 
Postmortem lung 

lavage 
   

    PPV 

(%) 

NPV 

(%) 

PPV 

(%) 

NPV 

(%) 
   

M. haemolytica 
BRD 

cases 

BRD 

diagnosis 
20 100.0 100.0 100.0 100.0 1.00 1.00 

Table 1                         

Godinho et al., 

2007 

          

    NPS 
Postmortem lung 

tissue 
  

    PPV 

(%) 

NPV 

(%) 

PPV 

(%) 

NPV 

(%) 
  

M. haemolytica 
BRD 

cases 

BRD 

diagnosis 
20 50.0 100.0 100.0 25.0 0.21 < 0.01 

          

    NPS 
Postmortem lung 

swab 
  

    PPV 

(%) 

NPV 

(%) 

PPV 

(%) 

NPV 

(%) 
  

M. haemolytica 
BRD 

cases 

BRD 

diagnosis 
20 50.0 70.0 90.0 20.0 0.10 0.04 

 
a A significant P-value indicates there is evidence of bias between the sampling methods and therefore the kappa value is biased. 
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 Abstract 

 Mannheimia haemolytica is a major bacterial component of bovine respiratory disease 

(BRD); unfortunately, very little is known about M. haemolytica transmission dynamics among 

cattle. Identifying potential variation in M. haemolytica populations over time and induction of 

nasopharyngeal colonization and subsequent shedding are 2 areas where knowledge is lacking. 

In our study, 2 separate loads of 20 mixed-origin, male calves were purchased through an order 

buyer on different dates. Deep nasopharyngeal cultures (NPC) were performed on all calves on 

arrival and, if M. haemolytica–negative, a second screening culture was obtained. Calves that 

were negative on 2 initial NPCs (NEG; n = 4) were subsequently challenged with a previously 

isolated field strain of M. haemolytica in both the upper and lower respiratory tract, individually 



22 

housed, and then monitored for M. haemolytica shedding via NPCs at 0.5, 1, 3, 5, 7, and 9 days 

postchallenge. Naturally M. haemolytica–positive calves (2 per load) were kept for additional 

daily cultures (POS; n = 4). Individual calf M. haemolytica status for both the POS and NEG 

groups was inconsistent between study days. Additionally, pulsed-field gel electrophoresis 

performed on isolates from the positive cultures showed that the NEG calves did not shed the M. 

haemolytica challenge strain, but rather 2 distinct clusters of M. haemolytica were shared among 

POS and NEG calves regardless of their initial status. Although sample sizes were small, these 

findings illustrate how variable the results of a single nasopharyngeal swab can be and the 

challenges of using an individual culture to truly represent animal M. haemolytica status. 

 

 Introduction 

 Bovine respiratory disease (BRD) is widely considered the most common and costly 

postweaning beef cattle disease.17,18,25 Although BRD is truly a multifactorial disease with bacterial, 

viral, environmental, and host factors involved, Mannheimia haemolytica is the most frequently 

isolated bacterial pathogen from BRD cases.16,17,24 Mannheimia haemolytica has many virulence 

factors that have been identified, and M. haemolytica may transition from being a commensal 

organism within the nasal passages into a pulmonary pathogen.16 Unfortunately, it is unclear how 

M. haemolytica makes this transition, and whether a specific M. haemolytica isolate is likely to 

transfer from calf to calf within a population. A variety of methods have been used to explore M. 

haemolytica population dynamics over the years including serotyping,1 plasmid typing,7 and 

selective culture15 with pulsed-field gel electrophoresis (PFGE) gaining popularity because of its 

high discriminatory power and medium-to-high repeatability.18,24 
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 Because definitive antemortem diagnosis of BRD based on clinical signs can be difficult,4 

additional diagnostic aids such as nasal cultures, transtracheal cultures, transtracheal washes, and 

bronchoalveolar lavages have been used in both research and clinical settings.2,6,9,10 Although 

several studies13,15,19 have attempted to use nasopharyngeal culture (NPC) as a way to describe the 

population of M. haemolytica within individual calves and how it moves within a group of calves, 

it remains an imperfect test. Other studies have attempted to correlate NPC results with cultures 

obtained elsewhere in the respiratory tract with mixed results.2,8,10,15,24 Although inoculation of 

calves with M. haemolytica can induce BRD,7,14 a repeatable model for M. haemolytica inoculation 

that results in subsequent shedding has not been established. 

 

 The objectives of our pilot study were to describe the arrival M. haemolytica status in a 

group of calves via NPC, identify negative animals (NEG), and evaluate the ability of an artificially 

inoculated M. haemolytica strain to colonize and shed from those negative calves. Additionally, this 

pilot study sought to identify healthy, naturally M. haemolytica– positive calves (POS) on arrival 

and evaluate the shedding patterns of M. haemolytica in those calves via NPC. 

 

 Materials and Methods 

 Calf selection and management 

 Two loads of 20 male calves were procured through an order buyer from local livestock auction 

markets and transported to the Kansas State University Large Animal Research Center (Manhattan, 

Kansas; total n = 40). Within a few hours of arrival, all calves were weighed and individually identified 

with ear tags. Additionally, the nasopharynx of each calf was cultured by passing a single guarded 

calcium alginate swaba through the right external nares. The guarded swab was then guided into the 
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caudal nasal passage where the inner swab was passed through the guard, rotated against the nasal 

mucosa, and retracted back into the guard prior to removal from the nasal passages. The swab was placed 

immediately into sterile transport mediab and either temporarily refrigerated or submitted directly to the 

Kansas State Veterinary Diagnostic Laboratory (Manhattan, KS) for aerobic culture. None of the calves 

received antimicrobial treatment for the control of BRD, vaccinations, or implants at any time during 

the study, and any animal that required antimicrobial treatment for clinical disease was removed from 

the study. Based on the results of the initial screening culture(s), calves were segregated into culture-

positive (POS) and culture-negative (NEG) groups (Figure 2.1). 

 

 During the prechallenge period, all calves were housed in open-air, dirt-floor group housing 

pens with a total area of 297 m2 per pen and provided with an adequate amount of bunk space, access 

to water, and shelter. In order to prevent any possible nose-to-nose contact, calves were individually 

housed immediately following challenge in either identical open-air, dirt-floor pens or in identical 

13.4 m2 stalls. Within the 2 types of housing, the challenged calves were managed similarly. 

Throughout the trial, calves were fed a diet consisting of a grain mix with grass hay and water made 

available ad libitum. Calf management and sampling procedures described were part of a protocol 

approved by the Kansas State University Institutional Animal Care and Use Committee. 

 

 Preparation of challenge media 

 A M. haemolytica isolate obtained from a field case of BRD and used in a prior challenge 

study5 was grown on a 5% ovine blood agar plate in a CO2 incubator at 37 ̊C for 18–22 hr. Isolated 

colonies were inoculated into brain–heart infusion broth and incubated for 16–18 hr at 37 ̊C on a 

rotary shaker. The bacteria were then pelleted via centrifugation at 15,000 × g for 20 min, washed 
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3 times in sterile phosphate buffered saline (PBS), and re-suspended in sterile PBS to an optical 

density (OD) of 1.8–2.0 at 600 nm. This OD corresponds to a bacterial concentration of 3 × 108 

colony forming units (CFU)/mL as determined by a standard curve of M. haemolytica CFUs versus 

OD at 600 nm. 

 

 Challenge and sampling of negative calves 

 Four NEG calves were restrained in a chute with their heads elevated and stabilized using a 

rope halter. A 5.9-mm endo-scope with 2-mm biopsy channelc was introduced into the right nasal 

passage of each calf and passed through the nasopharyngeal region and laryngeal folds into the 

trachea and advanced to the right cranial tracheobronchus. A 140-cm polyurethane catheter was then 

passed through the endoscopic biopsy channel, and 10 mL of M. haemolytica inoculum (3 × 108 

CFU/mL in PBS) followed by 60 mL of sterile PBS was administered. Following the endoscopic 

challenge, calves were also inoculated with 2 mL of M. haemolytica (3 × 108 CFU/mL in PBS) 

deposited into the right nasal passages via a syringe. 

 

 Using the deep nasopharyngeal sample collection technique described above, samples for 

culture were collected at 0.5, 1, 3, 5, 7, and 9 days postchallenge from the right nasopharyngeal 

area. Rectal temperatures were also recorded at the time of each NPC. Potential shedding of the 

challenge organism was determined by comparing the PFGE pattern of a single M. haemolytica 

isolate from each positive culture plate with the known challenge strain. 

 

 Challenged calves were euthanized via a penetrating captive boltd according to the 

American Veterinary Medical Association Guidelines (https://www.avma.org/KB/Policies/ 
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Documents/euthanasia.pdf), and a full autopsy was performed 10 days postchallenge. During 

autopsy, the lungs were removed intact and then weighed; lung lesions were scored by an 

experienced veterinarian using a standardized system12 similar to previous work.4,5,23 

 

 Monitoring of naturally M. haemolytica-positive calves 

 Four naturally POS calves (2 from each load) were retained after initial screening for further 

monitoring of NPC status. Prior to the start of daily cultures, all 4 calves were confirmed culture 

positive for M. haemolytica, and up to 10 isolates were selected and frozen per calf for later PFGE 

comparison. If <10 distinct colonies were present on the plate, all M. haemolytica isolates were 

selected from the plate and frozen for later PFGE comparison. Once the second confirmatory culture 

results were obtained, NPCs were performed daily for 3 days as the calves continued to be monitored 

for clinical signs of illness. Single isolates were retained from each positive daily culture and 

examined by PFGE. 

 

 Clinical illness scores 

 All calves were observed by the same veterinarian (SF Capik) twice daily throughout the 

study (morning and evening) for any signs of illness and assigned a clinical illness score (CIS) 

based on the following criteria: 0 = normal calf, 1 = mild signs of depression, 2 = moderate 

depression, 3 = severe depression, and 4 = severe prostration and/or recumbence.21 Following 

arrival and prior to challenge, any calf with a CIS of >0 was evaluated by a veterinarian and appro-

priate treatment applied. If antimicrobial treatment was deemed necessary at any time after arrival, 

the animal was treated and excluded from the study. Any calf given a clinical illness score of 4 at 

any point during the trial was humanely euthanized and an autopsy performed. 
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 Microbiology culture methods 

 Nasopharyngeal swabs were rolled directly onto trypticase soy agar plus 5% sheep blood 

(SBA) and chocolate agar plates. Using a sterile loop, multiple passes (in a single continuous streak) 

were made through the inoculated area of the agar plates. A second sterile loop was used, in the same 

manner, from the second to third quadrants of the agar plate so that isolated colonies would be 

present. The SBA and chocolate plates were incubated at 37°C in 5% CO2 for 18–24 hr. Following 

incubation, plates were examined, and colonies suspected to be M. haemolytica were either re-

streaked for isolation or identified directly (depending on degree of colony isolation and phase of 

project). For the second confirmatory culture of POS calves in which up to 10 isolates were selected 

for PFGE, isolates were chosen preferentially from colonies that were either 1) phenotypically 

different or 2) distinct from background growth. All bacterial identification was performed using 

matrix-assisted laser desorption ionizatione according to the manufacturer’s instructions. Isolates, in 

pure culture, were stored in Brucella broth plus 10% glycerol at –80ºC for further PFGE analysis. 

 

 Pulsed-field gel electrophoresis 

 Actively growing, pure bacterial cultures on blood agar plates were collected using sterile cotton 

swabs and resuspended in a buffered resuspension solution (100 mM Tris–HCl, pH 8.0, and 100 mM 

ethylenediamine tetra-acetic acid [EDTA]). Cell concentration was adjusted to 0.72 units,f and 200 μL 

of the cell suspension was mixed with 200 μL of 1.2% agarose in water and proteinase K at 0.5 mg/mLg 

and dispensed into plug molds.h Bacteria-containing agarose plugs were lysed in the presence of 50 mM 

Tris–HCl (pH 8.0), 50 mM EDTA, 1% sarkosyl, and 0.32 of mg/mL proteinase K at 54°C with constant 

agitation. Plugs were successively washed with distilled water and 10 mM Tris–HCl (pH 8.0) and 1 
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mM EDTA at 50°C with constant agitation. Agarose slices were digested with SmaI restriction enzymei 

for 2 hr according to manufacturer’s instructions, and electrophoresis was performedj on a 1% agarose 

gelk with 0.5× Tris–borate–EDTA buffer (50 mM Tris–HCl, pH 8.4, 45 mM boric acid, and 0.5 mM 

EDTA) at 14°C. Salmonella enterica subsp. enterica serovar Braenderup ATCC BAA-664 was used 

as a molecular weight marker strain, and plug DNA from that organism was digested with XbaI.l The 

molecular weight marker DNA was interspersed in lanes at regular intervals across each agarose gel 

in order to normalize banding patterns both within and between agarose gels. Electrophoresis 

conditions were Block 1: Initial Switch Time 2.0 sec, Final Switch Time 5.0 sec, Run Time 12 hr; 

Block 2: Initial Switch Time 2.0 sec, Final Switch Time 5.0 sec, Run Time 12 hr; for both blocks: 

colts/cm: 5.6, V, Included Angle: 120°, 24 hr total. Agarose gels were stained with 1 μg/μL of ethidium 

bromide, destained, and an image obtained.m Clustering analysis was performedn using the Dice 

coefficient and the unweighted pair group method with arithmetic mean clustering method with 

settings for optimization: 1.0%, band tolerance: 1.5%. A 90% similarity threshold cutoff value was 

used when comparing the challenge strain and the cultured isolates.26 

 

 Results 

 The average weights of load 1 (arrived on 06/10/2013) and load 2 (arrived on 06/14/2013) 

were 169.3 kg and 165 kg, respectively. Between the 2 loads, a total of 32 bulls and 8 steers were 

enrolled in the study (Figure 2.1). After the initial screening culture, only 26 culture-negative 

calves remained eligible for the second screening culture. Following the second screening culture, 

4 calves remained culture-negative (2 from each load) and were retained for challenge (NEG). 

Additionally, 4 culture-positive calves (2 from each load) were kept for additional monitoring 

(POS). 
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 NEG calves 

 Following an observation period of 7–10 days in which the NEG calves (n = 4) were 

determined to be healthy, challenge was performed on trial day 0. Throughout the 10-day 

postchallenge period, only 1 calf (no. 75) received a clinical illness score of 1 on trial days 3, 4, 7, 8, 

and 9 after showing signs of mild depression and heat stress. All other calves appeared clinically 

normal throughout the trial, and no signs of respiratory disease were noted. Although rectal 

temperatures did not directly correlate with CIS or culture results, it was noted that calf 75 had a 

consistently elevated rectal temperature (>40°C) throughout the trial. Two other calves (23 and 54) 

had elevated rectal temperatures (>40°C) on trial day 0.5, and calf 23 also had an elevated rectal 

temperature (>40°C) on trial day 3. 

 

 Postchallenge NPCs revealed consistent results for 3 of the 4 negative calves but 

inconsistent shedding and day-to-day variability in 1 calf (Table 2.1). The use of PFGE analysis on 

a single isolate taken from each M. haemolytica–positive culture plate showed 2 distinct clusters of 

M. haemolytica (cluster A and cluster B) using a 90% similarity threshold cutoff value.26 

Comparison of cluster A and cluster B to the challenge strain using the same 90% similarity 

threshold cutoff value revealed that the challenge strain was unrelated to all M. haemolytica isolates 

selected from study animals (Figure 2.2). Additionally, within the 3 calves that cultured positive 

after challenge, calves 54 and 23 shed isolates that fell within cluster B while calf 75 shed isolates 

that were consistent with cluster A. 
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 All 4 NEG challenged calves had prominent right cranioventral pulmonary lesions. Among 

the calves, total consolidation ranged from 10.1% to 37.6% with a median lung score of 19%, and 

lung weight as a percentage of body weight ranged from 0.93% to 1.47% with a median of 1.04%. 

Pleural adhesions were present in 3 of the 4 calves and 1 calf (no. 75) had reactive tracheobronchial 

lymph nodes. Despite gross evidence of BRD consistent with previous M. haemolytica challenge 

models, bacterial cultures of fresh lung samples from all 4 calves were negative for M. haemolytica. 

 

 POS calves 

 All 4 naturally M. haemolytica–positive calves remained clinically healthy throughout the 

monitoring period. Despite each of the calves having 2 prior positive cultures, the culture results 

from the 3 days of monitoring were inconsistent (Table 2.2). The PFGE analysis of the multiple 

isolates taken from the second confirmatory culture (calf 24: 10 isolates; calf 51: 1 isolate; calf 59: 

10 isolates; calf 68: 5 isolates), and the single isolates taken from the daily culture fell within the 

same cluster A and cluster B equivalent to those seen in the NEG calves. Additionally, calf 59 had 

isolates that were consistent with both cluster A (9/10 isolates) and cluster B (1/10 isolates) on the 

second confirmatory culture. The isolates obtained from calf 51 alternated between cluster A and 

cluster B depending on the sampling day. 

 

 Discussion 

 The fluctuations in culture status and cluster seen within all phases of our pilot study raise 

questions about both the pattern of M. haemolytica shedding and the ability of an individual culture 

swab to give a true representation of the M. haemolytica status of a calf. Prior work20 found M. 

haemolytica present only on the surface of the nasal epithelium and indicated that a negative nasal 



31 

swab culture did not necessarily mean that M. haemolytica was absent from the nasal cavity. Other 

work also showed that M. haemolytica was isolated irregularly even when both right and left sides of 

the anterior and posterior nasal meatuses of calves were swabbed multiple times a day for several days 

in a row.19 The results of our study seem to support these previous studies, as the culture status of each 

calf within the NEG and POS groups was not always consistent even when daily samples were taken. 

 

 Given the multifactorial nature of BRD, the limitations of available diagnostic tests, and the 

knowledge gaps that exist regarding the hypothesized conversion of M. haemolytica from commensal 

to pathogenic, the prevalence of M. haemolytica in calves on arrival at a facility can be difficult to 

establish. Our study found considerable differences in the results of the arrival screening cultures 

performed on the 2 separate loads of calves we received, with load 1 having an apparent prevalence 

of 60% and load 2 having an apparent prevalence of 10% (Figure 2.1). However, when the second 

screening culture was performed several days later on previously culture-negative calves, the 

cumulative apparent prevalence for each load became 88.2% and 89.5%, respectively. The drastic 

change in apparent prevalence seen in load 2 may reflect the limitations of a single culture and the 

unknown dynamic nature of M. haemolytica shedding. Because these calves were commingled while 

awaiting the results of the culture, it is also possible that this change in prevalence could signify 

potential transmission. However, since our study was not designed to identify transmission, PFGE 

was not performed on the arrival screening cultures and therefore we are unable to provide evidence 

either for or against transmission of M. haemolytica in this study. Regardless of the exact cause, the 

change in apparent prevalence between screening cultures further emphasizes the potential problem 

with using a single culture at a single point in time or even 2 cultures interpreted in parallel to give an 

accurate assessment of M. haemolytica status. 
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 There are many possible reasons why a single culture may not be sufficient to accurately 

represent the culture status of a calf even when samples are obtained and handled properly. First, 

when compared with the large surface area of a calf’s nasal passages, the surface area of a culture 

swab and the area it can sample are relatively small. Taking into account the potential diverse and 

dynamic microbial flora of the nasal mucosa of a calf, the potential for competitive inhibition, the 

unknown natural shedding pattern of M. haemolytica, and the variable rate of mucous production, it 

is not surprising that 1 culture swab cannot necessarily correctly classify a calf as negative. 

 

 Analysis by PFGE was instrumental in helping to characterize the clusters of M. haemolytica 

that were isolated, and allowed for the comparison of the similarity of the challenge strain to each 

selected isolate. Additionally, the PFGE results raised concerns about expecting a single culture to 

provide a true representation of the M. haemolytica population within the nasopharynx. The 

challenge strain used in this study was taken from a prior clinical case of BRD, had been utilized in 

another challenge study,5 and, based on lesions observed during autopsy, was successful in inducing 

comparable pneumonic lesions. However, none of the isolates saved from the postchallenge NPCs 

matched the challenge strain, based on a 90% similarity threshold value, even though the challenge 

strain was placed in both the nasal cavity and the lung. Whether this was a result of the challenge 

strain not being an efficient colonizer in the presence of the other M. haemolytica types isolated from 

the NEG calves, not being present in the small area from which the swab was taken, or not being the 

single isolate selected from the colonies on the plate for PFGE analysis remains unclear. 
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 The PFGE results from the POS calves showed that it is possible, when multiple isolates are 

taken from a single plate, to find more than 1 cluster of M. haemolytica. A preliminary report 

presented as a poster at the 2014 BRD Symposium (Taylor et al., Use of pulsed-field gel 

electrophoresis for characterization of Mannheimia haemolytica isolates from the upper and lower 

respiratory tracts of cattle, Poster presentation at the Bovine Respiratory Disease Symposium, 2014 

July 30–31, Denver, Colorado) also indicated that more than 1 pulse-type of M. haemolytica can be 

found in an animal. Another study7 found evidence that, based on plasmid profile, 2 or more strains 

of M. haemolytica can be found within a single calf. Current bacteriology practices depend on the 

assumption that if a single isolate is selected randomly from a plate it is likely to be the most 

predominant one on the culture plate and therefore the nasopharynx.22 Although there may indeed be 

a “dominant strain” of M. haemolytica within a given sample, the selection of a single isolate is 

unlikely to be truly random and instead may suffer from unintentional selection bias due to potential 

differences in M. haemolytica colony morphology. Additionally, given the previously mentioned 

inherent limitations of NPCs, it may be unrealistic to extrapolate the results from the single isolate 

level to the entire nasopharynx. In addition to the multiple assumptions routinely made when 

performing standard bacterial culture techniques,22 it is important to remember that the goal of routine 

diagnostic methods is not to identify diversity within a sample, but to separate colonies for further 

characterization such as antimicrobial susceptibility testing. Therefore, it is possible that routine 

diagnostic methods may not be optimal for detecting diverse strains of bacteria within the original 

sample. Furthermore, controversy exists regarding the correlation of the bacteria within the upper 

respiratory tract with the bacteria in the lung8 especially at the individual calf level.2 If paired culture 

and PFGE are to be used as diagnostic tools for M. haemolytica in future studies, it would be 

extremely beneficial to know how many isolates from each culture need to be subjected to PFGE to 
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gain a true representation of the M. haemolytica strains present within each culture. Several statistical 

models involving Bayesian inference have been developed to estimate this number.3,11,22 However, to 

our knowledge, this approach has not yet been applied to M. haemolytica. 

 

 Other data collected during this pilot included CIS scores, rectal temperatures, and in the case 

of the challenged calves, lung scores, gross postmortem lesions, and lung cultures. In all phases, CIS 

and rectal temperature did not seem correlated with either NPC status or, where applicable, with lung 

lesions or lung cultures at autopsy. The negative results seen on the postmortem lung cultures could be 

a result of both the innate limitations of culture and the successful immune clearance of the bacteria by 

day 10. It is well established that rectal temperature and CIS are relatively insensitive and unspecific 

methods of diagnosing BRD27 especially when compared to gross pulmonary examination at autopsy17 

or slaughter. Therefore, the lack of correlation between CIS, rectal temperatures, and autopsy findings 

seen in our study is not surprising and may be due to several confounding factors including individually 

housing the calves, high ambient temperatures, and the large amount of normal lung tissue left in each 

calf. Despite the presence of pulmonary lesions that were comparable to those seen in other challenge 

studies,5,17 these calves still had a large amount of normal lung tissue remaining and therefore may not 

have had appreciably abnormal respiratory character or behavior. Assignment of clinical illness scores 

may also have been confounded by individually housing the calves and thus changing their behavior 

and willingness to show clinical signs when under observation. Additionally, given the high ambient 

temperature during this trial, it was difficult to discern between mild signs of respiratory disease and 

mild signs of heat stress. These 3 factors, among others, collectively made it difficult to accurately 

judge clinical illness when compared with a more typical commercial setting. 
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 Even though the sample size within each portion of our study was limited, the inconsistencies 

seen in culture status and the M. haemolytica isolates obtained suggest that caution should be used 

when interpreting the results of a single NPC and that extrapolation of the results to the entire 

nasopharynx or to the lower respiratory tract may not be possible. Furthermore, this study highlights 

the complex role of M. haemolytica in both healthy and ill animals and emphasizes the need for future 

research to further explore the epidemiology of M. haemolytica transmission. 

 

 Sources and manufacturers 

a. JorVet #J-272, Jorgensen Laboratories, Loveland, CO. 

b. Remel BactiSwab gel collection and transport system, Amies clear media; Thermo Fisher 

Scientific, Lenexa, KS. 

c. VetVu VFS-2B, Swiss Precision Products Inc., Spencer, MA. 

d. CASH dispatch kit, Accles & Shelvoke Ltd., Sutton Coldfield, West Midlands, United 

Kingdom. 

e. Bruker Daltonics Inc., Billerica, MA. 

f. Microscan turbidity meter, Dade-Behring, West Sacramento, CA. 

g. Sigma-Aldrich, St. Louis, MO. 

h. Bio-Rad Laboratories, Hercules, CA 

i. Life Technologies, Grand Island, NY. 

j. CHEF-Mapper XA system, Bio-Rad Laboratories, Hercules, CA 

k. SeaKem-Gold, Lonza Rockland Inc., Rockland, ME. 

l. Life Technologies, Grand Island, NY. 

m. VersaDoc imager, Bio-Rad Laboratories, Hercules, CA. 
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 Acknowledgements 

We would like to thank Deepti Pillai for preparation of the challenge media, and David Amrine, 

Doug Shane, and Jeremy Kramer for helping manage cattle, samples, and data.  The author(s) 

disclosed receipt of the following financial support for the research, authorship, and/or 

publication of this article: Funding was provided by Zoetis.   

  



37 

 References 

1. Al-Ghamdi GM, et al. Serotyping of Mannheimia (Pasteurella) haemolytica isolates from 

the upper Midwest United States. J Vet Diagn Invest 2000;12:576–578. 

 

2. Allen JW, et al. The microbial flora of the respiratory tract in feedlot calves: associations 

between nasopharyngeal and bronchoalveolar lavage cultures. Can J Vet Res 1991;55: 341–346. 

 

3. Altekruse SF, et al. A model to estimate the optimal sample size for microbiological 

surveys. Appl Environ Microbiol 2003;69:6174–6178. 

 

4. Amrine DE, et al. Precision and accuracy of clinical illness scores, compared with 

pulmonary consolidation scores, in Holstein calves with experimentally induced Mycoplasma 

bovis pneumonia. Am J Vet Res 2013;74:310–315. 

 

5. Amrine DE, et al. Pulmonary lesions and clinical disease response to Mannheimia 

haemolytica challenge 10 days following administration of tildipirosin or tulathromycin. J Anim 

Sci 2014;92:311–319. 

 

6. Bendall D. Case study. Use of bronchial alveolar lavage (BAL) to investigate a 

pneumonia outbreak. Livestock 2007;12: 51–52. 

 

7. Briggs RE, et al. Rapid spread of a unique strain of Pasteurella haemolytica serotype 1 

among transported calves. Am J Vet Res 1998;59:401–405. 

 

8. Caswell JL, et al. Laboratory and postmortem diagnosis of bovine respiratory disease. 

Vet Clin North Am Food Anim Pract 2012;28:419–441. 

 

9. Cooper VL, Brodersen BW. Respiratory disease diagnostics of cattle. Vet Clin North Am 

Food Anim Pract 2010;26:409– 416. 

 

10. DeRosa DC, et al. Comparison of Pasteurella spp. simultaneously isolated from nasal 

and transtracheal swabs from cattle with clinical signs of bovine respiratory disease. J Clin 

Microbiol 2000;38:327–332. 

 

11. Döpfer D, et al. Assessing genetic heterogeneity within bacterial species isolated from 

gastrointestinal and environmental samples: how many isolates does it take? Appl Environ 

Microbiol 2008;74:3490–3496. 

 

12. Fajt VR, et al. The effects of danofloxacin and tilmicosin on neutrophil function and lung 

consolidation in beef heifer calves with induced Pasteurella (Mannheimia) haemolytica 

pneumonia. J Vet Pharmacol Ther 2003;26:173–179. 

 

13. Frank GH, et al. Effects of vaccination prior to transit and administration of florfenicol at 

time of arrival in a feedlot on the health of transported calves and detection of Mannheimia 

haemolytica in nasal secretions. Am J Vet Res 2002;63: 251–256. 



38 

 

14. Gibbs HA, et al. Experimental production of bovine pneumonic pasteurellosis. Res Vet 

Sci 1984;37:154–166. 

 

15. Godinho KS, et al. Use of deep nasopharyngeal swabs as a predictive diagnostic method 

for natural respiratory infections in calves. Vet Rec 2007;160:22–25. 

 

16. Griffin D, et al. Bacterial pathogens of the bovine respiratory disease complex. Vet Clin 

North Am Food Anim Pract 2010;26:381–394. 

 

17. Hanzlicek GA, et al. Serial evaluation of physiologic, pathological, and behavioral 

changes related to disease progression of experimentally induced Mannheimia haemolytica 

pneumonia in postweaned calves. Am J Vet Res 2010;71:359–369. 

 

18. Klima CL, et al. Comparison of repetitive PCR and pulsed-field gel electrophoresis for 

the genotyping of Mannheimia haemolytica. J Microbiol Methods 2010;81:39–47. 

 

19. Magwood SE, et al. Nasal bacterial flora of calves in healthy and in pneumonia-prone 

herds. Can J Comp Med 1969;33:237–243. 

 

20. Pass DA, Thompson RG. Wide distribution of Pasteurella haemolytica type 1 over the 

nasal mucosa of cattle. Can J Comp Med 1971;35:181–186. 

 

21. Perino LJ, Apley MD. Clinical trial design in feedlots. Vet Clin North Am Food Anim 

Pract 1998;14:343–365. 

 

22. Singer RS, et al. A statistical model for assessing sample size for bacterial colony 

selection: a case study of Escherichia coli and avian cellulitis. J Vet Diagn Invest 2000;12:118–

125. 

 

23. Theurer ME, et al. Effect of Mannheimia haemolytica pneumonia on behavior and 

physiologic responses of calves during high ambient environmental temperatures. J Anim Sci 

2013;91:3917–3929. 

 

24. Timsit E, et al. Transmission dynamics of Mannheimia haemolytica in newly-received 

beef bulls at fattening operations. Vet Microbiol 2013;161:295–304. 

 

25. Torres S, et al. Field study of the comparative efficacy of gamithromycin and 

tulathromycin for the treatment of undifferentiated bovine respiratory disease complex in beef 

feedlot calves. Am J Vet Res 2013;74:847–853. 

 

26. van Belkum A, et al. Guidelines for the validation and application of typing methods for 

use in bacterial epidemiology. Clin Microbiol Infect 2007;13(Suppl 3):1–46. 

 



39 

27. White BJ, Renter DG. Bayesian estimation of the performance of using clinical 

observations and harvest lung lesions for diagnosing bovine respiratory disease in post-weaned 

beef calves. J Vet Diagn Invest 2009;21:446–453. 

  



40 

Figure 2.1 – Summary of Mannheimia haemolytica screening cultures performed on each load of 

calves and selection of calves for inclusion within the final NEG challenge pilot. NEG = negative 

for M. haemolytica on 2 screening nasopharyngeal cultures interpreted in parallel. 
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Figure 2.2 –Pulsed-field gel electrophoresis dendrogram and cluster analysis for all Mannheimia 

haemolytica–positive nasopharyngeal cultures following challenge of NEG calves (n = 4). A 

single isolate was obtained from each M. haemolytica–positive culture plate and compared to the 

Kansas State University (KSU) M. haemolytica challenge strain using a 90% similarity threshold 

cutoff value. Two distinct clusters of M. haemolytica were identified as denoted by the A and B. 

NEG = negative for M. haemolytica on 2 screening nasopharyngeal cultures interpreted in 

parallel.  
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Table 2.1 – Nasopharyngeal culture results over time from NEG calves (n = 4) challenged with 

Mannheimia haemolytica via both intranasal and endoscopic routes at time 0.* 

 

Calf no. 

Nasopharyngeal culture result for M. haemolytica on 

the indicated day 

 Lung culture 

result for M. 

haemolytica 

Day 0.5 Day 1 Day 3 Day 5 Day 7 Day 9  Lung, Day 10 

63 – – – – – –  – 

23 + + + + + +  – 

54 + + + + + +  – 

75 – + + – – –  – 

 

* NEG = negative for Mannheimia haemolytica on 2 screening nasopharyngeal cultures 

interpreted in parallel; + = positive; – = negative.  
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Table 2.2 – Nasopharyngeal culture results for Mannheimia haemolytica from confirmatory 

cultures performed on day –4 (5 days prior to initiation of monitoring period) and subsequent 

daily samples obtained from naturally M. haemolytica–positive calves (n = 4). 

 

Calf no. Day -4 Day 1 Day 2 Day 3 

24 + – + – 

51 + – + + 

59 + – + + 

68 + – + – 
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 Abstract 

Objective 

Examine the culture results, gamithromycin susceptibility, predictive values, and agreement of 

pooled bilateral nasopharyngeal swabs (NPS) and bronchoalveolar lavages (BAL) for 

identification of Mannheimia haemolytica genotypes, Pasteurella multocida, and Histophilus 

somni in calves treated for Bovine Respiratory Disease (BRD).   

Animals 

28 beef calves with clinical BRD.  

Procedures 

Bilateral pooled NPSs and blind BALs were obtained from calves pre-treatment and at several 

points post-treatment with gamithromycin treatment.  Up to 12 M. haemolytica, 6 P. multocida, 

and 6 H. somni colonies were selected from each sample for gamithromycin susceptibility 

testing; whole-genome sequencing was performed on all M. haemolytica isolates.  Kappa values 

and predictive values for organism presence were calculated from the 28 paired samples obtained 

on day 5 post-treatment.  

Results 

Prevalence of M. haemolytica, P. multocida, and H. somni was 21%, 21%, and 11% respectively 

5 days post-treatment and kappa values for BAL/NPS were 0.71, 0.81, and 0.78 respectively.  

When BAL results were considered the gold standard, the positive and negative predictive values 

of NPS were: 67% and 100% for M. haemolytica; 75% and 100% for P. multocida; and 100% 

and 96% for H. somni, respectively.  Gamithromycin susceptibility of isolates varied within the 

same sample and between paired NPS and BAL samples.  
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Conclusions and Clinical Relevance 

In this study, NPS and BAL showed high agreement and a high negative predictive value of NPS 

along with the potential for different susceptibility profiles from paired NPS and BAL samples. 

 

Abbreviations: 

BAL  Bronchoalveolar Lavage 

BRD  Bovine Respiratory Disease 

LRT  Lower Respiratory Tract 

MIC  Minimum inhibitory concentration 

NPS  Nasopharyngeal Swab 

NPV  Negative predictive value 

PPV  Positive predictive value 

SE  Sensitivity 

SP  Specificity 

URT  Upper Respiratory Tract 

 

 Introduction 

 Although extensively studied for many years, BRD is still the most costly disease facing 

the beef cattle industry1 and significant knowledge gaps exist regarding the epidemiology of 

BRD.  As a disease with a complex causal-web, BRD has multiple contributing factors including 

host immunity, stressors, viruses, and bacterial agents such as Mannheimia haemolytica, 

Pasteurella multocida, and Histophilus somni.2  These three bacteria are commonly implicated, 

either together or separately, in BRD outbreaks and diagnostic testing of high-risk or ill animals 
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to identify these bacteria and their in vitro antimicrobial susceptibility can be used to formulate 

control and therapeutic regimens.   

 

 Several studies have explored the use of various antemortem and postmortem methods 

for obtaining samples for bacterial cultures from the respiratory tracts of calves including: nasal 

swabs, transtracheal swabs, transtracheal washes, nasopharyngeal swabs (NPS), bronchoalveolar 

lavages, lung lavages, lung swabs, and lung tissue cultures, for further diagnostic testing.3-9  Each 

sampling technique has strengths and limitations based on materials and equipment needed, level 

of restraint required, degree of invasiveness, time and skill needed to obtain the samples, and 

area of the respiratory tract sampled during the procedure.  When comparing potential sampling 

locations, obtaining an antemortem URT sample is simpler than an antemortem LRT sample as it 

requires less materials, time, and skill.  However, if an antemortem sample of the LRT is truly 

desired, performing a blind BAL is more practical, economical, and faster than methods 

requiring an endoscope or transtracheal wash; this is especially true when multiple calves need to 

be sampled over a short time-span without cross-contamination.  Additionally, BALs are less 

invasive than transtracheal washes and are well-tolerated without sedation.  One advantage to 

using an endoscope-guided sampling method lies in the ability to obtain a sample from a specific 

lung lobe, usually the right cranial lung lobe, which is commonly affected in calves experiencing 

BRD5 and may yield different diagnostic results than other, less affected lung lobes.  However, a 

significant disadvantage of using an endoscope lies in the need to decontaminate the endoscope 

between animals versus using a single sterile tube for each BAL collection.  One disadvantage of 

both blind and endoscopic BALs is the potential introduction of organisms from the nasal 

passages into the lungs.  This can be partially mitigated via the use of a guarded endoscope, but a 
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comparison of guarded vs. unguarded BAL and the impact it has on bacterial flora has not, to the 

authors’ knowledge, been performed.  However, regardless of sampling location or method, all 

sampling techniques are eventually hampered by the limitations associated with culturing the 

organisms and the potentially complex ecology of the native microbial flora in an individual 

animal.10 

 

 This current project focused on the use of bilateral NPS as a means for antemortem 

sampling of the URT and BAL as a means for antemortem sampling of the LRT.  Each can be 

done relatively easily and quickly in the field using basic restraint via a squeeze chute and 

halter(s) and are relatively non-invasive compared to other techniques.  Additionally, both 

sample collection methods are relatively well-tolerated by calves and require minimal technical 

expertise.  However, there is some controversy in the literature regarding the agreement of LRT 

and URT samples and their ability to adequately portray the organisms present.4-6  Furthermore, 

to the authors’ knowledge, there is no comparison of bacterial culture results from pooled 

bilateral NPS and BAL samples available in the literature.  Therefore, the purpose of this report 

is to compare the culture results, gamithromycin susceptibility profiles, positive and negative 

predictive values, and agreement of pooled bilateral NPS vs. BAL for identification of M. 

haemolytica genotypes, P. multocida, and H. somni in beef calves that have been treated for 

BRD. 
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 Materials and Methods 

 Animals 

 Twenty-eight calves originating from a larger study population of 180 commingled, 

mixed-breed high-risk steers described elsewhere3 met the case definition for BRD and were 

treated according to label directions with gamithromycin.  Data from two morbid calves who, 

because they did not finish their post-treatment interval and could not be classified as a treatment 

success or failure were not included in the previously mentioned publication3, are included in 

this study since day 5 post-treatment samples were obtained from them.  Calves were randomly 

assigned to sampling group 1, 2 or 3 so that approximately equal numbers of calves were 

assigned to each sampling group.  Samples were obtained via NPS and/or BAL at the time of 

treatment (Day 0), 0.5, 1, and/or 5 days after treatment with gamithromycin according to 

assigned sampling group as described in Table 3.1 as part of the sample collection required for 

another study3 which was approved by the Kansas State University Institutional Animal Care and 

Use Committee (Protocol # 3338). 

 

 NPS method 

 Nasopharyngeal swabs were obtained from both nostrils of each sick animal via double 

guarded sterile equine culture swabsa that were guided through the nasal passages until 

encountering resistance at a point approximately equivalent to the distance between the medial 

canthus of the eye and the end of the muzzle.  The entire double guarded swab was then retracted 

a short distance so that the culture swab could be advanced through both the outer and inner 

guards and rotated against the nasopharyngeal mucosa; once several rotations were made, the 

swabs were retracted back into the guards for removal from the nasal cavity.  The samples from 
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the left and right nasopharyngeal areas were pooled into a single vial of liquid Amies culture 

media and placed on ice prior to culture as described by DeDonder et al.3   

 

 BAL method 

 Bronchoalveolar lavage fluid was obtained in a manner adapted from a previous 

publication8 by restraining non-sedated cattle in a squeeze chute with two rope halters to lift and 

extend their heads as depicted (Figure 3.1).  A BAL-240 tubeb was then inserted through the 

nares and guided into the trachea until blindly wedging in a bronchus.  Correct placement was 

verified via the elicitation of the coughing reflex, movement of air in the tube during breathing, 

and/or the absence of rumen contents, gurgling, or rumen odor coming from the tube.  Once 

wedged in the appropriate location, a total of 240 mL of sterile saline was infused and 

immediately aspirated in the following manner without inflating the cuff on the tube: first dose 

of 120 mL, second dose of 60 mL, and third dose of 60 mL.  Approximately 135-175 mL of 

bronchoalveolar lavage fluid was obtained from each calf and was divided equally into 4 conical 

vials.  Each vial was kept on ice until centrifugation within 40 minutes of collection; a cell pellet 

was chosen at random and then resuspended in liquid Amies for bacterial culture as described 

previously.3 

 

 Bacterial culture and determination of gamithromycin susceptibility 

 Microbiological culture methods and sample handling for both NPS and BAL samples 

are described in detail elsewhere.3  For the purposes of calculating kappa and predictive values in 

this study, the presence of a single M. haemolytica, P. multocida, or H. somni colony on a plate 

was interpreted as positive for that NPS or BAL sample.  Detailed methods regarding the 
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performance of gamithromycin susceptibility testing via broth microdilution of up to 12 M. 

haemolytica colonies and up to 6 P. multocida colonies are also described elsewhere3 with up to 

6 additional H. somni colonies per sample tested with slight modification of CLSI guidelines.11 

In brief, H. somni cultures were cultivated on Chocolate II agar plates in 5% ± 2% CO2, at 37°C, 

for 24 h. Resulting colonies were picked to 5 ml cation-adjusted Mueller-Hinton broth tubes to 

achieve an optical density equivalent to 0.5 McFarland standard. This suspension was used to 

inoculate 2X Veterinary Fastidious Mediumc (15 µL per 1 mL), and the resulting bacterial 

suspension was dispensed into custom frozen susceptibility platesd, 50 µL per well, then sealed 

with sealing film prior to incubation in 5% CO2 at 37°C for 24 h. Growth was visually inspected 

and gamithromycin MIC determined as the lowest concentration preventing visible growth. 

Current CLSI guidelines were used in establishing whether an isolate was susceptible (S), 

intermediate (I), or resistant (R) to gamithromycin.11 

 

 Genomic sequencing, bioinformatics, and phylogenetic analysis of M. haemolytica 

 A nucleotide polymorphism-based typing method was developed from the M. haemolytica 

isolates characterized in this study, and additional isolates from other sources; the method is being 

reported in detail in a separate manuscript.12  Briefly, single colony isolates of M. haemolytica 

were grown overnight (approx. 16-20 h) in 1 mL of Brain Heart Infusion broth with no shaking in 

96 deep well blocks.  DNA extractions were performede and DNA samples were quantified via 

fluorometerf according to the manufacturer’s instructions.  Nextera XT DNA libraries were 

constructed with original A Indices kits and sequenced.g  A minimum of 10X sequence reads per 

genome was obtained for each isolate sequenced.  Each library was mapped to a closed circular 

M. haemolytica genome available in GenBank (CP004752),13 using the Bowtie 2 mapping 
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algorithm for SNP identification. Bootstrapped Neighbor-Joining phylogenetic trees were 

constructed from concatenated SNP genotypes of each isolate using an F84 substitution.h The trees 

were generated and graphically displayed using publicly available software.i,14  

 

 Data analysis 

 Due to the small number of BRD cases, 2 x 2 tables were created for the results of the 

paired NPSs and BALs performed 5 days post-treatment (n = 28 calves) for each of the three 

organisms identified: M. haemolytica, P. multocida, and H. somni.  The PPV and NPV of NPS 

were calculated using the BAL result as the gold standard according to formulas described 

elsewhere.15  Additionally, the kappa statistic15 was calculated as a measure of agreement 

between the two diagnostic methods for each target organism isolated.   A kappa statistic ≤ 0 was 

indicative of poor agreement, from 0.01 to 0.2 was indicative of slight agreement, from 0.21 to 

0.4 was indicative of fair agreement, from 0.41 to 0.6 was indicative of moderate agreement, 

from 0.61 to 0.8 was indicative of substantial agreement, and from 0.81 to 1.0 was indicative of 

almost perfect agreement.16  To evaluate the potential for bias between NPS and BAL, the Exact 

McNemar significance probabilityj was determined for each kappa statistic with values ≤ 0.05 

considered significant evidence of bias.  Predictive values and kappa values for each organism 

were only calculated on day 5 post-treatment due to the small number of calves sampled on each 

of the other study days but each calf’s NPS and BAL microbiological profile was evaluated 

descriptively over time. 
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 Results 

 Bacterial culture results 

 Overall, 10, 15, and 4 paired NPS and BAL cultures were positive for M. haemolytica, P. 

multocida, and H. somni, respectively over all 4 sampling days.  Counts of NPS or BAL samples 

positive for M. haemolytica, P. multocida, and H. somni on day 5 post-treatment are found in 

Table 3.2.  A total of 287 separate colonies of M. haemolytica were retained for whole-genome 

sequencing from 22 individual M. haemolytica-positive NPS samples and 10 individual M 

haemolytica-positive BAL samples obtained over all 4 sampling days.  Individual NPS culture 

results for each calf on each of the sampling days for all 3 target organisms are located within 

Table A.1.  Similarly, individual BAL culture results for calves within each group are presented 

in Table A.2.  Comparison of results in Tables A.1 and A.2 revealed variation in microbiological 

profile within the same calf when comparing culture results over time; in several instances calves 

were negative for an organism prior to treatment only to be culture-positive for that organism at a 

later time point. 

 

 Agreement and predictive values of paired NPS and BAL samples collected on day 

5 post-treatment 

 The PPV and NPV of NPS for M. haemolytica when BAL was considered the gold 

standard were 67% and 100%.  Agreement between NPS and BAL for M. haemolytica was 

substantial as indicated by a kappa statistic of 0.73.15  The Exact McNemar significance 

probability for M. haemolytica was 0.25.   
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 The PPV and NPV of NPS for P. multocida when BAL was considered the gold standard 

were 75% and 100%.  Agreement between NPS and BAL for P. multocida was almost perfect as 

indicated by a kappa statistic of 0.81.15  The Exact McNemar significance probability for P. 

multocida was 0.50.   

 

 The PPV and NPV of NPS for H. somni when BAL was considered the gold standard 

were 100% and 96%.  Agreement between NPS and BAL for H. somni was substantial as 

indicated by a kappa statistic of 0.78.15  The Exact McNemar significance probability for H. 

somni was 1.0. 

 

 Whole-genome sequencing of M. haemolytica 

 Of the 287 M. haemolytica isolates obtained from NPS and BAL samples across all time 

points, genetic subtype information was not discernable for 11 isolates.  The remaining 276 M. 

haemolytica isolates were split into two clearly discernable phylogenetic clades (Figure 3.2) and 

were each further subdivided into subtypes.  Of the 10 paired NPS and BAL samples where both 

sample types were both positive for M. haemolytica, all agreed in terms of subtype (Table A.3).  

Of the 17 total individual M. haemolytica positive NPS samples and the 10 total individual M. 

haemolytica positive BAL samples, the only instance where >1 subtype of M. haemolytica was 

found in a sample at a single point in time was the NPS sample from calf #150 on day 0. 

 

 Gamithromycin susceptibility profiles 

 Due to the small number of positive paired samples for each organism both overall and 

within time point, no formal statistical measurement of agreement of gamithromycin MIC was 
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possible.  Across all time points, gamithromycin susceptibility results agreed, in terms of S, I, R 

breakpoints11 for 70% of the 10 paired NPS and BAL samples that were concurrently positive for 

M. haemolytica.  Of the 15 paired samples that were concurrently positive for P. multocida, 

gamithromycin susceptibility results agreed for 87%.  All paired samples that were concurrently 

positive for H. somni (n = 4) agreed in terms of gamithromycin susceptibility results.  A 

descriptive breakdown of gamithromycin susceptibility agreement by day and by organism can 

be found in Table 3.3.  Within all individual NPS and all individual BAL samples that were 

obtained across all time points, mixed gamithromycin susceptibility phenotypes were obtained 

from a total of 4 of 22 NPS and 1 of 10 BAL samples that were positive for M. haemolytica, 3 of 

35 NPS and 2 of 17 BAL samples that were positive for P. multocida, and 2 of 14 NPS and 0 of 

6 BAL samples that were culture positive for H. somni (Tables A.1 and A.2).   

 

 Discussion 

 Overall, these results indicate that the agreement between NPS and BAL for M. 

haemolytica, P. multocida, and H. somni in BRD cases 5 days after treatment with 

gamithromycin varied from substantial to almost perfect according to the scale reported by 

Dohoo et al.15  The measurement of agreement through the use of a kappa statistic is helpful in 

situations where there is no true gold standard or, as in this case, the more common true gold 

standard for BRD diagnosis via postmortem lung examination and culture is not feasible.15 

Although postmortem lung lavages and nasopharyngeal swabs had perfect observed agreement 

for M. haemolytica according to Table 1 in Godinho et al., their methodology for performing the 

postmortem lung lavages is not equivalent to antemortem BALs as a larger portion of the lungs 

was sampled postmortem than would be feasible antemortem.6  A review of other available 
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literature revealed that Allen et al.5 found lower levels of agreement between a single-sided NPS 

and endoscopic BAL culture obtained prior to treatment from a group of cases and controls; NPS 

did not truly predict the organisms isolated from BALs in a repeatable fashion for individual 

animals.  Within this study, the samples obtained from the left and right sides of the nasopharynx 

were pooled which may have improved the ability to identify organisms within the URT and is 

one explanation for the improved agreement between NPS and BAL.  Additionally, although the 

kappa values reported here are higher than in previous work5, it is important to remember that 

kappa is influenced, in part, by prevalence17 which may vary according to disease status or 

treatment status; therefore, agreement of NPS and BAL may vary when sampling clinical vs. 

non-clinical animals or treated vs. untreated animals.  Ultimately, careful consideration of the 

sample population is important when interpreting results and it is vital to understand that the 

agreement between NPS and BAL is a dynamic value that is not identical in all populations of 

cattle.  

 

 Across the three organisms studied on day 5 post-treatment, there was only a single 

instance where a NPS classified an animal as negative for H. somni but the organism was found 

in the BAL fluid; otherwise NPS had perfect negative predictive values for M. haemolytica and 

P. multocida when BAL was considered the gold standard.  This indicates that if an animal is 

negative via NPS for an organism after treatment, it was unlikely that the organism would be 

found in BAL fluid at that same point in time.  Interestingly, there were several instances where 

M. haemolytica or P. multocida were found within the nasopharynx but were not isolated from 

the lung which lowered the post-treatment PPV for NPS when BAL was considered the gold 

standard.  This conflicts with Table 1 from Godinho et al.6 where, in a population of untreated 
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calves, perfect positive and negative predictive values were obtained with single-sided 

nasopharyngeal swabs compared to postmortem lung lavages for M. haemolytica.  Unfortunately, 

Godinho et al.6 did not culture much P. multocida and did not have any samples culture positive 

for H. somni and, consequently, were unable to comment on the predictive values of NPS for 

those two organisms in their population.   Since the cultures here were performed 5 days after 

treatment, it is possible that the organisms were newly acquired from other calves and had not 

had the chance to proliferate sufficiently in the LRT to be detected by BAL.  Alternatively, the 

organisms may have been present in another portion of the LRT that was not sampled with the 

BAL technique, or there could be a differential drug effect within the URT and LRT that had an 

impact on microbial growth.  Additionally, given the proposed commensal status of M. 

haemolytica, P. multocida, and H. somni18 it is possible that the poor PPV of NPS at 5 days post-

treatment is analogous to the presence of these organisms in the upper airways of healthy calves 

and merely reflects a return to “normal” commensal status.  Whatever the cause, these results 

indicate it is possible that the presence of an organism in the nasopharynx after treatment is not a 

good indicator of whether or not that organism is also in the lung.  However, it is important to 

remember that predictive values are dependent on prevalence.15  Given the same diagnostic test, 

if prevalence is low, NPV will be higher and PPV will be lower; alternatively, if prevalence is 

high, PPV will be higher and NPV will be lower.  The overall number of sick calves was small in 

this study and, as expected, the overall apparent prevalence of each organism was low on day 5 

both within the nasopharynx and the lungs.  Therefore, it is unsurprising that NPS had high 

NPVs and lower PPVs after treatment. 

 



58 

 While comparing the results of the NPSs across time is not straightforward due to the 

unknown effect of gamithromycin administration and, due to the small number of cases, NPS 

results are difficult to compare beyond simple descriptive results, it is interesting to note that 

there were several instances where a calf was negative for an organism prior to treatment and yet 

the organism was found at a later point. Similar results were seen within the pre- and post-

treatment BAL culture results of the Group 1 calves; the post-treatment BAL culture results in 

Groups 2 and 3 also varied within organism over time.  This phenomenon could be a result of 

transmission between calves in the same pen; it could also be that the organism was in fact 

present in the calf’s respiratory tract on day 0 but was not successfully cultured for multiple 

reasons10 including competitive inhibition.  Additionally, there were numerous animals whose 

nasopharyngeal status remained the same – either positive or negative – for a given organism 

both on day 0 and day 5.  The consistent positives could be a result of transmission between 

calves; it is also possible that some calves may require longer than 5 days to clear an organism 

after treatment due to differences in immune response or that antimicrobial resistance within a 

given strain of bacteria would preclude the clearance of the infection.   The consistent negatives 

may be reflective of the relatively low sensitivity of culture or indicate a true absence of a given 

organism in that particular calf.  Although the interpretation of these culture results is 

complicated by the timing of treatment, variation over time is not a new finding.  For example, 

Magwood et al. found considerable variability in the isolation of M. haemolytica and P. 

multocida between the left and right nasal cavities of calves when they sampled multiple times a 

day for 5 days.9  Additionally, in a previous study, inconsistencies were found in the apparent 

prevalence of M. haemolytica in a small group of healthy calves when a single NPS was 

performed daily for 3 days.10  These results point to a dynamic relationship between organism 
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and calf and show that a negative or positive result at a given point in time does not always mean 

that the organism will be present or absent at a different sampling point.  Firm conclusions as to 

causation would require additional investigation and are outside the scope of this publication. 

 

 When comparing agreement of gamithromycin MIC within paired NPS and BAL 

samples, this study was hampered by the small sample size of clinically ill animals and the small 

number of paired samples that were both positive for each organism.  Therefore, the analysis and 

discussion of phenotypic gamithromycin susceptibility are limited to a descriptive comparison.  

Overall, the two sample sources agreed the majority of the time in terms of phenotypic 

susceptibility classifications when both NPS and BAL were positive for the organism.  The 

susceptibility results for H. somni were phenotypically the same in every instance where both 

NPS and BAL were positive, but as this only occurred 4 times out of the 56 possible paired 

samples that were taken this seeming high level of agreement may simply be an artifact of the 

low prevalence of H. somni in these calves.  For M. haemolytica and P. multocida, there were 

several instances where either a BAL or NPS sample showed isolates with different 

gamithromycin susceptibility profiles but a single susceptibility phenotype was obtained from 

the isolates in the corresponding paired sample taken at the same time.  It would seem that P. 

multocida isolates from paired NPS and BAL samples agreed, in terms of gamithromycin 

susceptibility phenotype, more frequently than M. haemolytica isolates.  However, only up to 6 

isolates of P. multocida were taken from each plate while up to 12 M. haemolytica isolates were 

tested.  This means that there were potentially less chances, per sample, of finding a P. multocida 

isolate with a different susceptibility profile.  Although a relatively rare occurrence in this 

population of clinically ill animals, the results indicate that it is possible for more than one 
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susceptibility phenotype to exist within a genera and species of bacteria isolated from a single 

sample and that the susceptibility results obtained from the nasopharynx may not always equal 

the lung and vice versa.  However, it is important to remember that in this project multiple 

isolates of each bacterial species were tested from each plate – something that is not commonly 

done in routine susceptibility testing – therefore with routine diagnostic testing of a single 

sample it is unlikely to observe mixed antimicrobial susceptibility results for a bacterial 

organism. 

 

 Although finding more than one genetic subtype of M. haemolytica in a single sample of 

the URT or LRT was a rare occurrence in this study, the overall prevalence of M. haemolytica 

was quite low and therefore the frequency of this occurring when prevalence is higher or in 

different populations may be different.  Additionally, a cap of no more than 12 isolates were 

sequenced from any given plate regardless of the number of suspect M. haemolytica colonies 

present so it is possible that there were other isolates whose genetic subtypes are not represented 

in the results.  It is also possible, given the limitations of culture methods and the dynamic 

microbial ecology within a calf’s respiratory tract, that additional M. haemolytica subtypes were 

present in the calves but were not successfully cultured.  Other possible explanations include 

competitive inhibition between certain M. haemolytica subtypes and other microbes, selective 

inhibition of certain M. haemolytica subtypes by the antimicrobial treatment or the immune 

system, selection bias of isolates in the diagnostic lab, or the presence of a true genetic subtype 

monoculture.  However, this portion of the study is merely descriptive in nature as sample size 

and low prevalence precluded statistical analysis of the likelihood of a mixed subtype sample.  

Therefore, the only firm conclusion that can be taken from this comparison of M. haemolytica 
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subtypes between NPS and BAL is that it is possible to isolate different genetic M. haemolytica 

subtypes from a single NPS sample when up to 12 isolates are examined. If the antimicrobial 

susceptibility results and subtype results for M. haemolytica are compared, it also becomes 

apparent that, although there was agreement in terms of subtype between the positive paired 

samples, there were variations in antimicrobial resistance patterns within the same M. 

haemolytica subtype.  This highlights the fact that while isolates of the same subtype are 

genetically similar, they are not genetically identical.   

 

 Even with the technology and knowledge available today, the interpretation of diagnostic 

tests from calves affected with BRD remains difficult. Whether obtained via NPS, BAL, or some 

other method, each technique is limited in the relatively small area that is being sampled,10 the 

potentially complex interactions of other microbial flora that may be present in some animals but 

not others, and the inherent limitations of current culture methods themselves.19  Further 

complicating matters is the fact that our ability to identify clinical vs. subclinical animals is often 

suboptimal20 and there may be differences in our ability to isolate target organisms during 

different stages of BRD.  Although it is possible that NPSs and BALs may not be representative 

of the entire URT and LRT,5 and disagreements regarding the presence of organisms and their 

susceptibilities can occur, there remain few alternatives for antemortem sampling in a field 

setting.  Still, when antimicrobial susceptibility testing is performed and results are used to guide 

treatment and management decisions, it is vital that the limitations of the diagnostic test be 

carefully considered.  While predictive values and kappa values were not calculated or compared 

at other time points due to the limited number of samples, gaining knowledge of the utility of 

URT and LRT samples following treatment is still valuable to the industry.  Often in clinical and 
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field settings, diagnostic samples for the purpose of culture and susceptibility testing are not 

obtained prior to treatment; samples are only taken on calves that either fail to respond to 

treatment or die and are necropsied.  Additionally, mass medication of cattle on arrival is quite 

common, therefore many clinically ill cattle will already have some level of antimicrobial 

exposure prior to treatment.  Due to the aforementioned differential performance of tests within 

different populations of animals and the knowledge gaps that remain regarding the bacteria 

involved in BRD, information regarding test performance and the organisms obtained at different 

time points relative to treatment could only improve the ability of consumers of diagnostic tests 

to correctly interpret their results; further research at other time points relative to treatment is 

needed. 

 

 Overall, the high level of agreement and high negative predictive values of NPS were 

influenced by the relatively low prevalence of the organisms on day 5 after treatment and may 

differ if the same tests are applied in different populations.  Additionally, both NPS and BAL 

results indicate there is variation in the organisms cultured over time within a given calf and that 

it is possible to obtain different subtypes of M. haemolytica from the nasopharynx.  It is also 

possible for a mixture of gamithromycin susceptibility phenotypes to be present in a single NPS 

or BAL sample and for paired NPS and BAL samples obtained at the same time to have different 

susceptibility phenotypes when multiple isolates of M. haemolytica and P. multocida are tested 

from each sample.  Therefore, consumers of diagnostic test results should consider the expected 

prevalence of a population and interpret diagnostic tests relying on the results of a single isolate 

with caution. 
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 Footnotes 

 aVetOne, Boise, Idaho, USA 

b SurgiVet, Smiths Medical, Dublin, OH, USA 

c Sensititre-TREK Diagnostics, Thermo Scientific, Waltham, MA 

d Sensititre-TREK Diagnostics, Thermo Scientific, Waltham, MA 

e Mo Bio Ultra Clean -htp 96 well DNA kits, Carlsbad, CA, USA 

f Promega Quantus, Madison, WI, USA 

g Illumina MiSeq DNA sequencer, San Diego, CA, USA 

h PHYLIP, Felsenstein J. PHYLIP (Phylogeny Inference Package). Version 3.69. Department of 

Genetics, University of Washington, Seattle: Distributed by the author, 1993. 

i Dendroscope, Version 3.2.10. Daniel H. Huson and Celine Scornavacca.  Dendroscope 3:  An 

interactive tool for rooted phylogenetic trees and networks, Systematic Biology (2012), 

http://sysbio.oxfordjournals.org/cgi/content/abstract/sys062?ijkey=ZCxPRbYt74aQJhR&keytyp

e=ref, software freely available from www.dendroscope.org. 

j.  STATA, version 12.1, StataCorp LP, College Station, TX  
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Figure 3.1 – Photograph illustrating the level of restraint required for performing a BAL in a calf 

without sedation.  Each calf must be caught in either a manual or hydraulic squeeze chute and 

two halters must be placed to elevate and extend the head.  Although a neck extender is pictured 

here and assists in maintaining the correct head position, it is not required to perform the 

procedure.  With proper restraint and sufficient practice, a BAL fluid sample can be obtained in 

less than 3 minutes.  
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Figure 3.2 – Neighbor-Joining trees of M. haemolytica clades 1 and 2 based on genome-wide 

concatenated SNPs from 276 isolates subjected to whole-genome sequencing. All M haemolytica 

isolates were acquired from nasopharyngeal swab or bronchoalveolar lavage fluid samples that 

were obtained from bovine respiratory disease cases either pre-treatment with gamithromycin 

according to label directions or on day 0.5, 1, or 5 post-treatment.  Genetic subtypes within each 

clade are denoted by lower case letters.  Numbers beside internal nodes of the tree represent 

bootstrap percentage values from 100 pseudo-alignments.  The scale bar represents substitutions 

per site within trees.  The genetic distance between clades 1 and 2 exceeds the genetic distance 

within the two clades and is not shown. 
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Table 3.1 – Sampling scheme applied to BRD cases (n = 28).  Calves were randomly assigned to 

a sampling group in blocks of 3 at the time they met the criteria for being a BRD case.  Day 0 

began immediately after meeting case criteria but prior to treatment for BRD. 

 

Total n = 28 
Day 

0 

Day 

0.5 

Day 

1 

Day 

5 

Group 1 

n = 9 

NPS - - NPS 

BAL - - BAL 

Group 2 

n = 10 

NPS NPS - NPS 

- BAL - BAL 

Group 3 

n = 9 

NPS - NPS NPS 

- - BAL BAL 
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Table 3.2 – Two by two table depicting the count of NPS or BAL samples that were positive for 

(a) Mannheimia haemolytica on day 5 after treatment with gamithromycin, (b) Pasteurella 

multocida on day 5 after treatment with gamithromycin, and (c) Histophilus somni on day 5 after 

treatment with gamithromycin.     

 

a) 

Mannheimia haemolytica 

    NPS   

   Positive Negative Total 

BAL 
Positive 6 0 6 

Negative 3 19 22 

  Total 9 19 28 

b) 

Pasteurella multocida 

    NPS   

   Positive Negative Total 

BAL 
Positive 6 0 6 

Negative 2 20 22 

  Total 8 20 28 

c) 

Histophilus somni 

    NPS   

   Positive Negative Total 

BAL 
Positive 2 1 3 

Negative 0 25 25 

  Total 2 26 28 

 

  



70 

Table 3.3 – Descriptive summary results of gamithromycin susceptibility agreement between 

paired NPS and BAL cultures that were both positive for Mannheimia haemolytica, Pasteurella 

multocida, or Histophilus somni.  Samples were collected from 28 mixed-breed beef steers pre-

treatment (Day 0) and 0.5, 1, and 5 days post-treatment with gamithromycin.  Susceptibility 

agreed when the gamithromycin susceptibility phenotype of the organism was the same for both 

paired samples and disagreed when the phenotype of the organism differed between the paired 

samples. 

 

  M. haemolytica P. multocida H. somni 

Day 0 

Susceptibility agreed 2 2 1 

Susceptibility disagreed 0 1 0 

Both NPS and BAL positive 2 3 1 

Day 0.5 

Susceptibility agreed 1 5 0 

Susceptibility disagreed 1 0 0 

Both NPS and BAL positive 2 5 0 

Day 1 

Susceptibility agreed 0 1 1 

Susceptibility disagreed 0 0 0 

Both NPS and BAL positive 0 1 1 

Day 5 

Susceptibility agreed 4 5 2 

Susceptibility disagreed 2 1 0 

Both NPS and BAL positive 6 6 2 
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 Abstract 

 The objective of this study was to evaluate and quantify behavioral differences over time 

of cattle with different temperaments after a handling event involving restraint in a squeeze 

chute.  Fifty-one male crossbred beef calves were obtained from local livestock auctions on two 

different days and fitted with accelerometers and real-time location system transmitters.  Once 

acclimated, cattle were brought to the working facility where each calf was restrained in a chute 

for approximately 60 seconds while their rectal temperature was taken.  A dichotomous chute 

score, vocalization score, and exit score were recorded chute-side for each calf during handling.  

Calves were returned to their home pens where daily distance traveled, percent time spent lying, 

and percent time spent within 1 m of the hay rack, grain bunk, shed, and waterer over the 

following 3 days were compared to the baseline established the day prior to handling.  The trial 

was repeated one week later with the same group of calves.  Significant interactions (P < 0.05) 

were found between trial day and exit score for percent time spent within 1 m of the waterer and 
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percent time spent within 1 m of the shed, trial day and vocalization score for percent time spent 

within 1 m of the hay bunk and distance traveled, and trial day and chute score for distance 

traveled.  Regardless of exit score, calves spent a significantly (P < 0.01) greater percentage of 

time near the shed following handling when compared to pre-handling levels but calves with 

different exit scores showed different patterns of behavior regarding the waterer.  Calves that left 

the chute at a walk spent numerically less time near the waterer on the day of handling and on 

day 2 but numerically more time near the waterer on day 1 while calves who left the chute faster 

than a walk showed the inverse behavioral pattern.  There was no significant effect of the three 

temperament scores on percent time spent lying, but there was an effect of trial day with calves 

spending significantly less time lying (P < 0.01) on day 1 when compared to pre-handling.  Our 

results indicate that some behaviors are altered after handling and restraint in a squeeze chute; 

cattle with different temperament scores may have different activity levels and spend different 

amounts of time within 1 m of the hay bunk, grain bunk, waterer, and shed after handling. 

 

 Introduction 

Stress can have negative effects on the health and performance of cattle and is considered 

an important component in the multifactorial nature of bovine respiratory disease complex 

(BRDC).  Different forms of stress such as fasting, dehydration, exhaustion, restraint, or 

handling1 can interact to create changes in behavior that can vary in magnitude and can be 

modified by other factors including genetics, temperament, past experiences, etc.  Although 

some behaviors, such as lying, tend to follow circadian rhythms2, some can potentially be 

modified by weather events, social dynamics within a group of animals3, and interaction with 

humans. 
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 Cattle behavior has been studied in multiple ways, and recent technological advances 

have improved our ability to objectively measure behavior.  Animal movement and behavior can 

be quantified using various methods such as: video monitoring4, pedometers4, accelerometers5, 

radio-frequency identification (RFID) tags, real-time location systems (RTLS), global 

positioning systems (GPS)6,7, or combinations of these methods.4,8  Accelerometer data gives an 

accurate, objective measure of lying behavior in cattle2,8,9 and, combined with RTLS location 

and activity data, have been used to formulate remote disease detection algorithms for 

BRDC.10,11  Both accelerometers and RTLS allow for objective quantification of cattle behavior 

without the potential influence of human presence during behavioral measurements. 

 

Attempts to categorize cattle temperament and evaluate these categories for potential 

associations with health and performance outcomes have shown conflicting results regarding 

agreement and repeatability.  Several subjective categorical scales have been used12-14 to describe 

the behavior of cattle in working facilities and in pens.  Objective measurements of vocalization 

characteristics such as count, duration, frequency, power density, and intensity as measured by 

computer software15, movement as monitored by a movement measuring device16,17, and exit 

velocities determined by a system of light beams and reflectors18,19 have been used to measure 

aspects of temperament.  However, differences in study population, trial design, measurements, 

scoring systems, and statistical analyses used make results difficult to summarize, interpret, and 

apply.  When combined with the many other potential influential factors such as genetics or prior 

experiences that result in an animal responding in a “calm” or “not calm” fashion, interpreting 

the results of behavioral research becomes more complex.  Additionally, it is possible that our 
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current behavioral measurement and scoring systems are not capturing or we are not correctly 

interpreting enough of these complex factors to adequately classify temperament in cattle.  Since 

the visual observation of cattle behaviors such as depression and anorexia remains a commonly 

used method of pre-mortem diagnosis of BRDC20,21, a greater understanding of the influences 

that temperament may have on these behaviors has important implications for industry and 

research.  

  

Cattle are handled throughout their lives for routine husbandry and care including 

applying identification tags, administering vaccinations, anthelmintics, and parasiticides, and 

diagnosing and treating illness.  Additionally, when utilized as research animals, cattle are often 

handled to obtain physiologic samples and measurements.  Because quantification of feeding22 

and drinking behavior and measuring activities such as walking and lying23 have shown promise 

as early indicators of illness and are used as outcomes in research projects, knowing the impact, 

if any, of handling cattle on behavior over time is potentially important to both researchers and 

producers.   

 

Directly comparing objective behavioral data such as distance traveled and time spent 

eating, drinking, or lying down could provide additional information about the potential effects 

of cattle handling on healthy cattle behavior throughout the days following a handling event.  

The objective of this study was to evaluate and compare behavioral differences of cattle 

classified based on a chute score (CS), exit score (ES), and vocalization score (VS) prior to and 

for three days after being handled in a squeeze chute.   
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Materials and Methods 

 Calf Selection and Management 

For this pilot project, 51 male crossbred beef calves (five bulls; 46 steers; average weight 

(± SD): 234 kg ± 16.8 kg) were obtained from a local livestock market and arrived at the Kansas 

State University Large Animal Research Center, in Manhattan, KS, USA, in two separate truck 

loads delivered three days apart.  Bulls and steers were randomly assigned to one of three 

adjacent dirt-floor, group housing pens (297 m2) and allowed to acclimate to the housing facility 

for approximately 6 to 9 days prior to the beginning of behavior monitoring.  Each pen included 

four areas of interest; an automatic ball waterer, hay rack, grain bunk, and open-faced shed.  

Around each area of interest, a 1 m perimeter (dashed line within Figure 4.1) was created so that 

each area was mutually exclusive (Figure 4.1).  Throughout the trial, all calves were fed a grain 

mix appropriate for their age and weight and offered free choice grass hay.  This study was a part 

of a protocol (#3417) approved by the Kansas State University Institutional Animal Care and 

Use Committee. 

 

Cattle in each pen were fed and observed for clinical signs of illness by the same person 

(SC) at the same time each day to minimize variations in behavior related to those events.  Any 

calf that showed signs of illness was examined and treated appropriately according to a 

prescribed protocol.  Calves that became lame were removed from the study and relocated to a 

hospital pen; all other calves were returned to their home pens following treatment but their 

behavioral data was not included in the final analysis.   
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 Behavioral Monitoring 

Two days prior to the beginning of the behavioral monitoring period, all calves were 

fitted with and allowed to acclimate to both real-time location system (RTLS) tags (Ubisense 

Series 7000 Compact Tag, Ubisense, Inc., Colorado, USA) and accelerometers ((Track a))) 

Cow™, Animart, Wisconsin, USA).  Each RTLS tag was attached to a commercial ear tag button 

and placed on the dorsal aspect of the right ear.  The tag used real-time location monitoring to 

report the location of each calf within the pen according to x and y coordinates in relation to 

locations of interest within each pen such as the waterer, grain bunk, hay rack, and shed as 

described elsewhere.24  The percent time spent within 1 m of each location of interest was 

calculated via software (MySQL, Oracle Corporation, California, USA) using calculations 

similar to other studies.23,25  Additionally, by tracking the movement of each calf, the total 

distance traveled within the pen in meters was calculated per trial day.  A three dimensional 

accelerometer was attached to the distal aspect of the hind limb of each study animal to record 

the percent time lying; this device communicated with a wireless sensor approximately every 7 

minutes.  All behavioral measurements were summed into hourly totals and aggregated into daily 

values.  Trial days were composed of the 21 hours immediately prior to working the cattle (day -

1: Pre-handling) and the following three days (day 0 to day 2: Post-handling) with each trial day 

including a total of approximately 21 hours of data. The entire trial was repeated one week later 

with the same group of calves following the same timeline. 

 

 Collection of Weather Data 

Daily weather information was gathered for all trial days from a website that collected 

information from the local airport weather station (Manhattan Regional Airport, Manhattan, KS, 
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USA). 26  This weather station was located approximately 11 km southwest of the Kansas State 

Large Animal Research Center.  The pattern of weather was compared between the two 

replicates to determine whether it was reasonable to combine the data from each replicate and to 

identify any extreme weather events that may have influenced behavior. 

 

 Cattle Handling Facilities 

The three cattle pens were located approximately 101-125 m from the cattle handling 

facility along an approximately 4 m wide gravel alley.  The cattle handling facility consisted of a 

large enclosed metal barn with one entry leading to a 135˚ solid sweep (Priefert, Pleasant, Texas, 

USA) that exited into a straight 4.9 m working alley consisting of metal sheeted alley panels and 

metal sheeted adjustable alley gates (Priefert, Pleasant, Texas, USA) that created two separate 

sections prior to the manual squeeze chute (SC11, Priefert, Pleasant, Texas, USA). 

 

 Scoring Methods and Handling Protocol   

Cattle in each pen were brought up to the cattle handling facility as a group and then 

returned to their pens after handling as a group in the same pen order for both replicates.  All 

personnel who interacted with the cattle implemented low-stress cattle handling techniques and 

were supervised by a Beef Quality Assurance certified veterinarian (SC).  Efforts were made to 

ensure cattle were handled in a similar manner during both replicates.  During each handling 

event, every calf was caught and squeezed in the manual squeeze chute, their head was tied to 

the side with a rope halter and their rectal temperature was taken.  Each calf remained restrained 

in the squeeze chute for approximately 60 seconds prior to being released.  The time from 

handling the first calf in each pen to handling the last calf in each pen was approximately 23.0 ± 
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1.8 minutes on average ± SD.  For each replicate, calves were assigned a chute and vocalization 

score (CS and VS) while they were in the squeeze chute and an exit score (ES) for the first few 

strides as they were released from the chute (Table 4.1).   

 

 Statistical Analysis 

Generalized linear mixed models were fitted using the GLIMMIX procedure (SAS 9.4, 

SAS Institute, Inc., North Carolina, USA) for all statistical models.  Distance traveled in meters, 

as a normally distributed continuous dependent variable, was modeled via a Gaussian 

distribution; beta distributions were fitted for models of continuous proportions such as percent 

time spent lying and percent time spent within 1 m of the shed, hay rack, waterer, or grain bunk.  

All models used pen as a random intercept to account for the clustering of calves within pens and 

a random residual term of calf ID nested within replicate to account for repeated measures 

among calves using covariance structures such as toeplitz (distance traveled); first-order 

autoregressive (percent time spent lying, percent time spent within 1 m of the waterer, and 

percent time spent within 1 m of the hay rack); or heterogeneous first-order autoregressive 

(percent time spent within 1m of the shed and percent time spent within 1 m of the grain).  

Model selection for each behavioral response began with a main-effects model including fixed 

effects of trial day (a four level categorical variable), VS (a two level categorical variable), CS (a 

two level categorical variable), and ES (a two level categorical variable).  Two-way interactions 

between trial day and each of the three types of scores were then tested in a forward fashion 

using a P < 0.05 for inclusion of each interaction.  If interactions were not significant, fixed 

effects of trial day, VS, CS, and ES were kept in each model.  A more conservative value of P < 

0.01 was applied when examining pairwise comparisons between pre-handling and post-handling 
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trial days in order to reduce the likelihood of Type I errors.  Results are presented as model-

adjusted mean ± SEM. 

 

 Results 

Replicate 1 began on 6/12/14 and extended through 6/16/14 whereas replicate 2 began on 

6/19/14 and extended through 6/23/14.  Weather patterns for the behavioral control day (day -1), 

the day of handling (day 0), and the two days of observation following handling (days 1 and 2) 

were similar between replicates in terms of precipitation, maximum humidity, and maximum 

temperature.  Compiled daily weather data for both replicates can be found in Table 4.2.    

 

Randomization resulted in 1 bull being placed in pens 1 and 2 while 3 bulls were placed 

in pen 3.  Overall, two calves became clinically ill with BRDC and were removed from replicate 

2 while five calves became lame during replicate 1 and were removed from both replicate 1 and 

2.  One accelerometer malfunctioned during replicate 1 and was replaced before replicate 2; that 

calf’s accelerometer data are considered only for replicate 2.  Two RTLS tags were lost during 

replicate 1 and were replaced before replicate 2; the RTLS data from those two calves are only 

present in replicate 2.  The total number of calves whose behavior was analyzed within each 

replicate as well as descriptive statistics for the three subjective temperament scores can be found 

in Table 4.3. 

  

There was a significant interaction between trial day and ES (P < 0.05) for time spent 

within 1 m of the waterer (Figure 4.2a) and shed (Figure 4.2b). The interaction between trial day 

and VS was significant (P < 0.01) for time spent within 1 m of the hay (Figure 4.2c), however 
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there were no significant effects of VS, CS, ES, or trial day on the time spent within 1 m of the 

grain.     

 

Trial day had a significant effect on percent time lying; calves spent significantly less 

time lying (P < 0.01) on day 1 (46.5% ± 1.5%) after handling when compared to the pre-

handling day -1 (51.3% ± 1.5%).  Percent time spent lying on day 0 (50.1% ± 1.5%) and on day 

2 after handling (48.7% ± 1.5%) were numerically lower but not significantly different than 

percent time lying during the pre-handling day (day -1). There were no significant effects of VS, 

CS, or ES on the percent time lying.  

 

The effects of VS and CS on distance traveled depended on the day of the trial (P < 0.05) 

(Figure 4.3).  Calves with a VS of 0 traveled significantly less distance (P < 0.001) on all three 

days following handling (day 0: 4413.74 m ± 184.2 m; day 1: 4350.02 m ± 184.68 m; day 2: 

4349.84 m ± 184.04 m) compared to the pre-handling baseline (day -1: 4702.42 m ± 183.75 m) 

whereas calves with a VS of 1 did not travel a significantly different distance on any of the days 

following handling (day 0: 4669.35 m ± 305.6 m; day 1: 4482.25 m ± 305.6 m; day 2: 4405.02 m 

± 305.59 m) compared to the baseline (day -1: 4318.05 m ± 305.59 m).  None of the pairwise 

comparisons between pre-handling baseline and post-handling days within CS 0 or 1 were 

significantly different.  There was no significant effect of ES on distance traveled. 

 

 Discussion 

To the authors’ knowledge this is the first study that evaluates and quantifies the potential 

changes that occur in some behaviors over time specifically after handling healthy cattle with 
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different temperament scores.  Even when low-stress handling methods were used, handling 

cattle was associated with alterations of some behaviors for a few days post-handling.  

Additionally, the effect of some temperament scores on the monitored behaviors varied by day 

after handling. 

 

When considering distance traveled, the effect of CS and VS varied on different days; 

however, only the pairwise comparisons between pre-handling and post-handling time points in 

calves that did not vocalize (VS of 0) were significantly different.  Given their association with 

distance traveled, CS or VS could be important scores to measure if distance traveled is 

considered a proxy for overall activity level.  Activity or distance traveled can also be considered 

a potential surrogate measure of depression – one of the main criteria for BRDC diagnosis.  

Therefore, any altered levels of activity following a handling event may impact diagnostic 

accuracy of disease detection algorithms and may also be an important consideration when 

research trials with intensive sampling use activity as an outcome variable.  If the frequency or 

timing of handling events vary between treatment groups, it may not be appropriate to compare 

activity directly across treatment groups without adjusting for the influence of handling.  In 

contrast to a study that found flight speed (in m/s) but not chute score was related to activity 

level in the pen5, we found no significant differences in distance traveled among calves with 

different ES.  These conflicting results could be due to differences between the studies in 

measurement or scoring system, analysis of the data, handling systems, study population, or 

other unknown variables; therefore, further research to test the repeatability of these findings is 

necessary prior to implementing any changes in current research protocols.   
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Calves in this study spent approximately 46-51% of their time lying on average which is 

similar to values reported elsewhere.2  When compared to the pre-handling baseline, percent time 

spent lying was numerically lower on both day 0 and day 2 and significantly lower for day 1 

post-handling; intuitively, one might expect calves to spend more time resting after a perceived 

stressful event.  It is possible that the relatively short duration of our handling event, the short 

distance cattle actually had to travel from pen to handling facility, and the relatively innocuous 

nature of the procedures we employed during handling were not overly taxing to the calves.  

There is considerable variability in the time required to complete different procedures, the 

distance cattle must travel to reach handling facilities, and the design of the handling facilities at 

different operations and research facilities.  Other routine practices that are inherently more 

invasive such as vaccinations, implants, branding, dehorning, castration, etc. may also occur at 

certain stages of production while research projects also vary in what types of samples are taken 

and in the frequency of handling events.  Although many high-risk feedlot cattle are brought to a 

chute, restrained briefly, and have their temperature taken at some point in their lives, the 

handling event evaluated herein is not universally applicable to every operation or research 

project; it is likely different behavioral responses could be seen with different handling events.  It 

is also possible that other unmeasured confounders such as subclinical illness or prior handling 

experiences altered the association between handling and lying behavior.  In this study, none of 

the three temperament scores were significantly associated with the percent time spent lying 

post-handling which agrees with other work indicating that flight speed and chute scores were 

not significantly correlated with lying behavior.5  However, given the relatively small sample 

size of this study, it is possible that a significant statistical association between temperament and 

lying behavior does exist but was not found.  Additionally, it is possible that the association 
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between these two variables may be more pronounced in other populations with different 

distributions of breeds, ages, or health statuses.  More research is needed to determine if disease 

detection algorithms that incorporate lying behaviors should be adjusted based on handling 

events. 

 

Surprisingly, there were no temperament scores significantly associated with the percent 

of time calves spent near the grain bunk.  This is in contrast to previous work which indicated 

that there was a negative correlation between ADFI and flight speed5 and work which showed 

that higher flight speeds were associated with less time spent eating.27  The inherent difference 

between time spent within 1 m of the grain bunk which is a proxy measure of time spent actually 

eating and likely includes time spent not consuming any grain may be the reason behind this 

difference in findings; the use of a categorical ES compared to a continuous m/s flight speed may 

also contribute.  There was also no effect of trial day on the percent of time calves spent near the 

grain bunk.  As previously mentioned, it is possible that our handling event was not stressful 

enough to induce a change in this behavior and in other cattle that experience more stressful 

handling events an effect may actually exist.  Time spent near the grain bunk is a relatively rare 

behavior (1.8-2.4% on average in this study) when the total daily time expenditure of a calf is 

considered and thus it is also possible that our sample size was insufficient to detect a difference 

in this infrequent behavior.  With larger groups of calves or in a production environment where 

handling events are more frequent or more stressful, a difference in behavior might be detected.  

Additionally, only healthy animals were included in this analysis; therefore it is possible that in 

animals that suffer from BRDC or lameness, the effects their illness already has on eating 

behavior could be more profoundly impacted by handling.  
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Time spent near the shed was significantly higher at all time points compared to baseline 

levels for all calves regardless of ES but the magnitude of the differences were numerically 

different for calves with different ES (Figure 4.2b).  The increase post-handling likely indicates 

an increase in standing resting behavior as the lying behavior results previously discussed 

indicated that no temperament score and day interactions were significant and calves actually 

spent less time lying post-handling.  A numerical difference in magnitude and direction of effect 

was observed when the interaction between trial day and ES was examined for time spent near 

the water; calves that left the chute at a walk (ES of 0) spent less time near the waterer on the day 

of handling and on day 2 but more time near the waterer on day 1 while calves with an ES of 1 

displayed the opposite behavioral pattern.  Like time spent near the grain, time spent near the 

water is a small portion of a calf’s daily time budget and the lack of significant differences of 

each day post-handling compared to baseline are possibly explained by the large standard errors 

associated with these estimates and the small sample size in this study.  Additionally, the cattle in 

this study were handled early in the morning to minimize possible heat stress and each pen of 

cattle spent a very short amount of time in the handling facility away from water.  If handled 

during the heat of the day or for a longer period, it is possible that the behavioral pattern 

differences seen in cattle with different ES could be more pronounced.  The effect of VS 

depended on trial day for time spent near the hay bunk but no other temperament scores had a 

significant effect on this behavior.  Although the trial day by VS interaction was significant, 

none of the between-day comparisons within VS were significantly different; the main driver of 

this significant interaction appears to be the markedly larger difference in percentage of time 

spent near the hay bunk on day 2 between calves with different VS.  It is unclear why vocalizing 
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calves spent so much more time near the hay on day 2 especially when VS had no significant 

interaction with day for any of the other locations of interest; however, it is important to note that 

in this trial, very few calves vocalized during handling (total n = 11; Table 4.3). 

 

By investigating the effects of each score separately, this study could examine whether 

they were different in their effect on behavior rather than combining them to make an overall 

temperament categorization.  Such a summary of temperament may be appropriate for some 

outcomes but for others may be an oversimplification of the complex nature of temperament and 

behavior.  Furthermore, only some scores were significantly associated with some behaviors 

indicating either a lack of power or that the underlying traits or circumstances that drive the 

different responses we observe during handling do not have the same impacts on behavior.  

Although further research into current methods of evaluating temperament and their relationship 

with subsequent behavior is needed to examine the repeatability of our findings, the results of 

this study imply that some measures of temperament taken during handling may be associated 

with certain behaviors afterwards but that the effect of a given temperament score is not uniform.  

If temperament does indeed contribute to the variability in behavior of cattle post-handling, 

accounting for the temperament of calves could improve disease detection algorithms or research 

projects that rely on behavioral outcomes.   

 

While cattle with different temperament scores exhibited varying levels of certain 

behaviors in the pen environment, it is unclear if those variations in behavior may translate into 

performance differences as our study did not evaluate performance variables.  Burrow et al.18 

indicated that temperament, as measured by flight speed, could affect some aspects of 
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performance in some of the cattle they studied but not others.  Francisco et al.28 only found a 

difference in weaning weight between cattle with “adequate” vs. “excitable” temperaments and 

no statistical difference in the carcass traits or other feedlot performance measurements they 

examined.  Many other attempts have been made to describe the relationship of cattle 

temperament with different production outcomes16,27,29 with conflicting results between the 

various measures of temperament and some performance parameters.  The inconsistencies in 

results likely reflect the variation in study implementation, statistical analyses, and the complex 

role that factors such as genetics, environment, and nutrition play.  Additional research to 

correlate objective measurements of eating and drinking behavior with temperament is needed to 

determine whether there is an appreciable impact on performance factors.  

 

A potential limitation of this study was the possibility of variable weather conditions over 

time during both replicates and its unknown impact on behavior.  Although weather patterns 

were descriptively similar in both replicates, it is unlikely that weather was the sole cause of the 

differences observed between cattle with different temperament scores nor can it completely 

explain the differences observed in behavior pre- and post-handling.  Nonetheless, the potential 

impact of weather on behavior cannot be ignored completely and different results may be 

observed if the same experiment was repeated under different weather conditions.   

 

Another limitation of this study was the short duration of the post-handling monitoring 

period; as we saw differences in some behaviors for the entire 3-day period, we cannot say if or 

when behavior returned to baseline.  Since research studies have variable sampling timelines, it 

may be important to know when behavior returns to baseline following a handling or sampling 
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event.  Also, operations may implement post-treatment or post-metaphylaxis non-treatment 

intervals that exceed 3 days30 when monitoring cattle behavior for the purposes of disease 

diagnosis; therefore, in future studies, a longer post-handling monitoring period would be useful.  

Additionally, as this study involved a relatively low-stress handling event, it is unclear how more 

stressful handling involving more noxious stimuli such as blood draws or vaccination may affect 

the duration of behavioral modification following handling.   

 

 Conclusions 

 The potential for some behaviors to be altered for at least 3 days after calves are handled 

indicates the need for careful trial design when behavioral parameters are a trial outcome; if the 

frequency or timing of handling events varies between treatment groups, it may not be 

appropriate to compare all behaviors across treatment groups without appropriately adjusting for 

those differences.  There is also the potential to improve upon disease detection algorithms by 

incorporating behavioral changes that may occur after handling events.  Additionally, this study 

indicates that some behaviors may vary for calves that react differently when handled which also 

has potential implications when behavior is used as a research variable.  Further research on the 

impacts of handling on behavior is needed as behavioral measurements become more important 

in disease detection algorithms and case definitions.   
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Figure 4.1 – Diagram showing the four locations of interest (solid boxes) and their 1 m zones of 

interest (dashed boxes) within each 24.4 m x 12.2 m pen.  Real-time location system (RTLS) 

sensors were located around the periphery of the pens and received data from the RTLS tags 

placed along the dorsal aspect of each calf’s right ear approximately every 5 seconds on average.  

Time spent within 1 m of the grain bunk, hay rack, shed, and waterer was aggregated on a daily 

basis for each calf along with the total daily distance traveled (m) within the pen. 
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Figure 4.2 – a) Percent of time calves spent within 1 m of the waterer (mean ± SEM) over time 

according to exit score.  Although a significant interaction between trial day and exit score was 

detected (P < 0.05), pairwise comparisons of day -1 (pre-handling baseline) and each subsequent 

day within each score were not significant at P < 0.01; b) Percent of time calves spent within 1 m 

of the shed (mean ± SEM) over time.  A significant interaction between trial day and exit score 

was detected (P < 0.05) and all pairwise comparisons of day -1 and each subsequent day within 

each score were significant at P < 0.01; c) Percent of time calves spent within 1 m of the hay 

rack (mean ± SEM) over time according to vocalization score.  Although a significant interaction 

between trial day and vocalization score was detected (P < 0.05), pairwise comparisons of day -1 

and each subsequent day within each score were not significant at P < 0.01. Handling occurred 

on trial day 0, and trial days 1 and 2 were the 2 days post-handling.  An asterisk above an 

individual study day indicates that the pairwise comparison between that study day and the pre-

handling baseline day (day -1) was significantly different (P < 0.01) within the respective 

temperament score. 
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b) 
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Figure 4.3 – Distance traveled (mean ± SEM) over time as modified by both a) vocalization 

score and b) chute score.  Both interactions were significant at P < 0.05 but only calves that did 

not vocalize during handling (vocalization score 0) exhibited significantly lower (P < 0.01) 

distance traveled on the day of handling (day 0) and the two post-handling days (days 1 and 2) 

when compared to the pre-handling baseline day (day -1).  An asterisk above an individual study 

day indicates that the pairwise comparison between that study day and the pre-handling baseline 

day (day -1) was significantly different (P < 0.01) within the respective temperament score. 
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Table 4.1 – Description of the three temperament scores used in this trial.  Vocalizations 

included all vocal sounds of any pitch, duration, volume, or frequency made by the calf. 

 

Score 0 1 

Chute Stood calmly in the squeeze chute. 
Did not stand calmly in the squeeze 

chute. 

Exit Walked out of the squeeze chute. Did not walk out of the squeeze chute. 

Vocalization 
Did not vocalize in the squeeze 

chute. 

Vocalized ≥ once while in the squeeze 

chute. 
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Table 4.2 – Descriptive weather data for each replicate obtained from the Manhattan Regional 

Airport weather station in Manhattan, Kansas, USA. 

 

 Date 

Min 

Temperature 

(˚C) 

Max 

Temperature 

(˚C) 

Min 

Humidity 

(%) 

Max 

Humidity 

(%) 

Mean 

Wind 

Speed 

(KPH) 

Precipitation 

(cm) 

Replicate 

1 

6/12/2014 13.3 25.0 43 93 12.9 0.79 

6/13/2014 10.0 26.1 37 96 9.7 0 

6/14/2014 16.7 30.6 55 78 30.6 0 

6/15/2014 17.2 28.3 51 93 11.3 1.96 

6/16/2014 21.1 31.7 59 93 24.1 0 

Replicate 

2 

6/19/2014 22.2 31.1 55 93 12.9 0.03 

6/20/2014 19.4 33.9 49 93 11.3 0 

6/21/2014 20.6 33.3 44 79 12.9 0 

6/22/2014 20.0 33.9 39 93 12.9 0.74 

6/23/2014 18.3 28.3 58 100 8.0 0.15 
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Table 4.3 – Total number of calves that received each score within each replicate for which real-time location system (RTLS) or 

accelerometer behavior data was analyzed.  Although from the same initial population, due to equipment malfunctions, illness, or 

lameness, the individual calves represented within each row of the table are not identical.  Numbers in parentheses indicate the 

percentage of all calves within the replicate that received each score.   

 

 

Replicate 

Chute 

Score 

0 

Chute 

Score 

1 

Exit 

Score 

0 

Exit 

Score 

1 

Vocalization 

Score 0 

Vocalization 

Score 1 

Total 

calves per 

replicate 

RTLS 

1 
28 

(63.6) 

16 

(36.4) 

19 

(43.2) 

25 

(56.8) 

37  

(84.1) 

7  

(15.9) 
44 

2 
24 

(54.4) 

20 

(45.5) 

26 

(59.1) 

18 

(40.9) 

41 

(93.2) 

3 

(6.8) 
44 

Accelerometer 

1 
27 

(60.0) 

18 

(40.0) 

19 

(42.2) 

26 

(57.8) 

37  

(82.2) 

8 

(17.8) 
45 

2 
24 

(54.5) 

20 

(45.5) 

26 

(59.1) 

18 

(40.9) 

41 

(93.2) 

3 

(6.8) 
44 
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 Abstract 

 The objective of this study was to investigate the effects of meloxicam administration 

prior to shipping on the maintenance of leukocyte function and the reduction of inflammation 

during and after a long-distance transportation event in cattle.  Yearling mixed-breed beef steers 

(n = 60; 309.5 kg ± 5.3 kg) were randomly assigned to be either transported (TR) or non-

transported controls (NTC) and received either 1 mg/kg meloxicam orally (TR-MEL, n = 20 and 

NTC-MEL, n = 10) or a placebo orally (TR-CON, n = 20 and NTC-CON, n = 10) in an 

unbalanced 2 x 2 factorial design.  All NTC cattle were transported from Mississippi to Kansas 

on day -17 of the study and allowed to acclimate while the TR steers remained in Mississippi.  

On day -1, both TR and NTC steers were randomly administered either MEL or placebo and the 

TR steers were transported to Kansas from Mississippi and arrived on day 0.  Blood samples 

were obtained from all steers on days -1, 0, and 3 for analysis of markers of leukocyte function 

and inflammation.  Bronchoalveolar lavage samples were also obtained from the TR steers on 

days 0 and 3 for analysis of annexin A1 levels.  Ocular thermographic images of TR steers were 

taken on days -1, 0, and 3.  Rectal temperature probes continuously monitored temperature of TR 

steers after treatment with MEL or CON through day 2 post-transport.  No clinical cases of 

bovine respiratory disease were observed during the study.  Plasma MEL concentrations were 

greater in TR-MEL steers on day 0 than NTC-MEL steers (P < 0.01).  Substance P 

concentrations were lower in NTC-MEL steers compared to all other groups (P < 0.01) with no 

significant effect of study day.  Sampling time was associated with rectal temperature, ocular 

temperature, cortisol, haptoglobin, neutrophil L-selectin expression, neutrophil phagocytosis 

intensity, percentage of active neutrophils, red blood cell count, hematocrit, mean corpuscular 

hemoglobin concentration, total leukocyte count, and polymorphonuclear leukocyte count (P < 
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0.05).  Steers in the TR group had greater (P < 0.01) values of haptoglobin, neutrophil L-selectin 

intensity, and polymorphonuclear leukocyte count than NTC steers.  The concentration of Hp-

MMP 9 was greater in TR-CON steers compared to NTC-CON steers on day 0 (P < 0.01).  In 

this study, meloxicam did not have a statistically significant effect on the variables measured in 

these healthy steers and only some leukocyte and inflammatory markers differed in transported 

versus non-transported steers.  

 

 1. Introduction 

 Stress is a complex physiological response to either single or multiple stimuli that, 

depending on severity and duration, have both positive and negative effects on various 

physiological parameters in cattle.1,2  Although stress can potentially negatively impact the 

immune system, the mere presence of stress, either physiological or psychological, does not 

always lead to clinical disease.2   

 

 Across the beef production system, cattle experience varied stressors throughout their 

lives including weaning, handling for basic processing or other procedures, commingling at 

auction markets or other facilities, and transportation between locations in the production 

system.3  Cattle are frequently transported multiple times within their lifetime3 for varying 

distances.  Long-distance transportation is considered a significant source of stress in cattle and 

has been associated with increased bovine respiratory disease (BRD) morbidity risk.4,5  Several 

studies have indicated that long-distance transportation results in changes in various measures of 

inflammation and immunity along with appreciable differences in weight, hydration status, and 

other alterations in normal physiological status.6-8  While most studies agree that long-distance 
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transportation, overall, negatively impacts cattle, not all measured variables have provided 

consistent results between studies and, for some variables, considerable individual variability has 

been reported.9  This may be due to the fact that transportation of cattle is stressful on multiple 

levels and involves more than just the distance traveled and time spent in the truck.  Handling 

and restraint prior to or immediately following transport, weather conditions experienced during 

transit, temperament of individual cattle, and other variables may impact the overall level of 

stress an individual animal experiences.10 

 

 Although many advances have been made in therapeutic and preventative strategies11, 

BRD remains a significant disease cattle face today.  Antimicrobials, applied both therapeutically 

and preventatively in cattle at high risk for BRD, are commonly used to combat BRD.  In an 

effort to reduce the need for antibiotic use in food animals, adjunct therapies to reduce morbidity 

associated with BRD are being explored.  Meloxicam is a non-steroidal anti-inflammatory drug 

(NSAID) that mainly acts by inhibiting the contribution of cyclooxygenase-2 (COX-2) to the 

inflammatory response.12,13  Although still considered an extra-label drug use (ELDU), Coetzee 

et al. showed that oral meloxicam administered to ruminating calves at a dose of 1 mg/kg 

resulted in high bioavailability and a mean plasma half-life of approximately 28 h indicating that 

analgesia may continue for several days following a single oral administration.14  Given that 

stress and transport can influence certain measures of inflammation and leukocyte responses the 

authors hypothesized that meloxicam administered at 1 mg/kg, prior to transportation, may help 

mitigate some of the negative effects of long-distance transport.  Therefore, the objective of this 

study was to investigate the effects of meloxicam administration prior to shipping on the 



103 

maintenance of leukocyte function and the reduction of inflammation during and after a long-

distance transportation event in cattle. 

 

 2.  Materials and Methods 

 2.1. Study Population 

 This study protocol was approved by the Kansas State University (Protocol # 3335) and 

the Iowa State University (Protocol # 5-12-7355-B) Institutional Animal Care and Use 

Committees.  Sixty mixed-breed beef steers (average weight: 309.5 kg ± 5.3 kg) from the 

Mississippi State University’s (MSU) Brown Loam Branch Experiment Station were used in this 

study.  Steers were born on the research station during the spring of 2013 and were between 

approximately 15.2 and 17.8 months of age at the start of the study (16.7 months ± 0.08 months).  

All animals were castrated within approximately 24 h of birth and received a clostridial vaccine 

(Ultrabac 8, Zoetis, Florham Park, New Jersey, USA), a 5-way modified live respiratory vaccine 

(Pyramid 5, Boehringer Ingelheim, St. Joseph, MO, USA), Mannheimia haemolytica Toxoid 

vaccine (Presponse SQ, Boehringer Ingelheim, St. Joseph, MO, USA), and pour-on anthelmintic 

(Eprinex, Merial Inc., Duluth, GA, USA) at pre-weaning and weaning.  Weaning occurred 28 

days after pre-weaning and approximately 8 months prior to the start of the study according to 

standard Mississippi State University protocols.  Steers for this study were gathered off grass, 

brought to a pen near the working facility, and provided ad libitum grass hay and water 

approximately 2 days prior to transportation.   

 

 Prior to the beginning of the study, the 60 steers were randomly assigned to either be 

transported (TR; n = 40) or to serve as non-transported controls (NTC; n = 20).  Half the steers in 
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the TR group were randomly assigned to receive 1 mg/kg meloxicam (Aurobindo Pharma USA 

Inc. Dayton, NJ, USA; NDC 65862-098-05) orally (TR-MEL; n = 20) and half the steers in the 

TR group were randomly assigned to receive a lactose placebo orally (TR-CON; n = 20).  

Similarly, half the NTC steers were randomly assigned to receive 1 mg/kg meloxicam orally 

(NTC-MEL; n = 10) and half the NTC steers were randomly assigned to receive a lactose 

placebo orally (NTC-CON; n = 10). Boluses containing MEL were filled with lactose powder so 

that they were indistinguishable from the CON boluses and then numbered for each calf to keep 

personnel administering the boluses blinded to treatment.  This resulted in an unbalanced 2 x 2 

factorial study design with transport and meloxicam status as the two treatment factors (Figure 

5.1).   

 

 2.2. Study Timeline, Treatment Administration, and Sampling Schedule 

 Steers within the NTC group were transported overnight from the MSU Brown Loam 

Branch Experiment Station on day -18 and arrived at the KSU LARC facility on day -17 where 

they were allowed to acclimate to the facility and recover from transport.  Steers within the TR 

group remained at the MSU Brown Loam Branch Experiment Station until day -1 when they 

were also transported overnight to the KSU LARC and arrived on day 0 of the study.  The entire 

transportation event for both TR and NTC steers involved a distance of approximately 1,300 

kilometers covered over approximately 15 h.  Prior to transportation of the TR steers, both the 

NTC and TR steers received their MEL or CON treatment synchronously at their respective 

locations in Mississippi or Kansas on day -1 with subsequent sampling occurring on day 0 and 

day 3 (Figure 5.2).   
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 2.3. Study Population Management and Health Monitoring 

 Within each of the 4 groups, cattle were randomly assigned to one of 4 open-air, dirt-

floor group housing pens (297 m2 per pen) at the Kansas State University Large Animal 

Research Center (KSU LARC) facility such that each pen (n = 15 steers/pen) held a relatively 

equal distribution of steers from each of the four groups.  Throughout their time spent at KSU 

LARC, cattle were provided with access to grass hay and water ad libitum, a grain ration 

provided twice daily that was appropriate for their age and weight, and access to a three-sided 

shelter.   

 

 Prior to the transportation of the NTC and the TR steers, a trained observer confirmed 

that all steers were visually healthy.  For 28 days after transportation to KSU, all steers were 

observed twice daily by the same veterinarian (SFC) for signs of BRD or other health issues and 

each calf was assigned a Clinical Illness Score (CIS) twice daily for BRD according to the 

following modified scale15: CIS 1 – Normal calf; CIS 2 – Moderate signs of BRD: moderate 

depression, and/or cough; CIS 3 – Severe signs of BRD: severe depression, labored breathing, 

and/or cough; CIS 4 – Moribund and/or recumbent.  Steers that received a CIS of 2 or greater 

during the previous evening or current morning were pulled in the morning and a rectal 

temperature was taken.  In order to qualify as a BRD case, steers had to have received a CIS of 2 

or greater and also have a rectal temperature of ≥ 40 ˚C when they were examined. Steers 

diagnosed with BRD or other health issues were treated by the attending veterinarian(s) 

according to protocols comparable to current industry standards.  Any calf requiring 

antimicrobial treatment remained in the study population but if treatment included NSAIDs of 
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any kind, the animal was considered off trial from that point on and was removed from the study 

population.   

 

 2.4. Rectal Temperature Probes 

 Rectal temperature monitoring devices were placed in the TR steers on day -2 prior to 

transportation as described previously16 with minor modification. Specifically, a smaller 

temperature sensor was used (25.4 mm in length, 8.3 mm in diameter, and 3.3 grams (Starr-Oddi 

DST micro-T, MeterMall USA, Marysville, OH, USA;17) and therefore a smaller probe container 

that attached to the end of the plastic cross-linked polyethylene (PEX) tubing was used.  Probes 

were monitored twice daily for proper placement and signs of swelling or discomfort and 

removed if needed.  Rectal temperature monitoring devices allowed for the continuous recording 

of the TR steers’ rectal temperature at 5-min intervals which were then averaged by hour prior to 

analysis.  Rectal temperature data were then averaged for each calf by every 6 h period starting 

after administration of meloxicam or placebo prior to transport, continuing through day 2 post-

arrival.  Devices were removed on day 3 during sampling. 

 

 2.5. Ocular Thermography 

 Each steer within the TR group had a digital thermographic image taken on days -1, 0, 

and 3 of the medial canthus of the left eye. Each image was translated to temperature readings 

through software calibrated internally within the camera (Thermacam Research Pro 2.8 SR-1, 

FLIR Systems, Nashua, NH, USA). Images were evaluated to determine the maximum 

temperature around the medial canthus of the eye and these data were then exported to statistical 

software for analysis. 
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 2.6. Venipuncture and Blood Variables 

 Steers were restrained in a manual squeeze chute and blood was obtained via jugular 

venipuncture on days -1 (prior to transport and meloxicam treatment), 0 (arrival at KSU LARC), 

and 3 to obtain whole blood, plasma, and serum for measurement of various markers of 

inflammation and immune function into the following tubes: lithium heparin tube (plasma 

cortisol and meloxicam concentrations), serum tube (Hp-MMP 9), regular EDTA tube 

(hematology), and sodium heparin tube (plasma haptoglobin, neutrophil L-selectin intensity, and 

neutrophil phagocytic and oxidative burst activity).  Blood for analysis of substance P was first 

collected into a blank tube and then 6 mL of blood were immediately drawn off via needle and 

syringe and carefully added to a previously prepared EDTA tube spiked with 300 μL of EDTA 

containing 0.9 mg of benzamidine.  All laboratory personnel remained blinded to treatment 

during analysis of all variables.  At MSU, the 40 TR calves were split into approximately equal 

groups for sampling on day -1; sampling of each group took approximately 60 minutes.  At KSU, 

the 20 NTC calves were likewise split into equal groups for sampling on day -1 which took 

between 30 and 40 minutes per group.  Blood samples on day 0 and day 3 were obtained over the 

course of approximately 6 hours; every attempt was made to limit the amount of time calves 

spent in the tub, alley, and squeeze chute to less than 30 minutes so as to minimize the effects of 

handling stress on the various blood variables.   

  

 Cortisol 

 Cortisol was analyzed using a commercially available kit (MP Biomedical, LLC, Santa 

Ana, CA, USA) using the method previously described.18  The optimal detection range was 3 to 
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500 ng/mL. The radioimmunoassay’s inter- and intra-assay variabilities were 11.1 and 12.6 %, 

respectively as calculated in Excel (Microsoft, Redmond, WA). 

 

 Substance P 

 Plasma concentrations for substance P were analyzed using a radioimmunoassay double 

antibody system with a primary antibody against substance P (1:20,000, product number: H-061-

05, lot# 1286-1, Phoenix Pharmaceuticals, Burlingame, CA) and 125 I-substance P (20,000 cpm, 

PerkinElmer Inc., Waltham, Massachusetts, USA).  Methods of analysis were consistent with 

those previously described.18  Protease inhibitors EDTA (13 mM) and benzamidine (1 mM) were 

utilized in the assay.  The range of detection for substance P was between 10 and 160 pg/mL, 

with a coefficient of variation for intra-assay variability of 9.59% and an inter-assay variability 

of 16.28%.   

 

 Plasma Meloxicam Concentration 

 Plasma concentrations of MEL were determined using high-pressure liquid 

chromatography (Surveyor MS Pump and Autosampler, Thermo Scientific, San Jose, CA, USA) 

with mass spectrometry detection (TSQ Quantum Discovery MAX, Thermo Scientific, San Jose, 

CA, USA) as previously described18 and samples for each animal were performed at the same 

time to limit variability. The standard curve applied to each run for bovine plasma was linear 

from 1 to 20,000 ng/mL.  The correlation coefficient exceeded 0.97 and all measured standard 

curve samples were within 25% of the designated values with most of the samples being less 

than 15% different.  The accuracy of the assay for MEL in bovine plasma was 93.3 ± 7.5 % of 
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the actual concentration while the coefficient of variation was 3.8 % determined on 4 sets of 

replicates for each of the following concentrations: 100 and 1000 ng/mL.   

 

 Hp-MMP 9 

 The Hp-MMP 9 ELISA was performed as previously described.19,20 The capture antibody 

was a monoclonal anti-bovine MMP 9 (clone 10.1; native bovine neutrophil MMP 9 antigen) and 

wells were blocked by the addition of 300 μL of SuperBlock T20 (TBS) (Thermo Scientific, 

Pierce, Rockford, IL, USA).  All plates used in this study were prepared at the same time to 

minimize plate-to-plate variation.   

 

 The serum standards prepared for use in this study were from a cow that was ill and had 

concentrations of Hp-MMP 9 of 913 ng/mL as quantified in prior studies.19  This serum, stored 

in aliquots, was thawed on ice and sonicated for 1 minute intervals a total of 3 times, vortexed, 

and serially diluted so that each standard had 228, 114, 57, 28, 14, 7, and 3.5 ng/mL.  Blank 

wells contained all reagents, along with serum from a healthy steer, diluted 1:10 in Tris-buffered 

saline (pH 7.5) to which 0.05% Tween-20 was added (Tris-buffered saline (TBS) 1X Cold 

Spring Harbor Protocols, 2009; doi:10.1101/pdb.rec11830).  Affinity chromatography and Hp-

MMP 9 ELISA of the healthy steer’s serum demonstrated it was below the limit of detection for 

Hp-MMP 9 (Lakritz J., unpublished observations).   

 

 Serum samples from experimental animals were diluted 1:10 in the aforementioned TBS 

+ Tween 20 buffer prior to analysis by ELISA. Diluted standards and serum samples from 

experimental animals (100 μL) were placed into wells of a 96 well plate in duplicate (16 
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standards, 40 serum samples/plate) for 2 h on a plate shaker at room temperature.  After washing 

pre-diluted rabbit-anti-bovine Haptoglobin-HRP conjugate (Immunology Consultants 

Laboratory, Portland, OR, USA RHPT-10A; 1:5,000 dilution), were allowed to bind to 

haptoglobin that is bound to MMP 9 in the wells on a plate shaker for 1 h.  Then, after washing 

wells 5 times in TBS (pH 7.5) with 0.05% Tween-20, 100 μL of TMB substrate (Kirkegaard & 

Perry Laboratories, Gaithersburg, MD, USA; 50-76-11) was added/well and color development 

was allowed for 20 minutes.  After 20 minutes, 100 μL 0.1 N hydrochloric acid was added/well 

to stop the enzymatic reaction.  Standard and sample absorbance was determined on a micro-

plate reader at 450 nM.  All samples whose absorbance at 450 nm was greater than the highest 

standard were re-diluted to 1:50 with the aforementioned TBS + Tween 20 buffer and re-assayed 

(56 samples total). Sample concentrations were determined by linear regression of the known 

standard concentration versus absorbance value, using the intercept and slope calculated from the 

linear regression and corrected for the dilution of the sample (10-fold or 50-fold).   

   

 Hematology, haptoglobin, neutrophil L-selectin intensity, neutrophil phagocytic and oxidative 

burst activity 

 Analysis of hematology and neutrophil activity parameters prior to transportation (day -1) 

was not possible due to laboratory constraints requiring analysis within 24 h and therefore 

samples were only obtained on days 0 and 3.  Following collection, sodium heparin tubes were 

kept at room temperature and processed within 24 h of sampling.  EDTA tubes were placed on 

ice and transported to the laboratory within several hours of sampling.  Plasma haptoglobin 

values, neutrophil phagocytic and oxidative burst activity, neutrophil L-selectin intensity, and 

hematology values were obtained as described previously.21,22   



111 

 

 2.7. Bronchoalveolar Lavage and Annexin A1 

 Bronchoalveolar lavage (BAL) samples could not be obtained prior to transportation (day 

-1) and were only obtained from TR steers on study days 0 and 3.  The procedure for collection 

of BALs was modified from previous studies23,24 using a total of 200 mL of 0.9% sterile saline 

introduced and then aspirated in 2 separate aliquots of 120 ml and 80 mL respectively.  The 

collected fluid was filtered through sterile gauze into 50 mL conical tubes and placed on ice until 

centrifugation for 10 min at 500 x g.  The supernatant was then frozen at -80˚C and annexin A1 

levels were measured in concentrated samples of bronchoalveolar lavage fluid as previously 

described25, with some modifications as follows.  Samples were concentrated by centrifugal 

filtration with a 3 kDa molecular weight-limit device (Amicon Ultra-15, Millipore, Billerica, 

MA, USA), purified (Ready Prep 2-D Cleanup Kit; Bio-Rad Laboratories, Hercules, CA, USA), 

and protein concentrations were measured (Nanodrop 2000C, Thermo Scientific, Rockford, IL, 

USA).  Two samples of concentrated BAL fluid that had intermediate annexin A1 levels were 

used as standards; these were loaded on each gel to facilitate comparison of test samples between 

gels and blots. Samples containing 10 g of protein were loaded on sodium dodecyl sulfate 

polyacrylamide (SDS-PAGE) gels (TGX Stain-Free Fast Cast Acrylamide solutions, Bio-Rad 

Laboratories, Hercules, CA, USA) and separated at 200 V for 1 h, then proteins were visualized 

(ChemiDoc, Bio-Rad Laboratories (Canada), Ltd, Mississauga, ON, Canada) and total protein in 

each lane was quantified by densitometry (Image Lab software, Bio-Rad Laboratories, Hercules, 

CA, USA).  Proteins were transferred to a membrane (TransBlot Turbo PVDF Membrane, Bio-

Rad Laboratories (Canada), Ltd, Mississauga, ON, Canada) that was used for western blot 

analysis. The membrane was blocked with 5% BSA for 1 h, then incubated with rabbit anti-
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human annexin A1 antibody (1:375; H00000301-D01P, Novus Biologicals, Oakville, ON, 

Canada) overnight at 4˚C, washed, and incubated with peroxidase-conjugated goat anti-rabbit 

immunoglobulin as secondary antibody (1:3000; DakoCytomation, Glostrup, Denmark), for 30 

minutes, washed for 1 h, and visualized by chemiluminescence (Clairity ECL western blotting 

substrate, Bio-Rad Laboratories (Canada), Ltd, Mississauga, ON, Canada). Bands (37 kDa), 

corresponding to that previously shown for annexin A125 were quantified by densitometry 

(Image Lab software, Bio-Rad, Laboratories, Hercules, CA, USA). Data are shown as the density 

of the band on the western blot adjusted for the background density of the blot, normalized to the 

corresponding adjusted total protein value obtained by densitometric analysis of the SDS-PAGE 

gel.  Quantitative data were confirmed by visual inspection of the blots and gels.  All laboratory 

personnel remained blinded to treatment during analysis. 

 

 2.8. Statistical Analysis 

 Parametric statistical procedures were performed by fitting generalized linear mixed 

models (GLMM) using the GLIMMIX procedure in SAS (Version 9.4, SAS Institute, Cary, NC, 

USA) to evaluate statistical associations between treatment effects (transportation and 

meloxicam status) and all outcome variables except Hp-MMP 9.  A Gaussian distribution, 

identity link, and residual pseudo-likelihood estimation were specified for these models. 

Continuous outcomes analyzed in this paper included rectal temperature (˚C), ocular temperature 

(˚C), cortisol concentration (ng/mL), plasma meloxicam concentration (ng/mL), neutrophil L-

selectin intensity (GMFI), red blood cell count (cells/μL), mean cell hemoglobin concentration 

(g/dL), and hemoglobin (g/dL).  Outcomes that required a natural log transformation included 

substance P (pg/mL), haptoglobin concentration (μg/mL), oxidative burst intensity (GMFI), 
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phagocytosis intensity (GMFI), white blood cell count (cells/μL), lymphocyte count (cells/μL), 

polymorphonuclear leukocyte cell count (cells/μL), and monocyte cell count (cells/μL).  Results 

from these models are presented as back-transformed means and 95% confidence intervals.  

GLMMs were also used to model categorical outcomes.  Mean cell volume (fl) was modeled as a 

dichotomous outcome variable (normal or low) based on normal laboratory values of 40-65 fl 

and fit using a binary distribution, logit link, and residual pseudo-likelihood estimation.  Other 

outcome variables including the percentage phagocytosing/oxidative neutrophils and hematocrit 

were fit using a beta distribution. 

 

 A random intercept for pen (a 4-level categorical variable) and a random covariance 

structure for unequally spaced repeated measures for calf were tested and incorporated whenever 

appropriate.  When only two post-transport repeated measures were available (day 0 and day 3), 

a simple random intercept for calf was used.26  Given the 2 x 2 factorial nature of the trial design, 

models included main effects for transportation (a 2-level categorical variable; TR and NTC), 

meloxicam status (a 2-level categorical variable; MEL and CON), study day (a 2 to 3-level 

categorical variable depending on the outcome), and the two-way interaction of transportation by 

meloxicam status, whenever data were available for all treatment groups.  For models where 

outcomes were recorded in the TR group only (i.e., rectal temperature, ocular temperature, and 

annexin A1 data), models included fixed effects for meloxicam status and study day or time with 

a meloxicam status by study day or time two-way interaction term.  Additionally, for the model 

where annexin A1 volume was the outcome variable, a natural log transformation of the response 

and an additional random intercept for blot number were utilized.  Unless noted otherwise, model 

estimates are presented as model-adjusted means ± standard error of the means.  An analysis of 
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either studentized or Pearson residual plots was performed for all models depending on the 

outcome distribution, and residuals ≥ |3| were further evaluated as potential outliers or influential 

observations.  Significance of fixed effects was determined by a P-value of ≤ 0.05.  To reduce 

the likelihood of Type I errors, a more stringent P-value of ≤ 0.01 was used to identify 

significance in all effects with more than one pair-wise comparison.     

 

 Residuals of the model for Hp-MMP 9 concentration (ng/mL) were not normally 

distributed or homoscedastic and despite several attempts, no amenable transformations 

normalized the residuals or improved the heteroscedasticity. Therefore, a Kruskal-Wallis test 

comparing the four treatment groups (TR-MEL, TR-CON, NTC-MEL, and NTC-CON) within 

the 2 x 2 factorial design followed by the Steel-Dwass method for multiple comparisons (α = 

0.01) between days was performed for the Hp-MMP 9 outcome variable in JMP 12 (SAS 

Institute, Cary, NC, USA ).   

 

 3.  Results 

 3.1. Clinical illness 

 During the first 3 days following arrival, all steers had CIS of 1 (Normal) with no clinical 

signs of BRD.  Throughout 28-day health monitoring period, several animals received a CIS of 2 

but did not have a rectal temperature of ≥ 40 ˚C and so were not eligible to be classified as BRD 

cases.  Therefore, no steers met the case definition for BRD during the 28 days after arrival at 

KSU.  Two steers showed signs of lameness within the first 3 days of the study (n = 1 from TR-

MEL and n = 1 from NTC-CON) but did not require treatment with NSAIDs and were therefore 

allowed to remain in the analysis for all variables reported in this study.   
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 3.2. Rectal Temperature Probes  

 Five rectal temperature probes malfunctioned (TR-MEL: n = 3; TR-CON: n = 2) and did 

not provide data for this study.  Several additional probes were removed from the dataset 

following their malfunction or removal.  One probe had to be removed on arrival due to swelling 

(TR-CON), one probe fell out on arrival (TR-MEL), one probe fell out (TR-MEL) on study day 

1, one probe was found partially misplaced from the rectum of a calf on the morning of day 2 

(TR-MEL), and one probe fell out during the last 6 hour period of data collection (TR-MEL).  

Analysis of the remaining temperature probe data did not reveal a significant time by meloxicam 

status interaction but time, aggregated into 6 h time periods, was associated (P < 0.01) with the 

rectal temperature of study steers.  However, there was no difference between rectal temperature 

in the TR-MEL or TR-CON steers (P = 0.83).   

 

 3.3. Ocular Thermography 

 Although no significant study day by meloxicam status interaction was detected, steers 

had greater (P < 0.01) ocular temperatures on day 0 (39.4 ˚C ± 0.08) compared to both day -1 

(38.9 ˚C ± 0.08) and day 3 (38.8 ˚C ± 0.11).  Meloxicam status did not have a significant effect 

on ocular temperatures.   

 

 3.4. Cortisol 

 There was no significant transport by meloxicam status interaction or significant effects 

of transport or meloxicam status on plasma cortisol concentration.  However, significant 

differences were detected between study days (Figure 5.3). 
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 3.5. Substance P 

 A transport by meloxicam status interaction was apparent (P < 0.01) with NTC-MEL 

steers having lower substance P concentrations (53.4 pg/mL ± 1.08) than TR-MEL (77.8 pg/mL 

± 1.05), TR-CON (72.1 pg/mL ± 1.05), or NTC-CON (73.8 pg/mL ± 1.08) steers (Figure 5.4).  

Day of sampling did not have a significant effect on substance P concentrations in this study. 

 

 3.6. Hp-MMP 9  

 Prior to transport (day -1), there were no significant differences (P = 0.57) between the 

four treatment groups in terms of Hp-MMP 9 concentration.  On day 0 (arrival), steers in the TR-

CON group (377.8 ng/mL ± 140.65) had greater (P < 0.01) Hp-MMP 9 concentration compared 

to steers in the NTC-CON group (0 ng/mL ± 0).  On day 3, an overall significant difference 

between the four treatment groups was detected (P < 0.01) but individual comparisons between 

groups were not significantly different at P < 0.01.  

 

 3.7. Hematology 

 The transport by meloxicam status interaction was not significantly different for any of 

the hematology variables.  Main effects for transport status and meloxicam status were also not 

significantly different for red blood cell counts, hematocrit values, or mean cell hemoglobin 

concentrations (MCHC).  Red blood cell counts were greater (P < 0.01) on day 0 (7,759,513 

cells/μL ± 139,331) compared to day 3 (7,542,844 cells/μL ± 139,083).  Similarly, hematocrit 

values were also greater (P < 0.01) on day 0 (30.2 % ± 0.46) compared to day 3 (29.4 % ± 0.46).  

Steers had lesser (P < 0.01) MCHC on day 0 (35.6 g/dL ± 0.22) compared to day 3 (36.6 g/dL ± 
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0.22).   No significant effects for hemoglobin concentration or mean cell volume were observed 

in this study.  Steers had greater (P = 0.03) total leukocyte counts on day 0 (11,485 cells/μL, 

95% CI: [10,824; 12,187]) compared with day 3 (10,895 cells/μL, 95% CI: [10,271; 11,558]) but 

neither meloxicam status nor transport status had a significant effect on total leukocyte counts.  

Polymorphonuclear leukocyte counts were greater (P < 0.01) in TR steers (3,800 cells/μL, 95% 

CI: [3,406; 4,239]) compared to NTC steers (2,697 cells/μL, 95% CI: [2,310; 3,149]) and greater 

(P < 0.01) in all steers on day 0 (3,744 cells/μL, 95% CI: [3,348; 4,186]) compared to day 3 

(2,737 cells/μL, 95% CI: [2,450; 3,058]).  Meloxicam status did not have a significant effect on 

polymorphonuclear leukocyte counts.  There were no significant interactions or main effects on 

lymphocyte or monocyte cell counts throughout this study.  Descriptive statistics of all 

hematology values are provided (Table 5.1).   

 

 3.8. Haptoglobin 

 When haptoglobin concentrations were examined, a transport by meloxicam status 

interaction was not detected (P = 0.46).  A transportation effect was detected (P < 0.01) with TR 

steers having greater haptoglobin concentrations (59.4 μg/mL, 95% CI: [41.9; 84.1]) than NTC 

steers (25.9 μg/mL, 95% CI: [15.7; 42.6]) but meloxicam status did not significantly affect 

haptoglobin concentrations.  Additionally, day influenced haptoglobin concentrations (P < 0.01) 

with steers having different (P = 0.01) haptoglobin concentrations on day 0 (26.7 μg/mL, 95% 

CI: [18.2; 39.1]) and day 3 (47.1 μg/mL, 95% CI: [31.2; 71.1]).  Neither day had significantly 

different haptoglobin concentrations when compared to day -1 (47.9 μg/mL, 95% CI: [31.4; 

73.1]). 
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 3.9. Neutrophil L-selectin 

 Although a significant transport by meloxicam status interaction was not detected, TR 

steers had greater (P < 0.01) neutrophil L-selectin intensity levels (58.6 GMFI ± 5.68) compared 

to NTC steers (48.0 GMFI ± 6.13).  Steers had lesser (P < 0.01) neutrophil L-selectin intensity 

on day 0 (47.2 GMFI ± 6.24) compared to day 3 (59.4 GMFI ± 5.70).  Meloxicam status did not 

significantly affect neutrophil L-selectin intensity levels. 

 

 3.10. Neutrophil Activity 

 No significant transport by meloxicam status interactions or main effects of transport or 

meloxicam status were detected for any of the measures of neutrophil activity. Phagocytosis 

intensity was lesser (P < 0.01) on day 0 (87.6 GMFI, 95% CI: [77.5; 99.0]) compared to day 3 

(98.9 GMFI, 95% CI: [87.4; 111.8]) while the percentage of phagocytosing/oxidative burst 

neutrophils was greater (P < 0.01) on day 0 (65.5 % ± 2.23) compared to day 3 (55.7 % ± 1.59).  

No significant effects were detected on the intensity of neutrophil oxidative burst activity in this 

study. 

 

 3.11. Annexin A1 

 No significant interaction or main effects of time or meloxicam treatment were detected 

on annexin A1 levels within transported steers on arrival or on day 3 following transport.   

 

 3.12. Meloxicam Concentration 

 No study steers had detectable plasma meloxicam concentrations in any samples 

collected on day -1 (prior to meloxicam administration) and none of the TR-CON or NTC-CON 
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cattle had any detectable plasma meloxicam concentrations in any samples at any time point.  

Examination of plasma meloxicam concentrations in the NTC-MEL steers compared with the 

TR-MEL steers indicated a significant study day by transport interaction (Figure 5.5).   

 

 Discussion 

 This study provides the opportunity to examine the effect of long-distance transportation 

in the absence of some of the other common stressful events that cattle often experience in 

conjunction with transportation such as weaning, commingling, or time spent at a livestock 

auction.  Although the animals studied herein were older, single-source, and were previously 

weaned, the TR cattle still experienced water and food deprivation during transport and both TR 

and NTC cattle were handled at the same time points both before and after transport.  The effects 

of food or water deprivation during transport have been documented27 and handling stress is 

considered by some authors to have a larger impact than the actual transportation event itself.28,29  

However, even considering the accumulation of several stressors in this study, no clinical BRD 

was observed in the entire set of steers across all of the treatment groups at any point during the 

entire monitoring period.  Therefore, the results of this study also provide information regarding 

the effect of transportation in clinically healthy animals.  

 

 Prior work14 indicated that the mean Cmax of orally administered meloxicam is achieved 

at about 12 h post-administration and that the half-life is approximately 28 h on average.  In this 

study, TR-MEL steers achieved approximately equivalent plasma meloxicam concentrations as 

found previously18; however, although the same doses of meloxicam were administered to both 

TR-MEL and NTC-MEL steers on day -1, TR-MEL steers had significantly greater meloxicam 
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concentrations compared to NTC-MEL steers when sampled on arrival.  A plausible explanation 

is that perhaps transport-induced dehydration led to hemoconcentration and thus a seemingly 

elevated plasma meloxicam concentration in TR steers; however, all steers had clinically 

normal30 hematocrits and all but two NTC-MEL steers had normal red blood cell counts.  

Another possible explanation is that a transportation-induced decreased in rumen fill altered the 

rate of passage in the gastrointestinal tract and absorption of meloxicam13 due to less drug 

binding to forages in the rumen.  

 

 The only variable measured in this study affected by the application of meloxicam was 

substance P, a neuroactive peptide that is involved in the response of animals to pain and stress.31  

However, it is unclear why a decrease in circulating substance P was recorded in only NTC-MEL 

steers while the TR-MEL steers had concentrations that were not statistically different than the 

control steers.  It is possible that the handling events on day -2 and day -1 produced some level 

of pain or stress in all 4 treatment groups that was mitigated by meloxicam in NTC-MEL steers 

but the additional discomfort associated with the long-distance transport event and rectal 

temperature probes in the TR steers exceeded meloxicam’s ability to mitigate the substance P 

response in the TR-MEL steers.  An alternative hypothesis for why the substance P 

concentrations in the transported and NTC-CON cattle were similar is that the transportation 

events and associated handling/sampling that were supposed to induce inflammation, discomfort, 

stress, and a corresponding elevation in substance P concentrations did not do so to an 

appreciable extent in this group of older transported steers; however, that does not explain the 

significant decrease in substance P concentrations found in the NTC-MEL steers and therefore is 

less likely than the initial explanation.  Although it does not appear that meloxicam 
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administration affected the TR-MEL steers in this study, it is possible that meloxicam 

administration could affect substance P concentrations in higher risk steers (younger, recently 

weaned, extensively commingled, etc.) or calves that experienced any different combination of 

stressors differently and should be studied further.   

 

 Previous studies have reported increases in plasma cortisol concentrations following a 

stressful event such as transport6,9,32 or transport following weaning33, while others have reported 

decreases27 or no differences.34,35  It is probable that the relationship between stress and cortisol 

concentrations varies depending on the magnitude, type, length, or total amount of stress endured 

given that the responses to stress seem so variable.10 However, separation of stress associated 

with transportation from stress incited by unloading, handling, and acquiring a blood sample 

remains challenging; limited research has been published separating out the many stressful 

events involved in transportation but some attempts have been made to do so.33,36,37   The 

combination of the stress of handling and acquiring a blood sample experienced by the NTC 

cattle may have contributed to the lack of effect of transportation status on cortisol 

concentrations despite efforts made to minimize it in this study.   A significant difference 

between day -1 cortisol concentrations and day 3 cortisol concentrations was observed; one 

contribution to the study day effect observed herein could be that steers were sampled in the late 

afternoon prior to transport on day -1 whereas sampling on day 0 and day 3 occurred early in the 

morning.  However, cortisol concentrations were relatively high across all sampling time points 

including baseline indicating that some form of stress was experienced by all the cattle regardless 

of treatment group and thus making it difficult to identify any circadian differences in cortisol 

concentrations.38   
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 Not only are there conflicting reports regarding the change, or lack thereof, of cortisol 

concentrations following a stressful event, there is also considerable controversy in the literature 

regarding the effect of glucocorticoids on the immune function of cattle.  Some forms of stress 

have the potential to improve some aspects of the immune response1 whereas others have 

observed that acute or prolonged stressors have a negative impact on immune function.34,39  

Indeed, it seems that the relationship between stress and the immune system is complex and 

complicated by factors such as genetics, the part of the immune system examined, and the type 

and chronicity of the stressor.1,27  Despite experiencing a transportation event that should have 

been significantly stressful, the evaluation of the leukograms in this group of study animals did 

not indicate evidence of a full classic stress response (leukocytosis, lymphopenia, and mild 

neutrophilia) in transported cattle compared to non-transported cattle; the only part of the 

leukogram that was affected by transport group was the polymorphonuclear leukocyte count 

which, although greater in the TR cattle, remained within reference ranges.30  While significantly 

greater total leukocyte counts and polymorphonuclear leukocyte counts were observed on day 0 

compared to day 3, values on both days also remained within normal limits.30  Additionally, 

although cattle showed a significant increase in red blood cell count and hematocrit and a 

decrease in MCHC on day 0 compared to day 3, again the variables remained within normal 

reference ranges for cattle30 except for the hematocrit of a single calf.  While the significant 

differences between sampling times observed in these variables do make sense physiologically, 

the lack of a day -1 baseline value for any of these variables and the fact that they all remained 

within normal limits makes interpretation of the significant differences between arrival and day 3 

hematology and leukogram values difficult.  As previously mentioned, it is possible that the 
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transportation event was not stressful enough to induce a classic stress leukogram in the class of 

cattle studied herein; a different response may be seen in other types of cattle.    

 

 The results from this study indicated that transported yearling steers had greater plasma 

haptoglobin concentrations than non-transported steers which is in contrast to previous work that 

found no difference in plasma haptoglobin concentration between groups.34 However, Early and 

O’Riordan also found that haptoglobin concentrations did not differ significantly in their baseline 

and post-transport samples; this agrees with our results where neither day 0 nor day 3 samples 

were significantly different than baseline.  However, this study did find that samples collected on 

day 3 had had significantly greater haptoglobin concentrations than on day 0 (arrival).  This 

small delayed increase may be explained by the fact that haptoglobin is a late acute phase 

protein40 and it was unlikely that an increase would be seen immediately following our overnight 

transportation event.   However, other work in transported calves also found that haptoglobin 

was decreased at 4.5 and 9.75 h after the start of a 9 h transportation event but were no different 

than time 0 thereafter.32  Additionally, it has been demonstrated that the individual animal acute-

phase protein response to stress41 and inducers of inflammation such as LPS40 can vary 

considerably.  Given the variability reported in the literature, it is possible that there is not a 

consistent amount of inflammation induced by transport or that varying factors between 

experiments such as length of transport, road conditions, environmental conditions, etc. are 

confusing the issue regarding haptoglobin concentrations in response to transportation or other 

stressful events.   
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 It was expected that transported steers, even of a lower risk category such as the animals 

used in this study, would have greater cortisol, greater levels of inflammatory markers, decreased 

leukocyte function, and a stress leukogram.  Although comparing results across studies 

examining transport stress is complicated by the variability in the study populations, transport 

events, and sample timing, the results observed in this study were still surprising and hint at the 

complexity of what constitutes a significant stress event in different groups of cattle.  Despite 

efforts made to handle the cattle similarly across all treatment groups and to limit the amount of 

time each calf spent being handled, the time required to take samples on each of the study days 

was significant and may have induced unwanted variability.  It is also possible that more 

frequent sampling timing7,36 than what was employed herein is needed to detect the changes in 

physiology resulting from long-distance transportation in clinically healthy, lower-risk animals.     

 

 Overall, these results do not support the use of meloxicam as a means of mediating the 

effects of transport stress in single-source steers weaned for approximately 8 months.  However, 

meloxicam may be beneficial in other populations of higher risk calves that have experienced 

additional stressors or inflammatory events42.  Additional research needs to be performed in 

order to evaluate meloxicam’s potential therapeutic effects in other populations as well as further 

exploring the complex interplay of different stress sources and their relationship with disease.   
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Figure 5.1 – Random assignment of 60 steers to each of the study groups in an unbalanced, 2 x 2 

factorial design.  Within the transported (TR) and non-transported control (NTC) groups, half of 

the steers received 1 mg/kg meloxicam (MEL) or a lactose placebo (CON) orally.   

 

 Transportation Status 

Treatment 

Group 

 TR NTC Total 

MEL 20  10  30  

CON 20  10  30  

Total 40  20  60  
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Figure 5.2 – Timeline of project including actions taken at both Mississippi State University’s 

Brown Loam Branch Experiment Station (MSU; above timeline) and Kansas State University’s 

Large Animal Research Center (KSU; below timeline).  Non-transported control (NTC) steers 

were transported overnight from MSU to KSU on day -18 for acclimation prior to the beginning 

of the study while transported (TR) steers were kept at MSU until day -1.  On day -2 and day -1, 

steers were handled at their respective locations and were given either 1 mg/kg meloxicam 

(MEL) or a lactose placebo (CON) orally on day -1. 
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Figure 5.3 – Plasma concentration of cortisol (ng/mL) in steers prior to transport (day -1), on 

arrival (day 0), and on day 3 post-transport.  There was no significant interaction or main effects 

of transportation or meloxicam status on cortisol concentrations.  Columns with different letters 

were different (P < 0.01); data are presented as model-adjusted means ± SEM. 
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Figure 5.4 – Plasma concentration of substance P (pg/mL) in steers within each treatment group.  

NTC = non-transported controls; TR= transported; MEL = meloxicam; CON= lactose placebo.  

There was an interaction (P < 0.01) between transport group and meloxicam status with NTC-

MEL steers having lesser (P < 0.01) substance P concentrations than all other steers.  Data are 

presented as model-adjusted means and 95% confidence intervals. 
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Figure 5.5 – Plasma meloxicam concentration (ng/ml) in transported (TR-MEL) and non-

transported control (NTC-MEL) steers on a) day 0 and b) day 3 after receiving 1 mg/kg 

meloxicam orally on day -1.  Steers in both the TR-CON and NTC-CON groups had plasma 

meloxicam concentrations below detectable limits for the duration of the trial and are not 

included in this figure.  Different letters within each graph represent differences at P < 0.01; data 

are presented as model-adjusted means ± SEM. 
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Table 5.1 – Descriptive statistics of all hematology and leukogram values broken down by study day for all transported (TR) and non-transported control (NTC) cattle that received 

either meloxicam (MEL) or a placebo control (CON).  RBC = red blood cell count; HGB = hemoglobin concentration; HCT = hematocrit; MCV = mean corpuscular volume; 

MCHC = mean corpuscular hemoglobin concentration; WBC = total leukocyte count; PMN = polymorphonuclear leukocyte count; LYM = lymphocyte count; MON = monocyte 

count. 

 

 NTC TR 

 MEL CON MEL CON 

 Day Mean ± SD Median Min Max Mean ± SD Median Min Max Mean ± SD Median Min Max Mean ± SD Median Min Max 

RBC 

(mm3) 

0 7.75 ± 1.39 7.83 5.72 10.83 7.77 ± 1.05 7.47 6.31 9.79 7.73 ±0.99 7.77 6.00 9.57 7.86 ±0.81 7.69 6.36 9.46 

3 7.52 ± 1.25 7.41 6.08 10.29 7.69 ± 0.80 7.57 6.67 8.97 7.44 ± 1.11 7.37 5.27 9.53 7.58 ±0.85 7.38 5.94 9.40 

                  

HGB 

(g/dL) 

0 10.47 ± 1.39 10.25 8.20 13.70 10.94 ± 1.25 10.95 8.70 13.10 10.64 ± 1.10 10.65 8.30 12.50 10.85 ±1.03 10.95 9.10 12.50 

3 10.65 ± 1.37 10.25 8.90 13.90 11.19 ± 0.92 11.20 9.80 12.50 10.54 ± 1.33 10.55 7.20 13.10 10.70 ± 1.00 10.80 8.80 12.90 

                  

HCT 

(%) 

0 29.42 ± 4.52 29.60 22.20 38.10 31.00 ± 3.61 30.30 27.10 37.60 29.76 ± 3.01 30.25 22.60 35.10 30.56 ± 3.05 30.65 25.70 35.40 

3 28.96 ± 3.69 28.15 22.60 35.50 30.72 ± 2.27 30.10 27.30 34.30 28.74 ± 3.57 28.60 18.90 34.00 29.48 ± 3.24 29.55 24.00 38.80 

                  

MCV 

(fl) 

0 38.21 ± 2.90 37.80 34.20 42.70 40.05 ± 2.05 40.25 36.70 42.90 38.73 ± 2.96 37.75 35.10 45.20 39.00 ± 2.94 39.65 34.30 44.30 

3 38.82 ± 3.51 37.80 34.20 43.60 40.11 ± 2.00 40.30 37.40 43.00 38.83 ± 3.02 38.25 35.50 45.40 39.02 ± 3.15 39.50 34.20 45.20 

                  

MCHC 

(g/dL) 

0 35.79 ± 2.94 35.45 33.10 43.00 35.32 ± 1.62 35.25 32.10 37.40 35.78 ± 1.29 35.80 33.50 37.70 35.54 ± 1.72 35.40 31.90 38.90 

3 36.84 ± 1.62 36.55 34.30 39.40 36.43 ± 1.33 36.70 34.10 38.20 36.71 ± 1.55 37.00 34.10 39.20 36.34 ±1.29 36.30 33.20 38.90 

                  

WBC 

(x 106 /mL) 

0 10.91 ± 1.18 11.18 8.44 12.18 10.72 ± 2.14 10.37 8.83 16.46 12.19 ± 2.85 12.00 8.56 16.74 12.68 ± 2.36 12.36 8.92 18.48 

3 11.28 ± 2.03 11.06 8.00 14.47 10.40 ± 2.04 10.00 8.73 15.90 11.56 ± 3.27 12.40 7.09 20.90 11.74 ± 2.94 11.02 7.74 17.86 

                  

PMN 

(x 106 /mL) 

0 3.34 ± 0.72 3.34 2.55 4.65 2.95 ± 0.91 2.90 1.72 4.89 4.52 ± 1.94 4.34 1.92 8.73 5.18 ± 1.96 5.20 2.02 10.18 

3 2.83 ± 0.86 3.24 0.71 3.47 2.32 ± 0.92 2.49 1.06 4.03 3.50 ± 1.63 3.21 1.32 7.99 3.60 ± 1.93 3.01 1.64 9.40 

                  

LYM 

(x 106 /mL) 

0 5.60 ± 1.22 5.88 3.27 7.14 5.87 ± 1.22 5.69 4.35 8.51 5.76 ± 1.12 5.69 4.24 8.35 5.85 ± 1.19 5.89 3.71 8.18 

3 6.13 ± 1.75 5.71 4.04 8.91 5.94 ± 1.42 5.63 4.62 9.38 5.91 ± 1.33 5.48 4.00 8.60 6.09 ± 1.36 5.90 3.71 8.69 

                  

MON 

(x 106 /mL) 

0 1.47± 0.25 1.47 1.15 2.10 1.63 ± 0.38 1.53 1.36 2.65 1.68 ± 0.65 1.47 0.91 2.97 1.48 ± 0.43 1.56 0.78 2.32 

3 1.59 ± 0.27 1.60 1.16 2.11 1.67 ± 0.26 1.59 1.34 2.05 1.51 ± 0.64 1.36 0.66 3.04 1.53 ± 0.51 1.35 0.85 2.90 
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 Abstract 

 Objective 

To monitor the effects of meloxicam administration pre-transport on the movement, feeding, and 

drinking behaviors of transported and non-transported calves.   

 Animals 

High-risk beef steers (n=100).  

 Procedures 

Transport (TR) experiment: steers were randomly assigned to receive either 1 mg/kg meloxicam 

(MEL, n=50) or a placebo orally (CON, n=50) then transported approximately 1,000 km 

overnight to a feedlot where they were processed and randomly assigned to 10-head pens within 
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treatment group (MEL=5 pens, CON=5 pens).  Distance traveled, percent time spent near feed 

(PNF), and percent time spent near water (PNW) were recorded for each calf for 21 days post-

arrival.  Non-transported (NT) experiment: all pens received the opposite treatment (MEL or 

CON), were kept in their pens overnight, processed, and behaviors recorded for the next 21 days.  

Average daily gain (ADG) and feed efficiency (FE) were calculated for each experiment. 

 Results 

During the TR experiment, meloxicam did not significantly affect distance traveled, PNF, or 

PNW but all behaviors did significantly vary by day (P < 0.001).  Treatment did not affect TR 

FE (P = 0.61); TR ADG was descriptively similar between treatments.  In NT cattle, the effect of 

day on distance traveled depended on meloxicam (P < 0.01) but there were no significant within-

day comparisons between MEL and CON calves.  Day was the only significant effect (P < 

0.001) for PNF or PNW.  Between treatment groups, ADG and FE were descriptively similar in 

NT cattle. 

 Conclusions and Clinical Relevance 

This study did not demonstrate an effect of meloxicam administered prior to transportation on 

the behavior or performance variables measured in transported calves. 
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Abbreviations 

BRD  Bovine Respiratory Disease 

CIS  Clinical illness score 

CON  Control placebo-treated cattle 

COX-2   Cyclooxygenase-2 

MEL  Meloxicam-treated cattle 

NSAID  non-steroidal anti-inflammatory drug 

NT  Non-transported cattle 

TR  Transported cattle 

 

 Introduction 

 While evidence exists that long-distance transportation increases BRD risk1 and impacts 

various inflammatory, immunologic, and performance parameters in cattle2,3, relatively few 

therapeutic strategies exist to mitigate the effects of long-distance transportation.4  Meloxicam, a 

COX-2 inhibiting NSAID with high bioavailability and a relatively long mean plasma half-life of 

28 hours5, provides anti-inflammatory therapy for several days with a single oral bolus of 1 

mg/kg.  Work by Van Engen et al. has shown that meloxicam can affect some transportation-

associated changes in immunity2 and certain biomarkers of stress and inflammation.6  Guarnieri 

Filho et al. recently found that repeated administration of meloxicam prior to loading, at 

unloading, and daily through the first week at the feedlot influenced certain performance 

parameters.7  Therefore, the possibility exists for using an NSAID, such as meloxicam, to 

alleviate the adverse effects of long-distance transport. 
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 Reductions in feed intake8 in cattle that have been transported long distances have been 

reported, but specific examination of eating and drinking behavior following long-distance 

transport has not been well-studied.  However, the development of real-time location monitoring 

systems (RTLS) have provided researchers with a non-invasive technology to study these 

behaviors after transportation.9  Conventional receiving practices indicate that long-haul cattle, 

that are often shrunk10 and have been standing for extended periods of time11, should have access 

to hay and water soon after arrival12 and have the opportunity to rest in a clean, dry location.13  

While these practices do seem beneficial and address the dehydration and shrink inevitably 

linked to long-distance transport, they do not address the impact of any potential inflammation or 

stress associated with long-distance transport on the behavior of newly-arrived calves.  

Development of an intervention that could lessen the impact of long-distance transport on cattle 

behavior and speed their recovery from such a stressful event could result in reduced BRD risk.  

Therefore, the objective of this project was to monitor the effects of meloxicam administration 

before transport on the movement, feeding, and drinking behaviors of transported and non-

transported calves.   

 

 Materials and Methods 

 Study Population and Timeline 

 This study protocol was approved by the Kansas State University Institutional Animal 

Care and Use Committee (IACUC # 3591) and consisted of two separate experiments during 

which calves were either transported (TR) or not transported (NT).  During the TR experiment 

(6/11/15 to 7/3/15), 100 high-risk crossbred beef steers were obtained from a livestock auction in 

Tennessee and transported approximately 1000 km overnight to a feeding facility in Missouri.  
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Prior to shipment, all calves were double tagged with commercial ear tags and randomly 

assigned to receive either 1 mg/kg meloxicam orally (MEL:  n = 50) or a lactose placebo orally 

(CON: n = 50) and then randomly assigned within treatment group to pens (MEL: n = 5 pens and 

CON: n = 5 pens).  On arrival in Missouri, calves were processed and received the following 

health interventions: a macrolide antibiotica, a 7-way clostridial vaccineb, a 5-way respiratory 

vaccinec, and an injectable macrocyclic lactone dewormerd according to label directions.  Each 

calf was also fitted with a RTLS ear tage in their right ear.  Thermographic images of the eye and 

blood samples were also obtained on each calf (data not shown).  Each 10-head pen (6.1 m x 

23.4 m) contained inline bunks that provided a minimum of 0.61 m of bunk space per calf, 

automatic waterers, and shade.  All calves were fed once daily and received a starter ration 

consisting mainly of hay for the first four days and then transitioned to a wet corn gluten, soy 

hull, shelled corn, and ground hay total mixed ration for the remainder of the trial.   

 

 The NT experiment (7/6/15 to 7/29/15) began with a “pre-transport” sampling and 

treatment application day (day -1) where each pen of cattle was given the opposite treatment that 

it had received during the TR experiment (Table 6.1).  The treatment administration was 

followed by an overnight period where cattle remained in their home pens, a sampling day on 

day 0, and then 21 days of behavioral monitoring.  The two experiments were separated by 2 full 

days where cattle were not considered on trial with the total time period between the first 

administered dose of meloxicam during the TR experiment and the second administered dose of 

meloxicam in the NT experiment encompassing 25 days.  A detailed depiction of the study 

timeline and data collected on each study day can be found in 6.1.       
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 Health Monitoring 

 Each calf was observed once daily by a trained individual blinded to treatment.  Calves 

were assigned a clinical illness score (CIS) regarding signs of BRD according to the following 

modified scale14: CIS 1 – Normal; CIS 2 – Moderate illness, moderate depression, and/or cough; 

CIS 3 – Severe illness, severe depression, labored breathing, and/or cough; CIS 4 – Severe 

illness impairing ability to competitively access feed and water; CIS 5 – Moribund/recumbent.  

Any calf that received a CIS of 2 or greater was examined and a rectal temperature was taken; if 

the rectal temperature was ≥ 40˚C, treatment was applied according to a predetermined protocol 

and the calf was returned to the pen.  Any calf showing signs of lameness or other illness was 

examined and treated according to common industry practices.  If at any point in the study a calf 

required NSAID treatment, it was excluded from the study from that point on but remained in its 

pen provided it could access feed and water.    

 

 Behavioral monitoring 

 As previously mentioned, each calf was fitted with a RTLS tage on arrival which allowed 

for continuous monitoring of movement, eating, and drinking behaviors during both experiments.  

These tags work by monitoring the location of calves within a two-dimensional grid with 

predetermined (x, y) coordinates establishing the perimeter of each pen and the location of the 

feed bunks and waterers within each pen.  The tags track the location (x, y) of each animal every 

second and, by relating those coordinates to the locations of interest in the pen and the animal’s 

previous location, can quantify distance traveled and time spent near those locations (e.g., within 

1 m of feed and within 1 m of water).  Data from the tags is sent to sensors located on the 

periphery of the pen.  Although this RTLS has algorithms that use the behavioral data to identify 
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potentially diseased animals15,16, the only data used from the tags in this study were the raw 

behavioral data.  All behavioral data was aggregated first to the hourly level for each individual 

calf then to a pen level average on an hourly basis.  The average pen-level hourly data was then 

aggregated into 24 hour trial days beginning at 0:00 each day.  Therefore, the first full day of 

behavioral data began at 0:00 on day 1 of each experiment.  Comparisons of behavior data were 

carried out using the daily average pen level data. 

 

 Performance data 

 In order to permit continuous behavioral monitoring for the full 21 days following arrival 

and to minimize handling events, calf weights were obtained prior to feeding on day 0 of the TR 

experiment and then again prior to feeding on day -1, day 0, and day 22 of the NT experiment 

(Figure 6.1).  Therefore, the TR experiment average daily gain (ADG) and feed efficiency (FE) 

were based on performance data from TR day 0 (6/12/15) to day -1 of the NT experiment 

(7/6/15) while the NT experiment ADG and FE were based on performance data from NT day 0 

(7/7/15) to NT day 22 (7/29/15).   

 

 Statistical Analysis 

 All data were evaluated on a pen-level basis as pen was the experimental unit.   

Within each experiment, generalized linear mixed models (GLMMs) were fit using the 

GLIMMIX procedure in SASf to evaluate the effects of day, treatment, and a day by treatment 

interaction on behavioral outcomes including distance traveled, a continuous dependent variable 

fitted via a Gaussian distribution, and percent time spent near water (PNW) and percent time 

spent near feed (PNF) which were both continuous proportions fitted via beta distributions.  
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Studentized residual plots were evaluated for normality and homoscedasticity; residuals of ≥ |3| 

were further evaluated as potential outliers or influential observations.  To account for the effect 

of daily repeated measures on each pen, which were not equally spaced due to missing data, a 

random intercept of pen within treatment and a random residual of pen within treatment with 

either an ante(1), sp(POW), or sp(EXP) covariance structure was incorporated into each model 

based on model fit.  Fixed effects were considered significant when P < 0.05.  When a treatment 

by study day interaction was significant, within-day comparisons between treatment groups were 

performed with a more conservative P-value of < 0.01.  When study day was the only significant 

effect, pairwise comparisons were made between day 1 and all other study days with a P-value 

of < 0.01 considered significant.  Results are presented as model-adjusted means ± SEM. 

 

 A GLMM for FE in the TR experiment was fit via a beta distribution and included 

treatment as a fixed effect and pen within treatment as a random intercept term.  Results for the 

TR experiment FE are presented as model-adjusted means ± SEM.  During the TR experiment, 

ADG was normally distributed but residual analysis revealed heteroscedasticity of the residuals.  

Therefore, analysis of ADG in the TR experiment was limited to descriptive statistics. 

 

 During the NT experiment, ADG was not normally distributed and the residuals could not 

be normalized via transformation.  Additionally, the GLMM for FE in the NT experiment had 

convergence issues.  Therefore, the analysis of performance data from the NT experiment was 

limited to descriptive statistics. 
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 Results 

 Morbidity and Mortality 

 During the TR experiment, a total of 6 calves were diagnosed with BRD and 2 calves 

became lame; one calf (Pen 2) required re-treatment for BRD and one calf (Pen 4) required re-

treatment for lameness.  During the NT experiment, no calves were diagnosed with BRD and 

only one calf (Pen 3) was diagnosed with lameness and required re-treatment.  The behavioral 

data from calves diagnosed with BRD or lameness was removed for the study day prior to 

diagnosis, the study day of diagnosis, and the study day after diagnosis in order to limit the effect 

the illness may have had on the behavioral outcomes in those pens.   

 

 Additionally, behavioral data from the following time frames during the TR experiment 

were also removed from the analysis due to the following calves leaving the pen perimeters: all 

calves on days 3 and 4; one calf from Pen 5 and two calves from Pen 6 on day 5; one calf from 

Pen 5 on days 5 and 6; and one calf from Pen 2 on day 21.   

 

 Behavioral data from one calf from Pen 6 was removed from the entire dataset due to a 

malfunctioning RTLS tag and from several other calves for specific days during the TR 

experiment (one calf in Pen 6 on day 1; one calf in Pen 3 and one calf in Pen 10 on day 2; and 

one calf in Pen 5 on day 14;).  Additionally, several days were removed due to system 

malfunctions or data corruption in the TR experiment (day 18) or NT experiment (days 12, 19, 

20, and 21).  Therefore, the total number of days analyzed during the TR experiment was 18 and 

during the NT experiment was 17. 
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 TR Experiment 

 The treatment by study day interaction was not significant for distance traveled (P = 

0.70), PNW (P = 0.16), or PNF (P = 0.74) during the TR experiment.  Likewise, the main effect 

for treatment was not significant for distance traveled (P = 0.94), PNW (P = 0.39), or PNF (P = 

0.81) during the TR experiment.  However, study day was significantly associated with distance 

traveled (P < 0.001), PNW (P < 0.001), and PNF (P < 0.001) with significant differences 

between study day 1 and some of the other study days within all 3 behaviors (Figure 6.2).  

Descriptive statistics for ADG and FE in the TR experiment can be found within Table 6.2.  

Treatment with meloxicam did not significantly affect FE during the TR experiment (P = 0.61). 

 

 NT Experiment  

 The treatment by study day interaction was significant (P < 0.01) for distance traveled 

during the NT experiment (Figure 6.3).  The treatment by study day interaction was not 

significant for PNW (P = 0.30) or PNF (P = 0.44) during the TR experiment.  The main effect 

for meloxicam treatment was not significant for PNW (P = 0.31), or PNF (P = 0.62) during the 

TR experiment.  However, study day had an effect on time spent near the water (P < 0.001), and 

time spent near the feed (P < 0.001) with several significant pairwise comparisons between study 

day 1 and some of the other study days within each behavior (Figure 6.4).  Descriptive statistics 

for FE and ADG in the NT experiment can be found within Table 6.3. 

 

 Discussion 

 Performance in TR and NT cattle was not affected by the single dose of meloxicam given 

in this study.  In a study by Cooke et al., flunixin meglumine, another NSAID with a shorter 
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plasma elimination half-life17 than meloxicam, given before and after transportation also did not 

affect dry matter intake (DMI) or FE measurements.18   However, other work by the same group 

found that multiple doses of meloxicam resulted in increased ADG, DMI, and FE in cattle 

transported for 24 hours.7  It is possible that with a larger sample size in each treatment group or 

in a population of calves exposed to a different set of stressors in conjunction with long-distance 

transport, a significant difference based on NSAID treatment could be detected.  Alternatively, in 

order to perceive performance benefits, more than a single dose of meloxicam prior to shipping 

may be required.   

 

 This study did find a significant effect of study day on eating and drinking behaviors in 

both TR and NT experiments but with no clearly identifiable trends related to known study 

events or management practices.  The day-to-day variability in daily pen eating and drinking 

behaviors observed herein may reflect normal variation on a pen level or may be a result of cattle 

reacting to other stimuli that were not recorded or accounted for in this study such as ambient 

temperature, weather events, or the daily activities occurring throughout the yard.  Cattle, as herd 

animals, often congregate near sources of feed or water even if they are not actively eating or 

drinking therefore our PNW and PNF variables, which are proxy measures of eating and 

drinking behavior, invariably include time spent actually eating and drinking as well as time 

when cattle are not engaging in the behavior itself.  This lack of specificity regarding the actual 

behavior being performed during PNW and PNF may also have contributed to the lack of 

statistical differences observed between treatments in this study.  However, differences in 

behavior following transportation have been documented by Theurer et al. who found that, on 

the day of transportation, transported heifers spent significantly more time within 0.3 m of the 
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hay feeder than their non-transported control group but detected no significant differences in 

time spent near the waterer or the feed bunk.   

 

 Behavioral differences between MEL and CON cattle may have been present prior to the 

initiation of behavioral data monitoring at 0:00 on day 1.  Practical limitations of arrival data 

collection and sorting calves into pens precluded the inclusion of daily behavioral data from the 

first 18 hours following transportation as a full 24 hours was not available.  However, in a study 

comparing transportation events of differing durations (5 hours, 10 hours, and 15 hours), Wariss 

et al. described similar average water consumption before and after transportation in all 3 groups 

and a potential decrease in average hay consumption in the first 2 days following transportation 

for 15 hours compared with the pre-transportation average.11  Unfortunately, a lack of replication 

between groups precluded statistical comparisons of pre- and post-transport average water and 

hay consumption within that study.   

 

 Anecdotal reports from producers frequently indicate that long-haul cattle are often found 

resting soon after they are offloaded.  In the TR experiment, study day significantly affected the 

distance traveled by calves with calves across both treatment groups being numerically less 

active on days 1, 2, 5, 6, and 7 following transportation compared with nearly all the other study 

days in the TR experiment.  However, the TR experiment’s analysis was complicated by the fact 

that behavioral data from two days, day 3 and day 4 following arrival, were lost due to cattle 

escaping the pens at some point in the evening on day 3 and so firm conclusions about activity 

following transportation is limited.  When compared to the first day following transportation, 

calves had significantly higher activity levels on days 8 through 21 except for on day 11 which 
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had activity levels that were similar to day 1. One possible explanation is that day 11 

corresponded with the placement of fresh sand under the shades in each pen which may have led 

to the decrease in activity observed on that day.  Other work has shown that cattle behavior can 

vary following even a relatively innocuous handling event19 and so careful consideration of the 

impact of routine feedlot management practices on cattle behavior and the potential it poses for 

inducing unwanted variability should be considered during behavioral research.   

 

 A difference in distance traveled over time in NT cattle that received MEL versus NT 

cattle that received CON was observed although MEL and CON pens did not have significantly 

different activity levels within each study day of the NT experiment.  This was unsurprising as 

examination of the data revealed relatively large standard errors associated with the daily pen 

level distance traveled within treatment groups.  A larger sample size may increase the precision 

of the estimate and reveal differences between NT MEL and CON cattle within study days but it 

is also possible that other factors such as weather or human interactions may have a stronger 

impact on cattle behavior.    

 

 It should be noted that, due to the design of the two experiments reported herein and the 

inherent differences in performance and behavior of cattle that have been effectively acclimated 

to a facility and their social groups versus freshly commingled and arrived from a sale barn, 

direct comparisons of the TR and NT results should not be made.  As the primary purpose of this 

research was not to compare the effects of TR and NT but rather to compare the effects of MEL 

vs. CON within newly TR and acclimated NT cattle, this is not a limitation of the study but 
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rather a result of a priori trial design.  Therefore, discussion of the results and our conclusions 

are limited to comparisons of treatment groups within each of the two experiments. 

In this study population of TR calves, the results did not indicate that a single dose of meloxicam 

prior to long-distance transportation affected activity, feeding behavior, or drinking behavior.  

The lack of effect observed in this study may be related to the small sample size, the relatively 

shorter transportation event compared to other studies examining meloxicam, the delay in the 

start of behavioral monitoring, or that additional doses of meloxicam are needed to observe an 

effect on behavior.  Additionally, meloxicam may affect behavior in other populations of calves 

that have experienced additional stressors such as weaning, castration, etc., in addition to long-

distance transport.  Regardless, it appears that the potential for meloxicam to positively impact 

transported cattle exists but more research is needed to further explore the possible benefits of 

meloxicam in mitigating the effects of long-distance transportation. 

 

 Footnotes 

a Tulathromycin, Zoetis, Florham Park, New Jersey, USA 

b UltraChoice 7, Zoetis, Florham Park, New Jersey, USA 

c Bovi-Shield Gold 5, Zoetis, Florham Park, New Jersey, USA 

d Moxidectin, Boehringer Ingelheim Vetmedica, Inc., St. Joseph, MO, USA  

e REDI tag, MKW Electronics GmbH, Weibern, Austria 

f SAS 9.4, SAS Institute, Inc., Cary, North Carolina, USA 
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Figure 6.1 – Visual depiction of both the TR (transport) experiment (6/11/15 to 7/3/15) and the NT (non-transported) experiment 1 

(7/6/15 to 7/29/15).  In the TR experiment, all calves (n=100) were randomly assigned to receive 1 mg/kg meloxicam (MEL) orally or 2 

a placebo control (CON) on day -1 prior to being transported (denoted by *) approximately 1,000 km to the research facility in 3 

Missouri. Calves were processed on arrival in Missouri on day 0, weighed, behavior tags were applied, and calves were randomly 4 

assigned to pens according to treatment (MEL: n = 5 pens; CON: n = 5 pens).  Continuous behavioral monitoring occurred during the 5 

TR experiment through day 21.  During the NT experiment, pens of cattle were given the opposite treatment they received during the 6 

TR experiment, returned to their pens overnight (denoted by **) and then monitored in a similar pattern as the TR experiment. 7 

 8 

9 
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Figure 6.2 – a) Distance traveled (m), b) percent time spent near feed, and c) percent time spent 

near water during the TR experiment.  Study day significantly affected all three behavioral 

outcomes (P < 0.001) and significant pairwise comparisons (P < 0.01) between day 1 of the TR 

experiment and all subsequent days are indicated by an asterisk.  Data are presented as model 

adjusted means ± SEM. 
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c) 
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Figure 6.3 – Distance traveled (m) during the non-transported (NT) experiment was significantly 

affected by a study day by treatment interaction (P < 0.01).  Significant comparisons (P < 0.01) 

of study day 1 compared to all other study days within each treatment group are denoted by an 

asterisk.  No comparisons between MEL and CON were significant within any of the NT 

experiment study days (P ≥ 0.18).  Data are presented as model adjusted means ± SEM. 
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Figure 6.4 – a) Percent time spent near feed and b) percent time spent near water during the NT 

experiment.  Study day significantly affected both behavioral outcomes (P < 0.001) and 

significant pairwise comparisons (P < 0.01) between day 1 of the NT experiment and all 

subsequent days are indicated by an asterisk.  Data are presented as model adjusted means ± 

SEM. 
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Table 6.1 – Treatments assigned to pens within both the transport (TR) and non-transport (NT) 

experiments.  During each experiment, calves received either 1 mg/kg meloxicam orally (MEL) 

or a lactose placebo orally (CON) on day -1. 

 

Pen 
Experiment 

TR NT 

1 CON MEL 

2 MEL CON 

3 MEL CON 

4 CON MEL 

5 CON MEL 

6 MEL CON 

7 MEL CON 

8 CON MEL 

9 CON MEL 

10 MEL CON 
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Table 6.2 – Descriptive statistics of feed efficiency (FE) and average daily gain (ADG) from the 

transported (TR) experiment.  Calves received either 1 mg/kg meloxicam orally (MEL) or a 

lactose placebo orally (CON) on day -1 of the TR experiment. 

 

  Treatment 

Group 
Mean ± SE Median SD Min Max 

TR FE 
CON  3.52 ± 0.12 3.42 0.28 3.21 3.82 

MEL 3.79 ± 0.39 3.41 0.88 2.97 4.98 

TR ADG 
CON  2.30 ± 0.08 2.21 0.18 2.14 2.53 

MEL  2.27 ± 0.21 2.41 0.47 1.68 2.73 
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Table 6.3 – Descriptive statistics of feed efficiency (FE) and average daily gain (ADG) from the 

non-transported (NT) experiment.  Calves received either 1 mg/kg meloxicam orally (MEL) or a 

lactose placebo orally (CON) on day -1 of the NT experiment. 

 

  Treatment 

Group 
Mean ± SE Median SD Min Max 

NT FE 
CON  6.45 ± 0.37 6.96 0.84 5.45 7.15 

MEL 6.73 ± 0.42 6.94 0.94 5.20 7.56 

NT ADG 
CON  2.31 ± 0.17 2.16 0.38 1.97 2.76 

MEL  2.18 ± 0.14 2.01 0.32 1.93 2.68 

 



161 

Chapter 7 - Dissertation Conclusions 

Overall, BRD remains a significant problem for the beef cattle industry and the complex 

interplay between risk factors such as transportation, commingling, and handling, the ecology of 

the causative and contributing organisms, and the variable responses of individual calves to those 

risk factors and organisms makes it a challenging disease to control.  The purpose of the research 

contained within this dissertation was to explore multiple aspects of BRD – pathogen ecology 

and diagnosis, the impact of common events such as handling, and a possible method for 

mitigating the effects of long-distance transportation – and provide information that could 

improve BRD diagnosis and control. 

 

Although our ability to differentiate between and within bacterial species has improved 

dramatically since the first BRD pathogens were cultured, the increased specificity and changing 

categorizations serve to highlight just how complex the pathogen side of the BRD epidemiologic 

triad is.  Not only can diagnostic sample results obtained from different sites within the same 

animal vary but also the same tests applied to the same site in the same calf vary over time.  

Additionally, within the multiple pathogens potentially involved in BRD cases, there is genetic 

diversity that we have only recently begun to appreciate and when multiple isolates are taken 

from the same sample it is possible to see differences in antimicrobial susceptibility profiles and 

PFGE types.  Although we have added to the body of knowledge regarding characterization and 

diagnosis of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, there is 

still much research that needs to be done to further elucidate the ecology of these organisms 

within clinically ill and clinically health calves.   

 



162 

Our observations that even a relatively innocuous handling event can have an impact on 

cattle behavior for several days were surprising; logically, it would follow that a more noxious 

handling event such as when cattle receive vaccinations, implants, treatment for illness, or 

undergo diagnostic sampling for BRD would also have impacts on behavior and should be 

accounted for when performing behavioral research or incorporating behavior into diagnostic 

algorithms.  Establishing just when behaviors return to baseline and improving the precision of 

our behavior estimates would be useful so more specific recommendations regarding adjustments 

could be made.  Additionally, we demonstrated that cattle with different temperaments 

responded differently to the handling event; ascertaining and implementing objective, repeatable 

means of categorizing temperament will be important for future research in understanding cattle 

behavior and the role that temperament plays in determining the individual’s response to stress. 

 

Although long-distance transportation has been established as a significant risk factor for 

BRD during the feeding period, mitigating this form of stress has proven challenging.  There is 

considerable variability in the literature regarding the effects of long-distance transportation on 

measures of stress, inflammation, and immune function.  Part of the difficulty in addressing the 

stress of transportation is that there are often other factors, such as commingling, weaning, 

fasting, and dehydration that are experienced at the same time.  Our two studies on the effect of 

pre-transport meloxicam administration did not reveal any benefits in the outcomes measured at 

a single 1mg/kg dose but it is possible that, in other study populations which experience more 

stress or inflammation than our populations did, a benefit might be seen.  Additionally, there is 

some evidence that different dosing of meloxicam can provide benefits in highly stressed calves 
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that undergo long-distance transportation.  Overall, more research is needed to clarify the role of 

meloxicam and its potential to mitigate the effects of long distance transportation. 
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Appendix A - Supplementary data  

Table A.1 – Nasopharyngeal culture results from calves with clinical BRD (n = 28) that were sampled prior to treatment (day 0), 0.5, 

1, or 5 days after treatment with gamithromycin according to sampling group.  * = a mixture of gamithromycin susceptibility 

phenotypes was obtained from up to 12 M. haemolytica, 6 P. multocida, and 6 H. somni isolates tested from each positive sample.   

 

Group 1 Group 2 Group 3 

Calf Organism 
Day 

0 

Day 

5 
Calf Organism 

Day 

0 

Day 

0.5 

Day 

5 
Calf Organism 

Day 

0 

Day 

1 

Day 

5 

104 

H. somni + - 

116 

H. somni - - - 

102 

H. somni - - + 

M. haemolytica +* + M. haemolytica - - + M. haemolytica - - - 

P. multocida - - P. multocida + - - P. multocida - + + 

106 

H. somni - - 

127 

H. somni +* + + 

118 

H. somni + - - 

M. haemolytica - - M. haemolytica - - - M. haemolytica - - - 

P. multocida +* - P. multocida - - - P. multocida + - - 

130 

H. somni - - 

175 

H. somni - - - 

126 

H. somni + - - 

M. haemolytica - - M. haemolytica + +* + M. haemolytica - - - 

P. multocida - - P. multocida + + - P. multocida + - - 

150 

H. somni - - 

195 

H. somni - - - 

212 

H. somni + + + 

M. haemolytica + - M. haemolytica - - - M. haemolytica - - - 

P. multocida - - P. multocida + + + P. multocida + + + 

174 

H. somni - - 

204 

H. somni - - - 

218 

H. somni - - - 

M. haemolytica + - M. haemolytica + - - M. haemolytica - - - 

P. multocida - - P. multocida + + + P. multocida + + + 

209 

H. somni - - 

206 

H. somni - - - 

224 

H. somni + - - 

M. haemolytica - - M. haemolytica + + +* M. haemolytica - - - 

P. multocida + + P. multocida + + - P. multocida - - - 

222 

H. somni - - 

213 

H. somni - - - 

240 

H. somni + - - 

M. haemolytica + +* M. haemolytica - - - M. haemolytica - - + 

P. multocida + - P. multocida + + + P. multocida - - - 

229 

H. somni - - 

225 

H. somni +* - - 

241 

H. somni - - - 

M. haemolytica + - M. haemolytica - - - M. haemolytica + - - 

P. multocida - - P. multocida + - - P. multocida - +* - 

262 

H. somni - - 

236 

H. somni - - - 

245 

H. somni + - - 

M. haemolytica - - M. haemolytica - - + M. haemolytica - - + 

P. multocida +* + P. multocida + - - P. multocida - - - 

    

243 

H. somni - - -      

    M. haemolytica + + +      

    P. multocida + + -      
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Table A.2 – Bronchoalveolar lavage culture results from calves with clinical BRD (n = 28) that were sampled either prior to (Day 0), 

0.5, or 1 day post-treatment and 5 days post-treatment with gamithromycin according to sampling group.  * = a mixture of 

gamithromycin susceptibility phenotypes was obtained from up to 12 M. haemolytica, 6. P multocida, and 6. H somni isolates tested 

from each positive sample.   

 

Group 1 Group 2 Group 3 

Calf Organism 
Day 

0 

Day 

5 
Calf Organism 

Day 

0.5 

Day 

5 
Calf Organism 

Day 

1 

Day 

5 

 H. somni + -  H. somni - -  H. somni - - 

104 M. haemolytica - + 116 M. haemolytica - - 102 M. haemolytica - - 

  P. multocida - -   P. multocida +* -   P. multocida - + 

 H. somni + - 

127 

H. somni - + 

118 

H. somni - - 

106 M. haemolytica - - M. haemolytica - - M. haemolytica - - 

  P. multocida - - P. multocida - - P. multocida - - 

 H. somni - - 

175 

H. somni - - 

126 

H. somni - - 

130 M. haemolytica - - M. haemolytica + - M. haemolytica - - 

  P. multocida + - P. multocida + - P. multocida - - 

 H. somni - - 

195 

H. somni - - 

212 

H. somni + + 

150 M. haemolytica - - M. haemolytica - - M. haemolytica - - 

  P. multocida - - P. multocida + + P. multocida + + 

 H. somni - - 

204 

H. somni - - 

218 

H. somni - - 

174 M. haemolytica - - M. haemolytica - - M. haemolytica - - 

  P. multocida - - P. multocida + + P. multocida - - 

 H. somni - + 

206 

H. somni - - 

224 

H. somni - - 

209 M. haemolytica - - M. haemolytica + - M. haemolytica - - 

  P. multocida + - P. multocida + - P. multocida - - 

 H. somni - - 

213 

H. somni - - 

240 

H. somni - - 

222 M. haemolytica + + M. haemolytica - - M. haemolytica - + 

  P. multocida + - P. multocida + +* P. multocida - - 

 H. somni - - 

225 

H. somni - - 

241 

H. somni - - 

229 M. haemolytica + - M. haemolytica - - M. haemolytica - - 

  P. multocida - - P. multocida - - P. multocida - - 

 H. somni - - 

236 

H. somni - - 

245 

H. somni - - 

262 M. haemolytica - - M. haemolytica - + M. haemolytica - + 

  P. multocida + + P. multocida - - P. multocida - - 

    

243 

H. somni - -     

    M. haemolytica - +*     

    P. multocida - -     



166 

Table A.3 –  Genetic subtype of Mannheimia haemolytica isolates obtained via paired BAL and 

NPS samples from calves when diagnosed with clinical bovine respiratory disease (day 0) and 

0.5, 1, and 5 days post-treatment with gamithromycin.  Day 1 paired samples are not shown since 

they all were negative for M. haemolytica.  Cells in black indicate a paired sample was not 

obtained at that time point.  Samples that were negative for M. haemolytica are indicted by a 

negative sign.   

 

 Day 0 Day 0.5 Day 5 

Calf  BAL NPS BAL NPS BAL NPS 

102         - - 

104 - 1f     1f 1f 

106 - -     - - 

116     - - - 1f 

118         - - 

126         - - 

127     - - - - 

130 - -     - - 

150 - 1c, 2b     - - 

174 - 1e     - - 

175     1i 1i - 1i 

195   - - - - - 

204     - - - - 

206     2c 2c - 2c 

209 - -     - - 

212         - - 

213     - - - - 

218         - - 

222 2b 2b     2b 2b 

224         - - 

225     - - - - 

229 2b 2b     - - 

236     - - 2b 2b 

240         2b 2b 

241         - - 

243     - 2d 2d 2d 

245         2b 2b 

262 - -     - - 
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