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Abstract 

The U.S. cattle sector is the largest agricultural industry with the world’s largest fed-cattle 

industry. Cattle production is highly specialized with cow-calf operations that graze pastureland 

and feedlot operations that focus on feeding grain-based diets to finish cattle for slaughter. Weather 

changes, forage availability, economies of size, and production practices create unique challenges 

across cow-calf production regions. Weather changes, in particular, can alter livestock production. 

In response, producers may adapt their production practices to changing natural and policy 

environments. This dissertation contains two chapters providing insights into how weather changes 

impact the cow-calf industry in the United States.  

Essay 1 examines the weather impacts on location and production of the cow-calf sector 

between 1992 and 2017. Econometric models are estimated using county-level agricultural data 

from the Census of Agriculture-United States Department of Agriculture of 25 states. The selected 

sample of states held more than 88% of the national beef cow inventories. Key explanatory 

variables in this study are county-level seasonal average temperature and total precipitation from 

PRISM daily climate data. Results demonstrate that seasonal temperatures and total seasonal 

precipitation significantly impact county-level beef cow inventories and operational locations.  

Essay 2 evaluates the impact of long-term weather changes on the cow-calf production 

decision using a dynamic panel estimator. By exploiting seasonal weather changes and using 67 

years of state-level beef cow inventories, the study estimates the impact of seasonal weather on 

the U.S. cow-calf industry across 25 major cow-calf producing states. Results suggest that the U.S. 

cow-calf industry is indeed sensitive to weather. The results of an out-of-sample prediction 

assessment further suggest that adding seasonal weather information improves the prediction 

ability of state-level beef cow inventories. 
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Abstract 

The U.S. cattle sector is the largest agricultural industry with the world’s largest fed-cattle 

industry. Cattle production is highly specialized with cow-calf operations that graze pastureland 

and feedlot operations that focus on feeding grain-based diets to finish cattle for slaughter. Weather 

changes, forage availability, economies of size, and production practices create unique challenges 

across cow-calf production regions. Weather changes, in particular, can alter livestock production. 

In response, producers may adapt their production practices to changing natural and policy 

environments. This dissertation contains two chapters providing insights into how weather changes 

impact the cow-calf industry in the United States.  

Essay 1 examines the weather impacts on location and production of the cow-calf sector 

between 1992 and 2017. Econometrics models are estimated using county-level agricultural data 

from the Census of Agriculture-United States Department of Agriculture of 25 states. The selected 

sample of states held more than 88% of the national beef cow inventories. Key explanatory 

variables in this study are county-level seasonal average temperature and total precipitation from 

PRISM daily climate data. Results demonstrate that seasonal temperatures and total seasonal 

precipitation significantly impact county-level beef cow inventories and operational locations.  

Essay 2 evaluates the impact of long-term weather changes on the cow-calf production decision 

using a dynamic panel estimator. By exploiting seasonal weather changes and using 67 years of 

state-level beef cow inventories, the study estimates the impact of seasonal weather on the U.S. 

cow-calf industry across 25 major cow-calf producing states. Results suggest that the U.S. cow-

calf industry is indeed sensitive to the weather. The results of an out-of-sample prediction 

assessment further suggest that adding seasonal weather information improves the prediction 

ability of state-level beef cow inventories. 
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Introduction 

In the U.S., cow-calf operations are focused on maintaining cow herds to raise calves. The 

operations primarily use land suitable for cattle grazing (McBride and Mathews, 2011). Increased 

consolidation in cow-calf operations has led to an increased average number per-farm beef cow, 

from 89 in 1987 to 110 in 2012 (McDonald and Hoppe, 2018). Resulting scale changes are due to 

technological development, improved disease control and reproduction, and feeding practices 

(Economic Research Service, 2018). Significant fluctuations in the number of beef cow inventories 

are a result of market conditions and weather changes. Extreme weather events can significantly 

affect beef cow production. Unfavorable weather conditions deteriorate pasture conditions and 

reduce pasture growth forcing livestock producers to use high-cost alternative feed-stuffs which 

increase their production costs. Further more, extreme weather may also reduce overall animal 

performance, including reduction in feed gain efficiency, breeding performance, and resistance to 

disease. However, the impact of weather on cow-calf production in the United States has received 

minimal research attention. 

This study uses beef cow inventories as a proxy for production data. In contrast to crop 

yield data available in crop literature, analysis weather impacts here rely on beef cow inventory 

data. The inventory data used in this study is not directly equivalent to crop yield data. A more 

accurate proxy for production data would be average calf weight, but the information does not 

exist. The study captures the weather impacts on cow-calf industry indirectly through beef cow 

inventories.  

Chapter 2, provides new empirical evidence of weather effects on location and production 

of the cow-calf industry, including multiple county-level measures for each season in 25 major 

cow-calf producing states between 1992 and 2017. The results show that seasonal temperatures 
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and total seasonal precipitation significantly impact county-level beef cow inventories and 

operational locations. The results also reveal significant spatial patterns relative to positive 

correlations of beef cow inventories across counties. 

By exploiting seasonal weather changes and using 67 years of state-level beef cow 

inventories as a proxy for cow-calf production, Chapter 3 provides the impact of seasonal weather 

on U.S. cow-calf production across 25 major cow-calf producing states. Results suggest that the 

U.S. cow-calf industry is indeed sensitive to weather and especially temperature. Results of an out-

of-sample prediction assessment suggests that adding seasonal weather information improves the 

prediction ability of state-level beef cow inventories. This study also provides future beef cow 

inventory forecasts utilizing future weather forecasts. These findings provide insight to cow-calf 

producers on how to adjust for weather variations and future production planning. 
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Impact of Weather on Cow-Calf Industry Locations in 

the United States  

2.1 Introduction 

Cow-calf production in the United States is scattered across a wide geographic area. 

Production systems differ by region as well. For example, the central1 region depends heavily on 

grasslands that advantageously provide an extended grazing period, whereas the northern2 plains 

have the competitive advantage of size economies and production efficiencies (McBride and 

Mathews 2011). Weather changes, forage availability, economies of size, and production practices 

create unique challenges across cow-calf production regions. 

This paper is the first to examine weather impacts on geographic locations of the cow-calf 

sector in the United States. Previous studies have quantified the effects of public policy, 

environmental regulation, technological advances, and market forces on spatial distribution of the 

livestock industry (Abdalla, Lanyon, and Hallberg 1995; Roe, Irwin, and Sharp 2002; Isik 2004; 

Herath, Weersink, and Carpentier 2005). Changes in the spatial structure of the cow-calf sector, 

however, have received relatively less attention. Even though crop modeling, urban economics, 

regional sciences, and livestock sectors have used spatial correlation between neighboring units, 

no quantitative evidence of spatial correlation in the cow-calf sector has been demonstrated 

(Anselin, Bongiovanni, and Lowenberg-Deboer 2004; Roe, Irwin, and Sharp 2002; Isik 2004; 

Norsworthy et al. 2014). The objective of this study is to examine how weather influences county-

level cow-calf inventories and the production location in the United States.  

                                                 

1 Kansas, Missouri, Nebraska 
2 Minnesota, Montana, North Dakota, South Dakota, Wyoming 
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This study makes significant contributions to the literature because it considers weather 

changes to be an influential determinant of cow-calf sector location. The study extends the research 

of additional location determinants and emphasizes spatial correlation between neighboring cow-

calf operations using a spatial lag parameter and an inverse distance matrix.  

This paper proceeds as follows. The next section provides background information on the 

cow-calf sector in the United States. This is followed by sections outlining the conceptual, and 

econometric models, as well as description of the data and results. The article closes with 

conclusions, suggestions, and future research directions.  

 

2.2 U.S. Cow-Calf Production 

Increased consolidation has led to an increased average number of per-farm beef cows, 

from 89 in 1987 to 110 in 2012 (MacDonald and Hoppe 2018). During the same period, nearly 

175,000 cow-calf operations dropped out of production; 80% of this decline was attributed to 

operations that maintained 1- 49 beef cows (Speer 2014). Scale changes in cow-calf operations are 

the expected consequence of transitioning from small-scale agricultural activities to large-scale, 

specialized production units (Isik 2004) due to technological development, improved disease 

control, reproduction, and feeding practices (Economic Research Service 2018). Meanwhile, 

significant fluctuations in the number of beef cow inventories are a result of market conditions and 

weather changes (Drouillard 2018). In addition, changes in industry structure, forage availability, 

and cost of transporting animals versus forage have caused geographic movement of the cow-calf 

sector in the United States (Shields and Mathews, Jr. 2003).  

Because increased weather volatility has become crucial to agricultural production, a rich 

body of literature has previously addressed weather impacts on agricultural crops (Easterling et al. 
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1993; Chen et al. 2004; Schlenker and Roberts 2009; Lobell et al. 2013; Tack and Ubilava 2013; 

Chavas and Di Falco 2017; Tack, Lingenfelser, and Jagadish 2017; Ortiz-Bobea and Tack 2018; 

Kuwayama et al. 2018Chavas et al. 2019;). Cow-calf operations in the United States are 

characterized by weather, environmental conditions, breeds, management and feeding practices 

(Drouillard 2018). Therefore, the effect of rising temperatures on cow-calf operations has become 

a subject of increased interest due to the direct impact on production costs, resource availability, 

market prices, welfare, and food security of the sector (McCarl and Hertel 2018).  

Cows are usually pasture-raised year-round (MacDonald and Hoppe 2018), thus fulfilling 

nearly two-thirds of their forage requirements with hay or silage. However, variations in average 

temperature and precipitation affect pasture forage conditions. For example, extended drought 

reduces pasture and forage availability, forcing farmers to supplement hay in the summer instead 

of winter, which consequently increases the production cost due to higher transportation costs and 

feed prices (Kemper et al. 2012). 

Extreme weather events cause agricultural producers to take drastic actions. From the years 

2006 to 2012, the national beef cow inventory decreased by 8% as a result of increased feed prices 

and prolonged drought in the southern3 plains (Larson 2012). In addition, increased weather 

volatilities can trigger cattle movement across county boundaries as producers search for optimal 

weather conditions. Therefore, increased understanding of how weather changes impact the spatial 

structure of cow-calf locations and production in the United States is essential.  

Most livestock production models have examined how public policy, environmental 

stringencies, technological advances, relative prices, and social factors have impacted the spatial 

distribution (Abdalla, Lanyon, and Hallberg 1995; Eberts and McMillen 1999; Hubbell and Welsh 

                                                 

3 Texas and Oklahoma 
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1998; McBride and Key 2003; Roe, Irwin, and Sharp 2002; Isik 2004; Herath. Weersink, and 

Carpentier 2005). A few studies have also examined the impact of weather on livestock production. 

Klinedinst et al. (1993) predicted the direct effects of global warming on dairy production. Mark 

and Schroeder (2002) analyzed the effects of weather variability on daily weight gain in fed cattle 

including profit implications. Results confirmed that temperature variability, heat stress, and 

precipitation influence cattle feeding performance and profits. Frank et al. (2009) hypothesized 

that changes in warm-season (i.e. June to October) have advantages and disadvantages for the 

production of confined swine, beef, and dairy cattle. Rojas-Downing et al. (2017) examined 

specific climate change adaptation and mitigation strategies in the livestock sector. These studies, 

however, did not explicitly control for weather changes that may influence the location of the cow-

calf sector.  

2.3 Conceptual Model 

Factors such as high output prices, sufficient feed supply, a trained workforce, availability 

of land, and seasonal weather changes may make a particular county more desirable for cow-calf 

production.  

We develop a general firm-level location and inventory model to reflect the spatial 

structure of cow-calf location and production. Input availability and distance to the output market 

determine the location of cow-calf operations. The distance between two places (i.e., firm location 

and output market location) (𝑥𝑖, 𝑦𝑖) and (𝑥𝑘, 𝑦𝑘)  and the Euclidean distance formula is 

(1) 𝑑𝑖𝑘 = √(𝑥𝑖 − 𝑥𝑘)2 + (𝑦𝑖 − 𝑦𝑘)2  
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where 𝑑𝑖𝑘 is the distance from the firm 𝑖’s location and and the output market 𝑘. The same 

distance relationship could be derived for the distance between firm location and input market (Isik 

2004). If 𝑚𝑖𝑗 is the Euclidean distance between firm 𝑖 and input market 𝑗, then  

(2) 𝑚𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)2 
 

 

The production of firm  𝑖  (total number of calves) is given by 𝑄𝑖 = 𝑓(𝑆𝑖, 𝛿𝑖, 𝜃𝑖; 𝑒) a 

stochastic production function where output depends on input vector 𝑆𝑖, firm-specific factors 

affecting production 𝛿𝑖 , weather conditions 𝜃𝑖, and a random variable 𝑒. First order and second 

order conditions are assumed to be 𝑓𝑆𝑖
> 0 𝑎𝑛𝑑 𝑓𝑆𝑆𝑖

< 0.  

If 𝜗 is the unit distance transport rate on the product 𝑄 and 𝛾𝑗 is the unit distance transport 

rate for input 𝑗, the profit of firm 𝑖 is 

(3) 𝑚𝑎𝑥𝑤≥0𝜋𝑖 = (𝑃−𝜗𝑑𝑖𝑘)𝑄𝑖 − ∑(𝑤𝑗 + 𝛾𝑗𝑚𝑖𝑗)𝑆𝑖𝑗

𝐽

𝑗=1

− 𝑐(𝑥𝑖, 𝑦𝑖) 

 

where 𝑃 is output price, 𝑆𝑖𝑗 is the firm 𝑖 input from input market 𝑗, 𝑤𝑗 is the input price, 

and 𝑐(𝑥𝑖, 𝑦𝑖) is the fixed costs of a firm at (𝑥𝑖, 𝑦𝑖) (Isik 2004). Per farm profit is a function of input 

and output prices and quantities, and profit is a random variable due to the uncertainty of prices 

and quantities.  

Cow-calf operator 𝑖  maximizes expected utility, 𝐸𝑈𝑖: 

(4) 𝐸𝑈𝑖 = 𝐸[𝑈𝑖(𝑤0 + 𝜋𝑖|(𝑥𝑖, 𝑦𝑖)]  

 

where 𝑤0 is initial wealth and 𝜋𝑖 is profit. The choice variables in equation (4) are the 

firm’s input levels (𝑆𝑖𝑗) and the firm’s location (𝑥𝑖 , 𝑦𝑖). First order conditions are 



8 

(5) 
𝜕𝐸𝑈

𝜕𝑆𝑖𝑗
= 𝐸𝑈𝑤 [(𝑃 − 𝜗𝑑𝑖𝑘)𝑓𝑆𝑖𝑗

− (𝑤𝑗 − 𝛾𝑗𝑚𝑖𝑗)] = 0 
 

 

(6) 
𝜕𝐸𝑈

𝜕𝑥𝑖
= 𝐸𝑈𝑤[(−𝜗𝑑𝑖𝑘)𝑓(. ) − 𝛾𝑗𝑚𝑖𝑗𝑥𝑖

𝑆𝑖𝑗 − 𝑐𝑥𝑖
] = 0 

 

 

(7) 
𝜕𝐸𝑈

𝜕𝑦𝑖
= 𝐸𝑈𝑤[(−𝜗𝑑𝑖𝑘𝑦𝑖

)𝑓(. ) − 𝛾𝑗𝑚𝑖𝑗𝑦𝑖
𝑆𝑖𝑗 − 𝑐𝑦𝑖

] = 0 
 

 

According to first order conditions, firm 𝑖 locates its business where expected utility is 

highest:  

 

(8) 

arg 𝑚𝑎𝑥(𝑥𝑖,𝑦𝑖) 𝐸𝑈(𝑊0 + 𝜋𝑖(𝑃, 𝑆, 𝑤, 𝑐|(𝑥𝑖, 𝑦𝑖))) 

 

 

After approximating the supply of beef cows by a county’s inventory of all beef cows, the 

optimal output can be defined as 𝑄𝑖
∗ = 𝑓(𝑆𝑖𝑗

∗ , 𝛿𝑖, 𝜃𝑖|(𝑥𝑖
∗, 𝑦𝑖

∗)). 

Using this conceptual framework and spatial econometric methods, we test the hypothesis, 

does weather impact location and inventories of cow-calf operations? In our empirical setting, we 

first estimate the magnitude of weather effects and then present estimated impacts.  

 

2.4 Empirical Model 

When data are spatially correlated, spatial econometrics techniques are needed to fully 

control variance and spatial relationships (Kpczewska, Kudla, and Walczyk, 2015). The three 

primary types of spatial specifications are spatially lagged dependent variable, spatially 
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autocorrelated error, and spatial Durbin model, which includes spatially lagged dependent variable 

and spatial lags of independent variables (Vega and Elhorts 2013).  However, because the best-fit 

model must be determined but comparisons of spatial models are not yet well developed, spatial 

model selection requires economic theory or the appropriate context (Vega and Elhorts 2013; 

Kpczewska, Kudla, and Walczyk 2015). 

Spatial models can control spatial relationships in spatial units. In recent spatial 

econometrics literature, the widely used criteria for spatial model selection is AIC, significance of 

all coefficients, and significance of the spatial terms4 (Kpczewska, Kudla, and Walczyk 2015; 

Song et al. 2017). Pseudo R-squared and AIC criteria is also used for non-panel spatial models. 

This research initially utilized the aspatial model specification and then extended the analysis to 

spatial specifications. Results showed that the best-fit model for U.S. county-level cow-calf 

operations is the spatial lag model.  

The empirical model determines weather impacts on the spatial distribution of cow-calf 

operations. The estimation approach is based on spatial econometrics, because it accounts for 

spatial autocorrelation due to localization economies. Localization economies, which are external 

to individual firms but internal to the cow-calf sector can enhance the performance of cow-calf 

operations (Eberts and McMillen 1999; Roe, Irwin, and Sharp 2002). For example, well-developed 

road systems and proximity to auction markets improve nearby cow-calf operation functionality. 

The omission of spatial correlations, however, leads to model misspecification, thereby 

decreasing robustness and creating misleading information (Anselin 1988)5. Moreover, if panel 

                                                 

4 Spatial terms can be spatial lag, spatial error, and spatial lags of independent variables. 

5 The presence of spatial autocorrelation is measured by Moran’s I statistics, and the null hypothesis of Moran’s I 

test for regression residuals is the absence of spatial autocorrelation. Test statistics are significant at the 1% level for 

all models. However, the presence of spatial autocorrelation does not specify the form of a spatial relationship. 
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data contains spatial relationships, estimated coefficients of a spatial model are biased and 

inefficient due to omitted variables. This study used a spatial autocorrelation parameter and a 

spatial weight matrix to capture spatial interactions between county-level cow-calf operations. 

Beef cow production may be simultaneously determined among counties, leading to endogeneity 

concerns and biased parameter estimations.  

Spatial interaction among the dependent variable for time 𝑡 can be stated as 

 

(9) 𝑦 = 𝜌𝑊𝑦 + 𝛼𝑙𝑁 + 𝑋𝛽 + 𝜖  

 

where y is the 𝑁 × 1 vector of the endogenous beef cow inventories, 𝜌 is the scalar spatial 

lag coefficient, 𝑊 is the spatial weight matrix, 𝑙𝑁is the 𝑁 × 1 vector associated with the constant 

term 𝛼, 𝑋 is the 𝑁 × 𝐾 matrix of exogenous variables, 𝛽 is the 𝐾 × 1 parameter vector to be 

estimated, and 𝜖 is the vector of normally distributed errors.  

 

2.4.1 Spillover effects 

Because spatial econometric analysis does not directly utilize point estimates to test 

whether spillovers exist as parameter estimates (Claeys, Moreno, and Suriñach 2012; Vega and 

Elhorts 2013; Kpczewska, Kudla, and Walczyk 2015), equation (9) can be rewritten to obtain the 

direct and spillover effects: 

 

(10) 𝑦 = (𝐼 −  𝜌𝑊)−1𝛼𝑙𝑁 + (𝐼 − 𝜌𝑊)−1𝑋𝛽 + (𝐼 − 𝜌𝑊)−1𝜖 
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The marginal effect of all the variables must also be derived. Total marginal impacts can 

be categorized as direct impacts and indirect impacts. For example, for the expectation of 𝑦, 𝐸(𝑦), 

the partial derivative of 𝐸(𝑦) with respect to 𝑗th explanatory variable can be stated as 

 

(11) 

[
𝜕𝐸(𝑦)

𝜕𝑥1𝑗
…

𝜕𝐸(𝑦)

𝜕𝑥𝑁𝑗
] = (𝐼 − 𝜌𝑊)−1𝛽𝑗 

 

Diagonal elements of equation (11) provide direct impacts, whereas off-diagonal elements 

reveal the spillover effects.  

The spillover effects were assumed to be proportional to the inverse distance between 

counties and assigned weights using inverse distance function 𝑤𝑖𝑗 = 1/𝑑𝑖𝑗, where 𝑑𝑖𝑗 is the 

centroid-to-centroid distance in miles between county 𝑖 and 𝑗. As stated in the literature (Roe, 

Irwin, and Sharp 2002; Isik, 2004), the models were estimated using upper distances of 50, 100, 

200, and 300 miles. The upper distance with 200 miles reported the smallest AIC statistics for all 

estimated models.  

Spatial panel models can be used to control for relationships over time and spatial units. 

Spatial lag of the dependent variable 𝜌𝑊𝑦 is defined as a global spatial spillover. Moreover, lag 

dependent variables may express a long-term steady relations in a temporal dimensions 

(Kopczewska, Kudla, Walczyk 2015).  A maximum likelihood was used to estimate (9), where the 

likelihood function corresponds to the normal distribution and variables used in the analysis are 

summarized in Table 2.1. Each element of W represents the proximity between two observations 

𝑖 and 𝑗. The common specification of the weighting matrix W is 𝑊𝑖𝑗 = 1  if two counties share a 

border, and 0 otherwise. The spatial lag term is often treated as endogenous and following the 

literature (Elhorst 2003; Claeys, Moreno, Surinach 2012) we used maximum likelihood methods 

to estimate equation (9). Including a spatial lag dependent variable from the same time period can 
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cause simultaneity effect and this can be overcome by using direct, indirect and total effects for 

final interpretation (Kopczewska, Kudla, Walczyk 2015).   

The following assumptions on weighting matrix are maintained: (a) Weighting matrix is 

nonnegative; (b) weighting matrix is non-nilpotent; (c) diagonal componentsm of weighting matrix 

are zero; (d) weighting matrix is normalized so that spectral radius is one (Hillier and Martellosio, 

2013). In practical applications, assumptions from (a) through (c) are always satisfied. Under the 

assumption of nonnegativity of spatila weighting matrix, non-nilpotency is simply means that no 

permutation of the spatial units that could cause autiregressive process unilateral (Martellosio, 

2011; Hillier and Martellosio, 2013). The necessary and sufficient condition for parameter space 

is that the matrx 𝑆: = 𝐼 − 𝜆𝑊  is nonsingular (Lee 2004; Kelejian and Prucha 2010). The factors 

affecting beef cow inventories were further examined by controlling for county characteristics. 

The baseline estimation equation is 

(12) 𝑦 = 𝛽𝑉 + 𝛿𝑋 + 𝜀  

 

where 𝑦 is the natural log of county-level beef cow inventories, 𝑉 is a vector of weather 

variables, and 𝑋 is a vector of control variables. The weather variables were highly correlated with 

each other. Multicollinearity, however, inflates the standard errors and prevents the determination 

of explanatory variable importance (Ayyangar 2007). The mean of variance inflation factor of the 

regression was 66.65, so the lasso6 approach was used to select the best explanatory variables. 

Results of the full model, including all weather variables, are described in results section. 

                                                 

6 Variable selection methods, such as the elastic net approach and ridge regression, perform better when some 

conditions are present (Zou and Hastie, 200). This study initially used the elastic net approach with cross validation 

and alpha values beginning at 𝛼 = 0.01 and continuing in 0.01 increments. As with the lasso approach, MSPE with 

the 𝛼 = 1 was recorded least.   
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2.5 Data  

This study utilized county-level agricultural data from the Census of Agriculture -United 

States Department of Agriculture (USDA) for 25 states7. As of 2017, these states held more than 

88% of the national beef cow inventories (Livestock Marketing Information Center 2019). Because 

the US Department of Agriculture database only provides data from 1997, older census data were 

collected from Haines (2004). States with more than 300,000 beef cow inventories were selected 

as the sample for econometric analysis, and the dependent variable was the natural logarithm of a 

county’s total beef cow inventory. 

Key explanatory variables in this study were total precipitation and seasonal weather 

variables based on PRISM daily climate data. Following the literature, the gridded climate data 

were aggregated to develop county-level seasonal weather measures. Instead of a traditional 

calendar-based, quarterly definition of seasonality, however, this study defined the timeline of 

seasons based on the relative impact of the cow-calf life cycle and production. Because most 

producers breed cows to calve in the spring to take advantage of spring grass growth, weather 

conditions in the first season, January through March, are crucial to beef cow inventories (Penn 

State University 2017). The second season, April through July, is defined as the growing season 

because it is the period of maximum pasture growth (Smoliak 1986; Yu et al. 2019). Weather 

during the growing season most significantly impacts pasture growth, and consequently, the 

availability of pasture. This impacts beef cow inventories because pasture is the main feedstuff 

                                                 

7 Alabama, Arkansas, California, Colorado, Florida, Georgia, Idaho, Illinois, Iowa, Kansas, Kentucky, Louisiana, 

Missouri, Mississippi, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, Oregon, South Dakota, 

Tennessee, Texas, Virginia, Wyoming 
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source of the cow-calf sector. Many producers utilize the third season, August and September, as 

a second or alternative calving season (BEEF 2018). The fourth season, October through 

December, typically involves spring-calving and the weaning of fall-weaning herds, as well as the 

time when most producers sell their calf crop. The description of seasons can be found in the 

appendix (Table A.1). Seasonal cumulative precipitation variables were created by summing 

across daily precipitation values. Temperature was measured in degrees Celsius, and precipitation 

is measured in millimeters.  

This study included the county-level feed cost per cow, which is the ratio of total feed costs 

of a county to the number of beef cows in that county. This variable was consistent with similar 

studies (Isik 2004). Data for county-level total feed cost were obtained from the USDA census.  

The Conservation Reserve Program (CRP), a land conservation program administered by 

the Farm Service Agency (FSA), works with farmers to remove land from crop cultivation in 

exchange for a yearly rental payment. This program is the most extensive private-lands 

conservation program in the United States (FSA, USDA). CRP impacts cattle production because 

it restricts all cropping activities, resulting in less forage areas and higher feed prices. However, 

emergency haying and grazing on CRP land has occasionally been authorized during natural 

disasters to support livestock producers. This study utilized county-level CRP acres and data 

obtained from FSA. 

The correlation of irrigation and climate variables is also helpful for this research. For 

example, drought impacts are minimal in highly irrigated counties but, omission of the irrigation 

variable can result in biased coefficient estimates (Schlenker and Roberts 2009). To account for 

the irrigation effect, this research included the percentage of irrigated land; the variable, which 

was the ratio of total agland to total irrigated agland, was used as a proxy for county-level irrigation 
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since direct data on pasture irrigation was not available. The data were collected from USDA 

census.  

Because population growth reduces the amount of land available for livestock operations, 

this study also included the variable population density to capture the influence of urban pressure, 

as is consistent with the literature (Roe, Irwin, Sharp 2002; Ortiz-Bobea 2019). County-level 

population and land acres were collected from the U.S. Census Bureau.  

 

2.5.1 Stability of weather over time  

As described in the literature, this study estimated the panel variation of weather data. 

Alternative panel analysis confirmed that variation in weather effects lack joint significance over 

time (Table A.3). This finding is important for our final identification when weather effects 

corresponding to different time periods remain constant. The high correlation for seasonal weather 

variables over time could explain this stability (Ortiz-Bobea 2019). All individual panel models 

included state-fixed effects and year-fixed effects to control unobserved heterogeneities.  

 

2.5.2 Prediction evaluation 

An out-of-sample exercise was implemented to further examine the importance of weather 

effects in the analysis. Prediction evaluation utilized 80% of randomly selected data and then 

predicted the remaining 20%. Two model specifications (preferred model specification and model 

without weather variables) were run, and beef cow inventories were predicted. Based on the results 

of the root mean square error (RMSE), the preferred model predictions had the least prediction 

error compared to the baseline model (Table A.4). Overall, a comparison of the prediction accuracy 

measures suggested that adding a weather component improves the out-of-sample prediction.  
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2.6 Results  

This section presents the estimation of spatial lag model given in equation (12). Table 2.1 

presents summary statistics for estimated parameters. The spatial lag model of county-level beef 

cow inventory was estimated to emphasize weather impacts when determining the location of cow-

calf output. The spatial lag model revealed the importance of localization economies for the spatial 

structure of the cow-calf sector. Positive and statistically significant spatial lag variables indicated 

the correlation of beef cow inventories between counties and positive spillovers among cow-calf 

operations in neighboring counties. 

 

2.6.1 Impact of weather variables  

The influence of weather is complex and varies over time and space (Chavas et al. 2019). 

Although weather has a significant effect on cow-calf operations, the impacts of weather on beef 

cow inventories are poorly understood. Because weather effects can be linear or nonlinear, the 

final model of the study contained selected linear and non-linear weather effects.   

In accordance with the literature, equation (12) was estimated with a non-panel aspatial 

linear model (OLS), panel model, spatial lag of the dependent variable, and error spatial 

autocorrelation; all explanatory variables lagged spatially. Estimation results (Table 2.2) 

confirmed that the model with spatial lag dependent provided the best estimates.  

Table 2.2 also shows alternative estimated results for equation (12). Columns (2) and (3) 

report the estimation results using ordinary least squares method and panel data controlling for 

state fixed effects, respectively, without controlling for spatial correlation. Columns (4) and (5) 

highlight only the spatial lagged model with the spatial lagged dependent variable and spatial error, 

respectively. Column (6) shows both independent and dependent spatial lags. There are some 



17 

advantages of using spatial components in the model. For example, if the panel data contains 

spatial interdependence and the final model is being specified as aspatial , this may result in biased 

and inefficient coefficient estimates because of omitted variables. Inclusion of fixed effects in the 

models is known to increase the fit of the model but decreases the significance of variables of 

interest (McKinnish 2000). Further FE can control for time invariant and unobserved 

heterogeneities, but at the same time remove a great part of data variation which may result in no 

impact of variables of interest (Kopczewska, Kudla, Walczyk 2015). Spatial lag measures the 

correlation of county-level beef cow inventories. A positive and significant coefficient estimate of 

the spatial lag parameter confirms that important spillover effect; a higher positive value of 𝜌 

indicates an increase in beef cow inventory in county 𝑖 will be followed by an increase in beef cow 

inventories in neighboring counties. Because the spatial lagged dependent model was selected as 

the best model, comparisons of the direct impact estimates, the indirect impact, and the total impact 

estimates are presented in the appendix (Table A.2). The direct impact estimates of non-spatially 

lagged variables were similar to the model averaged estimates (Lesage and Fischer 2008). Study 

results revealed that the coefficients for average seasonal weather are positive and, similarly, the 

coefficients for nonlinear seasonal weather variables captured by squared terms of seasonal 

average weather variables are mostly negative and significant. The magnitude of nonlinear weather 

was lower than the seasonal averages, suggesting that seasonal weather is a primary determinant 

of county-level cow-calf inventories. Seasonal total precipitation measures were shown to 

significantly impact cow-calf inventories. Specifically, first season and third season total 

precipitation measures negatively impacted inventories, as is consistent with the biological cycle 

of cow-calf production, because additional resources are required to maintain animal comfort 
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during months with primarily cold weather. In contrast, pooled regressions usually give higher 

weather impacts.   

The impact of all climate variables was then calculated from the marginal effect derived 

from the spatial lag model, and weather impacts were decomposed to determine the impact and 

contribution of individual weather variables on county-level beef cow inventories (Table 2.3). 

Changes in growing-season weather were shown to have more significant impacts overall. For 

example, one unit increase in growing season average temperature increases the beef cow 

inventories nearly by 4.47%. This is as expected. Previous climate literature has also found positive 

impact of daily average temperature on either yield or land values which is parallel to beef cow 

inventories. Moreover, the impacts of changes in temperature variables were more severe than 

seasonal precipitation changes. The benefits of seasonal average temperatures were intuitively 

based on the biological cycle of cow-calf production and feed availability, thus emphasizing the 

importance of seasonal weather on cow-calf production and industry location.  

In contrast to county-level crop yield data available in crop literature, weather impacts here 

rely on county-level beef cow inventory data. The inventory data used in our analysis is not directly 

equivalent to crop yield data. A more accurate proxy for yield in the situation faced by cow-calf 

operations would be average calf weight by county, but current county-level calf weight 

information does not exist. Overall, we find the weather impact on the cow-calf sector to be 

pointedly different than designated in crop literature.  

 

2.6.2 Impact of feed cost, land availability, and urbanization 

Feed costs negatively impact production levels over time. Although CRP acres seem to 

determine cow-calf location and production, this variable was not found to be statistically 
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significant. The impact of county population density was shown to be negative and significant, 

indicating that counties with high population density are likely to have decreased beef cow 

inventories. In addition, the percentage of irrigated land acres did not significantly affect 

inventories, suggesting that the location of cow-calf operations is not sensitive to the availability 

of irrigated land.  

2.7 Conclusions 

Although abundant literature examines economic activities related to greenhouse gas 

emissions and climate change, few economic studies have linked changes in weather to livestock 

production in the United States (Mendelsohn and Neumann 1999). This research used the applied 

estimation strategy of spatial panel modeling to analyze the effects of weather on geographic 

locations of cow-calf operations. Statistically significant effects confirmed that weather 

significantly impacts cow-calf industry production and location. Estimated coefficients of weather 

variable values were small, which was consistent with recent climate literature (Ortiz-Bobea 

2019). Small magnitudes of weather variables from the panel study from 1992 may reflect 

producer adaptations to weather. The data also suggest that average temperature and total seasonal 

precipitation may contribute to the preferred locations of cow-calf operations. Because changes in 

production resulting from weather changes ultimately affect operational profits, cow-calf 

producers must understand how these weather changes influence their production decisions and 

risk-mitigating practices.  

The results show that local economic conditions such as feed costs and socio-economic 

factors such as population density considerably impact cow-calf location and production. 

However, the results lacked significant correlation between irrigation and county-level beef cow 

inventories. Localization economies are also important determinants of location and production of 
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the cow-calf sector. Beef cow inventories were positively correlated across county boundaries. 

When similar types of businesses locate in close proximity, they attract input and output markets, 

quality labor, extension services, and other production factors. These significant spatial patterns 

are important for sector specific development and concentration. Understanding the importance of 

the spatial location of cow-calf operations may help policymakers formulate effective policies to 

facilitate sector development. This analysis, which explicitly focused on the effect of weather when 

determining the location of cow-calf operations, could be useful to policymakers regarding disaster 

assistance in times of economic loss. 

Future research could examine the impact of weather variables, such as drought, on 

location and production determination. In addition, future research could focus on producer 

adaptation and adaptation costs related to weather changes. Consideration of changes in production 

levels over a long period across counties could increase understanding of weather dynamics, and 

an extended period of weather variables may help capture county-level inventory changes. In 

addition, controlling for county-level economic losses due to weather changes would allow future 

studies to investigate the causal effects of weather.  
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Tables 

Table 2.1 Summary statistics 

Variables Mean S.D. Observations 

Season 1 average temperature (oC) 5.17 5.67 4,584 

Growing season average temperature 

(oC) 

19.46 3.41 4,584 

Season 3 average temperature (oC) 7.95 4.87 4,584 

Season 1 total precipitation (mm) 215.34 152.46 4,584 

Growing season total precipitation 

(mm) 

372.37 171.47 4,584 

Season 2 total precipitation (mm) 166.46 105.61 4,584 

Season 3 total precipitation (mm) 215.69 136.88 4,584 

Feed cost  1.90E+07 5.65E+07 4,584 

CRP acres 11077.12 21735.52 4,584 

Population 67894.37 197620.10 4,584 

Percentage of irrigated acres (%) 0.16 0.65 4,584 
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Table 2.2 Parameter estimation results 

Variables OLS Panel Restricted 

model: Spatial 

lag 

Restricted 

model: 

Spatial 

error 

Full Model 

Season 1 average temperature 0.0613 

[0.0091] 

0.0306 

[0.0095] 

0.0026 

[0.0028] 

-0.0019 

[0.0039] 

-0.0012 

[0.0037] 

Growing season average 

temperature  

-0.0168 

[0.0532] 

0.2803 

[0.0544] 

0.0469 

[0.0172] 

0.0831 

[0.0216] 

0.0655 

[0.0211] 

Season 3 average temperature  -0.0678 

[0.0173] 

-0.0412 

[0.0186] 

0.0108 

[0.0073] 

0.0012 

[0.0089] 

0.0043 

[0.0086] 

Season 1 average temperature2 -0.0011 

[0.0006] 

-0.0011 

[0.0006] 

-0.0006 

[0.0002] 

-0.0007 

[0.0002] 

-0.0004 

[0.0002] 

Growing season average 

temperature2 

-0.0023 

[0.0014] 

-0.0095 

[0.0015] 

-0.0008 

[0.0004] 

-0.0019 

[0.0005] 

-0.0016 

[0.0006] 

Season 2 average temperature2 0.0028 

[0.0003] 

0.0019 

[0.0003] 

0.0001 

[0.0001] 

0.00004 

[0.0001] 

0.00002 

[0.0001] 

Season 3 average temperature2 0.0016 

[0.0009] 

0.0024 

[0.0009] 

-0.0007 

[0.0004] 

-0.0003 

[0.0004] 

-0.0003 

[0.0005] 

Season 1 total precipitation -0.0011 

[0.0001] 

-0.0007 

[0.0001] 

-0.0001 

[0.00003] 

-0.0002 

[0.00004] 

-0.0001 

[0.00004] 

Growing season total 

precipitation 

0.0002 

[0.0001] 

0.00004 

[0.0001] 

0.0001 

[0.00002] 

0.0001 

[0.00004] 

0.00001 

[0.00004] 

Season 2 total precipitation -0.0005 

[0.0002] 

0.0002 

[0.0001] 

0.0001 

[0.00004] 

0.0001 

[0.00005] 

0.0001 

[0.00005] 

Season 3 total precipitation -0.0012 

[0.0001] 

-0.0006 

[0.0001] 

-0.0001 

[0.00003] 

-0.0001 

[0.00005] 

-0.00004 

[0.00005] 

Feed cost per cow -0.00003 

[2.11E-06] 

-0.00003 

[1.90E-06] 

-8.55E-06 

[6.74E-07] 

-8.45E-06 

[6.91E-07] 

-8.91E-06 

[7.00E-07] 

CRP acres  3.51E-06 

[6.55E-07] 

3.19E-06 

[5.83E-07] 

-1.56E-07 

[4.29E-07] 

-1.69E-07 

[4.60E-07] 

3.30E-07 

[5.03E-07] 

Population density -0.0007 

[0.0001] 

-0.0006 

[0.0001] 

-0.0010 

[0.0001] 

-0.0001 

[0.0001] 

-0.0010 

[0.0001] 

Percentage of land irrigated 0.3137 

[0.0668] 

0.3054 

[0.0677] 

-0.0078 

[0.0252] 

-0.0057 

[0.0256] 

0.0017 

[0.0255] 

Spatial lag of y    0.8910 

[0.0369] 

 0.7010 

[0.0827] 

Spatial error     0.9466 

[0.0217] 

0.8503 

[0.0556] 

Feed cost per cow.splag     0.00003 

[8.99E-06] 

CRP acres.splag     -0.0001 

[4.75E-06] 

Population density.splag     0.0035 

[0.0011] 

Percentage of land 

irrigated.splag 

    0.2630 

[0.8413] 

Observations  4,584 4,584 4,584 4,584 4,584 

AIC 11,576.47 9,887.85 3,004.92 3,062.29 3,121.37 

Note: Standard errors are in the brackets.  
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Table 2.3 Weather impact decomposition 

Variables Impact 

(%) 

Season 1 temperature 0.14 

Growing season temperature 4.47 

Season 2 temperature 0.01 

Season 3 temperature 0.94 

Season 1 total precipitation -0.01 

Growing season total precipitation 0.01 

Season 2 total precipitation 0.01 

Season 3 total precipitation -0.01 

Note: Direct impacts percent are computed as 100 ∗ (exp(𝜕𝑋𝛽) − 1), where 𝜕𝑋𝛽 are changes in 

county-level beef-cow inventories driven by changes in weather variables.  
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Long Term Effects of Weather on Cow-Calf Production  

3.1 Introduction 

The success of agricultural farming is uniquely sensitive to changes in climate (Di Falco et 

al., 2014). Global warming is expected to produce hotter daily maximum and lengthy winter 

periods in many regions of the world, and these climate changes create production challenges and 

significant production losses throughout all cow-calf production regions in the United States 

(Belasco, Cheng, and Schroeder, 2015). Many studies have focused on cattle price prediction, 

cattle market price volatility, and market price volatility impact on livestock risk management, 

while other studies have analyzed weather risks in cattle production. For example, previous studies 

have examined the impacts of extreme weather on fed-cattle profits, economic losses from heat 

stress, climate change consequences for livestock production, and livestock performance (St-

Pierre, Cobanov, and Schnitkey, 2003; Nardone et al., 2010; Gauly et al., 2013; Belasco, Cheng, 

and Schroeder, 2015). To our knowledge, this is the first paper to evaluate the impacts of long-

term seasonal weather changes on cow-calf production in the United States. 

This article estimates the effects of seasonal weather on beef cow production using state-

level beef cow inventories from 25 major cow-calf producing states from the years 1951 through 

2017.8 This study significantly contributes to the literature because it considers seasonal weather 

changes to be an important determinant of cow-calf inventories nationally and regionally. Out-of-

sample forecasting evaluations recommend incorporating weather information for inventory 

                                                 

8 State-level beef cow inventories are the best publicly available data aggregation level; the recorded numbers dated 

back to 1920. The terms, production and inventories, are used interchangeably throughout this article. 
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forecasts, and future forecasting of beef cow inventories uniquely reveals how seasonal weather 

changes impact the cow-calf industry in the United States. 

This analysis initially shows how seasonal weather significantly affects state-level beef 

cow inventories and then documents the impacts of breeding season weather on cow-calf 

inventories. This paper also shows how seasonal weather effects vary across geographical 

locations. The study results contribute to the literature in three ways. First, the study broadens 

understanding of seasonal weather effects on the U.S. cow-calf sector. Second, the study 

emphasizes the importance of breeding season weather on cow-calf operations to encourage 

necessary adaptation practices, and third, this study geographically expands weather effects on 

exposure risks of cow-calf production. Depending on the geographical location, the risk of 

exposure to adverse climate conditions can vary. 

 

3.2 Overview of the U.S. Cow-Calf Sector 

Beef cows can be classified as a capital good and a consumption good (Aadland and Baily, 

2001). The U.S. beef industry is a lucrative component of the agricultural sector, totaling $67.1 

billion in 2018, which accounted for approximately 18% of the total agricultural cash receipts 

(ERS, 2019). Cow-calf production is the first stage of beef cattle production; cattle operations 

maintain cowherds and raise calves until weaning when they are 7 to 8 months old. Ideally, 

cowherds calve one calf per cow each year. The estimated total beef cow inventory in 2018 was 

31.7 million, but cow-calf inventory numbers fluctuate from year to year due to drought, market 

conditions, renovation of previously unproductive land, and shift in land use towards more 

profitable crops (Drouillard, 2018; Field, 2017). Nearly 80% of cow-calf producers own less than 

50 cows and control less than 30% of the total national beef cow inventory (LMIC, 2015). 
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Although producers adjust production depending on cattle market prices, biological constraints 

(i.e. lenthy calving period) in cow-calf production often prevent prompt responses to increased 

cattle prices. 

Cow-calf operations typically use pasture raising to fulfill two-thirds of forage 

requirements (McDonald and Hoppe, 2018), meaning the success and efficiency of cow-calf 

operations heavily depend on weather conditions (ERS, 2019). Deviation of average temperature 

and precipitation affect both the quantity and quality of pastures (Gauly et al., 2012). For example, 

extended drought reduces pasture forage availability, forcing farmers to utilize alternative 

feedstuffs (Kemper et al., 2012). Moreover, the northern region 9of the United States has to depend 

on supplemental feedstuffs during the winter, whereas the southern region 10 benefits from year-

round grazing (McBride and Mathews, 2011). Feed costs account for 60%–70% of total livestock 

production costs (Lawrence et al., 2008). Increased feed costs ultimately increases consumer prices 

at the retail level. Experience has shown that weather changes have caused increasing feed costs 

in the U.S. livestock sector (Larson, 2012; Kemper et al., 2012). According to the Kansas Farm 

Management Association (KFMA), between 2012 and 2016, the average feed cost per cow was 

$365, while in 2017, the estimated total feed cost per cow was $387.67 per year. 

Although the literature includes many studies that have researched the impacts of weather 

on agriculture (Schlenker and Roberts, 2009; De Salvo, Raffaelli, and Moser, 2013; Lobell et al., 

2013; Tack and Ubilava, 2013; Tack, Lingenfelser, and Jagadish, 2017; Chavas and Di Falco, 

2017; Rojas-Downing et al., 2017; Chavas et al., 2019), only a few studies have examined weather 

effects on the livestock sector (Klinedinst et al., 1993; Mark and Schroeder, 2002; Frank et al., 

                                                 

9 Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota 

10 Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, Tennessee, Texas, Virginia 
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2009; Nardone et al., 2010; Gauly et al., 2012; Belasco, Cheng, and Schroeder, 2015; Rojas-

Downing et al., 2017). Moreover, animal science literature has explored the physiological effects 

of heat stress on livestock (Lippke, 1975; Hahn et al., 2001; Mader, 2003; Mader, Davis, and 

Brown-Brandl, 2006), but the effect of seasonal weather on beef cow inventories in the U.S. cow-

calf sector has not been fully researched. As climate impacts increase, weather becomes an 

increasing influential factor for producers; therefore, this study utilized state-level data to estimate 

weather impacts on cow-calf production.  

 

3.3 Conceptual Framework 

Following the conceptual framework by Marsh (1999), the supply relationship for beef 

cow herds can be assumed by 

 𝑦𝑖 = 𝐶𝑏 − 𝐷𝑏 (1) 

where 𝑦𝑖 is the beef cow inventory, 𝐶𝑏 is available beef cow inventories, and 𝐷𝑏 is 

inventory demand. Following Reutlinger (1966), the conceptual model for beef cow inventory 

demand is 

 𝐷𝑏 = 𝐼𝑡+1 − 𝐼𝑡 (2) 

where 𝐼 denotes the beef cow inventory. Positive investments in beef cow inventories occur 

when yearling heifers nearing breeding age are retained, while negative investments are due to the 

death of mature cows or culled cows (Aadland and Bailey, 2001). If the beef cow industry is 

competitive, derived demand for beef cow inventories is 𝐼𝑑: 

 𝐼𝑑 = 𝐸(𝑃0) + 𝜌𝑋 + 𝜃𝑖
𝑝 + 𝜃𝑖

𝑛 (3) 

where 𝐸(𝑃0) is expected cattle price, 𝑋 is a vector of inputs, 𝜃𝑖
𝑝
 is weather changes that 

cause increased inventories at cow-calf operations, and 𝜃𝑖
𝑛is weather changes that cause decreased 
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inventories. The relationship between derived demand function and actual production can be stated 

as follows: 

 𝐼𝑡+1 − 𝐼𝑡 = 𝛽(𝐼𝑑 − 𝐼𝑡) (4) 

The demand for change inventory (equation 2) can be re-written as, 

 𝐷𝑏 = 𝛽0(𝐸(𝑃0) + 𝜌𝑋 + 𝜃𝑖
𝑝 + 𝜃𝑖

𝑛) − 𝛽𝐼𝑡 (5) 

Conceptually, available beef cow inventories are a function of beef cow inventory 𝐼𝑡. If 𝑎 

is the beef cow replacement rate, then the available beef cow inventory is 

 𝐶𝑏 = 𝑎𝐼𝑎 (6) 

The market supply equation of beef cows is 

 𝑦𝑖 = 𝑎𝐼𝑎 − {𝛽0𝐸(𝑃0) + 𝜌𝑋 + 𝜃𝑖
𝑝 + 𝜃𝑖

𝑛} − 𝛽𝐼𝑎 (7) 

 

Since the coefficient of the price is expected to be positive, the respective price elasticity 

for beef cow supply is expected to be negative. The first-order condition with respect to weather 

changes yields 

 𝑑𝑦𝑖

𝑑𝜃𝑖
⋛ 0 (8) 

The first-order condition indicates that significant weather changes increase or decrease 

beef cow inventories, depending on the specific weather condition, ceteris paribus. However, 

seasonal weather impacts on beef cow inventories may not always be negative, and unique 

seasonal weather conditions could increase beef cow inventories. For example, if the first-order 

condition is Season 4 minimum temperature, then a positive relationship would be expected 
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between beef cow inventories and Season 4 minimum temperature (
𝑑𝑦𝑖

𝑑𝜃𝑖
 > 011) due to a priory 

expectation of increased extreme minimum temperature, which increases beef cow inventories. 

 

3.4 Data and Variable Construction 

This study used annual state-level beef cow inventory data from the Livestock Marketing 

Information Center (LMIC) for 25 states12 that held 88% of the total national beef cow inventories 

in 2017. The data included annual beef cow inventories and weather data from 1951 to 201713. 

Following the literature, this study explored several weather models, including seasonal averages 

and nonlinear effects. However, as evidenced by the in-sample model-fit measures, the seasonal 

extreme weather model fit better with the data considered in this analysis.  

Seasonal weather variables based on PRISM daily climate data for minimum and 

maximum temperatures proxied weather changes. Because beef cow inventory data are typically 

recorded as of January 1 each year, this research utilized lagged weather variables that are more 

appropriate with the recorded beef cow inventory numbers. Temperature and rainfall can vary 

depending on time and space (Chavas et al., 2019), so this study constructed seasonal14 minimum 

and maximum temperatures and respective cumulative precipitation measures, including three lags 

according to the biological production cycle of a beef cow, to measure weather impacts on state-

level beef cow inventories. A preliminary analysis revealed that these weather variables have a 

                                                 

11 𝜃𝑖 is the season 4 minimum temperature 

12 Alabama, Arkansas, California, Colorado, Florida, Georgia, Idaho, Illinois, Iowa, Kansas, Kentucky, Louisiana, 

Mississippi, Missouri, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, Oregon, South Dakota, 

Tennessee, Texas, Virginia, and Wyoming 
13 Panel unit root test using an Im-Pesaran-Shin test on the balanced panel rejects the null hypothesis that panels 

contain a unit root in favor of the alternative that panels represent stationary process. 
14Season1= January through March. Season 2= April through June. Season 3= July through September. Season 4= 

October through December 
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high level of collinearity, potentially causing unreliable coefficients estimates. Feature selection 

criteria15 was used to select the most important attributes among a list of explanatory weather 

variables to explain the state-level beef cow inventories. The final model did not have seasonal 

precipitation variables as their explanatory power of long-term state-level beef cow inventories are 

lower compared to temperature variables. Although nonlinear terms are often included in weather 

variables to capture nonlinear weather effects, this study did not include any nonlinear weather 

variables because no nonlinearity16 was detected between weather variables and state-level beef 

cow inventories. Table 3.1 lists the descriptive statistics of all explanatory variables. 

 

3.5 Estimation Strategy 

This section describes the econometric model used to determine if weather changes 

significantly affect state-level beef cow inventories, the main hypothesis of this research. The 

dependent variable was specified as total beef cow inventory number, 𝑦𝑖𝑡, for state 𝑖 and year 𝑡, 

and a logarithmic transformation was used since state inventory numbers differ by states. 

 

ln(𝑦𝑖𝑡) = 𝛽0 + 𝜃𝑇 + 𝛽𝑋𝑖(𝑡−𝑙) + ∑ 𝛿𝑖(𝑡−𝑘)𝑦𝑖(𝑡−𝑘)

3

𝑘=1

+ 𝜇𝑖 + 𝜀𝑖𝑡 (9) 

where T denotes linear time trends that capture changes in technology over time. 

Likelihood ratio tests were used to identify two distinct time trends: 𝑇1 = 1984 and 𝑇2 = 1989. 

𝑋𝑖(𝑡−𝑙) is a vector of lagged seasonal minimum and maximum temperatures, and 𝜀𝑖𝑡 denotes 

random errors. Lagged weather variables were considered since contemporaneous weather effects 

are less likely to impact current beef cow inventories due to the multiyear nature of production. 

                                                 

15 Least Absolute Shrinkage Operator (LASSO) 
16 We used partial residual plots to detect the non-linearity 
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Past productivity of cow-calf operations, therefore, is a key factor in determining current 

production. 𝑦𝑖(𝑡−𝑘) is a vector with lagged dependent variables that captured past productivity. 

This study included state fixed effects to control for unobserved heterogeneities; hence, 

identification resulted from the correlation between seasonal weather changes and state-level beef 

cow inventories. Standard errors were clustered at the state level. However, because producers 

often seek to increase their profits by improving managerial skills and productivity over the years, 

this study implemented an estimation strategy to control for past production even though the 

estimated parameters could be biased due to the inclusion of lagged dependent variables, i.e. 

Nickell bias (Nickell, 1981). Since we have a large T, this can substantially reduce incidental 

parameter bias. Lagged dependent variables are interpreted as  the dynamics of partial adjustment 

towards a long run equilibrium. The overall objective was to investigate the causal relationship 

between beef cow inventories and weather changes. Moreover, the covariance of weather variables 

and lagged dependent variables was small. This study also utilized a long panel and the subsequent 

fixed-effects approach to help mitigate endogeneity. Estimation results of the Arellano-Bond 

estimator are provided in the appendix (Table B.1). 

 

3.6 Estimation Results 

Study results suggest that average changes in state-level beef cow inventories in response 

to changes in seasonal temperatures could be negative or positive (Table 3.2). In addition, as shown 

in Table 3.2, lagged beef cow inventories 17have statistically significant effects on current beef 

cow inventories, thereby confirming the dynamic nature of cow-calf operations. 

                                                 

17 The total effect of lagged dependent variables is less than one thus, does not have a unit root issues in the system. 

Lagged dependent variables are important in the analysis due to multiyear biological nature of beef cows.  
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Although the time trend variables (𝑇1,  𝑇2) exhibited statistical significance, the effects 

varied depending on the time period. Parameter estimates for 𝑇1 (time trend after 1984) positively 

impacted state-level beef cow inventories, whereas, 𝑇2 (time trend after 1989) negatively impacted, 

or decreased, beef cow inventories. These results suggest that, when controlling for weather, the 

rate of inventory growth decreased after 1989, potentially due to structural changes and low prices 

in the U.S. cattle industry during the mid and late 1980s (Aadland and Bailey, 2001). The resulted 

market changes may have also been the reason two distinct time trends were observed around mid 

and late 1980s. 

Extended drought and hot summers deteriorate pasture conditions and affect pasture 

growth, forcing producers to use alternative feed-stuffs. However, extreme heat and prolonged 

winters reduce feed conversion efficiency in cattle and increase the animal mortality rate (Hahn, 

1985; Belasco, Cheng, and Schroeder, 2015; LPELC, 2019). Consequently, weather variations 

cause farmers to reduce cow herds due to limited water supplies and high costs of alternative feed 

(Kemper et al., 2012). Impact calculations were estimated (Table 3.3) to understand the economic 

impacts of seasonal weather variables. As expected, estimated impacts of seasonal weather ranged 

from 0.10 to -0.40. For example, increase in temperatures throughout winter months could ease 

the cold discomfort of beef cows as evidenced by positive impacts of season 4 minimum 

temperature. Season 1 lagged minimum temperature and Season 3 lagged maximum temperature, 

negatively impacted beef cow inventories, confirming that seasonal weather significantly 

influences state-level beef cow inventories. 

The estimated seasonal weather effects closely aligned with external impacts reported in 

the literature. In addition to new empirical evidence of weather impacts, the dynamics of output 

and input price expectations determine the beef cow supply. Following previous literature, this 
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study compared weather impacts with input and output price impacts. The literature provides 

evidence of positive and negative output price impacts, with negative output price impacts ranging 

from -0.10 to -1.225 (Reutlinger, 1966; Marsh, 1994) and positive output price impacts ranging 

from 0.30 to 0.60 (Foster and Burt, 1992; Marsh, 1999; Aadland and Bailey, 2001). Input price 

impacts have been shown to range from 0.01 to -0.8 (Marsh, 1999; Marsh, 1999; Aadland and 

Bailey, 2001). Parameter estimate values in Table 3.3 were consistent with parallel average output 

and input price impacts from the literature. 

 

3.7 Sensitivity Analysis 

This section includes two additional analyses: estimations that control for breeding-season 

weather and estimations that control for geographic locations of cow-calf production. 

 

3.7.1 Effect of Breeding Season Weather on Cow-Calf Operations 

Breeding performance impacts the profitability of a cowherd, especially calf-crop 

percentage and calf weaning weight (Gadberry et al., 2015). Calf-crop percentage depends 

primarily on management during the breeding season, reproduction, and weaning weight (Rasby, 

2015). High temperature and humidity most significantly influence the reproductive performance 

of beef cows (Selk, 2019). In fact, potential heat stress during the early stages of pregnancy can 

cause reduced pregnancy rates, conceptus development, and fetal degeneration (Biggers et al., 

1987). Similarly, severe winters can cause late breeding and fall out from the calving season 

(Meteer, 2019), while cold weather has been shown to increase maintenance requirements and feed 

intake (Peel, 2019). Wet weather (i.e., rain or wet conditions) creates a wet hair coat on cattle that 

must be controlled to maintain animal comfort which requires additional feed energy resulted in 
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higher feed intake. Notably, during winter, producers have to increase both the quantity and quality 

of feed for cows to avoid adverse impacts on pregnancy and lactation (Peel, 2019). 

Compared to fall calving, spring calving predominantly occurs in the northern states to 

avoid severe winter weather and to allow new calves to graze on summer pasture. Fall calving is 

advantageous, however, because older, larger calves are sold at weaning. Southern states may use 

both spring and fall calving seasons (McBride and Mathews, 2011). To our knowledge, breeding-

season weather and its quantitative impacts on cow-calf inventory have not been investigated. The 

econometric model in this study can quantify seasonal weather effects on potential changes in 

inventory.  

Considering the impacts of breeding-season weather on cow-calf operations, extreme 

weather variables of the breeding season were constructed using lagged minimum and maximum 

temperatures, demonstrating that extreme temperatures significantly impact the breeding 

performance of beef cows (Selk, 2019). The supply of feeder calves, approximated in this study 

using state inventories of all beef cows, was shown to expand as reproductive efficiency increased. 

The reproductive efficiency of a cow-calf herd is defined as the ratio of the total number of pounds 

of calf weaned to the number of cows exposed in the breeding season (Gadberry et al., 2015). This 

study used two widely defined breeding seasons: May–June (spring calving) and November–

December (fall calving).  

State-level cow-calf inventory was modeled as a function of two breeding seasons, 

minimum and maximum temperatures, and cumulative precipitation of the breeding season: 

 
ln(𝑦𝑖𝑡) = 𝛽0 + 𝛽1𝑇 + 𝛽2𝑝𝑟𝑒𝑐𝑖𝑡 + 𝛽3𝑇𝑀𝑖𝑛𝑖𝑗(𝑡−1) + 𝛽4𝑇𝑀𝑎𝑥𝑖𝑗(𝑡−1) + 𝜇𝑖 + 𝜀𝑖𝑡 (10) 

where ln (𝑦𝑖𝑡) is log beef cow inventory of state 𝑖 in year 𝑡, and linear time trends T capture 

changes in technology. Two temperature variables were denoted for two breeding seasons 
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𝑗: 𝑇𝑀𝑖𝑛𝑖𝑗(𝑡−1) and  𝑇𝑀𝑎𝑥𝑖𝑗(𝑡−1). Breeding season minimum and maximum temperatures were the 

average minimum and maximum temperatures for the two breeding seasons, which provided 

extreme temperate effects of the breeding season on beef cow inventories. In addition, cumulative 

precipitation variables were constructed for two breeding seasons by summing across daily 

precipitation. Because breeding occurs only once a year, one-year lagged weather variables 

determined the impacts of breeding-season weather on beef cow inventories. 

Table 3.4 shows the estimated results for equation (10). As shown, a one-unit increase in 

lagged minimum temperature in May and June (i.e., spring calving with calving February–April) 

reduced beef cow inventories by nearly 2.76%, suggesting that extreme temperatures in November 

and December (i.e., fall calving) negatively affect state-level beef cow inventories. In addition, the 

impacts of breeding-season weather were more significant than traditional seasonal weather (Table 

3.4), with impact estimates between 2.70% and -2.70%. No significant impact of cumulative 

precipitation was found in any calving season. 

 

3.7.2 Geographical Variation in Cow-Calf Inventories 

Cow-calf operations are active in every state in the United States. However, climate 

conditions, environmental factors, animal phenotypes, and management practices uniquely 

determine the type of production system (Drouillard, 2018). Although geographical diversity and 

climate conditions affect feed costs, some producers advantageously utilize year-round grazing, 

while other producers must implement alternative feed-stuffs during winter due to prevalent snow 
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cover on grazing land (McBride and Mathews, 2011). This study utilized individualized models to 

identify weather differences in major production regions18. 

Table 3.5 shows alternative estimated results for equation (9), and Table 3.6 provides 

respective impact estimations. When controlling for geographical variation, estimation results for 

the northern states suggest that Season 1 lagged minimum temperature negatively impacted beef 

cow inventories (-0.10%) (Table 3.6, column 2). Hence, a one-unit increase in Season 1 lagged 

minimum temperature decreased beef cow inventories by 0.1%. However, no other significant 

weather impacts were identified for alternative geographic classification of northern states. In 

comparison, significant negative impacts of Season 1 lagged minimum temperature were observed 

for beef cow inventories in the southern states. A one-unit increase in Season 1 lagged minimum 

temperature reduced beef cow inventories by 0.40%. The difference suggests that existing high 

temperatures in breeding season in southern states significantly negatively impacts beef cow 

inventories. Further, lagged Season 3 maximum temperature and lagged Season 4 minimum 

temperature significantly impacted southern beef cow inventories. Overall, temperature impacts 

were more significant in the southern states than the northern states. 

 

3.8 Evaluation of the Forecasting Ability 

This study also used a 46-year sample (1951–1996) to evaluate the forecasting performance 

of each model and examine the importance of including weather information on out-of-sample 

predictions. Although the selected sample length was ad hoc, sample length remained constant. In 

making an annual forecast, this study included three alternative forecasting models to update 

                                                 

18 Northern: Colorado, Idaho, Illinois, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, Oregon, South 

Dakota, Wyoming; Sourthern: Alabama, Arkansas, California, Florida, Georgia, Kentucky, Lousiana, Mississippi, 

New Mexico, Oklahoma, Tennessee, Texas, Virginia  
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horizons: each year, 10 years ahead, and 20 years ahead. For example, when making a one-step-

ahead forecast, the model was initially estimated using the 1951–1996 time period, and then beef 

cow inventories for 1997 were forecasted. The model was reestimated for the 1952–1997 period, 

and then beef cow inventories for 1998 were forecasted, continuing until the last forecast was 

complete. For 10-year updating, the model was estimated using the 1951–1996 sample period and 

then made 10 years of forecasting (1997–2006). After using the model to make the first 10 years 

forecast, the model parameters were reestimated using the 1961–2006 period and subsequently 

forecasted 2007–2016 beef cow inventories, continuing until the last forecast was complete. The 

20-year updating procedure was similar to the 10-year updating. 

Table 3.7 presents the forecasting evaluations. Based on the results of root mean squared 

error (RMSE), the model with seasonal weather had the least prediction error for all three 

forecasting horizons, followed by the AR(3) model19. Naïve20 forecasting had the highest RMSE 

values for all three forecasting horizons. Overall, a comparison of forecasting accuracy measures 

suggests that adding weather information improves the forecasting ability of state-level beef cow 

inventories. 

This study used the Ashley, Granger, Schmalensee (AGS) method (Table 3.8) to compare 

RMSEs of alternative forecasts. The AGS method provides a statistical test to compare the 

significance of differences between forecasting errors of two competing forecasts (Bradshaw and 

Ordern, 1990; Kastens and Brester, 1996). The regression used to estimate AGS statistics is 

 𝐴𝑡 = 𝛾0 + 𝛾1(𝐸𝑡 − 𝐸𝑚𝑒𝑎𝑛) + 𝜖𝑡 (11) 

                                                 

19 AR(3) model includes lagged beef cow inventory information.  

20 Naïve forecasting uses only the last year information to predict current year beef cow inventories and presumes no 

change from the prior year. 
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where 𝐴𝑡 is the difference between forecast error of low RMSE forecast subtracted from 

competing forecast errors, 𝐸𝑡 is the sum of forecasting error, 𝐸𝑚𝑒𝑎𝑛 is the sample mean of 𝐸𝑡, and 𝑡 

is white noise. Following Kastens and Brester (1996), this study obtained the absolute value for 

the error sample mean to avoid negative sample mean. Estimation criteria was if 𝛾0 and 𝛾1 

estimates were positive, a F-test for joint hypothesis 𝛾0 =  0 and 𝛾1  =  1. If either 𝛾0 or 𝛾1 was 

negative and significant, the test was inconclusive. If an estimate was negative and insignificant, 

the appropriate test was an upper tail t-test (Bradshaw and Ordern, 1990; Kastens and Brester, 

1996). Results of the AGS analysis confirmed that, compared to the seasonal weather model, the 

majority of naïve and AR(3) models’ forecasting errors were significantly different, and the 

seasonal weather model performed more accurately than the other models considered in this study.  

Forecast improvement was also tested over time (Table 3.9) by regressing the absolute 

value of forecast errors on a time trend as follows: 

 |𝑒| = 𝛿0 + 𝛿1𝑇𝑟𝑒𝑛𝑑𝑡 + 𝜀𝑡 (12) 

where |e| is absolute forecast error. The null hypothesis is 𝛿1  =  0, meaning that no time 

improvement was present. If 𝛿1  <  0, then forecast improved over time. Results suggest that time 

improvement only occurred in the 20-steps-ahead forecast with the naïve model (Table 3.9). 

 

3.8.1 State-Level Beef Cow Inventories as Forecasts 

Forecasts are useful for decision making and risk management, as well as resource 

allocation (Tomek, 1997; Manfredo and Sanders, 2004). Cattle producers react to high/low prices 

by adjusting the numbers in their breeding herds (Bently and Shumway, 1981). Although 

forecasting cattle prices using options contracts, futures markets, and basis forecasting is common 

in practice (Martin and Garcia, 1981; Liu et al., 1994; Tomek, 1997; Manfredo and Sanders, 2004; 
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Tonsor, Dhuyvetter, and Mintert, 2004), production forecasts using weather information is novel. 

This study forecasted state-level beef cow inventories using the estimated coefficients in equation 

(9) to help producers identify optimal herd size in response to weather changes. The long biological 

time gap between cow breeding, calf weaning, and marketing is nearly two years, making it 

difficult for producers to plan herd size. In addition, market prices vary depending on demand, and 

supply signals and supply forecast indicate price volatility (Bacon, Trapp, and Koontz, 1992). 

Hence, beef cow forecasting could help producers determine profitable herd sizes and increase 

understanding of weather impacts on beef cow inventories in the next 10 years, resulting in better 

economic decisions.  

 

3.8.2 Prediction Accuracy Comparison 

This study compared the forecast from final model (equation 9) to U.S. Department of 

Agriculture (USDA) annual agricultural projections from 2005 to 2016 to evaluate prediction 

accuracy. For the seasonal weather model and AR(3) model, 1958–2004 was the first period of 

parameter estimation with 10-steps-ahead forecasts. After the first 10 years of forecasts (2005–

2014), the model parameters were reestimated using 1959–2005, and then forecasts were 

conducted for the next 10 years (2006–2015). Analysis included the RMSE for USDA, seasonal 

weather model (equation 9), AR(3), and naïve model, which used the previous year’s beef cow 

inventories as the current year’s inventory numbers. Collectively, this testing procedure evaluated 

the ability to forecast beef cow inventories using three distinctive model specifications. 

Results confirmed that, until six years ahead, USDA cow-calf inventories have the least 

RMSE, followed by the seasonal weather model (Figure 3.1). After six years, USDA forecasting 

errors were higher than the other three models. The seasonal weather model most accurately 

projected long forecasting horizons. 
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3.8.3 Prediction Simulation 

This study utilized weather forecasts from U.S. Geological Survey (USGS) national 

weather prediction data from 2020 to 2028 to simulate changes in future weather conditions. Beef 

cow forecasts from the USDA agricultural projections for the same period were used for the 2028 

report. Because the USDA agricultural projection report does not include individual state-level 

beef cow inventories, however, this study used weather and beef cow forecasts to recalculate future 

weather impacts on state-level beef cow inventories. The state-level beef cow inventory share used 

to calculate future state-level beef cow inventories was the ratio of observed state-level beef cow 

inventory numbers from LMIC in 2017 which is the last year of data used in this study to the 

USDA-projected total national beef cow inventory in the same year. Consistent share numbers 

were maintained throughout the sample period. 

Figure 3.2 shows the average USDA agricultural projections for state-level beef cow 

inventories and predicted beef cow inventories using seasonal weather information from 2018 to 

2028. Forecasts that used the seasonal weather model tended to underpredict beef cow inventories 

compared to USDA predictions. However, the forecasting accuracies of both forecasting models 

were not measured because none of the beef cow inventory numbers were yet observed. Compared 

to previous 10-year beef cow inventories for the 25 states in this study, predicted 10-year-ahead 

values showed, on average, a 10% reduction in national beef cow inventories based on predicted 

seasonal weather changes. 

 

3.9 Conclusions 

This study estimated the effects of seasonal weather on state-level beef cow inventories 

and examined the impact of breeding-season weather on state-level beef cow inventories and 
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geographical cow-calf production. Study results affirmed the importance of incorporating weather 

information in models for state-level cow-calf inventory analysis and production forecasting. 

Estimation results suggest that lagged minimum and maximum temperatures significantly affect 

state-level beef cow inventories. Increases in temperature during cold months (i.e. season 4)  

increase beef cow inventories, while increased temperatures in warm months (i.e. season 3) 

decrease beef cow inventories. These estimates can be used to understand economic impacts on 

the cow-calf industry. For example, a decreased beef cattle supply ultimately affects domestic beef 

prices, meaning consumers encounter high beef prices as a result of a negative supply response. 

Moreover, this analysis captured the dynamic nature of cow-calf operations, evidenced by 

significant production lags. 

Research results also showed that weather impacts during the breeding season are 

substantially greater than seasonal weather impacts on cow-calf production. Significant breeding-

season weather estimates suggest that weather stress during breeding season significantly affects 

the production of cow-calf operations. These estimated breeding-season weather impacts can be 

used to improve the reproductive performance of beef cows since reproductive performance and 

subsequent profitability of cow-calf operations are closely tied to weather conditions. Moreover, 

study findings confirmed that weather impacts on beef cows are geographically distinct. Results 

of geographically separated weather impacts on cow-calf operations highlighted the importance of 

geographical weather analysis for beef cow inventories. 

This study also utilized weather information to forecast beef cow inventories. Using 

RMSEs of the main model (equation 9) and other competing models, the model with weather 

information provided more accurate forecasts than the naïve forecasting and AR(3) models. In 

addition, the seasonal weather models produced the lowest RMSEs with significantly superior 
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performance. These results prove that the inclusion of weather information is beneficial for out-

of-sample forecasting. This research also provided new empirical evidence proving that seasonal 

weather is essential for determining state-level beef cow inventories by advantageously 

considering a longer time period across states to capture weather dynamics.  

Future research would benefit from controlling adverse weather adaptation behavior of 

cow-calf producers. In addition, this study focused only on the U.S. cow-calf industry, but spatially 

variable, negative weather impacts in U.S. competitors such as Canada, Australia, and New 

Zealand could negatively impact international beef prices. Future work should consider weather 

impacts on the global beef and cattle trade. 
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Tables 

Table 3.1 Summary Statistics 

Variables Mean Min Max S.D 

Beef cow inventory 1164.84 190 6895 957.63 

L1. Beef cow inventory 1165.71 190 6895 959.10 

L2. Beef cow inventory 1167.15 190 6895 961.10 

L3. Beef cow inventory 1169.09 190 6895 963.47 

L3.Season 1 min temperature -3.01 -20.46 11.45 6.10 

L1.Season 3 max temperature 29.48 21.75 37.35 2.73 

L2.Season 3 max temperature 29.47 21.75 37.35 2.74 

L3.Season 3 max temperature 29.47 21.75 37.35 2.74 

L3.Season 4 min temperature 0.86 -11.93 14.86 5.30 

L1.Min temp spring calving 12.41 2.74 21.44 4.66 

L1.Max temp spring calving 26.25 16.70 34.18 3.71 

L1.Min temp fall calving -1.72 -17.50 15.73 5.75 

L1.Max temp fall calving 10.57 -7.85 26.07 6.19 

L1.Precip spring calving 259.47 14.00 776.88 119.19 

L1.Precip fall calving 203.67 13.38 758.28 127.56 

Note: all the temperature measures are in Celsius and 

precipitation measures are in millimeters 

L1, L2, and L3 are lag1, lag2, and lag3 respectively 
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Table 3.2 Effect of the seasonal weather on beef cow production 

Variables Estimate 

L3.Season  1 min temperature -0.30*** 

 (0.00) 

L1. Season  3 max temperature -0.40*** 

 (0.00) 

L2.Season  3 max temperature -0.30* 

 (0.00) 

L3.Season  3 max temperature -0.10 

 (0.00) 

L3.Season  4 min temperature 0.10 

 (0.01) 

L1. Ln  of beef cow inventory 1.11*** 

 (0.03) 

L2.Ln  of beef cow inventory -0.15** 

 (0.04) 

L3.Ln  of beef cow inventory -0.04 

 (0.03) 

T1 0.03*** 

 (0.00) 

T2 -0.02*** 

 (0.00) 

Constant 0.00 

 (0.000) 

N 1600 

Note: All weather coefficients are multiplied by 100 for clarity. 

*,**,*** Statistical significance at the 10,5,and 1% levels, respectively 

L1, L2, and L3 are lag1, lag2, and lag3 respectively 

 



49 

Table 3.3 Impact estimation- seasonal weather model 

Variables Impact (%) 

L3.Season 1 min temperature -0.30 

L1.Season 3 max temperature -0.40 

L2.Season 3 max temperature -0.30 

L3.Season 3 max temperature -0.10 

L3.Season 4 min temperature 0.10 

Note: Total impacts in percent are calculated as 100(exp(∆Xβ) − 1) 

L1, L2, and L3 are lag1, lag2, and lag3 respectively 
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Table 3.4 Effect of the breeding season weather on beef cow production 

Variables Estimate Impact (%) 

L1.Min temp spring calving -2.80** -2.76 

 (0.01)  

L1.Max temp spring calving -0.70 -0.70 

 (0.01)  

L1.Min temp fall calving 2.70*** 2.70 

 (0.01)  

L1.Max temp fall calving -2.20*** -2.20 

 (0.01)  

L1.Precip spring calving 0.00 0.01 

 (0.00)  

L1.Precip fall calving 0.00 -0.01 

 (0.00)  

Constant 0.00  

  (0.00)   

N 1600   

Note: All weather coefficients are multiplied by 100 for clarity. 

*,**,*** Statistical significance at the 10,5,and 1% levels, respectively 

L1, L2, and L3 are lag1, lag2, and lag3 respectively 
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Table 3.5 Geographic variation in weather impacts on beef cow production 

Variables Northern Southern 

L3.Season 1 min temperature -0.10* -0.40*** 

 (0.00) (0.00) 

L1.Season 3 max temperature 0.00 -0.30** 

 (0.00) (0.00) 

L2. Season 3 max temperature -0.10 0.00 

 (0.00) (0.00) 

L3. Season 3 max temperature 0.10 0.40*** 

 (0.00) (0.00) 

L3. Season 4 min temperature 0.00 0.40*** 

 (0.00) (0.00) 

L1. Ln of beef cow inventory 1.18*** 1.22*** 

 (0.04) (0.03) 

L2. Ln of beef cow inventory -0.14*** -0.16*** 

 (0.05) (0.05) 

L3. Ln of beef cow inventory -0.04 -0.06* 

 (0.04) (0.03) 

T1 0.04*** 0.03*** 

 (0.01) (0.01) 

T2 -0.03*** -0.02** 

 (0.01) (0.01) 

Constant 0.05* 0.02 

  (0.03) (0.04) 

N 768 832 

Note: All weather coefficients are multiplied by 100 for clarity. 

*,**,*** Statistical significance at the 10,5,and 1% levels, respectively 

L1, L2, and L3 are lag1, lag2, and lag3 respectively 
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Table 3.6 Impact estimation 

Variables Northern(%) Southern(%) 

L3.Season 1 min temperature -0.10 -0.40 

L1.Season 3 max temperature 0.01 -0.30 

L2. Season 3 max 

temperature -0.10 0.01 

L3. Season 3 max 

temperature 0.10 0.40 

L3. Season 4 min 

temperature 0.01 0.40 

Note: L1, L2, and L3 are lag1, lag2, and lag3 respectively 
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Table 3.7 Forecasting evaluations 

 RMSE 

Model 1 step 10 steps 20 steps 

Naive(no change) 0.18 0.57 0.99 

AR(3) 0.18 0.47 0.67 

Seasonal weather 0.17 0.47 0.66 
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Table 3.8 AGS tests for the significance 

Forecast 
Naive vs AR(3) vs 

Seasonal Weather Seasonal Weather 

One step ahead 0.07* 0.94 

Ten steps ahead 0.00*** 0.00*** 

Twenty steps ahead 0.00*** 0.00*** 

Note: *,**,*** Statistical significance at the 10,5,and 1% levels, respectively 
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Table 3.9 Time improvement test 

 RMSE 

Model 1 step 10 steps 20 steps 

Naive(no change) 0.06*** 0.02 -0.32*** 

AR(3) 0.05** 0.18*** 0.58*** 

Seasonal weather 0.01 0.14*** 0.56*** 

Note: *,**,*** Statistical significance at the 10,5,and 1% levels, respectively 
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Appendix to Chapter 2 

Table A.1 Description of seasons 

Season  Time line 

Season 1  January - March 

Growing Season  April - July 

Season 2  August – September  

Season 3  October – December  
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Table A.2 Direct, indirect, and total effects calculation for spatial lag dependent model 

Variables Direct Indirect Total 

Season 1 average temperature 0.0027 

[0.0028] 

0.0065 

[0.0070] 

0.0091 

[0.0097] 

Growing season average 

temperature  

0.0478 

[0.0175] 

0.1150 

[0.0525] 

0.1627 

[0.0671] 

Season 3 average temperature  0.0110 

[0.0074] 

0.0267 

[0.0194] 

0.0376 

[0.0264] 

Season 1 average temperature2 -0.0006 

[0.0002] 

-0.0015 

[0.0006] 

-0.0021 

[0.0007] 

Growing season average 

temperature2 

-0.0008 

[0.0005] 

-0.0020 

[0.0012] 

-0.0029 

[0.0016] 

Season 2 average temperature2 0.0001 

[0.0001] 

0.0001 

[0.0002] 

0.0002 

[0.0003] 

Season 3 average temperature2 -0.0007 

[0.0004] 

-0.0017 

[0.0011] 

-0.0024 

[0.0014] 

Season 1 total precipitation -0.0001 

[0.00003] 

-0.0003 

[0.0001] 

-0.0004 

[0.0001] 

Growing season total precipitation 0.0001 

[0.00003] 

0.0002 

[0.0001] 

0.0003 

[0.0001] 

Season 2 total precipitation 0.0001 

[0.00004] 

0.0003 

[0.0001] 

0.0004 

[0.0002] 

Season 3 total precipitation -0.0001 

[0.00004] 

-0.0001 

[0.0001] 

-0.0002 

[0.0002] 

Feed cost per cow -8.72E-06 

[6.88E-07] 

-0.00002 

[6.25E-06] 

-0.00003 

[6.49E-06] 

CRP acres  -1.59E-07 

[4.38E-07] 

-3.82E-07 

[1.05E06] 

-5.41E-07 

[1.49E-06] 

Population density -0.0001 

[0.0001] 

-0.0024 

[0.0007] 

-0.0034 

[0.0007] 

Percentage of land irrigated -0.0080 

[0.0257] 

-0.0193 

[0.0619] 

-0.0274 

[0.0875] 

Note: Standard errors are in the brackets. 
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Table A.3 Alternative panel analysis estimates for weather variables 

Variables 1992-2002 

Panel 

2007-2017 

Panel 

Season 1 average 

temperature 

-0.0066 

[0.0041] 

0.0038 

[0.0054] 

Growing season average 

temperature  

0.0168 

[0.0248] 

0.0058 

[0.0230] 

Season 3 average 

temperature  

-0.0405 

[0.0146] 

0.0276 

[0.0118] 

Season 1 average 

temperature2 

0.0006 

[0.0003] 

-0.0007 

[0.0003] 

Growing season average 

temperature2 

-0.0002 

[0.0006] 

-0.0009 

[0.0008] 

Season 2 average 

temperature2 

0.0004 

[0.0001] 

-0.0002 

[0.0001] 

Season 3 average 

temperature2 

0.0018 

[0.0008] 

-0.0013 

[0.0006] 

Season 1 total precipitation -0.0001 

[0.00004] 

-0.00003 

[0.0001] 

Growing season total 

precipitation 

0.0001 

[0.00004] 

-0.00004 

[0.00003] 

Season 2 total precipitation 0.0001 

[0.00001] 

0.00003 

[0.0001] 

Season 3 total precipitation 0.00001 

[0.0001] 

-0.00003 

[0.0001] 

Observations 2,292 2,292 

Note: Standard errors are in the brackets. 
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Table A.4 Prediction evaluations 

Model MAPE MAE RMSE 

Baseline prediction           

(no weather) 

1.28 0.73 0.94 

Spatial Lag Prediction 0.8 0.56 0.72 
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Appendix to Chapter 3 

Table B.1 Effect of the seasonal weather on beef cow production- Arellano-bond estimation 

Variables Estimate 

L3.Season  1 min temperature -0.30*** 

 (0.00) 

L1.Season  3 max temperature -0.40*** 

 (0.00) 

L2.Season  3 max temperature -0.40*** 

 (0.00) 

L3.Season  3 max temperature -0.10 

 (0.00) 

L3.Season  4 min temperature 0.10 

 (0.00) 

L1.Ln  of beef cow inventory 1.08*** 

 (0.03) 

L2.Ln  of beef cow inventory -0.15*** 

 (0.04) 

L3.Ln  of beef cow inventory -0.03 

 (0.02) 

T1 0.03*** 

 (0.01) 

T2 -0.02*** 

 (0.01) 

Constant 0.84*** 

  (0.08) 

N 1600 

Note: All weather coefficients are multiplied by 100 for clarity. 

*,**,*** Statistical significance at the 10,5,and 1% levels, respectively 

L1, L2, and L3 are lag1, lag2, and lag3 respectively 

 

 


