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Abstract 

Sleep monitoring has received increased attention in recent years given an improved 

understanding of the impact of sleep quality on overall well-being. A Kansas State University team 

has developed a sensor-based bed that can unobtrusively track sleep quality for an individual by 

analyzing their ballistocardiograms (BCGs) while they lay on the bed, foregoing the need to visit 

a sleep clinic to quantify their sleep quality. A BCG is a signal that represents cardiac forces that 

have spread from the heart to the rest of the body – forces that result in part from the injection of 

blood into the vascular system. The sensor bed software can extract BCG-based health parameters 

such as heart rate and respiration rate from data acquired continuously throughout the night. Such 

a toolset creates a new challenge, namely that many people sleep on a shared bed. In such cases, a 

given sensor bed would acquire mixed BCGs that contain information for both people.  

This thesis documents efforts to create an algorithm to extract individual health parameters 

from mixed parent BCGs obtained from bed sensors that reside on a shared bed. The first 

component of the two-part algorithm performs ‘blind source separation:’ a technique originally 

designed for mixed audio applications that attempts to optimally separate two individual BCGs 

contained in an original mixed signal. The second component of the algorithm utilizes a frequency-

domain, peak-scoring method to identify the most likely fundamental BCG harmonic for each 

separated signal – a harmonic that corresponds to the pulse rate for that individual. The peak-

scoring approach allows the algorithm to overcome challenges associated with different time-

domain BCG waveform shapes, the presence of signal artifact, and the loss of BCG characteristic 

features that occurs during the separation stage. These challenges can be problematic for time-

domain pulse rate algorithms, but the repetitive waveform patterns can be exploited in the 

frequency-spectrum. 

The peak-scoring algorithm was verified by comparing pulse rates determined from single-

subject BCGs (obtained in various sleeping positions) against pulse rates determined from 

simultaneously collected electrocardiograms. The separation and peak-scoring components were 

combined together, and this overall technique was applied to over 20 sets of paired BCG data, with 

variations in sensor placement, sensor type and mattress type. Early results indicate the ability of 

the algorithm to determine pulse rates from mixed BCGs with acceptable levels of success but 

with areas for improvement.
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Chapter 1 - Introduction 

 

 1.1. Sleep Monitoring and the Importance of Sleep Quality 

Sleep quality is important for an individual’s health and well-being, with the average 

person spending about one-third of their life sleeping or attempting to do so [1]. Strong evidence 

links poor quality of sleep with poor health and well-being, and poor sleep can contribute to 

increased workplace stress. Traditionally, a polysomnograph (PSG) is used to monitor sleep 

quality, where the technique records a collection of biometric measurements throughout the night, 

including electrooculograms (EOGs), electrocardiograms (ECGs), electromyograms (EMGs), and 

respiration rates. While the PSG has been accepted as the ‘gold’ standard for sleep assessment, 

other sleep quality platforms have recently emerged, such as wearable sleep trackers [18]. The 

invasive nature of wires and electrodes attached physically to the body, and/or the need to wear a 

device while sleeping, can cause discomfort and render PSGs and wearable sleep trackers 

unusable, especially for more vulnerable populations such as the elderly or children with severe 

disabilities [3]. For this reason, non-invasive monitoring and sleep quality assessment have been 

receiving increased attention. 

 1.2. Bed-Based Instrumentation 

Ballistocardiography is an attractive means to accomplish non-invasive sleep monitoring 

due to (a) the ease of integrating the affiliated sensors into a bed or mattress and (b) the ability to 

obtain a ballistocardiogram (BCG) from a subject without their knowledge of the presence of these 

sensors. These sensors neither cause discomfort nor interfere with the subject’s regular sleep 

behavior, and they can be easily installed and readily hidden within the bed system. Many methods 

exist to record BCGs unobtrusively, including pressure sensors within an air-mattress [4], force 

sensors [5], load cells installed under bed posts [6], polyvinylidenefluoride (PVDF) film sensors 

[44], strain gauges [45], and electromechanical film (EMFi) sensors either above or beneath a 

mattress. These sleep monitoring setups are non-invasive, and they require no patient compliance 

or interaction, making them well suited for the general population. 
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A bed-based instrumentation system for unobtrusive sleep quality assessment was 

developed by Carlson et al. at Kansas State University [2]. The system utilizes an array of four 

electromechanical films (EMFis) placed under the mattress and four load cells installed under the 

bed posts to non-invasively acquire BCGs from the subject while they lay on the bed – BCGs from 

which information such as heart rate and respiration rate can be obtained. This bed-based 

instrumentation is being utilized at Heartspring, Wichita, KS, for the assessment of sleep quality 

in severely disabled children, with a goal to find relationships between nighttime well-being and 

daytime wellness and behavior. Nearly all of these children have low-functioning autism, and it is 

vitally important that such instrumentation be hidden in a bed so that a given child is unaware of 

its presence. Chapter 3 outlines the sensor bed instrumentation setup in more detail, since this 

setup forms the core of the instrumentation utilized to study the two-body problem that is the focus 

of this thesis. 

 1.2.1. Two-Body Problem 

The notion of bed-based, non-invasive BCG measurements during sleep can be applied in 

a common household, meaning sleep quality assessment without the need to visit a sleep clinic 

and sleep in an unfamiliar bed. This environment, however, introduces another challenge, which 

is that many people share a bed with another individual when sleeping at night. For the purposes 

of this research, the sensor-bed setup by Carlson et al. was modified to a full-size bed that 

accommodates two people at the same time. As a result, a BCG recorded by a given EMFi sensor 

or load cell will be a mixed signal comprised of the BCGs from both users coupled with mattress- 

and motion-induced artifacts. To extract the heart rate and respiration rate information for the 

person of interest, a mixed signal needs to be processed to either directly extract the BCG of 

interest (with the rest of the mixed signal dismissed as noise) or perform source separation on the 

mixed signal, which means separating the individual BCGs to extract the heart rate information 

for both subjects. The waveform characteristics of a mixed BCG differ greatly from those of a 

single-subject BCG, so traditional methods of heart rate and respiration rate extraction from single-

subject BCGs cannot be applied to these mixed BCG recordings.  



3 

 1.3. The Ballistocardiogram  

Ballistocardiography is the measurement of ballistic forces on the body in response to the 

cardiac ejection of blood into the vascular system [3]. During each heartbeat, the blood traveling 

through the vascular system causes a change in the body’s center of mass. The body recoils slightly 

to maintain balance, and the related forces can be quantified in the form of a BCG. The BCG was 

first observed and recorded in 1877 by Gordon, who noticed that while a subject was standing on 

a weighing scale, the needle would oscillate in sync with the subject’s heartbeat [15]. This concept 

was not visited again until 1936, when Starr et al. [40] created an instrument which allowed 

repeatable measurement of these ballistic forces. In the past two decades, the popularity of BCGs 

has increased given renewed clinical interest in unobtrusive cardiac assessments. A number of 

methods to obtain BCGs are discussed in [3]: they are measured in terms of displacement, velocity, 

and acceleration, and these forces travel in all axial directions. The bed-based instrument utilized 

in [2] collects dorso-ventral BCGs, but can also collect longitudinal BCGs, which are the strongest 

of these projected 3D forces upon the body.  

Applied force on an electromechanical film (EMFi), for example, will result in a change in 

voltage across the film’s contacts: voltage that when tracked versus time can form a signal 

commensurate with the applied force. A typical BCG segment for a subject sleeping in a supine 

position, as measured using an EMFi film, is depicted in Figure 1. This BCG waveform contains 

several labeled peaks, where the most noticeable peak within a given BCG cycle is the J peak 

within the IJK complex. This complex, similar to a QRS complex in an ECG, is associated with 

systole [20]: the contraction of the ventricles that moves blood into the arteries. The amplitude of 

the J peak fluctuates in cyclical synchrony with respiration.  
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Figure 1. Two head-to-foot BCG cycles acquired with an EMFi, where the subject is 
sleeping in a supine position. 

 

 While there can be many variations of BCGs, the structure of each cycle within an overall 

signal is similar, though minor differences can occur in the waves following each IJK complex. 

These follow-on waves are not always seen as a representation of the BCG itself but rather can 

reflect artifact due to the aperiodic heartbeat, meaning constructive and destructive interference 

between the current and previous heartbeat signal components [20]. In other words, such 

interference occurs because the duration of a typical BCG pulse is longer than a typical heartbeat 

interval. Due to the numerous methods by which BCG recordings can be obtained, plus the various 

3D directions of the ballistic forces, the shape of a BCG waveform can vary greatly, so specifying 

the direction of a measurement and the position/type of the sensor is important. Further, a person’s 

numerous sleeping positions and orientations provide different directions for BCG force 

projections. For the purpose of this work, only the most common sleeping positions were observed. 
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 1.4. Heart Rate Estimation 

 Heart rate is a vital health parameter used to determine health and well-being. In an 

electrode-based setup, heart rate is commonly determined by computing the time between R peaks 

and then converting that R-R interval to heart rate in beats per minute (bpm). ECG waveforms are 

favored for heartbeat interval (HBI) applications due to the distinct and sharp QRS complexes 

present in these waveforms – features which are easy to distinguish and detect. Many popular 

algorithms have been developed to achieve this goal. One common and widely accepted method 

is the Pan-Tompkins algorithm [10], which utilizes both peak detection and hypothesis testing to 

determine the location of each R peak, as illustrated in Figure 2. The resulting R-R intervals can 

be determined by calculating the time between respective peaks. The information provided from 

R-R intervals is valuable, yielding both heart rate and heart rate variability, i.e., the variation in 

heart rate over a period of time [51][52]. These parameters allow for the detection of abnormal 

heart rhythms, or arrhythmias, which can result from a variety of chronic conditions [52][53].  

 

Figure 2. ECG R-peak identification and R-R interval determination resulting from the 
application of the Pan-Tompkins algorithm. 
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Unfortunately, electrodes and their accompanying wires are intrusive and render ECGs 

impractical for long-term sleep monitoring, despite the ease with which these signals can be 

processed and the wealth of information they contain. BCGs, on the other hand, are signals that 

result from cardiac mechanical activity and can therefore be acquired without the use of electrodes. 

With the acquisition of BCGs from bed sensors, accurate extraction of heart rate and respiration 

rate allow sensible healthcare monitoring and assessment during the night. While conventional 

methods for extracting such health parameters from ECGs have been studied in detail, challenges 

associated with parameter extraction from BCGs have not been fully explored. Many such methods 

have been introduced, including peak-detection algorithms that seek to identify J peaks [21], in a 

similar way that the Pan-Tompkins algorithm detects ECG R peaks. Due to the increased cycle-

to-cycle variation in BCG morphology, J peaks are not as distinctive within a BCG waveform 

compared to their R-peak counterparts, so peak-detection algorithms must be carefully selected. 

Other BCG peak-detection methods employ template matching [22], adaptive beat-to-beat 

estimation [11], wavelet transformations [33], the use of the cepstrum method within the frequency 

domain [23], and the identification of the dominant third harmonic within the spectrum [24]. The 

last two methods take advantage of the frequency spectrum, and these BCG frequency components 

can be further explored to obtain and verify the spectral pulse rate component. One challenge lies 

in assuming that the subject maintains the same pulse rate throughout the analysis segment. 

1.5. Signal Separation 

 While the bed-based instrumentation has proven useful for obtaining BCG data while a 

single subject lays on the bed, the feasibility of utilizing similar technology for two subjects that 

both lay on the bed remains to be seen. One possible approach to this problem is the use of Blind 

Source Separation (BSS) to split the composite BCG data into two self-consistent data streams, 

each of which represents a BCG for a single subject. BSS seeks to retrieve N original unknown 

signal sources,  𝑠 𝑡 , … , 𝑠 𝑡 , given only the observed mixtures of those sources, 

 𝑥 𝑡 , … , 𝑥 𝑡 , from M sensors, each containing a different combination of the source signals. 

The term ‘blind’ indicates that no prior knowledge of the original source signals exists, and no 

information is available regarding the mixing process. Different forms of BSS have been devised 

for various processing applications in fields such as communication, audio processing, and 

biomedical signal analysis. 
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Source separation is widely used in speech and audio recognition and is inspired by the 

popular ‘Cocktail Party Problem,’ where a listener seeks to distinguish speech from a single 

speaker in a room full of an arbitrary number of simultaneous speakers. A mathematical model of 

the ‘mixing process’ purports to determine the relationship between the source signals and the 

observations. The mixing process models can be classified as follows [19]: 

1. Non-Linear Model. This is the most general model. 

2. Post Non-Linear Model. The mixing approach is divided into two steps: linear 

mixing followed by instantaneous linear mapping. 

3. Linear Model. The most widely studied model and the model considered in this 

thesis. The mapping is linear, and the linear mixing is split into two categories: 

 Linear Convolutive Mixing. The mixing process is a multidimensional 

convolution of the sources. 

 Linear Instantaneous Mixing. The outputs are a metrical combination of the 

inputs at the same time. 

Convolutive linear mixing can be modeled by an impulse response, h(t), which connects 

the inputs and outputs: 

 𝒙 𝑡 𝒉 𝑡 𝜏 𝒔 𝜏 𝑑𝜏. (1.1)

 

Another type of simple mixing model can be defined as a linear combination of source signals at 

any given time, t. This model assumes mutual independence between source signals, 

 𝑠 𝑡 , … , 𝑠 𝑡 , and the relationship can be modeled as  

 𝒙 𝑡 𝑨𝒔 𝑡 , (1.2)

 

where 𝒔 𝑡 𝑠 𝑡 , … , 𝑠 𝑡  is an N  1 column vector containing the source signals, 𝒙 𝑡

𝑥 𝑡 , … , 𝑥 𝑡  is an M   1 vector containing the mixtures observed by each of the M different 

sensors (i.e., the sensor output signals, where 𝑀 𝑁), and matrix A is a ‘mixing matrix’ 

containing the mixing parameters. To reconstruct the source signals, s t , given the observations, 
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x t , an estimate of the mixing matrix, A , must be found. The inverse or pseudo-inverse, Q, is then 

determined, such that 𝑸 𝑨#, where # denotes a Moore-Penrose pseudo-inverse. Q is known as 

the ‘separation matrix,’ which is used in conjunction with x(t) to determine s(t):  

 

 𝒔 𝑡 𝑸𝒙 𝑡 . (1.3)

 

While BSS has been widely utilized for the separation of biometric parameters, many challenges 

still remain when utilizing BSS for the separation of mixed bed-based BCGs. Some differences 

between BCGs and audio signals follow:  

 The range for male/female voice fundamental frequencies is approximately 120 Hz to 210 

Hz [17]. Fundamental pulse rates at rest exist in the range of 0.5 Hz to 2 Hz [47]. 

 While it is uncommon for two people to share fundamental voice frequencies in speech, it 

is not unusual for two people to have similar pulse rates. 

 Audio sources are reasonably considered to be mutually independent and propagate in air, 

whereas ballistic forces from heartbeats propagate through a shared mattress and cannot be 

assumed to be mutually independent. 

Despite these challenges, bed-based BCG mixed signals are linearly mixed similar to mixed speech 

signals, implying that suitable BSS algorithms can be applied to these BCGs. 

 For this effort, the instrumentation sensor bed developed in [2] was modified to be suitable 

for two-person studies so as to gather mixed BCGs from two individuals simultaneously lying on 

the bed. Chapter 2 discusses existing methods for (a) heart rate estimation from BCGs and (b) 

separation of mixed signals. Time- and frequency-domain differences between single-person 

BCGs and two-person mixed BCGs measured using the sensor bed are described in Chapter 3. 

Chapter 4 looks at how a frequency-based, peak-scoring algorithm can be used to estimate pulse 

rate for a single-subject BCG, and Chapter 5 explains how source separation algorithms used for 

speech processing can be utilized to separate mixed BCGs into their source components. The 

performance of the separation and peak-scoring algorithms are described in Chapter 6. 
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Chapter 2 - Literature Review 

 

 This chapter explores literature in the fields of at-home sleep monitoring and non-invasive 

BCG acquisition. It also seeks to analyze various heart rate estimation techniques employed with 

BCGs along with signal separation methods commonly used for biomedical applications. 

Challenges associated with BCGs are highlighted, driven by their differences when compared to 

other types of biomedical signals. 

 2.1. Sleep Monitoring at Home  

 A number of systems have been proposed for home use, which allow non-invasive 

acquisition of physiological data during sleep. These devices track sleep quality by measuring 

parameters such as heart rate, movement during sleep, snoring, and temperature. Sleep-tracker 

products currently on the market include wearable trackers such as Fitbits [26], Oura Rings [27] 

and Polar heart rate monitors [28]. The FitBit and Oura Ring products, for example, utilize 

photoplethysmography to measure pulse rate and accelerometry/gyrometry to monitor movement. 

They are worn on the wrist and finger, respectively. These sleep monitoring devices do not provide 

respiration information and must be worn at all times, which can lead to inconvenience, 

discomfort, and a lack of patient compliance. Sleep monitoring can also take on the form of non-

contact monitoring, e.g., using wireless radar as in the system developed by Adib et al. [29], which 

emits a radar burst and tracks the time for the burst to return to the transceiver. Pulsing the radar 

at a rapid rate allows the reflected bursts to track changes in chest movement during respiration as 

well as chest vibrations resulting from each heartbeat. Liu et al. utilized fine-grained channel 

information, or Channel State Information (CSI), from existing WiFi network to track body 

movements. These non-contact systems involve integrating sensors and their support resources 

into the bedroom. 

 Non-contact, bed-based sensor systems that acquire BCG data have gained popularity in 

recent years [49][50]. Variations on this approach rely on similar signal and data-acquisition 

principles, where sensors integrated into the bed itself (e.g., coupled to the mattress or to the bed 

frame) measure subject BCGs as they sleep without interfering with regular sleep behavior. 
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 2.2. Heart Rate Estimation Techniques 

Heart rate and pulse rate are traditionally estimated using an electrocardiogram (ECG) or 

photoplethysmogram (PPG), respectively. While algorithms for BCG-based pulse rate estimation 

exist, none of these approaches can be considered a ‘gold standard.’ When compared to an ECG, 

a BCG has more cycle-to-cycle variability, it can contain oscillations due to the spring-mass 

response of a mattress, and its signal-to-noise ratio (SNR) may be poor, rendering some traditional 

peak-detection methods ineffective. A BCG is a measurement of the mechanical activity of the 

heart, and the waveform can vary in shape and content as it moves through the subject and the bed 

medium, resulting in heartbeat interval (HBI) timing differences when compared to an ECG. The 

different sleeping positions taken by a subject, coupled with the many directions of force relative 

to the body axis, further contribute to the overall BCG shape. Therefore, a BCG waveform may 

not contain, e.g., a distinct J peak consistent with a corresponding ECG’s distinct R-peak. This 

causes difficulties in peak-detection algorithms designed to find peak locations and calculate the 

intervals between those J peaks (i.e., HBIs) toward the determination of heart rate variability 

(HRV). 

 

 2.2.1 Beat-to-Beat Detection 

Despite the challenges, attempts have been made to implement BCG peak-detection 

algorithms to determine HRV, which can yield information about arrhythmias and sleep states [51-

53]. Several methods for BCG beat-to-beat detection have been implemented, three of which were 

reviewed by Suliman et al. [32], and the algorithm by Bruser et al. [11] was determined to be the 

best performing algorithm. Bruser’s “beat-to-beat estimation by adaptive training” (BEAT) 

algorithm extracts a short segment of the processed BCG data to use in a ‘training phase,’ and the 

remaining signal is analyzed for heart beats using the features found in the training segment. A set 

of estimated heart beat locations is used to generate a set of refined beat-to-beat intervals. 

Whenever the BCG shape changes, e.g., due to a change in sleeping position, the training phase is 

repeated to help the algorithm adapt to the changed pattern. While this algorithm provides the least 

error of the algorithms reviewed, as determined by the fewest false positives and false negatives, 

the algorithm can still be unreliable. It also takes, on average, approximately 5 seconds to run for 

a one-minute BCG segment and is computationally expensive. 
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 2.2.2. Template Matching Approach 

The template matching approach to identifying BCG J-peak locations relies on finding the 

correlation between a previously defined ‘template signal’ and the remaining BCG. This approach 

is similar to Bruser’s adaptive beat estimation technique mentioned above, but instead of extracting 

waveform features from the template, the template-matching algorithm looks at the correlation 

coefficient between the extracted template and the remaining signal as a function of time, i.e., 

using a sliding window. Shin et al. proposed this technique in [22], utilizing a correlation 

coefficient, rX,Y, defined as 

 

 𝑟 ,
cov 𝑋, 𝑌

𝜎 𝜎
 (2.1)

 

where X is the template signal, Y is the BCG, cov() indicates the covariance, and σX and σY are 

the standard deviation of X and Y, respectively. 

After the BCG is processed to remove respiration and other unwanted artifacts, at least 10 

individual BCG cycles are selected, and the ensemble average of these cycles is calculated after 

aligning these cycles based on their J-peak locations. A moving-window operation is performed, 

which produces the correlation coefficient between the constructed template (the ensemble-

averaged segment) and the BCG using Equation 2.1. During this sliding-window operation, when 

the BCG cycle in the template better ‘matches’ a corresponding BCG section,  rX,Y increases, 

indicating strong correlation. By observing the incidents of high rX,Y peaks, the locations of the J 

peaks can be determined in the BCG. While this approach has displayed promising results given 

preliminary data, its main disadvantage involves the requirement that a distinct J peak be present 

in the waveform (i.e., both in the template and the remaining signal). The algorithm also struggles 

when the shape of the BCG changes over time, usually as a result of a change in sleeping position.  

 

 2.2.3. Cepstrum Method 

The cepstrum method utilizes the frequency-domain representation of the BCG, unlike the 

peak detection methods, which operate in the time domain. This method takes advantage of the 

repetitive, pseudo-periodic structure of the BCG, where the fundamental period is manifested as a 
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first harmonic in the frequency domain. The cepstrum, Cx, is defined as the inverse Fourier 

Transform of the logarithm of the spectrum, Sx:  

 

 𝑆 ℱ 𝑥  (2.2)

and 

 
𝐶 real ℱ log |𝑆 |  (2.3)

 

The cepstrum is used to characterize echoes and to find pitches in human speech or audio. This 

method is utilized by Kortelainen et al. [23] to estimate sleep staging by observing a subject’s 

HBIs using BCGs collected with EMFit sensor foils placed in between two foam mattresses. The 

peaks in Sx will be partially composed of secondary harmonics related to the fundamental pulse 

rate harmonic. The periodicity of these harmonics will correspond to a peak in the cepstral domain, 

which represents the ‘time’ or ‘lag’ between the harmonics in the frequency domain. Kortelainen 

et al. utilized a new cepstrum method by estimating multiple spectra using different length 

windows, where a final spectrum is estimated based on these multiple spectra. The cepstrum 

method is more robust than its previous implementation but at the cost of more complex 

processing. 

 

 2.3. Blind Source Separation in Biomedical Applications 

 Blind source separation (BSS) has been considerably successful for audio and speech 

processing applications, and it has been applied in biomedical contexts, including the separation 

of fetal and maternal ECGs [42], the extraction and removal of EMG and BCG artifacts from 

electroencephalograms (EEGs) [34], and the elimination of muscle crosstalk from surface EMGs 

[14]. It would be difficult to test all of the available BSS approaches for this BCG separation 

application, so a few of the more popular algorithms were selected and evaluated based on previous 

success when applied to relevant signal separation applications. 

 

 2.3.1. Independent Component Analysis  

 One of the most common BSS approaches is independent component analysis (ICA) [9, 

39], a term often confused with blind source separation. ICA assumes complete independence 

between the source signals and assumes that all source samples are independent and identically 
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distributed (i.i.d). ICA attempts to estimate the ‘separation matrix,’ Q, in Equation 1.3, based on 

the central limit theorem, which states that the linear combination of independent, non-Gaussian 

random variables has a more Gaussian distribution than the distribution of either individual 

variable. This means the mixed BCG observations, x(t), are more Gaussian than the original BCG 

sources, s(t), so source separation can be based on minimization of the Gaussianity of the 

reconstructed sources, y(t). Different methods exist to measure Gaussianity, the most common 

being the maximum likelihood (ML) estimation approach, which involves the log-likelihood 

function: 

 

 log 𝐿 ∑ ∑ log 𝑓 𝒒 𝒙 𝑡 𝑇𝑙𝑜𝑔|𝑑𝑒𝑡 𝑸 |, (2.4)

 

where T is the number of discrete samples within time t, N is the number of independent 

components, fi() is the probability density function of the ith source signal, and the separation 

matrix,  Q, is expressed as Q = [q1,…,qN]T.  

 One common biomedical ICA application is the previously mentioned separation of fetal 

ECG and maternal ECG given a mixed ECG acquired at the abdomen of the mother (e.g., see Jung 

et al. [42]). The greatest drawback of ICA when considering this mixed BCG application is that 

ICA requires sources to be independent. As mentioned in Chapter 1, this requirement cannot be 

strictly fulfilled because of the presence of the shared mattress. The ballistic forces generated by 

the users’ hearts propagate through the same physical shared mattress, so each acquired BCG is a 

signal mixture with dependent components. ICA does, however, provide the structure for other 

dependent component analyses which forego the source independence requirement. 

 

 2.3.2. Joint-Approximation Diagonalization of Eigenmatrices 

The joint-approximation diagonalization of eigenmatrices (JADE) algorithm is a form of 

BSS developed by Cardoso & Souloumiac [38] which attempts to extract independent, non-

Gaussian sources from signal mixtures based on the fourth-order cumulants array obtained from 

the signal. Cumulants are calculated from the whitened matrix, Z, where Z = Wx(t), W is the 

whitening matrix, and x(t) contains the observations. A cumulant array, or cumulant tensor, is a 

four-dimensional array where the entries are specified by fourth-order cumulants of the data: 
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𝜅 𝑥 , 𝑥 , 𝑥 , 𝑥 𝐸 𝑥 𝑥 𝑥 𝑥 𝐸 𝑥 𝑥 𝐸 𝑥 𝑥  

𝐸 𝑥 𝑥 𝐸 𝑥 𝑥 𝐸 𝑥 𝑥 𝐸 𝑥 𝑥 , 
(2.5)

 

where xi,j,k,l represents vectors within Z, and E[ ] is the expected value of various combinations of 

these vectors.  

For each observation, both the auto-cumulant and the cross-cumulant are determined and 

placed in a fourth-order array, K, of dimension n  n  n  n, where n is the number of independent 

sources. The fourth-order array, K, is decomposed into a set of n(n+1)/2 symmetrical orthogonal 

eigenmatrices,  Mi, of dimension n  n using a generalization of the eigenvalue decomposition of 

the covariance matrix. This is done by creating a set of n(n+1)/2 symmetrical orthogonal matrices 

and projecting the culumant arrays onto these planes such that 

 n of them contain zeros everywhere except for one element of the diagonal, which 

equals 1, and 

 the remaining matrices contain zeroes everywhere except for two elements, which 

are situated symmetrically with respect to the diagonal and equal √0.5. 

 

The eigenmatrices, Mi, are diagonalized based on the Jacobi algorithm, which aims to 

minimize the sum of the squares of the off-diagonal elements, which correspond to the fourth-

order cumulants between different signals. Orthogonal diagonal eigenmatrices, Mi
*, are obtained. 

A rotation matrix, V, is responsible for the transformation between Mi and Mi
*, and a whitening 

matrix, W, is projected onto this space such that WTVT will result in the demixing matrix, Q. 

While JADE suffers from the same limitation as ICA in that the sources need to be 

independent, JADE is also utilized as part of another dependent component analysis discussed later 

in Chapter 5.  
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Chapter 3 - The Ballistocardiogram and the Experimental Sensor-

Bed System  

 

This chapter explains the ballistocardiogram and details the sensor-bed setup, including the 

properties and functionality of the electromechanical films (EMFis) and load cells. The ability to 

acquire BCGs non-invasively with the sensor bed is an important step toward continuous health 

monitoring and improvement of quality of life. This chapter will also outline the modifications 

needed to convert the sensor bed to obtain mixed BCGs from two people that share the bed, 

including the resulting changes in acquired BCGs.  

 

 3.1. The Ballistocardiogram 

During each heartbeat, the forces from the injection of blood into the vascular system result 

in a small alteration to the body’s center of mass. To maintain the same center of mass, the body 

recoils slightly to counter-balance this force. This resulting recoil, measured as a force signal 

versus time, is known as the ballistocardiogram (BCG). The BCG forces propagate from the heart 

to the body in all directions, where the measured forces depend on the position and orientation of 

the associated sensor(s). The largest force component is the head-to-foot BCG, which represents 

the forces along the longitudinal axis. The transverse BCG is a measure of the anteroposterior or 

dorso-ventral forces, and the right-to-left BCG corresponds to the BCG forces in the lateral axis. 

For a person lying supine on a sensor-laden bed, the primary BCG component is along the dorso-

ventral axis, although it is inevitable that an acquired BCG will be mixed, containing components 

that have a vector contribution along the other two axes. 

Time-aligned ECG and BCG data are illustrated in Figure 3. Mechanical wave propagation 

in tissue is slow in comparison with electrical (ionic) activity gathered with electrodes, so a BCG 

IJK complex occurs at a later time than its counterpart ECG QRS complex. Information related to 

pulse rate and HRV can be determined from the resulting HBIs. Existing methods for peak 

detection were reviewed in Chapter 2. 
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Figure 3. Time-aligned ECG and BCG waveforms. 

 

 3.1.1. BCG Waveform Description 

Ballistocardiographic forces propagate in all directions, and the features of a BCG can vary 

greatly depending on the location and sleeping position of the person in addition to the location 

and orientation of the sensor. Figure 4 presents BCG waveforms that differ depending on sleeping 

position. Each BCG waveform also contains spring-mass components from the mattress which are 

also transduced by the force sensor. The added artifact from the mattress and additional subject 

movement make time-domain BCG analyses more difficult, even when these artifacts are 

attenuated with a preprocessing filter. 
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Figure 4. BCG waveforms acquired with EMFis for common sleeping positions: (top left) 
supine, (top right) right side, (bottom left) left side, and (bottom right) prone. 

 

 3.2. Bed Setup and BCG Acquisition 

 3.2.1. Bed and Film Setup 

 The sensor bed instrumentation was developed by a team at Kansas State University (KSU) 

– see Carlson et al. [2]. The bed utilizes four 300 mm x 580 mm electromechanical films (EMFit; 

L series) placed within pockets sown into the underside of a mattress cover in a 4 x 1 array, as 

illustrated in Figure 5. The films sit between the bed platform and the underside of the mattress  to 

prevent damage to the EMFis that can occur when a subject lies directly on top of the films. The 

full sensor-bed configuration also contains four load cells (TE Connectivity Measurement 

Specialties; FX1901-0001-0200-L), where one load cell is placed under each of the four bed posts. 

The load cells have the advantage that they are not as sensitive to mattress vibrations when 

compared to the films, but load cell signals can be more easily corrupted by external ground 

vibrations caused by people walking, doors opening/closing, or objects dropped on the ground. 
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Figure 5. EMFi and load cell configuration on the sensor bed. 

 

An EMFi is made up of three layers: two thin homogenous outer layers and one thicker 

inner layer, all of which are stretched during the manufacturing process in both the longitudinal 

and transverse directions. The inner layer is full of gas voids separated by what are described as 

‘leaf-like polypropylene (PP) layers,’ where the voids are similar to electric dipoles and are easily 

compressed in thickness given applied pressure. An EMFi will experience a change in electrical 

charge distribution with any applied physical force, consistent with a change in film thickness [25]. 

In the case of this bed system, the physical forces will be the ballistic forces created by the heart. 

The output voltage of an EMFi sensor due to applied force can be calculated as 

 

 ∆𝑉 ∙ 𝑆 ∙ ∆𝐹, (3.1)

 

where C is the capacitance, S is the sensitivity coefficient of the sensor, and ∆F is the impact force. 

With cellular polymers, large values of S can be achieved. A typical S value for a 70 μm thick 

EMFi is 170. 

While a single, well-placed EMFi may be sufficient to acquire BCG data from an adult 

laying on the bed, the use of four films provides coverage for all areas of the bed, driven by the 

knowledge that a child, for example, does not always sleep in a supine position and may move to 

any area of the bed during the night. Additionally, the extra sensors provide redundancy plus 
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additional observations that can be used in the signal separation process, which becomes evident 

in Chapter 5.  

In the bed system, each load cell measures force (typically weight) by producing a 

differential voltage when a static or dynamic force is applied, due to the Wien Bridge contained 

within the load cell. Load cells have proven valuable not only because they offer alternative means 

to record BCG data, but they do so in a different way, which can bypass disadvantages posed by 

the films. For example, unlike a film, a load cell can measure static (unchanging) force, which can 

be useful to determine a person’s presence on the bed as well as their center of position. Figure 6 

depicts a photo of the EMFis on a bed as well as a close-up of a load cell. 

 

 

Figure 6. Two types of sensors employed by the sensor bed: (left) EMFis arranged in a 4 x 1 
array underneath the mattress, and (right) load cell to be placed under each bedpost. 

 

 

 3.2.1. BCG Acquisition 

Continuous BCG data are acquired from each individual EMFi and load cell. With each 

heartbeat, the displacement forces consistent with the recoil of the body are acquired as BCG 

recordings. Since BCG forces propagate in all directions through the body and the bed, the sensor 

measurement direction and location become important factors when a person lies down on the bed. 

For purposes of this section, the transverse (dorso-ventral) BCG was primarily collected from an 

EMFi located under the chest of a subject (Film 2 – see Figure 10 in Chapter 3). 
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Any resulting change in an EMFi charge distribution is amplified by a charge amplifier. 

For each film sensor, an inverting amplifier and a bandpass filter with a passband of 0.3 to 24 Hz 

are used in cascade to increase signal strength and improve signal quality, in part by removing 60 

Hz power line noise [2]. For each load cell signal, a passband of 0.05 to 40 Hz is utilized. The 

resulting signals are digitized using a sampling frequency (fs) of 1000 Hz and recorded with the 

help of a National Instruments (NI) LabVIEW virtual instrument (VI). Data are collected from the 

four EMFis using an NI 9220 module connected to an NI 9184 Ethernet cDAQ chassis. Acquired 

data are processed in MATLAB: they are digitally filtered to remove the DC baseline and 60 Hz 

power line noise. The respiration baseline is more prominent in the film signals when compared 

to the load cell data, so a high pass filter with a 0.5 Hz cutoff frequency is applied to EMFi BCGs 

to attenuate the respiration components. As previously mentioned in Chapter 2, respiration is an 

important health parameter, and the respiration of the subject can be obtained from the film data 

due to the prominence of the respiration component within the spectrum, so the attenuation of 

respiration components from load cell BCGs is purely due to the desire for a higher quality signal 

and spectrum. Frequency-domain spectra of unfiltered BCGs obtained with EMFis and load cells 

are depicted in Figure 7. 

 

 

Figure 7. Frequency spectra of unfiltered BCGs recorded using an EMFi (left) and a load 
cell (right). The respiration component is prominent in the spectrum from the EMFi. 

 

 3.2.3. Signal Processing 

Due to the high sensitivity of both the films and the load cells, substantive additive noise 

is present in these data. This noise can be a result of motion artifact from subject movement or 
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even vibrations from footsteps on the floor, so proper filtering is important. In summary, each 

channel in the system utilizes three types of filters: an analog lowpass filter during data collection, 

a digital highpass filter during data acquisition, and another digital lowpass filter prior to BCG 

analysis. These filters are put in place to minimize the effects of additive noise, allowing for more 

accurate signal separation and pulse rate estimation. 

The mixed BCG data collected from the sensor bed with LabVIEW are zero-phase filtered 

in MATLAB using the filtfilt() function to improve signal quality. A finite impulse response 

(FIR) highpass filter with a cutoff frequency of 0.5 Hz attenuates the DC and respiration 

components in the load cell data, as respiration usually lies within the 0.2 Hz to 0.33 Hz range, 

corresponding to 12 to 20 breaths per minute. For EMFi data, the respiration rate is determined 

prior to filtering, and then a zero-phase FIR lowpass filter with a cutoff frequency of 25 Hz is 

applied to both the EMFi and load cell data to remove 60 Hz noise. Filtered and unfiltered EMFi 

BCG segments can be seen in Figure 8.  

  

 

Figure 8. Unfiltered and filtered EMFi BCG segments. 

 3.3. Two-Body Problem 

The aforementioned sensor-bed setup has proven useful for the collection of BCG data 

from a single individual sleeping in various positions [16]. This is a major step toward unobtrusive 
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at-home sleep monitoring and sleep quality assessment, but many people share a bed with another 

individual. With two subjects on the bed, the sensors will record mixed BCGs composed of the 

ballistic forces from both subjects, as illustrated in Figure 9. Separation of this mixed signal into 

two separate BCGs can be a challenge because the source signals have similar fundamental 

frequencies and their frequency spectra overlap. A mixed BCG displays few distinct waveform 

characteristics or properties, if any, that are usually distinguishable with a single-person BCG. 

Therefore, typical heart beat interval algorithms will not work, since they are tailored to look for 

features present in single-person BCGs. To make unobtrusive at-home sleep monitoring accessible 

to the everyday home, the problem of mixed BCGs must be addressed.  

 

 

Figure 9. A three-second segment of a mixed BCG, recorded using an EMFi, for two 
subjects lying in supine positions on a shared bed. From the plot, there are no distinct 

features which could be used to visually identify the pulse rate of each individual. 

 

Minor modifications were made to the sensor-laden, single-person bed to be suitable for 

two people: the mattress and frame were switched to a full-size bed, and slight changes were made 

to the EMFi sensor layout, but the same NI data acquisition setup was employed. Both EMFis and 

load cells were employed: the EMFis were positioned in two different configurations (see Figure 
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10 below) while the four load cells were once again positioned underneath the four bedposts as in 

the single-bed setup.  

Mixed BCG data were collected in two-minute segments from pairs of healthy adults of 

various combinations of ages and genders. All subjects laid in a supine position, and data were 

collected at the Kansas State University Lafene Health Center. As it is difficult, arguably 

impossible, to obtain subjects’ individual and mixed BCGs simultaneously, the results of the BSS 

separation process were not verified by comparing the separated BCGs to the corresponding 

single-person BCGs, but rather by comparing the pulse rates estimated from the separated source 

signals to independently acquired pulse rates. To do this, the team utilized a CardioCap 5 patient 

monitor to collect one subject’s ECG and the other subject’s PPG during each two-minute segment. 

A combination of the Pan-Tompkins algorithm and visual observations verified these ground truth 

values. Due to the desire to obtain 1 bpm resolution in these BCG frequency spectra, BCG 

recordings were acquired in one-minute segments. Since the Pan-Tompkins algorithm provides an 

estimated heart rate for each ECG R-R interval, the average heart rate for each one-minute segment 

was compared against BCG estimates. 

 

 3.3.1. Film and Load Cell Setup 

To determine the optimal signal separation method, one must understand how the mixed 

signals are recorded. More specifically, to successfully perform source separation, the number of 

recording devices must be greater than or equal to the number of sources. For the two-body 

scenario, a total of at least two films and/or load cells must provide data to pursue source 

separation. This sensor-bed configuration contains more than the required number of sensors, so 

these extra film and load-cell signals contribute to the robustness of the system, plus the extra 

information can offer more successful signal separation. The load cell locations were fixed under 

the bedposts, but different film-placement configurations were considered, and ultimately two 

configurations were employed – see Figure 10: 

Configuration 1: All four EMFi sensors under one subject 

Configuration 2: Two EMFi sensors under each subject 
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Configuration 1 emphasizes data from a single subject, while configuration 2 gives equal emphasis 

to both subjects.  

 

 

Figure 10. EMFi placement configurations: (left) all four EMFi films placed directly below 
one subject, and (right) two films placed directly under each subject. 

 

Two types of mattresses were used for data collection: a soft spring mattress and a hard-

spring mattress. The type of mattress affects the propagation of the ballistic forces: a harder spring 

mattress provides greater BCG damping, meaning a BCG will not propagate as freely through the 

mattress when compared to a soft spring mattress. It is well known that spring-mass behavior of a 

mattress can alter BCG data [3]. The goal of using a hard spring mattress was to minimize or 

eliminate this undesired artifact, but if the mattress is too hard, the ballistic forces may not 

propagate as easily through the mattress, affecting the BCG signal-to-noise ratio. 

 

 3.3.2. Pulse Rate Determination 

The method employed here to determine the pulse rates of two subjects from a mixed BCG 

involves two processes. 
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1. A technique that utilizes a form of ‘source separation’ to split the mixed BCG into 

its individual components. 

2. A pulse estimation technique that employs a frequency-domain, peak-ranking 

algorithm to determine the pulse rate of each subject from the corresponding 

separated signal. 

 

This overall process is illustrated in Figure 11. Mixed BCGs are collected from EMFis and 

load cells using a LabVIEW VI, which also receives ECG and PPG data from the CardioCap 5 

sensors attached to each person on the bed. These data are processed in LabVIEW, stored, and 

transferred to MATLAB, where a separation algorithm estimates the source signals, 

 𝑠 𝑡 , … , 𝑠 𝑡 . A frequency-based pulse estimation algorithm is applied to each separated signal. 

Comparing the estimated pulse rate of each subject to their pulse rate as determined from 

ECG/PPG data allows for assessment of the effectiveness of these algorithms. Such an assessment 

will also allow the team to observe changes in algorithm performance as a function of changes in 

the monitoring environment (e.g., changes in film configurations and mattress type). 

 

Figure 11. Flow diagram detailing the process of estimating pulse rate from mixed BCGs. 
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Chapter 4 - Pulse Rate Estimation Method 

 

This chapter addresses a method to estimate a subject’s pulse rate from their BCG by 

applying a frequency-domain, peak-scoring algorithm which seeks to identify the fundamental 

harmonic (i.e., the frequency corresponding to pulse rate) based on certain criteria applied to the 

various spectral peaks. Unlike time-domain methods that seek to identify cardiac cycles based on 

particular waveform features, this frequency-domain method possesses the advantage that the 

actual shape of the BCG waveform is secondary to the frequency of reoccurrence. This is an 

important trait when considering the separation technique in Chapter 5, since separated BCGs 

often lose some of the characteristics which are important to traditional time-domain, pulse-rate  

estimation algorithms. The peak-scoring algorithm was developed and tested using single-person 

BCGs, and its performance is addressed later in Chapter 6. 

 

 4.1. Peak Scoring Algorithm 

A lack of prominent J peaks exists within certain BCGs as a result of waveform variations 

that can be attributed to different sleeping positions, measurement techniques, and mattress 

characteristics. It is therefore difficult to utilize time-domain peak-detection methods similar to 

those employed to determine heart rate from ECG R peaks. While a variety of methods have been 

proposed for BCG pulse rate estimation [11, 22, 48, 54-55], the majority of these methods do 

involve looking at time-domain peaks in an attempt to determine heart beat intervals and heart rate 

variability. BCGs exhibit a variety of shapes, but they share a common property: each cycle of a 

given BCG has roughly the same fundamental shape, even if that shape does not exhibit a classic 

IJK waveform feature. This repetitive BCG nature can be exploited to determine pulse rate. The 

method employed here looks to the frequency domain to identify the fundamental harmonic 

frequency, f1, directly (i.e., the harmonic that corresponds to cycle recurrence and thus pulse rate) 

based on the positioning of this component relative to the other harmonics in the frequency 

spectrum. The BCG frequency spectrum is not unexplored territory. Others have sought to estimate 

pulse rate using the cepstrum method [23] or by finding the 3rd  harmonic frequency, f3, of a BCG 

measured using fiber optic sensors affixed to a headrest [24].  
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 4.1.1. BCG Frequency Domain Spectra 

Time-domain variations in BCGs lead to variations in their counterpart frequency spectra, 

as seen in Figure 12. In each of these different spectra, the harmonic associated with the pulse rate 

is not always the most prominent harmonic: the most prominent harmonic can be the 2nd, 3rd or 

even 4th harmonic. Due to this uncertainty, an algorithm cannot simply seek the highest spectral 

magnitude and then identify pulse rate as corresponding to the associated frequency. For a time-

domain signal that is pseudo-periodic in character, it is well known that the base period of the 

waveform results in a fundamental spectral harmonic at a frequency, f1, and that distinctive higher 

harmonics will exist at frequencies that are integer multiples of f1. With this information, the 

method described below seeks to accurately estimate f1 by identifying those higher frequency 

harmonics. If those harmonics exist and have prominent peaks, the method assumes that f1 and its 

corresponding pulse rate have been identified.  

 

 

Figure 12. BCG frequency spectra of 60-second segments acquired for various sleeping 
positions: (top left) supine, (top right) right side, (bottom left) left side, and (bottom right) 

prone. Sleeping position affects the strongest harmonic in the frequency spectrum. 
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 4.1.2. Algorithm Ranking Technique 

Resting BCG pulse rate frequencies for an average adult typically lie within the range of 

0.5 to 2 Hz (30 to 120 beats per minute) [47]. The algorithm presented here seeks to identify a 

pulse rate within this expected range by assessing the character of the various frequency-domain 

harmonics within a spectrum. A peak-scoring algorithm for use with PPGs, toward the 

determination of pulse rate and blood oxygen saturation, was developed by Kaestle in the mid 

1990s [35]. That technique, which serves as the inspiration for the method utilized here, scores 

peaks in the frequency spectrum based on certain criteria. The highest scoring harmonic is 

determined to be the fundamental harmonic whose frequency corresponds to the estimated pulse 

rate. The peak-scoring algorithm used here with BCGs employs a similar technique to identify and 

score peaks. While time-domain PPGs and BCGs are different in structure, the peak-scoring 

principles of the algorithm can be applied in light of the general existence of the fundamental and 

secondary harmonics within a BCG spectrum. 

This technique applies a Fast Fourier Transform (FFT) to a filtered BCG to observe its 

magnitude spectrum, focusing on the frequency range between 0 Hz and 10 Hz. While cardiac 

activity extends beyond 10 Hz in the frequency domain, resting pulse rates do not typically exceed 

2 Hz. A sliding window with a duration of 1 minute is incorporated to obtain BCG segments, 

where successive windows are generated in one-second increments (i.e., the window overlap is 59 

seconds). The one-minute interval arises from the desire for a 1 bpm resolution in the spectrum: 

each spectral bin represents 1/(60 sec)  0.0167 Hz, or 1 beat per minute. Zero-padding was not 

employed to artificially improve the spectral resolution since the peak-scoring method depends on 

an accurate spectral shape. There is a clear tradeoff between the desire for a better frequency 

resolution and the desire for a smaller time segment. Since the pulse rate estimated from the 

frequency spectrum represents an average pulse rate over the time window, the value in this 

parameter diminishes as the window is widened. This widening can reduce, e.g., the effectiveness 

of a secondary parameter such as HRV.  

The algorithm first identifies the highest 10 peaks within the range of 0.5 to 2 Hz, where a 

peak within 0.01 Hz of another selected peak cannot be identified. The highest 10 peaks within the 

range of 2 to 4 Hz are then identified; these serve primarily as the associated 2nd and 3rd harmonics. 

Finally, the highest 5 peaks within the range of 4 to 8 Hz are identified; these serve primarily as 
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the 4th to 6th harmonics. This results in a total of 25 peaks; a representative set is plotted in Figure 

13. While a prominent peak can sometimes be claimed to exist at a frequency, f1 (i.e., the 

fundamental frequency), experience dictates that this is often not the case. In a BCG, the time-

domain waveform shape that corresponds to the fundamental period is somewhat nondescript; 

most of the oscillations that drive features of interest such as the I, J, and K peaks occur at higher 

frequencies more consistent with secondary harmonics. Additionally, the frequency-domain 

components associated with the mattress response are also contained in these spectra. As a result, 

a number of peaks may need to be identified to correctly specify f1 and the associated higher 

harmonics. It is possible to over-identify the peaks, meaning that as the number of identified peaks 

increases, there are now more peaks which can potentially be identified as f1. Therefore, due to the 

nature of the algorithm, increasing the number of potential peaks in any of the three frequency 

ranges can work to either increase or decrease accuracy. Kaestle et al. used 10 total peaks for their 

algorithm [35], but that number is sufficient because a PPG not corrupted by motion artifact 

typically offers a couple of clear fundamental peaks (e.g., for respiration rate and pulse rate) 

accompanied by four or five clear secondary harmonics. For BCGs, empirical trials have indicated 

that 10 peaks within the 0 to 2 Hz range is a good number, as this allows the identification of 

weaker peaks otherwise buried by dominant peaks that may be a result of artifacts.  
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Figure 13. Spectrum of a 60-second film-based BCG segment with the identified peaks 
numbered. The prominent peak (#21) is the 4th harmonic. 

The pseudocode used to find and score peaks is as follows. 

while (Read data) 
{ 
Sliding Window of X seconds in length 
for (i = 1 to length of data incrementing in X*Fs) 
{ 
Compute single-side spectrum, normalize magnitude 

Find 10 highest peaks within 0.5 Hz to 2 Hz; sort in ascending 
order by frequency 
Find 10 highest peaks within 2 Hz to 4 Hz; sort in ascending 
order by frequency 
Find 5 highest peaks within 4 Hz to 8 Hz; sort in ascending 
order by frequency 
 
Locate highest peak within the entire spectrum (frequency and 

index) 
While(Read data) 
{ 

Run Data through Harmonic Ranking function -> Obtain 
scores from first run 
Run Data through 2nd Harmonic Ranking function -> update 
scores, tabulate results 

} 
Plot data 

} 
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The pseudocode used for harmonic ranking function is as follows. 

 
While (Read data) 
{ 
 peak1 = peak being scored/assessed 
 peak2 = peak being compared with 
 for (j = 1 to length of data) 
 { 
  Reset counted to false 
  for (i = 1 to length of data) 
  { 
   Determine ratio P(i,j) = ith peak1/ jth peak2 
   If (ith peak2 == highest peak) 
   { 
    If (P(i,j) is within 5% of either 2, 3, or 4) 
    { 
     Score based on scoring criteria 
    } 
   } 
   If (P(i,j) is within 1% of either 2, 3 or 4) 
   { 
    Set counted to true to avoid recounting 
    Score based on scoring criteria 
   } 
   If (P(i,j) is within 5% of 5) 
    Set counted to true to avoid recounting 
    Score based on scoring criteria 
   } 
  } 
  For (k = 1 to length of data) 
  { 
   If (counted is false) 
   { 
    If (P(k,j) is within 5% of either 2, 3 or 4) 
    { 
     Set counted to true to avoid recounting 
     Score based on scoring criteria 
    } 
   } 
   If (counted is false) 
   { 
    If (P(k,j) is within 10% of 5) 
    { 
     Set counted to true to avoid recounting 
     Score based on scoring criteria 
    } 
   } 
   If counted was true for 2, 3, 4 & 5 
   { 
    Score based on scoring criteria 
   } 
  } 
 } 
} 
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Points are assigned to each peak as they fulfil the following criteria. 

 

For each integer multiple within 1% of another harmonic (for the 2nd, 3rd & 4th harmonics) 

 +20 if peak2 is > 70% of highest magnitude peak 

 +15 if peak2 is within 30% to 70% of highest magnitude peak 

 +10 otherwise 

For each integer multiple within 5% of another harmonic (for the 2nd, 3rd & 4th harmonics) 

 +15 if peak2 is > 70% of highest magnitude peak 

 +10 if peak2 is within 30% to 70% of highest magnitude peak 

 +5 otherwise 

For each integer multiple within 5% of another harmonic (for the 5th & 6th harmonics) 

 +12 if peak2 is > 70% of highest magnitude peak 

 +7 if peak2 is within 30% to 70% of highest magnitude peak 

 +3 otherwise 

The pseudocode for the second harmonic ranking step is as follows. 

While (read data) 
{ 
 For (i = 1 to length of data) 
 { 
  If (magnitude of ith peak is the highest peak) 
  {  

Score based on scoring criteria 
  } else if (magnitude of ith peak is > 70% of highest peak) { 
   Score based on scoring criteria 

} else if (magnitude of ith peak is within 50% to 70% of 
highest peak) { 

   Score based on scoring criteria 
  } 
   If (pulse rate of ith peak is within 50 to 90) 
   { 
    Score based on scoring criteria 
   } 
   If (pulse rate of ith peak is outside of 50 to 90) 
   { 
    Score based on scoring criteria 
   } 
 } 
 Find highest two peaks 
 if(highest peak is more than 70% greater than 2nd highest peak) 
 { 
  Score based on scoring criteria 
 } 
} 
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For each integer multiple within 10% of another harmonic (for the 5th & 6th harmonics) 

 +10 if peak2 is > 70% of highest magnitude peak 

 +5 if peak2 is within 30% to 70% of highest magnitude peak 

 +1 otherwise 

+20 points if integer multiple within 5% of highest magnitude peak 

Additional +20 points if the peak1 is the highest peak 

Additional +10 points if peak1 is the highest peak and is more than 70% higher 

than the next highest peak. 

+15 points if peak1 magnitude is within 70% of the highest peak 

+5 points if peak magnitude is within 50% of the highest peak 

+20 points if peak’s associated pulse rate lies within the probable pulse rate 40 to 90 beats per 

minute. 

+15 points if there exists a multiple of 2, 3, 4 & 5 amongst all peak2 

Each integer value can only be counted once 

 

Points are deducted for the following criterion 

-100 points if outside of the optimal range 0.5 Hz to 1.5 Hz, this will render the harmonic 

out of consideration as f1. 

 

The point allocations for the above criteria are loosely based off of the point system utilized 

by Kaestle et al. in [35]. While Kaestle et al. allocated fixed points for the fulfilment of each 

criterion, the decision to score based on the respective magnitude of the peak was added due to the 

greater number of peaks and incidentally higher harmonics involved.  

Scores are tallied for each peak, and the peak with the highest score is determined to be the 

fundamental peak with a frequency, f1. In the event that two peaks receive the same score, the peak 

with the largest magnitude is determined to be the fundamental peak. Once the fundamental peak 

is identified, pulse rate in beats per minute (bpm) is an easy conversion.  

As an example, consider the one-minute BCG segment whose spectrum is depicted in 

Figure 13. Peaks 1 to 10 are the highest-magnitude peaks in the range of 0.5 to 2 Hz, and peaks 11 

to 20 are the highest-magnitude peaks in the range of 2 to 4 Hz. Finally, peaks 21 to 25 are the 

highest-magnitude peaks in the range of 4 to 8 Hz. Each peak is scored based on the criteria 
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mentioned above, and the results are tabulated in Table 1. From the scores in Table 1, it is evident 

that the primary peaks of interest are the first ten peaks. Peak 4 scored the highest with a score of 

113, so this peak is considered to be associated with a pulse rate of 60 bpm. 

 

Table 1. Example peak scoring and ranking for the spectrum in Figure 13. 

Peak Frequency (Hz) 
Magnitude 

(Relative %) 
Pulse Rate 

(BPM) 
Score 

1 0.5833 13.921 35 12 

2 0.75 12.04 45 18 

3 0.8833 12.13 53 47 

4 1 60.898 60 113 

5 1.1167 13.621 67 45 

6 1.3 8.7085 78 75 

7 1.3667 7.5523 82 75 

8 1.45 8.1605 87 55 

9 1.8833 14.687 113 20 

10 1.9667 31.192 118 50 

11 2.0167 27.676 121 -45 

12 2.75 17.401 165 -100 

 

 

Figure 14 contains a linear flow diagram for the peak-scoring process, which includes a 

frequency-domain analysis to extract the signal’s primary components and obtain pulse rate 

estimates for all eight BCGs – four from EMFis and four from load cells. Filtering is included to 

produce a measurement as close to ground truth as possible. The first filtering step (step 7 in Figure 

14) involves an assessment of all four measurements from each type of sensor (four EMFi 

measurements and four load cell measurements) to produce a single pulse rate value. Finally, a 

sliding median window is added to help account for instantaneous variations in pulse rate that are 

not sensible when compared to recent pulse rates. 
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Figure 14. Overall process associated with the peak-scoring algorithm. 

 

Variability exists in BCGs acquired from different parts of the body, meaning each film 

records different signals, which also depend upon the subject’s sleeping position. Due to this 

variability, and to fully utilize the four-film bed system, an additional algorithm was implemented 

to identify the most probable pulse rate from all four films. The code looks at the estimated pulse 

rate from each of the four sensors, and if these rates are the same or within an acceptable range of 

2 bpm relative to one another, then the result is obvious. If a clear outlier is present, the outlier is 

ignored, and the other three values are assessed.  

The effects of this algorithm are evident in the results in Table 2, which displays pulse rate 

results for the four BCG segments depicted in Figure 13. In Table 2, pulse rates from film 0 and 

film 1 are locally inconsistent with the pulse rates determined from the other three EMFis. This 

can result from various factors, including motion artifact, mattress spring components, or a weak 

SNR for a given film or load cell (e.g., as film 0 is positioned at the feet – see Figure 10 (left)). 

With the addition of the selection algorithm, the film 0 results for three out of the four time 

segments are identified as outliers and thus ignored. The same situation applies to film 1 for time 

segment four. The estimates from the remaining three EMFis are utilized in each case, and the 

Obtain conditioned BCG data

Apply FFT

Locate 25 peaks based on criteria

Score each peak based on the scoring system

Estimate pulse rate based on the highest scoring peak

Obtain pulse rates from all 4 films/load cells

Apply filter to remove outliers

Compute the final estimated pulse rate

Apply a sliding weighted median filter
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overall results are more consistent with the pulse rates as measured using an ECG for the same 

time intervals. 

 

Table 2. Estimated pulse rates for four 1-minute BCG segments from four EMFis for a 
subject lying in a supine position. 

ECG 
(BPM) 

Film 0 
(BPM) 

Film 1 
(BPM) 

Film 2 
(BPM) 

Film 3 
(BPM) 

After Selection 
Algorithm 

(BPM) 

% Error 

57.870 63 59 59 59 59 1.95 % 

61.747 66 60 61 61 61 1.21 % 

60.277 56 61 60 60 60 0.46 % 

59.827 60 63 60 60 60 0.29 % 

 

 

 

Figure 15. BCG segments collected from each of the four films during the same time 
interval as in Table 2. Minor subject movement appears just before the 5-second mark, but 

only the BCGs from films 0 & 1 were affected in a major way. 
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A final median sliding window filter was added, as noted in Figure 14, to track pulse rate 

changes over time and to ensure that reported pulse rates are locally consistent in comparison with 

prior values. The sliding window moves in one-second increments, and the processing algorithm 

obtains the estimated pulse rate for each consecutive one-minute segment. The pulse rate from the 

previous time window is gathered and used for comparison, and after five values are obtained in 

this manner, sequential pulse rate estimations are determined based on the current pulse rate 

compared with the average from previous five rates. This was done to minimize the effects of local 

outliers on reported values: outliers due to, e.g., motion corruption or poor BCG signal quality due 

to sleeping position/location. 

The frequency-domain approach has its own limitations, the most impactful being the need 

to obtain one minute of data prior to providing a result, which means the reported pulse rate will 

be delayed by at least one minute. While this delay is unacceptable for a clinic setting, the focus 

of this application is sleep monitoring, which ideally spans the entire night and equates to hours of 

data, where post-processing is a primary goal. A one-minute delay is therefore relatively 

insignificant. The advantages of a frequency-domain approach, however, are numerous. Perhaps 

the greatest advantage is that the peak-scoring algorithm can be applied to the spectra of BCGs 

that have a variety of shapes, even if those BCGs do not display traditional BCG features. This 

benefit becomes critical, as will be evident later in Chapters 5 and 6, which address mixed BCGs 

acquired from two people that share a sensor bed. When mixed BCGs are separated into their 

estimated component signals, these separated signals may not be exact representations of the ideal 

BCGs, but certain waveform characteristics will remain, including their time-domain periodicity 

and their frequency-domain harmonics. By capitalizing on these frequency-domain features, a 

fundamental frequency, f1, and the corresponding pulse rate can still be identified for a person even 

if their separated time-domain waveform is an imperfect BCG representation. 
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Chapter 5 - Two Body Problem 

This chapter sets out to address the scenario where two subjects lie on the sensor bed, 

meaning that the recorded BCGs from each sensor are a mixture of these individuals’ BCGs. A 

time-domain BCG mixture does not resemble a single-person BCG, so it is difficult to apply 

traditional pulse rate estimation methods utilized for single-person BCGs. Likewise, the frequency 

spectrum of a mixed BCG bears little resemblance to the spectrum of a single-person BCG. To 

extract the pulse rate for one or both individuals, a method must first be applied to separate a mixed 

BCG into its component sources. Here, a mixed signal is first separated in the time domain before 

the previously mentioned frequency-domain, peak-scoring algorithm is applied to determine pulse 

rate for each person. 

 

 5.1. Two-person BCG Frequency Domain Spectrum 

Chapter 3 introduced the notion that BCG waveforms change shape in the time domain 

when two people lie on a sensor bed, so it should come as no surprise that BCG spectra also change 

character as a result of the additional person. Figure 16 depicts the frequency spectrum of a one-

minute segment of a mixed BCG acquired from two individuals lying on a shared sensor bed. The 

fundamental, 2nd, and 3rd harmonics for the original BCGs are nearly impossible to differentiate. 

Since each person’s heartbeat forces differ, BCG spectral components from one person may be 

more dominant than the components from the other person. This implies a possibly lower SNR for 

one subject and a higher SNR for the other. This effect is more visible when EMFi configuration 

1 is used (see Figure 10), due to all of the sensors being placed directly under one subject. 

 The practical result of mixing two BCGs is that the frequency domain spectrum is no longer 

suitable for, e.g., a peak-scoring algorithm to determine pulse rate. In a mixed spectrum, two 

fundamental harmonics are present, along with their associated secondary harmonics. This renders 

the peak-scoring algorithm ineffective. Therefore, the mixed BCG must first be separated into its 

individual BCGs before the pulse rates of the respective individuals can be determined. The 

following section addresses this process. 
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Figure 16. Frequency spectrum of a mixed BCG, where each of the two individuals is lying 
on the bed in a supine position 

 

 5.2. Signal Separation Applied to Mixed BCGs 

The challenges associated with the separation of mixed BCGs were stated in Chapter 1:  

 Cardiac activity present within BCGs exists at low frequencies. 

 Frequency components and spectral behavior can be common in different people. 

 Forces propagate through a mattress in every direction. 

 BCGs from two individuals cannot be assumed to be mutually independent due to 

the shared mattress. 

While many BSS variants exist, the majority of these techniques assume and require mutual 

independence between the signal sources. This mutual independence is a property that cannot be 

assumed, so other forms of source separation are needed where dependence can be assumed or 

independence is not required.  
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 5.2.1. Independent Component Analysis 

Independent component analysis (ICA), as discussed in Chapter 2, is one of the most 

commonly used methods to separate unknown source signals based off of only the observed mixed 

signals [9, 39]. Recall that at each time, t, the simple noiseless mixing model is defined as 

 

 𝒙 𝑡 𝑨𝒔 𝑡  , (5.1)

 

where x t  is the observed signal, A is the mixing matrix, and s t  is the source signal vector. The 

main separation criterion is the independence amongst the elements in the source signal, s t . To 

separate the mixed signals, mixing matrix A must be invertible and identified, leading to the 

separation matrix, Q = A#, where # denotes a Moore-Penrose pseudo-inverse. 

 Given how ICA decomposes signals, two major parameters are unavailable after 

separation: 

1. the exact amplitudes of the signals, and 

2. knowledge of which signal belongs to which subject. 

While the missing amplitude information is not an issue, since each signal can be normalized if 

required, the latter poses an immediate problem. In certain applications, assistance from human 

eyes is required to manually assign separated sources to observations (for example, with mixed 

images). For this sensor-bed study, ground-truth pulse rates are available to assess the separation 

process. This allows for the association of separated signals, s1(t) and s2(t), with each respective 

subject. In practice, however, no prior knowledge is available regarding a subject’s pulse rate. 

Subject identification is a topic that will require further attention. 

  

 5.2.2. Multidimensional Independent Component Analysis 

Multidimensional independent component analysis (MICA) is an extension of ICA, 

possessing the same goal to separate N underlying sources, s, given M observations. However, 

unlike standard ICA processes, MICA allows some sources to have common statistics. Using a 

similar model, MICA groups each component into k-tuples, each of size k. Each of the si 

components within each subspace is assumed to be dependent on the other components, but each 

grouping of k-tuples is independent from the other k-tuple groupings. In the case where k = 1, the 

model simplifies to the standard ICA model, where the k-tuples can theoretically each contain a 
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different number of si components. For simplicity, it is generally assumed that each grouping of k-

tuples contains an equal number of components. 

The ICA model in Equation 5.1 can be rewritten as an additive model as opposed to a 

multiplicative one: 

 

 𝒙 ∑ 𝒙  , (5.2)

 

where xp is defined as: 

 

 𝒙 ≝ 𝒂 𝒔  for 1 𝑝 𝑁. (5.3)

 

The model presented in Equation 5.2 is more closely related to traditional principal component 

analysis (PCA). This new ICA model is matrix-free and contains a different parameterization than 

its multiplicative counterpart in Equation 5.1. In Equation 5.2, the smallest subspace containing 

the pth component is referred to as the component subspace for the pth component. The orthogonal 

projector onto this subspace is denoted by Πp and can be expressed as 

 

 
𝚷 ≝

𝒂 𝒂
𝒂 𝒂

, 1 𝑝 𝑁.   (5.4)

 

Matrix 𝚷𝒑is the projector onto the pth component space and is orthogonal to all of the other 

components: 

 𝒙 𝚷 𝒙 (5.5)

and 

 

 

𝚷 ≝ 𝚷

#

 (5.6)

 

where # denotes a Moore-Penrose pseudo-inverse. In the MICA decomposition model, the mixing 

matrix is no longer of interest. Instead, attention shifts towards  

𝓟 𝚷 , … , 𝚷 , 
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which is the set of orthogonal projection matrices onto each component space. The standard ICA 

model in Equation 5.1 has now been transformed into a geometric ‘component model’ without any 

indeterminacies. This perspective leads to the more general MICA model: 

 

 𝚷 𝑨 𝑨 𝑨 𝑨 , 1 𝑝 𝑐. (5.7)

 

 Using MICA decomposition, the mixed BCG data are provided to the JADE algorithm [38] 

to determine 𝑨: an estimate of the mixing matrix, A. Multiplying A-1 by the observations, x, yields 

an estimated set of four source signals, 𝑺. While the next part typically requires human observation 

to differentiate which component belongs to which subject, visual inspection of the values in 𝒔 

(using a pulse estimation technique) gives a close approximation regarding which values belong 

to which signal source, by observing different pulse rates from each observation. This indicates 

which component is extracted by the algorithm and with which column in A each component is 

associated, allowing the estimation of the orthogonal projector of each subject using Equation 5.7. 

Figure 17 portrays mixed BCGs gathered from four EMFis when two individuals lie on the bed in 

a supine position. Utilizing the MICA decomposition algorithm, the mixing matrix, 𝑨, is estimated 

using the JADE algorithm, which was discussed in Chapter 2. While JADE cannot be used to 

efficiently separate the signals due to the lack of mutual independence, the estimated mixing matrix 

is sufficient to determine which signals the algorithm has extracted and placed within each vector 

of 𝑨. 



43 

 

Figure 17. Mixed BCGs gathered from four EMFis when two people lie on the bed. 

 

For the signals presented in Figure 17, the JADE algorithm results in the following estimate of the 

4 × 4 mixing matrix, 𝑨: 

 

𝑨 𝑎 𝑎 𝑎 𝑎

0.0350 0.0177 0.0241 0.0008
0.0509 0.0469 0.0391 0.0175
0.0201 0.0190 0.0140 0.0520
0.0720 0.0636 0.0299 0.0107

. 

 

Finding the inverse, 𝑨 , and applying it to the BCG mixtures, 𝑺 𝑨 𝑿, yields the estimated 

signals, 𝑺, as depicted in Figure 18. Observations of the signals in 𝑺 are required to determine 

which components are extracted by the algorithm and in which column the algorithm has placed 

each component. This process is typically performed manually by visual inspection since the 

original intention was to separate mixed ECGs which possess distinct R-peaks. BCGs are difficult 

to analyze, yet it is desirable to automate this process, so the peak-scoring algorithm is employed 

(a) to observe the pulse rate of each observation in the signal, 𝑺, and (b) to determine which 

components are extracted by the algorithm based on the estimation results from 𝑺. 
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Figure 18. Estimated signals, 𝑺, using the estimated separation matrix, 𝑨 𝟏, produced by 
running the JADE algorithm. 

Each signal component is projected onto its respective subspace given the results obtained from 

utilizing the peak-scoring algorithm on  𝑺. The signal with the highest estimated pulse rate is 

assigned to subject A, while the signal with the lowest pulse rate is assigned to subject B. The 

remaining estimates are assigned depending on their ‘closeness’ to the pulse rate for either subject 

A or subject B: 

 

If |maximum – pulse rate| >= |pulse rate – minimum| 

Assign to Subject A 

Otherwise 

Assign to Subject B 

End 

 

Applying the peak-scoring algorithm from Chapter 4 to the signals in Figure 18 yields the 

results in Table 3. These results reveal that the algorithm has extracted two source signals for 
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subject A (with estimated pulse rates of approximately 61 bpm) and two source signals for subject 

B (with estimated pulse rates of approximately 53 bpm). These data were modeled by MICA 

decomposition into two bi-dimensional components (for subject A and subject B). Since subject 

A’s signal appears in the first two columns, subject A’s subspace is estimated as the orthogonal 

projection matrix ΠA onto 𝑎 𝑎 , and the orthogonal projection ΠB for subject B’s subspace 

is 𝑎 𝑎 . 

Table 3. Estimated pulse rates after applying the peak-scoring algorithm to the estimated 

signals,  𝑺. 

 Est. Signal 1 Est. Signal 2 Est. Signal 3 Est. Signal 4 

Pulse Rate [BPM] 61.3043 61.3043 53.4783 53.9130 

 

Using Equation 5.7, the orthogonal projections for subjects A and B are defined as 

 

Π

0.2027 0.3640 0.1454 0.0896
0.3640 0.6957 0.2787 0.0396
0.1454 0.2787 0.1116 0.0197
0.0896 0.0396 0.0197 0.9899

 

Π

0.2026 0.2839 0.0255 0.2833
0.2839 0.4841 0.2381 0.3354
0.0255 0.2381 0.8728 0.2317
0.2833 0.3354 0.2317 0.4405

 

 

Applying Equation 5.6 to the above yields 

Π

0.4578 0.2598 0.0681 0.0608
0.6948 0.5552 0.1921 0.0768
0.2750 0.2234 0.0781 0.0343
0.8050 0.3057 0.3012 0.9090

 

Π

0.5422 0.2598 0.0681 0.0608
0.6948 0.4448 0.1921 0.0768
0.2750 0.2234 0.9219 0.0343
0.8050 0.3057 0.3012 0.0910
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Equation 5.5 allows the reconstruction of subject A’s and subject B’s bi-dimensional components. 

The separated BCGs for subject A recorded with the four EMFis are depicted in Figure 19. 

Unfortunately, since it is difficult to obtain mixed BCGs and single-person BCGs simultaneously, 

the separated signals cannot be compared to the corresponding single-person BCGs to verify their 

shapes. For this reason, pulse rates for the separated signals were estimated and then compared to 

pulse rates obtained with simultaneous ECGs and PPGs. The spectrum for separated signal 1 in 

Figure 19 is depicted in Figure 20. Corresponding time- and frequency-domain plots for subject B 

are contained in Figure 19 and Figure 20. The frequency spectra in Figure 20 and Figure 22 display 

a clear fundamental peak when compared to typical two-person mixed BCG frequency spectra. 
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Figure 19. Separated signals acquired from all four films (subject A). 

 
 

 

Figure 20. Frequency spectrum of a one-minute segment of separated signal 1 in Figure 19. 
A harmonic is visible at peak 5. 
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Figure 21. Separated signals acquired from all four films (subject B). 

 

 

Figure 22. Frequency spectrum of a one-minute segment of separated signal 1 in Figure 21. 
A distinct harmonic is visible at peak 2. 
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Chapter 6 - Results and Performance 

This chapter presents findings and results from both the peak-scoring algorithm and the 

overall combined algorithm for the estimation of pulse rates from mixed BCGs. The performance 

of the peak-scoring algorithm is evaluated for a single person laying on the sensor bed. Estimated 

pulse rates are gathered from both load cell BCGs and film BCGs, and these results are compared 

with ground truth pulse rates from simultaneous ECGs. This chapter also looks at how changes in 

the setup environment affect both algorithm performance and BCG quality. These environmental 

variables include sensor type, sleeping position, mattress type, and film configuration for a two-

person scenario. 

 

 6.1. Acquired BCG Recordings 

Five healthy adults volunteered for this short study: three males and two females, all 

members of the research team. The participant age was 30.3 ± 4.087 years (mean ± stDev), ranging 

from 25 to 36 years. Subjects laid on the sensor bed for both single-person and two-person 

performance evaluations. For the single-person studies, only configuration 1 (all EMFis under one 

side of bed – see Figure 10) was used. The participant was asked to lay motionlessly on the sensor 

bed in each sleeping position (supine, right side, left side, and prone) for approximately two 

minutes. For the two-person studies, two participants laid on the sensor bed next to each other, and 

they were asked to lay still while breathing at a regular rate not monitored or defined. For 

simplicity, only the supine position was studied for the two-person scenario. Each participant was 

paired with every other participant, creating 10 different pairings.  

 

 6.2. Estimated Pulse Rates Using the Peak-Scoring Algorithm 

Prior to addressing the separated signals, the performance of the peak-scoring algorithm 

must be evaluated using single-person BCGs collected with different sleeping postures and 

different mattress types. Simultaneous ECG data were collected from subjects to provide ‘ground 

truth’ pulse rates, where the Pan-Tompkins algorithm [10] determined beat-to-beat and aggregate 

pulse rates for each ECG data segment. Using the sliding window approach detailed in Chapter 4, 

the average pulse rate over the duration of each short study can be observed and compared to its 
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ECG counterpart. Both EMFi and load cell data were collected and evaluated, but the estimated 

results from either sensor type were not utilized together in any way for this study – the EMFi and 

load cell data were recorded and analyzed separately.   

A Bland-Altman plot [46] (see Figure 23) compares the estimated BCG pulse rates over a 

set of time intervals to the ‘true’ ECG pulse rates acquired during those same time intervals. The 

Bland-Altman plot displays the difference between the respective measured and true pulse rates 

(dependent axis) as a function of the average of each set of measured and true pulse rates 

(independent axis). This type of plot is useful for analyzing the agreement between the outputs of 

two different procedures which are used to determine the same parameter. The Bland-Altman plot 

in Figure 23 is a representative plot that addresses pulse rates from all film and load-cell BCGs 

addressed in these studies. The individual study results, including errors in estimated versus 

ground-truth pulse rates, are addressed in the following sections. 

 

 

Figure 23. Bland-Altman plot comparing estimated pulse rates from BCGs to pulse rates 
from ECGs for both film and load cell sensors. 

 

The error in the pulse rate estimates is determined by calculating the root mean squared 

(RMS) value of the differences between the pulse rates determined by the peak-scoring algorithm 

and the Pan-Tompkins approach. The RMS value is preferred because the simple addition of the 

positive and negative differences between the two measurements can result in an overall arithmetic 
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difference close to 0, yielding an artificial indicator for accuracy. The RMS value, xRMS, of a set of 

n differences, xn, is calculated using the expression 

 

 

 
𝑥 𝑥 𝑥 ⋯ 𝑥   (6.1)

 

 As mentioned in Chapter 5, a pulse rate as determined from the fundamental frequency in 

a spectrum represents the average pulse rate over the time interval represented by the spectrum. 

As such, a comparison of the average pulse rate for the time interval with the average ECG pulse 

rate over that same interval is appropriate. The difference between these two average pulse rates 

was recorded as an error, with the RMS value of the overall error determined using Equation 6.1. 

 

 6.2.1. Films Versus Load Cells 

For this study, the performance of each EMFi and load cell was evaluated in terms of its 

ability to offer meaningful BCGs and commensurate pulse rates. Both types of sensors collect 

BCGs in unique ways and have proven beneficial. Data were acquired for 2 minutes from each of 

the 5 participants, resulting in a total of 160 two-minute-long segments, or 9,600 data points, for 

each of the eight bed sensors. Pulse rate estimates were determined from individual sensors and 

compared to the respective ‘true’ ECG and PPG pulse rates; the BCG pulse rates were not 

combined in any way. Representative single-person BCGs acquired with the eight EMFis and load 

cells are illustrated in Figure 24 for a four-second time interval. 
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Figure 24. BCG recordings from EMFis and load cells for a single person on the bed. Slight 
differences in waveform patterns are apparent between the two sensor types. 

 

In Figure 24, there are noticeable differences between the BCGs collected using films and the 

BCGs collected using load cells. While the general IJK complex is present in each of the BCGs, 

the waveform oscillations differ due to the medium and the sensor positioning relative to the 

chest of the subject. 

 The results for the peak-scoring algorithm (applied to the BCGs from the four films and 

the four load cells) were compared to the results obtained from the ECG pulse rates as calculated 

using the Pan-Tompkins algorithm. Since the peak-scoring algorithm estimates pulse rate using a 

one-minute BCG segment, the resulting value is an average over the whole time period. Since the 

ECG data allow pulse rate estimation based on each R-R interval, these intervals were averaged to 

determine an aggregate pulse rate for each minute of data. This means that if the pulse rate of the 

subject changes rapidly within the one-minute time span, the peak-scoring algorithm will not be 

able to adjust to the change.  

 The RMS values of the pulse rate errors for the film and load cell BCGs are displayed in 

Table 4. The films produced an average error of 12.38 bpm, while the load cells produced an 

average error of 1.69 bpm. These results indicate that the peak-scoring algorithm provides 
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reasonable pulse rate estimates for BCGs obtained utilizing load cells. However, assessment of the 

film data is a bit more complicated, as noted below. 

 

Table 4. RMS errors for the pulse rates determined from film and load cell BCGs. 

Sensor Type; Constraint RMS Error (BPM) 

Film; with respiration 12.38 

Film; without respiration 3.44 

Load cell 1.69 

 

The film pulse rates display a significantly higher error than the load cell pulse rates, 

primarily due to the respiration harmonic being much more prominent in the film BCG frequency 

spectra. While the fundamental respiration harmonic is attenuated using a digital filter, the periodic 

respiration harmonics remain in the spectrum. The high magnitudes of the respiration harmonics 

present in film data often make these harmonics more prominent than even the fundamental pulse 

component. This effect creates extreme outliers in pulse rate estimation, which contribute to large 

errors. While this occurrence does not present issues under normal circumstances, in the event that 

the respiration harmonics and pulse rate harmonics share frequencies, this tricks the peak-scoring 

algorithm into labelling a respiration harmonic as the fundamental pulse component. These effects 

are illustrated in Figure 25 below, where the algorithm determines 1.0 Hz to be the fundamental 

pulse frequency due to the prominence of that peak and the number of harmonics that appear 

present at lower frequencies. In truth, the fundamental harmonic is actually 1.5 Hz, and the two 

features (respiration and pulse) share multiple common periodic harmonics. Removal of these rare 

occurrences yields an error of 3.44 with film-based BCGs (see Table 4). This error remains larger 

than its load cell counterpart, but it is now within an acceptable tolerance.  
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Figure 25. Respiration harmonic mistaken for a pulse rate fundamental harmonic: (left) an 
unfiltered BCG spectrum that includes a respiration harmonic at 0.25 Hz with harmonics 

at 0.5 and 1.0 Hz, respectively, and (right) a filtered spectrum with the fundamental 
respiration harmonic removed. 

 

 Strategies proposed to overcome this effect include the removal of the periodic 

respiration harmonics, but this method was ultimately discarded due to its potential to remove 

the fundamental pulse component or other important spectral information. In the example 

illustrated in Figure 25, the removal of the 0.5 , 0.75 and 1.0 Hz components would result in a 

more accurate pulse rate estimate. However, situations have arisen such that respiration rate is, 

e.g., 0.4 Hz while the pulse rate is 1.2 Hz. Applying the respiration-harmonic-removal method 

would result in the cancellation of the 1.2 Hz peak, causing information loss and incorrect 

results.  

While the film data are also susceptible to mattress oscillations, the heart beat components 

are relatively strong compared to these oscillations. The load cells are not as vulnerable to mattress 

spring oscillations compared to the films, but other forms of noise can easily corrupt load cell 

BCGs, most notably vibrations from the ground resulting from footsteps or door 

openings/closings.  

The Bland-Altman plot in Figure 26 for film-based BCGs reflects the extreme outliers 

present as a result of respiration harmonics. These result in a wider distribution. Removal of the 

data affected by the respiration harmonics results in a much more acceptable Bland-Altman plot, 

as depicted in Figure 27. Without the extreme outliers, the distribution becomes narrower, and the 

majority of the data points now fall within 3 bpm of the mean. This indicates that solving the 

respiration harmonic problem is critical to ensuring that the peak-scoring algorithm can be reliably 
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applied to film-based BCGs to determine pulse rate. The Bland-Altman plot for the load cell-based 

BCGs in Figure 28 exhibits similarities to the film-based Bland-Altman plot when the effects of 

the respiration harmonics are lessened. This affirms that the peak-scoring algorithm can be applied 

to load cell-based BCG spectra.  

 

 

Figure 26. Bland-Altman plot comparing estimated BCG and ECG pulse rates using data 
acquired with films, where film data are affected by respiration harmonics. 

  

 

Figure 27. Bland-Altman plot comparing estimated BCG and ECG pulse rates using data 
acquired with films, where film data are not affected by respiration harmonics. 
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Figure 28. Bland-Altman comparing estimated BCG results and ECG results using data 
measured from load cells.  

 

 6.2.2. Effects of Sleeping Position 

During the studies for single-person pulse rate detection, four common sleeping positions 

were addressed: supine (back), right side, left side, and prone (stomach). Data were acquired for 2 

minutes from each of the 5 participants, resulting in a total of 80 two-minute-long segments, or 

4,800 data points, for each of the four sleeping positions. Figure 4 illustrated representative BCG 

waveforms for those sleeping positions, while Figure 12 displayed their corresponding frequency 

spectra. It comes as no surprise that sleeping position plays an important role in determining the 

performance of the peak-scoring algorithm. As with previous comparisons, ECG pulse rates were 

used as ‘true’ values when evaluating estimated pulse rates obtained using the peak-scoring 

algorithm. 

Sleeping position dictates the direction of the propagating forces and creates variations in 

BCG waveform shapes. As the peak-scoring algorithm operates in the frequency domain, its 

performance with regard to pulse rate estimation is less susceptible to changes in BCG shape than 

time-domain peak-detection methods. Table 5 lists the overall errors in pulse rate estimation 

associated with various sleeping positions, including outliers resulting from respiration. The errors 

displayed are very similar, with a range of 8.15 to 9.30 bpm.  
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Table 5. Pulse rate error as a function of sleeping position. 

Sleeping Position RMS  Error [BPM] 

Supine 9.30 

Right Side 8.15 

Left Side 9.22 

Prone 8.59 

 

The peak-scoring algorithm exhibits consistent results regardless of sleep position, where 

slightly better performance is obtained when the subject sleeps on their right side, and slightly 

worse performance is obtained when the subject sleeps in a common supine position. The Bland-

Altman plots in Figure 29 to Figure 32 display the performance of the algorithm for each position. 

 

Figure 29. Bland-Altman plot comparing pulse rates estimated from BCGs and ECGs for a 
single subject sleeping in a supine position. 
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Figure 30. Bland-Altman plot comparing pulse rates estimated from BCGs and ECGs for a 
single subject sleeping on their right side. 

 

 

Figure 31. Bland-Altman plot comparing pulse rates estimated from BCGs and ECGs for a 
single subject sleeping on their left side. 
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Figure 32. Bland-Altman plot comparing pulse rates estimated from BCGs and ECGs for a 
single subject sleeping in a prone position. 

 

 Of the four positions addressed above, the supine position facilitated the most consistent 

peak-scoring algorithm performance, with most error values occurring within 5 bpm; only 

extreme outliers were responsible for the high overall error. For the remaining three positions, the 

algorithm displayed more frequent and inconsistent estimates – not only from extreme outliers – 

indicating intervals of algorithm failure. The majority of the errors fell within 5 bpm, 

highlighting the algorithm’s ability to function for different sleeping positions and to adapt to 

variations in BCG waveforms. 

 

 6.2.3. Effects of Mattress Type 

Mattress type is an important factor because oscillations from mattress springs affect 

collected BCGs. Both a soft spring mattress and a hard spring mattress were utilized in this study. 

Data were acquired for 2 minutes from each of the 5 participants, resulting in a total of 160 two-

minute-long segments, or 9,600 data points, for each of the two mattress types. The hard spring 

mattress dampens vibrations, decreasing the effects of mattress oscillations, but the resulting BCGs 

experience difficulty propagating through the hard mattress to the sensors. The pulse rate errors 

associated each sensor/mattress combination are listed in Table 6. Bland-Altman plots in Figure 

33 and Figure 34 present collective pulse rate errors for the soft and hard mattresses, respectively. 
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Table 6. RMS pulse rate errors for various mattress/sensor combinations. 

Mattress and Sensor Type RMS Error [BPM] 

Soft + Film Only 13.15 

Soft + Load Cell Only 1.09 

Hard + Film Only 11.56 

Hard + Load Cell Only 2.12 

Soft + Film and Load Cell 9.33 

Hard + Film and Load Cell 8.31 

 

 

Figure 33. Bland-Altman plot comparing pulse rates estimated from BCGs and ECGs for a 
single subject sleeping on a soft mattress. 
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Figure 34. Bland-Altman plot comparing pulse rates estimated from BCGs and ECGs for a 
single subject sleeping on a hard mattress. 

 

 These results indicate that mattress type has a greater impact on algorithm performance 

when films are used instead of load cells. This is sensible, since a mattress directly couples the 

film sensors to the body, whereas the bed frame couples the load cells to the mattress and ultimately 

to the body. The algorithm performs more poorly when films are used in conjunction with the soft 

mattress instead of the hard mattress. The algorithm performs best when load cells are used in 

conjunction with the soft mattress (though performance is similar for both mattress types). Overall, 

the hard mattress led to more consistent algorithm results, though the use of both mattresses led to 

extreme pulse rate outliers that skewed the distributions. 

 

 6.2.4. Effects of Motion Artifact 

While each subject was asked to lay still for the duration of the study, minor body 

movements that create BCG artifacts are inevitable. Given the heightened sensitivity of both the 

film and load-cell circuitry, even a slight twitch of an arm can cause significant artifact in the BCG 

recording. However, the signal corruption will often be present only in a single film or load cell 

BCG, and due to the redundancy in the system, the errant pulse rate provided by that single film 

or load cell can be identified and discarded as an outlier by the final filter. Motion may be more 

than a twitch (for example, when the subject sneezes), in which case the associated artifact will be 

evident on all film and load cell signals. Artifact present in a time-domain BCG will affect the 
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frequency spectrum, especially when that artifact occupies a greater percentage of the time 

window. Motion corruption creates extra peaks in the spectrum. These extra peaks, especially 

peaks with high magnitudes, will be selected first by the peak detection process. If the true 

fundamental harmonic is weaker and buried within stronger peaks, there is a risk that the true peak 

will be ignored during the selection process. Figure 35 displays a BCG recording with minor 

motion artifact that occurs at around 20 seconds. While this artifact seems minor, the resulting 

false peaks inserted into the spectrum clearly affect the performance of the peak-scoring algorithm. 

 

 

Figure 35. BCG with minor motion artifact (left), which carries over to the frequency 
spectrum (right). 

 

 

6.3. Mixed BCGs 

Paired (mixed) BCGs were carefully analyzed. Using the MICA decomposition approach 

described in Chapter 5, each mixed BCG acquired from the films and the load cells was separated 

into the source signals, s1 and s2. Here, s1 and s2 are assumed to be the separated BCGs for each of 

the two individuals whose data were recorded with each film or load cell, respectively. Each is a 

matrix of size 4  n, where each of the four rows corresponds to a specific film or load cell (i.e., 

row 0 through row 3), and n is the number of samples in each recording. Figure 36 displays a 

mixed signal separated into its two individual component sources. For each mixed BCG, results 

over two minutes were observed, and outliers were removed using a 5-wide sliding median 

window. Similar to the earlier studies conducted for a single-person setup, the effects of mattress 
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type and sensor type were assessed. The differences between the single- and two-person studies 

were (a) the inclusion of film configurations and (b) the lack of sleeping positions. For the two-

step process of separation and pulse rate estimation, it is difficult to assign errors in pulse rate 

estimates to a specific step. 

 

 

Figure 36. BCG mixture separated into two separate BCGs. 

 

Separated BCGs may lose some of their waveform features as a result of the separation 

process. This decreases the performance of any peak-detection algorithm which seeks to locate 

certain time-domain BCG features. Figure 37 illustrates a mixed EMFi BCG signal separated into 

two source components using MICA decomposition. Each separated BCG does not resemble a 

typical single-person BCG for a supine position; some features were lost during the separation 

stage. 
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Figure 37. Mixed BCG collected from an EMFi and separated into two BCG source 
components using MICA decomposition. 

 

 6.3.1. Films Versus Load Cells 

In an earlier section related to single-person studies, the peak-scoring algorithm 

demonstrated slightly better performance when applied to load cell BCG spectra as compared to 

film BCG spectra, although in both cases the algorithm has an acceptable margin of error. Film 

BCG spectra are vulnerable to mattress vibrations, and the spectral components created by these 

vibrations can be distinguished from BCG frequency components by the peak-scoring algorithm. 

However, with two persons on the bed, the effects of the mattress vibrations on the separation 

method and the resulting scoring process remain to be seen. For the two person study, data were 

acquired for 2 minutes from each of the 10 participant pairings, resulting in a total of 1520 two-

minute-long mixed BCG segments, or 9,120 data points, for each of the eight bed sensors. Table 

7 presents the average RMS errors in the pulse rates returned by the peak-scoring algorithm for 

cases where two individuals lay on the sensor bed at the same time. Film and load cell BCGs were 

mixed BCGs, meaning they had to be separated prior to pulse rate determination. The full set of 

values and pulse rates from the study is listed in Appendix A. Pulse rate results are skewed by 

outliers that depend on configuration choices and the presence of respiration harmonics, as noted 

previously. Pulse rates from BCGs recorded using load cells were unaffected by film 

configurations and respiration harmonics. Few incorrect pulse rate estimates were present within 

both the film and load cell datasets when one excludes data affected by configuration or respiration. 

Possible causes for error include the improper identification of components during MICA 

decomposition and the incorrect detection of the fundamental peak using the peak-scoring 
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algorithm. Nonetheless, the algorithm is able to successfully separate signals and extract pulse rate 

information within an acceptable tolerance. As before, the load cells out-perform the films in terms 

of providing BCGs that promote correct pulse-rate extraction. A box plot that compares the pulse 

rate results for the film and load cell sensors is presented in Figure 38, where the load cells lead to 

the best algorithm performance – a narrower distribution and fewer outliers.  

 

Table 7. RMS errors for pulse rates determined from EMFi and load cell BCGs for the 
two-subject study. 

Sensor Type RMS Error [BPM] 

Film (with Respiration) 7.94 

Load Cell 6.80 

 

 

 

Figure 38. Box-plot for pulse rate comparisons given different sensor types. 
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 6.3.2. Effects of Film Placement 

Film placement is an issue that is unique to the two-body problem. Various possible film 

placement configurations were considered, and the two configurations which displayed the best 

results during preliminary studies were Configuration 1 and Configuration 2 as laid out in Figure 

10. Configuration 1 utilizes all four EMFis under one person (subject A), where the associated 

BCGs will indicate a stronger signal presence for that subject compared to the other subject 

(subject B). For this configuration, the increased number of sensors may increase accuracy during 

signal separation. However, the risk is that the BCG received from subject B will not be analyzable  

due to the intensity of subject A’s BCG. Configuration 2, which utilizes two film under each 

subject, seeks to balance the respective BCG contributions.  

For the film configuration data, only mixed BCGs from films were used for the study. Data 

were acquired for 2 minutes from each of the 10 participant pairings, resulting in a total of 76 two-

minute-long segments, or 4,560 data points, for each of the two film placement configurations. 

Table 8 presents the average RMS errors in the pulse rates returned by the peak-scoring algorithm 

for each of these two film configurations. Results from the load cells were not included, since the 

film configurations do not affect load cell data. Full results from this study are tallied in Appendix 

A. Both film configurations suffer from respiration harmonics, but only configuration 1 suffers 

from the occasional inability to detect subject B’s pulse rate from within the mixed BCGs. The 

box plot in Figure 39 further displays the superiority of configuration 2.  

 
Table 8. RMS errors for pulse rates obtained using different film configurations in the two-

person study. 

Film Configuration RMS Error [BPM] 

Configuration 1 (All Films Under Subject A) 9.56 

Configuration 2 (2 Films Under Each Subject) 7.34 
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Figure 39. Box plot for pulse rate comparisons given different film configurations. 
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 6.3.3. Effects of Mattress Type 

The effects of utilizing a soft spring mattress versus a hard spring mattress were addressed 

earlier in the chapter when only a single subject was on the sensor bed. The results indicated that 

the hard spring mattress promoted better overall pulse rate algorithm performance and that mattress 

type can significantly impact film-based BCG estimates. For the two-person study, data were 

collected for 2 minutes from each of the 10 participant pairings, resulting in a total of 152 two-

minute-long segments, or 9,120 data points, for each of the two mattress types. The effects of the 

mattress play an additionally important role in terms of source separation. It is vital to minimize 

mattress vibrations, as any additional signal components caught in the mixed signal make 

separation more difficult; the algorithm may falsely identify these as source components. The two-

subject pulse rate errors affiliated with the use of different mattress types are presented in Table 9. 

 
Table 9. RMS errors for pulse rates obtained from BCGs using different mattress types 

(two-person study). 

Mattress and Sensor Type RMS Error [BPM] 

Soft + Film Only 10.21 

Soft + Load Cell Only 8.29 

Hard + Film Only 6.24 

Hard + Load Cell Only 5.64 

Soft + Film and Load Cell 9.30 

Hard + Film and Load Cell 5.95 

 

Focusing on film-based BCGs, it is evident that sensor films offer better peak-scoring 

algorithm performance with the hard spring mattress. This result is consistent with the single-

subject studies, but on a larger scale. The oscillations from the soft spring mattress do indeed 

appear to contribute additional components which the algorithm mistakes as source components 

during separation. Recall that the algorithm is instructed to search for only two source components: 

one for each subject. If the algorithm determines a spring component to be one of the two source 
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components, the algorithm misses the other pulse rate entirely. Figure 40 presents a pulse rate error 

comparison between the soft and hard mattresses.  

 

Figure 40. Box plot for pulse rate comparisons given different mattress types. 

 

As is apparent in Figure 40, the soft mattress data contain more outliers, likely resulting 

from incorrect source separation and the false detection of the fundamental pulse component due 

to interfering spring components. The hard spring mattress adds the fewest oscillations to the 

BCGs (i.e., oscillations that affect film-based data more than load cell data), while the soft spring 

mattress adds more error to the separated signals, but in aggregate the pulse rate estimates remain 

sufficient for use. An alternative is to remove or dampen the spring oscillations from the BCGs in 

a preprocessing deconvolution step.  
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 6.4. Performance Summary 

The peak-scoring and separation algorithms have achieved acceptable results in terms of 

identifying pulse rates within an acceptable range of ground truth values measured using a 

medical-grade patient monitor, even considering moderate variations in the sleep environment. 

While the system produced acceptable results for all scenarios, certain factors drove better 

performance. BCGs from load cell sensors produced acceptable pulse-rate-extraction results more 

frequently than BCGs from film sensors, primarily due to the effects of respiration and spring 

oscillations on film BCG spectra. This does not mean that load cells are superior to EMFis for 

sensor bed applications, but for the pulse rate extraction tasks investigated here, the load cell BCGs 

offered superior results. 

Regarding the two-person study, Configuration 2 produced more accurate results than 

Configuration 1. This outcome was consistent with expectations, since Configuration 2 places two 

sensors directly below each of the two individuals, reducing the possibility of stronger BCGs 

burying weaker BCG components. Configuration 1 offers the advantage of a strong signal for the 

person lying on top of the sensors (Subject A), so configuration 1 is useful in a scenario where 

only subject A’s pulse rate is of interest. Note that prior knowledge of subject A’s expected pulse 

rate is still required to extract pulse rate values with confidence. 

Evaluations related to the impact of mattress type determined that a harder spring mattress 

offers the best peak-scoring algorithm performance because of the minimal additional oscillation 

components introduced into the recorded BCGs. Despite the increased system damping, BCG 

forces are still able to propagate through the mattress and be recorded successfully by the sensors. 

While the soft spring mattress introduced more oscillations into the BCGs, the extracted pulse rates 

still demonstrated acceptable accuracy. 
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Chapter 7 - Conclusion 

 

A peak-scoring algorithm was implemented to extract pulse rate estimates from BCGs by 

exploring the frequency domain instead of the time domain. Utilizing the frequency domain avoids 

issues that plague traditional time-domain, beat-to-beat detection algorithms, including their 

susceptibility to variations in BCG waveform shapes. The peak-scoring algorithm was applied 

successfully to BCGs acquired with a variety of common sleeping positions, demonstrating its 

ability to work properly even in light of changes in BCG waveforms. The algorithm performed 

successfully with BCG data obtained using two types of bed-based sensors – EMFis and load cells 

– demonstrating that (a) EMFis and load cells are both viable sensors for BCG collection and (b)  

the peak-scoring algorithm works with a wide range of collected BCGs. 

For the source separation process, the MICA decomposition method was used due to the 

knowledge that the individual BCG sources are not independent. The separation process was 

verified by comparing the outputs of the peak-scoring algorithm with pulse rates obtained from 

commercial equipment. Since it is difficult to obtain single-person BCGs and mixed BCGs 

simultaneously, only pulse rates were observed. The separation process showed early success in 

different scenarios, such as during the use of different mattress types and different film layouts.  

In conclusion, the overall signal separation and pulse rate extraction process is feasible and 

could have a significant impact on at-home sleep quality monitoring for people who share a bed at 

night. While analyzing the frequency spectrum requires a certain delay, making this system 

unsuitable for some clinical settings, a delay of minutes is not an issue for at-home sleep 

monitoring applications. Further work remains to improve the precision of the system and to 

eliminate the undesired influence of respiration harmonics in the frequency domain. 

 

 7.1. Future Work 

While the separation and peak-scoring algorithms were successful in extracting pulse rate 

information from two individuals that shared a sensor bed in a controlled environment, 

improvements to the overall system remain before it is ready for extended application. First, the 

interference of respiration harmonics with pulse harmonics remains to be resolved. This situation 

was observed in one of the two subjects  in 10% of all film BCGs recorded. Further, it is evident 
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that a hard spring mattress performs better due to the absence of strong spring oscillations. While 

soft spring mattresses are viable for obtaining BCGs, removal of the mattress spring components 

from BCGs will allow for more accurate source separation and pulse rate determination processes.  

For full sleep quality monitoring, respiration rate is an important parameter which cannot 

be ignored. While the algorithm does not extract the respiration rate directly, e.g., as part of the 

pre-processing filter used in the separation algorithm, this information could be sensibly extracted 

prior to filtering. The MICA decomposition’s ability to separate unfiltered signals remains to be 

seen, but separation of mixed respiration rates is also critical for health monitoring. 

Lastly, since the MICA decomposition does not identify the subject to whom each 

extracted pulse rate belongs, it is difficult to affirm that the correct pulse rates have been 

determined for each individual unless corroborating measurements are available. Some thoughts 

include running a training session on one individual to obtain a ‘training signal’ to use for 

comparison later on, or perhaps exploiting delays and phase changes in the signals to determine 

which subject is lying on top of which sensors. 
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Appendix A - Separation Data Results 

Heart rate comparisons between the peak-scoring algorithm and the ground truth method(s). 

 

Table 10. Pulse rate comparison: single subject, soft mattress, film sensors 

 Supine position Right side position 

Subject Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

A 59.9124 60.216 -0.3036 52.5808 54.0029 -1.4221 

B 60.182 59.7918 0.3902 57.4239 57.0768 0.3471 

C 64.9837 65.2382 -0.2545 62.5982 62.2746 0.3236 

D 68.8085 68.7841 0.0244 66.86 67.2669 -0.4069 

E 52.4547 83.9934 -31.5387* 55.6086 80.3122 -24.7036* 

 Left side position Prone position 

Subject Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

A 54.7015 55.4853 -0.7838 59.4492 59.442 0.0072 

B 63.255 58.8855 4.3695 58.8283 62.5457 -3.7174 

C 63.4769 63.9148 -0.4379 65.1525 64.8273 0.3252 

D 61.0977 69.1641 -8.0664 64.6484 65.1766 -0.5282 

E 55.2857 78.6978 -23.4121* 49.6085 84.2825 -34.674* 

* Respiration harmonic effect 
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Table 11. Pulse rate comparison: single subject, soft mattress, load cell sensors 

 Supine position Right side position 

Subject Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

A 59.1959 60.216 -1.0201 53.1903 54.0029 -0.8126 

B 59.8977 59.7918 0.1059 57.2188 57.0768 0.142 

C 65.1127 65.2382 -0.1255 61.989 62.2746 -0.2856 

D 68.7505 68.7841 -0.0336 66.8763 67.2669 -0.3906 

E 84.0917 83.9934 0.0983 80.5166 80.3122 0.2044 

 Left side position Prone position 

Subject Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

A 55.6816 55.4853 0.1963 59.2815 59.442 -0.1605 

B 58.81 58.8855 -0.0755 59.5234 62.5457 -3.0223 

C 63.7024 63.9148 -0.2124 64.8298 64.8273 0.0025 

D 67.2067 69.1641 -1.9574 64.8894 65.1766 -0.2872 

E 81.647 78.6978 2.9492 83.9699 84.2825 -0.3126 
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Table 12. Pulse rate comparison: single subject, hard mattress, film sensors 

 Supine position Right side position 

Subject Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

A 53.5647 53.8387 -0.274 53.5743 54.9692 -1.3949 

B 58.5539 59.9907 -1.4368 50.3619 58.6024 -8.2405 

C 59.0336 59.168 -0.1344 61.2923 62.3118 -1.0195 

D 62.8364 62.8245 0.0119 48.3081 62.7755 -14.4674 

E 50.705 77.7356 -27.0306* 55.9499 74.661 -18.7111* 

 Left side position Prone position 

Subject Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

A 53.2597 54.0033 -0.7436 54.8311 54.9463 -0.1152 

B 58.7874 58.7705 0.0169 61.7804 63.615 -1.8346 

C 49.6037 64.0021 -14.3984 57.785 61.7444 -3.9594 

D 61.5132 62.2008 -0.6876 63.0996 63.3777 -0.2781 

E 47.3082 76.5744 -29.2662* 66.6459 81.7354 -15.0895* 

* Respiration harmonic effect 

  



81 

Table 13. Pulse rate comparison: single subject, hard mattress, load cell sensors 

 Supine position Right side position 

Subject Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

A 53.51 53.8387 -0.3287 53.5073 54.9692 -1.4619 

B 59.6829 59.9907 -0.3078 57.9255 58.6024 -0.6769 

C 59.1423 59.168 -0.0257 61.204 62.3118 -1.1078 

D 63.2083 62.8245 0.3838 62.3526 62.7755 -0.4229 

E 77.118 77.7356 -0.6176 65.6847 74.661 -8.9763 

 Left side position Prone position 

Subject Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

Est. PR 

(BPM) 

True PR 

(BPM) 

Difference 

(BPM) 

A 52.9272 54.0033 -1.0761 54.7013 54.9463 -0.245 

B 58.2172 58.7705 -0.5533 63.6547 63.615 0.0397 

C 64.9172 64.0021 0.9151 61.8405 61.7444 0.0961 

D 62.0681 62.2008 -0.1327 62.7103 63.3777 -0.6674 

E 76.267 76.5744 -0.3074 80.4872 81.7354 -1.2482 
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Table 14. Pulse rate comparison: two subjects, soft mattress, film, config. 1 

 Subject A 
est. 

Subject A 
True 

Difference Subject B 
Est. 

Subject B 
True 

Difference 

Data 0 66.1933 65.9705 0.2228 60.6834 58.9992 1.6842
Data 1 63.363 62.2285 1.1345 61.3945 59.6762 1.7183
Data 2 57.0974 58.5382 -1.4408 51.3393* 78.9167 -27.5774
Data 3 81.5806 81.5986 -0.018 63.2989 55.5594 7.7395
Data 4 65.0159 64.2193 0.7966 58.6261 59.4665 -0.8404
Data 5 84.5025 90.186 -5.6835 48.5304* 56.7098 -8.1794
Data 6 75.5237 79.2415 -3.7178 56.7086 57.5233 -0.8147
Data 7 85.3486 89.2553 -3.9067 70.0849 69.0488 1.0361
Data 8 57.2289* 92.0833 -34.8544 71.152 77.0632 -5.9112
Data 9 63.3492^ 81.474 -18.1248 60.588 62.1346 -1.5466

* Respiration harmonic effect 
^ Configuration effect 
 
 

Table 15. Pulse rate comparison: two subjects, soft mattress, load cell, config. 1 

 Subject A 
est. 

Subject A 
True 

Difference Subject B 
Est. 

Subject B 
True 

Difference 

Data 0 73.7765 65.9705 7.806 58.7975 58.9992 -0.2017
Data 1 61.2777 62.2285 -0.9508 60.779 59.6762 1.1028
Data 2 81.515 78.9167 2.5983 53.6507 58.5382 -4.8875
Data 3 83.5306 81.5986 1.932 56.6241 55.5594 1.0647
Data 4 65.8803 64.2193 1.661 64.09 59.4665 4.6235
Data 5 91.2381 90.186 1.0521 59.624 56.7098 2.9142
Data 6 58.399 79.2415 -20.8425 57.6848 57.5233 0.1615
Data 7 86.4319 89.2553 -2.8234 72.1155 69.0488 3.0667
Data 8 92.192 92.0833 0.1087 74.0794 77.0632 -2.9838
Data 9 77.6767 81.474 -3.7973 60.8563 62.1346 -1.2783
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Table 16. Pulse rate comparison: two subjects, soft mattress, film, config. 2 

 Subject A 
est. 

Subject A 
True 

Difference Subject B 
Est. 

Subject B 
True 

Difference 

Data 0 62.7415 61.6272 1.1143 55.0119 55.481 -0.4691
Data 1 56.8223 57.9345 -1.1122 51.354 51.7562 -0.4022
Data 2 87.7772 88.8182 -1.041 64.1793 51.6924 12.4869
Data 3 70.9591 76.9828 -6.0237 53.8556 53.4191 0.4365
Data 4 67.424 65.4226 2.0014 58.4567 57.3319 1.1248
Data 5 86.0991 85.697 0.4021 60.1419 57.7586 2.3833
Data 6 55.8516 77.9987 -22.1471 55.7068 57.9174 -2.2106
Data 7 85.6144 88.4904 -2.876 Corrupted PPG 
Data 8 88.4857 88.571 ‐0.0853 79.1218 74.0911 5.0307 
Data 9 66.02063 66.5468 ‐0.52617 52.1311* 80.1311 ‐28 

* Respiration harmonic effect 
 
 
 

Table 17. Pulse rate comparison: two subjects, soft mattress, load cell, config. 2  

 Subject A 
est. 

Subject A 
True 

Difference Subject B 
Est. 

Subject B 
True 

Difference 

Data 0 60.311 61.6272 -1.3162 56.685 55.481 1.204
Data 1 55.362 57.9345 -2.5725 52.4696 51.7562 0.7134
Data 2 84.6215 88.8182 -4.1967 68.3472 51.6924 16.6548
Data 3 75.7077 76.9828 -1.2751 53.3946 53.4191 -0.0245
Data 4 70.037 65.4226 4.6144 57.2957 57.3319 -0.0362
Data 5 85.9787 85.697 0.2817 78.2447 57.7586 20.4861
Data 6 56.642 77.9987 -21.3567 55.4696 57.9174 -2.4478
Data 7 87.6144 88.4904 -0.876 Corrupted PPG
Data 8 89.3043 88.571 0.7333 85.137 74.0911 11.0459
Data 9 66.2272 66.5468 -0.3196 52.9512 80.1311 -27.1799
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Table 18. Pulse rate comparison: two subjects, hard mattress, film, config. 1  

 Subject A 
est. 

Subject A 
True 

Difference Subject B 
Est. 

Subject B 
True 

Difference 

Data 0 62.1279 60.8896 1.2383 54.8311* 70.065 -15.2339
Data 1 73.1509 72.4836 0.6673 59.3626 70.5323 -11.1697
Data 2 75.3922 74.1463 1.2459 74.6053^ 65.6993 8.906
Data 12 65.5024 63.182 2.3204 63.2196^ 52.8439 10.3757
Data 13 70.4641 67.3171 3.147 59.6505 55.94 3.7105
Data 14 84.4439 84.0767 0.3672 47.2648 49.8354 -2.5706
Data 15 81.9191 81.332 0.5871 70.7495 70.6141 0.1354
Data 16 66.5802 70.4019 -3.8217 65.809 65.9497 -0.1407
Data 17 85.9875 85.8956 0.0919 85.9183^ 67.7084 18.2099

* Respiration harmonic effect 
^ Configuration effect 
 

 

 

Table 19. Pulse rate comparison: two subjects, hard mattress, load cell, config. 1  

 Subject A 
est. 

Subject A 
True 

Difference Subject B 
Est. 

Subject B 
True 

Difference 

Data 0 70.6199 70.065 0.5549 54.8194 60.8896 -6.0702
Data 1 71.7589 72.4836 -0.7247 65.5141 70.5323 -5.0182
Data 2 75.0534 74.1463 0.9071 66.2598 65.6993 0.5605
Data 12 63.3757 63.182 0.1937 53.3195 52.8439 0.4756
Data 13 74.3169 67.3171 6.9998 53.2074 55.94 -2.7326
Data 14 83.8463 84.0767 -0.2304 53.5343 49.8354 3.6989
Data 15 81.0668 81.332 -0.2652 56.6657 70.6141 -13.9484
Data 16 68.3069 70.4019 -2.095 66.1096 65.9497 0.1599
Data 17 83.9508 85.8956 -1.9448 82.5697 67.7084 14.8613

 

  



85 

Table 20. Pulse rate comparison: two subjects, hard mattress, film, config. 2  

 Subject A 
est. 

Subject A 
True 

Difference Subject B 
Est. 

Subject B 
True 

Difference 

Data 3 63.0399 64.2271 -1.1872 57.6119 58.2732 -0.6613
Data 4 75.2379 74.9553 0.2826 63.2936 63.5735 -0.2799
Data 5 68.5112 70.4437 -1.9325 64.2858 62.1414 2.1444
Data 6 62.0294 65.0586 -3.0292 55.4618 56.2952 -0.8334
Data 7 63.6951 72.5834 -8.8883 53.8606 54.01 -0.1494
Data 8 68.7767* 78.4114 -9.6347 54.2041 54.2796 -0.0755
Data 9 79.6288 91.1081 -11.4793 74.549 74.1617 0.3873
Data 10 66.3947 69.7751 -3.3804 62.3156 65.7989 -3.4833
Data 11 85.9827 81.3002 4.6825 54.9462* 65.0116 -10.0654

* Respiration harmonic effect 
 

 

Table 21. Pulse rate comparison: two subjects, hard mattress, load cell, config. 2  

 Subject A 
est. 

Subject A 
True 

Difference Subject B 
Est. 

Subject B 
True 

Difference 

Data 3 64.7892 64.2271 0.5621 59.5991 58.2732 1.3259
Data 4 77.0639 74.9553 2.1086 67.0025 63.5735 3.429
Data 5 75.8676 70.4437 5.4239 66.6437 62.1414 4.5023
Data 6 67.9093 65.0586 2.8507 55.5252 56.2952 -0.77
Data 7 64.1835 72.4635 -8.28 53.2748 54.01 -0.7352
Data 8 77.6495 78.4114 -0.7619 62.7132 54.2796 8.4336
Data 9 74.0947 91.5027 -17.408 73.1906 74.1617 -0.9711
Data 10 76.2237 69.7751 6.4486 69.3933 65.7989 3.5944
Data 11 79.1574 81.3002 -2.1428 67.7846 65.0116 2.773

 


