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I. INTIiODUCTI

The cased use of tatlcal models in the analysis

itlon of India L systems is one of bhe significant

relopments of modern engineer!] lotioe. Optimal desing of

process equipment often Involves finding numerical values for

the design parameters to minimize a cost function, usually

nonlinear, subject to design constraints. Host of the models

which accurately describe bhe peal-life systems prove to be too

plex for solution by available a' hms. This is especially

true of problems in which the constraints are nonlinear.

Recently, the geometric programming technique, has been

developed which can handle a subclass of the above problems in

which the cost function and the constraints are generalized

polynomials.

In 1961 Zener [19] observed that the sum of the component

s may be minimized almost by inspection when each

cost depends only on the products of the design variables, each

Lsed to an arbitrary 1 '.own power. Buffin and Peterson

[6] extended Zener' s work. Zener and his associates* work had

been restricted to functions they called 'Posynomials ,

'
which

are g >.ized polynomials with positive coefficients. Passy

and Wilde [12] furtl lized the method to include negative

coefficients and reversed inequalities.

Geometric programming is specially suitable for engineering

optimization problems based on desing relations developed either

by dimensional analysis or by fitting power functions to



result .

An important feature of geomel La its

computational convenience. When the nu of terms
-

Is the

number of variables by a .small number, the computations are much

i the highly no^ ^aoter of the problem would

i one to expect. To ml: i an unconstrained polynomial of

m variables, the conventional method of calculus involves the

Lution of m nonlinear equations. On the other hand, if the

function to be minimized containes exactly m + 1 terms, the

problem can be solved by geometric pro Lng by solving m + 1

linear equations, a far easier task. This is advantageous when

the problem involve inequality constraints.

Although Passy and Wilde [12] have extended the geometric

ting algerithm to handle objective functions and constraints

With legatlve coefficients, difficulty is often encountered in

erical analysis except In the special case where there is

exactly one more term than there are independent variables.

Recently Blau and Wilde [5] developed a Lagrangian algorithm

for generalized polynomial optimization with equality constraints.

The method optimizes the Lagrangian function with the Newton-

Raphson procedure. This algorithm can handle negative

coefficients efficiently and converges rapidly. One difficulty

with this method is its occasional use of too step, which

prevents convergence. This difficulty was overcome in this work

using a forcing procedure which restricts the maximum step

size to a predetermined percentage of the variabl

The perpose of this thesis is to ap eometrlc programming



to different engineering de iient systems

production planning and
«' a

Its and faults. In the '* baslc algoribhrn

of geometric programming with extensions and bhe algorithm of

Lagrangian polynomial optimization technique are discussed.

A brief review of computational procedure and approximation

technique follows. In Chapter V, various possible fields of

Uoatlon of the above algorithms are analyzed and finally the

advantages and disadvantages of geometric programming are

flighted.



II. G HC PRO ING

The theory of geometric progra Ls based on the arith-

metic-geometric mean inequality. The set of functions comprising

mathematical model, when expressed in terms of the primal

variables, is called the primal problem. A dual formulation of

the primal problem can be obtained. Minimization of the primal.

pro -

.; Ll .luivalent to maximization of the dual problem and the

two extreme values are equal.

In this chapter only the algorithms of brio programming

and its extensions are stated and the computational procedures

for them are discussed. A detailed derivation of the algorithm

and the proof of the theory can be found in [6] and [l8"J.

A set of p + 1 generalized polynomials consisting of m real

positive variables x can be expressed as.

m A
ij (1 )

g o I C* TT X
k ieJ (klj=l J

where k = , 1 , » • • » P

and J (10 is a set of integers ranging from n^ to n^, thusi

J(k) = {n^, n^ + 1, .... \1
(2)

and m
Q

. 1, i^ . % + 1. .... m
p

= n
p

+ 1, n
p
= n (3)

C >

x >
J

W
(5)

n lis the total number of terms in the set of polynomials.

A . are any real numbers.
X J
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an is to mln

:

o

(6)

sub;) ecb to the constraints

g, < 1 j k a 1 ( 2 , •. • • f P
( k -

(7)

The associated dual problem can be formed cons i sting of a set

of ri dual variables 6 satisfying a normality c ondition

£ 63. « 1
(8)

i«J (0)

and m orthogonality conditions!

n
L A. . 6. =s 3 == It 2, . .. 1

1=1 1J X

(9)

well as n nor, bivlty conditions

6 > 1 « 1, 2i .m'i'B (10)

The corres ng dual problem can be writ as

/ n c-
6
i \

P Xk

I 1=1 6
i k=:l

^
(11)

ere X, = E 6
1

k = 1, 2 P
k i€j (kt

(12)

he logarithm of the dual function (11) is strictly concave

and hence it has only one stationary point - a global maximum.

So the minimum of g is obtained by maximizing the dual function

(11) subject to the normality and orthogonali.ty conditions (8)
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to (10).

Once bhe dual variables & a, the corre jading

values of the primal variables x.j are found from the f Lng

lationst

m
G TT x J = 6,
i • t i

i o

(13)

for ieJ(o)

and

(1*)

for i«J (k)

k f.

where g* =» minimum value of the objective function •

EXTENSION OP GEOMETRIC PROGRAMMING

The following algorithm is obtained by Passy and Wilde (12) j

it extends the theory of geometric programming to e into

account; negative coefficients and reversed inequa].ities.

P + 1 generalized polynomial functions g (x) can be expressed

as

\ ^-l kt kt Jal j

k = 0, 1, .. . , P (15)

where

a = + 1
kt

(16)

G > (1?)



x >0 <*>
J

and A . are real numbers. The slgnum functions o^, the

coefficients C , T
R

(the number of terms in g^, and the A^.

jiven. Then the typical optimization problem can be

'•. bten !

min g 00 = g U*) s g*
f 0, ± u> (19)

o o °

(* corresponds to the optimal solution),

subject to P inequality co Lnts.

< a A < 1 k - 1. .... P <
;)

k k ~

re a lown signum functions.
k

This problem can be solved by working with a set of real

finite dual variables &
kt

, one for each term of the g^, which

satisfies the following

nonnegativity cond ition

,i for all k and t
' 2D

and the normality condition!

T,o

6 =s a o . 6 ..e 1
OO O j. -i ot ot

the m orthogonality conditions!

T
P ik

;=1 kt "^ kt

(22)

. 6,_ m Q 3 = 1 m (23)

k=0 b=



id P Inequality con

5 . o L o, . 6. .
> k = 1 P

\o " k t_x
kt kt -

,th the qualification ;

=
kt

(25)

if and only if

5 =
ko

=3 If « • . » 1
(26)

a must be chosen to satisfy the constraints.

o

The dual function can be written as

V(6, a
o

) =a
o

n
k=0 t=l
L

5
s (Hvt^ko^kt

5kt

6
kt

(27)

with the assumption that

(Hict^koj
kt 6

kt

8kt
= 1 (28)

n all i functions are not positive g
Q
(x) is not, in

general, convex id ,
have several constrained local minima,

maxima or saddle poi its, and no simple duality relation holds.

It is proved instead that to each critical point (ca3 Led a

pseudominimum) x° of g
Q

, there corresponds a dual point (6°, a
Q )

re V is a pseudomaximum and such that



:°) = V(S°, 0; )

o u

(29)

Roughly speaking, a pseudomlnimum 1

•Tucker constraint qualification as well as the

differential form of the Kuhn-Tucker necessary conditions for a

constrained local minimum.

Then g (x°) s Pmin g (x) = Pmax V (6°, a
Q

) 3 V (6
q ,

a
Q

)

o °

ore Pmin is an abbreviation for pseudomlnimum. (30)

Then at a global minimum

t

Min g
Q
(x*) = Min [pmax V (6*. a

Q )J
(3D

Once the dual variables 6.* are known the primal variables are

found from the following relations

i

*
x
A°tJ =6„ a ,f 1 T

q
(32)

'ot . - j ot o °o
J-"- -'

md

c n /kt J -!*£ *" "

Tm
(33)

1<1;
js=l ^ 6 ko k = li »

•
•

»
P

Prom equation (32), It can be seen that O
q

will have the

same sign as g°. Since there will always be more terms th

triable, X , m equations can be found which are solvable for

>n of these equations is not difficu

since they are linear in log x .

( * corresponds to optimal solution)

,
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i

COMPUTATIONAL PROCEDU1

The detail puter flow charts and programs are provided

in the appendix. The present discussion on the method is to aid

standing of the subsequent discussions.

The computer algorithm finds the minimum of the primal

function (6) subject to primal constraints (7) by maximizing

the dual function (11) subject to dual constraints (3) through

(10). Having found this maximum a transformation is made to

obtain the primal variables x .

As can be seen the dual problem has n variables and m + 1

linear equality constraints, This gives the problem n - (m + 1)

degrees of freedom. Zener and his associates call this the

degree of difficulty.

The dual problem with nonlinear objective function and linear

equality constraints can be maximized by any conventional method,

such as, by Lagr. ult 5. pliers or the gradie ejection

method. As suggested by Duffin [6] the dual function can be

transformed to eliminate the linear equalities to result in a

•d» dimensional optimization problem, where »d« is the degree

of freedom. The transformation is done as follows

i

The dual variables 8 satisfying the equations (8) and (9)

can be written as sum of a n< ' ty and a set of nullity vectors

by the method of linear algebra.

or 6 = bn + E r b. <3 2

~ ~° j=l J J



I
!

rre b = normality vector

b, Lllity vectors j - 1, ...» d.

J

r. are arbitrary real numbers
J

sab g the positivity constraints

b^ > I « lj ...» n O5 )

1 ' A" j 1
"

o
b + L r

bins the dual function (11) in transformed form

/ d r. \f n ~6. (r)\ P Xk

;re
j

k -, * C.
1

j - 0, 1, .... d (37)

J L
x

6 (r) - b°* S r,-bj : 1, .... n (38)

i J=l J

This function can be maximized with respect to r^ by any

direct search technique. It has been found that Hooke and

Jeeves (10) direct search is quite efficient. The first four

problems in chapter V have been solved by this method. Another

approach is to obtain a set of •*• equations by differentiating

i Function with respect to r. and setting the result equal

to ze:

i i

k f J &M " Ck
= ° j - 1 d (39)

J
-

I i=l i
Jk=l

K

where



X* = £ r. bj J - 1 d (^0)
k

i J(k) J i

These seta of equations can be solved by the Newton-Raphson

;Od to give optimum values of r. and hence the dual variables.

Convergence hod is not guaranteed, but when the

hod works the function c« es very rapidly. Problems 2

and 5 are solved by this method.

The computational procedure can be briefly summarized as

follows I

a) Mathematical formulation of the dual problem.

To obtain the dual problem in the form of equation (11), the

L problem and the constraints have to be in the form of

equations (6) and {?). Many prob] i Lch are not in this form

l be transformed into the r a by various techniques

discussed in a later chapter.

b) Calculation of normality and nullity vectors.

The normality and nullity vectors of the form of equation

(3*0 can be obtained by the usual method of linear algebra (9).

o) Obtaining the initial feasible solution of Vi.

The nonnegarivity constraints (35) have to be satisfied for

the initial feasible solution. This is achieved by adjusting

all variables simultaneously.

d) Optimization of the dual function

i

. >i table method for optimization is applicable. Hooke

: Jeeves pattern search [10] is mostly used in the problems

i solved in this work. Differentiation and the

•hson method [l'+] are also used where the function converges.



1-3

Since 7(6) Is only defined for &
1
> any intermediate step in

the search procedure not mo this o i
avoided.

The accuracy obtained in the solutions depends on the

:e between improvement in objective function and required

outer time. Different accuracies *, (ranging from .01 to

01) are assumed for different problems. The function is

assumed to converge when the function value changes by £ or less

in two successive iterations of Newton-Raphson or step size is

equal to or smaller than C in Hooke and Jeeve scorch,

e) Transformation from dual to primal problenu

The primal variables are calculated from the optimum dual

' tbles by equation (13) and (1*0.

The above procedure is effective for functions with positive

coefficients. For functions with negative coefficients and

reversed inequalities along positivity conditions (21), P

inequality constraints (2*0 are to be satisfied and the minimi

of all the pseudomaxima of the dual function (27) is to be found.

It was found bhe above procedure fails in this case because

of limitations of search procedures. An efficient algorithm

has been presented by Blau and. Wilde [3] to handle polynomials

with negative coefficients and with equality constraints. This

algorithm is presented in the next chapter.
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III. A LAGR i ALGORITl

In bhis chapter an a for optimization of generalized

als with equality constraints is presented. This

of hi ' L iportance since it is the only

which handles negative coefficients in the polynomials-

effectively; most physical restrictions occurring in practice are

often strict equalities.

The basic idea is to use a Newton-Raphson procedure [l8] to

drive to zero the components of the gradient of a Lagrangian

function formed from the logarithms of the original objective

function and the constraints. A nonlinear transformation, which

amounts to s uting a weighting Labi or each term, ma .a

the anglan gradient linear in the weights as well as in the

Lge multipliers.

No proof for local convergence is yet available. For

justification of the procedure the reader is referred to [3].

A set of M + 1 generalized polynomials of N variables x^

g <:-:m be defined ast

^tn m* 0, 1, ..., M CO
E a C . tt x

m t«l mt mt rfal n

where < x < °°

n

(2)

C > t = 1, ..., T (3)
mt

, = •} 1
o ;

A . Is any real number
n

(It)



The minimization problem can bo stal

Min
.

°0

subject to g a 1 (ra / 0)
m

(5)

(6)

To Initiate the a] hm, finite positive values x° of

x have to be chosen not necessarily satisfying the constraints
n

(6). The initial value of the objective function is calculated

as g° and the initial weights as
o

A j."otn

f
1

G ,
n (x°) =

o oc , n

\i

mt

n=l

N mtn
C .

n (x )

mt n=l n

(7)

for ra = 1 , . . . , M

At the ith iteration the following sums are calculated as

inn t=l
A . V/

mt men mt
(3)

i them the N x 1 dimensional vector is formed as

i
i

'io
S* a (S?_ . . ^

i T
(9)

and the N x fix

"
,i
S
ll * " *

S
1M

S
N1 ' ' ' NM

(10)
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S S
J
is r

LS matrix is assumed to have that

sl3B , Then the initial H x 1 vector of mul I
can be

: X N Si etric matrix T1 can be computed as

C

1 - - 2 a A A
+

.
W\.

nj '

t=l ot otn J

i

1

i m
* 2 X

m .

a mt Vcm Amtj
(12)

m=l t*l

At each iteration there is a value of one additional variable

V
1 which is also adjusted by the algorithm. To begin with, it is

taken as the value of the objective function at x°.

Let a
1

= s* / \s)\

Then the (M + N + l)
2

symmetric Newton-Raphson matrix R is

assembled as

R
1

B

^
.IT

Q iT

o
S

i.
(13)

resents the null matrices with appropriate diroensiona.

D x i ,
;

ilonal error vector e 1 is formed as
M + N +
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;>' -

o

1 -

1 -

1 -

sV
(V

1
)

i
e
i

m

ix-i-

(1*0

Then the (N + M + 1) XI dimensional correction vector is given

by

A In X

4 In a
iV

i

A ,

, iv-1 i
(R ) e (15)

so the next estimate of f is

:

i+1 = X
1 exp ( in X.J")

n n ' n
(16)

n

whereas

V
i+1

= v
1

e*p ( In a
1 V1 )

(17)

(18)

These quantities are used to compute the new values of

weights defined in equation (7) for ra a 1, ..., M.

For m = 0, the following equation is used,

N A
U.l

= (v
l+l)-l

G
ob ot

rr X
n=l

otn (19)
n

Thus the algorithm completes the ith iteration. The

procedure continues until all components of the error vector are

acceptably close to zero.
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IV. APPROXIMATION TECHNIQUES

on problems can be transformed into standard

geometric programming problems, even though they are not

Lloltly expressed in posynomial form. This fact is illustrated

In the following examples.

Example 1.

Minimize the function

(1)
G(x) » f (x) + [q U)] h (x)

;e f (x), q (x) and h (x) are posynomials In the vector

variable x = C'x^i •••• xm >
and a> °*

The above problem can be expressed asi

minimize g (T) = f U) + ^ h <x) (2)

subject to x q U) ^. 1
o

where x is an additional J cident variable and T =

o . ..

. y lt can be seen from the construction of g \t)
(x

o
,
x
1

, .... V ^
^

and the constraint that (x*, x*. .... xj minimizes G (x) if and

only if, (q (x
1
), x*. .... «*) minimizes g (f) subject to the

given constraint. The constrained minimum value of g (*) is equal

to the minimum value of G (x) . Thus the problem of minimizing

G (s)
not , Ly a posy L can be transformed to

the Term which permits the use of geometric programming.

Example 2.

'

I mize the function
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where f, q, h are posynomials, u is a posynomlal with one t

and a > 0.

The equivalent problem can be formed as

g (r) . f (a) + S_M '5)

o

subject to the constraint

: ) , (6)

u ( .)
' .)

-

where x is an additional independent variable and T

'

)§ since u ( X ) has only one term the form of the
k

o 1 m

constraint permits use of geometric programming.

Example 3«

Minimize the function

G (x) =: f (x) - u (x)
(7)

where f and u are posynomials and u has one term. If it can be

assumed that the minimum value of G is negative then the

constraint.

x + f (x) - u ( f£ ° is consistent ^
'"o

be seen that x
1 minimizes G (x) if and only L

y
1 - [ u (x1 ) - f (x1 ), x\ \ ] maximizes the function

h (Y) - x (9)

o
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bhe constraint

x + f (x) - u (x) <
o

Thi ,

Lon problem is equivalent to the problem.

Minimize g CO = •

£ |r y
= ~

o

subject to the constraint

xo [ U> *• i (ID
uliT

+ uTx'T -

Thus this reduces the problem to standard geometric

pro form.

So far the examples showed the transformation which gives

the exact solution of' the problems. Lowing are some examples

of approximate transformation which permits use of functions

other than posynomlals.

tple ^.

i;ion h (x) which is not a posynomial can be

approximated to a single term posynomial. To do this it is

necessary to make a rough estimate of the range ^variability of

aoh variable x.. Let x* be the geometric mean of this range.

Then (x*, x* x*) may be termed the operating point. Then

h (x) can be appj.'oximabed as

Mx)*h(xV< \ .... (^ < 12 >

x
2

;•' sre

A = (fiiiL) x ^ x* ,j = 1, .... m ( 13)

j
" h T>Xs
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This approximate Lvalent \ : og h in a

power series in terns of variables /'-

•

: 10g (x,/x*) and Lng

all but linear terms.

pie 5«

Approximation of ; u

The :;ion log u ia Lned asi

c

U
1log u = J i dx

1 X
d zo

On the other hand, if S is a positive ';er, m

U - i - f # dx (15)

On any interval between posit j.'s, the function
E •

x is a

uniform approximation to unii ./, p ed E is sufficiently Ll.

Hence, log u can be approximated bj
1

(13 1) for u in the

same interval.

Ex o •

ion of \ential o.t ion

Let the primal problem involve a function of the form

f (x) ='g (x) + Ce
U

(x) (16)

where g is a posynomial, G is a positive cons;tant and. u
(

jc] La

s term posynomial.

tie we3.1 known relations!*

E
e
u = lim (1 + g)

(17)



22

on f (x) can be writt

t (X) =6 (X) + C (: ')

E
US)

E

; , sufficiently large. This function is in the form of

mple 1. This can be reduced to standard g ;.,:1c programming

form by introducing a new v .3 x = 1 * u/E. (19)

f (x) can be replaced by the function g (x) + G

and the additional constraint

(20)

x-
1

+ g^x-1 u (x) < 1 C»)
o o
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V, APPLICATIONS •

In this section six different problems are considered to

tte the procedure. The first is a simple hypothatical

>lem. The next four models ar •
problems

different degrees of freedom and the last is a production

scheduling model. The models are in posynomial form except for

the last model, which is in the generalized posynomial form.

Different optimization techniques are used to maximize the dual

function as required by the nature of the problem. The results

! various computational difficulties are discussed.

The last problem is solved by the Lagrangian algorithm.

A Simple Problem [17]

This sim; can be stated asi

Minimize

y r= 1000 :

': c 109 x~ x"1

oject to

(1)

2,5 x 10 5 x
2
+ 9000 x"

1

^
1

< 1 (2)

x >
1

x >
2

The problem has k terms and 2 variables. Hence it has one

pee of freedom, The dual function which is of the form of

; of Chapter II, can be written asi



v<6>.<£> &> &> V,? >3 + H)3 (3)

J- ^ -*'

where G = 1000
1

1

'2

1

C :

•':• 10^

2.5 x 105

3

G. = 9000

The objective function ha, 2 terms. Hence the orthogonality

condition is given byi

6 + 6 n rs 1
1 2

CO

and the normality conditions are given byi

6 - 6 - 6. «
1 2 ;

:-

6 +6 - 6. s23 **

(5)

(6)

The minimum value of the function given by equation (1) is

obtained by rt 1
the dual function given by equation (3)

subject to equality constraints (*), (5) and (6), These

equality constraints are eliminated by expressing vector 6 as

of a normality and a nullity vector as explained in Chapter

II. Thus,

6, = b +

the above substitution the problem is transformed to

;ion with respect to single variable r and the Positivity

cc



25

Table 1. Com ate of tl ?le

md Jeeves

method.

r
l

V(6 ) x 10
12

.

functional
evaluation

.80 2.15 1

.90 4.57 5

.95 6.53 10

.97 7.73 16

.98 8 .
' 8 20

09 8 . / 26

1.00 30
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6 >
• (8)

The pro! ;
i

jolved by using Ho and Jeeve 3 search

procedure. The 1 itial value chosen for r .8. The accuracy,

€ , as defined in Chapter II was chosen as .01. The convergence

rate, i.e., the change of value of equation (3) with the number

of functional evaluations is shown In Tabl 1.

The optimum value obtained wast

y* =8.99 x 10
12

o

] the optimum primal variables weret

* = 8.996 x 109

x = 2.0 x 10"6

2

The optimum primal variables were obtained using the

following equations.

y* 61
xi= c

1

(9)

6.
x
2 - W

}
Th? x G

3

(10)

SEA POWER - HEAT EXCHANGER PROBLEM [6]

The conversion of the sun's radiant energy into useful power

Ls a challenging field to many engineers. A stumbling block

has be e extremely high capital cost of the equipment

required to collect and concentrate this radiant energy.

Most of the solar energy is received by the upper layers
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he ocean. Energy from 1 i
slbly be colled

by a he; .ine cycle which consists of direct evaporation of

ber from the upper layers, and, later, afber passing through

, bines, condensation on the cooler underlying water. The steam

por pressure in eq with the cool deep water is so

low that extreme!, bines are required. An approach that

circumvents the need for extremely large turbines Ls the use of

an intermediate fluid, such as ammonia, which has a high vapor

pressure at room temperature.

The avoidance of costly, large turbine is achieved only by

introduction costly item, namely, the heat exchangers that allow

heat to flow from th i surface of th<
'

oiling ammonia

and allow the same heat to flow form the co .onia to

ccol deep water. aomic feasibility of this cycle

depends primarily on the size of the required heat exchanger,

our objective is to minimize the required surface area of heat

exchangers for a sea power plant of a specific power capacity.

For derivation of the model the following nomenclature has

been usedt

A = area of heat exchangers

C = specific heat of water

f - friction coef i/ioient

h film coefficient of water

h' s film col- nt of ammonia

« mass flow of water

p = power output heat engines
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p - net power output
N

- friction loss in heat exchangers
r
Hx

P - cower loss by mass f

~ Prandtl number
r

__ a rate

T _ of hot reservoir

U = water flow rate

a AT = temperature gradient to heat engine

PAT m total temperature drop across water boundary layers

P MT = total temperature drop across liquid ammonia

AT = ch , . iter temperature in heat exchangers

AT a , difference in hot and cold reservoir

f
- density of water

)? - d iffuser Ion

C = engine efficiency

-1 = priraemover's efficiency.

From thermodynamics the available power can be expressed as

. AT n U1 )

The heat flux Q is restricted by the dence of the water layer

of essentially laminar flow that clings to the surface across

which water Is flowj . The heat characteristic of this film

s specified

Q = hAi 3 AT
(12)

The film coefficient h can be expressed
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h _ f pcu C13)

2/3
'

2 Pr

ovement of h can be obtained by increasing the

ooity U but this is obtained only at the cost of an increase

ln pow ,. -ed to drive water through the heat ' tfigers.

v is expressed as

P = iffu3(2A) (1 '»>

Hx

The heat flux Q is restricted also by the impedence of

boilj nmonla; to boil ammonia at a finite rate, ammonia

jaoent to the boiling heat exchanger must be slightly super-

bed. The relation between rate of boiling and the degree of

perheat is given by

Qh1 A i P
1'^ U5)

The overall drop of water temperature in the heat exchangers

is inversely proportional to the mass flow. We would like Y

to approach zero so that a, .8 and S
1 could be larger. However,

the smaller the value ot y la. the larger is the mass flow.

Thus we must have

(16)
m C y^T = Q

and the loss of kinetic ener

m U
2

)

(17)

izing, the objective function to be minimized is bhe
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}

>
Drop across boil

_y

}

across

1

lyer

wa1

L.

'J •
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area A, sub;; bo constraint, that A must be large eno

lux Q across the water boundary layers

1 across the liquid ammonia, and the heat flux Q must be large

enough to provide not only P^ but also P^ and P^. Thus,

o minimization of is to be made with respect to the

lf U, a, p, P
1

, Y subject bo the preceding relationship

; well as to the temperature distribution relationship.

o Dl v 1
(19)

The temperature dis1
i in Fig. 1. The

formulation of this problem is due to Zener and his associates

and for detailed derivation the interested reader is referred

to [6].

Solution b£ Geometric Pr0S2^illLn̂

In geometric programming all constraints must be represented

by inequalities rather than equalities. Although the constraints

in the prece section have been formulated as equalities, it

is obvious : an be formu.l as inequalities. Thus the

heat flux across the thermal barrio it be equal to or greater

in the heat flux Q through the heat engine, because some of the

heat flux ac the heat exchanger can bypass the heat engine

if this permits a reduction in

Hence the constraint (12) can be formulated as



9 < i

and the constraint- (15) a<

q

h
1

"

^T

and the constraint (18) can be expressed as

; AT/T) Q

PN+ (l/ €-)(PHx+ PkH )

the = si £n of constraint (19) can be changed into the < sign.

Hence the primal pi afined as

Lze

C
X
A

ject to

(20)
°2 UaT- 1

G -SL- < 1
(21)

C -L+ C -^- + C, ^ < 1 (22)

> Qa
+

5 Qa + °6 ay -

G
?

a + C
8

E3 + C^ 1
+ C

i()
Y < 1 (23)

rre h has been eliminated from (20) i rid ra from (22) by using

(13) and (16) respectively. The constants C^, C ,
C
Q

,
G^ 3 C

are all u nd the constants C
2

;h G
6

are

C
2

=
ffCAT



2

3
"

G
5 £ €?' (AT,

_ ?JL*. IP"7

O ~ ^ ^1 n a m2£ € X C AT

The following numerical values are taken for the constants

appropriate to water at room temperature

i

P
r

- 7

f • 1/125

P
- L i/c i

;

c = ^.18 J

T = 300 °k

€. 0,6

1 = 0,6

7 a 0,2

h1 a 1 im
2 °C

AT . . 11 °G

This gives the following valuer of the constants

»

c a ;-:o

2

.- 0.18
3

G Ij4.5 P
N

C a 6.0 X 10""8

5 q
C. a 2.15 X 10"°
6
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, has 7

.06 It has 2 degrees of freedom. The dual problem to be

cimized, V (6), has bhe same form as Eqn. (II) which is subject

to normality and orthogonality constraints having the same form

as Eqn. (3) to Eqn. (10) of Chapter II. As the problem has 2

r ,s of freedom the objective function of the dual problem

can be expressed as a function of two independent variables ^
r «

2

The problem has been solved by maximizing the dual function

y(6) by using Hooke and Jeeves search procedure. The convergence

rate, i.e., the change in value of V (6) with functional evalua-

i on is showjft in Table 3»

The problem has also i

solved by differentiation. Two

equations are obtained by di- itlatins V (6) with respect

to the independent variables and putting them equal to zero.

Thus j

r a_V(6.), .
(24)

Kl- drx

p dV(6).„ _ ( 25

)

2 " dr„
2

Equations (?A) and (25) are solved by Newton-Raphson

procedure. I

gence rate i.e., the change in the function

id change of the : -

tble 2 and

pi j. 2 and '),

e accuracy G is chosen 0.001 for both Newton-Raphson and

Hooke and Jeeves search procedure. The computer program is
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Table 2. C 'ice rate of the sea power

pro • lewton-Raphson

'\od .

Lon Var '. ab 1 e s Function values

r
l

r
2

T~»

c

1

•

L

2

1 .05 1.1 6.8

2 .46 .05 1.4 1.6

3 0.2 0.3

4 .42 .04 0.0 0.0
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ile 3. Co ace rate of the s

or problem by the Hooke and
Jeeves method.

Variai
- V(6)

No. of
functional
evaluationr

i
T
2

M .02 124.69

.42 .07 u?.79 7

.40 .04 126.03 33

.42 .04 126.72 41

.42 .04 126.75 59



Table If. Optimum values of deal
parameters of the sea-p<

problem.

A Q LT a P

126.?5 11^-8 2.8 0,5 0.32 0.16

37

0.02
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9

>

C

:

!

'

CJ

c

Iteration No,

.
• convergence

!.
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CO

o

CM

o

i Lon No.

3. The rate oC change of variables in the sea



written in FORTRAN langu; ^ the APP C The

ire given in Table ':

.

There is no significant difference in the results between

I r of iterations required is much

Newton-Rapteson ©dure bhan in the search procedure.

her time needed was 22 sees for the Hooke and. Jeeves

cedure and about 19 sees for the Newton-Raphson od.

This is reasonable because the Newton-Raphson method requires

e computation time. The hson method, seems to be

more efficient but, as will be seen c, it may not always

converge.

, CONDENS] 'CGM PROBLEM

This model I i

: ten from a pater of WHO rriel [l].

Detailed derivation of the formulation can be obtained from the

,. Lter. In this model the design of a vapor condenser

with fixed h 'ad is considered.

Consider a horizontal condenser in which a fluid I

;
a

ren flow W is heated without ;e from iture

T to T by condensing saturated steam. Optimal, design

involves minimizing the annual cost of the condenser, consisting

of three terms

t

1) Cost of sti

2) Fixed charges on the condens

3) Cost of pumping fluid through the condenser tube.

In the derivation of the model, the following nomenclature b s



fcL

A
i

s- inside heat tr

A
o

- outside heat transfer ar

B = pressure drop factor

C - annual cost

c
,;

- cost of e !
by

C
F

G
H

- fixed cho-rges

unit cost of condenser surface

c
p

ss specific heat

G
Pu

- pumping cost

c
s

- cost of steam

0.
1

- inside tube diameter

D . tube r^ i;r

f = fanning frid

S . specific . .ty

k - thermal conductivity

1 - tube wall thickness

I, - tube length

N ~ No. of tubes in condenser

P = depreciatio

- plant factor

Q - condenser heat load

V rate of heat transfer

- fouling resistance

T, s neon bulk temperature

T - temperature

W - flow rate i

i

- coefficient in n cost equation



k2

a Lent in steam cost equation
1

A P = pressure d:.

j> i

1 - temperature rise in fluj 1

b
condenser

AT
mi

A<j through inside tube
mf

£>p :nsing
mo

film

f . iling

film,

suming that the cost of steam can be expressed as a linear

function of Its saturation temperature, can write!

C =a Q + a, T Q {)/:/<-So Is (26)

The 3d eharges on the condenser are expressed as

C = G P A .
/year)

F H c o
(2?)

pumping cost 1 by

cPu= Pw .

(Vyear) (28)

The objective is to select the values of T , A -

s o
and AP

1
inimize the total annual cost given

C _ G + C 4- C
s P Pu

by

(29)

The steam temperature can be written as

3 bid ml
(30)

hout going into mathematical detail, from ti

tronsfer, the first component, the cost of steam, can be

• ressed as
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0,0

(3D

ihere

P
l K

f
P b 2l ,

0./2j
(32)

2, >0.lk n >1.5, T
1.2

•VT h ) (°p) W

p = oTB~" x
0.6 0.22

i|.

U
' (0.023) k n

(33)

!

ax Q q Rp (3*1

1 changes can be expressed as

G = S N D L
,' 3 o

(35)

where

P = TT C
tt

PK
3 He

(36)

and the pumping cost can be expressed as

P^ L
(37)

c
Pu

= "^.8 i,8~

;). N

where .
n ?

0.0.^6 Cw B Pv W
2 ' 8 (/W 0,2

(38)
^ = *

2 1.8
,° (tt)

Total annual LVen by

»i » 2
D
i

0,8

+ P
3

N D
q
L

G - % Q + a
l

T
bm "7*75 +

N0.2

Li- (39)
*

D
^' 8 N

1,8
~
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tj i terms are cons Lve terms

/ and are subject to optimi ion. Thus the • abl e

it funot ion,

n T-T n T i^N D
Q
L + ^

i

.8

* N D
±

L
(40)

ctical consideration the cons t raint on Inside and

' de dj ::.er of the tubes isi

D
o

- D
- > 21 (41)

IB Of 'ic pre ting

constrain!: as

D
o

|3 ?
D.

+ D ™
o

(42)

where
o

:: 21 and P = 1

Also from a practice t was found DQ can not

1 inch. Hence this constraint can be included asi

D
o

< D max—

or p
8

D < 1
o ~ (43)

re p

,

= 1/0 12

The folloiaing numerical . : have been 1

W = 500,000 lbs/hr.

T^ = : L95 °P



'

T
b2

a 205 °P

i.
1

bra
= 200 °F

°'l
= io~

y
%/ ?u -

;/sq, ft.

C
E

s 10 hr.

Pc = 0.1

P
f

- 7884 hr/yr

1 a 0.8

• P - 60.13 Ib/cu.ft.

A a 0.20 cp.

k - 0. J93-BTU/hr-sq.ft.- F/ft.

G
P

1.01 BTU/lb

P

a 210 °F

?f
3 lb/cu.ft.

ft a 0,26 Op.

k
f

a .393 BTU/hr--sq.ft.°F/ft.

X - 96O BTU/

1 .049 Inch

B 1.2

R
P

a 5.68 X 10"*^

The foil owlr] 1 of the constants are obtained 1

1
a 172,400

3
2
a 97,790

P
4

a 1.57

a 0.0382

P. a 38;

5



p^ = 0.00817
6

p = 1,0
7

= 12.0
' 8

programming

The problem consists of a total of 8 terms and h variables.

Hence it has 3 degrees of freedom. The dual problem to be

bhe same form as Eqn. (11) which is subject bo

Llty and orthogonality constraints having the form of Eqn.

(8) to Eqn. (10) of Chapter II. As the problem has 3 degrees of

freedom the dual objective function can be expressed as a

function of 3 independent variables r^ r , Ty ariables

are eliminated by the use of linear eq bs.

The problem has - bhe dual function

V(6) by using Hooke and Jeeves search procedure. The convergence

rate, i.e., the change of value of V(6) with the number of

functional evaluations during the search is shown In Table 5 and

sd in Fig. *K

The problem did nob converge to an optimal with the Newton-

Raphson method. The initial value r^ = 1 1=1. ...» 3 was

tried. The difficulty bhe Newton-Raphson method was in the

first step where the values of r violated bhe positlvity

mstraints

3
b° + 2 r. b

1 >
1=1 x " ~

so widely that they could not be correcte
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'-7

1000

899.3

CCO .

o
c
a

U00

200
zco

BOO

of functio ia'1

4 # Th i ce r:

by the Hooke and Je

the condenser



5. Convergence rate of condenser

i prob .' the H

Jeeves method.

Lab les i
!o.

Functic
Luat Lonr

l
'?. r

3

iue

. LO . 2 1 196.64 5

. 8
; .3 70 .775 272.83 99

.620 .595 '

. 53 200

Mo .355 .415 532.16 304

.3 .355 . 3 .99 352

.270 .345 .245 702.24 403

.190 .165 786.06 449

.TOO .330 .075 867.08 501

.0 .325 .060 879.67 555

.083 .3 26 .05 7 ,69 602

.067 .325 .041 890.07 650

.045 .322 0. !.26 701

.03 5 .320 .008 899.33 783



The foil
J '

m variable annual cost = 899-33 l/year. T,

i parameters werei

D a 1 Lnoh
o

. ,90 inch
' i

N =11^.16

L a 27.^ feet

, t mal dual variables

•
2 S \ 6

5 ^ ^
6
8

.i934 .*564 .0617 .1790 .0351 .3203 .0085
1095

r , £ , for Hooke and Jeeves chosen

H. The computation time taken was 115 sees.

COAL EQUILIBRIUM PROBLEM

This model is taken from a paper of Passy and Wilde [13].

ST
principle, a chemical system

ls |

Lum at co, pressure and temperature if and

only if its free energy is iIbub. To formulate this prob

a chemical syst es, G±9 G^ ....

G and 1« Lea occ ' \±
>

' r
A . ..., , x

where I(k) is

k2 fcfl(k)

i

' V T1

•resenting position of phase

vi n
its are n _ i n » • •• « \

( x )K

it nt



so

n « [N i N2> , ... N

In this notation t* xss balance equation for each chemical

element B. is given by
J

P C(m) in? r "(W
j.

mko J

.

; a is the number ^ B In chemical

mkj _ .

cies A . b is bho mass in gram atoms of chemical element

and r ls of di1
'

: elements in the

J

systen.

The Gibbs free energy G(n) of the system is given by

k=l i=sl
K1 k

1 00
where N =*. 2 n for k * 1

,
.

. • .
?

k i=l kl

and the second term is the sta ' free energy. The equilibrium

concentration n* is found by minimizing G(n) subject to (32) and

:. constraints,

n > for all i and k
L

"

This minimizing problem, which has a unique solution In the

trivial case, is equivalent to feometric programming

ce

'
l)

-

--G(n)

V(n
ol

, n) a erp<- ) ) ?**>>

iere (n , n) is the vector d by augmenting one
ol
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component n
o]

to tjie tor nj the coi ponding coefficJ G -
ol

i K .0 unity.

The mass balance equation can be ; bten as

n . 1
ol

W)

>, A .
n =.- J = l

n v 1

(
...» r

re a
t _,

= -b, and I(o) •-.-. 1

01 j J

e identified as the normality and orgonality conditions

as equations (9) and (10) of Chapter II, Hence the r

>. of a chemical libriiim problem can be

I |

r -b

.

it b 3
(49)

.subject to constraints

h ( t ) < 1 l , . , . ,
P (50)

I(m) r

h (t) = £ .
tt t

m fc-1 3=1

(5D

and r is the number o t chemical elements B. , and
J

b.
J

is the mass of chemical element B,.
J

1 the c>: >nding

prj able.

The proble here is due to White, Johnson and

]. The stoichiometric of hydrazine and

i
>0

'

•

of 750 psi is consid.e The

and nt 1 are 2, 1 iand 1
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respectively.

the objective function is

g
o
(t) * l

±
x b

2
x t

3

B^Ct) - C
x

t
x
, C^ b* + G

3
t* t^ t

3
+ C

5
t* + G(. ^ ^

j c
?

t
3

b
2

, G
8

t
2

, c
9

t* + G
1Q

t
x

t
2
< l (53)

loua possible constituents at equilibrium and the

corresponding C a /en as
o

H = 4.411 x 10
2

H = 2.846 x 10 7

2
14 '

H 0= 6.160 x 10

= 3.703 102

y.107 x 10
10

2
6

[ - 3.225 x 10

6
) = 2.930 x 10

O » 4.^71 x 10^

2
= 3.796 x 1011

OH * 4.289 x 109

putting y x
. 103 \ y

2
= 10 t

2
y
3

= 10 t
3

The objective is to minimize

3o
(y) = 10

16

yf
y'-'- y"/ ™

subject to
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(y) * .WU y. + 28.W yj + 61 ?°3 y
3

1 -1-

+ 710,7 /
3
+ .3225 y xy 3

+ 2.93 y/3
+ .;<WUr2

: 0.3796 y* + 4.289 7^2 - X (55)

:;lon by_ geora '.'US

The p is il I
«* 3 variables, aid hence a

cee of. freedom ?. The problem is solved by , »
prog*

using Hooke and Jeeves Search procedure, As the degree of

fre /t
..

j can be e >sed as a function

of 7 1, lent variables, r.. 1^1 ?• The convergence

ble 6 and the same data

is plotted in Fig. 5*

The Newton-Raphson method obi em.

An initial value of ^ = ,
i ^ 1 ? '

The

difficulty with th bon~Raphs>n method occurred after the

first step when the value of the variables r. violated the

o I
bivity consti T\ r

± ~ ~ °

so widely that they could not be corrected.

The computation time for Hooke and Jeeves procedure

239 sees. The accuracy € was chosen as 0.001.

The following values of prima] variables were obtained at

the optimum.

H J
?.

y
3

0.056229 0.2'«3/J. 0.025817
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Table 6 . C ence rate of the chcmi

1 equilibrium problem by the HooKe

and Je

—-»•

Function No, of
Variables

x 10 3
funct i onal
evaluation..._.—

Mi

.150

r
2

.250

v
'3

.150

r4 r
5

r
6

.100

'7

.150.050 .100 1.08 14

.050 .400 .050 .100 .050 .050 ,050 7. 112

.050 .4] ,012 .150 .012 .012 ,075 9 • 49 224

.044 . 431 .006 .125 .012 .019 .081 10.28 318

.050 . 44? .097 .016 .022 ,084 10.89 404

.044 .459 .003 .075 .016 .028 ,087 11.30 522

.044 .461 .002 .073 .016 .028 .089 11.35 606

,056 .473 .002 .048 • ( .034 .094 11,62 701

.050 .478 .002 .041 .017 .036 .095 11 . 71 804

.044 .483 .001 .032 .018 .037 .096 11.77 1001

.041 .486 .001 .026 .018 .037 .098 1091



I 1,79 x

al dual v

6 =1.00
1

6 .002
2

6 = .1^6
3

6 = .0^1
5

6

6 = .001
7

5 Q « .0x6
o

6 = .018

5
10

= .037

• , .097

The dual variables ^ to 6^ represent the opl

equilibrium concentrations in moles of the corresponding species.

10BLEM

This model is taken from a W< '
Research Report [?].

The explanation of the model and identification of variables

are not disclosed. The problem is stated as followst

Min

u (i;) = .2007 t
3

t
k

t
5

+ .2597 \ t
g

t
6

+ 3.69 x 10%/^ t
2

t* t* (56)

subject to

Sl (t) = k tl/t5+ 6 t
2
/t5+ ft t

3
/t

5
< l C-57)
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c
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c
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4
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od.



,le 7. Convergence rate ie

i by bhe

•d Jeeves method

.

Vari.abl

r
2

V(6)

, of
notion L

r
i

L on

.200 .200 55955.00 1

.400 00 58391.38

.325 .075 65932.50 : )

.337 .100 66^20,06 30

.312 .106 66671.75 40

.322 .100 6669^.62 50

. 317 .103 698.93 60

.320 .103 66703.75 70
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, 8. " mce rate of tha Transformer

prob ' thod.

Va c
'

es ••t: ion i e s

Iteration
r

i

r
2

F
1

F
2

. 00 .2530 •3.5099 14.5100

1 .2051 . i 00 - .8765

2 .224 K) .0999 10.8018

3 •28 . 97 .01 1
: 646

4 .2248 •)9 .0002 5.9995

5 .2372 .2 29'+ .0065 3.8335

6 .2793 .1691 .0547 . 322

7 .3173 .1091 . 0492 .1677

8 .3193 .1033 .0010 .0004

9 .3193 .1033 0.000 0.000
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g (t) = 6
i

+ 6 t
;
/t

6
, 9Mk t

1
/fc

6
(58)

Solution b£ geometric programming.

The above problem has 9 terms and 6 variables, and hence

the >m «
The dual function can be

pressed with pendent variables ^ and r^, The p

has been solved by maximizing the dual function by Hooke and

Jeeves procedure. The convergence rate for the search is shown

in Table ?. The problem has also been solved by the Newton-

Raphson procedure and the convergence rate is shown in Table 8

in which the functions ?
±

and ?
?

are derivatives of the dual

function with respect to r
;

and V
z

respectively. The s

are plotted in Pig. 6. The accuracy is chc i 0.001 in

both bhe .n-Raphson and the Hooke and Jeeves procedure.

The following results are obtained j

Minimum value of the objective function is 66703-93

>rimal variables arei

\ \ S % *5 ^
19.0?^ 29.690 :• 6.601 *26,532 70.625

And the optimum dual variables aret

\ \ S \ 6
5 '*

6

?
&8 &9

.1,3 L9 -38 .08 .18 .17 .15 .32 .10

. [ON - INVENTORY PROBLEM

This is a hypothetical model in which the optimum p<

~„a ^^r^t-orv 1 pvels are to be determined
ding production and mventoiy xevej.
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Let

:) = Kt)

z(t) , P.(t)

>n Equatic 1 (59) !QS

:

"
. z(t) - Q(t)

i this the difference equation can be written as

a S(t) + (Bit) - Q(t))^t

(62)

(63)

(6M

Dividing the entire time period, into five stages, the

al equation for cost (50) can be written as

I [C-AI - x.)
2
* C

p
(P - z )

2
] ^ (^5)

G
T

erence Eqn. (64) can be written as

x - x + (z. - Q.Mt 1 = 1, .?., 5

i 1-1 i x

(66)

numerical values assumed are

a : 2 b = 1

°i
= .1 I

ra

= 10

C
P

= .01 t a

t .2

p = 5
m

t = 1
f

To ,

5ometric |
ramming bhe objective function has

to be : ised in poly, Lai fo l. Thus rewriting Eqn. (65)

< 5

C . E CAt x,
2

,. E C At z
2

- > 2G I At x

T L
I 1=1 * 1=sl

_ y ? c P At z. + Constant (°'i

1*1 '
P M



ere Constant = C.
r

I_ •:• C^ Pm
2 2

\- c
I m P

llze th -ion of Eqn. (6?)

subject to the constraints (66), An to solve

the problem I .
lo problem has 3<+ terms

and 10 variables, and hence th , -ee or lorn is 23. The

problem is not In posynomial form; hence the e: Ion of

osramming as discussed in Chapter II had to be used.

The attempt was unsuccessful because of the difficulty in

. an initial \ sible solution r .
.

i the Lem has

23 f freedom. A feasible solution of r.. , j = 1, 23

has bo be found which satisfies, the inequality constraints given

Ions (21) and {%k) of Chapter II, which, are

kt -
(68)

and 5 -* E o. . 6V_ > • k » 1, ..,.., p. (69)

where

fco
=

k t~i
kt

.

kt

d j

6 * b° + L r.
- " -

.; 1 J -'

a = + 1
k ""

a r; + 1
kt x

and d is degree of fr-

The probl 5 constraints. So an initial

solution of r has to satisfy 39 inequalit ts. The

: used to '.
,

7 van by

(69) subject to constraints (68) until 6 > 0. Hooke



s search is not ^ nunu

of Inequality constraints. to this difficulty an I Lai

feasible solution could not be obtained by this method.

The above probl s solved successf

U

vngian

polj 1 optimization technique [3]. To use this technique,

the , naa to be ! J-n the following form

(70)

jeot to g = 1 mali ...1 M (7-D

Minimize g
o

1

re g , l" a . C 5 X^tn --d/l M (V?-)

m tr_-l
nt mt n=l n

ere C >
mt

:\ I. number
ttn

a =_- + 1

objective function of the above problem given by

Equation (6?) is in the form of (70). The constraints as given

i, {66) can be transformed according to the requirement

this techniq i follows

»

rev; •

:

. \ {66)

Xq :
Ql

t x
o

-
Ql

t
-

and

L - —fi- + —X = 1 1 = 2, ..,, 5 (7*)
•c Q t

T
Q t

i x

(74) are in the required form and

:
escribed in Civ can directly be applied.
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A difficulty in this Lea, thia function overshot

the minimum for some start; Luqs bee use of too large a

,. Thi: ficulty was ne by forcing procedure

»p size to a certain m ! l of bhe

Var . Various limits were differ it starting

values. The number of iterations .red tc c bo the

h of these cases ble 11. The

ergenee rates for two typical st '
values are given in

Tables 9 and 10. The optimum values of pro *s and inventories

ble 12, and are plotted in Figs. 7 and 8. The

function is assumed to have converged when all components of bhe

or vector as defined in Ch 'e less than or equal

bo 0,000.1.

'ained is

= .37^
T



,,,, o
#

ate of: the

blera with si '

va l
•-- 10, L=l,...10.

1

: inf*

-9,9999

1 -9.

2 -9.

3 -9.9;

-9.1

5

lost

I

20 30 100

)999 -9.9999

;90

-9

.

/50 -9.3/59

-9,8759 -9.8759 -9.1

-°,8759
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10. Typical com
pro!

x. =
l

.ice rale for the inventory
dues

5.0 '. : 1, . . . , 10,

CotSt

It ' on
No.

Pere en'. forcin -

50 .100..o 20

0iV-F.

-7.7499 -7.7^99 -7.7499 -7.7499

1 703.29^6 -8.6153 , 2914 -9.5404

2 1022.^:' •-9.3822 •7.4436 -9.6252

3 378.3039 -9.0118 -8 . 2156 -9,8360

93.0727 • 9.5895 -6.3799 1.868O

5 ). 61*59 -7.7937

6 ,2251 -9.058.1 ~7.v099 \8758

7 -9=0035 -8.929; -7.^086 -9.8758

8 -8.2692 ...9 . 30 -7.3310

9 -9.5^99 -9 3213 •7

-9.7332 -9.2770 .02

! -9.7480 -9.1200 "7.:.V35

12 1.7644 -9.1454 ?. J97

-9.7679 -9.1501 7. 374

i4 -9.7678' -9.1504 ^3360

-9-7677 -.9/1506 -7.3353

16 -9.7677 i

•) -7.33
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Le 11. 1

-

"

No

fon

0 50 100

No. Conv, iv. v̂ o. Conv.

(..0 '0 -- w '

;•

5.0

6 .
6

5

8 . Conv,

9 No.

10 'V

20 lo. C

7 7

7 LI Conv,

5 5 5



levels,

z(t.)

x(t) l

t+ At

0(0

70

0.0 - 0.2 14.01

.2 - .." 7

.

,77

A - .6 1 2.50

.6 - 2.70

I. 9.84 4.62 1

.

9

L. - 10,20
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71. DISCUSSION

The geometric ]

algoriti In its present form

irge class of problems of ^

mnd in practice.

In the polynomial case the method always produces a global

minimum, not just a relative minimum. The Lnimua i

; to

the maximum of the dual function whose constral bs are tin,

If the primal problem has z co deg e of dJ " mlty, the solut

of the dual problem, hence the sol in of In il problem, is

obtained by solving a system >f linear equ< ins. In the case

of zero degree of difficulty, each in ne' o« i

function has an invariant weight mlque

solution of the linear constraints. Tin ' w
>

.portance

of this property is ti he weight of eaol tl objective

function is independent of the coefficients.

The extension of geometric programming, as developed by

Wilde and Passy by using Kuhl conditions, is applicable

to any problem involving g sraltzed polynom But any

deviation from the full polynomial situation invalidates the

arithmetic-geometric mean inequality and its useful applications.

The optimal weights occur at stationary points of unspecif

acter in the general case, and this precludes direct search.

Another difficulty in the general c i
to longer has

a guarantee that the solution obtained by working with the di

function corresponds to a minimum of the objective.

he existing theory of generalized geometric programming

for polynomial optimization gives no way to compute optima



fc in the special case where there is exactly one more terra

there are independent variables. Also the theory is formulated

terms of inequality constraints, al physical

; occuring in pi are i re often strict

equalities. The Lagrangian .
'

-allzed polyn*

ition [3] La table for equality cons: 1 problems,

eh was shown by rapid convergence for the production

scheduling model with 23 degrees of freedom.

The convergence is not guaranteed for the above method,

eover, even '

l the algorithm does converge, the point

found may be a saddle point or evett a Lly, a local

b
'

3 the global minimum.

Sometimes during the initial iterations, the method takes

too big a step and o >ots the minimum. This results in no

convergence. This difficulty was overcome by restricting the

step size to a predetermined percent of the variable.

Despite these difficulties, both itric programming and

the Lagrangian algorithm can 1 ;arded as poineering fields

in nonlinear optimization with nonlinear constraints and they

have great potentials in engineering design and syst
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c

c

c

c

r inr- computi . „

us

i

RCH

I

1

3 1 FORMAT (31.3)

5 l2 (AT UH-." OPTIMUM ANNUAL 2>

7 | i« EXPONE R'»

8 . r ( F 2 2 . 6

)

9 ;ao 10, M, !X,K1

i.j AD 11,{KA(I),I=1,K1)
,i tEAO ll,(K8(I),I = ltKU
12 \D i3,({A(I,J),J=lfM>,I=lfNX)

13 KOUNT=0
!4 M1=NX-M-1
15 1 + 1

16 N3=-N1*1

1 7 •

!
'
L

[8 ( 1)~1

19 KA(1)

20 600 1*1*15

? i 6 d: s i g ("i ) *i «

22 (1)=1.

23 l"(2) = l

24 CU)*1000.
2 «5 C(2)=4.*(10. )**9

C{3)=2.5*<10.)**5
2 7 C (4) =9000.

28 )0 I-l.NX
29 00 100 J=i,M

30 *AU+l,n=A(I,J)*SIG< I)

31 OU 36 J=1,NN
32 36 AA{ 1,J)=SIG{JJ

33 101 J*ND,NX
34 101 AA(1,J)
35 I 98 1=1, N2

36 DO 9 8 J=HI*
IA=N2*(J-1)

9R l!( I fNA) = AA( I, J)

• L ) = 1

.

! I-2v f l?

r IALLITY AND .NULLITY VECTORS
. rH [N c S USED HERE ARE PROVIDED BY I

42 (H,N2,D,L2,L3J
. } GO TO 125

CALL IH,A1,B1,N2,N2,1.
Jl = l

46 DO IC4 J

Jl- Jl+l
i 3 I = I , M 2

i I )=-AA( I, J)



.

', [ = 1,1

52 : i ,Ji)=32( I)

= lfN2
[ ,11*81(11

55 { L

56 DO 51 I=N4,

57 11=11+1

58 51 J=ltl
[F(J-Ii-i) 52t53,52

60 53 B( I, J 1=1.

61 GO TO 51

62 52 B(I.tJ)-0.

63 : r t N U i-

64 00 5 1=1, Nl

65 5 R ( I + 1 1 = . 8

c J INITIAL FEASt

66 11=1

67 ITEP

68 n r=o

69 126 DO 128 J=2

70 128 R0LDU)=R(J1
71 L2 7 L 1= 1

72 J 1 = 2

73 NC=1
74 DO 111 I=lfNX

75 sm = o

.

76 1
1 1.0 J=2,N3

n 1 1 :
s(i)=sn)+R(v|i*3(itJi

73 Df:LI 1 >=BI [,11+5(11

79 111 CO
80 [FUTl ,129,129

81 21 j I F- { E L ( 111 ) 206,207,2

82 2'; 6 Chi I11 = DFL< 11)

:i
:

;
IF(MC) 217,217,213

217 tF(CHIIl)-OLO) 218,209,209

85 218 GO rO (310,2 11) ,1.1

86 310 R(Jl)=R0LD(Jl1-.l
87 I rER=iTER+i
88 .

89 OLD=CH(U)
90 LI = 2

91 ro 200

92 2 11 R(J11=R0LD(J11+.1
3 I T

:

- !" 1

9'v GO ro

95 ? . ) OLD =CH(

LD(J11=R(JU
97 LI" '

5
1
. MC - I

IFU1-N31 214,220,20'

214 J 1 = 1 + 1

22. Jl=2
103
104 t 11=1

D(J1)=R(J11
212 IF(DEL( 111) 127,21 1,213

i

.
\ IF(U-NX) 215,216,.

108 L + l

soLunoi



112
I

•

114
115
L16
L17
113
119
L20
L

'1

122
123
124
125
126
127
128
129
1 30

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
l

f53

159
160

161
162

166

1 9 I

. 1

DO 189 L=2
{ L )

(V)

! = V

L B L

00 307 1=2, N3
R{J)=BASE1( J)+DE

IV)
'

', rO :
1,302),

M

IF(V-T)
IH 305,3
ALO = T

RI'JI -1U)-
. i V )

if- IV-;.

LD(J)-BASE1 (J

)

fUJ)= IJ)

(J)

308

528

309

1 ( J )

M=2
L3),L

[FCAL 315,3157 ?

IFULD-T) 308,308,309
[F(OE-.OOl) 410,410,311
DE=DE>
D I 528 J=2,N3
\{ J)=ROLDl J)

GQ TO 191
LO

DO 314 J=2,N3
.

^SE2<J>=R0LDtJ)
314

' SF

L = 2

00 1=2 >

N!3

529 R(J)=8ASEltJ)
l+l

IF( LO )C ) 101,191,129

U5 DO 316 J=2i I

BASE1(J)=BASE2(J)

130 R(J)*BASEUJI
R=NTER+1

[F< LOO" ) i JO, 190, 129

; 31/ J=2,N3
317 RU)=8ASE1(J1

.
= r

PRINT ).2,VD

JAINING OPTIMUM PI ,'ARlAOtES

Xl=DEUl)*VD/C(l)
X2=DEU3)/i .)*C(3) )

PRIM 22, XI
!l" 22, X2

GO TO 119
12'^ CON! INUE



167
12
I ! : \ .

119 86



SU3ROUTI u
) KM2u) ,KB(

,KOUNT,

L73 ??_ FORMAT (F22.6, 15,1

174 1.

175 IT +

1

I 76 00 1U 1 = 1 *N*

177 S( I)=3.

178 DO 11.0 J=2,N3

179 S(I )=S(I)+R(J)*B<I»J)

I HO [) :BtI,D+S(!)
r 1=1

182 t IF(DEUII) ) LI 7,117, 118

183 L-MXJ119, 120,12

13/+ 19 11=11+1
185 GO TO 121

106 117 tf=-999

L87 URN

188 12. K=1,K1

189 L7=KA(KJ
190 (K)

191 . 1

192 00 20 I=L7,L8
SUM(K)=SUM(K)+SIGl l)*DPL( I )

194 r(K)*SUM(K)

195 [ALAMMU.LT.O. ) GO TO 11 /

196
197 I

.

DO 112 I-i;

199 [F(0EL< Il.Eff.C. ) GO TO 112

2G0 Pl=Pl*(C<n/DEL t \ ) l**tSlG< I )
'

S )

112 CONTINUE
P2-1.

2C3 00 114 K=.1,K1

Lf=KA(K)
t. 8 -KB IK)

11/; 1 -1.7 ,L8

207 IFtDEUH.EQ.C.) GO rO L14

P2-P2*(C t 1 ) *ALAM(K)/DEL ( I ) ) **<SIG< [ )
U >

114
210 7-SiGM'\*(Pl*P2)**SIGMA

211 IT 22,V,K0UttT,Rt2l

212 . URN

21.3



50

ITER PROGi'

C -> c , *oost HJ700>

,KA(20J,KB(20),SUM(20)

2 10 FORMAT (3131

3 11 (414)

12 FORMAT CF12.3I

5 1,3 , {7F3*0>
r (15)

I \l FWMT S^^'eXPONeNt MATRIX SINGULAR".

READ 10»MfN f Kl

10 11«<KA(I J,I«l*Ki)
'

READ 11,(KBU)»I = 1»K1)

12 REAO 13,UAtI,JltJ=UM),I=:l»N)

3 j
. --N-M-1

- ->

L5
' H

L6 N'»-N2>1

C?2)^40«.
19 C<3)=0»18
20 C14U44.5

C( 51*0.00000006

22 Ct6>=0. 0000000215

23 C(7)=l.
24 Ci3)=l.
25 C(9) = l.

26 C(10)*1.
27 DO 44 l=l»10

28 44 SIGU) = i.

29 DO 30 t =U4
30 BETUl*l«
31 DO 99 I-l«Nl
3? 99 F1(I)=0.
33 DO 100 Ifl«N
34 DO 100 J^l

35 100 AA(J + 1»I)= \UtJ>
36 f 1 1 ) = 1

»

37 00 101 J=2,N

38 101 AA{ 1, J)-0.

39 DO 98 1=1, N2
DO 93 J=l«M2

41 :M2*(J~U
/,2 M(l+NA)*AAt! f J)

/,3 ;i) = i.

DO 102 I*2tN2

C
102

OBTAINING THE NORMALITY AN LITY VECT

THE SUBROUTINES USED HE E PROVIDED B/ i

CALL MINV (H«N2tO t L2fL3I
IFtD«EQ.O.) GO TO 1

LL GMPRD IH*A1,BI»N2»N2»1J
Jl-1

50 DO 104 J=N4 t N

51 J1=J1+1



»1)

104 1=1,

104 B«I»J1)*B2CIJ

57 DO 50 I-^1,N2

BtItl)*BKD
59 11=0

51 I=N4,N

61 11*11+1

62 51 J=1,N3

63 IJ-U-1) 52?53,52

64
GO TO 51

67 iue

00 105 J»ltM3

69 i J ) = 1 •

DO 105 1 = 1,

N

7i .lsC(I)**(Bn f J)*SIG<I>)

72 105 AKtJ)=A Kl

73 DO 108 1=1, Kl

74 L7»KAIII
75 L8=KBII)
76 DO .108 J=1,N3

il)=0.
'7*L8

SUM (l) J >

80 DLAM(I,J)=SUMU)
81 1 i'INUE

82
83 t(Ul)-.4

C OBTAINING INITIAL FEASi

84 11=1
Ii'ER=0
NTER=0

8 J=2,N3
123 ROLO(jMCd)

89 127 Ll=l
90 Jl=2
91 NO 1

92 200 OQ 111 1=1 1

93 SU)~0.
DO 110 J=2,N3

95 110 SII)=SII}+R(J) =8(1, J)

96 DELU)«B(M)>S{U
111 COM *'INUE

IFUTER-100) 210,210,129
?10 IFCDELUU1 206,206,207

. .'.' <m
IFINC) 217,217 9 218

102 ILD) 218,209,209
218 GO TO (310,211J»i-l

H.D(J1)~«05
IT

107 :hi 111

){ J 1 ) *



90

GO TO 2

H4 D(J1)*R(JD
115 Ll=l

NO I

117 IF( J1~N3> 21W2
118 214 J1=J1+1

GO TO 200

120 220 Jl"=2

121 GO TO 200

122 U»l
123 ]l5

212 IFIDELUIH 127,127,213
213 IF(U-N) 215,216,216

126 215 11*11*1
GO TO 212

, DO 112 K=1,K1
|

• i

130 DO 113 J=2,N3

i
i 113 sa<k>=saik>*rij] ;k,j)

•
'

-

; 112 ALAMlK)=DLAM(K»l)*SA<K)
I 121 L=2,N3

j /, 121 K*2«N3

35

137 121 SS(L,K)=SS{L tK)+SIGtii*BU,tV*8tltK)/QELCt>

138 I 122 I

DO 122 L=2,N3
- .(Lfl)-O.

(Un +BET )LAH(K,n/ALAH<K>

143 DO 1H 1 = 2, N3
! v> DO 114 J=2,N3

114 AECI-l»J-U*SSCItJ)-S3U,J)
1A6 DO 118 J*2fl

SC(J)=0«
148 SD<J)=Oo
; .9 00 115 I = li

U5 SCC J) =SC< J ) *SIG i I >*B( I, J)*ALOG<DEL< I ) >

DO U7 K=l,Kl
117 SDU)=SDUJ*8FT{K}*DLA •' >>

118 F i J- 1 ) =SC ( J ) -SD ( J ) -ALOG t A!U J > )

GO TO 201

155 204 DO 116 1=1, Nl
DO 116 J=1,N1

C
U6 m' W'm PROCEDURE FOR SOLUTION OF SIMULTANEOUS EQUATI

00 500 J=UN1
> J)

,V )
ii,oi)

>

: 1*1, Nl
16;> DO 56 J=1,N1

\ (J,IJ=-F(J)
LL CETR(AF,M1,02)
D2/DI

>»RU*U*I
57 J=1,N1

168 57 AFC'J.«I)-AE(JtI)

169 55 CONTINUE



I

3S{F1(I>

202 I Mi-. 01) 203,203,204
[ = 1 + 1

l77 l-Nl) 202,202*
205 P = l.

DO >N

II/DEIUJ )ELU))
1

I

181

c
IA8LES

AY=Dr-L(l)*VO/C(l)

1 87 ALF=DEL ( 7 ) / ( A'.AM (4 )*C<7 )

)

BE -DEL (8)/ >>

1 89 BETD^OEL 1 9 ) / < AL AM ( 4 ) *C < 9 >

)

X90 GAM=OEL

(

10 ) / ( AL AM 1 4 ) *C (101)
CC4)*ALAM<3»/IALF*DEL<4))

ig2 U :il>/IAY*BE *D£L$2)>
[NT 15»AY,ALFfBE»BETD f GAM,QtU

194 rO 119

195 129 PRINT 14, NTER
196
197 GO TO 119

18 125 PRINT 18

199 119 STI

200



. . 1

SIGN A (6,6)
I

DO 9 ;

205 {F (A<M-i t M-l))3 t

206 4 •X

207 1,I1))6,7,6
2C8 7 DET
209 5 IUE

210
211 6 13=

Ai(2*I3)-AU2«ID
215 B [2tli>=TE

)

217 3 DO 9 I=M»K

213 RaA(!,M-lJ/A(M-l f M-ll

219 DO 9 J=M»K
220 J AIC,J)=A(lsJ)-A<M-l s

221 DET=i,0
222 DO 18 I=1 9 K

223 18 M 1 1 1

1

224
225
2 •:•>



^ BI101 ,

1

"125.251 1R < 50 >'

L) t C UT(30)

2 I . 1

3 11 1613)

4 L2 FORMAT 11OF3.0)

5 r (5F5«21

5 ; IF15.6)

7
• '

)

,12,6)
9 i ( 5 F 8 . 2 )

10 i
(16F8.2)

U lf {l || ITERATION Nl 15)

2 2i (
• f- 1 : , 3

)

1 J 22 : 10.2)

L4 ?5 r (F15.6)
•

16 U, (KA( t ) f t = l f MC)

17 DO 61

18 1 D
19 LtLl

20 1 2 , ( A ( I , J t K ) 7 K

61 PRl U(ltJtK).tK-lri

22
i-OT

I
l)=2.10*OT

24 :)~2.3D*DT
>5 Q(31

26
27 Q(5)=2,90*DT

28 J* 1,5

29 5C C< 1,J)=C1*DT
DO 5 1. J=ll,15

L CiltJ)*2.*Ci*C2-*0T

32 >3 J--"6,10

33 C(1,J)-C3*UT
34 DO 52 J=16 f ;

35 5? CU,J)»2,*C3*C4*DT
36 C(2,l)=l/<5-Q(11 )

37 Cl2,2)'«OT/<5-Q(l) )

38 C (3,1) =1/0(2)
1 C( 3, 2 J = 1/0(2)

40 C(3,3)*DT/Q(2)
41 C(4,l)-1/Q(3)
;.;. ,2)- 1/0(3)

43 C(4,3)=DT/Q( 3)

CI 5, 1 )= 1/0(4)

45 ?)=l/Q(4)
46 (4)

';/ C(6,l)=l/G (5)

C ( 6 , 2 ) = 1 / Q ( 5 )

49 (5)

C1*C2*
51 6 K=l,10

:

1,

DO 57 Rslli

54 5 7 SIG(1,K)=-1.



9/>

62
63

6 6

57

72

73

75
76

77
73

79

81

34

86
87
88

90
91

!

93
94
9

l
3

96
97
13

I

LOO
101
102

105
LC6

1C8

110
111

113
114

*L1

,K) :1.

-1.

SIGH ,11 -1.

H 5 , 1 ) = '

.

S 1 G ( 6 , 1 I

!
[=1,10

I

L

00 140 M=l f MC

L1=KA(M)
DO U >U

L.

00 142 N = l,

mz p=p*i •

;,; Nl *

141 SUI hSIGfM.,K)*C«M,K) '

P

140 •!

[FU.GT. ) ! rO 138

1(1)

L1=KA( 1)

•I, LI

p=i«
DO

\ { V , K , N ) >

/GUI
00 102 C

'

Ll=^

DO 102 Ml, LI

00 I- rNC
psp*(X I KtN)

)

[M,K1*P
DO 105 N=l,NC
DO 10

•

'}

.

L2=KA(M)
CD 10': K=i«L2
P2=P2 + S

<
lGtH,K)*A(H»^»N)*W<MfKl

S(N,M1=P2
00 106 M*li

S < N , 1 )

KX
,-1

00 107 M=2iMC
I N=l,

KX I

.) = S(N:
rRA (SC,:: D)

II ,MDtNC,l
. D t L6 ,1.7 )

(0UT|R5iR6|l rNC)

b,SB |R7 5
• I

)

CO 410 J=l,
I J J

I )

I 110 J=li

101
1

1



• .
95

'

I L=KA(1)
!- 1

Ill S1=S1+SIG(1,K)*A<1, »
K '

DO 112 M=2*i

L2=KA<M)
123 113 K=l,L2

124 1 S2 =S2v::; (G( UM,K,JI ..'..:,„)

2 S3-S3+AL U ;:S ^

U0 1 ,J)=S3-Si
.

=

129
•

115 J " I , K

3

Kl = l

132
133 IF(J-N) 116,116,118
1 34 116 [RK-N) 117,117,124
135 117 U=T(J,K)

GO '

13 7 [F (J-N-ll 119,119,127
119 IF(K-N) 12 ,120,121

139 120 RU, K)-SB(K)
r0 115

141 •N-l) 122,122,123

142 -1

143 I 5

144 123 R(J,K)=
145 ro ii5

146 12'. [FCK- ,125,126

1 i i 12 5 (1{J,K)=SB( J)

TO 115
L « 1

R( J,K1 >S(J«K1)

151 li r
>

127 [F<K-N1 128,128,129
153 K

154 .!(J,K)=SC(K2)

155 fO 115

156 120 " U rK 1
a

157 CONTINUE
SI0M=G(1)/ABS(G(1 ) )

159 CALL GMPRD ISC, Ml
DO 130 4=1,

161 E(J>=SB(J)-TEMJ)
162 ElNC+1 J=l-G(l)/V
163 J 2= I

KE=NC+2
rK3

J 2= J 2 + 1

131 '
' ;j2)

Lr'501i

171 [F{J-K3)
172

:

- 132 J=l,



1 32 .
>

177 L '

'

n 2 7 I

17, (a.
n

[NT 1 5 , G ( 1

1

•

185 KN) =X(N)

1 86 1 S3 I
= X(N)*EXP(COR<

[ n 17, (X(M),N=1,NC)
00 !C

itX(N)-WB(N)J
(NJ

L91 IF(CH.GT. ( . ) ) ) GO

192 GO rO 150
IU=CH1/CH

194 X ( N ) = M B ( N ) . 5 > A 1 U * W BIN)

IA--1

i is: . ITINUE

197 I Ft IA.GT.C) on ro to t

193 V=V*EXP(C0R(NC+1)

)

199 J2=0
'

DO 13'. - I.K3

J2=J2+1
L }•> LAMIJ21 U2)+ejJ

KA(11
2 05 1 135 K=1,L1

t.

DO 136 N=l »NC

13; P=P*X(N4) tM)

135 ..{ l,K)=C(ltK)*P/V
14. 1 = 1 + 1

212 ) = GU )+CONS

213 ill 15^11)
PRINT 17, (X(N)tNfl v NC)

215 STOP

I I

ro l
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occur in real-

near con: bs.

bional optim Jolve these Problems

Lzlng the Lnts and hence at the

toy. Geometric pro, ;

is a recently

handle v fficiently a subclass

of the '.eras characterised by functions as polj Ls

ficients. Wilde's extension of geomet
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