### APPLICATION OF GEOMETRIC PROGRAMMING TO INDUSTRIAL SYSTEMS

by 1264

### NAYAN BHATTACHARYA

B. Tech. (Hons.), Mechanical, Indian Institute of Technology Kharagpur, India, 1966

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1969

Approved by:

Major Professor

LD 2668 74 1969 B48

### ACKNOWLEDGEMENT

The author wishes to express his deep sense of appreciation to his major professor, Dr. E. S. Lee for his guidance, constructive criticism, helpful suggestions and the personal interest taken in the preparation of this thesis.

## TABLE OF CONTENTS

| CHAPTER |                                                               | Page                              |
|---------|---------------------------------------------------------------|-----------------------------------|
| Ι.      | INTRODUCTION                                                  | 1                                 |
| II.     | GEOMETRIC PROGRAMMING                                         | Lþ                                |
|         | Extension of Geometric Programming<br>Computational Procedure | 6<br>10                           |
| III.    | A LAGRANGIAN ALGORITHM ,                                      | 14                                |
| TV.     | APPROXIMATION TECHNIQUES                                      | 18                                |
|         | Example 1                                                     | 1.8<br>18<br>19<br>20<br>21<br>21 |
| * V *   | APPLICATIONS                                                  | 23                                |
|         | A Sample Problem                                              | 23<br>26<br>40<br>49<br>56        |
| VI.     | DISCUSSION                                                    | 73                                |
| REFERE  | NCES . ,                                                      | 75                                |
| APPEND  | IX A: FLOW CHARTS                                             | 77                                |
| APPEND  | IX B: COMPUTER PROGRAMS                                       | 82                                |

## LIST OF TABLES

| Toble |                                                                                                           | Page |
|-------|-----------------------------------------------------------------------------------------------------------|------|
| 10010 |                                                                                                           |      |
| 1.    | Convergence rate of the sample problem by the<br>Hooke and Jeeves method                                  | . 25 |
| 2.    | Convergence rate of the sea power problem by the Newton-Raphson method                                    | 35   |
| 3.    | Convergence rate of the sea power problem by the Hooke and Jeeves method                                  | 36   |
| 4.    | Optimum values of design parameters of the sea~power problem                                              | 37   |
| 5.    | Convergence rate of the condenser design problem by the Hooke and Jeeves method                           | 48   |
| 6.    | Convergence rate of the chemical equilibrium problem by the Hooke and Jeeves method                       | 55   |
| 7.    | Convergence rate of the transformer problem<br>by the Hooke and Jeeves method                             | 58   |
| 8.    | Convergence rate of the transformer problem by the Newton-Raphson method                                  | 59   |
| 8a.   | Computational aspects of problems 1 to 5                                                                  | 60   |
| 9.    | Typical convergence rate of the inventory problem with starting values $x_1 = 10$ ,<br>$i = 1, \dots, 10$ | 67   |
| 10.   | Typical convergence rate for the inventory problem with starting values $x_i = 5.0$ ,<br>i. = 1,, 10      | 68   |
| 11.   | Effect of forcing on convergence                                                                          | 69   |
| 1.2.  | Optimum inventory and production levels                                                                   | 70   |

### LIST OF FIGUR'S

| Figure |                                                                                               | Page |
|--------|-----------------------------------------------------------------------------------------------|------|
| 1.     | Temperature distribution in the sea power problem                                             | 30   |
| 2.     | The convergence rate of the sea power problem<br>by the Newton-Raphson method                 | 38   |
| 3.     | The rate of change of variables in the sea<br>power problem by the Newton-Raphson method      | 39   |
| 4.     | The convergence rate of the condenser problem by the Hooke and Jeeves method                  | 147  |
| 5.     | The convergence rate of the chemical<br>equilibrium problem by the Hooke and Jeeves<br>method | 54   |
| 6.     | The convergence rate of the transformer problem by the Newton-Raphson method                  | 57   |
| - 7.   | Optimum inventory levels                                                                      | 71   |
| 8.     | Optimum production levels                                                                     | 72   |
| 9.     | Flow diagram for geometric programming                                                        | 78   |
| 10.    | Flow dlagram for Hooke and Jeeves pattern<br>Search                                           | 79   |
| 11.    | Flow diagram for exploratory moves                                                            | 80   |
| 12.    | Flow diagram for the Lagrangian algorithm                                                     | 81   |

V

### I. INTRODUCTION

The increased use of mathematical models in the analysis and optimization of industrial systems is one of the significant developments of modern engineering practice. Optimal desing of process equipment often involves finding numerical values for the design parameters to minimize a cost function, usually nonlinear, subject to design constraints. Most of the models which accurately describe the real-life systems prove to be too complex for solution by available algorithms. This is especially true of problems in which the constraints are nonlinear.

Recently, the geometric programming technique, has been developed which can handle a subclass of the above problems in which the cost function and the constraints are generalized polynomials.

In 1961 Zener [19] observed that the sum of the component costs sometimes may be minimized almost by inspection when each cost depends only on the products of the design variables, each raised to an arbitrary but known power. Duffin and Peterson [6] extended Zener's work. Zener and his associates' work had been restricted to functions they called 'Posynomials,' which are generalized polynomials with positive coefficients. Passy and Wilde [12] further generalized the method to include negative coefficients and revers d inequalities.

Geometric programming is specially suitable for engineering optimization problems based on desing relations developed either by dimensional analysis or by fitting power functions to experimental results.

An important feature of geometric programming is its computational convenience. When the number of terms exceeds the number of variables by a small number, the computations are much simpler than the highly nonlinear character of the problem would lead one to expect. To minimize an unconstrained polynomial of m variables, the conventional method of calculus involves the solution of m nonlinear equations. On the other hand, if the function to be minimized containes exactly m + 1 terms, the problem can be solved by geometric programming by solving m + 1 linear equations, a far easier task. This is advantageous when the problem involve inequality constraints.

Although Passy and Wilde [12] have extended the geometric programming algerithm to handle objective functions and constraints with regative coefficients, difficulty is often encountered in numerical analysis except in the special case where there is exactly one more term than there are independent variables.

Recently Blau and Wilde [5] developed a Lagrangian algorithm for generalized polynomial optimization with equality constraints. The method optimizes the Lagrangian function with the Newton-Raphson procedure. This algorithm can handle negative coefficients efficiently and converges rapidly. One difficulty with this method is its occasional use of too large a step, which prevents convergence. This difficulty was overcome in this work by using a forcing proced we which restricts the maximum step size to a predetermined porcentage of the variables.

The perpose of this thesis is to apply geometric programming

to diff rent engineering design and industrial management systems in production planning and to analyze geometric programming's merits and faults. In the following chapter the basic algorithm of geometric programming with extensions and the algorithm of Lagrangian polynomial optimization technique are discussed. A brief review of computational procedure and approximation technique follows. In Chapter V, various possible fields of application of the above algorithms are analyzed and finally the advantages and disadvantages of geometric programming are highlighted.

## II. GEOMETRIC PROCRAMMING

The theory of geometric programming is based on the arithnetic-geometric mean inequality. The set of functions comprising the mathematical model, when expressed in terms of the primal variables, is called the primal problem. A dual formulation of the primal problem can be obtained. Minimization of the primal problem is equivalent to maximization of the dual problem and the two extreme values are equal.

In this chapter only the algorithms of geometric programming and its extensions are stated and the computational procedures for them are discussed. A detailed derivation of the algorithm and the proof of the theory can be found in [6] and [18].

A set of p + 1 generalized polynomials consisting of m real positive variables x can be expressed as:

where k = 0, 1, ..., Pand J(k) is a set of integers ranging from  $m_k$  to  $n_k$ , thus:

$$J(k) = \{m_{k}, m_{k} + 1, \dots, n_{k}\}$$
(2)

and 
$$m_0 = 1, m_1 = n_0 + 1, \dots, m_p = n_p + 1, n_p = n_1$$

$$C_{i} > 0 \tag{4}$$

$$X_{i} > 0 \tag{5}$$

n is the total number of terms in the set of polynomials.

A, are any real numbers.

(3)

The primal coblem is to minimize

subject to the constraints

$$g_{k} \leq 1; k = 1, 2, ..., P$$
 (7)

The associated dual problem can be formed consisting of a set of n dual variables  $\delta$  satisfying a normality condition

$$\Sigma \quad \delta_{1} = 1 \quad (0)$$

and m ortho onality conditions:

$$\sum_{i=1}^{n} A_{ij} \delta_{i} = 0 \qquad j = 1, 2, \dots, m \qquad (9)$$

as well as n non-negativity conditions

$$\delta_1 \ge 0$$
  $1 = 1, 2, ..., n$  (10)

The corresponding dual problem can be written as

$$V(\delta) = \begin{pmatrix} n & \frac{C_{1}}{\pi} & \delta_{1} \\ \frac{\pi}{1 = 1} & \frac{\lambda_{k}}{\lambda_{k}} \\ \frac{\pi}{1 = 1} & \frac{\lambda_{k}}{\lambda_{k}} \end{pmatrix}$$
(11)

where  $\lambda_k = \sum_{i \in J} \delta_i$   $k = 1, 2, \dots, P$  (12)

The logarithm of the dual function (11) is strictly concave and hence it has only one stationary point - a global maximum. So the minimum of  $g_0$  is obtained by maximizing the dual function (11) subject to the normality and orthogonality conditions (8) to (10).

Once the dual variables  $\underline{\delta}$  are knom, the corresponding values of the primal variables  $x_j$  are found from the following relations:

$$C_{i} \prod_{j=1}^{m} x_{j}^{A_{ij}} = \delta_{i} g_{0}^{*}$$
for icJ(0)
$$(13)$$

and

$$\begin{array}{ccc} m & A_{ij} \\ \pi & x_{j} \\ i & j=1 \\ \end{array} \begin{array}{c} j \\ j \end{array} = \delta_{i} / \lambda_{k} \end{array}$$

for  $i \in J(k)$  $k \neq 0$ 

where  $g^* = minimum$  value of the objective function.

# EXTENSION OF GEOMETRIC PROGRAMMING

The following algorithm is obtained by Passy and Wilde (12); it extends the theory of geometric programming to take into account negative coefficients and reversed inequalities.

P + 1 generalized polynomial functions  $g_{\chi}(x)$  can be expressed

$$S_{k} = \sum_{t=1}^{T_{k}} \sigma_{kt} C_{kt} \prod_{j=1}^{m} A_{ktj} k = 0, 1, ..., P$$
(15)

where

$$\sigma_{kt} = \pm 1$$

$$C_{kt} > 0$$
(16)
(17)

(14)

and  $A_{ktj}$  are real numbers. The signum functions  $\sigma_{kt}$ , the coefficients  $C_{kt}$ ,  $T_k$  (the number of terms in  $g_k$ ), and the  $A_{ktj}$  are all given. Then the typical optimization problem can be written as

min 
$$g_{0}(x) = g_{0}(x^{*}) \equiv g_{0}^{*} \neq 0, \pm 0$$
 (19)

(\* corresponds to the optimal solution).

subject to P inequality constraints.

$$0 < \sigma_k g_k^k \le 1$$
  $k = 1, ..., P$  (20)

where o are known signum functions.

This problem can be solved by working with a set of real finite dual variables  $\delta_{kt}$ , one for each term of the  $g_k$ , which satisfies the following

nonnegativity condition

$$\delta_{1+} > 0$$
 for all k and t (21)

and the normality condition:

$$\delta_{00} = \sigma_{0} \frac{\Sigma}{1 - 1} \sigma_{0t} \delta_{0t} = 1$$
(22)

the m orthogonality conditions:

 $\begin{array}{c} p & T_k \\ \Sigma & \Sigma & \sigma \\ k=0 & t=1 \\ kt & ktj \\ kt = 0 \\ j=1, \dots, m \end{array}$ (23)

(18)

and P inequality constraints:

$$\delta_{k0} = \sigma \sum_{k=1}^{T_k} \sigma_{kt} \delta_{kt} \ge 0 \quad k = 1, \dots, P \quad (24)$$

with the qualification that

$$\delta_{kt} = 0$$

if and only if

$$\delta_{k0} = 0$$
  $k = 1, ..., P$  (26)

o must be chosen to satisfy the constraints. o The dual function can be written as

$$V(\delta, \sigma_{o}) = \sigma_{o} \begin{bmatrix} p & T_{k} & C_{kt} & \delta_{k0} \\ \pi & \pi & (C_{kt} & \delta_{k0}) \\ \pi & \pi & (C_{kt} & \delta_{k0}) \\ k=0 & t=1 & \delta_{kt} \end{bmatrix}^{o}$$
(27)

with the assumption that

$$\delta_{kt} \rightarrow 0 \qquad (\frac{C_{kt} \delta_{k0}}{\delta_{kt}}) = 1$$
(28)

When all signum functions are not positive  $g_0(x)$  is not, in general, convex and may have several constrained local minima, maxima or saddle points, and no simple duality relation holds. It is proved instead that to each critical point (called a pseudominimum)  $x^0$  of  $g_0$ , there corresponds a dual point ( $\delta^0, \sigma_0$ ) where V is a pseudomaximum and such that

8

(25)

$$g_{o}(x^{o}) = V(\delta^{o}, \sigma_{o})$$

Roughly speaking, a pseudominimum is a point where g satisfies o the Kuhn-Tucker constraint qualification as well as the differential form of the Kuhn-Tucker necessary conditions for a constrained local minimum.

> Then  $g_0(x^0) \equiv Pmin g_0(x) = Pmax V (\delta^0, \sigma_0) \equiv V (\delta_0, \sigma_0)$ where Pmin is an abbreviation for pseudominimum, (30)

Then at a global minimum:

$$\operatorname{Min} g_{o}(x^{*}) = \operatorname{Min} \left[ \operatorname{Pmax} V \left( \delta^{*}, \sigma_{o} \right) \right]$$
(31)

Once the dual variables  $\underline{\delta}^*$  are known the primal variables are found from the following relations:

$$C_{\text{ot}} \underset{j=1}{\overset{\text{m}}{\text{s}}} x_{j}^{A} = \delta_{\text{ot}} \sigma_{0} g^{*} \qquad t = 1, \dots, T_{0}$$
(32)

and

$$C_{kt} \prod_{j=1}^{m} x_{j}^{A_{ktj}} = \frac{\delta_{kt}}{\delta_{k0}} \qquad t = 1, \dots, T_{m}$$
(33)

From equation (32), it can be seen that  $\sigma_0$  will have the same sign as  $g^0$ . Since there will always be more terms than variable,  $x_j$ , m equations can be found which are solvable for m primals. The solution of these equations is not difficult since they are linear in log  $x_j$ . ( \* corresponds to optimal solution).

(29)

#### COLPUTATIONAL PROCEDURE

The detailed computer flow charts and programs are provided in the appendix. The present discussion on the method is to aid the understanding of the subsequent discussions.

The computer algorithm finds the minimum of the primal function (6) subject to primal constraints (7) by maximizing the dual function (11) subject to dual constraints (8) through (10). Having found this maximum a transformation is made to obtain the primal variables  $x_j$ .

As can be seen the dual problem has n variables and m + 1linear equality constraints. This gives the problem n - (m + 1)degrees of freedom. Zener and his associates call this the degree of difficulty.

The dual problem with nonlinear objective function and linear equality constraints can be maximized by any conventional method, such as, by Lagrange multipliers or the gradient projection method. As suggested by Duffin [6] the dual function can be transformed to eliminate the linear equalities to result in a 'd' dimensional optimization problem, where 'd' is the degree of freedom. The transformation is done as follows:

The dual variables  $\delta$  satisfying the equations (8) and (9) can be written as sum of a normality and a set of nullity vectors by the method of linear algebra.

or  $\underline{\delta} = \underline{b}_0 + \sum_{j=1}^{d} r_j \underline{b}_j$ 

1.0

(34)

where  $b_0 = normality vector$ 

 $\frac{b}{j} = \text{nullity vectors}$   $j = 1, \dots, d$ .  $r_j = \text{are arbitrary real numbers}$ 

satisfying the positivity constraints

$$b_{1}^{0} + \sum_{j=1}^{d} r_{j} b_{1}^{j} \ge 0$$
  $i = 1, ..., n$  (35)

writing the dual function (11) in transformed form

$$V(\mathbf{r}) = k_{0} \begin{pmatrix} d & \mathbf{r}_{j} \\ \pi & \mathbf{k}_{j} \\ j=1 & j \end{pmatrix} \begin{pmatrix} n & -\delta_{1} & (\mathbf{r}) \\ \pi & \delta_{1} & (\mathbf{r}) \\ \mathbf{i}=1 & \mathbf{i} \end{pmatrix} \begin{pmatrix} p & \lambda_{k} \\ \pi & \lambda_{k} \\ \mathbf{k}=1 & \mathbf{k} \end{pmatrix}$$
(36)

where

$$k_{j} = \frac{\pi C_{j}}{1 - 1}$$
  $j = 0, 1, ..., d$  (37)

 $\delta_{i}(r) = b_{j}^{0} + \sum_{j=1}^{C} r_{j} b_{i}^{j}$  i = 1, ..., n (38)

This function can be maximized with respect to  $r_j$  by any direct search technique. It has been found that Hooke and Jeeves (10) direct search is quite efficient. The first four problems in chapter V have been solved by this method. Another approach is to obtain a set of 'd' equations by differentiating this function with respect to  $r_j$  and setting the result equal to zero:

$$k_{j} = \begin{pmatrix} d & b_{j}^{j} \\ \pi & \delta_{j} \\ i=1 \end{pmatrix} \begin{pmatrix} p & \lambda_{k}^{j} \\ \pi & \lambda_{k} \\ k=1 \end{pmatrix} \begin{pmatrix} j = 1, \dots, d \\ k=1 \end{pmatrix} (39)$$

where

$$\lambda_{k}^{j} = \sum_{i \ J(k)} r_{j} b_{i}^{j} \qquad j = 1, \dots, d \qquad (40)$$

These sets of equations can be solved by the Newton-Raphson method to give optimum values of  $r_{j}$  and hence the dual variables.

Convergence by this method is not guaranteed, but when the method works the function converges very rapidly. Problems 2 and 5 are solved by this method.

The computational procedure can be briefly summarized as follows:

a) Mathematical formulation of the dual problem.

To obtain the dual problem in the form of equation (11), the primal problem and the constraints have to be in the form of equations (6) and (7). Many problems which are not in this form can be transformed into the required form by various techniques discussed in a later chapter.

b) Calculation of normality and nullity vectors.

The normality and nullity vectors of the form of equation (34) can be obtained by the usual method of linear algebra (9).

c) Obtaining the initial feasible solution of  $r_i$ .

The nonnegarivity constraints (35) have to be satisfied for the initial feasible solution. This is achieved by adjusting all variables simultaneously.

d) Optimization of the dual function:

Any suitable method for optimization is applicable. Hooke and Jeeves pattern search [10] is mostly used in the problems that are solved in this work. Differentiation and the Newton-Raphson method [14] are also used where the function converges.

12

Since V( $\delta$ ) is only defined for  $\delta_{1} \geq 0$  any intermediate step in the search procedure not meating this condition is avoided.

The accuracy obtained in the solutions depends on the compromise between improvement in objective function and required computer time. Different accuracies  $\leq$ , (ranging from .01 to .0001) are assumed for different problems. The function is assumed to converge when the function value changes by  $\leq$  or less in two successive iterations of Newton-Raphson or step size is equal to or smaller than  $\leq$  in Hooke and Jeeve search.

e) Transformation from dual to primal problem:

The primal variables are calculated from the optimum dual variables by equation (13) and (14).

The above procedure is effective for functions with positive coefficients. For functions with negative coefficients and reversed inequalities along positivity conditions (21), P inequality constraints (24) are to be satisfied and the minimum of all the pseudomaxima of the dual function (27) is to be found. It was found that the above procedure fails in this case because of limitations of search procedures. An efficient algorithm has been presented by Blau and Wilde [3] to handle polynomials with negative coefficients and with equality constraints. This algorithm is presented in the next chapter.

13

## III. A LAGRANGIAN ALGORITHM.

In this chapter an algorithm for optimization of generalized polynomials with equality constraints is presented. This algorithm is of high practical importance since it is the only algorithm which handles negative coefficients in the polynomials effectively; most physical restrictions occurring in practice are often strict equalities.

The basic idea is to use a Newton-Raphson procedure [18] to drive to zero the components of the gradient of a Lagrangian function formed from the logarithms of the original objective function and the constraints. A nonlinear transformation, which amounts to substituting a weighting variable for each term, makes the Lagrangian gradient linear in the weights as well as in the Lagrange multipliers.

No proof for local convergence is yet available. For justification of the procedure the reader is referred to [3].

A set of M + 1 generalized polynomials of N variables  $x_{n}^{}$  can be defined as:

$$\mathcal{E}_{m} = \sum_{t=1}^{T_{m}} \int_{mt}^{N} \int_{n=1}^{A_{mtn}} \int_{n}^{m} \int_{m=0, 1, \dots, M}^{T_{m}} (1)$$

where  $0 < x_{n} < \infty$  (2)

and 
$$C_{mt} > 0$$
  $t = 1, \dots, T_{m}$  (3)

$$\sigma_{\rm mt} = \pm 1 \tag{4}$$

Antn is any real number

The minimization problem oun be stated as

$$\frac{1}{x}$$
  $g_0$  (5)

subject to  $g_m = 1 \quad (m \neq 0)$ 

To initiate the algorithm, finite positive values  $x_n^o$  of x have to be chosen not necessarily satisfying the constraints (6). The initial value of the objective function is calculated as  $g_0^o$  and the initial weights as



At the ith iteration the following suns are calculated as

$$S_{mn}^{i} = \sum_{t=1}^{T_{m}} \sigma_{mt} A_{mtn} W_{mt}^{i}$$
(8)

From them the N x 1 dimensional vector is formed as

$$\underline{s}_{o}^{i} = (s_{io}^{i} \cdot \cdot s_{No}^{i})^{T}$$
(9)

and the N x M matrix

$$\mathbf{S}^{\mathbf{i}} = \begin{bmatrix} \mathbf{S}_{11}^{\mathbf{i}} \dots \mathbf{S}_{1M}^{\mathbf{i}} \\ \mathbf{S}_{N1}^{\mathbf{i}} \dots \mathbf{S}_{NM}^{\mathbf{i}} \end{bmatrix}$$
(10)

3.5

(6)

This matrix is assumed to have rank M, so that  $\begin{bmatrix} s^{1T} & s^{i} \end{bmatrix}$  is nonsingular. Then the initial M x l vector of multipliers can be computed as

$$\underline{\lambda}^{0} = (s^{0T} s^{0})^{-1} s^{0T} s_{0}^{0}$$

A N X N symmetric matrix T<sup>1</sup> can be computed as

$$T_{nj}^{i} = -\sum_{t=1}^{T_{o}} \sigma_{t} \Lambda_{otn} \Lambda_{otj} V_{ot}^{i}$$

$$+ \sum_{m=1}^{M} \lambda_{m}^{i} \sum_{t=1}^{T_{m}} \sigma_{mt} \Lambda_{mtm} \Lambda_{mtj} V_{mi}^{i}$$
(12)

At each iteration there is a value of one additional variable  $V^1$  which is also adjusted by the algorithm. To begin with, it is taken as the value of the objective function at  $x^0$ .

Let  $\sigma^{i} = g_{o}^{i} / |g_{o}^{i}|$ 

Then the  $(M \leftrightarrow N \div 1)^2$  symmetric Newton-Raphson matrix  $R^{i}$  is assembled as

$$\mathbf{R}^{i} = \begin{bmatrix} \mathbf{T}^{i} & \mathbf{s}^{i}_{o} & \mathbf{s}^{i} \\ \mathbf{s}^{iT}_{o} & -\mathbf{1} & \mathbf{0} \\ \mathbf{s}^{iT} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$
(13)

where <u>0</u> represents the null matrices with appropriate dimensiona. Next a (M + N + 1) x l dimensional error vector  $e^{i}$  is formed as

(11)

$$e^{i} = \begin{bmatrix} s_{o}^{i} - s^{i}\lambda^{i} \\ 1 - g_{o}^{i} (V^{i})^{-i} \\ 1 - g_{1}^{i} \\ 1 - g_{1}^{i} \\ 1 - g_{m}^{i} \end{bmatrix}$$
(14)

17

Then the  $(N + M + 1) \times 1$  dimensional correction vector is given by

$$\begin{bmatrix} \Delta \ln \chi^{i} \\ \Delta \ln \sigma^{i} V^{i} \\ \Delta \lambda^{i} \end{bmatrix} = (R^{i})^{-1} e^{i}$$
(15)

so the next estimate of  $x^{1+1}$  is

$$x_n^{i+1} = X_n^i \quad \exp((\ln X_n^i)) \tag{16}$$

whereas

$$V^{i+1} = V^{i} \exp \left( \ln \sigma^{i} V^{i} \right)$$
(17)  
$$\lambda^{i+1} = \lambda^{i} + \Delta \lambda^{i}$$
(18)

These quantities are used to compute the new values of weights defined in equation (7) for  $m = 1, \dots, M$ .

For m = 0, the following equation is used.

$$W_{ot}^{1+1} = (V^{1+1})^{-1} C_{ot} \prod_{n=1}^{N} X_{n}^{A_{otn}}$$
 (19)

Thus the algorithm completes the ith iteration. The procedure continues until all components of the error vector are acceptably close to zero.

## IV. APPROXIMATION TECHNIQUES

Many optimization problems can be transformed into standard geometric programming problems, even though they are not explicitly expressed in posynomial form. This fact is illustrated in the following examples.

Example 1.

Minimize the function

$$G(\underline{x}) = f(\underline{x}) + [q(\underline{x})]^{a} h(\underline{x})$$
(1)

where  $f(\underline{x})$ ,  $q(\underline{x})$  and  $h(\underline{x})$  are posynomials in the vector variable  $\underline{x} = (x_1, \dots, x_m)$  and a > 0.

The above problem can be expressed as:

minimize g (T) = f (x) + 
$$x_0^a$$
 h (x) (2)

subject to  $x_0^{-1} q(x) \le 1$ 

where  $x_0$  is an additional independent variable and  $\Upsilon = (x_0, x_1, \dots, x_m)$ . It can be seen from the construction of g (7) and the constraint that  $(x_1^1, x_2^1, \dots, x_m^1)$  minimizes G (x) if and only if, (q (x<sup>i</sup>),  $x_1^1, \dots, x_m^1$ ) minimizes g (7) subject to the given constraint. The constrained minimum value of g (7) is equal to the minimum value of G (x). Thus the problem of minimizing G (x) which is not necessarily a posynomial can be transformed to the form which permits the use of geometric programming. Example 2.

Minimize the function

$$G(\underline{x}) = f(\underline{x}) + \frac{q(\underline{x})}{[V(\underline{x}) - h(\underline{x})]} a$$
(4)

where f, q, h are posynomials, u is a posynomial with one term and a > 0.

The equivalent problem can be formed as

$$g(T) = f(\underline{x}) + \frac{g(\underline{x})}{x^{a}}$$
(5)

subject to the constraint

$$\frac{x_{0}}{U(\underline{x})} + \frac{h(\underline{x})}{u(\underline{x})} \leq 1$$
(6)

where  $x_0$  is an additional independent variable and  $T = (x_0, x_1, \dots, x_m)$ . Since  $u(\underline{x})$  has only one term the form of the constraint permits use of geometric programming. Example 3.

Minimize the function

$$G(x) = f(x) - u(x)$$
 (7)

where f and u are posynomials and u has one term. If it can be assumed that the minimum value of G is negative then the constraint.

$$x \neq f(\underline{x}) - u(\underline{x}) \leq 0$$
 is consistent (8)

It can be seen that  $x^{1}$  minimizes G ( $\underline{\checkmark}$ ) if and only if  $\gamma^{1} = [u(x^{1}) - f(x^{1}), x_{1}^{1}, \dots, x_{m}^{1}]$  maximizes the function

 $h(\gamma) = x$ 

(9)

subject to the constraint

 $x + f(x) - u(x) \le 0$ 

This maximization problem is equivalent to the problem:

Minimize g 
$$(\gamma') = \frac{1}{h(\gamma)} = \frac{1}{x_0}$$
 (10)

subject to the constraint

$$\frac{x_{o}}{U(\underline{x})} + \frac{f(\underline{x})}{u(\underline{x})} \le 1$$
(11)

Thus this reduces the problem to standard geometric programming form.

So far the examples showed the transformation which gives the exact solution of the problems. Following are some examples of approximate transformation which permits use of functions other than posynomials.

### Example 4.

Any function  $h(\underline{x})$  which is not a posynomial can be approximated to a single term posynomial. To do this it is necessary to make a rough estimate of the range of variability of each variable  $\underline{x}_j$ . Let  $\underline{x}_j^*$  be the geometric mean of this range. Then  $(\underline{x}_1^*, \underline{x}_2^*, \dots, \underline{x}_m^*)$  may be termed the operating point. Then  $h(\underline{x})$  can be approximated as

$$h(\underline{x}) \simeq h(\underline{x}^{*}) \left(\frac{x_{m}}{\underline{x}_{1}^{*}}\right)^{A_{1}} \left(\frac{x_{m}}{\underline{x}_{2}^{*}}\right)^{A_{2}}, \dots, \left(\frac{x_{m}}{\underline{x}_{m}^{*}}\right)^{A_{m}}$$
 (12)

where

$$A_{j} = \left(\frac{x_{j}}{h} \frac{\partial h}{\partial x_{j}}\right) x = x^{*} \qquad j = 1, \dots, m$$
(13)

This approximation is equivalent to expanding log h in a power series in terms of variables  $Z_j = 10g (x_j/x_j^*)$  and neglecting all but linear terms. Example 5.

Approximation of log u

The function log u is defined as:

$$\log u = \int_{\underline{1}}^{\underline{u}} \frac{\underline{1}}{\underline{x}} dx \tag{14}$$

On the other hand, if E is a positive number, then

$$\frac{\mathbf{U}^{\mathrm{E}}}{\mathbf{E}} - \frac{1}{\mathbf{E}} = \int_{1}^{\mathrm{U}} \frac{\mathbf{X}^{\mathrm{E}}}{\mathbf{X}} \, \mathrm{d}\mathbf{x} \tag{15}$$

On any interval between positive numbers, the function  $x^E$  is a uniform approximation to unity, p priced E is sufficiently small. Hence, log u can be approximated by  $E^{-1}$  ( $U^E - 1$ ) for u in the same interval.

Example 6.

? Approximation of an exponential function Let the primal problem involve a function of the form

$$f(\underline{x}) = g(\underline{x}) + Ce^{u}(\underline{x})$$
(16)

where g is a posynomial, C is a positive constant and u  $(\underline{x})$  is a single term posynomial.

Using the well known relationship

$$e^{u} = \lim_{E \to \infty} \left(1 + \frac{u}{E}\right)^{E}$$
(17)

the function  $f(\underline{x})$  can be written as

$$f_{E}(\underline{x}) = g(\underline{x}) + C(1 + \frac{u(\underline{x})}{E})^{E}$$
(18)

where E is sufficiently large. This function is in the form of example 1. This can be reduced to standard geometric programming form by introducing a new variable  $x_0 = 1 + u/E$ . (19)

f  $(\underline{x})$  can be replaced by the function  $g(\underline{x}) + C x_0^E$  (20) and the additional constraint

$$x_{-1}^{-1} + g^{-1}x_{-1}^{-1} u(\underline{x}) \le 1$$
 (21)

### V. APPLICATIONS

In this section six different problems are considered to illustrate the procedure. The first is a simple hypothatical problem. The next four models are engineering design problems with different degrees of freedom and the last is a production scheduling model. The models are in posynomial form except for the last model, which is in the generalized posynomial form. Different optimization techniques are used to maximize the dual function as required by the nature of the problem. The results are compared and various computational difficulties are discussed. The last problem is solved by the Lagrangian algorithm.

A Simple Problem [17]

This simple problem can be stated as: Minimize

$$y_0 = 1000 x_1 + 4 \times 10^9 x_1^{-1} x_2^{-1}$$
 (1)

subject to

$$2.5 \times 10^{5} x_{2} + 9000 x_{1}^{-1} x_{2}^{-1} \le 1$$

$$x_{1} > 0$$

$$x_{2} > 0$$
(2)

The problem has 4 terms and 2 variables. Hence it has one degree of freedom. The dual function which is of the form of Eqn. (11) of Chapter II, can be written as:

$$\nabla(\delta) = \left(\frac{c_1}{\delta_1}\right)^{\delta_1} \left(\frac{c_2}{\delta_2}\right)^{\delta_2} \left(\frac{c_3}{\delta_3}\right)^{\delta_3} \left(\frac{c_{l_1}}{\delta_{l_2}}\right)^{\delta_4} \times \left(\delta_3 + \delta_4\right)^{\delta_3 + \delta_4}$$
(3)

where C = 1000

$$c_{2} = 4 \times 10^{5}$$

$$c_{3} = 2.5 \times 10^{5}$$

$$c_{4} = 9000$$

The objective function has 2 terms. Hence the orthogonality condition is given by:

$$\delta_1 + \delta_2 = 1$$

and the normality conditions are given by:

$$\delta_1 = \delta_2 = \delta_{11} = 0 \tag{(5)}$$

$$\delta_2 + \delta_3 - \delta_4 = 0 \tag{6}$$

The minimum value of the function given by equation (1) is obtained by maximizing the dual function given by equation (3) subject to equality constraints (4), (5) and (6). These equality constraints are eliminated by expressing vector  $\underline{\delta}$  as sum of a normality and a nullity vector as explained in Chapter II. Thus,

$$\delta = b^{\circ} + xb^{1} \tag{7}$$

By the above substitution the problem is transformed to maximization with respect to single variable r and the positivity constraint

13.3

|      | method.                    |                                    |
|------|----------------------------|------------------------------------|
|      |                            |                                    |
| r1   | $V(\delta) \times 10^{12}$ | No. of<br>Eunctional<br>evaluation |
| .80  | 2.15                       | 1                                  |
| .90  | 4.57                       | 5                                  |
| .95  | 6,53                       | 10                                 |
| .97  | 7.73                       | 16                                 |
| .98  | 8.38                       | 20                                 |
| .99  | 8,70                       | 26                                 |
| 1.00 | 8.99                       | 30                                 |
|      |                            |                                    |

| able | 1. | Converde | ence | rate  | oÊ   | the : | sample |
|------|----|----------|------|-------|------|-------|--------|
|      |    | problem  | by t | he He | olte | and   | Jeeves |
|      |    | method.  |      |       |      |       |        |

The problem W.s solved by using Hooke and Jeeves search procedure. The initial value chosen for r was 0.8. The accuracy, C, as defined in Chapter II was chosen as .01. The convergence rate, i.e., the change of value of equation (3) with the number of functional evaluations is shown in Table 1.

The optimum value obtained was:

$$y_{0}^{*} = 8.99 \times 10^{12}$$

and the optimum primal variables were:

$$x_1 = 8.996 \times 10^9$$
  
 $x_2 = 2.0 \times 10^{-6}$ 

The optimum primal variables were obtained using the following equations.

$$x_{1} = \frac{y_{0}^{*} \delta_{1}}{C_{1}}$$
(9)  
$$x_{2} = \frac{\delta_{3}}{(\delta_{3} + \delta_{4})} \times C_{3}$$
(10)

SEA POWER - HEAT EXCHANGER PROBLEM [6]

The conversion of the sun's radiant energy into useful power is a challenging field to many engineers. A stumbling block has been the extremely high capital cost of the equipment required to collect and concentrate this radiant energy.

Most of the solar energy is received by the upper layers

(8)

of the ocean. Energy from the sea could passibly be collected by a heat engine cycle which consists of direct evaporation of water from the upper layers, and, later, after passing through turbines, condensation on the cooler underlying water. The steam vapor pressure in equilibrium with the cool deep water is so low that extremely large turbines are required. An approach that circumvents the need for extremely large turbines is the use of an intermediate fluid, such as ammonia, which has a high vapor pressure at room temperature.

The avoidance of costly, large turbine is achieved only by introduction costly item, namely, the heat exchangers that allow heat to flow from the warm surface of the water to boiling ammonia and allow the same heat to flow form the condensing amionia to ccol deep water. Since the economic feasibility of this cycle depends primarily on the size of the required heat exchanger, our objective is to minimize the required surface area of heat exchangers for a sea power plant of a specific power capacity.

For derivation of the model the following nonenclature has been used:

| A  | 2.000<br>-000   | area of heat exchangers     |
|----|-----------------|-----------------------------|
| С  | 100             | specific heat of water      |
| f  |                 | friction coefficient        |
| h  | 100-00<br>21-00 | film coefficient of water   |
| h' | and<br>ma       | film coefficient of ammonia |
| m  | so -ta<br>o -ta | mass flow of water          |
| P  |                 | power output helt engines   |

27

| PN             | 91.40<br>11-0     | net power output                                    |
|----------------|-------------------|-----------------------------------------------------|
| PHY            | 80-40<br>80-49    | friction loss in heat exchangers                    |
| PkE            | 10-9<br>100       | power loss by mass flow                             |
| 2              | -                 | Prandtl number                                      |
| Q              | 21.00<br>21.00    | heat extraction rate                                |
| т              | 82448<br>82478    | temperature of hot reservoir                        |
| U              | 0000<br>1070      | water flow rate                                     |
| αΔΤ            | pr vali<br>pro di | temperature gradient to heat engine                 |
| βAT            | and<br>area       | total temperature drop across water boundary layers |
| β°ΔT           | 00<br>00          | total temperature drop across liquid ammonia        |
| YAT            | 0.00<br>1407      | change in water temperature in heat exchangers      |
| ΔT.            | an a<br>and       | temperature difference in hot and cold reservoir    |
| P              | 11-10<br>11-1     | density of water                                    |
| η              | 8+10<br>2+-11     | diffuser degradation                                |
| e              | and<br>Area       | engine efficiency                                   |
| e <sup>1</sup> | 10-10<br>10-10    | primemover's efficiency.                            |

From thermodynamics the available power can be expressed as

$$P = \epsilon \propto \frac{\Delta T}{T} Q \tag{11}$$

The heat flux Q is restricted by the impedence of the water layer of essentially laminar flow that clings to the surface across which water is flowing. The heat characteristic of this film is specified as

$$Q = hA^{\frac{1}{2}} \beta \Delta T$$
 (12)

The film coefficient h can be expressed as

28

101

$$h = \frac{f}{2 P_r^{2/3}} p CU$$

Thus an improvement of h can be obtained by increasing the velocity U but this is obtained only at the cost of an increase in power required to drive water through the heat exchangers. The power is expressed as

$$P_{Hx} = \frac{1}{2} f \rho U^{3} (2A)$$
(14)

The heat flux Q is restricted also by the impedence of boiling emmonia; to boil ammonia at a finite rate, ammonia adjacent to the boiling heat exchanger must be slightly superheated. The relation between rate of boiling and the degree of superheat is given by

$$Q h^{1} A \frac{1}{2} \beta^{1} \Delta T$$
(15)

The overall drop of water temperature in the heat exchangers is inversely proportional to the mass flow. We would like  $\gamma$ to approach zero so that  $\alpha$ ,  $\beta$  and  $\beta^{1}$  could be larger. However, the smaller the value of  $\gamma$  is, the larger is the mass flow. Thus we must have

$$m C \gamma \Delta T = Q$$
(10)

and the loss of kinetic energy is

$$P_{\rm LC} = 2\eta \left(\frac{1}{2} m U^2\right) \tag{17}$$

Summarizing, the objective function to be minimized is the

29

(13)





area A, subject to constraints that A must be large enough to provide an adequate heat flux Q across the water boundary layers and across the liquid ammonia, and the heat flux Q must be large enough to provide not only  $P_N$  but also  $P_{Hx}$  and  $P_{kE}$ . Thus,

$$\frac{\varepsilon_{\alpha} \Delta T}{T} Q = P_{N} + \frac{1}{\varepsilon^{1}} (P_{Hx} + P_{kE})$$
(18)

The minimization of  $\beta$  is to be made with respect to the variables Q, U,  $\alpha$ ,  $\beta$ ,  $\beta^{1}$ ,  $\gamma$  subject to the preceding relationship as well as to the temperature distribution relationship.

$$\alpha + \beta + \beta^{1} + \gamma = 1 \tag{19}$$

The temperature distribution is depicted in Fig. 1. The formulation of this problem is due to Zener and his associates and for detailed derivation the interested reader is referred to [6].

# Solution by Geometric Programming

In geometric programming all constraints must be represented by inequalities rather than equalities. Although the constraints in the preceding section have been formulated as equalities, it is obvious they can be formulated as inequalities. Thus the heat flux across the thermal barriers must be equal to or greater than the heat flux Q through the heat engine, because some of the heat flux across the heat exchanger can bypass the heat engine if this permits a reduction in A.

Hence the constraint (12) can be formulated as
$$\frac{\Omega}{h \Lambda \frac{1}{2} \beta \Delta T} \leq 1$$

and the constraint (15) as

$$\frac{0}{h^{1} A \frac{1}{2} \beta^{1} A T} \leq 1$$

and the constraint (18) can be expressed as

$$\frac{P_{N} + (1/\epsilon^{1})(P_{Hx} + P_{kE})}{(\epsilon \propto \Delta T/T) Q} \leq 1$$

the = sign of constraint (19) can be changed into the  $\leq$  sign. Hence the primal problem can be defined as Minimize

#### C<sub>1</sub> A

subject to

$$C_{2} \frac{Q}{MAR} \le 1$$
(20)

$$C_{3} \frac{Q}{A B^{1}} \leq 1$$
 (21)

$$c_{4} \frac{1}{Q\alpha} + c_{5} \frac{\Lambda U^{3}}{Q\alpha} + c_{6} \frac{U^{2}}{\alpha \gamma} \leq 1$$
 (22)

$$C_{\gamma} \alpha + C_{8}^{\beta} + C_{9}^{\beta} + C_{10}^{\gamma} \le 1$$
 (23)

where h has been eliminated from (20) and m from (22) by using (13) and (16) respectively. The constants  $C_1$ ,  $C_7$ ,  $C_8$ ,  $C_9$ ,  $C_{10}$  are all unity and the constants  $C_2$  through  $C_6$  are

$$C_2 = \frac{4 P_r^{2/3}}{f_f^2 C \Delta T}$$

$$C_{3} = \frac{2}{h^{1} \Delta T}$$

$$C_{4} = \frac{P_{M}}{\epsilon (\Delta T/T)}$$

$$C_{5} = \frac{f P \times 10^{7}}{\epsilon \epsilon^{1} (\Delta T/T)}$$

$$C_{6} = \frac{7 T \times 10^{-7}}{\epsilon \epsilon^{1} c \Delta T^{2}}$$

The following numerical values are taken for the constants appropriate to water at room temperature:

$$P_{r} = 7$$
  

$$f = 1/125$$
  

$$\rho = 1 \text{ gm/cm}^{3}$$
  

$$C = 4.18 \text{ Joules/gm}$$
  

$$T = 300 ^{\circ}\text{k}$$
  

$$\epsilon = 0.6$$
  

$$\frac{1}{\epsilon} = 0.6$$
  

$$\eta = 0.2$$
  

$$h^{1} = 1.0 \text{ watt/cm}^{2} ^{\circ}\text{C}$$
  

$$\Delta T = 11 ^{\circ}\text{C}$$

This gives the following values of the constants:

$$C_2 = 40$$
  
 $C_3 = 0.18$   
 $C_4 = 44.5 P_N$   
 $C_5 = 6.0 \times 10^{-8}$   
 $C_6 = 2.15 \times 10^{-8}$ 

The above problem has 7 variables and a total of 10 terms. Hence it has 2 degrees of freedom. The dual problem to be maximized,  $\forall$  ( $\delta$ ), has the same form as Eqn. (11) which is subject to normality and orthogonality constraints having the same form as Eqn. (8) to Eqn. (10) of Chapter II. As the problem has 2 degrees of freedom the objective function of the dual problem can be expressed as a function of two independent variables  $r_1$ and  $r_2$ .

The problem has been solved by maximizing the dual function  $V(\delta)$  by using Hooke and Jeeves search procedure. The convergence rate, i.e., the change in value of V ( $\delta$ ) with functional evaluation is shown in Table 3.

The problem has also been solved by differentiation. Two equations are obtained by differentiating V ( $\delta$ ) with respect to the independent variables and putting them equal to zero. Thus:

$$F_{1} = \frac{dV(\delta)}{dr_{1}} = 0$$

$$F_{2} = \frac{dV(\delta)}{dr_{2}} = 0$$
(24)
(25)

Equations (24) and (25) are solved by Newton-Raphson procedure. The convergence rate i.e., the change in the function values and change of the variables, are shown in Table 2 and plotted in Fig. 2 and 3.

The accuracy E is chosen 0.001 for both Newton-Raphson and Hooke and Jeeves search procedure. The computer program is

| Iteration  | Va             | riables        | Funct | Function value |  |
|------------|----------------|----------------|-------|----------------|--|
| number     | r <sub>1</sub> | r <sub>2</sub> | Fl    | E2             |  |
| 1          | . 64           | .05            | 1,1   | б.8            |  |
| 2          | .46            | ,05            | 1.4   | 1.6            |  |
| 3          | .42            | .04            | 0.2   | 0.3            |  |
| <u>1</u> 1 | .42            | . 04           | 0.0   | 0.0            |  |
|            |                |                |       |                |  |

Table 2. Convergence rate of the sea power problem by the Newton-Rephson method.

| Table | 3. | Convergence                  | rate         | of t | the sca | 2   |
|-------|----|------------------------------|--------------|------|---------|-----|
| •     | -  | power proble<br>Jeeves methe | em by<br>od. | the  | Hooke   | and |

| Var  | iables         | - W(8) | No, of<br>functional |  |  |
|------|----------------|--------|----------------------|--|--|
| rl   | r <sub>2</sub> | V(0)   | evaluation           |  |  |
| .45  | .02            | 124.69 | 0                    |  |  |
| .142 | .07            | 124.79 | 7                    |  |  |
| .40  | .04            | 126.03 | 33                   |  |  |
| .42  | .04            | 126.72 | 41                   |  |  |
| .42  | .04            | 126.75 | 59                   |  |  |

|         |       | paran<br>probl |     |      |      |      |
|---------|-------|----------------|-----|------|------|------|
| A       | Q     | U              |     | β    | βl   | Y    |
| 1.26.75 | 114.8 | 2.8            | 0.5 | 0.32 | 0.16 | 0.02 |

Table 4. Optimum values of design parameters of the sea-power problem.



Fig. 2. The convergence rate of the sea power problem by the Newton-Saphson method.



written in FORTRAN language and is given in the Appendix. The results are given in Table 4.

There is no significant difference in the results between the two methods. But the number of iterations required is much less in the Newton-Raphson procedure than in the search procedure. The computer time needed was 22 secs for the Hooke and Jeeves procedure and about 19 secs for the Newton-Raphson method. This is reasonable because the Newton-Raphson method requires more computation time. The Newton-Raphson method seems to be more efficient but, as will be seen later, it may not always converge.

#### CONDENSER DESIGN PROBLEM

This model is taken from a pater of Wilde and Avriel [1]. Detailed derivation of the formulation can be obtained from the original pater. In this model the design of a vapor condenser with fixed heat load is considered.

Consider a horizontal condenser in which a fluid having a given flow rate W is heated without phase change from temperature  $T_{b1}$  to  $T_{b2}$  by condensing saturated steam. Optimal design involves minimizing the annual cost of the condenser, consisting of three terms:

- 1) Cost of steam
- 2) Fixed charges on the condenser
- 3) Cost of pumping fluid through the condenser tube.

In the derivation of the model, the following nomenclature has been used:

| 4.<br>1 | 1.08<br>a.m         | inside heat transfer area          |
|---------|---------------------|------------------------------------|
| A       | 410<br>0            | outside heat transfer area         |
| В       | 8-140<br>1140       | pressure drop foctor               |
| С       | ar-d<br>anat        | annual cost                        |
| C T     | partials<br>thereby | cost of electricity                |
| C TT    | 41-10<br>11-10      | fixed charges                      |
| C       | 11                  | unit cost of condenser surface     |
| Cp      | 11                  | specific heat                      |
| C       | den Hit<br>passade  | pumping cost                       |
| Cg      |                     | cost of steam                      |
| D,      | 2110<br>2110        | inside tube diameter               |
| D       | - 12                | outside tube diameter              |
| ſ       | 974-98<br>011-9     | fanning friction factor            |
| g       |                     | specific gravity                   |
| k       | partial<br>arrest   | thermal conductivity               |
| 1       | read                | tube wall thickness                |
| L       | 0-0-10<br>par-10    | tube length                        |
| N       | 1.10                | No. of tubes in condenser          |
| P       | 0.2-00<br>10        | depreciation rate                  |
| P       | er 1<br>mat         | plant factor                       |
| Q       | 41-14<br>8-18       | condenser heat load                |
| V       | 0 10<br>1 10        | rate of heat transfer              |
| R       |                     | fouling resistance                 |
| T       |                     | mean bulk temperature              |
| Ts      | 10-10<br>10-0       | steam temperature                  |
| W       | pr-tail<br>cruste   | flow rate inside tubes             |
| α       |                     | coefficient in steam cost equation |

- a = coefficient in steam cost equation
- AP = pressure drop

| ST.              | gang)<br>gang  | temperature rise in fluid in condenser |
|------------------|----------------|----------------------------------------|
| AT <sub>mi</sub> | area<br>area   | mean drop through inside tube film     |
| AT               | und<br>a ree   | mean drop through inside tube fouling  |
| ΔT               | 641-8<br>1 -16 | nean drop through condensing film,     |

Assuming that the cost of steam can be expressed as a linear function of its saturation temperature, we can write:

$$C_{s} = \alpha_{0} + \alpha_{1} T_{s} Q_{s} (\frac{3}{year})$$
(26)

The fixed charges on the condenser are expressed as

$$C_{\rm F} = C_{\rm H} P_{\rm c} A_{\rm o} \qquad (\$/\text{year}) \tag{27}$$

and the pumping cost is given by

$$C_{Pu} = \frac{C_E P W P_F}{P_N} \qquad (\$/year) \qquad (28)$$

The objective is to select the values of  ${\rm T}_{\rm S},~{\rm A}_{\rm o}$  and  $\Delta P$  which minimize the total annual cost given by

$$C = C_{s} + C_{F} + C_{Pu}$$
<sup>(29)</sup>

The steam temperature can be written as

$$T_{s} = T_{bm} + T_{mo} + \Delta T_{mi} + \Delta T_{mi}$$
(30)

Without going into mathematical detail, from the theory of heat transfer, the first component, the cost of steam, can be expressed as

$$C_{s} = \alpha_{0}Q + \alpha_{1}T_{bm}Q + \frac{\beta_{1}}{N^{7/6}} + \frac{\beta_{2}D_{i}}{N^{0.2}L} + \frac{\beta_{5}}{N D_{i}L}$$
(31)

43

where

$$\beta_{1} = \left(\frac{\alpha_{1} P_{F}}{K_{f}}\right) \left( W C_{p} A T_{b} \right)^{7/3} \left(\frac{\mu_{r}}{2 M_{f}^{2} g}\right)^{1/3} \left(\frac{1}{0.725}\right)^{4/3}$$
(32)

and

$$\beta_{2} = \frac{(\alpha_{1}P_{F}\Delta T_{b})^{2} (\mu)^{0.4} (C_{P})^{1.5} W^{1.2}}{\mu^{0.8} (0.023) \kappa^{0.6} 0.2}$$
(33)

and

$$\beta_5 = \frac{\alpha_1 \ Q \ Q \ R_F}{\pi} \tag{34}$$

The fixed changes can be expressed as

$$C_{F} = \beta_{3} N D_{0}L$$
(35)

where

$$\beta_3 = \pi \frac{C}{H} \frac{P}{C}$$
(30)

and the pumping cost can be expressed as

$$C_{Pu} = \frac{\beta_{l_{\downarrow}} L}{\frac{\mu_{0} \beta_{1} L}{D_{1}}}$$
(37)

where

$$\beta_{4} = \frac{32 \times 0.046 \, C_E \, B \, P_F \, W^{2.8} \, (P/4)^{0.2}}{8 \, \eta \, \rho^2 (\pi)^{1.8}}$$
(38)

Total annual cost is given by

$$C = \alpha_{0} 2 + \alpha_{1} T_{bm} 2 + \frac{\beta_{1}}{N^{7/6} D_{0} L^{4/3}} + \frac{\beta_{2} D_{1}}{N^{0.2} L} + \beta_{3} N D_{0} L$$

$$+ \frac{\beta_{14} L}{D_{1}^{4.8} N^{1.8}} + \frac{\beta_{5}}{N D_{1} L}$$
(39)

Since the first two terms are constants only the last five terms may vary and are subject to optimization. Thus the variable cost function,

$$C^{\#} = \frac{\beta_{1}}{N^{7/6} D_{0}L^{4/3}} + \frac{\beta_{2} D_{1}^{0.8}}{N^{0.2}L} + \beta_{3} N D_{0}L + \frac{\beta_{4}}{D_{1}} \frac{L}{L}$$

$$(40)$$

From practical consideration the constraint on inside and outside diameter of the tubes is:

$$D_{o} - D_{1} \ge 21 \tag{441}$$

This can be written in the form of a geometric programming constraint as

$$\frac{\beta_6}{D_0} + \frac{\beta_7 D_1}{D_0} \le 1. \tag{42}$$

where  $\beta_6 = 21$  and  $\beta_7 = 1$ Also from a practical standpoint it was found  $D_0$  can not exceed 1 inch. Hence this constraint can be included as:

$$D_{o} \leq D_{o} \max$$
or  $\beta_{8} D_{o} \leq 1$ 
(43)
where  $\beta_{8} = 1/D_{o} \max = 12$ 

The following numerical values have been taken

W = 500,000 lbs/hr. T<sub>bl</sub> = 195 °F

| T<br>b2        | = 205 F                                   |
|----------------|-------------------------------------------|
| T              | = 200  °F                                 |
| α <sub>1</sub> | = 1.0 <sup>~9</sup> 4/EPU ~ °F            |
| C H            | = 5 \$/sq. ft.                            |
| C              | $\Rightarrow 3.0^{-2} \frac{h}{V}$ kw-hr. |
| Pc             | ⇒ 0.l                                     |
| Pf             | = 7884 hr/yr                              |
| η              | = 0.8                                     |
| P              | = 60.13 1b/cu.ft.                         |
| p              | = 0.20 cp.                                |
| k              | = 0.393.BTU/hr-sq.ft <sup>0</sup> F/ft.   |
| C              | = 1.01 BTU/10-°F                          |
| Tf             | = 210 °F                                  |
| Pr             | = 59.88 lb/cu.ft.                         |
| 12             | = 0,26 cp.                                |
| kf             | = .393 BTU/hr-sq.ft. <sup>o</sup> F/ft.   |
| λ              | = 960 BTU/1b.                             |
| 1              | = .049 inch                               |
| В              | <u> </u>                                  |
| R              | $= 5.68 \times 10^{-4}$                   |
|                |                                           |

The following values of the constants are obtained:

$$\beta_{1} = 172,400$$
  
 $\beta_{2} = 97,790$   
 $\beta_{3} = 1.57$   
 $\beta_{4} = 0.0382$   
 $\beta_{5} = 38380$ 

 $\beta_{6} = 0.0081.7$  $\beta_{7} = 1.0$  $\beta_{8} = 12.0$ 

## Colution by geometric programming

The problem consists of a total of 8 terms and 4 variables. Hence it has 3 degrees of freedom. The dual problem to be maximized has the same form as Eqn. (11) which is subject to normality and orthogonality constraints having the form of Eqn. (8) to Eqn. (10) of Chapter II. As the problem has 3 degrees of freedom the dual objective function can be expressed as a function of 3 independent variables  $r_1$ ,  $r_2$ ,  $r_3$ , Other variables are eliminated by the use of linear equality constraints.

The problem has been solved by maximizing the dual function  $V(\delta)$  by using Hooke and Jeeves search procedure. The convergence rate, i.e., the change of value of  $V(\delta)$  with the number of functional evaluations during the search is shown in Table 5 and is plotted in Fig. 4.

The problem did not converge to an optimal with the Newton-Raphson method. The initial value  $r_i = 1$  i = 1, ..., 3 was tried. The difficulty with the Newton-Raphson method was in the first step where the values of  $r_i$  violated the positivity constraints

 $\underline{b}^{0} + \sum_{i=1}^{3} r_{i} \underline{b}^{i} \ge 0$ 

so widely that they could not be corrected.



Fig. 4. The convergence rate of the condenser problem by the Hooke and Jackes method.

| n - Alexandrow - Alexandrow - Alexandrow | Variabl | C S   | Function | No. of     |
|------------------------------------------|---------|-------|----------|------------|
| rl                                       | ۲2      | ۳3    | Value    | Evaluation |
| .810                                     | .210    | .790  | 196.64   | 5          |
| ,800                                     | .370    | .775  | 272,83   | 99         |
| .620                                     | ,365    | .595  | 384,53   | 200        |
| .440                                     | .355    | .415  | 532,16   | 304        |
| .360                                     | .3'55   | .335  | 608,99   | 352        |
| .270                                     | .345    | . 245 | 702.24   | 403        |
| .190                                     | .340    | .165  | 786,06   | 449        |
| .100                                     | .330 -  | .075  | 867.08   | 501        |
| ,085                                     | .325    | .060  | 879.67   | 555        |
| .083                                     | .326    | .057  | 880,69   | 602        |
| .067                                     | .325    | .041  | 890,07   | 650        |
| . 045                                    | .322    | 0.18  | 898.26   | 701        |
| . 03 5                                   | .320    | .008  | 899,33   | 783        |

Table 5. Convergence rate of the condenser design problem by the Hooke and Jeeves method.

The following results were obtained:

Minioum variable annual cost = 899.33 3/year. The optimal design parameters were:

 $D_{0} = 1$  inch  $D_{1} = .90$  inch N = 114.16L = 27.48 feet

The optimal dual variables were:

δ<sub>1</sub>
 δ<sub>2</sub>
 δ<sub>3</sub>
 δ<sub>4</sub>
 5
 6
 7
 8
 .1095
 .1934
 .4564
 .0617
 .1790
 .0351
 .3203
 .0085
 .1095
 .1934
 .4564
 .0617
 .1790
 .0351
 .3203
 .0085
 .1095
 .1095
 .1095
 .10934
 .4564
 .0617
 .1790
 .0351
 .3203
 .0085
 .0085
 .0010
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .1095
 .10934
 .4564
 .0617
 .1790
 .0351
 .3203
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 .0085
 <l

## CHEMICAL EQUILIBRIUM PROBLEM

This model is taken from a paper of Passy and Wilde [13]. According to the minimum free energy principle, a chemical system is in equilibrium at constant pressure and temperature if and only if its free energy is a minimum. To formulate this problem mathematically, let a chemical system have P phases,  $G_1$ ,  $G_2$ , ...,  $G_p$  and let the chemical species occuring in phase  $G_k$  be  $A_{k1}$ ;  $A_{k2}$ , ...,  $A_{k,1(k)}$  where I(k) is the number of species in  $G_k$ . Let  $n_{k1}$  be the number of moles of species  $A_{k1}$  in phase  $G_k$ . Then define a row vector  $M_k$  representing the composition of phase  $G_k$  whose components are  $n_{k1}$ ,  $n_{k2}$ , ...,  $n_{I(k)}$ . From these constituet n:

$$\mathbf{n} = \begin{bmatrix} \mathbf{N}_1, \ \mathbf{N}_2, \ \dots, \ \mathbf{N}_p \end{bmatrix}$$

In this notation the mass balance equation for each chemical element  $B_j$  is given by

 $\begin{array}{ccc} P & I(m) \\ \Sigma & \Sigma & a \\ mkj & mkj & mk \end{array} j = 1, 2, \dots, r \quad (44)$ 

where a is the number of atoms of element B in chemical species  $\Lambda_{mk}$ , b is the mass in gram atoms of chemical element B<sub>j</sub>, and r is the number of different chemical elements in the system.

The Gibbs free energy G(n) of the system is given by

$$G(n) = \operatorname{RT} \stackrel{p}{\Sigma} \stackrel{I(k)}{\underset{k=1}{\Sigma}} \stackrel{n}{\underset{i=1}{\overset{i}{\underset{ki}{1}}}} (\ln \frac{n_{ki}}{N_k} - \ln C_{ki})$$
(45)

where  $N_{k} = \sum_{i=1}^{L(k)} n_{ki}$  for  $k = 1, \dots, P$ 

and the second term is the standard free energy. The equilibrium concentration  $n^*$  is found by minimizing G(n) subject to (32) and the natural constraints,

 $n_{ki} \ge 0$  for all i and k

This minimizing problem, which has a unique solution in the trivial case, is equivalent to the dual geometric programming problem since

$$V(n_{ol}, n) = \exp(\frac{-G(n_{ol}, n)}{RT}) = e\lambda p(\frac{-G(n)}{RT})$$
(46)

where (nol, n) is the vector generated by augmenting one

component nol to the vector n; the corresponding coefficient Col is set equal to unity.

The mass balance equation can be written as

$$n_{ol} = 1$$

$$p_{I}(m)$$

$$\sum \sum A_{mkj} n_{kj} = 0 \quad j = 1, \dots, r$$

$$(47)$$

$$(48)$$

where  $a_{oij} = -b_j$  and I(o) = 1These are identified as the normality and organality conditions as equations (9) and (10) of Chapter II. Hence the primal objective function of a chemical equilibrium problem can be identified as

subject to constraints

$$h_{m}(t) \leq 1$$
  $m = 1, ..., P$  (50)

where 
$$h_{in}(t) = \sum_{k=1}^{I(m)} \sum_{mk=j=1}^{r} a_{mkj}$$
 (51)

and r is the number of different chemical elements  $B_j$ , and  $b_j$  is the mass of chemical element  $B_j$ .  $t_j$  is the corresponding primal variable.

The problem discussed here is due to White, Johnson and Darzing [16]. The stoichior etric mixture of hydrazine and oxygen at 3500 <sup>o</sup>k and a pressure of 750 psi is considered. The initial amounts of hydrogen, orygen and nitrogen are 2, 1 and 1 respectively.

So the objective function is

$$g_{0}(t) = t_{1}^{-2} \times t_{2}^{-1} \times t_{3}^{-1}$$
(52)  

$$g_{1}(t) = c_{1} t_{1} + c_{2} t_{1}^{2} + c_{3} t_{1}^{2} t_{2}^{+c} t_{3} + c_{5} t_{3}^{2} + c_{6} t_{3} t_{1}$$
  

$$+ c_{7} t_{3} t_{2} + c_{8} t_{2} + c_{9} t_{2}^{2} + c_{10} t_{1} t_{2} \le 1$$
(53)

The various possible constituents at equilibrium and the corresponding C  $_{\rm S}$  are given as

H = 4.411 x 
$$10^2$$
  
H<sub>2</sub> = 2.846 x  $10^7$   
H<sub>2</sub>0= 6.160 x  $10^{1.4}$   
N = 3.703 c  $10^2$   
N<sub>2</sub> = 7.107 x  $10^{1.0}$   
NH = 3.225 x  $10^6$   
NO = 2.930 x  $10^6$   
O = 4.471 x  $10^4$   
O<sub>2</sub> = 3.796 x  $10^{11}$   
OH = 4.289 x  $10^9$ 

putting 
$$y_1 = 10^3 t_1$$
  $y_2 = 10^6 t_2$   $y_3 = 10^5 t_3$   
The objective is to minimize

$$y_{2}(y) = 10^{16} y_{1}^{-2} y_{2}^{-1} y_{3}^{-1}$$
(54)

subject to

# Solution by geometric programming

The problem has 11 terms and 3 variables, and hence a degree of freedom 7. The problem is solved by geometric programming using Hooke and Jeeves search procedure. As the degree of freedom is 7, the dual problem can be expressed as a function of 7 independent variables,  $r_i$ , i = 1, ..., 7. The convergence rate of Hooke and Jeeves is shown in Table 6 and the same data is plotted in Fig. 5.

The Newton-Raphson method did not converge for this problem. An initial value of  $r_1 = , i = 1, ..., 7$  was tried. The difficulty with the Newton-Raphson method occurred after the first step when the value of the variables  $r_i$  violated the

positivity constraints  $\underline{b}^{\circ} \div \sum_{i=1}^{7} r_{i} \underline{b}^{i} \leq 0$ 

so widely that they could not be corrected.

The computation time for Hooke and Jeeves procedure was 239 secs. The accuracy € was chosen as 0.001.

The following values of primal variables were obtained at the optimum.





| Table | 6. | Convergence  | rate of problem | the<br>by t | ch<br>the | emical<br>Hooke |
|-------|----|--------------|-----------------|-------------|-----------|-----------------|
|       |    | and Jeeves n | ethod.          |             |           |                 |

| Variables |                |       |      |                |      | Function | No. of<br>functional |            |
|-----------|----------------|-------|------|----------------|------|----------|----------------------|------------|
| rı        | r <sub>2</sub> | r3    | rly  | r <sub>5</sub> | r6   | r.7      | Value x 10 -         | evaluation |
| .150      | .250           | .150  | .050 | .100           | .100 | .150     | 1.08                 | 14         |
| .050      | .400           | .050  | .100 | .050           | .050 | .050     | 7.51                 | 112        |
| .050      | .41.2          | .012  | .150 | .012           | .012 | .075     | 9.49                 | 224        |
| .044      | 431            | .006  | .125 | ,012           | .019 | .081     | 10.28                | 318        |
| 0.50      | 447            | .003  | .097 | .016           | .022 | .084     | 10.89                | 404        |
| 0/1/1     | 1150           | .003  | .075 | .016           | .028 | .087     | 11.30                | 522        |
| ohh       | 161            | .002  | .073 | .016           | .028 | .089     | 11.35                | 606        |
| 056       | 172            | 002   | .048 | .017           | .034 | .094     | 11.62                | 701        |
| .050      | 100            | .002  | 041  | .017           | .036 | .095     | 11.71                | 804        |
| .050      | .470           | . UUZ | 0.20 | 018            | 037  | .096     | 11.77                | 1001       |
| .044      | .483           | .001. | .032 | .010           | 0.07 | .0,00    | 11 70                | 1091       |
| .041      | .486           | .001  | .026 | .018           | .037 | .098     | 4 J + ( 7            | LV / do    |

The optimum value of objective function was 11.79 x 10<sup>13</sup>. The optimal dual variables were

| δ<br>1 |                      | 1.00  |
|--------|----------------------|-------|
| δ2     | 2-00<br>1            | .002  |
| δ<br>3 |                      | .1.46 |
| SL     | -codill<br>Scientifi | .784  |
| δ      |                      | .041  |
| δ6     | 400-10<br>200-10     | .486  |
| δ7     | 11                   | s001  |
| δ'8    | darred<br>Sairt      | .026  |
| δ      | ==                   | .018  |
| S 1.0  | 211+10<br>21108      | .037  |
| δ_11   | 12                   | .097  |

The dual variables  $\delta_2$  to  $\delta_{11}$  represent the optimum equilibrium concentrations in moles of the corresponding species.

#### TRANSTORMER PROBLEM

This model is taken from a Westinghouse Research Report [7]. The explanation of the model and identification of variables are not disclosed. The problem is stated as follows:

Minimize

subject to

$$\mathbf{s}_{1}(t) = 4 t_{1}/t_{5} + 6 t_{2}/t_{5} + 4 t_{3}/t_{5} \leq 1$$
(37)



Tig. 6. The convergence site of the transformer problem by the Newton-Raphson method.

| ver a management of the second | ables          |          | No. of<br>Functional |  |  |
|--------------------------------|----------------|----------|----------------------|--|--|
| r <sub>1</sub>                 | r <sub>2</sub> |          | Evaluation           |  |  |
| .200                           | .200           | 55955.00 | 1                    |  |  |
| .400                           | .100           | 58391.38 | 1.0                  |  |  |
| .325                           | .075           | 65932.50 | 20                   |  |  |
| • 337                          | .100           | 66420.06 | 30                   |  |  |
| .31.2                          | .106           | 66671.75 | 40                   |  |  |
| .322                           | .100           | 66694.62 | 50                   |  |  |
| .31.7                          | .1.03          | 66698.93 | 60                   |  |  |
| . 320                          | .103           | 66703.75 | 70                   |  |  |

| Table | 7. | Conver<br>Transf | orne | e<br>r | rat<br>pro | te<br>obl | or<br>en | the<br>by | the |
|-------|----|------------------|------|--------|------------|-----------|----------|-----------|-----|
|       |    | Hooke            | and  | Je     | e.v.       | es        | met      | noa       | 9   |

| shating wantil and the second s | Varia  | bles     | Function Values |         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------------|---------|--|--|
| Iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r l    | r 2      | F <sub>1</sub>  | F 2     |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 1500 | .2500    | -3.5099         | 14,5100 |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,2051  | .2500    | 8765            | 12.8205 |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2243  | . :00    | ,0990           | 10,8018 |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2228  | . 21:97  | .0021           | 8.2646  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2248  | .2469    | .0002           | 5,9995  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2372  | . 2.2.94 | .0065           | 3,8335  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,2793  | .1691    | .0547           | 1.6322  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .3173  | .1091    | .0492           | .1677   |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .3193  | .1033    | ,0010           | .0004   |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,3193  | .1033    | 0.000           | 0.000   |  |  |

T ble 8. Convergence rate of the Transformer problem by the Newton-Raphsen method. ŝ 40 Computational aspects of problems Table 8a. Procedure for martnizing dual function vton - Haphson 1ter No. of Computer No. of functional terations time evaluation 763 I60I 20 202 33 Computer time 2.5 (sec.) 22 J15 239 e H iterations Newton - Haphson Computer No. of time 1teratic 0 -7 1 1 Î (sec.) 97 7 61 t 1 1 difficulty Degree of  $\sim$ 0  $\mathbf{r}^{+}$ 0 variables No. of 0  $\sim$ コ  $\mathbb{C}$ 0 Total No. of terms 1--{ ---{ 5 7 0 00 Problem No.  $\sim$  $\sim$ .7 S -

60

$$g_{2}(t) = 6 t_{3}/t_{6} + 6 t_{4}/t_{6} = 9.424 t_{1}/t_{6} \le 1$$
 (58)

Solution by geometric programming

The above problem has 9 terms and 6 variables, and hence there are 2 degrees of freedom. The dual function can be expressed with two independent variables  $r_1$  and  $r_2$ . The problem has been solved by maximizing the dual function by Hooke and Jeeves procedure. The convergence rate for the search is shown in Table 7. The problem has also been solved by the Newton-Raphson procedure and the convergence rate is shown in Table 8 in which the functions  $F_1$  and  $F_2$  are derivatives of the dual function with respect to  $r_1$  and  $r_2$  respectively. The same data are plotted in Fig. 6. The accuracy is chosen as 0.001 in both the Newton-Raphson and the Hooke and Jeeves procedure.

The following results are obtained: Minimum value of the objective function is 66703.93 Optimum primal variables are:

| 0   | 0   | 3    | 4   | 5   | 6   | 7   | 0   | /   |
|-----|-----|------|-----|-----|-----|-----|-----|-----|
| .43 | .19 | . 38 | .08 | .18 | .17 | .15 | .32 | .10 |

PRODUCTION - INVENTORY PROBLEM

This is a hypothetical model in which the optimum policy regarding production and inventory levels are to be determined

61

Let

$$x(t) = I(t)$$
 (62)  
 $z(t) = P(t)$  (63)

Then Equation (59) becomes

$$dx(t)/dt = z(t) - Q(t)$$

From this the difference equation can be written as

$$x(t + \Delta t) = x(t) + (z(t) - Q(t)) \Delta t$$
(04)

Dividing the entire time period into five stages, the integral equation for cost (50) can be written as

$$C_{T} = \sum_{i=1}^{5} \left[ C_{I} (I_{m} - x_{i})^{2} + C_{p} (P_{m} - z_{i})^{2} \right] \Delta t$$
(65)

and difference Eqn. (64) can be written as

$$x_{i} = x_{i-1} + (z_{i} - Q_{i}) \Delta t$$
  $i = 1, \dots, 5$  (66)

The numerical values assumed are

| 8              |                           | 2   | b    | 100-08<br>100-19 | 1  | С              | 10.0           | 5 |
|----------------|---------------------------|-----|------|------------------|----|----------------|----------------|---|
| C <sub>T</sub> | 174 <del>4</del><br>21-18 | 0.1 | I ra | 4098<br>1997     | 10 | P <sub>m</sub> | 1.00F<br>0.00F | 5 |
| Сp             | 11                        | .01 | to   | 1                | 0  | tf             | 4. W           | 1 |
| t              | 47-98<br>4.18             | .2  |      |                  |    |                |                |   |

To apply geometric programming the objective function has to be expressed in polynomial form. Thus rewriting Eqn. (65)

$$C_{T} = \sum_{i=1}^{5} C_{i} \Delta t x_{i}^{2} + \sum_{i=1}^{5} C_{p} \Delta t z_{i}^{2} - \sum_{i=1}^{5} 2 C_{I} I_{m} \Delta t x_{i}$$
  
- 
$$\sum_{i=1}^{5} 2 C_{p} P_{m} \Delta t z_{i} + Constant$$
 (67)

where Constant =  $C_{I} I_{m}^{2} + C_{p} P_{m}^{2}$ 

The problem is to minimize the variable portion of Eqn. (67) subject to the constraints (66). An attempt was made to solve the problem by geometric programming. The problem has 34 terms and 10 variables, and hence the degree of f ecdom is 23. The problem is not in posynomial form; hence the extension of geometric programming as discussed in Chapter II had to be used. The attempt was unsuccessful because of the difficulty in obtaining an initial feasible solution  $r_j$ . As the problem has 23 degrees of freedom. A feasible solution of  $r_j$ , j = 1, 23 has to be found which satisfies the inequality constraints given by Equations (21) and (24) of Chapter II, which are

$$\infty > \delta_{kt} \ge 0$$

$$\delta_{k0} = \sigma_{k} \sum_{t=1}^{T_{k}} \sigma_{kt} \delta_{kt} \ge 0 \quad k = 1, \dots, p.$$
(68)
(68)
(69)

and

where

 $\frac{\delta}{\delta} = \underline{b}^{\circ} + \frac{d}{\sum} \mathbf{r}_{j} \underline{b}^{j}$  $\sigma_{k} = \pm 1$  $\sigma_{kt} = \pm 1$ 

and d is degree of freedom.

The problem has 34 terms and 5 constraints. So an initial solution of <u>r</u> has to satisfy 39 inequality constraints. The Hooke and Jeeves search was used to maximize each  $\delta_{ko}$  given by Equation (69) subject to constraints (68) until  $\delta_{ko} \geq 0$ . Hooke

64

and Jeeves search is not efficient in handling a large number of inequality constraints. Due to this difficulty an initial feasible solution could not be obtained by this method.

The above problem was solved successfully by Lagrangian polynomial optimization technique [3]. To use this technique, the problem has to be expressed in the following form

Minimize 
$$g_{0}$$
 (70)  
subject to  $g_{m} = 1$   $m = 1, ..., M$  (71)  
where  $g_{m} = \sum_{t=1}^{T} \sigma_{mt} C_{mt} \sum_{n=1}^{T} n$   $m = 0, 1, ..., M$  (72)  
where  $C_{mt} > 0$   
 $A_{mtn}$  is any real number  
 $\sigma_{mt} = \pm 1$ 

The objective function of the above problem given by Equation (67) is in the form of (70). The constraints as given by Eqn. (66) can be transformed according to the requirement for this technique as follows: rewriting Equation (66) as

$$\frac{x_{1}}{x_{0} - Q_{1} t} - \frac{z_{1} t}{x_{0} - Q_{1} t} = 1$$
(73)

and

$$\frac{x_{i-1}}{q_{i}t} = \frac{x_{i}}{q_{i}t} + \frac{z_{i}}{q_{i}t} = 1 \quad i = 2, \dots, 5 \quad (74)$$

constraints (73) and (74) are in the required form and the algorithm as described in Chapter III can directly be applied.

A difficulty in this probled, was that the function overshot the sinimum for some starting values because of too large a step size. This difficulty was overcome by using a forcing procedure which retriets the step size to a certain maximum of the variables. Various limits were tried on differ at starting values. The number of iterations required to enverge to the optimum for each of these cases is given in Table 11. The convergence rates for two typical starting values are given in Tables 9 and 10. The optimum values of productions and inventories are given in Table 12, and are plotted in Figs. 7 and 8. The function is assumed to have converged when all components of the error vector as defined in Chapter III are less than or equal to 0.0001.

The optimum total cost obtained is

 $C_{T} = .374$ 

| Her ticn | allian arkernaldigaden – n sehn denkersan | Cost<br>Purcentage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | forcing            | n en angenetisken derstamme understammense<br>gesk |
|----------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------|
| No.      | No<br>Coreing                             | anton and a second seco | 50                 | 100                                                |
| 0<br>1   | -9,999 <b>9</b><br>-9,8964                | -9.9999<br>-9.9290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -9.9999<br>-9.8864 | -9.9999<br>-9.8864                                 |
| 2        | -9.8738                                   | -9. 615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9.8738            | -9.8738                                            |
| 3        | -9.97.9                                   | -9,8750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9.8759            | -9,8759                                            |
| 13.      | -9.3759                                   | -9.8759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9.3759            | -9,8759                                            |
| 5        | a.e. and 104                              | -9.8759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9.8759            | _0.8759                                            |

Table 9. Typical convergence rate of the inventory problem with starting values  $x_i = 10$ , i=1,...10.

| Lable 10. | Typical | converge      | nce rate | for     | the | inventory |
|-----------|---------|---------------|----------|---------|-----|-----------|
|           | problem | with sta      | rting va | lues    |     |           |
|           |         | $x_{*} = 5.0$ | i = 1,   | 0.0.0.7 | 10, |           |

| Pholo The Theorem and the second second |                                                                             | Cost          | ;        |                                         |
|-----------------------------------------|-----------------------------------------------------------------------------|---------------|----------|-----------------------------------------|
| Iteration                               | and which is a second strategic constraint and second strategic strategics. | Percentag ) 1 | oreans   | 1000-00 0000000000000000000000000000000 |
| EV O 8                                  | No<br><u>foceine</u>                                                        | 20            | 50       | J.00                                    |
| 0                                       | -7.7499                                                                     | -7.7499       | -7.7499  | -7.7499                                 |
| 1.                                      | 703.2946                                                                    | -8.61.53      | -9.2914  | -9.5404                                 |
| 2                                       | 1022.4440                                                                   | 9.3822        | -7.4436  | -9.6252                                 |
| 3                                       | 378.3039                                                                    | -9.0118       | -8,2156  | -9.8360                                 |
| 14                                      | 93.0727                                                                     | -9.5035       | -6.3799  | -9.8680                                 |
| 5                                       | 2.3208                                                                      | -9.6459       |          | 0.8754                                  |
| 6                                       | -7.2251                                                                     | -9.0581       | -7.4099  | 9.8758                                  |
| 7                                       | -9.0035                                                                     | -8.9299       | 7.4086   | -9.8758                                 |
| 8                                       | -8.2692                                                                     | 9.3047        | -7.133.0 |                                         |
| 9                                       | 9.5499                                                                      | -9 3213       | -7. 515  |                                         |
| 10                                      | -9.7332                                                                     | -9.2770       | -7.3502  |                                         |
| 11                                      | -9.7480                                                                     | -9.1200       | -7.0435  |                                         |
| 12                                      | -9.7644                                                                     | -9.1454       | 7. 397   |                                         |
| 13                                      | -9.7679                                                                     | -9.1501       | 7. 374   |                                         |
| 14                                      | -9.7678                                                                     | -9.1504       | -7.3360  |                                         |
| 1.5                                     | -9.7677                                                                     | 9.1506        | 7-3353   |                                         |
| 16                                      | -9.7677                                                                     | -9.1503       | -7:33'!8 |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o. E Tter Licis |              |            |           |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------|-----------|-----------|--|
| Starting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | 05           | Persentage | foreing   |           |  |
| Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No<br>forcing   | 10           | 20         | 50        | 100       |  |
| and the standard of the standa | i'r. Conv.      |              | No. Conv.  | No. Conv. | No. Conv. |  |
| i4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10              |              | No. Conv.  |           | and stay  |  |
| 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9               |              |            | ~~        |           |  |
| 5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. Conv.       | 20           | No. Conv.  | do, Conv. | 8         |  |
| 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | б               |              | ng 19      |           |           |  |
| 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5               |              | a for 1980 |           | •         |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. Conv.       | ~~~          | 7          | 7         | No. Cerv. |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. Conv.       |              | 7          | 11        | No. Couv. |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lt              | ê<br>a w met | 5          | 5         | 5         |  |

Table 11. Effect of forcing on convergence.

Table 12. Optimum inv at a cy and production levels.



| 1 - t + t | x (t) | 2 (t) | 5 (1) |
|-----------|-------|-------|-------|
| 0.0 - 0.2 | 5.0   | 14.01 | 2.0   |
| .2 - "łł  | 7.38  | 8.77  | 2.30  |
| , l+ 6    | 8.63  | 1.1   | 2,50  |
| .68       | 9,40  | 4,93  | 2.70  |
| .8 - 1.   | 9.84  | 4.62  | 2.90  |
| 1         | 10.20 |       |       |



or. 7. get in invento / locale.



### VI. DISCUSSION

The geometric programming algorithm in its present form can handle a large class of problems often found in practice.

In the posynomial case the method always produces a global minimum, not just a relative minimum. The minimum is equal to the maximum of the dual function whose constraints are linear. If the primal problem has zero degree of difficulty, the solution of the dual problem, hence the solution of primil problem, is obtained by solvin; a system of linear equations. In the case of zero degree of difficulty, each term in the optimal objective function has an invariant weight represente by the unique solution of the linear constraints. The matical importance of this property is that the weight of each term in the objective function is independent of the coefficients.

The extension of geometric programming, as developed by Wilde and Passy by using Kuhn-Tucker conditions, is applicable to any problem involving generalized polynomials. But any deviation from the full posynomial situation invalidates the arithmetic-geometric mean inequality and its useful applications. The optimal weights occur at stationary points of unspecified character in the general case, and this precludes direct search. Another difficulty in the general case is that one no longer has a guarantee that the solution obtained by working with the dual function corresponds to a minimum of the objective.

The existing theory of generalized geometric programming for polynomial optimization gives no way to compute optima except in the special case where there is exactly one more term there are independent variables. Also the theory is formulated in terms of inequality constraints, although the physical restrictions occuring in practice are more often strict equalities. The Lagrangian algorithm for generalized polynomial optimization [3] is suitable for equality constrained problems, which was shown by rapid convergence for the production scheduling model with 23 degrees of freedom.

The convergence is not guaranteed for the above method. Moreover, even when the algorithm does converge, the point found may be a saddle point or even a maximum. Finally, a local minimum may not be the global minimum.

Sometimes during the initial iterations, the method takes too big a step and overshoots the minimum. This results in no convergence. This difficulty was overcome by restricting the step size to a predetermined percent of the variable.

Despite these difficulties, both geometric programming and the Lagrangian algorithm can be regarded as poincering fields in nonlinear optimization with nonlinear constraints and they have great potentials in engineering design and system. analysis.

#### REFERENCES

- 1. Avriel, M. and D. J. Wilde, "Optimal Condenser Design by Geometric Programming," Ind. Eng. Chem. Process Des. Dev., 59, 256 (1967).
- Beightler, C. S., R. M. Crisp and W. L. Meier, "Optimization by Geometric Programming," J. of Ind. Eng., 12, 117 (1968).
- Blau, G. E. and D. J. Wilde, "A lagrangian algorithm for equality constrained generalized polynomial optimization," Symp. Optimization of reaction systems, Part 1, 65th Nat. meeting AICHE., 1969.
- 4. Duffin, R. J., "Dual Programs and Minimum Cost," J. SIAM., 10, 119 (1962).
- 5. Duffin, R. J., "Cost Minimization Problem Treated by Geometric Means," Operations Research, 10, 668 (1962).
- 6. Duffin, R. J., E. L. Peterson and C. Zener; <u>Geometric</u> <u>Programming</u>, John Wiley, New York (1966).
- 7. Frank, C. J., "Problem Solution Using the Geometric Programming Algorithm," <u>Westinghouse Research Report 64-IHO-129-</u> RI, (1964).
- 8. Frank, C. J., "Development of a Computer Igorithm for Geometric Programming," <u>Westinghouse Res arch Re ort</u> 64-IHO-129-R2, (1964).
- 9. Hadley, G., Linear Algebra, Addision-Wesley Publishing Co., Inc. (1961).
- 10. Hooke, R. and T. A. Jeeves, "Direct Search Solution of Numerical and Statistical Problems," J. Assoc. Comput. Mach., 8, (1961)
- 11. Lavi, A. and T. P. Vogl, Symposium on Recent Advances in Optimization Techniques, John Wiley, New York, (1966).
- 12. Passy, U. and D. J. Wilde, "Generalized Polynomial Optimization," J. SIAM, 15, 1344, (1967).
- 13. Passy, U. and D. J. Wilde, "A Geometric Programming Algorithm for Solving Chemical Equilibrium Problems," J. SIAM, 16, 363, (1968).
- 14. Scarborough, J. B., <u>Numberical Mathematical Analysis</u>, John Hopkins Press, Baltimore, (1950).

- 15. Sherwood, T. K., A Course in Process Design, MIT Press, Cambridge, (1963).
- 16. White, W. B., S. H. Johnson and G. B. Dontzig, "Chemical Equilibrium in Complex Hixtures," J. Chem. Phys., 28, 751 (1958).
- 17. Wilde, D. J., "A Review of Optimization Theory," Ind. Eng. Chem., 57, 18, (1965).
- 18. Wilde, D. J. and C. S. Beightler, Foundations of Optimization, Prentice Hall, N. J. (1967).
- 19. Zener, C., "A Nathematical Aid in Optimizing Engineering Desings," Proc. Nat. Acad. Sci. U.S.A., 47, 537, (1961).
- 20. Zener, C., "A Further Mathematical Aid in Optimizing Engineering Designs," Proc. Nat. Acad. Sci. U.S.A., 48, 518, (1962).
- 21. Zener, C., "Minimization of System Costs in Terms of Subsystem Costs," Proc. Nat. Acad. Sci. U.S.A., 51, 162, (1964).
- 22. Zener, C. and R. J. Duffin, "Optimization of Engineering Problems," Westinghouse Engineer, 154, (1964).





Fig. 19. Flow diagram for Hoske and Jeaves pritera shareh. [10]





82 APPENDIX B

|     | ° J03   | GEO 'ETRIC, RU L. CCK, TI/E=15, PAGES=50 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | С       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | C       | THE COMPUTER PROGRAM FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | C       | THE SAMPLE PROBLEM BY GEOMTRIC PROGRAMMING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | С       | USING HOOKE AND JEEVES PATTERN SLARCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | С       | CIVENSION A(51,25), AA(35,45), A1(30), A2(30), H(700), L2(30), L3(30),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1   | 1       | C. (5), BASE1(35), E(5), BASE1(35), BASE2(35), B1(50), B2(5J), FA(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2   |         | COMMON KA(20), KB(20), SUM(20), DEL(50), SIG(50), BEI(20), ALAM(30),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | ]       | $((50)_{2}R(35)_{3}S(50)_{3}S(50)_{3}S(50)_{3}S(50)_{3}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{13}N_{1$ |
| 3   | 11      | FORMAT (515)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5   | 12      | FURMAT (1H-, ) OPTIMUM ANNUAL COST (25,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6   | 13      | FORMAT (2F3.)<br>FORMAT (2 FXPONENT MATRIX SINGULAR*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8   | 22      | FORMAT (F22.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9   | 100 000 | READ 10, M, MX, KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10  |         | READ [1], (KA(1), I=1, K1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12  |         | $READ = 13_{2} \left( \left( A \left( 1_{2} J \right)_{2} J = 1_{2} M \right)_{2} I = 1_{2} M \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13  |         | KOUMT=)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14  |         | M1=NX-M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15  |         | N2=511+1<br>N3=511+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 17  |         | N4=N2+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.8 |         | $A_{1} = X A (1) - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20  |         | 00 800 I=1,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21  | 601     | SIG(I)=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22  |         | BCI(1)=1.<br>SFI(2)=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24  |         | $C(1) = 100^{-5}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25  |         | $C(2) = 4_{0} \approx (10_{0}) \approx 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26  |         | $((3) = 2 \cdot 5^{(1)} \cdot 1^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28  |         | DU 160 I=1,11X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 29  |         | DO 100 J=1, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30  | E.C.    | 0.036 J=1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 32  | 30      | AA(1,J) = SIG(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33  | 1.01    | $DO 101 J=ND_{2}NX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 34  | 10      | 10 98 I = 1, N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36  |         | DU 98 J=1,N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 37  |         | $A_{A} = A_{A} = A_{A$ |
| 3   | 91      | $A1(1)=1_{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40  |         | 00 102 I=2,N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 41  | 10      | 2 SI()=2.<br>OBIAINING MORMALLITY AND NULLITY VECTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | C       | THE SUBROUTIMES USED HERE ARE PROVIDED BY IBM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 42  |         | C'LL MINV (H, N2, D, L2, L3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 43  |         | $ (F(U) \in Q_{\circ} \cap \bullet)  \forall U \mid U \mid Z \ge $ $ (H \circ A 1 \circ B 1 \circ N 2 \circ N 2 \circ 1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45  |         | J1=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 46  |         | DU 104 J-N4, NX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47  |         | $J_1 = J_1 + L$<br>$D_1 = J_1 + L$<br>$D_2 = J_1 + L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40  | 10      | $3 \Lambda 2(1) = -\Lambda \Lambda(1, J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                  | CALL CAUDO 14-A2-B2 (2,12)            |
|------------------|---------------------------------------|
| <i>b.</i>        |                                       |
| 51               | (1) 104 I=1, (12 -                    |
| 52               | 104 B([, ]]) = 32([)                  |
| c >              | 00 50 1=1,12                          |
| 20               |                                       |
| 54               | 51 3(1,1)=01(1)                       |
| 55               | (1-0                                  |
| 5.6              | 00 51 I=114.11X                       |
| 00               | 11-11-1                               |
| 57               |                                       |
| 58               | 00 51 J=L,N3                          |
| 59               | [F(J-I1-1) 52,53,52                   |
| 40               | $53 B(f_{a,b}) = 1$                   |
| 00               | pa to 51                              |
| 61               |                                       |
| 62               | 52 D(1,J)=0.                          |
| 63               | 51 CONTINUE                           |
| 61.              | 00 5 I=1.NL                           |
| 01               |                                       |
| 65               | D KILTIJ-00 THEFTAL EEASTREE SOLUTION |
|                  | C OBTAINING INITIAL FEASIBLE SOLUTION |
| 66               | [ ] = 1                               |
| 67               | $T T \vdash R = 0$                    |
| 10               | NTC 2 A                               |
| 68               | VIER-V                                |
| 69               | 126 DU 128 J=2,93                     |
| 70               | 128  ROLD(J) = R(J)                   |
| 71               | 127 []=]                              |
| 11               | 11-2                                  |
| 12               |                                       |
| 73               | AC=1                                  |
| 74               | 201 DO 111 I=L, MX                    |
| 75               | S([)=0.                               |
| 11               | pd 110 1=2.N3                         |
| 10               |                                       |
| 77               | 11 S(1)=S(1)*K(J)*B(())               |
| 78               | D:L(I)=B(I,1)+S(1)                    |
| 79               | 1)1 CONFINUE                          |
| 00               | (SITTER-1000) 213,129,129             |
| 80               | 1111111 206 207,207                   |
| 81               | ZI IN (DELITITIZO) ZOO, ZOTAZJI       |
| 82               | 206 CH([1]=DFL([1])                   |
| 83               | IF(MC) 217,217,218                    |
| 07               | 217 IFICH(T1)-DLD) 218,209,209        |
| 0 <sup>(1)</sup> |                                       |
| 85               | VIE GO TO COLOGERAGET                 |
| -86              | 310 R(J1)=RULU(J1)-,1                 |
| 87               | ITER=ITER+1                           |
| 0.9              | MC = 0                                |
| 00               | 010-04(11)                            |
| 89               |                                       |
| 90               |                                       |
| 91               | GD TO 200                             |
| 92               | 211 Q(J1)=ROLD(J1)+.1                 |
| 07               | 17-9=17-8-11                          |
| 20               |                                       |
| 94               |                                       |
| 95               | 209 OLD=CH(11)                        |
| 96               | R(J) = R(J)                           |
| 0.7              | 11-1                                  |
| 0.0              |                                       |
| 98               | ACT NOV 014 000 000                   |
| -99              | 11101-101 21496219600                 |
| 100              | 214 J1=J1+1                           |
| 101              | GO TO 200                             |
| 100              | 22. 11=2                              |
| 10%              | CC 70 70 200                          |
| 103              | 50 TO 207                             |
| 104              | 2)/ 11=1                              |
| 105              | R(JL) = R(JL)                         |
| 106              | 212 IF(DEL(I1)) 127,213,213           |
| 107              | 213 (F(11-NX) 215.216.216             |
| 101              |                                       |
| 108              | /13 11=11=1                           |

| 109  | 40 10 212                           |
|------|-------------------------------------|
| 110  | 216 CONFINUE                        |
|      | C HOOKE AND DEEVES PATTERA SLARCH   |
| 111  | $D \in \{1, \dots, n\}$             |
| 112  | 111 109 (=2,14)                     |
| 113  |                                     |
| 114  | 19. LALL FUGLIT                     |
| 115  | 1 ]                                 |
| 117  |                                     |
| 118  | 191 00 307 3=2,13                   |
| 119  | $R(J) = 8 \setminus SEL(J) + DE$    |
| 120  | CALL FUNC(V)                        |
| 121  | 0 TO (301,302),N                    |
| 122  | 3.1 (F(V-T) 303,373,304             |
| 123  | 302 IF(V-10) 305,300,204            |
| 1.24 | 3)3 ALU=1                           |
| 125  | 3.5 ((1)=Bh3c((V))                  |
| 126  | TE(V-ALD) 396,306,304               |
| 120  | 3.17, 3.01 D(J) = BASE1(J)          |
| 129  | R(J) = B.(SE1(J))                   |
| 130  | GO TO 307                           |
| 131  | $304 \times (0LD(J) = R(J)$         |
| 132  | : LD - /                            |
| 133  | 307 1=2                             |
| 134  | 30 TO (312, 313) L                  |
| 135  | 313 (F(ALU-YMAX) 3131313130         |
| 135  | 312 IF(ALU-1) 5:0;5:0;5:0;5:0;      |
| 137  | 3)8 (F(DE=;0,1) 4197 (2070-0)       |
| 138  | DO 528 J=2.003                      |
| 140  | 528 + (J) = ROLO(J)                 |
| 141  | GU TO 191                           |
| 142  | 309 VMAX=ALD                        |
| 143  | UD 314 J=2, N3                      |
| 144  | BASE2(J)=ROLD(J)                    |
| 145  | 314 BASEL(J)=2.ºBASE2(J)-CASEL(J)   |
| 146  | L=2                                 |
| 147  | ()  ()  ()  ()  ()  ()  ()  ()      |
| 148  | MTER=NEER+1                         |
| 150  | IF(MTER-1000) 191,191,129           |
| 151  | 315 DO 316 J=2,113                  |
| 152  | 316 $BASE1(J) = BASE2(J)$           |
| 153  | DO 130 J=2,N3                       |
| 154  | $13^{\circ} R(J) = BASE1(J)$        |
| 155  | ATER=NTER+1                         |
| 156  | [F(N]ER-1007) 17091709127           |
| 157  | 4[, 00, 017, 0-2710]                |
| 158  | VD-T                                |
| 160  | PRINT 12.VD                         |
| 100  | C OBTAINING OPTIMUM PRIMAL VARIABLE |
| 161  | X = DEL(1) + VD/C(1)                |
| 162  | X2=DEL(3)/(ALAM(1)*C(3))            |
| 1.63 | PRIME 22,X1                         |
| 164  | PRINT 22, X2                        |
| 165  |                                     |
| 166  | IZA CONTINUE                        |

| 167 |     | 10 TO | 112 |
|-----|-----|-------|-----|
| 168 | 125 | PRUIT | 18  |
| 169 | 119 | STOP  |     |
| 170 |     | END   |     |

|         |                                                         | 87             |
|---------|---------------------------------------------------------|----------------|
| 1 / 1   | SUPROUTLIE FUNC(Y)                                      | N. AL ST. 1.03 |
| 1 1 7   | (01MON KA(2)), KB(2)), SUN 2)), UEL(5)), SIG(5), BL(2)  | J19-11-1012012 |
| Lic     | LCLECT 21251-5(501-1(5), 35), MX, 43, K1, NN, KOUNT, KX |                |
|         | 1. (.) (.) (.) (.) (.) (.) (.) (.) (.) (.               |                |
| 1/3     | 22 117 141 1 122.000 1 11 0 10 1                        |                |
| 174     | SIGMA=1.                                                |                |
| 175     | KOUNT=KUUN1+t                                           |                |
| 176     | DO 111 $I=1, NX$                                        |                |
| 177     | S(I) = 0.                                               |                |
| 178     | 00 110 J=2,N3                                           |                |
| 179     | $110 S(I) = S(I) + R(J) \neq B(I, J)$                   |                |
| 1.80    | 111  DEL(I) = B(I, 1) + S(I)                            |                |
| 100     | []=]                                                    |                |
| 102     | 121 JE(DE1(11)) 117,117,118                             |                |
| 102     | 121 + 16 + 61 + 119 + 120 + 120                         |                |
| 185     |                                                         |                |
| 184     |                                                         |                |
| 185     |                                                         |                |
| 186     |                                                         |                |
| 187     | KETURN                                                  |                |
| 188     | 12.00108 K=1.9 K1                                       |                |
| 189     | 1.7 = KA(K)                                             |                |
| 190     | $L \mathcal{B} = K B (K)$                               |                |
| 191     | SUM(K)=0,                                               |                |
| 192     | DU 20 I=17,18                                           |                |
| 1.93    | 2.5 SUA(K)=SUA(K)+SIG(I)*DEL(I)                         |                |
| 194     | $ALAM(K) = BET(K) \approx SUM(K)$                       |                |
| 195     | IF(ALAM(K), LT.)) GO TO 11/                             |                |
| 196     | 108 CONTINUE                                            |                |
| 197     | P1=1.                                                   |                |
| 108     | DO 112 I=1, $1/4$                                       |                |
| 100     | $F(OEL(I), FO, C_{*})$ GO TO 112                        |                |
| 100     | $a_1 = p_1 * (C(1)/DEL(1)) * * (SIG(1) * DEL(1))$       |                |
| 200     |                                                         |                |
| 201     |                                                         |                |
| 202     | $V_{-1}$                                                |                |
| 203     |                                                         |                |
| 2.04    | $I_{i} T = KA(K)$                                       |                |
| 2,35    | +8 = KB(K)                                              |                |
| 2.06    | 00 114 1=17 000 00 100 114                              |                |
| 2.07    | IF(DEL(I) EQ.C.) GU TU ILA                              |                |
| 208     | P2=P2*(C(I)*ALAM(K))DEC(I))**(SIG(I)*DEC(I))            |                |
| 209     | 114 CONTINUE                                            |                |
| 210     | Y=SIGMA≉(P1*22)**SIGMA                                  |                |
| 211     | PRINT 22, V, KOUNT, R(2)                                |                |
| 212     | RETURN                                                  |                |
| 213     | END                                                     |                |
| L. h. I |                                                         |                |

|        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88                                      |
|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|        |        | CONVERTICATION OF CK. TIME= SPACES =50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|        | \$J08  | CONDUCED PROGRAM FOR SHA , OLER IM DULEN SY GEOLETRIS PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRAMME S                                |
|        | 5      | US HE THE NEWTON RAPHSEN PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D150 201                                |
| 2      | 6      | DIMENSION C(50), A(50, -5), JA(25, 25), A1(25), A2(25), HI (00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0120101010                              |
| 1.     | 7      | B11501 B2(50), AK(30), D'AH(30, 30), R(30), S(10), SS(30, 30),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1051211.                                |
|        | 1      | LS8(30, _0), AE(30, 30), SC(30), SD(30), F130), AF(30, S0), F150, E15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.51G(50).                              |
|        | 1      | LDEL(50), ALAM(30), L2(30), L3(30), CH(50), RULU(50), 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 7, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|        | 2      | 10ET(20), KA(20), KB(20), SUN(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| 2      | 10     | FORMAT (313)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 3      | 11     | FORMAT (414)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 4      | 12     | +URMA1 (7123.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 5      | 1.3    | YOUNT (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| 6<br>7 | 1.7    | FORMAT (7F8.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 1      | 18     | FORMAT (* EXPONENT MATRIX SINGULAR*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 9      |        | READ 10.M.N.KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 0      |        | READ 11. (KA(1), I=1, K1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| .1     |        | READ 11, (KB(I), 1=1, KL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| .2     |        | READ 13, MAIL, JI, J= LONIOL-LONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| .3     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 4      |        | NZ=N3+1<br>N3=N3+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                       |
|        |        | N4=N2+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| 17     |        | C(1)=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| 1.6    |        | C(2)=40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| 19     |        | C(3)=0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 20     |        | C(4) = 44.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| 21     |        | C(5)≈0.000000000<br>c(4)=0.0000000215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| 22     |        | C(3)=0.00000222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 23     |        | (1)-10<br>[[8]=].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| 25     |        | $C(9) = 1_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 26     |        | C(10)=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| 27     |        | 00 44 = 1,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 2.8    | 44     | 4 SIG(I)=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| 29     | 20     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 30     | _3.5.8 | D DCIII-IA<br>DO GO ImlaNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| 31     | 0.0    | 9 = 1(1) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 33     |        | DO 100 I=1,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 34     |        | 00 100 J=1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 35     | 100    | 0 AA(J+1,1)=((1,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| 36     |        | AA(1,1)=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| 37     | 1.0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 38     | 10.    | n 98 1=1.N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| 29     |        | DO 93 J=1,N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 41     |        | 11月12年(1-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| 42     | .).    | H(1+MA)=AA(1,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 43     |        | A1(1)=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| 14     | 7.0    | DO 102 1=20112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 45     | 10     | DEFAINING THE MERNALITY AND NULLITY VECTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
|        | C      | THE SUBROUTINES USED HERE ARE PROVIDED BY IDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| 1.5    | 6      | CALL MINV (14, N2, D, 12, 13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| 47     |        | IF(D. 50.0.) GO TO 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| 43     |        | CALL GMPRD (H,A1,B1,N2,N2,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 43     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 50     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 51     |        | うていうてんて                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |

| 52   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53   | 103 A21()=-A.1(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 54   | CALL GURED MUSSource and a star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 53   | 104 8(1) 317-62(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 57   | DO 50 1=1, NZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 58   | 50 B(1,1)=B1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 59   | 11=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 60   | 00 51 1=1401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 61   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 62   | 00 51 J=1,N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 63   | 1-1-11 02/03/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 64   | 53 8(1,))=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65   | GU IU DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -65  | 52 R(1) 31=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 67   | SI COMINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 38   | 00 100 371913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 69   | All JELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 70   | (1) $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ |
| 71   | ANT AVA 31-BY/ 31#8473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 72   | 105 AN(U)=AN(U)+ANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 73   | 1 7-24 ( 7 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 143  | 10-4017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12   | 00 108 J=1-N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10   | SUM(T)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 72   | 00 20 3=17.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 70   | 20 SUN(I)=SUN(I)+B(K,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20   | DLAM(I,J)=SUM(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 81   | 108 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 82   | DU 5 I=loill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 83   | 5 R(I+1)=04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | C OBTAINING INITIAL PEASIBLE SULOTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 84   | 11=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 85   | ITER=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 86   | NTER=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37   | 126 DO 128 J=Z,N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 88   | 12B RULDIJI-RIJI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 39   | 127 LI=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 90   | 1) Janie Za<br>1117 - m 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 91   | 200 00 111 3=1-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 92   | 200 00 111 1 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20   | 60 11) J=2.N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 05   | 110 SII)=S(I)+R(J)=8(I,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06   | DEL (1)=8(1,1)+S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 97   | X11 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.3  | IFIITER-100) 210,210,129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 99   | 210 FE(DEL(IL)) 206,206,207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100  | 206 CH(IL)=DEL(IL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 101  | IF(NC) 217,217,218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 102  | 217 17(24(11) 010) 210,209,209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 103  | 218 GU IU (310,2117)11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 103  | 310 2(317=KULD1317=000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.05 | THERE FIELDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 103  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 107  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100  | 60 10 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 110  | 211 3(11)=(010(11))+.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|           |         |                                                                | 0.0       |
|-----------|---------|----------------------------------------------------------------|-----------|
| 1 1 7     |         | ATER ATERAL                                                    | 90        |
| 110       |         | GO TO 200                                                      |           |
| 2 3 18    | 280     | OF DE CH(T)                                                    |           |
| 2 1 2     | 6.92    | $p_{1}(1) = 2(31)$                                             |           |
| 1 1 4     |         |                                                                |           |
| 110       |         | L. L                                                           |           |
| 116       |         | NG-21<br>NG-21 NO1 214,220,280                                 |           |
| 117       |         | IF JI-NOT KLIVELUV                                             |           |
| 118       | 214     | J1=J1+1                                                        |           |
| 119       |         | GO TU 200                                                      |           |
| 120       | 220     | 31-2                                                           |           |
| 151       |         | GO TO 200                                                      |           |
| 122       | 5.0.3   |                                                                |           |
| 123       |         | ROLU(JI)=X(JI)                                                 |           |
| 129       | 212     | [F(DEL(11)) 12701240240                                        |           |
| 125       | 213     | [F([1-N] 215,210,210                                           |           |
| 126       | 215     |                                                                |           |
| 127       |         | GO TO 212                                                      |           |
| 128       | 216     | DO 112 K=1,K1                                                  |           |
| 129       |         | SA(K) = O.                                                     |           |
| 130       |         | DO 113 J=2,N3                                                  |           |
| 131       | 113     | SA(K)=SA(K)+R(J)*DLAMIK,J1                                     |           |
| 132       | 112     | ALAM(K)=DLAM(K,1)+SA(K)                                        |           |
| 133       |         | 00 1.21 L=2,N3                                                 |           |
| 134       |         | 00 121 K=2,N3                                                  |           |
| 135       |         | So(L,K1=0.                                                     |           |
| 136       |         | 00 121 I=1,N                                                   |           |
| 137       | 121     | SS(L,K)=SS(L,K)+SIG(1)+3(I,L)+B((,K)/9EL(1)                    |           |
| 133       |         | DD 122 I=2,N3                                                  |           |
| 139       |         | DO 122 L=2,13                                                  |           |
| 140       |         | SB(L, I)=0.                                                    |           |
| 141       |         | 00 122 K=1,K1                                                  |           |
| 3.42      | 122     | SB(L, I) = SB(L, I) + DET(K) * DLAM(K, L) * DLAM(K, I) ALAM(K) |           |
| 143       |         | DO 114 I=2,N3                                                  |           |
| 3 64      |         | DO 114 J=2,N3                                                  |           |
| 145       | 114     | AE(1-1, J-1)=SS(1, J)-SB(1, J)                                 |           |
| 146       |         | DO 118 J=2+113                                                 |           |
| 1.47      |         | S((J)=0,                                                       |           |
| 148       |         | SD(J)=0.                                                       |           |
| 12.9      |         | DO 115 I=1.N                                                   |           |
| 1:0       | 115     | 5 SC(J)=SC(J)+SIG(I)*B(I,J)*AL(G(DEL(I))                       |           |
| 151       | 63 AB 4 | 00 117 K=1,K1                                                  |           |
| 1 3 2     | 117     | 7 SOLJI=SO(J)+BET(K)*OLAN(1,J)*ALOG(ALA.(K))                   |           |
| 1 4 3     | 118     | B = F(J-1) = SC(J) - SD(J) - ALOG(AK(J))                       |           |
| 154       | 25 26 5 | G(1 T(1 201                                                    |           |
| 155       | 201     | 4 PO 116 L=1.N1                                                |           |
| 365       | (· -)   | ND 116 J=1.NI                                                  |           |
| 157       | 11/     | A AFIT.JI=AE(1.J)                                              |           |
| ()1       | C       | NEWTON RAPHSON PROCEDURE FOR SOLUTION OF SIMULTANEOUS          | EQUALIUNS |
| 3 - 3 - 3 | ~       | 00 500 J=L.N1                                                  |           |
| 150       | 501     | a (112) P(J)                                                   |           |
| 160       | 201     | CALL DETRIME, NI D1)                                           |           |
| 161       |         | CA 15 Islani                                                   |           |
| 1.62      |         | 09 56 J=1.NI                                                   |           |
| 142       | c       | $6 = 3F(J_0 I) = -F(J)$                                        |           |
| 1         | . 0     | CALL DETR (AF. NL, D2)                                         |           |
| 3 1 5     |         | $F^{1}=D^{2}/D^{1}$                                            |           |
| 144       |         | $R(1+1) = R(1+1) + E_1$                                        |           |
| 3 1.1     |         | 00 57 J=1.N1                                                   |           |
| 2 3 6 2   | 2       | 7  AE(J, I) = AI(J, I)                                         |           |
| 1.60      | 5       | 5 CONTINUE                                                     |           |
|           |         |                                                                |           |

|    |            | 1. L. C. F. L.                                          |
|----|------------|---------------------------------------------------------|
|    |            | 1814158-50) 126,126,129                                 |
|    | 201        | 00 131 I=1,N1                                           |
|    | 130        | (PS(1)=A35(F1(1)-F(1))                                  |
|    |            | 7-1                                                     |
|    | 202        | IF(EPS(1)01) 203,203,204                                |
|    | 203        | 1=[+]                                                   |
|    | 2.0 0 0    | (F((-N1) 202,202,205                                    |
|    | 205        | P=1.                                                    |
|    | the set of | 00 123 I=1.N                                            |
|    | 123        | P=2*(C(I)/DEL(I))**(STO(I)*DEL(I))                      |
|    | Pa ber un  | 21=1.                                                   |
|    |            | 00 1 1 K=1.K1                                           |
|    | 124        | PI=P. ALM(K)**(ALAM(K)*BET(K))                          |
|    | 1.0 104 1  | VD=1 P1                                                 |
|    |            | PRINT 12, VD                                            |
| C. |            | OBTAILING OFTINUM PRIMAL VARIABLES                      |
|    |            | AY=DEL(1)*V0/C(1)                                       |
|    |            | ALF=DEL(7)/(ALAM(4)*C(7))                               |
|    |            | BE =DEL(8)/(4LAM(4)*C(8))                               |
|    |            | BETD=DEL(9)/(ALAN(4)*C(9))                              |
|    |            | GAN=DEL(10)/(ALAM(4)*C(10))                             |
|    |            | 0-614)*ALAH(3)/(ALF*DEL(4))                             |
|    |            | U=Q:ALAM(1)/(AY*BE *DEL(2))                             |
|    |            | PRINT 15, AY, ALF, DE, BETD, GAM, Q, U                  |
|    |            | GO TO 119                                               |
|    | 129        | PRINT 14, NTER                                          |
|    |            | PRINT 14, ITER                                          |
|    |            | CD TO 119                                               |
|    | 125        | PRINT 18                                                |
|    | 119        | STOP "                                                  |
|    |            | END                                                     |
|    | C          | 201<br>130<br>202<br>203<br>205<br>123<br>124<br>C<br>C |

| 201  |     | SUMMEDTING DETPIA-K.C.I)    |
|------|-----|-----------------------------|
| . 02 |     | DINCISION ALGOD             |
| 2:3  | 1   | 7=1.0                       |
| 204  |     | DO 9 M=2.0 K                |
| 205  |     | 11- (A11-1,H-1))3,1,3       |
| 205  | dy. | 00 311-M,K                  |
| 207  |     | 1=(A(N-1,11))6,7,6          |
| 208  | 7   | DET=0.                      |
| 209  | 5   | COMITAUE                    |
| 210  |     | RETI RN                     |
| 211  | 6   | 13=0-1                      |
| 212  |     | DO 0 12=13,K                |
| 213  |     | TEHP A(12,13)               |
| 214  |     | A(12,13)=A(12,11)           |
| 215  | 8   | A(12,11)=TENP               |
| 215  |     | 2== Z== 1 - 1.0)            |
| 217  | 3   | DO 9 1=M,K                  |
| 213  |     | R=A(1,N-1)/A(N-1,N-1)       |
| 219  |     | DO 9 J=M,K                  |
| 220  | 9   | A11, J)=A(1, J)-A(M-3, J)*R |
| 221  |     | DET=1.0                     |
| 2.22 |     | DO 18 I=1,K                 |
| 223  | 1.8 | DET=LET*A(I,I)              |
| 2.24 |     | DET=DET*Z                   |
| 225  |     | RETURN                      |
| 226  |     | 任ND                         |

|     | ション・ション・ション・ション・ションのPES=50 シン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | JOB BIEL BURY FILE OF THE PROMOCION SCHEDULING PROBLEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|     | C COMPOTER 2 DIRAM TO A 202 CHAR USING SO PERCENT FORCING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|     | C BY THE EAGRAGED AN ALL CRITICITY OF ACTOR 23.1.1.98(10,20).6(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , \$ (15, |
| 1   | DIMENSICA KA(6) A(10) (1777) (2775) (2775) (26150) (27715) (AL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M(15),    |
|     | (1)), SB(15), SC(1)), L6(25), L7(25), K5(1), B(120), R4(20), COR(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 501.0(5   |
|     | $1 \lor B(40), T(1), 15), TB(250), R(25, 25), TEW(15), CT201, RW(1001, 050), CT201, CW(1001, 050), CW(1001, 050), CT201, CW(1001, 050), CW(1001, 000), CW(1001, 000)$ |           |
|     | $1) \cdot (3 \cdot 2 \cdot 3) \cdot JUT(3))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 2   | $1 \in ORMAL (213)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 4   | (1 + COP AAT (613))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 5   | $\frac{11}{1000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 4   | IZ FUREAL (ID) JUZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 6   | 15 FORMAL (FID:0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 7   | 16 FORMAI (IC+10-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 8   | 17 FORMAF (1-1-12.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Ann     |
| 9   | 18 FORMAT (5F8.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 10  | 19 FORMAT (16F8.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 11  | 20 FORMAT (1H-, ITERATION NUMBER 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 12  | 21 FORMAT (6F13.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 12  | 22 FORMAT (10F10.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 10  | 22 + (10  MAT (F15.6))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 14  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 16  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 17  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 18  | L = A (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 19  | 00 61 J=1,L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 20  | READ 12, $(A(I,J,K),K=I,NC)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -         |
| 21  | 61 PRIME 12, (A(I,J,K), K=1,NC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 22  | READ 13,01,02,03,04,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 23  | $Q(1) = 2 \cdot 10 \times Df$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 24  | ()(2)=2.30×DΓ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 25  | Q(3)=2.50*0T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 26  | $O(4) = 2 \cdot T^* \div 0 T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 20  | $(1,5) = 2$ , $90 \approx 0T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 21  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 28  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 29  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 30  | (0, 0) = 0 = 0 = 0 = 0 = 0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 31  | SI = C(1, 0) = Z * C I = C Z * C I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |
| 32  | $50 \ 53 \ J=6, 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 33  | 53 C(1,J)=C3*UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 34  | D() 52 J=15,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 35  | 52 C(1,J)=2。*C3*C4*D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 36  | C(2,1)=1/(5-Q(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 37  | C(2,2)=0T/(5-Q(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 38  | C(3,1) > 1/O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 30  | C(3,2) = 1/Q(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 10  | C(3,3) = DT/O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 2.1 | C(4,1)=1/O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 41  | (14-2) = 1/0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 42  | C(4, 3) = D[O(3)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 43  | ((++)) = ((++))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 44  | $ = \left( \left( \frac{1}{2}, \frac{1}{2} \right) - \frac{1}{2} \left( \left( \frac{1}{2} \right) \right) \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 46  | $(\langle 1 \rangle_{\psi} \rangle) = U(f) / J(\psi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 47  | $7 ((6_{9}1) = 17 (5))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 48  | 3  ((6,2)=1/((5)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 49  | 9 = C(6,3) = DT/O(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 50  | 0 CUMS=C1*C2**2+C3*C4**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 51  | 01 56 K=1,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 52  | 2 56 SIG(1,K)=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 53  | 3 00 57 K=11,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 54  | 4 57 SIG(1,K) = -1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |

| C    | 10 65 1 -2.56                                   |
|------|-------------------------------------------------|
| 2    |                                                 |
| 35   | 1.1. 如何是一次的人                                    |
|      | D1) 60 K=1,L1                                   |
| . 0  | 1. STR(M-K): 1.                                 |
|      |                                                 |
| 59   | 51642961 -19                                    |
| 60   | SIG(3,1)L.                                      |
| 6.1  | S[G(4,1) - 1]                                   |
| 101  | STC15. [] and                                   |
| 02   |                                                 |
| 63   | St010,11=1.                                     |
| 64   | 00.62 I=L,10                                    |
| 65   | $62 \times (1) = 5.0$                           |
|      | 15 1 [=]                                        |
| 00   |                                                 |
| 67   | DOT DO TUD METANC                               |
| 68   | SUM=0.                                          |
| 69   | L L = K A (M)                                   |
| 7.3  | DO 141 K=1.L1                                   |
| 1.1  |                                                 |
| 71   |                                                 |
| 72   | 00 142 M=L, NC                                  |
| 73   | 142 P=P性(X(F)泰泰六(M,K,N))                        |
| -11  | 1/1 SUM-SUBASTG(M.K) *C(M.K) *P                 |
| 1 4  |                                                 |
| 75   | 140 6(10)=300                                   |
| 75   | [F(I,GI)] GU IU 100                             |
| 77   | $\mathcal{V} = \mathcal{G}(1)$                  |
| 70   | $1.1 = K \wedge (1)$                            |
| 10   | $p_{0} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$ |
| 79   | UU IUU KELILI                                   |
| 80   | P=1,                                            |
| 81   | DO 101 N=1,NC                                   |
| 02   | $1 + 0 = 0 \times (X(N) \times (A(1, K_2N)))$   |
| 82   | 1                                               |
| 33   |                                                 |
| 84   | 138 00 192 M=2, MC                              |
| 85   | $L I = K \land (N)$                             |
| 0.6  | nn 102 K=1.L1                                   |
| 00   |                                                 |
| 18   |                                                 |
| 88   | DO 103 Nº1, NC                                  |
| 89   | 103 $P=P*(X(N)**A(N,K,N))$                      |
| 00   | 1 2 U(A,K)=C(M,K)*P                             |
| 50   | 00 105 No1-NC                                   |
| 91   |                                                 |
| 92   | DU 105 871, MG                                  |
| 93   | 12=0.                                           |
| 94   | $L_2 = K \Lambda (M)$                           |
| 05   | PO 104 K=1.12                                   |
| 93   | 1 DI DI DI STELM KIKALMAKAN) *W(MaK)            |
| 96   | 104 PZ=PZ+Stote+KTrathian                       |
| 97   | $1_{5} S(N,M) = P2$                             |
| 28   | 00 106 M=1,NC                                   |
| 0.0  | 1.66 SB(1) = S(N, 1)                            |
|      | 100 30110 01110                                 |
| LCO  | KA= J                                           |
| 101  | 110-10-1                                        |
| 102  | 00 107 M=2,MC                                   |
| 103  | 00 107 N=1, MC                                  |
| 100  | K X = X X + 1                                   |
| 1.07 | 1/1 C L/VI=C(N.M)                               |
| 105  | LUT SULVATESTATION                              |
| 106  | CALL UNIRA (SUIKS) NUT UNIT                     |
| 107  | CALL CAPRO (25, SC, UUI, MU, NC, MU)            |
| 168  | CAL MINV (QUI, D, U, L6, L7)                    |
| 1.00 | CHIL GMPRD (DUT.R5,R6,MD,MD,NC)                 |
| 109  | CALL CARRY 174, SR . R7 . MIL NC . 1)           |
| 110  | UNLL OFFRU TROADU ARTANDANOATA                  |
| 111  | DO 413 J=1, MD                                  |
| 112  | $A \in J \cap A \cap A \cap (J) = R \cap (J)$   |
| 113  | 61, 00 10 N=1, 1C                               |
| 114  | DU 11) 1=1.NC                                   |
| 114  | 10 TTO 0-T140                                   |

| 15   |         | SL=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16   |         | SZ=D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 17   |         | 53=7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.8  |         | $(1 \approx 1 \land (1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10   |         | $60 + 11 \times = 1 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17   | 1 1 1   | (1 - (1 + (1 - (1 - (1 - (1 - (1 - (1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20   | LTT     | 21-21-21-2-2-3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 21   |         | DU TIC MECHIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.2  |         | L2=KA(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23   |         | DO 113 K=1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24   | 113     | S2=S2+SIG(H,K)*A(M,K,N) =A(H,K,J) =A(H,K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23   | 112     | S3=S3+ALAM(4-1)*S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26   | 11.     | $T(1, J) = S_3 - S_L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 27   |         | K 3 = NC + MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20   |         | 3 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20   |         | Marx JP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29   |         | 00 115 1-1 K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32   |         | D(1   15   k=1, k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 33   |         | [f(J-N)] [16, 116, 118]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 34   | 116     | [F(K-N) 117,117,124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 35   | 117     | $R(J_{2}K) = T(J_{2}K)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.6  |         | GO TO 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37   | 118     | IF (J-N-1) 119,119,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20   | 110     | IFIK-N1 12: 125,121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20   | 1 2 2 2 | V(1,K) = SB(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . 39 | 162     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40   |         | CONTROLLY 10 102 102, 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .41  | 121     | IF (K-N-I) IZCALZCALZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| .42  | 1.2.2   | X(J,K)=-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 43   |         | GO TO 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44   | 123     | R(J,K)=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 145  |         | GO TO 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 146  | 124     | IF(K-N-1) 125,125,126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 147  | 125     | $R(J_*K) = SR(J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 148  |         | GO TO 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 140  | 126     | K1=K1+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 100  | 2, 6- 0 | 0/1. K1-S/1. K1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100  |         | CO 20 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 151  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 152  | 127     | $\{F(X=N) \mid ZO_{2} \mid $ |
| 153  | 123     | X2=X2+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 154  |         | $\mathcal{R}(\mathcal{J},\mathcal{K}) = SC(\mathcal{K}\mathcal{Z})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 155  |         | GO TO 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 156  | 120     | $R(J_{\gamma}K)=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 157  | 115     | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 158  |         | SIGM=G(1)/ABS(G(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 150  |         | CALL GMPRD LSC, ALAM, FEM, NC, MD, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 110  |         | DO 130 1-1-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOU  | 9 ")."  | C(1) (0/1) - TEM(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 161  | 1.0%    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 162  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 163  |         | JZ=L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 164  |         | KE=NC+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 165  |         | 00.13L J=KE,K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 166  |         | 12=12+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 101  | 131     | 1 = (J) = 1 - G(J2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 168  |         | 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 169  | 50      | IT(ABS(E(J))0001) 5-1,501,502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 175  | 51      | 1=1+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 171  | J       | [F(J-K3) 503,503,514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 170  | 6.5     | 12=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 172  | 1.1.    | 001 142 K=1.K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 175  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 114  |         | UU IJC J+ LaN J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 1.75      | 12-37+1                                        |
|-----------|------------------------------------------------|
| 116 132   | $N_{1}(J2) = \mathbb{R}(J_{2})$                |
| 117       | CALL LINY (RK+K3, D+LF+17)                     |
| 178       | CALL GHPPD (RV, E, COR, K3, K3, 1)             |
| 179       | PRINT 2. , I                                   |
| 185       | PRINE 17, (x(*), N=1, NC)                      |
| 181       | PRINT 19, (E( ), N=1, K3)                      |
| 182       | PRIME 15,6(1)                                  |
| 183       | [A=0                                           |
| 184       | 00 133 N=1,NC                                  |
| 185       | $\forall 8(N) = X(N)$                          |
| 186 133   | $X(1) = X(N) \neq EXP(COR(N))$                 |
| 187       | PRINT 17, (X(N), N=1, NC)                      |
| 188       | DO 150 N-1, NC                                 |
| 1.19      | GH = ABS(X(M) - WB(M))                         |
| 190       | C111 = X(N) - WB(N)                            |
| 191       | IF(CH.GT.(.5*W3(N))) G0 TO 1002                |
| 192       | GO TO 159                                      |
| 193 10-12 | AMU=CH1/CH                                     |
| 194       | $X(N) = WB(N) + .5 \approx A MU \approx WB(N)$ |
| 195       | I A = 1                                        |
| 196 15    | CONTINUE                                       |
| 197       | [F(IA.GT.C) GO TO 1001                         |
| 198       | $V = V \approx EXP(COR(NC+1))$                 |
| 199       | 12=0                                           |
| 200       | ND=NC+2                                        |
| 201       | DO 134 M=NO,K3                                 |
| 202       | J2=J2+1                                        |
| 203 134   | ALAM(J2) = ALAM(J2) + CUR(M)                   |
| 204       | L1=KA(1)                                       |
| 205       | DU 135 K=1,L1                                  |
| 206       | P=1.                                           |
| 207       | 00 136 N=1,NC                                  |
| 203 135   | P = P * X(N) * * A(1, K, N)                    |
| 209 135   | K(1,K)=C(1,K)*P/V                              |
| 210 145   | I = [+]                                        |
| 211       | GO TO 500                                      |
| 212 504   | G(1) = G(1) + COMS                             |
| 213       | PRINT 15, 9(1)                                 |
| 214       | PRINT 17, (X(M), N=1, NC)                      |
| 215       | STOP                                           |
| 216       | END                                            |

#### APPLICATION OF GEOMETRIC PROGRAMMING TO INDUSTRIAL SYSTEMS

by

#### NAYAN BHATTACHARYA

B. Tech. (Hons.), Mechanical, Indian Institute of Technology Kharagpur, India, 1966

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

Most of the optimization problems which occur in reallife systems are nonlines is nature with nonlinear constraints. Conventional optimizatios techniques can solve these problems only after linearizing the constraints and hence at the sacrifice of the accuracy. Geometric programming is a recently developed technique which can handle very efficiently a subclass of the above problems characterized by functions as polynomials with positive coefficients. Wilde's extension of geometric programming makes geometric programming applicable to even a broader class in which the functions are expressed as generalized polynomials. But difficulty in numerical analysis often restricts the use of extended geometric programming. Wilde's Lagrangian algorithm is useful in cases of generalized polynomials with equality constraints.

The purpose of this thesis is to apply these recently developed techniques to different engineering and industrial management systems and to make a critical analysis of the results and computational procedure used.

First a brief review of geometric programming and its extension is made, and computational procedure is discussed. A review of the Lagrangian algorithm follows. Then various approximation techniques which were applied to transform a general problem to the required form of geometric programming are discussed. Finally six problems are solved. The first problem is for illustration purposes, while the next four are confineering dustion problems with different degrees of complexity. The last is a production scheduling problem which is solved by the

## Lagrangian Algorithm.

The advantages as well as disadvantages of geometric programming and the Lagrangian algorithm are highlighted. A modification of the Lagrangian algorithm has been suggested.