APPLICATION OF GEOMETRIC PROGRAMMING TO INDUSTRIAL SYSTEMS

```
by 1264
```

NAYAN BHATTACHARYA
B. Tech. (Hons.), Mechanical, Indian Institute of Technology Kharagpur, India, 1966

A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1969

Approved by:

The author wishes to express his deep sense of appreciation to his major professor, Dr. W. S. Lee for his guidance, constmotive criticism, helpful suggestions and the personal interest taken in tho preparation of this thesis.

TABLE OF CONTENRS

CHAPTER page
I. INTRODUCTION 1
II. GEOTETRTC PIROGRAMIING 4
Extcnsion of Geometric Programning 6
Computational Procedure 10 10
III。 A Lagraiggian algontthm 14
TV. APPROXINATION TECHNIQUES 13
Example 1 1.8
Example 2 18 18
Example 3 19
Example 4
Example 4 20 20
Example 5 21 21
Example 21
V, APPIICATIONS 23
A Sample Problem 23
Sca Power - Heat Exchanger Probler 26 26
Condenser Problem 40 49
Chemical Equilibrium Problem
Chemical Equilibrium Problem
Transformer problem 56
Produciton Inventory Problem 61
VI. DISCUSSION 73
RFFERENCES 75
APPENDIX AB FLOW CHARTS 77
APPENTIX B: computsir programs 82

IIST OF TABIES

Table
Page

1. Convoryence rate of the sample problem by the Hooke and Jeeves method 25
2. Convergence rate of the sea power problem by the llewton-Raphson method. 35
3. Convergence rate of the sea power problem by the Hooke and Jeeves method 36
4. Optimun values of design parameters of the sea~powes problem 37
5. Convergence rate of the condenser design problen by the Hooke and Jeeves method 48
6. Convergence rate of the chemical equilibrium problem by the Hooke and Jeeves method 55
7. Convergence rate of the transformer problen by the Hooke and Jeeves method 58
8. Convergence rate of the transfurmer problem by the Newton-Maphson method 59
8a. Computational aspects of problems 1 to 5 60
9. Typical convergence rate of the inventory problem with starting values $x_{i}=10$, $i=1, \ldots, 10$ 67
10. Typical convergence rate for the inventory problem with starting values $x_{3}=5.0$, $\dot{j}=1, \ldots 10$ 68
11. Effect of forcjng on convergence 69
1?. Optimum inventory and production levels 70

T,TSI OH FTGUR'S

pisure

1. Temperature distribution in the sea power problem
2. The convergence rate of the sea porrer problem by the Nevton-Raphson method
3. The rate of change of variables in the sea power problem by the Newtonnlaphson method39
4. The convergence rate of the condenser problem by the Fooke and Jeeves method.
5. The convergence rate of the chemical equilibrium problem by the Hooke and Jeeves method54
6. Tho convergence rate of the transformer problem by the Newton-Raphson method57
7. Optinum inventory levels 71.
8. Optigum production levels 72
9. Flow dlagrom for geometric programming 78
1.0. Flow diagram for Hooke and Jeeves pattern seaxch 79
10. Flow diagram for exploratory moves 80
11. Flow diagran for the Laprangian algorithm 81

T. TinTRODUCTIOM

The Lroxeased use of matromatleal motels in the analysis and optimization of industrial systems is one of the significant developments of modern engineering practice. Optimaj desing of process equipront of ten involves finding numerical values for the design parameters io minimize a cost function, usually nonlinear, subject to design constraints. liost of the models Which accuratoly describe the real-life systems prove to be too complex for solution by avallable algorithms. This is especially true of problems in which the constraints are nonlinear.

Recently, the geometric programing technique, has been developed which can handle a subclass of the above problems in Which the cost function and the constraints aro generalized polynomials.

In 1961 Zenex [19] obsexved that the sua of the component costs sometimes may be minimized almost by inspection when each cost depends only on the products of the design varichles, each raised to an arbitrary but known power. Duffin and Peterson [6] extenoed Zenex's work. Zener and his associates' vork had been restricted to runctions they called 'Posynomials,' which are generalized nolynomials with positive coefricients. Passy and Wilde [12] further generalized the method to include negative coofficients and revers incqualtiles.

Coometric prograrming is specially suitable for engineering optimization problens based on destng relations developed eiliner by dimensional analysis or by fitting power functions to
experimental results.
An importont reature of geometric programming is its compubalional convenience. When the numbor of torms exceeds the number of variables by a small number, the computations are ruch simpler than the highly nonlinear character of the problem would leat one to expect. To minimine an unconstrainod polynomial of m Variables, the conventional method of calculus involves the solution of monlinear equations. On the other hand, if the function to be minimizod containes exactily m \& 1 terms, the problem can be solved by geonetric programing by solving $m+1$ linear equeions, a far easter task. This is advantageous when the probler involve inequality constraints.

Although passy and Filde [12] have extended the geometric programming algerithm to handle objecilve functions and constraints Witin egative coefficients, difficulty is often encouncered in numerical analysis except in the special case where there is exactly one more tem than there are indepondent variables.

Recently Blau and Wilde [5] developed a Lagrangian algorithm for generalized polynomial optimization with oquality constraints. The method optimizes the Lagrangian function with the NewtonRaphson procedure. This algorithr can handle negative coefficients efficiently and converges rapioly. One difficulty with this method is J.ts occasional use of too larege a step, which prevents convergence. This difficulty was ovetcome in this work by using a forcing proced whe which restricts the maximum step size to a predetemined proentage of the variables.

The perpose of this thesis is to aroly geometric progranming
to diff rent enginecring desisn and industrial manogenent systems In production planning and to analyze geo etric posramning's mortts and faults. In the following chapter the basic algorithm of sconetric proguaming with extensions and the algorithm of Lagrangian polynomial optimization tcchnique are iiscussed. A brief revicw of computational procedure and approximation technique follows. In Chapter V, various possible fields of apolication of the above alcorithms are analyzed and finally the advantages and disadvantages of geometric programing are nighlighted.
II. GEOFIEIRIC PROGIAMMING

The cheory of geometric programing is based on the arithw netic-grometric mean incquality. The set of functions comprising the mathematical model, when cxpressed in terms of the primal variables, is called the primal problem. A aual formulation of the primal problem can be obtained. Minimization of the primal. problem j.s equivalent to maximization of the dual problem and the two extreme values are equal.

In this chapter only the algoxithms of geometric programming and its extensions are stated and the computational procedures for chem are discussed. A detailed derivation of the algorithm and the proof of the theory can be found in [6] and [18].

A sel of $p+1$ generalized polynomials consisting of m real positive variables x_{j} can be expressed as:

$$
\begin{equation*}
E_{k}=\sum_{i \in J} C_{\langle k} \dot{j}_{j=1}^{m} x_{j}^{A_{i j}} \tag{1}
\end{equation*}
$$

Where $k=0, I, \ldots, p$
and $J(k)$ is a set of integers rangtns ifora m_{k} to n_{k}, thuss

$$
\begin{equation*}
J(k)=\left\{m_{k}, m_{k}+1, \ldots, n_{k}\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& m_{0}=1, m_{1}=n_{0} * 1, \ldots, m_{p}=n_{p}+1, n_{p}=n \tag{3}\\
& c_{i}>0 \tag{4}\\
& x_{j}>0 \tag{5}
\end{align*}
$$

n is the total number of terms in the set of polynomials.

$$
A_{i j} \text { are any real numbexs. }
$$

The prinal :oblera is to minimite

$$
\begin{equation*}
E: E_{0} \tag{6}
\end{equation*}
$$

subject to the constraints

$$
\begin{equation*}
g_{k} \leq 1 ; k=1,2, \ldots, p \tag{7}
\end{equation*}
$$

The associated dual problem can be formed consisting of a set of n dual variables $\underline{\delta}$ satisfying a nomelity condition

$$
\begin{equation*}
\sum_{i \in J} \delta_{j}(0)=l \tag{8}
\end{equation*}
$$

and m ortho onality conditions:

$$
\begin{equation*}
\sum_{i=1}^{n} A_{1 . j} \delta_{i}=0 \quad j=1,2, \ldots, n \tag{9}
\end{equation*}
$$

as well as n nonnegativity conditions

$$
\begin{equation*}
\delta_{1} \geq 0 \quad 1=1,2, \ldots, n \tag{10}
\end{equation*}
$$

The corresponding dual problem can be written as

$$
V(\delta)=\left(\begin{array}{l}
\prod_{i=1}^{n}\left(\frac{C_{i}}{\delta_{i}}\right)^{\delta_{i}} \tag{7.3.}
\end{array}\right) \prod_{k=1}^{p} \lambda_{k} \lambda_{k}
$$

where $\left.\left.\lambda_{k}=\sum_{1, J} \underset{(k)}{\delta}\right)^{k}\right) \quad k=1,2, \ldots, P$
The logarithrn of the dual function (11) is strictily concave and hence it has only one stationary point - a global maximum. So the rinitium of g_{0} is obtained by maximizing the dual function (11) subject to the normality and orthomonality conditions (8)
to (10).
Once the dual variables δ are kno n, the corresponding values of the primal variablos x_{j} are found from the following relations:

$$
\begin{align*}
& C_{1} \prod_{j=1}^{m} x_{j}^{A_{j} j}=\delta_{i} E_{0}^{*} \tag{13}\\
& \text { for } j \in J(0)
\end{align*}
$$

and

$$
\begin{aligned}
& C_{i} \prod_{j=1}^{m} X_{j}^{A_{i j}}=\delta_{i} / \lambda_{k} \\
& \text { for } i \in J(k) \\
& k \neq 0
\end{aligned}
$$

Where $g_{0}^{*}=$ minimum value of the objective function.

EXTENSION OF GEOMETRIC PROGRAMMING

The following alsorithm is obtained by Passy and wilde (12); 1t extends the theory of geometric programming to take into account negative coefficients and reversed inequalities. $P+1$ generalized polynomial functions $\mathcal{G}_{\mathcal{K}}(x)$ can be expressed $3: 3$

$$
\begin{equation*}
E_{k}=\sum_{t=1}^{T_{k}} \sigma_{k t} C_{k t} \prod_{j=1}^{m} X_{j}^{A_{k t j}} \quad k=0,1, \ldots, P \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
& v_{k t}= \pm I \tag{16}\\
& c_{k t}>0 \tag{17}
\end{align*}
$$

$$
\begin{equation*}
x_{j}>0 \tag{18}
\end{equation*}
$$

and Ant are real numbers, She simnum functions $\sigma_{k t}$, the coefficients $C_{k t}, \mathrm{~F}_{k}$ (the number of terms in P_{k}), and the $A_{k t j}$ are all. given. Then tho typical optimization problem can be written as

$$
\begin{equation*}
\min g_{0}(x)=g_{0}\left(x^{*}\right) \equiv g_{0}^{*} \neq 0, \pm \infty \tag{19}
\end{equation*}
$$

(* corresponds to the optimal solution).
subject to P inequality constraints.

$$
\begin{equation*}
0<\sigma_{k} g_{k}^{\sigma_{k}} \leq 1 \quad k=1, \ldots, P \tag{20}
\end{equation*}
$$

Where ${ }_{k}$ ane know signum functions.
This problem can be solved by wooing with a set of real finite dual variables $\delta_{k t}$, one for each term of the g_{k}, which satisfies the following
nomogativity condition

$$
\begin{equation*}
\delta_{k t} \geq 0 \text { for all } k \text { and } t \tag{21}
\end{equation*}
$$

and the normality condition

$$
\begin{equation*}
\delta_{00}=\sigma_{0} \sum_{t_{-}-3}^{T_{0}} \sigma_{o t} \delta_{o t}=1 \tag{22}
\end{equation*}
$$

the in orthogonality conditions

$$
\begin{equation*}
\sum_{k=0}^{p} \sum_{t=1}^{T_{k}} \sigma_{k t} A_{k t j} \delta_{k t}=0 \quad j=1, \ldots, m \tag{23}
\end{equation*}
$$

and P inequality constraints

$$
\begin{equation*}
\delta_{1_{S O}}=\sigma_{k} \sum_{t=1 .}^{T_{k}} \sigma_{k t} \delta_{k t} \geq 0 \quad k=1, \ldots P \tag{24}
\end{equation*}
$$

with the qualification that

$$
\begin{equation*}
\delta_{k t}=0 \tag{25}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\delta_{k 0}=0 \quad k=1, \ldots, P \tag{26}
\end{equation*}
$$

o must be chosen to satisfy the constraints.
The dual function can be written as
with the assumption that

$$
\begin{equation*}
\delta_{k t \rightarrow 0} \lim _{-\rightarrow 0} \frac{C_{k t} \delta_{k O}}{\delta_{k t}}{ }^{\sigma_{k t}}{ }^{\delta_{k t}}=1 \tag{28}
\end{equation*}
$$

When all signuin functions are not positive $\varepsilon_{0}(x)$ is not, in general, convex and may have several constrained local minima, maxima or saddle poi ts, and no simple duality relation holds. It is proved instead that to each critical point (called a vseudoninimum) x° of g_{0}, there corresponds a dual point $\left(\delta^{\circ}, \sigma_{0}\right)$ there V is a psevdomaximum and such that

$$
\begin{equation*}
g_{0}\left(x^{0}\right)=V\left(\delta^{\circ}, \sigma_{0}\right) \tag{29}
\end{equation*}
$$

Roughly speaking, a pseudominimum is a point whore \mathbb{E}_{0} satisfies the KuhnoTucker constraint qualification as well as the differential for of the Kuhn -Tucker necessary conditions for a constrained local minimum.

Then $g_{0}\left(x^{0}\right)=\operatorname{Pmin} g_{0}(x)=\operatorname{Prax} V\left(\delta 0^{0} \sigma_{0}\right)=V\left(\delta_{0}, \sigma_{0}\right)$ where Pin is an abbreviation for pseudominimum,

Then at a global minimum:

$$
\begin{equation*}
\operatorname{Min} g_{0}\left(x^{*}\right)=\operatorname{Min}\left[\operatorname{Pmax} V\left(\delta^{*}, \sigma_{0}\right)\right] \tag{31.}
\end{equation*}
$$

Once the dual variables δ^{*} are known the primal variables are found from the following relations

$$
\begin{equation*}
C_{o t} \prod_{j=1}^{m} x_{j}^{A_{o t j}}=\delta_{o t}{ }_{o} \varepsilon_{o}^{*} \quad t=1, \ldots, T_{o} \tag{32}
\end{equation*}
$$

and

$$
C_{k t} \prod_{j=1}^{m} x_{j}^{A_{k t j}}=\frac{\delta_{k t}}{\delta_{k o}} \quad \begin{align*}
& t=1, \ldots, T_{m} \tag{33}\\
& k=1, \ldots . P
\end{align*}
$$

From equation (32), it can be seen that σ_{0} will have the same sign as 8°. Since there will always de more terms than variable, x_{j}, wa equations can be found which are solvable for m primals. The solution of these equations is not difficult since they are linear in $\log x_{j}$. (\% corresponds to optimal solution).

COIPURALIONAL PRCCEDURA

The detailed computer ilow charts and programs are provided in the appendix. The present discussion on the method is to aid the understanding of the subsequent alscussions.

The computer algorithm finds the minimun of the primal function (6) subject to primal constrajnts (7) by maximizines the dual function (11) subject to dual constraints (8) through (10). Having found this maximum a transformation is made to obiein the primal variables x_{j}.

As can be seen the dual problem has n variables and $m+l$ linear equality consiraints. This gives the problem $n-(m * I)$ degrees of freedom. Zener and his associates call this the degree of difficulty.

The dual problem with nonlinear objective function and linear equality constraints can be maximized by any conventional method, such as, by Lagrance multipliers or the Eradient projection method. As suggestied by Duffin [6] the dual function can be transformed to eliminate the linear equalities to result in a - d' dimensional optimization problem, where 'd' is the degree of freedom. The transformation is done as follows:

$$
\text { The dual. variables } \underline{\delta} \text { satisfying the equations (8) and (9) }
$$ can be writtien as sum of a normality and a set of nulility vectors by the method of Iinear algebra.

$$
\begin{equation*}
\text { or } \quad \delta=\underline{b}_{0}+\sum_{j=1}^{d} r_{j} \underline{b}_{j} \tag{34}
\end{equation*}
$$

where $\underline{o}_{0}=$ nurmality vector

$$
\begin{aligned}
& \underline{b}_{j}=\text { nullity vectors } j=1, \ldots, d . \\
& r_{j}=\text { are arbitraiy cenl numbers }
\end{aligned}
$$

satisfying the positivity constraints

$$
\begin{equation*}
b_{i}^{0}+\sum_{j=1}^{d} r_{j} b_{i}^{j} \geq 0 \quad i=1, \ldots n \tag{35}
\end{equation*}
$$

writing the dual function (11) in transformed form

$$
\begin{equation*}
V(x)=k_{0}\left(\prod_{j=1}^{d} \quad k_{j}^{r_{j}}\right)\left(\prod_{i=1}^{n} \delta_{i}(x)^{\delta_{1}}(x)\right) \prod_{k=1}^{p} \lambda_{k}^{\lambda_{k}} \tag{36}
\end{equation*}
$$

Where

$$
\begin{align*}
& k_{j}=\sum_{i=1}^{n} C_{i}^{b_{i}^{j}} \quad j=0,1, \ldots, d \tag{37}\\
& \delta_{i}(x)=0_{j}^{0}+\sum_{j=1}^{d} r_{j} b_{i}^{j} \quad i=1, \ldots n \tag{38}
\end{align*}
$$

This function can be maximized with respect to r_{j} by any direct seawh technique. It has been found that Hooke and Jeeves (10) direct search is quite efficient. The first four problems in chapter V have been solved by this method. Another approach is to obtain a set of "d' equations by differentiating this function with respect to r_{j} and setting the result equal to zeros
where

$$
\begin{equation*}
\lambda_{k}^{j}=\sum_{i}^{j}(k) i_{j} b_{i}^{j} \quad j=1, \ldots, d \tag{40}
\end{equation*}
$$

These sets of equations can be solved by the Newton-Raphson method to give optimum values of n_{j} and hence the dual variables. Convergence by this method is not guaranteed, but when the method wonks the function converges very rapidly. Problems 2 and 5 are solved by this method.

The computational procedure can bo briofly summarized as

follows:

a) Mathematical formulation of the dual problem.

To obtain the dual problen in the form of equation (II), the prinal problem and the constraints have to be in the form of equetions (6) and (7). Many problems which are not in this form can be transformed into the requirod fom by various techniquos discussed in a later chapter.
b) Calculation of nomality and nullity vectors.

The nomality and nullity vectors of the form of equation (34) can be obtained by the usual method of lincar algebra (0). c) Obtaining the initial feasible solution of r_{j} The nonnegarivity constraints (35) have to be sailsfied for the initial feasible solution. This is achieved by adjusting all variaoles simultancously.
d) Optimization of tho dual runction:

A Ly suitable method for optimization is applicable. Hooke and Jeeves pattern search [10] is mostly used in the problems that are solved in tijs mork. Dirferentiation and the NewionRavison method [14] are also used where the function converges.

Since $V(\delta)$ is only lefined for $\delta_{1} \geq 0$ any intermediate step in the search procedure not meating this condition j.s avoiderl.

The accuracy obtalnod in the solutions depends on the comproise between improvement in objective function and required computer time. Different accuracies ε, (ranging from .01 to .0001) are assumed for alfforent problems. The function is assumed to converge when the function value changes by ε or less in two successive itcrations of Nevton-Raphson or step size is equal to or smaller than ϵ in Hooke and. Jeeve scarch.
e) Transformation from dual to primal problem:

The prinal variables are calculated fron the optinun dual. variables by equation (13) and (14).

The above procedure is offcctive for functions with positive coefricients. For functions with negative cocfficients and roversed inequalitios along positivity conditions (21), P inequality constraints (24) are to be satisfied and the minimum of all the pseudomaxima of the dual function (27) is to be found. It was found that the above procedure fails in this case because of limitations of scarch procodures. An eifficient aleorithr has been presented by Blau and Wilde [3] to handle polynomials with negrative coefficients and With equality constraints. This alsorithrn is prosented in the next chapter.

ITI. A TAGBNGGIAN ALGORITHM.

In this chapter an algoxithm for optimization of zoneralized polynomials with cquality constraints is presented. This alcoithm is of high practical importance since it is the only alcoritin which handles negative coefficients in the polynomials offectively; most physical restrictions occurring in practice are often strict equalitios.

The basic idea is to use a Nertonmaphson procedure [.18] to drive to zero the components of the gradient of a Lagrangian function formed from the logarithms of the original objective function and the constraints. A nonlinear transiomation, which amounts to suostituting a weighting viniable sor ebch term, makes the Lagrongian gradient linear in the weights as woll as in the Lasiange multipliers.

No proof for local convergence is yet available. For justicication of the procedure the reader is referred to [3].

A set of $M+1$ çeneralizel polynomiols of N variables x_{n} g_{m} can be defined as:

$$
\begin{equation*}
G_{n}=\sum_{t=1}^{T \mathrm{~m}} \sigma_{i n t} c_{n i t}^{N} \prod_{n=1}^{N} x_{n}^{A_{m b n}^{m}} \quad m=0,1, \ldots, M \tag{1}
\end{equation*}
$$

where $0<x_{n}<\infty$
and $\quad C_{m t}>0 \quad t=1, \ldots, T_{\mathrm{m}}$

$$
\begin{equation*}
\sigma_{\text {Int }}= \pm 1 \tag{4}
\end{equation*}
$$

Antn is any real number

The minimization problem own bo stated as

$$
\begin{equation*}
\min _{x} g_{0} \tag{5}
\end{equation*}
$$

subject to $g_{m}=1 \quad(m \neq 0)$
Wo initiate the algorithm, finite positive values x_{n}^{0} of x_{n} have to be chosen not necessarily satisfying the constraints (6). The initial value of the objective function is calculated as ξ_{0}° and the initial weights as

At the ith iteration the following suns are calculated as

$$
\begin{equation*}
s_{m n}^{i}=\sum_{t=1}^{T_{m}} \sigma_{m t} A_{m t n} W_{m t}^{i} \tag{8}
\end{equation*}
$$

From then the $N \times 1$ dimensional vector is formed as

$$
\begin{equation*}
S_{0}^{i}=\left(S_{10}^{i} \cdot\left(S_{N 0}^{i}\right)^{T}\right. \tag{9}
\end{equation*}
$$

and the $N \mathrm{x}$ H matrix

$$
S^{1}=\left[\begin{array}{cccc}
S_{11}^{1} & \cdots & \cdot & S_{1 M}^{1} \tag{1.0}\\
S_{N 1}^{1} & \cdots & \cdot & S_{M M}^{1}
\end{array}\right]
$$

This matrix is assumed to have rank H , 30 that $\left[\mathrm{S}^{1 T} \mathrm{~S}^{\mathrm{i}}\right]$ is nonsingular. Then the initial $\left[\begin{array}{c}x \\]\end{array}\right.$. vector of multipliers can bo comp ted as

$$
\begin{equation*}
\underline{\lambda}^{0}=\left(s^{0 T} s^{0}\right)^{-1} s^{0 T} S_{0}^{0} \tag{111}
\end{equation*}
$$

AN X N symmetric matrix T^{\perp} can be computed as

$$
\begin{align*}
T_{n j}^{i} & =-\sum_{t=1}^{T_{0}}{ }^{0} \text { ot } A_{o t n} A_{o t j} W_{o t}^{1} \\
& +\sum_{m=1}^{M} \lambda_{m}^{i} \sum_{t=1}^{T_{m}} \sigma_{m t} A_{m t m} A_{m t j} W_{m i}^{i} \tag{12}
\end{align*}
$$

At each iteration there is a value of one additional variable V^{i} which is also adjusted by the algorithm. To begin with, it is taken as the value of the objective function at x°.

$$
\text { Let } \sigma^{i}=\varepsilon_{0}^{i} /\left|g_{0}^{i}\right|
$$

Then the $(M+N+l)^{2}$ symmetric Newton-Raphson matrix R^{i} is assembled as

$$
R^{i}=\left[\begin{array}{ccc}
T^{i} & S_{0}^{j} & S^{i} \tag{13}\\
S^{i T} & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where 0 represents the null matrices with appropriate dimension. Next a. $(\mathbb{H}+\mathbb{N}+\mathcal{I}) \times I$ dimensional error vector e^{i} is formed as

$$
e^{i}=\left[\begin{array}{l}
s^{i}-s^{1} \lambda^{i} \tag{14}\\
1 \\
1 \\
1
\end{array}-e_{0}^{1}\left(v^{1}\right)^{-1}\right]
$$

Then the $(\mathbb{N}+M+I) X I$ dimensional correction vector is given by

$$
\left[\begin{array}{c}
\Delta \ln x^{i} \tag{15}\\
\Delta \ln \sigma^{i} V^{i} \\
\Delta \underline{\lambda}^{i}
\end{array}\right]=\left(R^{i}\right)^{-1} e^{i}
$$

so the next estimate of x^{i+1} is

$$
\begin{equation*}
x_{n}^{j+1}=x_{n}^{1} \quad \exp \left(\operatorname{In} x_{n}^{1}\right) \tag{1.6}
\end{equation*}
$$

whoreas

$$
\begin{align*}
& V^{i+1}=V^{i} \exp \left(\ln \sigma^{i} v^{i}\right) \tag{17}\\
& \underline{\lambda}^{i} 1=\lambda^{i}+\Delta \lambda^{i} \tag{18}
\end{align*}
$$

These quantities are used to compute the new values of Weights defined in equation (7) for $\mathrm{m}=1, \ldots, \mathrm{M}$.

For $m=0$, the following equation is used.

$$
\begin{equation*}
W_{o t}^{1+1}=\left(V^{1 n+1}\right)^{-1} C_{\text {ot }} \prod_{n=1}^{N} x_{n}^{A} \operatorname{otn} \tag{19}
\end{equation*}
$$

Thus the algorithia completes the ith fteration. The procedure continues until a11 compononts of the error vector are acceptably close to zero.

IV. APPROXIMATION TECHNIQUES

Many optimization problems can be transformed into standard geometric programming problems, even though they are not, explicitly expressed in posynomial form. This fact is illustrated in the following exaraples.

Example 1.
Minimize the function

$$
\begin{equation*}
G(x)=f(x)+[q(x)]^{a} h(x) \tag{1}
\end{equation*}
$$

Where $f(x), q(x)$ and $h(x)$ are posynomials in the vector variable $\underline{x}=\left(x_{1}, \ldots, x_{\mathrm{m}}\right)$ and $a>0$.

The above problem can be expressed as:

$$
\begin{align*}
& \text { minimize } g(T)=f(x)+x_{0}^{a} h(x) \tag{2}\\
& \text { subject to } x_{0}^{-1} q(x) \leq 1 \tag{3}
\end{align*}
$$

Where x_{0} is an additional indepindent variable and $\tau=$ $\left(x_{0}, x_{1}, \ldots, x_{\mathrm{m}}\right.$). It can be seen from the construction of $g\left(\tau^{\prime}\right)$ and the constraint that $\left(x_{1}^{2}, x_{2}^{1}, \ldots, x_{m}^{1}\right)$ minimizes $G(x)$ if and only if, $\left(q\left(x^{i}\right), x_{1}^{1}, \ldots, x_{m}^{1}\right)$ minimizes $p\left(\gamma^{\prime}\right)$ subject to the given constraint. The constrained minimum value of $g(\%)$ is equal to the minimum value of $G(x)$. Thus the problem of minimizing $G(x)$ which $i s$ not necessarily a posynomial can be transformed to the form which permits the use of geometric programing. Example 2.

$$
\begin{equation*}
\left.G(x)=f(x) ; \frac{q(x)}{[V(\underline{x})} \cdots h(\underline{x})\right] \tag{4}
\end{equation*}
$$

where f, q, h are posynomials, u is a posynomial with one term and $a>0$ 。

The equivalent problem can be formed as

$$
\begin{equation*}
g(f)=f(x)+\frac{g(x)}{x_{0}^{3}} \tag{5}
\end{equation*}
$$

subject to the constraint

$$
\begin{equation*}
\frac{x_{0}}{U(\underline{x})}+\frac{11}{u} \frac{(\underline{x})}{(\underline{x})} \leq 1 \tag{6}
\end{equation*}
$$

where x_{0} is an additional independent variable and $r=$ $\left(x_{0}, x_{1}, \ldots, x_{m}\right)$. Since $u(x)$ has only one term the form of the constraint permits use of geometric programing.

Example 3.

Minimize the function

$$
\begin{equation*}
G(\underline{x})=f(\underline{x})-u(\underline{x}) \tag{7}
\end{equation*}
$$

where f and u are posynomials and u has one term. If it can be assumed that the minimum value of G is negative then the constraint.

$$
\begin{equation*}
x_{0}+f(x)-u(x) \leq 0 \text { is consistent } \tag{8}
\end{equation*}
$$

It can be seen that x^{7} minimizes $G(\underline{A})$ in and only if $\gamma^{1}=\left[11\left(x^{2}\right)-f\left(x^{1}\right), x_{1}^{1}, \ldots, x_{m}^{1}\right]$ maximizes the function

$$
\begin{equation*}
h(Y)=x_{0} \tag{9}
\end{equation*}
$$

subject to the constraint

$$
x_{0}+f(x)-u(x) \leq 0
$$

This maxitaization problem is equivalent to the problems

$$
\begin{equation*}
\text { Minimize } g(r)=\frac{1}{h(r)}=\frac{1}{x_{0}} \tag{20}
\end{equation*}
$$

subject to the constraint

$$
\begin{equation*}
\frac{x_{0}}{\bar{U}(\underline{x})}+\frac{f(\underline{x})}{u(\underline{x})} \leq 1 \tag{11}
\end{equation*}
$$

Thus this reduces the problem to standard geometric programming form.

So far the examples showed the transformation which gives the exact solution of the problems. Following are some examples of approximate transformation which permits use of functions other than posynomials.

Example 4.
Any function $h(\underline{x})$ which is not a posynomial can be approximated to a single temp posynomial. To do this it is necessary to make a rough estimate of the range of variability of each variable x_{j}. Let x_{j}^{*} be the geometric mean of this range. Then $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right)$ may be termed the operating point. Then $h(x)$ can be approsimated as

$$
\begin{equation*}
h(x) \approx h\left(x^{*}\right)\left(\frac{x_{n}}{x_{1}^{*}}\right)^{A_{1}}\left(\frac{x_{m}}{x_{2}^{*}}\right)^{A_{2}} \ldots \ldots,\left(\frac{x_{m}}{x_{m}^{*}}\right)^{A_{m}} \tag{12}
\end{equation*}
$$

Where

$$
\begin{equation*}
A_{j}=\left(\frac{x_{j}}{h} \frac{\partial h^{\prime}}{\partial x_{j}}\right) x=x^{\%} \quad j=1, \ldots m \tag{13}
\end{equation*}
$$

This approximation is equivalent to expending log h in a power series in terms of variables $Z_{j}=1.0 \mathrm{~s}\left(x_{j} / x_{j}^{*}\right)$ and neglecting all but linear toxins. Example 5.

$$
\text { Approximation of log } u
$$

The function $\log u$ is defined as

$$
\begin{equation*}
\operatorname{loz} u=\int_{1}^{u} \frac{1}{x} d x \tag{1.4}
\end{equation*}
$$

On the other hand, if E is a positive number, then

$$
\begin{equation*}
\frac{U^{E}}{E} \cdots \frac{I}{E}=\int_{1}^{u} \frac{x^{E}}{\dot{X}} d x \tag{1.5}
\end{equation*}
$$

On any interval between positive numbers, the function x^{E} is a uniform approximation to unity, 0 vile E is sufficiently small. Hence, 1 os u can be approximated by $E^{-1}\left(U^{\mathrm{E}}-1\right)$ for u in the same interval. Example 6.

> Approximation of an exponential function

Let the primal problem involve a function of the form

$$
\begin{equation*}
f(\underline{x})=g(x)+C e^{\imath l}(x) \tag{16}
\end{equation*}
$$

Where g is a posynomial, c is a positive constant and $u(x)$ is a single term posynomial.

Using the well known relationship

$$
\begin{equation*}
e^{u}=\lim _{E \rightarrow \infty}\left(I+\frac{u}{E}\right)^{E} \tag{17}
\end{equation*}
$$

line function $f(x)$ can be written as

$$
\begin{equation*}
f_{E}(X)=E(X)+C\left(1+\frac{u(X)}{H}\right)^{E} \tag{18}
\end{equation*}
$$

where E is sufficiently large. This function is in the form of example 1. This can be reduced to standard geometric programming form by introducing a new variable $x_{o}=1+u / E$.
$f(x)$ can be replaced by the function $g(\underline{x})+C X_{0}^{E}$
and the additional constraint

$$
\begin{equation*}
x_{0}^{-1}+g^{-1} x_{0}^{-1} \text { u }(x) \leq 1 \tag{21}
\end{equation*}
$$

V. APPLTCARIONS

In this seciion six different problums are considered to illustrate the procedure. The first is a simple hypothatical problem. The next four models are enelneexine design problems With different degrees of freedor and the last is a production scheduling model. The models are in posynomial form except for the last model, which is in the generalized posynomial form. Different optimization techniques are used to maximize the dual function as required by the nature of the problern. The results are compared and various computational difficulties are discussed. The last problem is solved by the Lagrongian algorithm.
A Simple Problem [17]

This simple problem can be stated as:
Minimize

$$
\begin{equation*}
y_{0}=1.000 x_{1} \div 4 \times 10^{9} x_{1}^{-1} x_{2}^{-1} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{aligned}
2.5 \times 10^{5} x_{2} & +9000 x_{1}^{-1} x_{2}^{-1} \leq 1 \\
x_{1} & >0 \\
x_{2} & >0
\end{aligned}
$$

The problem has 4 terms and 2 varlables. Hence it has one degree of freedorn. The dual function which is of the form of Rqn. (11) of Chaptei x, can be written as:

$$
\begin{equation*}
V(\delta)=\left(\frac{C_{1}}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{C_{2}}{\delta_{2}}\right)^{\delta_{2}}\left(\frac{C_{3}}{\delta_{3}}{ }^{\delta_{3}}\left(\frac{C_{4}}{\delta_{4}}\right)_{4}^{\delta_{4}} \times\left(\delta_{3}+\delta_{4}\right)^{\left(\delta_{3}+\delta_{4}\right)}\right. \tag{3}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
C_{1} & =1000 \\
C_{2} & =4 \times 10^{5} \\
C_{3} & =2.5 \times 1.0^{5} \\
C_{4} & =9000
\end{aligned}
$$

The objective function has 2 terns. Hence the orthogonality condition is given by:

$$
\begin{equation*}
\delta_{1}+\delta_{2}=1 \tag{4}
\end{equation*}
$$

and the normality conditions axe given by:

$$
\begin{align*}
& \delta_{1}-\delta_{2}-\delta_{4}=0 \tag{5}\\
& \delta_{2}+\delta_{3}-\delta_{4}=0 \tag{6}
\end{align*}
$$

The minimum value of the function given by equation (1) is obtained by maximizing the dual function given by equation (3) subject to equality constraints (4), (5) and (6). These equality constraints ace eliminated by expressing vector \varnothing as sum of a normality and a nullity vector as explained in Chapter II. Thus,

$$
\begin{equation*}
\underline{\delta}=\underline{b}^{0}+x \cdot b^{2} \tag{7}
\end{equation*}
$$

By the a rove substitution the problem is transformed to maximization with respect to single variable r and the positivity constraint

Table 1. Convorance rate of the sample problem by the Hoote and Jeeves method.

r_{1}	$V(\delta) \times 10^{12}$	Eunctional evaluation
.80	2.15	1
.90	4.57	5
.95	6.53	10
.97	7.73	16
.93	8.38	20
.99	8.99	30
.00		26

$$
\begin{equation*}
\dot{o} \geq 0 \tag{8}
\end{equation*}
$$

The problem ws solved by using Hooke and Jeeves search piooedure. The i itial value chosen for x was 0.8 . The accuracy, ϵ, as defined. in Chapter II mas chosex as .0J. The convergence ratc, $1 . e$. , the change of value of equation (3) with the number of functional evaluations is shown in Table 1.

The optimun value obtrined was:

$$
y_{0}^{*}=8.99 \times 10^{12}
$$

and the optimum primal variables were:

$$
\begin{aligned}
& x_{1}=8.996 \times 10^{9} \\
& x_{2}=2.0 \times 10^{-6}
\end{aligned}
$$

The optimum primal variables were obtained using the following equations.

$$
\begin{align*}
& x_{1}=\frac{y_{0}^{*} \delta_{1}}{C_{1}} \tag{9}\\
& x_{2}=\frac{\delta_{3}}{\left(\delta_{3}+\delta_{4}\right)} \times C_{3} \tag{10}
\end{align*}
$$

SEA PONER - HEAT EXCHANGER PROBLEM [6]

The onnversion of the sun's radiant energy into uscful power is a challenging ricla to many engineers. A stumbling blork ha; been the extremcly high cavital cost of the equirment required to collect and concontrate this radiant energy. Most of the solar enercy is receivod by the upper layers
of the ocern. Therey from the soa could vassibly be collocted by a heat encine cycle which consists of direct evaporation of water from the upper layess, and, later, after passing through turoines, condensation on the cooler underlying water. the steam vapor pressure in equilibrium with tho cool deep water is so 10w that extremely large turbines are required. An approach that circurvents the need for extremely larce turbines is the use of an intemediate fluid, such as amonia, which has a high vapor pressure at room temperature,

The avoidance of costly, large turbine is achieved only by introduction costly iter, namely, the heat exchangers that allow licet to flow from the wam surface of the water to boiling aminona and allow the same heat to flow form the condensing amtionia to ccol deep tater. Since the economic feasibility of this cycle depends primaxily on the size of the required heat exchancer, our objective is to minimize the required surface area of heat cxchansexs for a sea power plant of a specific power capacity. For derivation of the model the following nomenolature has been used:

A = axca of heat exchangers
$c=$ spocific neat of water
$f \quad=$ friction coefficient
$h=$ film coefficient of water
n' $=$ film ooerficient of ammonia
$\mathrm{m}=\mathrm{mass}$ flow of water
$\mathrm{P}=$ poiser output hest ensines
$p_{N}=$ net power output
$p_{H X}=$ irjetion 103 s in hat exchangers
$\mathrm{P}_{\mathrm{KE}}=$ power loss by mass flow
$P \quad=$ Prandtl number
$Q \quad=$ heat extraction rate
$\mathrm{T}=$ temperature of hot reservoir
$\mathrm{U}=$ mater flow rate
$\alpha \Delta T=$ temperature gradient to heat engine
$\beta \Delta T=$ total temperature drop across water boundary layers
$\beta^{\circ} \Delta T=$ total temperature drop across liquid ammonia
$Y \Delta T=$ chance i i water temperature in heat exchangers
$\Delta!=$ Vomporabure difference in hot and cold reservoir
$=$ density of water
$\eta=$ diffuser degradation
$\epsilon=$ engine efficiency
$\epsilon^{1}=$ primemover's efficiency.
From thermodynamics the available power can be expressed as

$$
\begin{equation*}
P=\epsilon C \frac{\Delta T}{T} Q \tag{11}
\end{equation*}
$$

The heat flux Q is restricted by the impedence of the water layer of essentially laminar flow that clings to the surface across which water is flowing. The heat characteristic of this film is specified as

$$
\begin{equation*}
Q=h A^{\frac{1}{2}} \beta \Delta T \tag{12}
\end{equation*}
$$

The film coefficient h can be expressed as

$$
\begin{equation*}
h=\frac{\hat{i}}{2 P_{r}^{2 / 3}} p c U \tag{13}
\end{equation*}
$$

Thus an improvement of h can be ohtained by incroastng the velocity U but this is ontained only at the cost of an increase in pown aquired to drive water through the heat exchangers. The pover is expressed as

$$
\begin{equation*}
P_{\mathrm{ItX}}=\frac{1}{2} \mathrm{f} \rho \mathrm{U}^{3}(2 \mathrm{~A}) \tag{14}
\end{equation*}
$$

The heat flux Q is restrictod also by the impedence of boiling emmonja; to boil amonia at a finite rate, amonia adjacent to the boiling heat exchanger must be slightly super. heated. The relation between rate of boiling and the degree of superheat is given by

$$
\begin{equation*}
Q h^{1} A \frac{3}{2} \beta^{1} \Delta T \tag{15}
\end{equation*}
$$

The overall drop of water temperature in the heat exchangers is inversely proportional to the mass flow. We would like γ to approach zero so that α, β and β^{1} could be larger. Honever, the smallex the value of γ is, the larger is the mass flow. Thus we must have

$$
\begin{equation*}
m \subset \gamma \Delta T=Q \tag{16}
\end{equation*}
$$

and the loss of kinetic enorgy is

$$
\begin{equation*}
p_{\mathrm{kB}}=2 . \eta\left(\frac{1}{2} \mathrm{~m} \mathrm{U}^{2}\right) \tag{17}
\end{equation*}
$$

Sumanizing, the objective function to raminimized is the

[ig.]. mempralula ditrithe ima in the s, a pus.r rblew [6].
area A, subject to constraints that A musi; be lazge enough to provide an arfequatc heat flux a across the water boundary layexs and across the liquid ammonia, and the heat flux Q must be large enough to provide not only $P_{\mathbb{N}}$ but also $P_{H x}$ and $P_{k P}$. Thus,

$$
\begin{equation*}
\frac{\& \alpha Q}{T} Q_{0}=P_{N}+\frac{1}{\varepsilon^{I}}\left(P_{H X}+P_{k E}\right) \tag{18}
\end{equation*}
$$

The minimatzation of is to be made with respect to the variables $Q, U, \alpha, \beta, \beta^{I}, \gamma$ subject to the preceding relationship as well as to the temperature distribution relationship.

$$
\begin{equation*}
\alpha+\beta+\beta^{1}+y=I \tag{19}
\end{equation*}
$$

The temperature distribution is depicted in Fig. 1. The formulation of this problem is due to Zener and his associaties and for detailed derivation the interested reader is referced to [6].

Solution by Geonetric prooraming

In geonetric programmins all constraints must be represcnted by inequalities rather than equalities, Although the constiaintis in the preceding section have been formulated as equalities, it is obvious they can be formulated as inequalities. Thus the heat; flux across the thermal barriers must be equal to or greater thon the heat flux Q Lhrough the heat engine, because some of the heat flux acioss the hoat exchanger can bypass the heat encine if this permits a reduction in A.

Hence the consiraint (12) can ve formulated as

$$
\frac{n}{h \Delta-\frac{\rho}{\rho} L^{\prime}} \leq 1
$$

aid the constraint (15) as

$$
\frac{0}{h^{1} A \frac{1}{2} \beta^{1} \Delta T} \leq 1
$$

and the constraint (18) can be expressed as

$$
\frac{P_{N}+\left(1 / \epsilon^{7}\right)\left(P_{H X}+P_{k T A}\right)}{(\epsilon \alpha \Delta T / T) Q} \leq 1
$$

the $=$ sikh of constraint (19) can be changed into the \leq sign. Hence the primal problem can bo defined as

Minimize

$$
C_{1} A
$$

subject to

$$
\begin{align*}
& C_{2} \frac{Q}{U A} \leq 1 \tag{20}\\
& C_{3} \frac{Q}{A \beta^{1}} \leq 1 . \tag{21}\\
& C_{4} \frac{1}{Q \alpha}+C_{5} \frac{\Lambda U^{3}}{Q \alpha}+C_{6} \frac{U^{2}}{Q Y} \leq 1 \tag{22}\\
& C_{7} \alpha+C_{8}^{\beta}+C_{9} \beta^{1}+C_{10} Y \leq 1 . \tag{23}
\end{align*}
$$

Whore h has been eliminated from (20) and from (22) by using (13) and (16) respectively, The constants $\mathrm{C}_{1}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}$ are all unity and the constants C_{2} through C_{6} are

$$
C_{2}=\frac{4 P_{r}^{2 / 3}}{1 T_{T} C \Delta T}
$$

$$
\begin{aligned}
& C_{3}=\frac{2}{n^{1} \Delta T} \\
& C_{4}=\frac{P_{N}}{\epsilon(\Delta T / L)} \\
& C_{5}=\frac{f P \times 10^{\eta}}{\epsilon \epsilon^{1}(\Delta T / T)} \\
& C_{6}=\frac{\eta T \times 10^{-7}}{\epsilon \epsilon^{1} C \Delta T^{2}}
\end{aligned}
$$

The following numerical values are taken for the constants appropriate to water at room temperatures

$$
\begin{aligned}
& P_{r}=7 \\
& r=1 / 125 \\
& \rho=1 \mathrm{gm} / \mathrm{cm}^{3} \\
& C=4.18 \text { Joules/ems } \\
& T=300{ }{ }_{k} \\
& \epsilon=0.6 \\
& \epsilon^{3}=0.6 \\
& \eta=0.2 \\
& n^{1}=1.0 \mathrm{matt} / \mathrm{cm}^{2}{ }^{\circ} \mathrm{C} \\
& \Delta T=11^{0}{ }_{i}
\end{aligned}
$$

This gives the following values of the constants:

$$
\begin{aligned}
& C_{2}=40 \\
& C_{3}=0.18 \\
& C_{4}=44.5 P_{N} \\
& C_{5}=6.0 \times 10^{-3} \\
& C_{6}=2.15 \times 10^{-8}
\end{aligned}
$$

The above problel has 7 voriables and a tutal of 10 tems. Hence it has 2 decrees of freedom. The dual problem to be maximized, $V(\delta)$, has the sane form as Equ。 (J.) Which is subject to norinality and orthogonality constralnts having the same form as Eqn. (8) to Eqn. (10) of Chepter II. As the problem has 2 degrees of freedom the objective function of the dual problem can be expressed as a function of two independent variables r_{1} and $\mathrm{r}_{2}{ }^{\circ}$

The problem has been solved by maxinizing the dual function $V(\delta)$ by using Hooke and Jeeves search procedure. The convergence rato, $1 . e$. , the change in value of $V(\delta)$ with functional evalua.. tion is shown in Table 3.

The problem has also been solved by differentiation. Two equations are obtained by diffurentiating $V(\delta)$ with respect to the independent variables and putting them equal to zero. Thus:

$$
\begin{align*}
& \mathrm{F}_{2}=\frac{\mathrm{dV}(\delta)}{d r_{1}}=0 \tag{24}\\
& \mathrm{~F}_{2}=\frac{\mathrm{dV}(\delta)}{d r_{2}}=0 \tag{25}
\end{align*}
$$

Equations (24) and (25) are solved by Newton-Ranhson procedure. The convergence rate $i . e$. , the change in the function values and change of the voriables, are shom in Table 2 and plotied in Pig. 2 and 3 .

The accuracy ϵ is chosen 0.001 for both Newton-Raphson and Hooke and Jeeves search procedure. The computer program is

Table 2. Conversence rate of the sea poner problea by the liewton-nephson method.

Iteration number	Variables		Function values	
	r_{1}	r_{2}	${ }^{5}$	P_{2}
1	. 64	. 05	1.1	6.8
2	. 46	. 05	1.4	1.6
3	.42	. 04	0.2	0.3
4	. 42	. 04	0.0	0.0

Table 3. Contorgence rate of the sca power problem by the Hooke and Jeeves method.			
	ables		No, of
r_{1}	r_{2}		cvaluation
.45	. 02	124.69	0
.42	.07	124.79	7
. 40	. 04	126.03	33
.42	. 04	126.72	4.2
.42	. 04	126.75	59

Table $4 . \quad$ Optimum values of design parameters of the seawponer problem.

A	Q	U	α	β	β^{1}	γ
126.75	114.8	2.8	0.5	0.32	0.16	0.02

Eife 2. The convergence into of ihe sea poter problem by the Newton-eaphson method.

íg.g. 3. The rate of change of variables in the sea power problem by the Nervhon-Raphsen biethod.
writtien in Forpran Inguage and is given in the Appendix. The rosults are given in Trble 4.

There is no significant difference in the results between the two methods. But the number of iterations required is much Iess in the Newton-haphsion pronedure than in the seaxch procedure. The conputer tirne needed was 22 secs for the Hooke and Jeeves procedure and about 19 sec for the Newton- Raunson method. This is reasonable because the Newtonwaphson method requires more computation time. The Newton-hainson method seems to be more eficient but, as will be seen later, it may not alnays converge.

COMDENSHA DESIGN PROBLEM

This model is taken from a pater of Wilde and Avmel [1]. Detailed derivation of the formulation can be obtained from the oxiginal pater. In this model the design of a vapor condenser With fixed heat load is considered.

Consider a horizontal condenser in which a fluid having a Given flow rate W is heated without phase change from temperaturo $T_{b 1}$ bo $T_{b 2}$ by condensing saturated steam, optinal design involves minimizing the annual cost of the condenser, consisting of three terins:

1) Cost of steam
2) Fixed chemeges on the condonsoz
3) Cost of pumping fluid through the condenscr tube.

In the derivation of the model, the followins nomenclature has bren used:

```
\(A_{i}=\) inside heat transfer area
\(A_{0}=\) outside neat transfer area
\(B=\) pressure drop inctox
\(\mathrm{C}=\) annual cost
\(C_{R}=\operatorname{cosit}\) on electricity
\(\mathrm{C}=\) fixed charges
\(C_{H}=\) unit cost of condenser surface
\(C_{p}=\) specific heat
\(C_{\text {Pu }}=\) pumping cost
\(C_{S}=\) cost of steam
\(D_{i}=\) inside tube diameter
1) \(=\) outside tube diameter
\(f=\) fanning friction factor
\(g=\) specific gravity
\(\mathrm{k}=\) thermal conductivity
\(I=\) tube wall thickness
\(\mathrm{I}=\) tube length
\(N=N\). of tubes in condenser
\(p_{c}=\) depreciation rete
\(P_{F}=\) plant factor
\(\mathrm{Q}=\) condenser heat load
\(V \quad=\) rate of heat transfer
    \(R_{n}=\) fouling resistance
    \(T_{\text {bra }}=\) mean bulk temperature
    \(T_{s}=\) steam temperature
    \(W=\) flow rate inside tubes
    \(a_{\text {, }}\), coefficient in steam cost equation
```

$$
\begin{aligned}
& \alpha_{1}=\text { coeffioient in stean cost cquation } \\
& \Delta P=\text { pressure drop } \\
& \Delta T_{b}=\text { temperature rise in fluid in condenser } \\
& \Delta T_{m i}=\text { mean drop throish inside trbe filin } \\
& \Delta T_{m p}=\text { mcen drop through inside tube routing } \\
& \Delta T_{m o}=\text { nean drop through condensing film, }
\end{aligned}
$$

Assuming that the cost of steam can be expressed as a lincar function of its saturation temperature, we can writes

$$
\begin{equation*}
c_{S}=\alpha_{0} Q+\alpha_{1} T_{S} Q \quad \text { (B/year) } \tag{26}
\end{equation*}
$$

The fixed charges on the condenser are eaprossed as

$$
\begin{equation*}
C_{F}=C_{H} P_{C} A_{0} \quad \text { (\$/year) } \tag{27}
\end{equation*}
$$

and the pumping cost is giv $\geqslant 0$ by

$$
\begin{equation*}
C_{P u}=\frac{C_{E} P V P_{E}}{P_{I V}} \quad \text { (\$/year) } \tag{28}
\end{equation*}
$$

The objective is to select the values of T_{S}, A_{0} and ΔP which minimize the total annual cost given by

$$
\begin{equation*}
C=C_{S}+C_{p}+C_{P u} \tag{29}
\end{equation*}
$$

The stear temperature can be written as

$$
\begin{equation*}
T_{S}=T_{\text {bn }}+T_{\text {mo }}+\Delta T_{\mathrm{mi}}+\Delta T_{\mathrm{mi}} \tag{30}
\end{equation*}
$$

Without going into rathematical delail, from the themy ic heat tronsfex, the first component, the cost of steam, can be expressed as

$$
\begin{equation*}
c_{3}=a_{0} Q+a_{1} T_{D M} Q+\frac{\beta_{1}}{N^{7 / \sigma_{1}} O_{0}} \cdot \sqrt{3}+\frac{\beta_{2} D_{L}^{0.8}}{N^{0} \cdot 2_{L}}+\frac{\beta_{5}}{N D_{1}} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{1}=\left(\frac{\alpha_{1} P_{F}}{\mathbb{K}_{\mathrm{F}}}\right)\left(\mathrm{N}_{\mathrm{P}} \mathrm{AT}_{\mathrm{D}}\right)^{7 / 3}\left(\frac{\mu_{\mathrm{P}}}{\left.2 \lambda_{\mathrm{C}}^{2}\right)^{1 / 3}\left(\frac{1}{0.725}\right)^{4 / 3}}\right. \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2}=\frac{\left(c_{1} P_{1}-\Delta T b\right)^{2}\left(y^{\mu}\right)^{0.4}\left(C_{p}\right)^{1.5} W^{1.2}}{4^{0.8}(0.023) k^{0.6} \pi^{0.2}} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{5}=\frac{\alpha_{1} Q q R_{F}}{\pi} \tag{34}
\end{equation*}
$$

The fixed changes can be expressed as

$$
\begin{equation*}
C_{F}=\beta_{3} N D_{0}^{L} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{3}=\pi C_{H} P_{c} \tag{36}
\end{equation*}
$$

and the pumping cost can be expressed ass

$$
\begin{equation*}
C_{P u}=\frac{\beta_{4} \mathrm{~L}}{D_{i}^{4.8} N^{7.8}} \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{4}=\frac{32 \times 0.046 C_{E} B p_{F} W^{2.8}(\% / 4)^{0.2}}{6 \eta P^{2}(\pi)^{1.8}} \tag{38}
\end{equation*}
$$

Total mammal cost is given by

$$
\begin{align*}
C= & a_{0} 2
\end{align*}+a_{1} T_{b m} Q+\frac{\beta_{3}}{N^{7 / 6} D_{0} L^{4 / 3}}+\frac{\beta_{2} D_{1}^{0.8}}{\mathbb{N}^{0.2} L}+\beta_{3} N D_{0}^{L}
$$

Since the first two terms are constants cnly the last five terms nay vary and are subject to opibimization. Thus the variable cost function,

$$
\begin{gather*}
C^{n}=\frac{\beta_{1}}{N^{7 / 6} D_{0} L^{4 / 3}}+\frac{\beta_{2}^{D_{1}}}{N^{0} \cdot 2_{L}^{2}}+\beta_{3} N D_{0} L+\frac{\beta_{4} I_{1}}{D_{\mathrm{L}}^{4.8} \mathrm{~N}^{1.3}} \\
+\frac{\beta_{5}}{\mathrm{~N} D_{1} \mathrm{~L}} \tag{40}
\end{gather*}
$$

Fiom practical consideration the constrajnt on inside and outside diameter of the tubes is:

$$
\begin{equation*}
D_{0}-D_{i} \geq 21 \tag{42}
\end{equation*}
$$

This can be matton in the fom of a geometric procraming constraint as

$$
\begin{equation*}
\frac{\beta_{b}}{D_{0}}+\frac{\beta_{\eta} D_{i}}{D_{0}} \leq 1 . \tag{1+2}
\end{equation*}
$$

where ${ }^{\beta}{ }_{6}=21$ and $\beta_{7}=1$
Al.so from a practical standpoint jt was found D_{0} can not exceed 1. Inch. Hence this constraint can be incluted as

$$
D_{0} \leq D_{0} \text { max }
$$

$$
\begin{equation*}
\text { or } \beta_{8} D_{0} \leq I \tag{43}
\end{equation*}
$$

where $\beta_{8}=1 . / D_{0} \max =12$
The following numerical values have been taken

$$
\begin{aligned}
W & =500,000 \mathrm{lbs} / \mathrm{hr} \\
T_{01} & =195 \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{b} 2}=205^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{bm}}=200^{\circ} \mathrm{P} \\
& \alpha_{1}=1.0^{-9} \text { /EJU A. op } \\
& C_{H}=5 \$ / s q \cdot f t . \\
& C_{B}=3.0^{-2} / \mathrm{kmohr} \text {, } \\
& P C=0.1 \\
& P_{f}=7884 \mathrm{hr} / \mathrm{yr} \\
& \eta=0.8 \\
& p=60.131 \mathrm{~b} / \mathrm{cu} . \mathrm{ft} . \\
& \mu=0.20 \mathrm{cp} . \\
& k=0.393 \text {.3TU/hr-sq.ft。~or/ft. } \\
& C_{p}=1.01 \text { BTUT/1b.0 } O_{\mathrm{F}} \\
& \mathrm{~T}_{\mathrm{f}}=210^{\circ} \mathrm{F} \\
& P_{\mathrm{f}}=59.38 \text { I. } 3 / \mathrm{cu}, \mathrm{ft} \text { 。 } \\
& \mu_{\mathrm{e}}=0.26 \mathrm{cv} . \\
& \mathrm{k}_{\mathrm{f}}=.393 \mathrm{BTU} / \mathrm{hr} \cdots \mathrm{mq} . \mathrm{ft} \text {.OF/ft. } \\
& \lambda=960 \mathrm{BTU} / \mathrm{Ib} \text {. } \\
& 1=.049 \text { inch } \\
& B=1.2 \\
& R_{f}=5.68 \times 10^{-4}
\end{aligned}
$$

The following values of the constants are obtalned：

$$
\begin{aligned}
& \beta_{1}=172,400 \\
& \beta_{2}=97.290 \\
& \beta_{3}=1.57 \\
& \beta_{4}=0.0382 \\
& \beta_{5}=38330
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{6}=0.0081 .7 \\
& \beta_{7}=1.0 \\
& \beta_{8}=12.0
\end{aligned}
$$

a Tution by georetric prograning

The probler consists of a totol of 8 terms and 4 variables. Hence it has 3 desrees of freedom. The dual problem to be maximized has the same form as Eqn. (11) which is subject to nomality and orthogonality constraints having the form of Eqn. (8) to Eqn. (10) of Chapter II. As the problem has 3 degrees of freedon the dual objective function can be expressed as a function of 3 independent variables r_{1}, r_{2}, r_{3}, Other variables are eliminated by the use of linear equality constralnes.

The problen has been solved by maximizing the dual function $V(\delta)$ by using Hooke and Jecves search procedure. The convergence rate, $1 . e_{0}$, the chance of value of $V(\delta)$ with the number of functional evaluations during the search is shown in Table 5 and is plotted in Fig. 4.

The problem did not converge to an optimal with the ITewton Raphson method. The inftiol value $r_{i}=1 \quad i=1, \ldots, 3$ was tried. The difficulty with the Newton-Raphson method was in the first step where the values of x_{i} violated the positivity constraints

$$
\underline{b}^{0}+\sum_{i=1}^{3} r_{i} \underline{b}^{i} \geq 0
$$

so widely that they could not be comected.

Lity. 4. The cunvercence $x:$ s? of the condenser ?., ') 7 zm liy the Howe and Jeeves method.

Table 5. Convergence rate of the condenser design problean by the llooke and Jeeves method.

	Variables		Functiou Yalue	i̛o. of Punctional Gvaluation
r_{1}	r_{2}	r_{3}		
. 810	. 210	.790	196.64	5
. 800	. 370	. 775	272.83	99
. 620	. 365	. 595	334.53	200
. 440	. 355	. 415	532.16	304
.360	.355	. 335	608.29	352
. 270	. 345	. 245	702.24	403
. 190	. 34.0	.165	786.06	449
. 100	.330	. 075	867.08	501
. 085	. 325	. 060	879.67	555
. 083	. 326	.057	880.69	602
. 067	. 325	.041	890.07	650
. 045	. 322	0.18	898.26	701
. 035	. 320	. 008	899.33	783

The following results more obtained
Mini un variable annual cost -899.33 3/year. The optimal design painaneters meres

$$
\begin{aligned}
& D_{0}=1 \text { inch } \\
& D_{\dot{1}}=.90 \text { inch } \\
& N=114.16 \\
& I=27.48 \text { feet }
\end{aligned}
$$

The optimal dual variables were:

Who accuracy, $\dot{\text { Wo }}$, for Hooke and Jeeves search was chosen 0.001. The computation time taken was 115 secs.

CHEMICAL EQUILIBRIUM PROBLEM

This model is taken from a paper of Easy and Wilde [13]. According to the minimum free energy principle, a chemical system Is in equilibrium at constant pressure and temperature if and only if its free energy is a minimum. To formulate this problem mathematically, let a chemical system have P phases, $G_{1}, G{ }_{2}, \ldots$, G_{p} and led the chemical species scouring in phase G_{k} be $A_{k I}$, $A_{k 2}, \ldots, A_{k, 1(k)}$ where $I(k)$ is the number of species in $C_{k} k$ Let $n_{k j}$ be the number of moles or species $A_{k i}$ in phase: G, Then detains a ron vector N_{k} representing the composition of phesise G_{k} whose components are $n_{k I}, n_{k 2}, \ldots, n_{I(k)}$. prom tines construct n s

$$
n=\left[N_{1}, N_{2}, \ldots, N_{p}\right]
$$

In this nutation the mass balance equation for each chemical element B_{j} is given by

$$
\begin{equation*}
\sum_{i=1}^{p} \sum_{k=1}^{I(n)} a_{m k j} n_{m k}=b_{j} \quad j=1,2, \ldots, r \tag{4.4}
\end{equation*}
$$

where $a_{m k j}$ is the number of atortis oi element B_{j} in chemical species $\Lambda_{m k}, b_{j}$ is the mass in gram atoms of chemical element B_{j}, and r is the number of different chemical. clements in the system.

The Gibbs free energy $G(n)$ of the system is given by

$$
\begin{equation*}
G(n)=\operatorname{RT} \sum_{k=1}^{p} \sum_{i=1}^{I(k)} i_{k i}\left(\ln \frac{n_{k i}}{N_{k}}-\ln C_{k i}\right) \tag{45}
\end{equation*}
$$

where $N_{k}=\sum_{i=1}^{I(k)} n_{k i}$ for $k=1, \ldots, p$
and the second term is the standard free energy. The equilibrium concentration n^{*} is found by minimizing $G(n)$ subject to (32) and the natural constraints,

$$
n_{k i} \geq 0 \quad \text { for all } i \text { and } k
$$

This minimizing problem, which has a unique solution in the trivial case, is equivalent to the dual geometric programming problem since

$$
\begin{equation*}
V\left(n_{o 1}, n\right)=\exp \left(\frac{-G\left(n_{01}, n\right)}{R I}\right)=\exp \left(\frac{-G(n)}{R I}\right) \tag{46}
\end{equation*}
$$

where $\left(n_{o l}, n\right)$ is the vector generated $1, y$ augmenting one
component n_{01} to the vector n; the corresponding coefficient $C_{\text {of }}$ is set equal to unity.

The mass balance equation can be written as

$$
\begin{align*}
& n_{01}=1 \tag{4,7}\\
& \sum_{m=0}^{p} \sum_{k=1}^{I(n)} A_{m k j} n_{m k}=0 \quad j=1, \ldots, r \tag{48}
\end{align*}
$$

Where $a_{o i j}=-b_{j}$ and $I(0)=1$
These are identified as the normality and orgonality conditions as equations (9) and (IO) of Chapter II. Hence the primal objective function of a chemical equilibrium problem can be identified as
subject to constraints

$$
\begin{equation*}
h_{m}(t) \leq 1 \quad m=1, \ldots, p \tag{50}
\end{equation*}
$$

where $n_{n}(t)=\sum_{k=1}^{I(m)} C_{m k} \prod_{j=1}^{T} t_{j}^{a_{m k j}}$
and x is the number of different chemical elements B_{j}, and b_{j} is the mass of chemical clement B_{j}, t_{j} is the corresponding primal variable.

The problem discussed hero is due to White, Johnson and nanjing [16]. Tho stoichio etric mixture of hydrazine and oxygen at $3500^{\circ} \mathrm{K}$ and a pressure of 750 psi is considered. The initial mounts of hyciroisen, amgen and nitrogen are 2, 1 and 1
respectively.
So the objective function is

$$
\begin{align*}
g_{0}(t) & =t_{1}^{-2} \times t_{2}^{-1} \times t_{3}^{-1} \tag{52}\\
g_{1}(t) & =c_{1} t_{1}+c_{2} t_{1}^{2}+c_{3} t_{1}^{2} t_{2}+c_{4} t_{3}+c_{5} t_{3}^{2}+c_{6} t_{3} t_{1} \\
& +c_{7} t_{3} t_{2}+c_{8} t_{2}+c_{9} t_{2}^{2}+c_{10} t_{1} t_{2} \leq 1 \tag{53}
\end{align*}
$$

The various possible constituents at equilibrium and the corresponding C_{S} are given as

$$
\begin{aligned}
& \mathrm{H}=4.411 \times 10^{2} \\
& \mathrm{H}_{2}=2.846 \times 10^{7} \\
& \mathrm{H}_{2} \mathrm{O}=6.160 \times 10^{1.4} \\
& T=3.703 \times 10^{2} \\
& \mathrm{~N}_{2}=7.107 \times 10^{7.0} \\
& \mathrm{NH}=3.225 \times 10^{6} \\
& \mathrm{NO}=2.930 \times 10^{6} \\
& 0=4.471 \times 10^{4} \\
& O_{2}=3.796 \times 10^{11} \\
& O H=4.289 \times 10^{9}
\end{aligned}
$$

putting $y_{1}=10^{3} t_{1} \quad y_{2}=10^{6} t_{2} \quad y_{3}=10^{5} t_{3}$
The objective is to minimize

$$
\begin{equation*}
3_{0}(y)=10^{16} y_{1}^{--2} y_{2}^{--1} y_{3}^{-1.1} \tag{54}
\end{equation*}
$$

subject to

$$
\begin{align*}
g_{1}(y) & =0.4111 y_{1}+28.16 y_{1}^{2}+676 y_{1}^{2} y_{2}+0.03703 y_{3} \\
& +710.7 y_{3}^{2}+.3225 y_{1} y_{3}+2.93 y_{2} y_{3}+.04171 y_{2} \\
& +0.3796 y_{2}^{2}+4.289 y_{1} y_{2} \leq 1 \tag{55}
\end{align*}
$$

Solution by geometric programming

The problem has 11 terms and 3 variables, and hence a decree of freed on ?. The problem is solved by geometric programme.. Ing using Hooke and Jeeves search procedure. As the degree of freedom is 7 , the dual problem can be expressed as a function of 7 independent variables, $I_{i}, i=1, \ldots, \eta$. The convergence rate of Hooke and Jeeves is shown in Table 6 and the same data is plotted in Fir. 50

The rexton-Raphson method did not converse for this problem. An initial value of $x_{i}=, i=1, \ldots, 7$ vas tried. The difficulty with the Newtonmaphson method occurred after the first step when the value of the variables r_{i} violated the positivity constraints

$$
\underline{b}^{0}+\sum_{i=1}^{\eta} r_{i} b^{1} \leq 0
$$

so widely that they could not be corrected.
The computation time for Hooke and Jeeves procedure was 239 secs. The accuracy \in was chosen as 0.001 .

The following values of primal, variables were obtained at the optimum.
y_{1} 0.056229
0.245371

yid. 5. The comversncern of tive chenical equilibrim problem by the looke and Jacrees mithod.

Table 6. Convergence rate of the chomical equilibrium problem by the Hooke and Jeeves methoc.

r_{1}	r_{2}	r_{3}	r_{4}	r_{5}	r_{6}	r_{7}		VanctionVariables
.150	.250	.150	.050	.100	.100	.150	1.08	14
.050	.400	.050	.100	.050	.050	.050	7.51	112
functional								
evaluation								

The optimum value of objective function was 11.79×10^{13}. The optimal dual variables were

$$
\begin{aligned}
& \delta_{1}=1.00 \\
& \delta_{2}=.002 \\
& \delta_{3}=.1 .46 \\
& \delta_{14}=.734 \\
& \delta_{5}=.041 \\
& \delta_{5}=.486 \\
& \delta_{7}=.001 \\
& \delta_{8}=.026 \\
& \delta_{9}=.018 \\
& \delta_{1.0}=.037 \\
& \delta_{11}=.097
\end{aligned}
$$

The dual variables δ_{2} to δ_{11} represent the optimum equilibrium concentrations in moles of the corresponding species.

TRANG-OMMER PROBLEM

This model. Is taken from a Westinghouse Research Report [7]. The explanation of the model and identification of variables are not disclosed. The problem is stated as follows:

Minimj.ze

$$
\begin{align*}
U(t) & =.2007 t_{3} t_{4} t_{5}+.2597 t_{1} t_{2} t_{6} \\
& +3.69 \times 10^{9} t_{6} / t_{1} t_{2} t_{3}^{?} t_{4}^{?} \tag{56}
\end{align*}
$$

subject to

$$
\begin{equation*}
g_{1}(t)=4 t_{1} / t_{5}+6 t_{2} / t_{5}+4 t_{3} / t_{5} \leq 1 \tag{57}
\end{equation*}
$$

Fig. 5. The converyence tre of the t. asfocmer problem by the

> Table 7. Cunveryence rate oi the Transfonner problem by the Iooke and Jeeves method.

Variables		$V(\delta)$	iro, of Functions. Evaluation
r_{1}	r_{2}		
. 200	. 200	55955.00	1
.400	. 200	58391.38	7.0
. 325	. 075	65932.50	\%
. 337	.100	66420.06	30
. 31.2	.106	66671.75	40
. 322	.100	66694.62	50
- 3.7	. 1.03	66698.93	60
. 320	.103	66703.75	70

T:ble 8. Convergence rate of the Transformer problem by the Nodton-?aphson method.

Iteration	Varjables		Gunction Values	
	${ }^{1}$	r_{2}	E_{1}	${ }^{5} 2$
0	. 1500	. 2500	-3.5039	14.5100
1.	. 2051.	. 2500	-. 9765	12.8205
2	. 2243	- :00	. 0392	10.3018
3	. 2328	. 2997	. 0021.	8.2645
4	. 2248	. 2469	. 0002	5.9905
5	. 2372	. 2294	. 0356	3.9335
6	. 2793	. 1691	. 0547	1.5322
7	. 3173	. 1091	. 0492	. 1.677
8	. 3193	. 1033	. 0010	. 0004
9	.3193	. 1033	0.000	0.000

Mable 8a. Computational aspects of pmoblems 1 to 5.

$$
\begin{equation*}
g_{2}(t)=6 t_{3} / t_{6}+6 t_{4} / t_{6}=9.424 t_{1} / t_{6} \leq 1 \tag{58}
\end{equation*}
$$

Solution by geometric programming
The above problem has 9 texas and 6 variables, and hence there are 2 degrees of freedom. The dual function can be expressed with two independent variables r_{1} and r_{2}, The problem has been solved by maximizing the dual function by looks and Jeeves procedure. The convergence rate for the search is shown in Table 7. The problem has also been solved by the NewtonRaphson procedure and the convergence rate is shown in Table 8 in which the functions F_{1} and F_{2} are derivatives of the dual function with respect to r_{1} and r_{2} respectively. The same data are plotted in Fir. 6. The accuracy is chosen as 0.001 in both the Nevton-Kaphson and the Hooke and Jeeves procedure. The following results are obtained:
Minimum value of the objective function is 66703.93 optimum primal variables are:

$$
\begin{array}{cccccc}
t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} \\
19.074 & 29.690 & 42.524 & 6.601 & 426.532 & 70.625
\end{array}
$$

And the optimum dual variables are:

$$
\begin{array}{ccccccccc}
\delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} & \delta_{6} & \delta_{7} & \delta_{8} & \delta_{9} \\
.43 & .19 & .38 & .08 & .18 & .17 & .15 & .32 & .10
\end{array}
$$

PRODUCTION - INVENTORY PROBLEM
This is a hypothetical model in which the optimum policy regarding production and inventory levels are to be determined

Let

$$
\begin{align*}
& x(t)=I(t) \tag{62}\\
& z(t)=I(t) \tag{63}
\end{align*}
$$

Item Equation (59) becomes

$$
d x(t) / d t=z(t)-O(t)
$$

From this the difference equation can be written as

$$
\begin{equation*}
x(t+\Delta t)=x(t)+(z(t)-Q(t)) \Delta t \tag{64}
\end{equation*}
$$

Dividing the entire time period into five stages, the integral equation for cost (50) can be written as

$$
\begin{equation*}
C_{T}=\sum_{i=1}^{5}\left[C_{I}\left(I_{m}-x_{i}\right)^{2}+C_{P}\left(P_{m}-z_{i}\right)^{2}\right] \Delta t \tag{65}
\end{equation*}
$$

end djeference Eqn. (64) can be written as

$$
\begin{equation*}
x_{i}=x_{i-1}+\left(z_{i}-Q_{i}\right) \Delta t \quad i=1, \ldots, 5 \tag{66}
\end{equation*}
$$

The numerical values assumed are

$$
\begin{array}{lll}
\mathrm{a}=2 & \mathrm{~b}=1 & \mathrm{c}=5 \\
\mathrm{C}_{\mathrm{I}}=0.1 & \mathrm{I}_{\mathrm{TB}}=10 & \mathrm{P}_{\mathrm{m}}=5 \\
\mathrm{C}_{\mathrm{p}}=.01 & \mathrm{t}_{\mathrm{o}}=0 & t_{\mathrm{f}}=1
\end{array}
$$

To apply geometric programming the objective function has to be exposed in polynomial form, Thus retting Eat. (65)

$$
\begin{align*}
C_{T} & =\sum_{i=1}^{5} C_{I} \Delta t x_{i}^{2}+\sum_{i=1}^{5} C_{p} \Delta t z_{i}^{2}-\sum_{i=1}^{5} 2 C_{I} I_{I n} \Delta t x_{i} \\
& =\sum_{i=1}^{5} 2 C_{\rho} P_{m} \Delta t z_{i} \text { + Constant } \tag{67}
\end{align*}
$$

Where constant $=C_{I} I_{m}^{2} \therefore C_{p} P_{m}^{2}$
The problem is to minimize the variable portion of En. (op) subject to the constraints (66). An attempt was made to solve the problem by geometric prosmomine. The problem has 34 terms and 10 variables, arid hence the degree of if ecilor is 23. The problem is not in posynomial. form; hence the extersion of geometric programming as discussed in Chapter II had to be used. The attempt was unsuccessful because of the difficulty in obtaining an initial feasible solution r_{j}. As the problem has 23 decrees of freedom. A feasible solution of $r_{j}, j=1,23$ has to be found which satisfi. s the inequality constraints given by Equations (27) and (24) of Chapter II, which are

$$
\begin{equation*}
\infty>\delta_{k t} \geq 0 \tag{68}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{k 0}=\sigma_{k} \sum_{t=1}^{1} \sigma_{k t} \delta_{k t} \geq 0 \quad k=1, \ldots, p \tag{69}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{\delta}=\underline{b}^{0}+\sum_{j \cdot 1}^{d} m_{j} \underline{b}^{j} \\
& \sigma_{k}= \pm 1 \\
& \sigma_{k t}= \pm 1
\end{aligned}
$$

and d is degree of freedom.
The problem has 34 toms ane 5 constraints. So an initial solution of has to satisfy 39 inequality constraints. The Hoke and Jeeves search was used to maximize each $\delta_{\text {ko given by }}$ Equation (69) subject to constraints (68) until $\delta_{k 0} \geq 0$. Hooke
and Jeeves search is not ofricient in hunuling a large number of inequality constraints. Due to this difficulty an initial. feasjible solution could not be obtained by this method.

The above problem was solvod successfully by Lagrangian polynonial optimizatson technique [3]. To use this technique, the problem has to be erpressed. in the following form
Minimize or
sunject to $\quad \mathcal{E}_{11}=I \quad m=I, \ldots, M$
where $g_{m}=\sum_{t=1}^{T} \sigma_{m t} C_{m t} \prod_{n=1}^{N} \sum_{n}^{A_{n t n}} \quad m=0,1, \ldots, M$
Where $C_{m t}>0$

$$
\begin{aligned}
& A_{\text {min }} \text { is any ieal number } \\
& \sigma_{\text {nt }}= \pm 1
\end{aligned}
$$

The objective finction of the above problem given by Equation (67) is in the form of (70). The constraints as giten by Eqn. (66) can be transformed according to the requirement for this technique as follows: rewnitins Equation (66) as

$$
\begin{equation*}
\frac{x_{1}}{x_{0}{ }^{\circ} Q_{1}} t-\frac{z_{1} t}{x_{0}} \frac{t}{Q_{1}} t=1 \tag{73}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x_{i} \cdot 1}{Q_{i}}-\frac{x_{i}}{Q_{1} t}+\frac{z_{i}}{Q_{i}}=1 \quad i=2, \ldots, 5 \tag{74}
\end{equation*}
$$

consuraints (73) and (74) are in the requined form and the algorithm as described in Chaptem IIT can ilrectly be applied.
A. difficulty in this vroisl w, wh that the function overshot tho inimum for some starting values ber use of wo larce a step sizo. 'fnis djfftculty was overcome jy using a forcing procedure which ixicts the stop sizo to a cextain moximum of the vari bles. Varios limits were tried on differ nt btarting values. The number of juterations rapured to converge to the opiitrum for each of these cases is given in Table 11. Tho convergence rates for two ty icsl strutins values are given in Tables 9 and 10. The optimum values of productions and inventoxies sre given in Table 12, and are plotted in Figs. 7 and 8. The function is assumed to have converged when a71 components of the error vector as defined in chapter IIT ace less than or equal io 0.0001.

The opti um toval cost obtained is

$$
C_{T}=.374
$$

Table 9. Typical conv rgence tate of the inventray problem with startins valles $x_{i}=10, i=3, \ldots 10$.

$\begin{gathered} \text { I: er tion } \\ \text { No. } \end{gathered}$	'jnst Purcentave foreing			
	$\begin{array}{r} \text { No } \\ \text { rosenc: } \\ \hline \end{array}$	20	50	100
0	-9.9999	-9.9999	-9.9999	-9.9099
1	-9.8.64	-0.9290	-9.3864	-9.89614
2	-9.8738	-9.616	-9.8739	-9.3738
3	-2.973	.9.9750	-9.8759	-9.8759
14	-9.3759	-9.8759	-9.3759	-0.3759
5	-.- -	-9.8759	-9.9759	-n. 8759

1able 10. Typical conversence rate for the inventory problem with starting values

$$
x_{i}=5.0 \quad i-1, \ldots, 10 .
$$

Iterstion No.	cost			
	Percontaj 3 Porcins			
	No Pnegine	20	50	1.00
0	-7.7499	-7.7499	-7.7499	$\cdots 7.7499$
1.	703.2946	-8.61.53	-9.2914	-9.54.04
2	1022.4440	--9.3822	-7.4436	-9.6252
3	378.3039	-9.0118	-.8.2.1.56	-9.8360
4	93.0727	-9.5035	-6.3759	-9.8680
5	3. 3208	-9.9.6459	$\cdots 7.7937$	3.8754
6	-7.2251	-9.0581	-7.4099	1. 8758
7	-9.0035	-8.9299	$\cdots .7 .4086$.9.8758
8	-8.2692	-9.3047	$-7 \cdot-31.0$	
9	--9.5499	-9 3213	$-7.0 .115$	
10	-9.7332	-9.2770	-7.3502	
1.1	-9.7480	-9.1200	$-7 \cdot 2+35$	
12.	-9.7644	-9, 1.454	$\cdots \cdot 397$	
13	-9.7679	-9.1501	-7.374	
14	-9.7678	-9.1504	$\therefore 7.3360$	
1.5	-9.7677	-.9.1.506	$\therefore 7.3353$	
16	-9.70\% 77	$-9.1 .503$	$-7 \cdot 33!8$	

Pable 11 . Bfeect of Eorcing on converionce.

Starting Value	io. E Tter Li, is				
	Persatare Eorins				
	$\begin{gathered} \text { No } \\ \text { forcixs } \\ \hline \end{gathered}$	10	20	50	100
	i'r. Conv.	;-	No. Conv.	2o. Conv.	No. Conv.
14.0	10	--	No. Conve	--	--
4.4	9	-	--	--	--
5.0	\therefore No. Conv.	20	ive. Sonv.	An. Conv.	8
6.0	6	--	\rightarrow	\cdots	--
6.5	5	--	.--	--	--
8	\therefore A.c.nv.	--	7	7	No. Colv.
9	\therefore Co. Conv.	--	7	11	No. Collv.
1.0	4	\cdots	5	5	5

?ole 12. Oplimm ins as: an podiction levels.

$$
Q(t)
$$

'rime

$\because i$. 3. (is) imum ronluction levels.

TI. DISCUSSION

The soometric proseammins algorithm in its present form can handic a large class of probloms often found in practicc. In the posynomial case the method always pioduces a globat minimum, not just a relative minimura. The minimum is equal to the maximura of the dual function whose constrai is are lincar. If the primal probler has zoro deg se of dificulty, the solution of the dual problem, hence the sol ion of wim al problem, is obtained by solvir; a system if linear eque ors. In the case of zero degree of difficulty, each tarm in o optimal objective function has an invariant is ight eprese te 'oy the unique solution of the Iinear constrainus. The ne matical importance of this property is that the weight of ecoch orin in the objectivo function is indopendent of the coefficients.

The extension of geometric programining, as developed by Whide and Passy by using Kuhn-Tucker conditions, is applicable to any problem involving sencrali.zed polynomials. But any doviation from the full posynomial situation invalidates the arithmetic-geometric moan inequality and its useful applications. The optimal weights occur at stationary points of unspecified character fn the general case, and this precludes disect search. Another difficulty in the general case is that one no longer has a gramantee that the solu'ion obtained by working with the dual function corresponds to a minimum of tho objective.

The existing theory of generalized geometion urocraming for polynomial optimization fives no way to compute optima
except in the special case wherc there is exactly one more term thore are independent variables. Also the theory is formiated in terms of inequality constraints, although the physical xestrictions occuxing in practice are mose often strict equalities. The Lagrangian algoxithm for generalized polynonal optimiration [3] is suitable for equality constrined problems, which was shown by rapid convergence for the production schoiuling model with 23 degrees of fxeedom.

The convergence is not guaranteod for the above method. Moreover, even when the algorjthm does converge, the point found liay be a saddle point or even a maximum. Finally, a local. minimum may not be the global minimum.

Sonetimes durings the initial itcrations, the methon takes too bisg a step and overshoots the minimurn. This rosults in no convergence. This difficulty was overcome by restricting the stop size to a predetermfned percent of the variable.

Despite these difficulties, both geometric programming and the Lasrangian aigorithm can be rerarded as poineering fields in nonlinear optimization with nonlinear constraints and they nave great potentials in angineering öesign and systom anslysis.

1. Avriet. Mo and D.J. Wilne, "Optimal Conilenser Design by Ceonetric Programing," Ind. Eng. Chom. Process Des. Dey., 59, 2.56 (1.967).
2. Boishtler, C. So, R. W. Crisp and W. L. Neiex, "Optimization by Geometric Programing," Jo of Ind. Eneo, 12, 117 (1968).
3. B7.au, G. E. and D. J. Wijde, "A lagrangian alforitnm for cquality constrajned generalized polyronial optinization," symu. Optimization of reaction systems, Part 1, 65th Nat. meeting ATCHE., 1269.
4. Duffin, R. J., "Dual Erograms and Ifinimum Cost," J. STAf!., 10, 119 (1962).
5. Durfin, R. J., "Cost IUtimization Prom Mem Treated by Geonetric Means," pperations Resemrch, 10, 668 (1.262).
6. Duffin, RoJ., E. L. Petorson and C. Ziner; Geometric proszammins, John Giley, Hew York (1966).
7. Frank, C. J., "Problem Sclution Using the Geometric Prograamine Aisomith, " Wesinntive rostarch Reports 64-InO-1 $22=$ RI, (196 仿).
8. Frank, C. J., "Developincnt of a Compler Lerorithm for Geometric Prosramming," Hestinghousc Res wach Re ort 64-THD-129-R2?, (1964).
9. Hadley, G., Einear Alsebra, Addision-Wesley Publishing Co., Inc. (1961).
10. Hooke, R. and T. A. Jeeves, "Direct Search Solution of Numerical and Statistical Problems," J. Assoc. Comput. Mach., 8, (1961)
11. Lavi, A. and. T. P. Vog1, Symposium on Recent Ad ances in Optimization Techniques, John Wiley, Nen York, (i.g66).
12. Passy, U. and D. J. Wilde, "Gencralized Eolynomial Optiraization," J. SIMM, 15,1344, (1967).
3.3. Passy, U. and D. J. Wilde, "A Geometric Probzoning Alsorithm for Solving Chemic I Equilibrium Problems," J. SIAM, 16, 363, (1968).
13. Scorborough, J. B., Junberich Mothemacal Anelysis, John Hopktas Press, Baltimore, (1950).
14. Shcmood, T. K. A Course in Process Design, MIT Press, Combride, (7.963).
15. Whate, H_{B} B., S. II. Johnson and G. B. Dontzig, "Chemjcal
 751 (1958).
16. Wilde, D. J., "A Review of Optimization Theory," Ind. Eng. Chan., 57, I8, (1965).
17. Wilde, D.J. and C. S. Boightior, Foundations of ontimization, Prentice IFall, N, J. (1967).
18. Zencr, C., "A flathematical Aid in optinizine Encineering Desings," Proc. Mat. Acad. Sci. U.S.A. 47 , 537, (1961).
19. Zener, C., "A Further Fathematical. Ald in optinizing Mngineering Desighs," Proc. Nat. Acad. Sc土. U,S.A., 48 , 518. (15 (62).
20. Zener, C., MPinimization of Systen Cobts in Terms of Subsystom Costs," proc. Nat. Acan. Sci. U.S.A., 51,162, (1964).
21. Zenor, C and R.J. Durfin, "Optimization of Dngineering Problens," Westinghouse Fingineer, 154, (1964).

 putben i atecit. [10]

－ 103
13 FJIMAT (2F3. I)
L\& FiJ:AAT (' EXPUVEVT MATRIX SISCU1,AR')
22 FORIAT (F22.6)
READ $19, M, n!X, K l$
R, 二AD 11, (KA1 (), $1=1, K 1)$
REAO 11, (KB(1), I=1,K1)
\therefore にAD $13,((A([, J), J=1, M), 1=1, N X)$
KOU'HT $=j$
$\because 1=N X-M-1$
$32=M+1$
$13=11+1$
$+4=142+1$
$41=K \wedge(1)-1$
$N D=K A(1)$
10) 乡ण0 $I=1,15$
bj: SIG(I)=1.
$\mathrm{B}=\mathrm{y}(1)=1$.
そご (2) = 1
$C(L)=100^{\circ}$
$C(2)=4 . *(10$,$) 光次 9$
$C(3)=2.5 \div(10) \times$.
$\mathrm{C}(4)=9003$.
(1) $10,0 \quad I=1,11 x$
$00100 \quad \mathrm{~J}=1$, il
! $A A(J+1,1)=A(1, J) * S I G(I)$
(Ju $36 \mathrm{~J}=1, \mathrm{~N}:$
$36 A(1.3 J)=5[(1 J)$
[0) $101 \quad J=N D, A X$
101 คA (l, J) =
1) $98 \quad I=1, V 2$
00 $98 \quad \mathrm{~J}=1, \mathrm{~N} 2$
$1 A=12 \div(J-1)$
y $8 H([+N A)=A A([, J)$
$A(1:)=1$ 。
(1) :02. $1=2$, m?
$192 \therefore 1(1)=$.
C. BB! IINIVG NGRMALLIIY RVO NULLITY VIGTORS
C. FHC SLUQRUT IUES USED IERE ARE PROVIDED AYY IBM
C LL iNIV $(H, M 2, D, L 2, L 3)$
[F(D.FQ, …) SO TO 125
C, dLL GiARD (H,N1, R1, N2, N2, 1)
$j 1=1$
0.1104 J. N4, NX
$11=11+1$
Ui) $1,03 \quad I=1,9)$
$1 \vee 3 \quad 12(1)=-A 1(I, J)$

108

（3） $104 \quad I=1$ ，il2
$1 ; 9 \quad 8(1,1 i)=32(1)$
D（） $5 \quad I=1 \Rightarrow 12$
5：$\quad 3(I, 1)=31(1)$
（1． 1 ）
$00511=1$ 个． 11 K
$11=11+1$
$0051 \quad J=1, N 3$
［F（J－11－1）52，53，52
$53[3(1, J)=1$ ．
（i） 7051
$321 .(1, j)=0$ ．
૬1 CONTHUE
$005 \quad I=1, N 1$
$5 R(I+1)=$ ． 8
C CBTAINING IYITIAL FEASIBLE SOLUTIOI
$11=1$
$!r-P=0$
NTLR＝0
126 DO $128 \mathrm{~J}=2,13$
128 QOLD $(J)=?(J)$
$121 \mathrm{LL}=1$
$J 1=2$
id $C=1$
20 100 $1111=1, \mathrm{MX}^{2}$
$5(1)=0$.
U0 $110 \mathrm{~J}=$ ？, 113
$11 S(1)=S(1)<R(J) * 3([, J)$
$\mathrm{D}: \mathrm{L}, I)=?(1,1)+S(1)$
111 COTMENE
1F（1［E：－1026）26：。129，129
21 ［F（DEL（I1）） $206,207,207$
$206 \mathrm{CH}(11)=\mathrm{CFL}(11)$
IF（1C） $21 \%, 217,218$
211 IF（CHIT1）－010） $218,269,209$

$310 R(J 1)=$ ROLD（J1）－， 1
［ Γ CR＝ $1 T E R+1$
$\therefore 1 C=0$
OL． $\mathrm{D}=\mathrm{CH}([1)$
$1.1=2$
（2） 1020 ？
211 ？（11）$=20 L 0(31)+.1$
$I T: R=I T: R+1$
「门 T0 2：？
$2.9701 .0=611(11)$
20LD（Jl）＝R（．J1）
2． $1-1$
$M C=1$
［F（J1－N3）214，227，204
$214 \quad \mathrm{~J} 1=\mathrm{Ji}+1$ CO 00 200
$22 . \quad 11=2$

$$
\text { rob } 10200
$$

2）711＝1．
$\therefore O L D(J 1)=R(J 1)$
21？If（0EL．（I1））127，213，21．3
213 1F（IL－Mx） 21 5，216，216
$C^{216} \begin{gathered}\text { covtrave } \\ \text { HoJke }\end{gathered}$
$0 E=.1$
no $: \ell^{\prime}:=2,1+3$

113 LS．FisE2（1．）＝R（L）
114 19．CALZ FUNC（V）
$i=V$
$L=1$
$\because=1$
$191013318=2,113$
$R(J)=0 \backslash 51(J)+0 E$
CNLL 时いて（V）
$3710(331,302), 4$
3.1 YF（V－T） $3,3,3,3,304$

302 If（V－－1：0） $365,305,304$
3.3 ALD $=T$

CALL FUNC（V）
3う 3OLD（J）＝ASE1（J）
Q（J）$=8.15 \in 1(J)$
co 10307

210.1
$307 \quad 1=2$
$30 \mathrm{TO}(312,313), \mathrm{L}$
312 IF（ALO－T） $3 \cap 8,308,359$
311 DE＝DE12．
（0） $523 \mathrm{~J}=2,43$

GUTO 171
309 VMAX＝＝LD
（1） $314 \quad J=2,43$
BASF2（1）＝RDLO（J）
$\mathrm{L}=2$
1）0 523 $\quad \mathrm{J}=2, \sqrt{2}$
529 \quad（ J$)=8$ ISEL（J） ：TEEP＝NTER＋ 1

315 ［10 $316 \mathrm{~J}=2,43$
316 BASE1 $(3)=$ PASAF $2(J)$ （30） $130 \mathrm{~J}=2, \mathrm{~N} 3$
$13^{\circ}: 2(1)=B A S E 1(1)$ MER＝NITER＋1

41：130 $317 \mathrm{~J}=2,43$
317 ：2（．1）＝BASEL（．1）
$\forall 0=r$
P．SIVT 12．VO
$\times 1=D E L(1) * V D / C(1)$
ए． $21: 1122, \times 1$ PR1：15 22．$\times 2$ $601011 ?$
123 COMTINUE

IF（V－AtD）3r， $5,366,304$

313 ［F（MLC－6NAX） $315,315,309$
$3: 1 F(D E-\cdots 1) 41 \%, 410,311$

314 PASE1（J）＝？＊RASE2（J）－EASFl（J） IF（ITER－10）191．192．129 （F（：17ER－1000）1010，190，129
c ci：3TAINIGO OPTIMUIG primal variagles
$X_{2}=$ DEL（3）／（ALAA（1）＊C（3））


```
111
1:2.
\(1 / 3\)
174
175
176
177
178
179
180
131
182
183
184
185
186
187
188
189
190
191.
192
193
194
195
196
197
198
199
200
201
212
203
204
2.5
2.36
2. 07



```

22. [-1)R4AT (F22,6, $55, F 8,3)$
$S[\hat{O} \cdot A=1$.
KOU:T $=$ KOU!! T\&
$00111 \quad \mathrm{I}=1$, 1 X
$S(1)=0$ 。
o) 1 L' $J=2$, iv 3
11 S $S(1)=S(I)+i(J) \div E(I, j)$
LI Dr: 1 (I) $=B(1,1): S(r)$
1 1-1
121 IF(DEL.(11\}) $117,117,118$
1. Ls $I F(11-N X) 119,129,120$
i19 $11 \cdot 11+1$
CO 10 121
$117 V=-999$
QETURN
12. $100159 \mathrm{~K}=1$, K1
1. \quad $=K A(K)$
1.8. $=K B(K)$
SUH $(K)=$.
00 $20 \quad I=L 701 B$
2. SU! (K) = SU: (K) +SIG (I) \because DEL (I)
ALA! (K) = PET (K) *SUM(K)
IF (ALAM(K),LT。)。) GO TO 111
118 GOVTI NUE
P $]=1$ 。
$00112 \quad[=1, \mathrm{Hl}$
If(OEL(I), FQ.C.) GOTO 112
$\left.\left.r^{\prime} L=P L \%(C(I) / D E L(1)) * * S I C(1) \div D E 1.1\right)\right)$
112 CONTINUF
$P 2=1$.
$00114 K=1, K 1$
$1 . l=K A(K)$
$1.8=K B(K)$
0011 1 1 LT.L8
IF(DEL(I)。ERQ.\&) GU TO 11/t
「2=P2*(C(1)*MLAM(K)/OEL(I)) $\%$ (SIG(I) \%DLL(I))
124 CONTENUF
$y=$ SIGM1*(P1*?2)**SIGNA
PRINT 22,V,KDUNT,R(2.)
AETURN
[: U
```
\(102 \mathrm{A1} 111=20\)
¢ DBTAININS THE NORNALITY AIID NULI．ITY VECTSRS
C THTAININS THE NUROUTINES USED HERE ARE PROVIDED BY IDH


 23ET（2）！，KA（20），K0：20），5U1：（20）
10 Formar（313）

12 FORMAN（F12．3）
13 FoRilar 17 F 3.01
1．goctar（i5）
15 FORMAS（7F8．3）
18 FORHAI \(1^{2}\) EXPGMENT MARRIX SINOULAR＇I
READ 3ODH，NOK1
REND 110（KM（1），1 \(-1, K 1)\)
REAC 11，（KB（i） \(8=1, K 1)\)

\(\mathrm{NA}=\mathrm{N}-\mathrm{H}-\mathrm{L}\)
\(\mathrm{N} 2=\mathrm{M}+1\)
\(\mathrm{N} 3=\mathrm{Ni}+1\)
\(\mathrm{N} \mathrm{A}_{1}=\mathrm{N} 2 \div 1\)
\(C(1)=?\)
\(C(2)=40\) ，
\(C(3)=0.13\)
C（1：1）\(=44.5\)
\(C(5)=0,00000003\)
\((\mathrm{c}(5)=0.00000002 \pm 5\)
c \(179=1\) 。
\((\{8)=10\)
\(c(9)=1\) ．
\(C(10)=1\) 。
DO \(44 \quad t=1820\)
\(44516(1)=1\) 。
\(00 \quad 30 \quad\{=1,4\)
30 EET（II＝1．
DO \(99[=10\) N
99 F1．11）＝0．
DO \(100 \quad I=10 \mathrm{H}\)
\(00100 \quad \mathrm{~J}=1,1\)
100 AA（J＋1，I \()=\therefore(I, J)\)
\(A \cap(1,1)=1\) 。
D0 \(201 \quad j=2011\)
101 A \(A(1,3)=0\) 。
DO \(98 \quad 1=1\), N2．
\(0093 \quad j=1, \mathrm{~N} 2\)

\(38 H(1+M A)=A A(B)\)
A（1） \(2=1\) 。
\(001.02 \quad 3=2.012\)

THE SUBROUTINES USED HER
CALL MINV（HaM2 aDol2．g 3）
\＆F（D．©Q．0．）GO TO \(1: 5\)
CALL CMPRD \｛H，A1，BL，N2，N2，1）
\(31 \cdot=1\)
00104 J＝154．1
． \(1=11+1\)

い1 10 1 1812
1.03 A2（ ()\(=-A .1\{\) I0．1）

\(00104 \quad I=1,012\)
104． 8 （ \(1,013.1=32\)（i）
DO \(50 \quad 1=1, \mathrm{~N} 2\)
（3） \(8(1.1)=131\)（1）
\(13=0\)

\(12=1141\)
［0］ \(51 \mathrm{~J}=10 \mathrm{~N} 3\)
8F（J－（1－1）52，53．52
53 319．3： 10
G i il 51
\(52 \operatorname{A(1,j)}=0\) 。
31 convinue
［0） \(105 \quad\) J． 10.23
\(\mathrm{A}:(\mathrm{i})=10\)
DO \(105 \quad 1=1, N\)

105 Ais \((J)=A \cdot(J)=A(1\)
\(00103!=1, \mathrm{~K}\)
\(27=\) KA（I）
L8＝K日（1）
OO \(108 \quad j=1\) ，N3
Su：1113＝0．
on \(20:<=1.7 .18\)

DLAM（I，J！\(=\) SUM 19 ）
108 EnNTINUE
DU \(5 \quad r=3\) oill
；\(R(1+1)=0\) ？
C GOTASNINE THITIAL EEASTBIE SULUTBON
\(11=1\)
1 I \(E R=0\)
NTER \(=0\)
820 DO \(1.29 \quad \mathrm{~J}=2, \mathrm{~N} 3\)
\(123 \operatorname{ROLD}(\mathrm{~J})=\mathrm{R}\{\mathrm{J})\)
12 ． \(41=1\)
\(J 1=2\)
\(M C=1\)
200 D1 11．1 \(1=10 \mathrm{~N}\)
S（ \((1)=0\) 。
（0）（1） \(2=2\) ，N3
\(2105(1)=5\{1)+R\{J\}=3(1, J\}\)

sll Conilnue
ㄷTITER－1001 210，210，129
21）REPDEL（IN） \(200,206,207\)
236 C（11（1）\(\because\) DE1．（13）
［F\｛\｛C\} \(217,217,210\)
237 154［41111．5401 218，203，209
21860 r0 1310,2113221
320 ？ 131 ＝ \(18010(J 11-05\)

MO： 0

\(L^{\prime}={ }^{\prime}\)
Gll 1．5 203


THE T TER 3
5080200
209 （121－64131）
\(808.06111=?(31)\)
\(1 . \mathrm{l}=\mathrm{l}\)
\(10=1\)

\(21 / 4 \quad 11=\mathrm{J} \mathrm{X}+1\)
6070200
22：3 \(11=2\)
6070200
29）\(\quad 1=\) ？
ROLB \(\{J\}=\) ？ 313
212（510E1111．） 1270127.283
213 （F（（1－N）2．15，21 is，216
\(21511=1141\) ．
go TO 212
\(216 D 0212 k=1, k 1\)
\(5(1(k)=0\).
DU \(113 \mathrm{~J}=20 \mathrm{~N} 3\)
11？ALAM（K）＝DLATIK。1）＋SA1K）
\(001.21 \quad L=2\) ，N3
00 \＆21 \(\mathrm{K}=2,133\)
S3U，K1＝00
\(00121 \quad 8=1 . \mathrm{N}\)
（0） \(122 \quad\{=3.913\)
on 122 L \(=2.013\)
SO \((L, I)=0\) ．
\(00122 \quad \therefore=1, k 1\)
DO \(114 \quad 1=2,13\)
DO 11 后 \(\quad \mathrm{J}=2\) ，N3
DO 118 ，\(==2.113\)
\(s c(J)=0\).
\(S O(J)=0\) ．
DO \(115 \quad \mathrm{I}=10\) ค
\(00117 \mathrm{~K}=1_{2} \mathrm{~K} 1\)

GO 10201
\(20 \% 10116 \quad 1=1\) ，N1
OO \(116 \quad \mathrm{j}=1\) ，N 1
 \(00500 \quad \mathrm{~s}=\mathrm{I}, 111\)
500 5．1．！－F（J）
CAL：JETRTAEMM，D1）
CJ 5 1 \(=1\) ，Md
DJ \(563:=1, N 1\)
\(5634(J) I)=-F\{J\}\)
CALL DETRPAF\＆HLaD21
\(E!=D 2 / 01\).

E0 \(571=10 \mathrm{~N}\) ！

55 COMT？MUE



```

（14 $A E(1-1,2-1)=5 S(103)-53(1,3)$

```


```

118 $\mathrm{F}\{3-1)=S C(J)-\operatorname{SD}(J)-A L D G(A K(3))$
C NEHION ROMHSON PRCCEDURE FOR SOLUTION OF SRMULTANEOUS EQUATROAS

```


201 [17 13? \(\mathrm{E}=1,46\)
132 PS (1) \(=\) A33iF!(I)-F(i):
\(i=1\)
202 HFEPS:3:-.01: 203.2230204
\(203 \quad\) 1-1+3.
(f(f-in1) 202.202,205
\(205 P=1\).
\(00123 \quad 1=1, \mathrm{~N}\)

\(p:=1\) 。
\(001 \% \quad k=1.23\)

VO=? P?

C OBTARISNG OFTIUUM PREPAA VARIABt.ES
\(A Y=D E 1.11\) ) WDic: 1 )

BE = DEL (31/(ALAM\{A) EC(3)
\(B E T D=D E(19) /(A) A\}(4) * C(9))\)
\(G A H=0\) OL ( \((10) /(A L A H(4) S C(10))\)

\(U=Q \therefore A(A \cdot H(1) /\{A Y * B E \quad * D E L 21\}\)
FRIAT 15קAY, ALFOGE, BETD,GAM,QっU
15070219
129 PRINT 14, MYER

CO 10117
125 PRINT 18
1195709
sivo


\(1 \%=3,0\)
DO 9 P＇＝28K


\(\mathbb{1}:\left(A\left(\hat{n}^{\prime}-1,1\right]\right) 6,7,6\)
7 DET＝0。
5 COM，足UE
AET1RN
6 \(13=1-1\)
Dก \(\therefore 12=130\) R
TE：G A（12．（3）
\(A\{(2,13)=A(2,11\}\)
\(3 \therefore(i 2,11)=9 E^{1} 1 P\)
\(2 \div 2=2 \div 1-10\) ）
3 DO 9 i＝M，\(k\)

DO \(9 \mathrm{~J}=\mathrm{M}, \mathrm{K}\)

\(D E T=1,0\)
DO \(18 \quad 1=10 \%\)

DETこロにTまて
ふこなし゚N
EHD


            (1) [:"


        1), C (3, 2: ), UT (3;)
    1! F(J小鲜 (213)
    11F(JR, A\& (6I3)
    12. f (1, RVAT (15, F3.0)
    13 10世Mar (5F5.2)
    1; FПRMAT (515.6)

    17 FORMA \((1,112.6)\)
    ! \& FONMAT (5Fis,2)
    1) FOFMAT (16FB.2)
    2) FORMAT (111-,
        ITERATIO'1 NUMGKK \({ }^{\circ}\) (5)
    21 FOR:ZAT (t,F1?3)
    22 foriliar (12F1D.2)
    23 (IRMAT (F15.6)
        READ \(1 \therefore B^{M} C, A C\)
        (1) \(11,(\) KA! 1\(),!=1, \mathrm{MC})\)
        D) 1 I: 1, :1C
        \(1.1=A\{[ \}\)
        以U \(61, J=1,1.1\)
        NEAO 12, (A(I, J, K), K=1, NC)

        र, \(\therefore 13, C 1, C 2, C 3, C 4, O T\)
        \(0(1)=2 \cdot 15 \% \mathrm{Dr}\)
        \((2)=2 \cdot 3\) ) \(2=\mathrm{D} T\)
        (.) \((3)=2.53 \% j T\)
        \(Q(4)=2, T \therefore 2 T\)
        \((3(5)=2.9\). \(* 0 T\)
        \(0050 j=1\), 5
    5. \(C(1, J)=C 1 * 0 r\)
        (1) \(51 \quad \mathrm{~J}=11,15\)
    j1 \((,(1, J)=2 . * C 1 * C 2 * D 1\)
        Di) \(53 \mathrm{~J}=6,10\)
    \(53 \quad C(1,1)=C 3 * 1) T\)
        Di) \(52,:=16,23\)
    \(52(1(1, J)=20 * C 3 * C 4 * D T\)
        \(C(2,1)=1 /(5 \cdots 2(1))\)
        \(C(2,2)=U T /(5-Q(1))\)
        \(C(3,1)=1 / 0(2)\)
        \(((3,2)=1 / 2(2)\)
        \(C(3,3)=D T / Q(2)\)
        \(C(4,1)=1 / 2(3)\)
        \(C(4,2)=1 / Q(3)\)
        \(C(4,3)=0 T / Q(3)\)
        \(((5,1)=? / 2(4)\)
        \(C_{1}(5,2)=1 / Q(4)\)
        (i;:3)=0 (//) (4)
        \((6(6,1)=1 /(5)\)
        \(C(6,2)=1 /(6)\)
        C \((6,3)=0 \mathrm{~T} / 0(15)\)

        Dr) \(56 \mathrm{~K}=1,10\)
        56, S:5 (1, K) - 1。
        [i] 57 K \(\because=11,2)\)
        \(57 \mathrm{SiG}(1, K)=-1\) 。

教


（1）60 K＝？，Ll

s \(19(2,2)-1\).
5！ \(1^{\prime}(3,1) \cdots-1\) ．
S \([15(4,1)-1\).
\(S[5(5,1)=-1\) ．
\(S(6(6,1)=-1\) ，
U0） 6 ？\(T=1,10\)
6）\(x(1)=3.0\)
1．． \(1 \quad[=j\)

SUM \(=5\) 。
1． \(1=\mathrm{KA}(\because)\)
Du） \(141 \quad K=1,1,1\)
\(P=1\) 。
OO \(142 \div=1\) ，NC


\(14: \%(i!)=\) SUi
［F（I．GT\％）AOTO 138
\(V=\%(1)\)
1．L＝K八（1）
0） 1 UO \(K=1, L 1\)
\(\mathrm{P}=1\) ，
\(00101 \quad v=1, \mathrm{NC}\)
\(1.1 P=P *(x(v) \div 3(1, K, N))\)
1：\(:(1, K)=(11, K): P / G(1)\)
\(13800152 \mathrm{M}=\) ？ 2 MC ．
\(\left.L I=K A(i)^{2}\right)\)
DO \(112 \mathrm{~K}=1, \mathrm{~L} 1\)
\(r=1\) ．
\(00103:-1\) ，NC

1 2 ：\((1, K)=C(H, K) * P\)
DO \(135 \mathrm{~N}=1, \mathrm{MC}\)
\(00105 \%=1, M C\)
P \(2=\) ？。
\(1.2=K \wedge(M)\)
C0 \(104 \quad K=1, L\) ？

1．「 \(S(N, M)=P\) ？
Di） \(100 \quad \mathrm{~V}=\mathrm{I}\) ，NC
Lu \(6 \sin (1)=S(N, 1)\)
K \(\quad\) 次 \(=1\)
（ii）\(\because C-1\)
\(00107 \mathrm{M}=2, \mathrm{MC}\)
U0 107 \(\mathrm{N}_{i}=1\) •NC
\(k x=k x: 1\)
\(165 S(\langle x)=5(M, H)\)
CALI COTRA（SC，R5，NC，D）
CA1．C：PRD（25，SC，UUT，HL，NC，ND）
CO．L MINV（DUT：\(\because 1\) ），，，L． \(6, L 7\) ）
CNLL GMPRD（ \(111,1, R 5, R 6, N D, N D, N C)\)
C IIL GMPRO \((26, S B, R 7, M L J, N C, 1)\)
f00 \(410 \mathrm{~J}=1,40\)
（1）M！Ai（J）＝（ 7（1）
G20（1）10 \(\mathrm{N}=1,1 \mathrm{C}\)

S \(1=30\)
\(52=0\).
53：＂
11＝：＇A（1）
［10 \(1.1: 1:=1,1.1\)
\(111 S 1=S 1+S 10(1, k) \% A(1, K, A) * \Delta\left(1, K_{2} J\right) \% A(1, K)\)
DU 1．12． \(\mathrm{N}=2, \mathrm{i}^{\prime} \mathrm{C}\)
L2－KA（id）
D） \(113 K=1, L 2\)
1J． \(32=\$ 2 * S I G(H, K) * A(M, K \circ N) * A(M, K, J) * A(H, K)\)
\(112 \mathrm{~S} 3=\mathrm{S} 3+\) MLAM（ \(4-1) * \mathrm{~S} 2\)
11．T（ \(1, J)=53-51\)
3 3 －NC＋ HC
\(R=i j\)
I ：IC
D） \(115 \mathrm{~J} 1,1, \mathrm{~K} 3\)
\(k I=1\)
v0 \(115 \mathrm{k}=1, \mathrm{k} 3\)

116 ［F（K－iN）111，117，12．4
117 R（ J，K）\(=\mathrm{T}(1) \mathrm{K})\)
［0170 115

11．IF \((K-N) \quad 12,12\)＂），121
12うR（J．K）－SP（K）
（3） 10115
121 （1）（K－N－1）122．122，123
\(122:(1 J, K)=-1\)
（G） 10115
\(121 R(J, K)=2\).
（：1） 50115
124 ［F（K－N－1） \(125,125,126\)
125 R（S．K）\(=5011\) ）
©0 TO 115
\(126 \mathrm{Kl}=\mathrm{K} 1+1\)
\(R(J, K)=S(J, K l)\)
50 60115
12．1（F（K－N） \(128,128,129\)
\(128 \mathrm{k} 2=k 2+1\)
\(2(J, k)=S C(k 2)\)
Gi）TO 115
129 に（JっK）＝！。
115 CO：1TINUE
SIT： \(4=G(11 /\) ASS（C）（1））
CALL EMPRO（SC，ALAM，TEM，NC，MO． 1 ）
\[
00130 \mathrm{~J}=1 \text {, idC }
\]

13 E \(E(J)\)－SB（J）－TEA（J）
\(E(Y C+1)=1-5(1) / V\)
12： 1
\(K E=N C+2\)
DO ！3 1 J＝KE，K 3 \(12=12+1\)
\(131-1 J)=1-G(12)\)
－-1
503 IT（MBS（E（J））－．0001）5：1．501，502
\(5: 1 \quad J=J+1\)
59．12 \(=0\)

```

$12=3 r+1$
$132,1,12)=\{(2,1)$

```


```

अRTNI $2,1, I$

```


```

अR[:T15, G(1)
[$A=-$ \}
(1) $133 \quad \mathrm{~N}=1, \mathrm{HC}$
$43(N)=x(N)$
$133 \times(1)=X(N)$ 药 $13 \times(C O R(N))$
P时 $17,(X(V), N=1, N C)$

```

```

$C 11=A 35(x(3)-14 B(1))$
$C 111=\times(N)-1: B(1)$

```

```

CO 00159
$1 \mathrm{~B} ; 2 \mathrm{~A} \cdot \mathrm{~A}=\mathrm{C} 111 / \mathrm{Cl}$
$X(N)=16(N)+5: A N O H(N)$
$I A=1$
15. CONTINUE
\{F(IA.GT, O) GO TO $10 S 1$
$V=V: E X P(C \cap \cap(V C+1))$
$12=$?
$\mathrm{AD}=\mathrm{B}=+2$

```

```

$+2=52+1$
134 ALAM(J2) = 1LA:1(J2) + C (JR(N)
L1. $=$ K $\dot{-1}(1)$
DU $135 K=1,1.1$
$i_{1}=1$.
30 $136 \quad \mathrm{~N}=1, \mathrm{MC}$
$136 ; \geqslant \div \times(v) \div * \Delta(1, K, N)$
$135 \therefore(1, K)=C(1, K) * P / V$
$143 \quad I=1+1$
5010 50 ?
5,$3 ;(1)=G(1)+C^{N} 1 S$
?
ORI !T $17,(x(\dot{y}), N=1, N(1,1)$
STIP
E. UD

```

APPLICATION OF GEOMETRIC PROGRAMMING TO INDUSTRIAL SYSTEMS
by

\section*{NAYAN BHATTACHARYA}
B. Tech. (Hons.), Mechanical, Indian Institute of Technology Kharagpur, India, 1966

\section*{AN ABSTRACT OF A MASTER'S THESIS}
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

Host of the ontimizetion yohlens winch occur in reatlipe systems ace nonline: in nowo with nonlinear constraints. Corventional optimizatio tecimiques can solve thesc problems only art IIneariring the constivints and hence at the sacrifice of tho accunacy, Geonctic programming is a recently developol technique which can hande very efficiently a subclass of the above problems characterized by functions as polysomials With positive coefficients. Wilde's extension of geometric prosramming makes geomatric programming anylicuble to even a broader class in which the functions arc expressed as generalized polgnomials. But difficulty in numerical analysis orten cestricts the use of extend geonetric propramaing. Wilde's Lagrangian algorithm is useful in cases of gonerilized polynonials whth equality constraints.

The purpose of thas thesis is to apply these recently dereloped tochniques to differunt engineering and industrial menorenent systems and to make a rritical analysis or the results and computational poocedure used.

First a brief review of geometric programing and its extensi in is madc, and computational procedure is discussed. A cevie, of the Lasrangian algorithm follows. Then various approximation techniques rhich weie applied to transfoxm a senemal proslen to the required form of geometric progriming aro ifscussed. Ginally slx prohlems are solved. The rivst prowlen is poc illustration purposes, wile the next foum are notinoerins d-atun problcms with diferaut degrees of complexity, The last is a produrtion schedulineg problem minch is solverl by the

Iosmangian figonithu.
The advantares as welu as disadvantiages of geometric progtammong and the Lagrangicm aisorjuthace highishted. A nodification of the ragrenuian algorithin has been sugeested.```

