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Examining inferences from neural network estimators of binary choice processes: marginal effects, and 

willingness-to-pay 

 

Abstract 

 

To satisfy the utility maximization hypothesis in binary choice modeling, logit and probit models must 

make a priori assumptions regarding the underlying functional form of a representative utility function. 

Such theoretical restrictions may leave the postulated estimable model statistically misspecified. This may 

lead to significant bias in substantive inferences, such as willingness-to-pay (or accept) measures, in 

environmental, natural resource and applied economic studies. Feed-forward back-propagation artificial 

neural networks (FFBANN) provide a potentially powerful semi-nonparametric method to avoid potential 

misspecifications and provide more valid inference. This paper shows that a single-hidden layer FFBANN 

can be interpreted as a logistic regression with a flexible index function and can be subsequently used for 

statistical inference purposes, such as estimation of marginal effects and willingness-to-pay measures. To 

the authors’ knowledge, the derivation and estimation of marginal effects and other substantive measures 

using neural networks has not been found in the economics literature and is thus a novel contribution. An 

empirical application is conducted using FFBANNs to demonstrate estimation of marginal effects and 

willingness-to-pay in a contingent valuation and stated choice experimental framework. We find that 

FFBANN can replicate results from binary choice commonly used in the applied economics literature and 

can improve on substantive inferences derived from these models.   

 

Keywords. discrete choice, inference, machine learning, marginal effects, neural network, willingness-to-

pay.  
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Examining inferences from neural network estimators of binary choice processes: marginal effects, and 

willingness-to-pay 

 

Discrete choice analysis involves the modeling of a behavioral process whereby an agent makes or 

selects a choice or option from a discrete set of alternatives. Estimated discrete-choice econometric models 

try to represent the behavioral process conditional on a number of explanatory factors, often grounded in 

utility theory, in order to estimate the probability of making or picking a particular choice or option. In its 

simplest form, the dependent variable of such a model is binary (e.g., Yes/No) or discrete. It is often 

assumed that the functional form of the index or predictor function, representing the underlying utility 

function (or utility difference) of the decision-maker under consideration is linear in applied studies, when 

the data may actually give rise to nonlinear utility functions (or utility differences) (Arnold and Press, 1989). 

While predicting the probability of an individual selecting a particular choice is of interest, researchers are 

also interested in more substantive inquiries (e.g. willingness-to-pay) offered by discrete-choice analyses, 

which will be impacted by the functional form of the model under examination. For example, the goal of a 

study may be to explore not only individuals’ probabilities of making alternative choices, but rather how 

and what factors impact these probabilities within the sample population. Such substantive inference is 

usually examined using marginal effects (Train, 2003). If the model is functionally misspecified, then 

resulting inferences may be biased and/or erroneous. A way to check functional specification is through the 

use of misspecification tests (Spanos, 1999). 

As a case in point, often used methods in the literature are contingent-valuation methods (CV). This 

type of discrete-choice analysis is often used to estimate the probability of an individual voting in favor of 

a proposed policy or taking a particular action regarding a non-market good. Included within the set of 

explanatory variables is a payment vehicle, through which the individual pays, or is paid, for the action. 

Through the use of binary-choice models, CV studies can provide a measure of an individual’s willingness-

to-pay (WTP) or accept (WTA) to protect, enhance or conserve an environmental amenity or resource via 
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a proposed policy, another form of statistical inference. In these studies, the WTP (WTA) measure and 

related inferences are often of greater importance than the predicted probabilities (Hanemann, 1984). The 

functional specification in these models directly effects model inference related to WTP and marginal 

effects of the explanatory variables. For the purposes of this study, we focus on WTP as an additional form 

of inference from binary choice models, though WTA can be obtained with modest changes in the methods 

presented1. Furthermore, the results from this paper are extendable to other types of stated choice 

experiments, as well. 

Estimation of binary-choice models typically requires that the underlying behavioral process of the 

econometric model satisfy the utility maximization hypothesis. The most widely used models for this 

purpose are the binary logit and probit models. To satisfy utility maximization, the argument – or index 

function – of the model must be interpretable as the difference in utility between two states of existence 

defined by the dependent variable. This requirement provides a practical procedure for specifying the 

functional form of the index function by postulating a priori the underlying functional form of a 

representative utility function (Hanemann W. M., 1984). However, an a priori imposition of a theoretical 

structure on a statistical model without considering the underlying probabilistic structure of the observed 

data can leave the estimable model statistically misspecified, making any statistical inferences questionable. 

In binary choice models, the functional form of the index and predictor functions, which represent the utility 

difference, primarily drive the statistical validity of inferences from the model (Bergtold et al., 2010).  

One method to avoid potential functional misspecification is to weaken the distributional 

assumptions of the model through semi-nonparametric (SNP) techniques. Cooper (2003) provides an 

overview of SNP approaches applied to dichotomous-choice models, such as that from Gallant and Nychka 

(1987), who use a flexible distribution-based approach using Hermite polynomial expansions. Creel and 

 
1 For example, Horowitz (1993) and Sugden (1999) show that, in theory, 
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Loomis (1997) provide another approach by using a Fourier functional form for the index (predictor) 

function of the model, wherein the model remains linear in the parameters, helping with ease of estimation. 

The Fourier flexible form is desirable in that it is globally flexible and can approximate the true index 

function under maximum likelihood estimation almost surely (Creel and Loomis, 1997). Another SNP 

approach that has been applied to dichotomous-choice models is that of Klein and Spady (KS) (1993). The 

KS estimator makes no assumptions regarding the distribution of disturbances, but does depend on a 

parametrically-specified index function (Klein & Spady, 1993). A less well known and used SNP technique 

are artificial neural networks (ANN). ANNs have been used for classification problems and have the ability 

to learn arbitrary and highly nonlinear functional mappings using finite data (Mehrotra et al. 1997). Hornik 

et al. (1989) show that feed-forward back-propagation artificial neural networks (FFBANNs) can act as 

universal function approximators under fairly general conditions. They conclude that ANNs with a single 

hidden layer and a sufficient number of hidden nodes can universally approximate arbitrary functions and 

their derivatives. Furthermore, ANNs can approximate functions that are not differentiable (Hornik, 1991; 

Hornik et al., 1990). Ripley (1994) further concludes that this result is easily extended to networks that are 

used to model binary-choice processes. Thus, FFBANNs have similar properties to other dichotomous-

choice SNP estimators, especially the Fourier flexible form, and potentially provides an approach for cases 

where the approximated function may be nondifferentiable (e.g. piecewise linear). More significantly, 

exploration of statistical inference (e.g. estimation of WTP and marginal effects) using neural network 

estimators of binary choice processes has not been widely explored. Such an investigation would provide 

additional flexibility and tools for discrete choice modelers, as well as advance the use of machine learning 

techniques.  

The purpose of this paper is to examine the estimation of binary-choice processes using ANNs, 

with specific emphasis on estimation of measures of willingness-to-pay and marginal effects. The paper 

expands the literature by deriving and estimating marginal effects of explanatory variables on the 

probability of making a choice using ANNs. We also examine methods for estimating median and mean 
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WTP using ANNs in CV (type) studies. The results are compared to estimates from logit and probit models 

and – due to its availability in existing software – the KS estimator. The estimators presented by Gallant 

and Nychka (1987) and Creel and Loomis (1997) are left for future study. 

Comparisons are made using CV survey data from two studies to illustrate estimation of WTP and 

marginal effects using ANNs. The first study is based on survey data collected by a research team (that 

included the authors) in the Smoky Hill Watershed region of Kansas. This is a new study that examines 

community members’ WTP via increased water bills to maintain water usage during times of drought. The 

second study uses data made publicly available by Calderon et al. (2012) and examines WTP via higher 

water bills to fund conservation projects in the Layawan Watershed in the Philippines. We believe the 

methods and results from this paper will not only help to advance modeling of CV survey and binary choice 

data, but will be highly applicable for stated-choice survey data and other discrete-choice modeling 

problems. Thus, the paper has broader implications than just the examples presented. 

The remainder of the paper is structured as follows. Section 1 provides background on CV of non-

market goods and SNP estimation of binary discrete choice models for CV. Section 2 introduces the 

FFBANN regression function as a SNP flexible functional form and provides an overview of network 

estimation, as well as the estimation of marginal effects and WTP when using FFBANNs. In section 3, the 

empirical applications and methods are presented. Results are presented in section 4 and section 5 offers 

some concluding remarks. 

1. Binary Choice Modeling and Semi-nonparametric Methods 

Hanemann (1984) provides an often used foundation for modeling binary choice survey data when 

the underlying behavioral process is grounded in economic utility theory. Following Hanemann (1991), 

consider an individual who derives utility from consumption of some good or service, such as an 

environmental amenity. Let q denote the supply of the good, service or amenity; I the individual’s income; 

and 𝐬 a vector of variables representing the consumption of other market commodities, prices, demographic 
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characteristics and individual attributes. The individual’s indirect-utility function is given by 𝑉௔ሺ𝑞, 𝐼, 𝐬ሻ 

where a is an index denoting the amount of q being consumed. 

Consider the situation where the individual is faced with the opportunity of increasing consumption 

of q from 𝑞଴ to 𝑞ଵ. If the increase in q costs C, the individual will pay the amount if: 

𝑉ଵሺ𝑞ଵ, 𝐼 െ 𝐶, 𝒔ሻ ൒ 𝑉଴ሺ𝑞଴, 𝐼, 𝒔ሻ (1) 

The individual's maximum WTP – equal to the compensating-variation measure of the change in q – is 

found where 𝑉ଵሺ𝑞ଵ, 𝐼 െ 𝐶, 𝐬ሻ ൌ 𝑉଴ሺ𝑞଴, 𝐼, 𝐬ሻ (Hanemann, 1991). 

In practice, the individual’s decision to pay C is observable, but their utility contains unobservable 

components and is treated as stochastic (Hanemann, 1984). Thus, the individual’s indirect utility is 

decomposed as: 

𝑉௔ሺ𝑞௔, 𝐼, 𝒔, 𝜀௔ሻ ൌ 𝑣௔ሺ𝑞௔, 𝐼, 𝒔ሻ ൅ 𝜀௔ (2) 

where 𝑣௔ is the observable utility component and 𝜀௔ is an IID random variable with zero mean (An, 2000; 

Hanemann, 1984). From this perspective, the individual’s response can be viewed in a probabilistic 

framework, where the probability an individual will pay $C to increase q is given by: 

𝑝 ൌ 𝑃ሾ𝑣ଵሺ𝑞ଵ, 𝐼 െ 𝐶, 𝒔ሻ ൅ 𝜀ଵ ൒ 𝑣଴ሺ𝑞଴, 𝐼, 𝒔ሻ ൅ 𝜀଴ሿ (4) 

or 

𝑝 ൌ 𝑃ሾ𝛥𝑣 ൒ 𝜂ሿ, (5) 

where p represents the probability that the offer is accepted, 𝛥v ൌ 𝑣ଵሺ⋅ሻ െ 𝑣଴ሺ⋅ሻ is the utility difference, 

and 𝜂 ൌ 𝜀଴ െ 𝜀ଵ. Based on this, equation (5) can be written as: 

𝑝 ൌ 𝐹ఎሺ𝛥𝑣ሻ (6) 

where 𝐹ఎሺ⋅ሻ is the cumulative distribution function (cdf) of 𝜂 (Hanemann, 1984). Thus, as stated by 

Hanemann (1984, p. 334), “if the statistical binary response model is to be interpreted as the outcome of a 
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utility-maximizing choice, the argument of 𝐹ఎሺ⋅ሻ... must take the form of a utility difference [i.e., Δ𝑣]”  and 

so provides a criterion for determining whether a statistical model is compatible with utility maximization 

(Hanemann, 1984). Once Δ𝑣 has been specified, the modeler need only specify 𝐹ఎሺ⋅ሻ, which is dependent 

upon the assumed distributions of 𝜀଴ and 𝜀ଵ
2. 

A weakness of this approach is that the researcher has to make an assumption about the distribution 

of the stochastic term, which is usually unknown (Cosslett, 1983). Because the researcher only observes 

the response by the individual to a proposed cost of $C to increase q, the response should be empirically 

viewed as a Bernoulli random variable with parameter p, which represents the probability of a response of 

“yes” or “accept” (Powers and Xie, 2008). Let 𝑦௜ denote the response by the ith individual, where 

𝑦௜ ൌ ቄ1 𝑓𝑜𝑟 "𝑦𝑒𝑠" 𝑜𝑟 "𝑎𝑐𝑐𝑒𝑝𝑡"
0 otherwise                   

. (7) 

Assume that 𝑦௜ is dependent upon a 𝑚 ൈ 1 vector of unknown explanatory factors, 𝐱௜, via the following 

relationship: 

𝐸ሺ𝑦௜|𝑿 ൌ 𝒙௜ሻ ൌ 𝐹ఎሾℐሺ𝒙௜; 𝜷ሻሿ (8) 

where 𝐹ఎሺ⋅ሻ: 𝑅 → ሾ0,1ሿ (a transformation function), ℐሺ𝐱௜; 𝜷ሻ: 𝑅௠ → 𝑅 (a predictor or index function), and 

𝜷 is a 𝑚 ൈ 1 vector of unknown parameters (Amemiya, 1981; Davidson and MacKinnon, 1993). Common 

choices for 𝐹ఎሺ⋅ሻ are the logistic and standard normal cdfs. 

The choice of which functional form to use for the index and transformation functions concerns the 

parameterization of the contemporaneous dependence between 𝑦௜ and 𝐱௜ (Spanos, 1999). Given that 

researchers have the ability to vary the functional form of ℐሺ𝐱௜; 𝜷ሻ, Amemiya (1981) states that the 

 
2 When 𝜀଴ and 𝜀ଵ are IID extreme value, then 𝐹ఎሺ⋅ሻ is the logistic cdf. When 𝜀଴ and 𝜀ଵ are IID normal, 𝐹ఎሺ⋅ሻ 

is the normal cdf (Train, 2003). 
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importance of having 𝐹ఎሺ⋅ሻ correctly specified is lessened: if one can approximate ℐሺ𝐱௜; 𝜷ሻ for a given 

choice of 𝐹ఎሺ⋅ሻ, then 𝐹ఎሺ⋅ሻ need only satisfy the conditions of a transformation function. As compelling as 

this argument is, a particular choice of 𝐹ఎሺ⋅ሻ may not give rise to a proper statistical model in that the 

conditional-Bernoulli distribution based upon 𝐹ఎሺ⋅ሻ cannot be derived from a proper joint-density function. 

A choice of 𝐹ఎሺ⋅ሻ that does allow for the approximation of ℐሺ𝐱௜; 𝜷ሻ is the logistic cdf (Bergtold et al., 2010). 

Thus, one way of weakening the functional-form (and also distributional) assumptions is to employ semi-

nonparametric (SNP) estimation methods within the logistic-regression framework. 

SNP methods are semi-distribution free approaches that avoid restricting 𝐹ఎሺ⋅ሻ and/or ℐሺ𝐱௜; 𝜷ሻ in 

equation (8) by trying to estimate the compound function 𝐹ఎሾℐሺ𝐱௜; 𝜷ሻሿ (Cooper, 2002). Following Cooper 

(2002), the modeler can replace 𝐹ఎሺ⋅ሻ, ℐሺ𝐱௜; 𝜷ሻ, or both with a flexible SNP functional form. Results from 

Gabler et al. (1993) and Horowitz (1992) suggest that SNP estimation may help in avoiding model 

misspecification due to an incorrect functional form. A SNP approach may be advantageous if the predictor 

function is not easily specifiable or it is highly nonlinear. Kay and Little (1987) show that specification of 

index functions linear in the variables may often be statistically misspecified and only arise under very 

narrow statistical grounds. Based on these findings, Arnold and Press (1989) question many of the binary-

choice models presented in the literature that utilize index functions that are linear in the variables.  

A SNP estimator that can be found throughout the dichotomous-choice literature is that of Creel 

and Loomis (1997), which estimates the compound function 𝐹ఎሾℐሺ𝐱௜; 𝜷ሻሿ using a flexible-Fourier functional 

form. This estimator has been used to value the reduction of risk exposure to hazardous waste (Creel and 

Loomis, 1997), to estimate farmer premiums for conservation adoption (Cooper and Signorello, 2008), and 

was extended to a multivariate-discrete choice by Cooper (2003) to examine farmers’ willingness to adopt 

a bundle of conservation practices. Hermite-polynomial approaches similar to that of Gallant and Nychka 

(1987) have been used, for example, to estimate WTP for water supply improvements (Arouna and Dabbert, 

2012) and the willingness of producers to use eco-labels (Chang, 2012). The distribution-free estimator of 
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Klein and Spady (1993) has been used to estimate WTP for sanitation improvements (Adriano et al., 2011) 

and the valuation of time (Bastin et al., 2010; Fosgerau 2005, 2006). One SNP approach, however, that is 

yet to be widely applied in the area of discrete choice modeling is feed-forward back-propagation artificial 

neural networks, which provides a potentially powerful SNP tool for modeling dichotomous-choice CV 

models. Furthermore, this approach can be extended to many other binary-discrete-choice modeling 

frameworks. 

2. Feed-Forward Back-Propagation Artificial Neural Networks  

2.1. Functional Specification (Network Architecture) 

Fausett (1994, p. 3) defines an artificial neural network (ANN) as “an information-processing 

system that has certain performance characteristics in common with biological neural networks.” Thus, 

ANNs can be viewed as the parallel interconnection of many simple elements known as neurons (also 

referred to as nodes) (West et al., 1997). ANNs process information by passing signals between neurons 

along arcs, which are weighted according to the usefulness of the information being sent. As the network 

is estimated, weights are adjusted so that the useful arcs are strengthened until the network learns to 

recognize patterns in the data. The objective is to have the network learn these patterns in such a way that 

they can be generalized and used to classify new data (Fausett, 1994; West et al., 1997). It is the network 

structure (or architecture) that gives rise to the functional form of the resulting flexible-regression function. 

A neuron takes weighted inputs, 𝑤௞𝑥௞ for 𝑘 ൌ 1, … , 𝐾, aggregates them to obtain a single value, 

“net”, and then performs a nonlinear transformation of net, ℱሺ𝑛𝑒𝑡ሻ, to produce an individual output, y. 

Here, ℱሺ⋅ሻ is termed an “activation function” and is commonly the logistic or hyperbolic tangent function 

(West et al., 1997). An intercept term can also be added to yield (Fausett, 1994): 

𝑛𝑒𝑡 ൌ 𝑎 ൅ ∑ 𝑤௞𝑥௞
௄
௞ୀଵ . (13) 

and 

𝑦 ൌ ℱሺ𝑛𝑒𝑡ሻ ൌ ℱ൫𝑎 ൅ ∑ 𝑤௞𝑥௞
௄
௞ୀଵ ൯. (14) 
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which is depicted in figure 1. 

At a minimum, ANNs consist of an input layer and an output layer, but hidden layers – layers of 

neurons between the input and output layers – can be added to approximate highly nonlinear functions. A 

researcher can think of each hidden layer as a way to reduce the dimensionality of the problem to improve 

the approximation capabilities of the ANN. Figure 2 illustrates the structure of a single-hidden-layer feed-

forward ANN. In a single-hidden-layer network, inputs 𝐱௜ ൌ ൫𝑥௜,ଵ, 𝑥௜,ଶ, … 𝑥௜,௄൯ from the ith observation are 

introduced to the input-layer neurons, which send signals 𝑤௞,௛𝑥௜,௞ to each hidden-layer neuron, where k 

and h denote the neurons sending and receiving the signal, respectively. Each hidden-layer neuron 

aggregates its respective input signals to form 𝑛𝑒𝑡௜,௛, which is then transformed using an activation function 

to obtain an output: 

𝑦௛,௜ ൌ ℱଵ൫𝑛𝑒𝑡𝑖,ℎ൯, ℎ ൌ 1, … , 𝐻 (15) 

where 

𝑛𝑒𝑡௜,௛ ൌ 𝑎௛ ൅ ∑ 𝑤௞,௛𝑥௜,௞
௄
௞ୀଵ  (16) 

and ℱଵሺ⋅ሻ is the hidden-layer activation function. Each hidden-layer neuron then sends a signal 𝑤௛𝑦௛,௜ to 

the output layer. The output layer sums the signals to obtain 𝑛𝑒𝑡௜ ൌ 𝑎 ൅ ∑ 𝑤௛𝑦௛,௜
ு
௛ୀଵ , which is then 

transformed using a second activation function. The resulting output is given by: 

𝑦௜ ൌ ℱଶሺ𝑛𝑒𝑡𝑖ሻ (17) 

where ℱଶሺ⋅ሻ is the output-layer transformation function and 

𝑛𝑒𝑡௜ ൌ ∑ 𝑤௛ℱଵ൫𝑎௛ ൅ ∑ 𝑤௞,௛𝑥௜,௞
௄
௞ୀଵ ൯ு

௛ୀଵ . (18) 

Assuming an intercept term is included at the output layer, the approximation of the conditional mean of 

the behavioral process of interest given by equation (8) can be modeled using a single-hidden-layer network 

and can be represented as (Mehrotra et al., 1997): 
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𝐸ሺ𝑦௜ ∣ 𝑿 ൌ 𝒙௜ሻ ൌ ℱଶ൫𝑎 ൅ ∑ 𝑤௛ℱଵ൫𝑎௛ ൅ ∑ 𝑤௞,௛𝑥௜,௞
௄
௞ୀଵ ൯ு

௛ୀଵ ൯. (19) 

While multiple hidden layers (deep neural networks) can be considered to examine highly nonlinear 

functions, only single-hidden-layer networks are examined in this study. 

2.2. Econometric Theory  

The approximation results allow FFBANNs to be viewed as a SNP alternative to the binary logit 

and probit models. If a researcher is concerned about potential misspecification of equation (8), then the 

modeler may wish to approximate 𝐸ሺ𝑦௜ ∣ 𝐗 ൌ 𝐱௜ሻ using equation (19), which gives rise to the following 

SNP regression function: 

𝑦௜ ൌ ℱଶ൫𝑎 ൅ ∑ 𝑤௛ℱଵ൫𝑎௛ ൅ ∑ 𝑤௞,௛𝑥௜,௞
௄
௞ୀଵ ൯ு

௛ୀଵ ൯ ൅ 𝑢௜ (20) 

where 𝑦௜~Bernoulliሺ𝑝ሻ with variance 𝑝ሺ1 െ 𝑝ሻ. Then, for example, using the logistic function for ℱଶ, 

equation (20) becomes: 

𝑦௜ ൌ ൛1 ൅ 𝑒𝑥𝑝൫െൣ𝑎 ൅ ∑ 𝑤௛ℱଵ൫𝑎௛ ൅ ∑ 𝑤௞,௛𝑥௜,௞
௄
௞ୀଵ ൯ு

௛ୀଵ ൧൯ൟ
ିଵ

൅ 𝑢௜ (21) 

or 

𝑦௜ ൌ ሾ1 ൅ 𝑒𝑥𝑝ሺെ𝑛𝑒𝑡௜ሻሿିଵ ൅ 𝑢௜ (22) 

where 𝑛𝑒𝑡௜ ൌ 𝑎 ൅ ∑ 𝑤௛ℱଵ൫𝑎௛ ൅ ∑ 𝑤௞,௛𝑥௜,௞
௄
௞ୀଵ ൯ு

௛ୀଵ  is equivalent to a single-hidden-layer FFBANN with 

a single output neuron and a linear-activation function. In this case, 𝑛𝑒𝑡௜ is an approximation of the 

underlying utility difference being modeled in the binary choice process. Instead of restricting the functional 

form to a specific utility function that will give rise to a proper utility difference Δ𝑣 (Hanneman, 1984), 

which may result in unnecessarily theoretical restrictions on the model, ANNs can be used to estimate the 

utility difference Δ𝑣 directly with no a priori theoretical assumptions. Follwoing Hornik et al. (1989), the 

network represented by 𝑛𝑒𝑡௜ can approximate any continuous function uniformly. Thus, it can be 

interpreted as uniformly approximating Δ𝑣 or the index/predictor function of a logistic-regression model. 
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That is, the single-hidden-layer FFBANN 𝑛𝑒𝑡௜ሺ𝐱௜; 𝐰ሻ in equation (22) can be viewed as a universal 

function approximator for Δ𝑣 (which is unobservable) and the index function given by ℐሺ𝐱௜; 𝜷ሻ in equation 

(8). It should be recognized here thought that the flexible functional form provided by the ANN, comes at 

the expense of an explicit, closed form expression for the utility function or difference. Of particular interest 

is the question, can marginal utilities can be derived from the ANN specification of the utility function or 

difference, as they would be using an explicit functional form? Hornik (1991) establishes relatively general 

conditions for the ability of ANNs (using sigmoidal activation functions) are capable of approximation of 

a function and its partial derivatives, which would include the marginal utilities (or effects) in the current 

paper. Gallant and White (1992) show that ANNs have the ability to capture not only accurate functional 

approximations, but can be used to capture relevant partial derivatives. This has direct implications here for 

the ability of the ANN to not only capture the underlying utility process, but the marginal utilities, as well.    

2.3. Estimation and Specification Issues 

A particular concern during estimation (or training) of FFBANNs (and other machine learning 

techniques) is how well they perform in classifying input patterns that were not used for estimation, or 

generalizability. This issue arises due to the fear that the neural network will be over-fit. Fine (2006, p. 155) 

states that “fitting too closely to the training set means fitting to the noise [in the data] as well and thereby 

doing less well on new inputs that will have noise independent of that found in the training set.” To avoid 

over-fitting, a validation data set that is independent of the training data set is constructed or set aside from 

the original sample (Principe, Euliano, & Lefebvre, 2000). The validation set is then used in conjunction 

with a stopping rule based on an out-of-sample performance measure to terminate training (estimation) and 

assess the generalization of the network on data not used directly for training. Two commonly used 

measures are to terminate when – after a pre-specified number of iterations – either (1) the validation-data 

mean square error (MSE) does not decrease or (2) the number of patterns correctly classified does not 

increase (Fine, 2006; Kastens and Featherstone, 1996). While the training data is utilized to direclty 

estimate the parameters of the model, the validation data set helps to determine the optimal setting for 
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hyperparameters. A hyperparameter, such as the number of hidden nodes in a hidden layer of the ANN, are 

set external to the learning algorithm. The error associated with the validation data set is used to update 

hyperparameters accordingly to minimize error (Goodfellow, Bengio & Courville, 2016).3 

The MSE stopping rule proposed above amounts to estimating the ANN using nonlinear least 

squares (NLS)4. In the case of no hidden layers and a logistic-activation function, the network is simply a 

numerical estimation of a standard logistic-regression model. White (1989) and Kuan and White (1994) 

establish the necessary conditions for consistency and asymptotic normality of the NLS estimator for ANN 

parameters (weights). 

An additional consideration when using ANNs, as with any numerical optimization, is that changes 

in starting points can affect the network's performance and parameter estimates. Additionally, certain 

machine learning techniques, including ANNs, have been found to be unstable at times (Breiman, 1996). 

For unstable procedures, small changes in the training data set can lead to large changes in estimation results 

(Breiman, 1996). To address such issues, one approach is use of the bootstrapping techniques. Breiman 

(1996) refers to this as “bootstrap bagging” or simply bagging when used specifically for prediction, but 

this can be applied for inference, as well (White & Racine, 2001; Rocca & Perna, 2005). Within the ANN 

framework, bootstrapping refers to multiple estimations of the selected network architecture with bootstrap 

samples obtained through resampling with replacement for both the training and validation datasets. 

Reported estimation results are the averages across bootstrap samples. The approach allows for the 

 
3 If the primary purpose of the model is for prediction and/or multiple model with different functional forms that are 

non-nested are being compared, then the researcher or modeler may want to use a hold-out test data set that is not 

used for training or validation to compare generalization of the model. As the ANNs estimated in this paper only 

change hyperparameters (i.e. the number of hidden nodes in the hidden layer) and the focus is on inference using 

ANNs,  a hold-out test dataset was not used during estimation here.  

4 Another commonly used fitting criterion is the Kullback-Leibler criterion. When this criterion is used, parameters 

are essentially estimated via maximum likelihood estimation (Bergtold, 2004). 
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estimation process to capture multiple local similarities in the data, not just global similarities, in final 

estimates and inferences (Bakker & Heskes, 2003). To be able to capture the full variability in the data 

across bootstrap samples, we generate a bootstrap sample with replacement from the full data set with the 

same number of observations as the original data. We then utilize the undrawn samples from the original 

data for the validation data set for each bootstrap sample (Bakker & Heskes, 2003).5 We generate 2500 

bootstrap samples from the original dataset for model estimation. Given that the variability in the underlying 

data is captured, the bootstrapping process provides a way to estimate distributional parameters (e.g. 

standard errors) for model parameters and functions of those parameters, e.g., marginal effects and WTP. 

Thus, the bootstrapping process used here allows for statistical inferencing, which from a single estimation 

of a neural network is not straightforward or likely reliable. 

As previously discussed, ANNs have highly desirable approximation capabilities comparable to 

other globally flexible SNP estimators, such as the Fourier flexible form. As with other SNP estimators, 

modelers will have to determine the dimensions of the model. For the Fourier flexible form, this amounts 

to choosing the number and degree of trigonometric terms included in the functional approximation, which 

is an empirical question with some guidance provided in the literature (Creel and Loomis, 2015; Crooker 

and Herriges, 2004). For ANNs, this amounts to choosing the number of nodes within each layer of the 

ANN. While we can include multiple hidden layers, known as deep-learning or deep neural nets, we focus 

on a single hidden layer in this paper given its good approximation capabilities. Guidance is provided by 

the literature. A general principle in deciding how many hidden nodes to have in the hidden layer is based 

on Ockham’s Razor, which dictates that the best performing ANN will be the one with the fewest 

parameters (or weights) that fits the data (Hagan et al., 2014). A rule of thumb is to have no more nodes in 

the hidden (or given) layer than you have in the input (or previous) layer of the network (Bergtold, 2004; 

 
5 A bootstrap sample will use approximately 63.2% of the original sample, leaving approximately 36.8% of the 

sample for the validation dataset (Ishwaran & Lu, 2017).  
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Heaton, 2008). Hagan et al. (2014) indicate that one approach is to incrementally increase the size of the 

network until network performance is no longer optimized. That is, increase the number of additional nodes 

in a given hidden layer until performance (e.g. MSE) does not improve.6 Huang (2003) finds that the number 

of nodes in the hidden layers of an ANN can likely be much less than is usually found empirically and still 

provide sufficient approximation capabilities. The approach adopted here is to examine the performance of 

ANNs estimated with the number of hidden nodes ranging from one to the number of inputs into the 

network. The network chosen was that one with the best mean performance on the validation dataset across 

the bootstrap samples using based on a combination of the validation-data mean square error (MSE) the 

number of patterns in the validation dataset correctly classified (PCC). These cross-validation type 

approaches have been used in the literature for assessing model-fit using ANNs due their independence of 

probabilistic assumptions (Anders & Korn, 1996; Hagan et al., 2014).  

As with all SNP estimators, performance will depend on the complexity and flexibility of the 

network, which is usually determined empirically. This will require additional time and computing 

resources compared to more common parametric approaches. However, many statistical software packages 

have built-in ANN estimation procedures or user-built procedures that can be downloaded that make this 

task relatively straightforward.       

2.4. Marginal Effects 

There has not been much work in the applied literature on the use of ANNs, machine learning 

techniques or other SNP methods for substantive inference in discrete choice modeling. Of particular 

interest to economists and other social scientists is marginal analysis or the marginal effect of an explanatory 

variable on the likelihood of an outcome, especially in the context of discrete choice models. As with the 

logit or probit models, the marginal effect from ANNs associated with a specific explanatory variable is 

 
6 There are algorithms that have been proposed to optimize the estimation of ANN parameters and hyperparameters 

simultaneously, but that was beyond the scope of this paper. 
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generally not equal to a single parameter value7. Thus, as with the logit or probit models, if one is interested 

in how changes in explanatory variables impact choice probabilities given by an ANN, an analytical 

derivation of the marginal effects can provide a solution. While not seen in the literature or for other SNP 

methods, the derivation of these marginal effects for discrete choice models involving ANNs is relatively 

straightforward using the chain rule for derivatives. These derivations further establish the potential 

applicability of ANNs for discrete choice modeling, as well as analyzing CV and stated-choice survey data. 

When the explanatory variable of interest, say 𝑥௝, is binary, the marginal effect for the ith individual can be 

calculated as the discrete difference between the two possible states: 

𝑀𝐸௜,௝ ൌ 𝑦ො௜∣ଵ െ 𝑦ො௜∣଴, (25) 

where 𝑦ො௜∣ଵ represents the network estimate for individual i when 𝑥௜,௝ ൌ 1 and 𝑦ො௜∣଴ represents the estimate 

when 𝑥௜,௝ ൌ 0. If 𝑥௜,௝ is continuous and ℱଵሺ⋅ሻ and ℱଶሺ⋅ሻ are the logistic cdf, the marginal effect for the ith 

individual becomes the partial derivative of equation (17) with respect to 𝑥௜,௝. 

yielding: 

𝑀𝐸௜,௝ ൌ ሾℱଶሺ𝑛𝑒𝑡௜ሻሿሾ1 െ ℱଶሺ𝑛𝑒𝑡௜ሻሿ ∑ 𝑤௛𝑤௝,௛ൣℱଵ൫𝑛𝑒𝑡௜,௛൯൧ൣ1 െ ℱଵ൫𝑛𝑒𝑡௜,௛൯൧ு
௛ୀଵ  (27) 

where 𝑛𝑒𝑡௜,௛ ൌ 𝑎௛ ൅ ∑ 𝑤௞,௛𝑥௜,௞
௄
௞ୀଵ  and 𝑛𝑒𝑡௜ ൌ 𝑎 ൅ ∑ 𝑤௛ℱଵ൫𝑎௛ ൅ ∑ 𝑤௞,௛𝑥௜,௞

௄
௞ୀଵ ൯ு

௛ୀଵ . 

Another commonly used sigmoid activation function is the hyperbolic tangent.  

For binary explanatory variables, marginal effects can be calculated using equation (25). For continuous 

variables, marginal effects obtained by applying the chain rule become: 

𝑀𝐸௜,௝ ൌ 4ℱଶሺ𝑛𝑒𝑡௜ሻሾ1 െ ℱଶሺ𝑛𝑒𝑡௜ሻሿ ∑ 𝑤௛𝑤௝,௛ൣ1 ൅ 𝑒𝑥𝑝൫െ2𝑛𝑒𝑡௜,௛൯൧
ିଶ

𝑒𝑥𝑝൫െ2𝑛𝑒𝑡௜,௛൯ு
௛ୀଵ  (30) 

 
7 In the case of an ANN with no hidden layers and linear activation function in the output neuron, the marginal 

effect for a given explanatory variable will be a single parameter value. 
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2.5 Willingness-to-Pay 

Another important marginal measure often considered in discrete choice modeling is WTP. 

Commonly, this is accomplished through estimates of willingness-to-pay for the amenity or attribute in 

question. Being able to estimate how individuals value these amenities or attributes can have significant 

consequences in terms of assessing political or economic feasibility. Mean WTP are estimated in this study. 

Estimates of WTP for stated choice studies are derivable from ANNs. Commonly they are estimated as the 

ratio of the marginal utility of a particular choice attribute (MUk) to the marginal utility of income (or other 

form of economic payment/incentive) (MUy), which is often econometrically estimated as the ratio of two 

model parameters (e.g. 𝛽௞ 𝛽௬⁄  where k represents the choice attribute of interest and y represents income or 

other economic payment/incentive). Given that the ANN is a flexible functional form, the WTP for a 

particular choice attribute for individual i can be estimated as MUi,k/ MUi,y, where MUi,j =  

∑ w୦w୨,୦ൣℱଵ൫net୧,୦൯൧ൣ1 െ ℱଵ൫net୧,୦൯൧ୌ
୦ୀଵ  for j = k,y, assuming a logistic activation function in the hidden 

layer. In this paper though, we focus on estimating mean WTP measures following approaches used in CV 

studies based on the empirical examples adopted. 

Mean WTP is found as described in Hanemann (1984) and, in general, is given by 

𝐶ሚ ൌ ׬ 𝑃ሾ𝑦௜ ∣ 𝑿 ൌ 𝒙௜, 𝐶ሿ𝑑𝑐
்

଴ , (34) 

where T represents an upper threshold on the bid amount or economic payment/incentive decided upon by 

the researcher. Mean WTP can be estimated using different quadrature rules and algorithms already built 

into existing statistical software packages.  

3. Empirical Applications 

The estimation of marginal effects and WTP using FFBANNs is illustrated using two different case 

studies. The case studies highlight how functional misspecification can bias marginal effect and WTP 

estimates. The first case study uses data collected by a research team for a study examining water issues in 
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the Smoky Hill Watershed in western Kansas. The second case study makes use of publicly available data8 

from a study conducted in the Layawan Watershed, Philippines, by Calderon et al. (2012). The data sets, 

empirical procedures, and results are described in the sections that follow. Instances from both applications 

highlight the potential bias in inferences in binary-discrete-choice models from misspecification and how 

ANNs as a SNP method may overcome it. Notable differences with respect to WTP measures are observed 

as well. 

3.1 Case Studies 

We provide two applied case studies to examine the performance of ANNs in comparison to the traditional 

binary logit and probit models, as well as the Klein and Spady (1993) semi-nonparametric model.  

3.1. Water Consumption and Drought Occurrence in Communities of the Smoky Hill Watershed  

The Smoky Hill Watershed encompasses approximately 20,000 square miles that stretch from 

central Kansas to eastern Colorado. Two sub-watersheds from the Smoky Hill combine to form a study area 

that is comprised of roughly 2,440 square miles in central Kansas. Data for this study were collected via 

surveys to examine community members' knowledge and beliefs about the local environment and their 

willingness to adopt and vote for environmental and conservation policies. Data statistics and descriptions 

for this study are presented in table 1. 

Community members from the study region and surrounding counties were surveyed in two phases. 

In the first phase – July and August of 2015 – surveys were administered to visitors at county fairs in 

communities within and around the study region. Respondents were randomly selected for participation 

and screened based on whether they were at least 18 years of age and resided in counties within and around 

the watershed. Those who met these criteria were offered a $15 payment for their participation in the survey. 

A total of 679 surveys were handed out at five county fair venues. Of these, 558 were completed and 

 
8 
https://dataverse.harvard.edu/dataset.xhtml;jsessionid=6afad48f74a88ffbac5366010c54?persistentId=doi%3A10.791
0/DVN/29695&version=2. 
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returned for a response rate of 82.2%. The second phase – September to December of 2015 – was conducted 

by mailing versions of the survey to two different groups within the watershed: farmers and non-farmer 

community members. Farmers were selected from a contact list obtained from farmmarketid.com and who 

had responded to land use surveys administered by the team in past years. A non-farmer community 

member list was obtained from directmail.com. From this list, a random sample was pulled for each county 

proportional to that county's share of the region's population. Mail surveys to farmers and non-farmers 

included a $2 incentive. A total of 474 farmer and 2,526 non-farmer surveys were mailed. From the farmer 

sample, 113 were returned completed (response rate of 26.5%) and from the non-farmer sample, 717 were 

returned (response rate of 31.4%). Combining the two phases, a total of 1,388 surveys were completed for 

an effective response rate of 40.8% overall. For the purposes of this study, due to incomplete responses, 

1,007 surveys were usable for analysis. 

This study focuses on community member responses when faced with the option of paying a 

percentage increase in their monthly water bill in order to maintain current water usage levels during times 

of drought. The percentage increase varied across survey versions from 1% to 100%. Using the percentage 

increase, the monthly payment faced by an individual was calculated as 

𝐴𝑀𝑂𝑈𝑁𝑇௜ ൌ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡௜ ൈ ሺ𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑝𝑎𝑦𝑚𝑒𝑛𝑡௜ሻ (34) 

where the monthly payment was based on a survey question asking for the respondent's average monthly 

water bill. Descriptions and statistics for the variables in this data set are found in table 1. This procedure 

resulted in monthly-water-bill increases that ranged between $0.05 and $162.50. A positive WTP in this 

study would indicate that a respondent is willing to fund policies that could ensure an adequate water supply 

to maintain current levels of use during drought periods. 

3.2. Protection and Management of the Layawan Watershed 

Located in the Mt. Malindang Range in the Zamboanga Peninsula, Philippines, the Layawan 

Watershed is a major rain-catchment area and supplies water to the Misamis Occidental, Zamboanga del 
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Sur, and Zamboanga del Norte provinces (Calderon, Anit, Palao, & Lasco, 2012). The watershed has a total 

area of roughly 41.3 square miles that is approximately 57.8% forest and 41.3% cropland, with the 

remaining area devoted to rice paddies or urban development (Calderon et al. 2012). Calderon et al. (2012) 

surveyed 400 households within the Layawan Watershed to examine WTP to manage and protect the 

watershed in order to have a sustainable water supply and lessen the impacts of natural disasters. The survey 

used by Calderon et al. (2012) asked respondents if they would be willing to pay a certain bid amount, 

ranging from 10 to 200 Philippine pesos (₱10 to ₱200) over and above the current water bill, to fund 

conservation efforts. Data from this study was made publicly available by its authors and can be found on-

line. Descriptions and statistics for the variables from Calderon et al. (2012) used in this study can be found 

in table 1. 

3.3. Models and Methods  

Kastens and Featherstone (1996) provide guidance on specifying FFBANNs and comment on how 

specification of the functional form (i.e., network architecture) will be problem dependent, as with other 

SNP methods. Decisions concerning the design of the FFBANN include: (i) choice of training algorithm, 

(ii) number of hidden layers, (iii) number of neurons in each hidden layer, (iv) types of activation functions, 

(v) choice of fitting criterion, and (vi) choice of stopping rule. Options (i), (v) and (vi) are optimization 

parameters that control algorithmic performance, which must be considered for all SNP estimators or 

potentially highly nonlinear problems. An optimal empirical strategy may be to perform a grid search over 

all possible combinations of (i) – (vi) to determine the optimal network architecture and optimization 

strategy, but such an approach is not usually practical.  To make this more manageable, the only model 

variations examined in this study are those concerning decision (iii), the number of neurons in each hidden 

layer. The remaining decisions are based on guidance from the literature (e.g. see Bergtold, 2004). In all, 

ten network architectures were examined for the Smoky Hill Watershed (SH) data and seven architectures 

were examined for the Layawan Watershed (LW). All specifications consisted of one hidden layer where 

the number of neurons varied from one to ten for SH networks and one to seven for LW networks. The 



22 
 

ranges for the number of hidden-layer neurons is based on discussion in section 2.3. The network that 

provided the best fit based on MSE and PCC on the mean validation datasets across bootstrap samples was 

chosen as the best specification. Each network was estimated using the Broyden-Fletcher-Goldfarb-Shanno 

algorithm (decision [i]), one hidden layer (decision [ii]) with logistic-activation functions in the hidden and 

output layers (decision [iv]), and were fit based on MSE (decision [v]). The stopping rule is the same as that 

described in section 2.3. Decisions (i), (ii), (iv) and (vi) were based on research by Bergtold (2004). 

To address the issue of instability noted by Breiman (1996), the bootstrapping procedure discussed 

in section 2.3 was employed. The procedure randomly generated 2500 bootstrap samples with training and 

and validation datasets from the original datasets. Additionally, to prevent starting point bias in the 

parameter estimates and obtain the best local optima during estimation, for each partition, the network was 

estimated 100 times using random initial values for the parameters. Results from the best performing 

network – based on validation-dataset MSE – from the set of 100 initializations were kept for further use 

(e.g., estimation of marginal effects and WTP). This procedure was done for each of the SH and LW 

network specifications. 

For the empirical comparisons, binary logit and probit models, as well as the SNP approach 

developed by Klein and Spady (1993) (KS) were estimated. The KS approach maximizes a pseudo-log-

likelihood function that uses nonparametric kernel estimators to approximate the unknown probability 

function. This procedure was used as it is available in LIMDEP.  Logit, probit, and KS models were 

estimated using LIMDEP (Greene, 2012), while ANNs were estimated in MATLAB9. The ANNs, logit, 

probit, and KS models were estimated using the same set of explanatory variables (table 1) for the SH data. 

For the LW data, the logit and probit models included interaction terms between the proposed water bill 

increase (AMOUNT) and variables indicating (1) whether the payment scheme was mandatory or voluntary 

 
9 Many different econometric software packages provide procedures or add-ins for estimating ANNs (e.g., 

MATLAB, R, SAS, STATA, EXCEL). 
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(PAYSCH) and (2) whether all water users or only domestic water users would be subject to the increase 

(IPAYEE). Because respondents belong to a specific group – domestic or non-domestic water users – their 

willingness to support the proposal is likely influenced by whether or not they bear the burden of the cost. 

Similarly, whether or not a payment is mandatory or voluntary should impact the cost level at which 

individuals are willing to support the proposal. Ceteris paribus, it is expected that if payment is voluntary, 

individuals would be willing to support the proposal at higher costs due to free riding. Including these 

interaction terms allows the logit and probit marginal effects associated with AMOUNT to be different based 

on (1) whether payment is voluntary and (2) whether all or only some respondents bear the cost. 

Marginal effects for FFBANN models were calculated using the methods outlined in section 2.4. 

For each network specification, marginal effects were computed at the individual level for the best-

performing networks estimated from the 2500 bootstrap samples. Marginal effects were then averaged 

across individuals and bootstrap samples to yield a bootstrapped average marginal effect (or partial average 

effect). For the jth explanatory variable, the bagged marginal effect can be represented as 

𝐵𝑀𝐸௝ ൌ
ଵ

ଶହ଴଴
∑ ଵ

ே
∑ 𝑀𝐸௥,௜,௝

ே
௜ୀଵ

ଶହ଴଴
௥ୀଵ  (35) 

where r denotes the network estimated using the rth bootstrap sample and 𝑁 ൌ 1,007 for the SH data set 

and 𝑁 ൌ 399 for the LW data set. For logit and probit models, the built-in post-estimation command 

“PARTIAL EFFECTS” was used in LIMDEP, which computes the average marginal effect across 

observations. This command was also used for the KS models, but for this estimator LIMDEP produces 

marginal effects calculated at the means of the independent variables. Asymptotic standard errors for 

FFBANN marginal effects were calculated as the standard deviation of the population-average marginal 

effects across the 2500 bootstrap samples. Asymptotic standard errors for the logit, probit, and KS models 

were estimated using the delta method (Greene, 2012). 
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Following Cooper (2002), for the case where Δ𝑣 takes the form Δ𝑣 ൌ 𝐱ᇱ𝜷, then letting 𝐱௜
ᇱ𝜷 ൌ 𝐳௜

ᇱ𝝉 ൅

𝜙𝐴𝑀𝑂𝑈𝑁𝑇௜, for the SH data where 𝐴𝑀𝑂𝑈𝑁𝑇௜ represents the payment amount as in equation (34), the 

median WTP for the ith individual for the SH logit and probit models can be calculated as 

𝑊𝑇𝑃௜ ൌ
𝒛೔

ᇲ𝝉

థ
. (36) 

In the case of the LW logit and probit models, 

𝒙௜
ᇱ𝜷 ൌ 𝒛௜

ᇱ𝝉 ൅ 𝜙ଵ𝐴𝑀𝑂𝑈𝑁𝑇௜ ൅ 𝜙ଶ𝐴𝑀𝑂𝑈𝑁𝑇௜ ൈ 𝑃𝐴𝑌𝑆𝐶𝐻௜ ൅ 𝜙ଷ𝐴𝑀𝑂𝑈𝑁𝑇௜ ൈ 𝐼𝑃𝐴𝑌𝐸𝐸௜ (37) 

due to the inclusion of interaction terms. Thus, for the LW logit and probit models, equation (36) becomes 

𝑊𝑇𝑃௜ ൌ
𝒛೔

ᇲ𝝉

థభାథమ௉஺௒ௌ஼ு೔ାథయூ௉஺௒ாா೔
. (38) 

To find $C from equation (32) for the FFBANNs and the KS model, a modified golden-search 

procedure from Bergtold (2004) was used (presented in figure 3). The procedure searches in a closed 

interval on the real line where the end points of the interval represent the upper and lower bounds of a 

respondent's WTP. The intervals were set at ሾ$0, $200ሿ for the SH models and ሾ₱0, ₱225ሿ for the LW 

models. This process is done for each individual in the entire dataset for all 1,000 retained networks to 

obtain bagged estimates and standard errors for each network specification. The delta method was used to 

obtain standard errors for the logit and probit models and the method of Krinsky and Robb (1986) (KR) 

was used to obtain standard errors for the KS WTP estimate. For the KR procedure, 5,000 WTP estimates 

are calculated using parameter values drawn from a multivariate-normal distribution based on the original 

parameter values and covariance matrix from the KS model. 

Mean WTP, $𝐶ሚ, was estimated using numerical integration in MATLAB. The ranges of integration 

were ሾ$0, $200ሿ for the SH models ሾ₱0, ₱250ሿ for the LW models. Standard errors for the logit and probit 

models were obtained from the KR method using 5,000 draws. For the ANNs, mean WTP was estimated 



25 
 

for each bootstrap sample and the average and standard error across bootstrap samples was reported. Mean 

WTP was not estimated for the KS models. 

3.4 Results 

As motivation for the use of FFBANNs as an alternative to the logit and probit models, 

misspecification tests were conducted for these models in both case studies. To test the null hypothesis of 

a linear index function a Ramsey-type RESET test was used based on Bergtold et al. (2010). The RESET 

test can be used to indicate if higher order (e.g. quadratic or cubic) terms should be included in the logit 

and probit index functions. Results from these tests, shown in table 2, indicate that the null hypothesis is 

only rejected for quadratic terms at a 5% level of significance in both models. The ANN inherently 

incorporates all possible interactions between explanatory variables given it is a flexible functional form.   

3.4.1. Model Fit Comparisons 

Model fit statistics for all the models estimated are presented in figure 3 for the validation datasets 

across different network architectures and in Table 3 using the original sample. Comparisons between 

models were based on the percent of outcomes correctly classified (PCC) and mean square error (MSE). In 

Table 3, the MSE measure represents errors across the entire dataset, which in the case of the FFBANNs 

includes both the training and validation subsets. Model names in the tables are preceded by either “SH” or 

“LW” to indicate for which case study the model was estimated. Names for estimated ANN models include 

a number on the end to indicate the number of neurons in the hidden layer. For example, SH_ANN7 

indicates an artificial neural network with seven hidden-layer neurons that was estimated using the Smoky 

Hill Watershed data. 

The results from both case studies underscore the notion that choosing a network architecture is 

problem dependent and is often best resolved through trialing multiple designs. However, results also 

suggest that even choosing a “wrong” architecture may, on average, produce MSEs and PCCs that may be 

superior to the logit, probit, or KS approaches, providing some reassurance of the robustness of this 

modeling approach. This finding in the case studies likely results from the flexibility (e.g. functional form, 
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dimensionality) of ANNs to model the underlying data generating process, but should take into account 

that the modeler needs to make sure that the ANN is not overfitted.  

SH Case Study: Fit measures for the performance of the ANNs for the different net architectures 

with differing numbers of hidden nodes in the hidden layer is provided in Figure 3. For the SH Case Study, 

an ANN with 2 hidden nodes in the hidden layer (SH_ANN2) provided the highest overall mean PCC and 

lowest mean MSE on the validation data across the bootstrap samples. This is the model that will be used 

for the remainder of the results as the best fitting model.  

To compare fit of the ANNs for this cases study with the logit, probit and KS models, we examine 

fit performance on the overall dataset (training and validation data). Given the bootstrap procedure uses for 

ANN estimation, the minimum, maximum, and average values for the MSE and PCC across the original 

dataset is reported for each estimated ANN. Only one estimation was done for the logit, probit, and KS 

models, so the average, minimum, and maximum values are the same. For the SH case study, the logit, 

probit, and KS models correctly classified 74.4% to 74.7% of the observations. We compare to this fit 

across all the estimated ANN specifications. The lowest average PCC on the SH data across ANNs was 

75.4% for SH_ANN10 and the highest was 76.8% for SH_ANN2, and on average PCC was higher for the 

ANNs by 1 to 2%. The SH_KS PCC, while similar to the logit and probit performance, may be misleading. 

The KS estimator predicted a vote of “no” for all but one observation. Thus, the KS PCC is essentially just 

the percentage of individuals who responded “no” on the survey. With respect to MSE, the average MSEs 

produced by the ANNs were lower than the lowest MSE provided by the logit, probit, and KS in all cases 

by 2 to 5%. SH_ANN2 produced the lowest average MSE scores at 0.1693, while the highest was SH_KS 

at 0.1887. 

LW Case Study: For the LW case study, performance across ANN specifications on the validation 

data set provided the best fit for a ANN with two nodes in the hidden layer (LW_ANN_2). This ANN 

provided the lowest mean MSE and highest mean PCC across bootstrap samples. The LW_ANN_2 model 

is the one that will be utilized for comparisons in further results discussions.  
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When examining performance on the overall dataset in Table 3, the logit and probit models again 

produced similar results with PCCs of 73.9% and 72.9%, respectively. MSE was 0.1741 for LW_Logit and 

0.1758 for LW_Probit. The KS model performed considerably worse with a PCC of 51.1% and MSE of 

0.2368. When looking at average PCC and average MSE for the ANNs, all nine ANN specifications 

marginally outperformed the logit, probit, and KS models. The best average PCC was 76.1% for 

LW_ANN2 and the lowest average MSE was for LW_ANN2 at 0.1672 for LW_ANN3. 

 

3.4.2. Marginal Effects Comparisons 

Estimated marginal effects (MEs) for each case study are presented below and in tables 4 and 5. 

To the authors’ knowledge, MEs associated with FFBANN models have not been presented elsewhere in 

the literature and thus are a novel result. The ability to estimate marginal effects – and associated standard 

errors – for ANNs moves this technique beyond the predictive realm towards the ability for additional 

statistical inference. 

SH Case Study: Estimated MEs for the SH case study showed some consistencies across models, 

but also some important differences. Estimated MEs were statistically insignificant across all models for 

the following variables: respondent's age (AGE), whether they hold a bachelor's degree (COLLEGE), 

number of individuals in the household (HHSIZE), if they identify racially as white (WHITE), and if they 

are aware of the depleting level of the Ogallala Aquifer (KSCARCITY) or recent droughts in Kansas 

(KDROUGHT). The ME associated with whether a respondent had voted in a local election in the last four 

years (LOCAL) was statistically insignificant across all models except for the KS approach, where it was 

statistically significant at the 1% level. For the KS model, the LOCAL ME suggests that having voted in a 

local election increases the probability of accepting the higher water bill. The ME associated with GENDER 

was found to be negative and significant in the logit, probit, and all ANN specifications, indicating that men 

are less likely than women to pay to maintain their current level of water consumption during drought 

conditions. The GENDER ME was insignificant in the KS model. 
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Two key areas of contrasts between the ANN models and the logit, probit, and KS models were 

with respect to the INCOME and AMOUNT variables. Estimated MEs for INCOME were positive and 

significant in the logit and probit models, negative and significant in the KS model, and statistically 

insignificant in all ANN specifications. While the ANN results may be counter to traditional thinking, it is 

plausible nonetheless considering that, on average, the annualized cost of the water bill increase was about 

1% of a household’s income.  Given the relatively minor share of household income represented by the cost 

increases, it may be that decisions on this question are being driven more by cultural factors or personal 

beliefs, e.g., a desire to conserve water in times of drought. The estimated ME for AMOUNT was negative 

and significant in the logit, probit, and KS models. This was the expected result, indicating that as the cost 

of maintaining the current water-consumption level increases, individuals are less likely to accept that cost 

in order to maintain water usage. In contrast, this ME was not found to be statistically significant for the 

ANN model, but was found to be negative in sign. It is possible that the contrasting findings for the 

INCOME and AMOUNT MEs are the result of a misspecified index function. If this is true, policy decisions 

based on results from the logit, probit, or KS models could lead to the enactment of policies that may have 

no significant impact or fail to pass a public referendum. Of interest too, while not statistically significant, 

the magnitude of AMOUNT ME is about four to five times larger than the ME from the logit and probit 

models.   

LW Case Study: With the LW case study, a common conclusion was reached for only one of the 

seven estimated MEs with respect to statistically significant results. This agreement was with respect to the 

proposed increase in the monthly water bill (AMOUNT), for which the estimated marginal effect was 

negative and significant across all models. Second, the marginal effects associated with whether the 

payment was mandatory or voluntary (PAYSCH) was found to be negative but statistically insignificant in 

all models, except for the KS model. The GENDER ME was statistically insignificant in all the models. A 

respondent's age (AGE) did not generally have a statistically significant ME either. Respondents’ monthly 

household income (INCOME) had a positive and significant marginal effect in all models except for the 
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ANN. Whether all water users or only domestic users were subject to the water bill increase (IPAYEE) had 

a statistically insignificant ME in the logit, probit, KS, and ANN models. The final ME is associated with 

the variable COLLEGE that is equal to 1 if the respondent had a bachelor’s, master’s, or vocational degree. 

Positive and significant MEs were found for this variable for only the ANN specifications. This result 

implies that individuals who hold one of these degrees are more likely to accept the proposal. This ME was 

not statistically significant in the logit, probit, or KS models. 

Particularly interesting with the LW MEs is the consistency – for the most part – between the neural 

networks and the logit and probit models with respect to the magnitude and sign of many of the MEs. For 

AMOUNT (all statistically significant) there were some differences in magnitude, but the ANN produced a 

ME estimate in value between those for the logit and probit models. The smallest (in absolute value) 

estimated marginal effect was for LW_Logit while the largest was for LW_KS. For the logit and probit 

models, the estimated marginal effects for these variables were the result of an index function that had to 

be specified to include the interaction terms between AMOUNT and PAYSCH. With the neural networks, 

however, there is no need for the researcher to create and explicitly include these interaction terms as the 

ANN is a flexible functional form and implicitly takes these interactions – and potentially others – into 

account.  

3.4.3. Willingness-to-Pay 

Mean willingness-to-pay (WTP) statistics are presented in tables 4 and 5 for each case study. 

Average-mean WTP estimates were calculated using the methods described in section 3. Mean WTP results 

indicate a potential drawback to the chosen network architectures: non-convergence of the integral given 

in equation (35). This necessitated the use of the integral ranges mentioned in section 3.3. Because the 

output from any particular hidden-layer node, 𝑦௜ in equation (15), is restricted to the interval ሾ0,1ሿ, its 

contribution to 𝑛𝑒𝑡௜ in equation (18) is constrained to be in the interval ሾ0, 𝑤௛ ሿ. As a result, the network 

output is constrained to the interval ሾℱଶሺ𝑊ିሻ, ℱଶሺ𝑊ାሻሿ where 𝑊ି ൌ 𝑎 ൅ ∑ 1ሾ𝑤௛ ൏ 0ሿ𝑤௛
ு
௛ୀଵ  and 𝑊ା ൌ



30 
 

𝑎 ൅ ∑ 1ሾ𝑤௛ ൐ 0ሿ𝑤௛
ு
௛ୀଵ . Architectures with additional hidden-layer nodes or direct connections from the 

input layer to the output layer may lessen these constraints. 

SH Case Study: For the SH dataset, mean WTP estimates suggested that individuals would be 

willing to pay to maintain water usage levels. This measure was statistically significant at the 1% level for 

all models. The logit and probit models again produced similar results: $21.72 and $22.37, respectively. 

Mean WTP estimated suing an ANN was larger than their logit/probit counterparts, at $32.361, which is 

approximately 45% higher than the estimates from the logit and probit models. This result potentially 

suggests that functional misspecification of the logit and probit models resulted in a downward bias of WTP 

estimates from more traditional modeling approaches.   

LW Case Study: For the LW models, mean WTP estimates were statistically significant at the 1% 

level across all models. The magnitudes were slightly higher for the logit and probit models, with mean 

WTP values equal to ₱75.96 and ₱79.02, respectively. The mean WTP for the ANN model was up to 

approximately 12% lower with an estimate of ₱69.85. While the differences may seem small on first glance 

(₱1.00 ൎ $0.02), back-of-the-envelope calculations indicate they could still have important policy 

ramifications if residents are charged at the estimated mean WTP. The largest difference between a neural 

network and either the logit or probit was ₱9.17 (with the LW_Probit). Turning these monthly costs into 

annual costs yields a difference of ₱110.04 ($2.21). Extending this range to the 4,773 households within 

the watershed boundary (Calderon et al., 2012) then yields a cost difference of ₱525 thousand, or $10.5 

thousand annually10. These differences could play an important role when deciding the political and 

financial feasibility of such policies. The higher WTP from the logit and probit models may be due to an 

upward bias resulting from the improperly specified index functions that were indicated by the RESET 

tests. 

 
10 Based on an exchange rate of 0.02 USD to Philippine Peso. 
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4. Conclusions 

Traditional econometric methods such as logit and probit estimation for binary choice discrete 

models are subject to potential misspecification of the index function. While the linear index function of 

the logit and probit models may be statistically adequate in some situations, Kay and Little (1987) show 

that the conditions necessary for this adequacy are somewhat stringent. If a misspecified logit or probit 

model is used as the basis for policy decisions, the resulting policies may have little to no impact if enacted 

or fail to even be enacted if put to a public vote. Feed-forward back-propagation artificial neural networks 

(FFBANN) provide a semi-nonparametric alternative to these traditional approaches that can be used to 

avoid potential misspecification and subsequent ramifications. Furthermore, use of semi-nonparametric 

approaches has often been limited to classification, prediction and estimation of WTP only. Additional 

statistical inference or marginal analysis is not conducted, limiting the use of these models. The ability to 

extend the use of semi-nonparametric and machine learning methods, such as ANNs, for marginal analysis 

further improves their applicability to examining economic problems of interest. This paper provides a 

novel contribution to the literature by showing how ANNs can be utilized for marginal analysis (i.e. 

estimation of WTP and marginal effects). 

This paper used case studies from the Smoky Hill Watershed (SH) in Kansas and the Layawan 

Watershed (LW) in the Philippines to demonstrate the potential for FFBANNs. Both case studies examined 

respondents’ willingness to support the provision of environmental services, e.g., water supplies, through 

increases in monthly water bills. In each case study, FFBANNs were compared to the logit, probit, and the 

semi-nonparametric estimator of Klein and Spady (1993). Assessments and comparisons were made with 

respect to the percent of the dependent variables correctly classified (PCC), mean squared error (MSE), 

marginal effects estimates, and median/mean willingness-to-pay (WTP) measures. The derivation of the 

ANN marginal effects and the estimation of both marginal effects, WTP, and associated standard errors for 

the neural networks provides a novel contribution to the literature and helps to remove some of the “black 

box” stigma from ANNs by allowing for meaningful insights and statistical inference. 
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Comparing model fit and inferences between the different approaches suggests that FFBANNs used 

in conjunction with bagging may be a viable SNP estimator for binary choice processes. The bagged-

average PCC and MSE for the ANNs indicate a greater ability to correctly classify and provide a better 

model fit. On average, the ANNs marginally provided a better fit in terms of PCC and MSE for both case 

studies, which was expected for a semi-nonparametric methodology. It was the estimation of marginal 

effects and WTP estimates that provide an advance in the use of ANNs in discrete choice modeling.  

Estimated marginal effects saw varying degrees of agreement across the datasets and variables in 

the case studies examined. One notable difference was the marginal effect associated with the proposed 

cost to respondents using the SH data. This estimate was negative and statistically significant in the logit, 

probit and KS models, but was not statistically significant for the ANN model. A second interesting result 

was seen in the LW models. Marginal effects results from this data show a benefit of utilizing neural 

networks in that they internally capture interactions between variables without the need for the researcher 

explicitly creating these interactions, which may not be readily apparent to the researcher. Thus, if a 

researcher is concerned about potential misspecification, they may want to consider the use of FFBANNs. 

Mean WTP for both case studies estimated using the ANN was different by 12 to 45 percent when 

compared to estimates from the logit and probit models.  Within the case studies, the misspecification of 

the estimated logit and probit models implies that these traditional approaches biased mean WTP downward 

in the SH case study and upward in the LW case study. Whether biased up or down, misspecification may 

harm policymakers’ abilities to make informed decisions.  

Based on the results of this study, if a researcher is concerned about misspecification in a binary 

choice model for theoretical or statistical reasons, they could consider using feed-forward back-propagation 

artificial neural networks as an alternative binary choice semi-nonparametric estimator. In fact, other than 

an increase in computer run time, the ANNS provided a highly desirable alternative to other more traditional 

approaches for the problems examined in the case studies. Future research can extend these results to 
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examining estimation of stated choice models that go beyond binary choice, as well as the use of deep 

neural networks. 
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Table 1: Summary data for dependent and explanatory variables

Variable Description Mean
Standard 
Deviation

Smoky Hill Watershed Data 
VOTE Dependent variable. Equal to 1 if 

respondent would pay the proposed 
amount to maintain water usage levels 
during drough.

0.25 0.44 

AGE Respondent’s age in years. 50.5 17.1 
AMOUNT Proposed increase in monthly water bill. $29.49 $30.62 
COLLEGE Equal to 1 if respondent has Bachelor’s 

degree or higher, 0 otherwise.
0.32 0.47 

HHSIZE Number of individuals living in the 
household. 

2.73 1.53 

INCOME Household income. Calculated as 
median of reported income range.

$65,715 $63,023 

KDROUGHT Equal to 1 if respondent is aware of 
recent drought conditions in Kansas.

0.92 0.27 

KSCARCE Equal to 1 if respondent is aware of 
Ogallala Aquifer depletion.

0.92 0.28 

LOCAL Equal to 1 if respondent has voted in a 
local election the last four years.

0.72 0.45 

GENDER Equal to 1 if male, 0 if female. 0.51 0.50 
WHITE Equal to 1 if white, 0 otherwise. 0.78 0.41 
  

Layawan Watershed Data 
VOTE Dependent variable. Equal to 1 if 

respondent would pay the proposed 
amount for the conservation plan.

0.51 0.50 

AGE Respondent’s age in years. 48.3 15.4 
AMOUNT Proposed increase in monthly water bill. ₱68.10 ₱65.50 
COLLEGE Equal to 1 if respondent’s reported 

education level is College, Vocational, 
or Master’s. 

0.25 0.43 

INCOME Total household income per month. ₱8,186 ₱10,394
IPAYEE Equal to 1 if all water users pay, 0 if 

only domestic water users pay.
0.50 0.50 

PAYSCH Equal to 1 if payment scheme is 
mandatory, 0 if voluntary.

0.50 0.50 

GENDER Equal to 1 if male, 0 if female. 0.30 0.46 
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Table 2: Specification test results
Model Variable Coefficient p-value

Smoky Hill Watershed 
Logit ሺ𝐱ᇱ𝜷ሻଶ 0.016 
Logit ሺ𝐱ᇱ𝜷ሻଷ 0.114 
Probit ሺ𝐱ᇱ𝜷ሻଶ 0.041 
Probit ሺ𝐱ᇱ𝜷ሻଷ 0.244 

Layawan Watershed 
Logit ሺ𝐱ᇱ𝜷ሻଶ 0.035 
Logit ሺ𝐱ᇱ𝜷ሻଷ 0.438 
Probit ሺ𝐱ᇱ𝜷ሻଶ 0.025 
Probit ሺ𝐱ᇱ𝜷ሻଷ 0.577 
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Table 3: Fit statistics across models and datasets
Model Min PCC Max PCC Avg PCC Min MSE Max MSE Avg MSE

Smoky Hill Watershed 
SH_Logit 74.4% 74.4% 74.4% 0.1773 0.1773 0.1773 

SH_Probit 74.4% 74.4% 74.4% 0.1783 0.1783 0.1783 

SH_KS 74.7% 74.7% 74.7% 0.1887 0.1887 0.1887 

SH_ANN1 72.1% 79.2% 76.3% 0.1628 0.1984 0.1711 

SH_ANN2 71.8% 79.5% 76.8% 0.1595 0.1999 0.1693 

SH_ANN3 72.4% 79.4% 76.5% 0.1569 0.1948 0.1695 

SH_ANN4 72.3% 79.8% 76.2% 0.1553 0.2035 0.1705 

SH_ANN5 72.8% 79.9% 76.1% 0.1544 0.1961 0.1706 

SH_ANN6 72.9% 80.6% 75.7% 0.1538 0.2057 0.1722 

SH_ANN7 71.5% 79.7% 75.6% 0.1574 0.2011 0.1724 

SH_ANN8 72.1% 79.3% 75.6% 0.1570 0.2019 0.1728 

SH_ANN9 72.7% 80.9% 75.5% 0.1572 0.2036 0.1737 

SH_ANN10 70.1% 79.4% 75.4% 0.1538 0.2051 0.1735 

Layawan Watershed 
LW_Logit 73.9% 73.9% 73.9% 0.1741 0.1741 0.1741 

LW _Probit 72.9% 72.9% 72.9% 0.1758 0.1758 0.1758 

LW _KS 51.1% 51.1% 51.1% 0.2368 0.2368 0.2368 

LW _ANN1 67.2% 79.2% 75.0% 0.1642 0.2174 0.1736 

LW _ANN2 68.2% 82.7% 76.1% 0.1461 0.2032 0.1686 

LW _ANN3 64.7% 81.5% 76.3% 0.1440 0.2424 0.1672 

LW _ANN4 60.4% 82.0% 75.9% 0.1469 0.2135 0.1690 

LW _ANN5 65.9% 80.7% 75.8% 0.1435 0.2070 0.1693 

LW _ANN6 66.4% 81.7% 75.9% 0.1447 0.2144 0.1694 

LW _ANN7 62.9% 82.7% 75.9% 0.1466 0.2312 0.1692 
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Table 4: Estimation and Inference Results for Smoky Hill Watershed Models
Variable/Model SH_Logit SH_Probit SH_KS SH_ANN2 
 Marginal Effects 
AGE 1.5E-4 

(0.16) 
1.5E-4 
(0.16)

-4.4E-4 
(-0.83)

1.9E-4 
(0.17)

AMOUNT -0.004*** 
(-5.94) 

-0.003*** 
(-6.39)

-0.001** 
(-2.50)

-0.016 
(-1.55)

COLLEGE -0.004 
(-0.14) 

-0.007 
(-0.24)

0.018 
(0.96)

0.011 
(0.35)

GENDER -0.069** 
(-2.52) 

-0.068** 
(-2.49)

-0.017 
(-0.94)

-0.050** 
(-2.09)

HHSIZE -0.004 
(-0.37) 

-0.003 
(-0.32)

0.002 
(0.40)

-0.005 
(-0.26)

INCOME 3.8E-4* 
(1.73) 

3.8E-4* 
(1.81)

-1.4E-4** 
(-2.14)

1.9E-8 
(0.04)

KDROUGHT 0.037 
(0.75) 

0.038 
(0.76)

-4.2E-4 
(-0.02)

0.010 
(0.22)

KSCARCITY 0.059 
(1.28) 

0.064 
(1.37)

0.001 
(0.04)

0.010 
(0.26)

LOCAL -0.011 
(-0.34) 

-0.012 
(-0.37)

0.179*** 
(9.94)

0.008 
(0.28)

WHITE -0.012 
(-0.35) 

-0.012 
(-0.37)

0.025 
(---)

-0.006 
(-0.22)

  
Mean WTP $21.72*** 

(8.61) 
$22.37*** 

(8.04) 
--- $32.61*** 

(5.96)
Values in parentheses denote z-statistics.  
***,**,* denote significance at the 1%, 5% and 10% levels.
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Table 5: Estimation and Inference Results for Layawan Watershed Models
Variable/Model LW_Logit LW_Probit LW_KS LW_ANN3
AGE 0.002 

(1.06) 
0.002 
(1.09)

-4.4E-4 
(1.09)

0.001 
(0.86)

AMOUNT -0.004*** 
(-12.48) 

-0.009*** 
(-14.16)

-0.016*** 
(-14.16)

-0.006*** 
(-4.68)

COLLEGE 0.081 
(1.61) 

0.081 
(1.58)

-0.013 
(-0.20)

0.080* 
(1.80)

GENDER -0.049 
(-1.04) 

-0.051 
(-1.074)

0.157 
(---)

-0.026 
(-0.60)

INCOME 5.0E-6* 
(1.85) 

4.6E-6* 
(1.90)

0.015* 
(1.90)

2.9E-6 
(1.20)

IPAYEE -0.051 
(1.19) 

-0.048 
(-1.12)

-0.002 
(-1.12)

-0.054 
(-1.41)

PAYSCH -0.026 
(-0.61) 

-0.029 
(-0.68)

0.020 
(-0.68)

-0.027 
(-0.73)

  
Mean WTP ₱75.96*** 

(8.30) 
₱79.02*** 

(8.84) 
--- ₱69.85*** 

(9.53)
Values in parentheses denote z-statistics.  
***,**,* denote significance at the 1%, 5% and 10% levels.
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Figure 1. Topology of a neuron 
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Figure 2. Single-hidden-layer artificial neural network 
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Figure 3: Boxplots of ANN Mean Performance on Validation Data Set Across Bootstrap 
Samples. (MSE is the mean square error and PCC is the percent correctly predicted). 
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