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1 . Introduction

An experimental design is a partially balanced incomplete block (in short,

PBI3) design if there are b blocks such that

(a) each block contains k £ v different treatments, where k = number of units

per block and v = number of treatments,

(b) epch treatment occurs in r blocks, where r = number of replicates of each

treatment, and

(c) any two treatments which are i-th associates occur together in X± blocks,

i = 1, 2, •••, m.

.

In a degenerate case when m = 1, a PBI3 design reduces to a balanced incom-

plete block (313) design.

These designs, introduced by Boss and Nair (1939) and developed by Rao (19^8),

Connor and Clatworthy ( 195^) • are arranged in blocks or groups that are smaller

than a complete replication, in order to eliminate heterogeneity to a greater

extent than is possible with randomized blocks and latin squares. In planning

experiments in the physical sciences, agriculture and genetics, one is often

confronted with natural limitations on the size of experimental blocks. In

order to allow more freedom of choice in the number of replicates, designs

which lack the complete symmetry of the balanced designs must bo used. There-

fore, use of P3I3 designs is becoming more widespread.

But F3I3 designs are less suitable than BI3 designs. The statistical ana-

lysis is more complicated. V.lien the variation among blocks is large, some

pairs of treatments are more precisely compared than others, and several dif-

ferent standard errors may have to be computed for tests of significance.

These difficulties increase as the design departs more and more from the sym-

metry of the 313 design.

It has been shov/n by R. C, Bose and T. Shim.amoto (1952) that all P3IB designs
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with 2 associate classes, can be divided into five distinct types:

(a) Group Divisible (GD),

(b) Triangular (T) including the subtypes Triangular Doubly Linked Blocks

(TDL3) and Triangular Singly Linked Blocks (TSLB),

(c) Singly Linked (SL),

(d) Latin Squares (LS) with i constraints (L^^), and

(e) Cyclic (C).

One simple .md important type is GD designs. An incomplete block design with

V treatments each replicated r times in b blocks of size k is said to be group

divisible if the treatments can be divided into m groups, each with n treat- .• .

ments, so that the treatments belonging to the same groups occur together in

^1 blocks and treatments belonging to different groups occur together in A p

blocks o If A^ = X2 = X (say) then every pair of treatments occurs together

in X blocks and the design reduces to a BIB design. That is why a PBI3 (or GD)

design is a special case of a BIB designo

The object of this report is to review the more important properties of GD

designs with two associate classes and to give an illustrative example, A

special feature is the division of GD design into three types:

(a) Singular GD (SGD) design characterized by r = X^,

(b) Semi-regular GD (SRGD) design characterized by r > X ^, rk = vX2. and

(c) Regular GD (RGD) design characterized by r > X 1, rk > vXp*

These three types are described in more detail in the subsequent sections.

For practical purposes, the useful range will be confined to r £ 10, k < 10,

and X^ (i = 1, 2) chosen not to exceed 3. except for a few special cases.



?.. Association Scheme And Relations Among PBI3 Designs Parameters

The necessary notations concerning a PBIB design's association scheme and

relations among their parameters are briefly given below. Reference should be

made to Cochran and Cox (1950), Bose (1951. 1963), and Ogawa (1959)o

(1) Association Scheme, Given v treatments, t^, t^, ...» t^, a relation

amonp; them satisfying the following three conditions is called an association

with m associate classes:

(a) Any two treatm.ents are either first or second, ..., m-th associates,

(b) Each treatment has r\^ i-th associates, i = 1, 2, ..., m, and

(c) For each pair of treatments which are i-th associates, there are p^j^

(i, jf ^if' - 1» 2, ..., m) treatments which are j-th associates of the one

treatment of the pair and the same time k-th associates of the other,

(2) F3I3 Designs With Relations Am.ong Their Parameters. For a PBIB design

based on any association scheme, the parameters

V, n^, pj)^ (i, j, k = 1, 2, ..., m), (2.1)

may be called parameters of the first kind, and the additional parameters

b, r, k, \^ (i = 1, 2, ..., m) (2.2)

may be called parameters of second kind. Clearly

vr = bk, •

(2,3)

n-L + n^ + ... + n„ = V - 1, (2.^)

nj^X^ + npA^ + ... + n^^Xj^ = r(k - 1), (2.5)

By definition the number p^j^ is independent of which pair ti, to of i-th

associates as above-mentioned. Consider the pair t^, to, then

Pjk = Pkj- (2.6)

The following relations shovm by Bose and Nair (1939) are:

jfl
Pjk = "J

i^ i ?^ J (2.7)



:2 P^. = n^ - 1, if i = j, (2.8)
k=l -

(3) Relations Among The Parameters For GD Designs, In GD design with 2

associate classes, 3ose and Connor (1952) have shown the following relations

and inequalities between the parameters v, b, r, k, m, n, X<, Xpi

V = nm, n^ = n - 1, "2 ~ "^"^ " ^^' (2.10)

vr = bk, (2.11)

X^_{n - 1) + Ag'^^" - i) = ^^^ - !) (2.12)

r -X^> 0, rk - vX2 > 0. (2,13)

"air (19^3) reported the following important inequality which can be used to

study the basic properties of five distinct types in a PBIB design with two

association classes,

A = (r - Ai) (r - Xg) + (>^1 - Ag) (
(r - Ai)Pi2- (r - Aa^pL] ^^.l^)

is non-negative.

If p.p = Ot then in the case of GD designs, (2.14) reduces to

^ = (r - Xi)(r - X2) + (Xi- X2)(r - Ai)Pi2

= (r - A^)((r - X2) + (Xi -X2)(n - 1)]

= (r -Ai)[r(k - 1) + r - nmAg]

= (r - Ai)(rk - VA2). (2.15)

if (2.10) and (2.12) are used.

2
If p{2 = 0, then (2,1''J-) reduces to

A = (r - A2)(rk - vA^), (2.l6)

Clearly r k Ai and r l Xp- Further if r > A^ or r>A2 it follows that

rk > v\a^ or VX2 (2.17)

accordinr^ as p2^ or ptp = 0.



The parameters, p^j^ (i, ,i, k = 1, 2), of GD designs may be conveniently writ-

ten in the form of two symmetric matrices

2 / (n - 1)

^ ^ Mn - 1) n(m - 2) L (2.18)

For example, let m = 4, n = 3. The corresponding GD association scheme is

A B C D

E F G H

I J K L .

The first associates of the treatment A are E and I, and the second asso-

ciates are B, C, D, F, G, H, J, K and L.

A PBIE design based on the above association scheme for vxhich the parameters

of the second kind are

V = 12, b = 9, r = 3, k = 4, X^ = and ^2 = 1» is shown below;

(A H 3 C), (H E F G), (E B K D)

,

(F K L A), (K J I H), (J L C E)

,

(L I G B), (G D A J), (I C D F).

3. The Incidence Matrix

It is helpful to use the incidence matrix to show some properties of GD

designs in the following sections,

(1) General Meaning. An arrangement of a certain number of "treatments"



in a certain number of "block" in such a way that some prescribed combinatorial

conditions are fullfilled is a statistical design, V/ith every design is asso-

ciated a unique matrix called the incidence matrix of the design.

Let N be the incidence matrix of a PBIB design with m associate classes and

N' denote the transpose matrix of K, Then the determinant NN' ma.y be written

as

Inn*
I

= rk(r -z^f^ ... (r - z^/^,

2 c^Vi = V - 1, t i m,
h-1

(3.1)

(3.2)

where the z's are different, r - Zv^(h = 1, 2, ..., t), are factors of NN' and

(h =1, 2, ..., t) , are their respective multiplicities, Connor and Clatworthy

(195'+).

For n general it is observed for v > b that jNN'l is zero, which implies

that one of the factors is zero, and for v = b that [NN'| is an integral

square,

(2) Special Meaning For GD Designs. The value of fNN'| for GD designs was

first proposed by Bose and Connor (1952), It is necessary that

INNM = rk(rk - v),2)'^'-^(r - A^^^^'-'^K (3.3)

To evalute (3.3) » let N denote the incidence matrix with dimension vxb.

Then

/n

N = (n. j) =

11

"21

\"vl

"12

"22

V2

"lb

"2b

• • • ••• ••• •••

"vb (3.^^)

The rows correspond to treatments, the columns correspond to blocks and



n- • = 1 or according as the i-th treatment does or does not occur in the j-th

block. It is easy to see that

b

•1=1

b 2
Ht = :^ "ii = ^»

"ij"uj ~ ^1 °^ ^2» i, u = 1, 2, o.., V,

(3.5)

(3.6)

according- as the i-th and u-th treatments do or do not belong to the same

group. Kence

A B ... B

B A ... B

NN' =

B B (3.7)

where A and B are nxn matrices defined by

A =

^1

M

X,

>^1

^
^1 >^1

B =

A2 ^2 ••• ^2

2 2 ••* ^2

o . . • • .

2 2 • • • '^2 (3.8)

Each rov; or column in the matrix (3.7) contains A in the diagonal position and

contains 3 in the other m - 1 positions.

To evalute |nN*| proceed as follows.

(a) Add the second, third, .... nm-th rows in (3.7) to the first row, every

element of first row becomes

r 4- (n - 1)A^ + n(m - \)\^ = rk,

by (2.12).

(b) Take rk outside the determinant, and subtract the first row multiplied



by Xp- ^0" ^^^ other rows . Then

INN'I = rk

C D

E

• 9

D

•

E (3.9)

where C, D, E and are the square matrix of n, and defined as:

C =

/ 1
1

H~h. h~^2

A1-X2

Ixn

D =

(n-l)xn J .

-X2
]

E =

A1-X2 ^

X1-X2

r-X2

^-^2 X1-X2

^1-X2 ^-^^

• • • • •

AI-X2 >^l-^2 ••. r-X2 / . (3.10)

And nxn is a null matrix. Therefore,

|NN«^ = rk[C|!E|"--

= rk(rk - v^)^''^]C\\C\^'''^

= rk(rk - vX2)-'--^(r - Xi)"^("-^\

using (2.10), (2.11) and (2.12), the result is obtained.

It is obvious that the quantity rk - vXg occuring above is non-negative. It

is necessary to prove this statement for the case r >.Ai,

L«t Ni be the subm.Ttrix formed from the matrix N given by {J A), by taking

the first 2n rows v;hich correspond to the treatments of the first two groups.
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N^Ni =

where A and 3 are same as (3«8). Then

A

B

B

A

INinJi = jr + (n - DX^ + n\2}(r - X ^f^'^'^hrk - VA2) •

(3.11)

(3.12)

Since iN^N^j > 0, it follows that rk - VA2 > if r > X-^, Hence all GD designs

can be divided into the three exhaustive and mutually exclusive types as men-

tioned in section 1,

^. Confounded Property For GD Designs

Cne of important properties of GD designs is that it is a special case of

counfounded designs for asiTrimetrical factorial experiments involving two

factors, Nair and Rao (19'r8). They discussed 2-factor experiments in detail

showing the estimation of the treatment differences, efficiency (informations

for variances and covariances) , and tests of significance.

Table I

Treatment Combinations of a p x q Factorial

Levels of Y

^lyi xiy2 ••• ••• 'fiyq

Xgyi xpyg xpyq
Levels of X

Xp7i Xp72 ^pS^q

Let X and Y bo any two factors v/ith p levels and q levels respectively, and

assume p is smaller than q. If the pq treatment combinations represented in

Table 1 are laid out in b blocks of sizf? k plots (k < pq) in such a way that
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any two treatments in the same column occur together in A^q blocks, any two

treatments in the same row occur together in Xqa blocks and any two others

occur tor^ether in A^^ blocks, then a P3IB design with three associate classes

and the parameters are:

pqr = bk

n^^ = (p - 1), nj = (q - 1), n^ = (p - l)(q - 1)

(p - DA^o + (q - DX^o + (p - l)(q - DA^i = r(k - 1)

/(p-2) \

\ (q-1) (p.2)(q-l)/ ,

Po = (P.-v)
=

(p-1)

(q-2)

(p-1)

(p-l)(q-l)

P3 = iv]^) =

1 (p-2)

1 (q-2)

\(p-2) (q-2) (p-2)(q-2)

The follovdng inequalities proved by Nair and Rao (19'+8) are:

r > Ai,o + (q - i)(Xii --^01^

r > Aoi •*" (p - i)(Mi - Aiq)

r > Aqi + Aio - K^y

(^.3)

(i^,k)

(^.5)

(^.7)

Now the following two special cases of confounded design are discussed:

Case A: Assuming X-^q - X^and Xq^ = X^^ =X2 ^^^ design becomes a P3IB design

with two associate classes and the parameters.
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V = pq, n^ = (p -1), ng = p(q - 1). (^.8)

1

2

(p - 2)

(p - 1)

fp - 1) p(q - 2) /. (4.9)

Since pJp = 0, this is a GD design with n = q and n = p.

3y the assumptions of case A, (4.5)» (4. 6) and (4.7) will be reduced, respec-".

tively, to:

r > X^ (^.10)

rk > v^2 (4.11)

r > Xi (4.12)

Case B: Assuming Aqi ~ ^1 ^"^ ^10 ~ ^11 ~ ^2 ^'^® design once again becomes

a P3I3 design with two associate classes, the parameters of vrhich can be ob- .

tained from those for case A, if p and q are interchanged. Since pj^p
~ 0»

this type is also a GD design with m = p and n = q.

Similarly^ by the assumptions of case B, (4,5), (4,6) and (4,7) can be

reduced to:

rk > vX^ •

(4.13)

i- > X^ (4.14)

r > ^1 (4.15)

From the inequalities (4.10) to (4.15), they actually are left with two

fundanental inequaliti'^s, namely, r > X. and rk > vXp of which the first is

obvi'josly true for any incomplete design. The second inequality rk > vXp
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is satisfied in all three types of GD designs. By definition, the relation

rk > v}\p is true for SRGD and RGD designs. The relation rk > v)^ can be proved

for SjD designs as follows:

The paraneters of a 313 design will be denoted by a starred letter in order

to distinf^uish them from the paramenters of GD designs. Since the relation

A*(v* - 1) = r*(k* - 1) holds for a BIB design, then:

rk - vXp = n(r*k* - v*\*)

= n(r* -A*)

> 0.

Since all the three inequalities (^.5)» (^•^) and (^.7) can become equalities

only if r = ^iq "XqI ~ ^ii» i"^«» if k = pq or the design has complete blocks.

For GD desic^i in case A and 3, r = X]^ and rk = vA2 cannot be satisfied simult-

aneously. Therefore there exist only three admissible conditions forming three

distinct types of GD design as shown in section 1,

Nair and Rao (19'^8) used the equation,

Pll = (l/k){r(k- 1) - (Xn -Xoi -Xio))

= (l/k)|pA^Q + qAQl + (pq - p - q)Aii[ ,

to show some confounding properties among main effects and interaction. In case

A and B, if r = X^, then p^^ = r, and the interaction XxY is unconfounded.

Further, by (^.10) and ('J-.l''4-) one of the main effects is not confounded (namely,

of X in case A and of Y in case B) . If r > X^, the interaction XxY and one of
'

the m^in effects are confounded (X in case A and Y in case B). Similarly,

when rk = VX2, then one of the main effects (Y in case A and X in case B) is

not confoujided, \'raen rk > vXp, then one of the main effects (Y in case A and

X in case 3) is confounded.

The three typos of GD designs have the following categories of confounding

if it is considered as a quasi-factorial experiment involving two factors: one
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at in levels and the other at n levels

»

(a) One of the main effects and the interaction are not confounded.

(b) One of the main effects and the interaction are confounded, and

(c) Both the main effects and the interaction are confounded,

5. Singular GD Design

A GD design is said to be singular if r =X^. A SGD design is always deriv-

able from a corresponding BIB design on replacing each treatment by a group of

n treatments. These groups, in the SGD designs, give the groups of the asso-.,

elation scheme. Thus the BIB design's plan, with parameters v* = b* = 7,

r* = k* = 3» X* = 1, is given below, the column representing the blocks

A B C D E F G

F G A B C D E

E F G A B C D

Let n = 3t then the treatment A is replaced by A^, Ap, Ao and the same for

the other treatments. It follows that the SGD design has the parameters

V = 21, b = 7, r = 3. k = 9, Xi = 3, X2 = 1. m = 7, n = 3, the plan for which

is shown below:

^1 ^1 ^1 ^1 ^1 ^1 ^1

A2 B2 C2 D2 E2 F2 G2

A-3 B3 C3 D3 E3 F3 G3

Fi Gi A^ B^ C^ D]_ El

F2 G2 A2 3. C^ D^ E^

F3 G3 A3 B3 C3 D3 E3

El Fi Gi Ai Bi Ci Di

E2 F2 G2 A^ 3^ C^ D^

E3 F3 G3 A3 B3 C3 D3



liv

The association scheme is

Ai Bi Ci Di E^ F^ G^

A2 32 C2 D2 E2 F2 G2

A3 B3 C3 D3 E3 F3 G3

In general, corresponding to the BIB design with the parameters v*, b*, r*,

k*, A*, then there is a SGD design with the parameters,

V = nv*, b = b*, r = r*, k = nk*, Ai = i*t

X2 =i^t m = v*. n = n*o (5.1)

A useful class of SGD designs is obtained by starting with the unreduced

balanced incomplete block design with the parameters,

V* = t, b* = t(t - l)/2, r* = t - 1, k* = ?., X* = 1, (5.2)

obtained by taking for blocks all possible pairs out of t treatments, and then

replacing each treatment by n new treatments (n = 2, 3. ^1 or 5)« The result-

ing SGD design has the parameters,

V = nt, b = t(t - l)/2, r = t - 1, k = 2n,

Al = t - 1, A2 = 1, m = t, n = n. (5.3)

Conversely consider a SGD design with the paraments, v, b, r, k, Xi, Apt m

and n where r =Xh^. Let t^ and t2 be any two treatments belonging to the sane

group. t-|^ occurs in r blocks, and since r -A^, t2 must occur in each of these

r blocks and nowhere else. Hence if a treatment occurs in a certain blocks,

every treatment belonging to the group occurs in that block. Let each group

of treatments be replaced by a single treatment in the design, then there are

V* = m treatments in the new design and because any two treatments belonging
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to different groups occur together A 2 times in the original design, the new

design is a 313 design with parameters,

V* = m, b* = b, r* = r = K^, k* = k/n, X* = X2. '^* = "• (5.^)

The problem of constructing a SGD design, therefore, offers no difficulty.

However, if r* and X* differ too much, then in the derived GD design, the accu-

racy of the within group and between group comparisons will appreciable differ.

In a resolvable design, the blocks are separable into groups, each group (or

replication) containing all variatos, each variate occuring once and only once

in the replication. Each replication must necessarily contain the sajne n\mber

of blocks, say t, so that.

V = tk, b = tr. (5^5)

Resolvable designs are of special important in analysis of variance. Here ..

they are employed to understand the constructive properties of resolvable SGD

design.

Table II

Parameters of some SGD Designs and the Corresponding

313 Designs from which They are Derivable

Designs Pariimeters of BIB Design Paramete rs of• SGD Design
Number V* b* r* k* A* V b r k m n X^ X2

1 i^ 6 3 2 12 6 3 6 6 3 3 1

2 k 6 3 2 16 6 3 8 6 ^ 3 1

3 5 10 U 2 10 10 k k 5 2 4 1

^ 5 10 k 2 15 10 k 6 5 3 4 1

5 7 7 3 3 1/^ 7 3 6 7 2 3 1

6 7 7 3 3 21 7 3 9 7 3 3 1

7 9 12 k 3 18 12 k 6 • 2 k 1

8 13 13 k 4 26 13 k 8 13 2 ^ 1
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A SGD design nay be considered to belong to the desipjis as the corresponding

BI3 design. It is clear that if a BIB desi<^n is resolviable the same is true

of a SGD desicrn derived from it (shown in 1, 2, and 7 of Table II).

Table II gives some cases of practical interest. Theorems and methods of

constructing GD designs can be referred to in Bose et al. (1953) and Bose

et ^.1. (195^).

Fisher (19^0) has shown that a necessary condition for the existence of a

BIB desi.Jin with v* treatments and b* blocks is

b* > v*. (5.6)

hence for a SGD design b > m. If possible, let b < m. Consider the nxm inci-

dence matrix.

N2 =

"11

"21

'12

n
22

n,
'bl "b2

Vl "tt2

^Ib

"2b

•

\b

"mb (5.7)

where the last m - b columns of N2 consist of zeros. Then,

I

N2N^
I

=

^2

A2

«

^2

X2

X2

0* •

A o • • o r

= -jr + X^im - 1)1 (r - Xz)'^''^

= (rk/n)(r - X^)^-!,

from (2.12). But

(5.8)
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[NpNgl = [N2!|N2l =0. (3.9)

therefore, r =X2' ^""^ contradicts the fact \ ^ \2 ^°^ ^^ designs. The as-

sunption b < n is incorrect and b > m for SGD design.

6o Semi-regular GD Design

A GD design is said to be semi-regular if r > Ai and rk - VX2 = 0. Hence

(?>.l?) reduces to

r + (n - l)Xi = nX2. (^'^^

Each block must contain the same number of treatments from each group so that

k must be divided by m denoting

c = k/m or k = cm (o.2)

as shown by Bose and Connor (1952).

For a SRGD design there holds the inequality

b>v-m+l (6.3)

The value of (3.3) given by (3.7) is singular for the case of SRGD design. Its

rank is not less than v - m + 1 by the follovjing proof.

Let R(NN') be the rank of matrix NN* defined as (3.7) and use the definition

of the rank of a matrix (Fuller, I962), From (3*9) t strike. out the last row

and column from m.-itrix E, then it becomes (n-l)x(n-l) matrix F, By the defi-

nition of SHuD design and (6,1),

|C| = (r - Al)"-^ |FI = (X2 - Xi)(r -
/\i)"-2.

If from (3.9). strike out the 2n-th, ,.,, mn-th rows and columns, then the
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resulting matrix [NN'|* is

|NNM = rkjCllFj"^-^

^ 0.

since X2 - Xi / and r - X^ 5^ 0. But

R(NN') = R(NN')* 1 b.

Kence

f{(NN')* >n+(n:-l)(n-l)

= V - m +I0

Then the resulting b > v - m + 1 for SRGD design is obtained.

For a resolvable SRGD design there holds the inequality

b > V - m + r.
. (6,4)

From the definition of resolvable designs defined in (5«5)i 't-he blocks can be

divided into r groups, of b/r = t blocks each, such that each group of blocks

gives a ccnplete replication, then R(NI'J') = R(NN')* i b - r + 1, Since in N

the sum of the columns corresponding to a complete replication must give a

column consisting of unities o Thus not. more than b - r + 1 column vectors are

independent. Hence the result b>v-m+ris held for a resolvable SRGD

design.

In forming the incidence matrix N for an affine resolvable SRGD design the

blocks shall be arranged in such a way that the first t col\imns correspond to

the blocks of the first replication; next t columns to those of the second

replication and so on.
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To the incidence matrix N adjoin n coliutins such that the j-th adjoined column

contains I's in the positions (j-l)n+l, (j-l)n+2, .... (j-l)n+n = jn, and O's

elsevhere. Then, this new matrix is extended by joining r rows such that the

i-th adjoined row will have I's in the positions (i-l)t+l, (i-l)t+2, ....

(i-l)t+t = it, and O's elsewhere. Let this augmented square matrix of order

(v+r) be denoted by N* then

N*N*'

r+1 X^+1

\+l r+l

• •

1

1

\^1 A2

Xi+1 A2

• •

r+l /g

Xo r+l

•

X2 >i+l

^2

^2

•

r+l

1

1

Usinp; (2.10), (2.11), (6.1), and rk - v 2 = 0, then

IN*N*'| = |N*|''- = t^n"k'"("-l)

= v^n"'-kb-2r

1

1

•

1

1

•

1

t

t

{6.5)

since b = v - m + r and v = tk. (6,5) must be a perfect square. It can be

stated as follows:

(a) V/ith odd number of blocks in an affine resolvable SRGD design,

1. c must be a perfect square if m and r are odd»



20

2. r.k must be a perfect square if m is odd and r is even.

3. t must be a perfect square if m is even and r is odd.

(b) V/ith even number of blocks in an affine resolvable SRGD design,

1. n must be a perfect square if m is odd and r is even.

2o m must be a perfect square if m and r are odd.

Table III gives the parameters of some useful SRGD designs with r < 6.

Table III

Parameters of Some SRGD Designs with r 1 6

Design
number V b r

Parameters
k m n M ^2

1 6 8 k 3 3 2 2

2 9 9 6 6 3 3 3 i;

3 10 8 /+ 5 5 2 2

k 12 9 3 k k 3 1

5 12 12 6 6 3 /4. 2 3

6 1^ 8 k 7 7 2 2

7 18 12 6 9 9 2 3

8 20 16 t^ 5 5 4 1

Design 1 gives the following association scheme and plan where the columns

represent the blocks.

Group Plan

ABC Rep. I Rep. II Rep. Ill Rep. IV

DEF AD. AD AD AD
BE BE- EB EB
CF FC CF FC



21

7, Regular GD Design

A GD design is said to be regular if r > A^ and rk - vXg > 0, and to be reg-

ular sjTnjnetry if b = v and in consequence r = k. Hence

NN'I = |Ni^

= r^ (r^ -v^^r-Hr -Ai^^"-!) (7.1)

from (3.3). It follows that for a regular syiranetical GD design:

(a) if m is even, then r - VA2 is a perfect square,

(b) if m is odd and n is even, then r - Ai must be a perfect square.

For a P.GD desii^ there holds the inequality

b > V (7«2)

It is easy to prove using definition of rank. Then

V = R(NM') = RdO < b

from (3.3). (NN'I > 0.

For a resolvable RGD there holds the inequality

b > V + r - 1. . (7.3)

If the design is resolvable then as before (in section 6) R(N) f b - r + 1.

Hence the result b > v + r - 1 exists.

Corresponding design 3 in Table IV it gives the following association

scheme and plsn where the columns represent the blocks

Group - Plan

ABC Rep. I A3CDEFGKI
D E F Rep. II DEFGHIA3C
G H I Rep. IIIGHIABCDEF

Rep. IV BCDEFGHIA.
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Table IV skives the parameters of some useful RGD design with r i 6,

Table IV

Parameters of Some RGD Designs with v< 6

Designs
Number V b

i

r

'aran

k

leters

m n
'^l >^2

1 6 6 Ijr k 2 3 3 2

2 8 8 3 3 -^i- 2

3 9 9 J^ ^ 3 3 3

k 12 12 ^ 4 6 2 2

5 12 20 5 3 6 2

6 lU 1^ ^ ^ 7 2

7 15 30 6 3 5 3

8 20 16 /| 5 5
i^

8, Illustrative Example

A numberical example of an analysis of variance of a GD design follows:

(1) Analysis With Intra-block Information. The parameters of design ^

?iven in Table III are

V = 12, b = 9, r = 3, k = ^, m = 4, n = 3. h = 0, ^2 = 1< (8.1)

For any P3IB design with two associate classes, Bose and Shimamoto (1952) de-

fined four computational constants c^, c^, H and A by means of the following

relations:

1 2
k^A = (rk-r+Ai)(rk-r+N2)+(Xi-X2)|r(k-l)(pi2-Pi2)+A2Pi2-AlPl2

]

kH = (2rk-2r-t-A^+X2)+(pl2-Pl?)(Xi-X2)

1 2
kACj^ = Aj^(rk-r+X2)+(AiL-X2)(A2Pl2"HPl2^

(8.2)
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3y (8.2), further parameters are

c, =0,, C2 = 1/3, H = 21/4, A= 27/4 (8.3)

which are needed for the analysis of the design. The corresponding GD associ-

ation scheme is

1 2 3 '^

5 6 7 8 (8.4)

9 10 11 12 .

Treatments in the same column of this scheme belong to the sane group and

are first associates. Treatments in different columns belong to different

group .?.nd are second associates. It can be verified from the plan that treat-

ments in the same column of this scheme do not occur together in a block,

whereas treatments in different column occur together in just on block in ac-

cordance with the condition A^ = 0, A2 = 1. The various steps in the comput-

ations in the analysis of a GD design are the same for the three types. The

analysis for design 4 (Table III) with parameters (8.1), (8.3), and associ- '

ation scheme (8.4) is given below.

Table V

Plan and Yields of Cotton (Pounds per Plot)

Block Treatments Block

j t Totals Bj

1 (1) 2.6 (2) 2.1 (3) 2.3 (4) 2.8 9.8
2 (7) 2.8 (10) 2.5 (5) 2.7 (4) 3.2 11.2

3 (6) 2.7 (11)- 2.3 (9) 2.4 (4) 3.2 10.7
4 (1) 2.7 (7) 2.9 (6) 4ol (8) 2.5 12.2

5 (11) 2.5 (5) 2o7 (2) 2.5 (8) 3.1 10.8
6 (10) 2.9 (9) 2.7 (3) 2.4 (8) 3.2 11.2

7 (1) 2.8 (11) 2.6 (10) 2.6 (12) 2.7 10.7
8 (9) 3.2 (2) 2.2 (7) 3.0 (12) 3.4 11.8

9 (5) 2.8 (3) 2.8 (6) 2.6 (12) 3-3 11.5

G =99.9
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Therefore, this experimental has 12 treatments arranged in blocks of size ^4-,

The data, obtained from North Carolina Agricultural Experiment Station (195^)i

are the pounds of seed cotton per plot in a uniformity trial » The plan and

yields are shown in Table Vo

It is useful to divide the computations into a number of steps:

(a) Find the block totals B and the grand total G and insert them in the

plan (Table VI).

(b) For each treatment, find the treatment total T and the total B^ of all

blocks in which the treatment occurs « For treatment 1

T = 2.6 + 2.7 + 2.8 = 8.1

B^ = 9.8 + 12.2 + 10.7 = 32.7.

As a check, the sum of the T's is G and sum of the B^»s is kG. The T's and

B^'s are written in the first two coliamns of the working Table VI.

Table VI

Computations for the Intra-block Analysis of a GD Design

Treat-
y\

Adjusted
ments T Bt Q G» 108t Means

1 8.1 32.7 -Oc3 - 1.5 - 2.1 2.756
2 6.8 32.^ -5.2 - 3.1 -59.3 2.226

3 7.5 32.5 -2.5 - 5.5 -2'^. 5 2. '^48

k 9.3 31.7 5.5 10.1 55.9 3.293
5 8.2 33.5 -C.7 - 1.5 - 6.9 2.711
6 9A 3^.^+ 3.2 - 3.1 41.5 3.159
7 8.7 35.2 -O.k - 5.5 0.7 2.781
8 8.8 3^.2 1.0 10.1 1.9 2.793
9 8.3 33.7 -0.5 - 1.5 - 4.5 2.733
10 P.O 33.1 -1.1 - 3.1 -10.1 2.681
11 7A 32.2 -2.6 - 5.5 -25.7 2.^^37

1? 9.^ 3^.0 3.6 10.1 33ol 3.081

Total 99.9 399.6 0.0 0.0 ' 0.0

(c) From those two columns, form a third column of the values
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Q = kT - Bf

The values should sum exactly to zero.

(d) The treatment means t, adjusted for block effects, can now be computed.

The formula is

rk(k - l)t = (k - C2)Q + (ci - C2)Si(C). (8.5)

The aufintity S^CQ) denotes the sum of Q, taken over the first associates of

the treatment in question. Thus in finding the adjusted mean ^of treatment 1,

add the values for treatments 5 and 9, which are the first associate of

treatment 1. For this design, let

G* = Sum of Q over all treatments in the

same row in the association scheme.

For treatment 1, G' is the sum of the Q over treatment 1, 5 and 9. Then it

follows that

G' = s^Cq) + q = -0.3 - 0.7 - 0.5 = -1.5.

Substituting; for S]^(Q) in terms of G' in the equation (8,5) for t, then

rk(k - l)t = (k - cp - ci + cpjQ. + (c^ - 02)0*

= (k - ci)Q + (c^ - C2)G', (8,6)

Finally, substituting numberical values for the constants in (8,6) for t,

108t = 12Q - G',

The values of 108t appear in column (5) of Table VI, They should add to zero,

(e) To obtain the adjusted treatment means, multiply the values in column
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(5) by 0.009259, the reciprocal of 108, and add the general mean, 2.775. for

treatment 1 this gives

(0.009259)(-2.1) + 2.775 = 2.756.

(f) In the analysis of variance, the total sum of squares and the sun of

squares for blocks are found in usual way. The general formula for the ad-

justed treatments sum of squares is

(l/k)5.tQ = (l/^)5tQ

where the sum is taken over all treatments. This may be written

(l/4)5tQ = (lA32)(108t)Q = ^^. °- P"°^"^^^ of^col-omns (^) and (^)

Table VII

Intra-block Analysis of Variance

Source of Degree of Sum of Mean of

Variations Freedom Squares Squares

31ock(unadj.) b-1 8 0.9950

Treatment( adj .

)

v-1 11 2.3525 0.2139 = E^

Error vr-v-b+1 16 2.0600 0.1288 = Eg

Total vr-1 35 5.^075

The observed F-ratio of 1.66 (0.2139/0.1288) with 11 and I6 degrees of free-

dom is not significant at the 5^ level.

For two treatments that are first associates, the error variance of the dif-

ference between their adjusted means is

2Eo (k - ci) 2(0.1288) {k - 0)

X = X = O.IIU5 ,

r (k - 1) 3 (^ - 1)
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For second associates, the error variance of the difference between the ad-

justed means is

2Eq (k - C2) 2(0.1288) (4 - 1/2)

-^" (k-1) = 3 = (^-1) =°-'°^9 .

Since each treatment has n^^ = n - 1, first associates and n2 = n(m - 1), sec-

ond associates, the avera.ije variance is

(n - 1)(0.1145) + n(m - l)(0.1049)
= 0.1.66 .

V - 1

The least si^nicant differences (LSD) for testing the difference between two

treatments is obtained by multiplying the square root of the estimated vari-

ance with the values of t at the significance level desired and with vr-b-v+1

degrees of freedom. Thus for first associates.

LSD 5/^ = 2.12070.1145 = 0.71?'+ ,

for second associates.

LSD 5$ = 2.120^0.1049 = 0.6867 .

If it is desired to use the same approximate LSD 5/^ for every pair of treat-

ments irrespective of whether they are first or second associates, then an av-

erage variance O.IO66 is

Average LSD 5% = 2.120/0.1066 = 0.6922 ,

(2) Analysis V/ith Recovery Of Intor-block Information. The computations

made in pnrt (1) are needed for this analysis. The methods are:

(a) Find the unadjusted treatments sum of squares in the usual way. This
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comes to 2c55^+2o Iron this value and the analysis in Table VII, obtain the /.

adjusted blocks sun of squares by the relation:

Block (adj.) = block(unadj,) + treatment (adj.) - treatment (adj.)

= 0.9950 + 2.3525 - 2.55^2

= 0.7933.

Thus the following Table VIII is obtained.

Table VIII

Auxiliary Table for Inter-block Analysis of Variance

Souce of

Variations

31ock(adj,)

Treatment
(unadj.)

Error

Total vr-1 35 5.^075

(b) Various weighting coefficients are now computed, since they are designed

to give component series an importance in proper relation to their real sig-

nificance.

w = 1/Eg = 7.76

Degrees of Sum of Mean of
Freedom Squares Squares

b-1 8 Oc7933 .0.0992 = Eb

v-1 11 2.55^^2

vr-v-b+1 16 2.0600 0.1288 = Eg

w - w'

It is necessary that coefficients dj^ and dp which are computational con-

stants in analysis with inter-block information and take the place of the c*

and c^ in the intra- block analysis. These d's depend on VI, on the c's and

on other structural cons.tants A , Hi A^. and X^' ^y (0«3). then



29

d^ = — =

A + rHW + r^W^

A + riiW + r^vr

(c) To replace the Q, then compute values P

P = w'B^ + wQ - (w'kG/v)

= 11.193^ + 7.76Q - 372.627.

The p's are shown in column (l) of Table IX, For treatment 1

P = (11.19)(32o7) + (7.76)(-0.3) - 372.627

= -9.042.

The P's add to zero, apart from rounding errors,

\d) The adjusted treatment means t's are given by the equation

kr{w' + w(k - l)}t' = (k - d2)P + (d^ - d2)Si(P)

where S^ denotes summation over the first associates of the treatment in

question. For this design the formula can be written, as (8.5) of the intra-

block analysis,

krjw* + w(k - l)}t' = (k - d2)P + (d-L - d2)G"

where the G" for any treatments is the sum of the P's over the row in which

the treatment appears in the association scheme at the beginning of this sec-

tion. The G" value are placed in column (2) of Table IX, For treatment 1

G" = -9,042 - 3.194 + 0.596 = -U.640.
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Hence

^. = 1 p + i 1 G"

kr|w' + w(k - l)j krfw' + w(k - l)

}

= O.OIOOP + 0.0003G" .

Table IX

Combined Intra- and Inter-block Estimates of Treatment Effects

Treat- (1) (2) ^7) (^)

ment P G" tv Mean(adj,)

1 - S.Qk2 -11.640 -0.0939 2.681

2 -50.^23 -24 „ 056 -0.5114 2.264

3 -28 o 3 52 -42.680 -0.2963 2.479
4 24 o776 78.376 0.2713 3.046

5
'

- 3.194 -11.640 ' -0.035^ 2.740
6 37cl4l -24.056 0.3642 3.140

7 18.157 -42.680 0.1688 2.94^+

3 17.831 78.376 0.2018 2.977
Q 0.596 -11.640 0.0025 2.778
10 -10.774 -24.056 -0.1150 2.660

11 -32.485 -42.680 -0.3377 2.437
12 :35.769 78.376 0.3812 3.156

0.000 0.000

Then, the adjusted treatment means are

r

G ^

vr

where G/vr is the general mean. For this example,

Adjusted mean = 2.775 + O.OIOOP + 0.0003G" .

These values appear in column (4) of Table IX.

(e) For the combined intra- and inter-block analysis there is no exact test

of the hypothesis of the quantity of treatment means.

The estimated variance of the difference between two treatments which are

first associates is
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^.'i%ti^ - o-o?^'*

.

Likewise the estimated variance of the difference between two treatments . ...f

which are second associates is

^^^ - ^^) = 0.0802 .
rjw' + w(k - 1)|

As in the intra-block analysis, an average variance of the difference between

two treatment (adjusted) means is computed as

2(0.077^) + 9(0o0802) ^ Q^Q^^^ ^

Thus for first associates and second associates respectively,

LSD 5^ = 2.120/0,077^ = 0.5899

. LSD 5$& = 2.120^0.0802 = 0.6008 .

Thus an average LSD is

LSD 5^ = 2.120/0.0797 = 0.5985 .

(3) Summarization Of Results

The results of the analysis may be summarized in two tables. Column (2) of

Table X gives the \inadjusted treatment means obtained by dividing each treat-

ment total T(taken from column (1) of Table VI) by r. Column (3) gives the

adjusted means without recovery of inter-block information, obtained from

column (6) of Table VI. Column (k) gives the adjusted means with recovery of

inter-block information, obtained from column (ij-) of Table LX.
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Table XI gives the variance of the estimated difference between two treatment

means, and also the LSD values. The value of F-ratio for testing the hy-

pothesis of the equality of treatment means is 1.66 with 11 and l6 degrees of

freedom.

Table X

Treatment Means

Treat- Unadjusted
mean

Ad/justed, with inter.-block inf.
ment Without recovery Recovery

1 2.700
. 2.756 2.681

2 2.267 2.226 2.264
3 2.500 2.5^8 2.479
4 3.100 3.293 3.046
5 2.733 2.711 2.740
6 3.133 3.159 3.140
7 2.900 2.731 2.944
8 2.933 2.793 2.977
9 2.767 2.733 2.778
10 2.667 2.681 2.660
11 2.46? 2.537 2.437
12 3.133 3.018 3.156

Table XI

Variance and LSD for Estimated Treatment Difference

Item Intra-block Combined Intra-.
and Inter-block

Variance of estimated
treatment difference

1. between 1st associates

2. between 2nd associates

3. average

LSD 5 per cent

1. for 1st associates

2. for 2nd associates

3. for average

0.1145 • 0.7174

0.1049 0.6867

0.1066 0.6922

0.0774 0.5899

0.0802 0,6008

0.0797 0.5985 .

%
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An inconplete block design with v treatments each replicated r times in b

blocks of size k is said to be group divisible if the treatments can be divided

into n groups each with n treatments so that the treatments of the same group

ocour together in .\^ blocks and the treatments of different group occur together

in Xp blocks, where A-j^ / Xp. This report discusses some properties of group

divisible designs V7ith two associate classes.

For all group divisible designs the following relationships hold: v = nn,

bk = vr, X^in - 1) + \pn^^ - 1) = r(k - 1), r > X^, and rk > vAp. It can be

shown that these designs fall into three classes: (1) Singular GD, for which

r = \, (2) Semi-regular GD, for which t>\.^, rk = v/^,, and (3) Regular GD,

for xchich r >Ai, rk > vAp. Each type of group divisible design has different

confounded properties for asymmetrical factorial experiments,

A Singular GD design is always derivable from a balanced incomplete block

desi.gn by replacing each treatment by a group of n treatments, VJhen b = v

the quantity (r - Ai)^'^"~^Hrk - vAg)"'" must be a perfect square shown by the

incidence matrix N ( IN!
'
= |NN'| ), For Singular GD design b > m, for Regular

GD design b > v, and for Semi-regular GD design b > v - m + 1, every block con-

tains the s--me number of treatments from each group. It is also shown that for

resolvable Regular GD design b > v + r - 1 and for resolvable Semi-regular GD

design b > v - m + r,,

The analysis of variance for intra- and inter-block estimated treatment means

and the least significant difference at the 5 per cent level for testing esti-

mated treatment difference has been given for sample data.


