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Chapter 1
INTRODUCTION

The study of critical phenomena deals with the behavior of a
system near its critical point. This is the point where the phase transi-
tion line of a system terminates, that is, where distinctioh between
phases (for example Tliquid and vapor phases) disappear. A wide variety
of physical systems in nature exhibit anomalous behavior near their
critical points. Liquid-gas systems, binary fluids, ferromagnets and
maghetic alloys are all known to behave oddly. It has been found
that thermodynamic properties of these systems diverge as the critical
point is approached. The specific heat of a gas for example diverges.
The isothermal susceptibility of a ferromagnet grows very rapidly in
the region of its Curie temperature. It has also been observed in 1light-
scattering experiments that a fluid scatters 1ight strongly due to very
strong density fluctuations, at the critical point.

The attempts to predict, explain, or even describe thgse
behaviors at the critical point have met with varying degrees of success.
One of the earliest attempts was the theoretical work of van der Waals
in 1873. The van der Waals theory now represents one of the classical
theories in critical phenomena. It has now become customary to divide
all the existing theories of critical phenomena into two categories:
the classical theories and the present or modern theories of critical
phenomena.

In this introductory section, the classical theories will be

reviewed so as to provide a historical perspective of critical phenomena



and also to give us a better qualitative understanding of the subject.
The modern theories will be mentioned briefly before we introduce the

main subject of this thesis.

A. The Classical Theories:

The ideal gas law,
PV = NKT = nRT (1)
is the simplest theory of a fluid system which assumes that gas particles
interact very weakly with one another so that these interactions can be
neglected altogether.

In Eq. (1),'P and V are pressure and volume of the fluid respec-
tively, n = N/NA is the number of moles of gas in the system, NA is the
Avogadro number, k is the Boltzmann constant and R is the ideal gas
constant. For a gas at low densities and at high pressures, this equation
is fairly well obeyed. To describe a gas at normal densities, van der
Waals introduced the notion of imperfect or non-ideal gas. According to
the van der Waals theory, an approximate equation of state of a fluid
system is given by

- __RT

g . § (N

V -b)

N

(2)

=<1

where Q = ¥/n is the volume per mole, a and b are phenomenological para-
meters characteristic of the fluid. The theory assumes that gas molecules
have finite volume which means there is a limit to the volume V in Eq. (1).
This is represented by the excluded volume term b in Eq. (2). It further
assumes that there exists an attractive force between the gas molecules
which leads to a decreése in pressure represented by the term a/\72 in

Eg. 12).

Figure 1 shows the behavior of one mole of van der Waals' fluid
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FIGURE 1

A schematic plot of mean pressure versus volume
for one mole of van der Waals' fluid at various

temperatures T using Eq. (2).
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when a graph of mean pressure is plotted against volume at various
temperature T using Eq. (2). At high temperatures, the fluid has only
one unique volume V and thus only one phase exists, namely the gas
phase. In this high temperature region, the behavior of the gas can be
approximately described by the ideal gas law, which is clearly demon-
strated by Eq. (2) if we let a and b become negligible. The pressure is
a monotonic decreasing function of volume so that the isothermal com-
pressibility KT = - %—(aV/aP) is positive and finite at high tempera-
tures. As the temperature T decreases to the value Tc’ there is a
horizontal inflection point C on the P-V isotherm. At this point, the
slope (8P/3Y) = 0 and (32P/aV2) = 0; thus the isothermal compressibility
is infinite. The point C is called the critical point of the fluid and
TC is the critical temperature. Below the critical temperature all iso-
therms exhibit a "loop." At these temperatures, below Tc’ the van der
Waals fluid acquires three different values of volume V for each value
of pressure P. However, one of the values is unphysical since it Ties
in the region between the maximum and the minimum where the slope 3P/3V
is positive implying a negative isothermal compressibility. The fluid
then co-exists in two different phases, namely the liquid and gas phase.
The Maxwell equal area construction, which replaces the loops by straight
1ines represented by the broken straight lines in Figure 1, ensures that
the Tiquid and the gas phase have the same chemical potential, tempera-
ture and pressure; thus ensures that the two phases co-exist in equilib-
rium. The two-phase region represented by the shaded region in Figure 1
is bounded by the curve ACE called the coexistence curve. The maxima
and the minima are bounded by the curve BCD which is called the spinodal

curve. The region between these two curves is the metastable state of



the van der Waals fluid (superheated 1iquid, supersaturated gas).
Using the conditions aP/3V = 0 and 32P/3V% = 0, we can show
that at the critical point

] 1 a _ 8
Ve=3Nb, P =57 gz » RT. =575 - (3)

With these values we can eliminate the parameters a and b in Eq. (2)
to obtain

~

(F3+$—2)(3\7—1)=8T (4)

where P = P/Pc, V= V/VC and T = T/Tc. This new form of van der Waals'
equation means that if we measure pressure, volume and temperature,
respectively, in units of Pc’ VC and Tc’ then the equation of state is
the same for all substances. Thus any two fluids with the same values
of 5, Q and f may be said to be in corresponding states. This law of
corresponding states together with the existence of the critical point
demonstrated by the van der Waals theory suggest that the critical point
is a general phenomena which exists in all gases.

The fact that magnetic systems also exhibit critical phenomena
was discovered much later. The first theory to explain magnetic phase
transition and the existence of the Curie temperature TC was provided
by Pierre Weiss in 1907. The now classical Weiss theory is greatly
similar to the van der Waals theory for liquid-gas phase transition.
Both of these classical theories assume that the attractive forces be-
tween the molecules which produce cooperative effects have a very long
range. For this reason, they are also known as the mean-field theories.
As a result, they both give the same quantitative description of critical
phenomena. We shall simply quote their results here. The derivations

1,2

are given in several books on critical phenomena.

a. At the critical point both theories predict



that the shape of the coexistence curve is qua-
dratic. That is, for the van der Waals theory,
the coexistence curve is given by

(o = 0g) = IT - Tc|l/2
where PL and pg are 1iquid and gas densities
respectively. And, for the Weiss theory,

L AR

where M is the magnetization of the magnet sys-
tem.

b. At the critical point the specific heat
displays a discontinuity.

¢. The compressibility or the susceptibility
become infinite at the critical point as

1/(T - Tc)'

Although the classical theories provide a correct qualitative
description of critical phenomena their quantitative results quoted
above disagree with almost all experiments. In the 1940's Guggenheim
realized that the coexistence curve of a fluid system is not parabolic.
The now classic Guggenheim plot is reproduced in Figure 2 which shows

the temperature dependence of the liquid-gas density difference (pL - DG)

for eight different simple fluids. The fact that the data, properly
normalized, fall on one and the same curve is ih accord with the law of
corresponding states. The shape of the solid curve is a cubic function
rather than the quadratic function that the classical theories would pre-
dict. Experiments done on specffic heat of fluid and magnetic systems
show that the specific heat of these systems diverges at the critical

point according to a certain power law which disagrees completely with



FIGURE 2

Measurements on eight fluids of the coexistence
curve. The solid curve corresponds to a fit to

a cubic equation. From Ref. 44.
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the classical results. The compressibility and the susceptibility are
found to diverge more strongly at the critical point than the results
predicted by the classical theories. Table 1 provides a comparison

between the classical results and a typical experimental results.

B. The Modern Theories:

The failure of the classical theories to correctly represent
the observed thermodynamic behavior near the critical point is attributed
to their assumption that attractive forces between molecules are long
ranged. In real fluids, however, these forces are usually short ranged.
As an attempt to predict the critical behavior of more realistic systems,
several theoretical model systems were proposed. The Ising model, the
classical Heisenberg model and the spherical model are all well-known
model systems with short-ranged forces. The Ising model assumes that
each atom on a lattice site either spins up or down (the spin is said to
have a dimension of one) and the interaction is between neighboring pairs.
The Ising model provides a crude model of ferromagnetism and it also
serves as a practical model for many systems such as a one-component
fluid (through the lattice-gas), a binary fluid and alloy. The Heisen-
berg model regards the magnetic moments as being related to quantum-
mechanical three-component spin operators (three-dimensional spin), and
assumes that the energy is proportional to the scalar product of these
operators. The Heisenberg model can be used to describe behaviors of a
certain ferromagnets and antiferromagnets. Finally, the spherical model
which assumes an infinite dimensionality of spin corresponds to no
realistic systems in nature. Unlike the Weiss model of ferromagnetism,
the Ising and the Heisenberg model unfortunately have not been solved exactly

in three dimensions. Only the two-dimensional Ising model is exactly



TABLE 1:

A comparison between typical experimental
results and the classical results on the
behavior of magnetic and liquid-gas sys-
tems near the critical point.

Typical Experimental Classical Results
Results
. T-T.8 T-T,1/2
Shape of coexistence (oy - op) - |——<|% 3 (p, - 0p) ~ | c|
Ve L G TC L G T
g=0.3-0.4
Compressibility or Ky or xp - (I—:—Tc)'Y : Kp or X7 - (I—-Z---Tc:)'1
susceptibility T
C o
y=1.1-1.4
i g T-T. -0 . F i
Specific heat CV or CH - (‘*Tr-C) i discontinuous
o
a=0-0.2

11



12

soluble, by the famous Onsager solution done in 1944. The model demon-
strates that the specific heat possesses a Togarithmic divergence at

TC when approached from both the high and Tow temperature sides. This
is the first theoretical result that contradicts the predictions of the
classical theories. The other exactly soluble model is the spherical
model which remains the only model that can be solved exactly in

three dimensions.

When exact solutions to the Ising and the Heisenberg model
failed, approximation methods were sought. Gaunt and co-workersa’4 use
the high-temperature series method to obtain approximate solutions for
the two- and three-dimensional Ising model. Another method is the re-
normalization group and the e-expansion technique which have been em-
ployed by Brezin and co-workers to obtain equation of states for an
Ising-Tike ferromagnet5 and a classical Heisenberg ferromagnet.6 The
results of these approximation methods are moderately successful.

Other attempts to predict an equation of state of a system near
the critical point have been done phenomenologically. The NBS equa-
tion7 and the parametric equation of state8 (also known as the linear
model) are two well-known examples. As far as creating an equation
suitable for comparison with data, their results have been perhaps more

successful.

C. This Work

Qur work, 1ike much other theoretical work in this area, is con-
cerned with obtaining an equation of state that can describe the
behavior of systems near the critical points. The work has been built

around the concept of a spinodal--a concept that has been questioned by
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some theoretical considerations.

As we have seen earlier, the concept of the spinodal and
metastability was first introduced by van der Waals in his classical
theory. By definition, a true spinodal curve actually represents the
1imit of metastability of the one-phase state in the two-phase region.
Benedek9 used this concept to describe critical region data off the
critical isochore. According to the spinodal assumption introduced
by Benedek, along any off-critical isochore various thermodynamic and
transport properties diverge relative to a spinodal temperature with
the same power-law dependence as they exhibit along the critical iso-
chore when the critical temperature is approached. This concept has

10 In their

been discussed extensively by Chu, Schoenes and Fisher.
paper, Chu et al. have shown that the spinodal assumption would lead
to an equation of state that is non-analytic in density on the critical
jsochore for temperatures greater than the critical temperature. They
further showed that the equation of state would also not be analytic
in temperature on the critical isotherm. Thus, the equation of state
derived from the spinodal concept would fail to meet the analyticity

11 Regardless of whether the equation will

requirements imposed on it.
be smooth enough to fit data, its non-analytic behavior has been the
strongest theoretical objection.

Whether a true spinodal curve exists in nature is still question-
able. No experiment has been done to directly indicate its existence.
On the other hand, experimental data taken in the one-phase region (in
the vicinity of the critical point) fit Benedek's spinodal assumption
very well, thus, implying the existence of a spinodal curve. Chu

10

et al.”" find that their light-scattering data support the concept of
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a spinodal. This is also true of thermal-diffusivity and diffusion-
coefficient data taken by Benedek.9 Various other experimental datalz'14
have shown a similar support. However, whether the spinodal curve implied
by these experimental data is ﬁhe true spinodal (i.e. the 1imit of meta-
stability) is unknown. For this reason, Chu et al.lo preferred to call it

the "pseudospinodal curve" and Benedek's assumption the "pseudospinodal

assumption” a terminology which we shall henceforth use.

In view of all the controversies given above, Sorensen and Semon15

have recently derived an equation of state by applying the pseudpspinoda]
assumption to the isothermal compressibility. The equation of state they
derived works very successfully for liquid-gas systems, fits PVT data as
well as other phenomenological equation of state mentioned earlier, and

it is very easy to use. From their equation, other thermodynamic functions
and their universal amplitude ratios can easily be derived. The equation,
however, has two difficulties. First, it only works for liquid-gas sys-
tems which are described by the three-dimensional Ising model, but not for
other systems. Second, as expected, the equation is not analytic in the
one-phase region on the critical isochore and critical isotherm.

The successful results of Sorensen and Semon suggest the useful-
ness of the pseudospinodal concept in critical phenomena. Their success
has been the motivation of our work. Here, we present some more evidence
supporting the concept of the pseudospinodal. By revising Benedek's pseudo-
spinodal assumption, we find an equation of state which not only works
for the three-dimensional Ising model but for the Heisenberg model sys-
tems as well. The revised pseudospinodal assumption is obtained by

adding an additional term to the original assumption. The form is
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inferred from the known behavior of the isothermal compressibility of
the spherical model along the off-critical isochores. The equation

of state we derived agrees when compared with other theoretical equa-
tions of states, and predict universal amplitude ratios in good agree-
ment with data and other theoretical results. WNext, by using available
experimental evidence for the binary fluids and the liquid-gas systems,
we show that the data when fit to Benedek's pseudospinodal assumption
provides evidence for the existence of a universal pseudospinodal.

Before we present the detail of our work, basic theories of
critical phenomena and the terminologies that we will use in the later
chapters will be given first in the next chapter. In chapter three, we
present the revised form of the pseudospinodal assumption and show how
the equation of state is derived from it. Derivation of other thermo-
dynamic functions and their critical amplitude ratios are also presented.
In chapter four, we give the results of our numerical calculations on the
critical amplitude ratios; comparison of our equation of state with other
equations is also given. In chapter five, we explain how we have used
the available experimental evidence to test the existence of the universal
pseudospinodal. Finally, in the last chapter we summarize and discuss the

results we obtained.



Chapter 2
BASIC COMCEPTS OF CRITICAL PHENOMENA

The breakdown of the classical theories stimulated new non-
classical approaches to critical phenomena. The new approaches were

11 and experiments. The non-

pioneered by Widom,'® Griffiths,
classical theories culminated in the well-known renormalization group
theory. In this chapter, we shall present the new concepts in criti-
cal phenomena which have been initially introduced by Widom and later

extended by Griffiths.

A.  Order Parameter and Order of Phase Transitions:

In order to introduce the non-classical concepts we shall con-
sider phase diagrams for typical solid-liquid-gas and ferromagnetic phase
transitions.

Figure 3(a) is a pressure versus temperature diagram showing the
domains of existence of three phases, solid, 1iquid and gas. Each point
on the three curves in the diagram represents an equilibrium state in
which two or more phases can co-exist. The triple point, X, represents
an equilibrium state in which all three phases coexist. The critical
point, C, is the end point of the vapor pressure curve. By circling round
the critical point, one can pass continuously from the liquid to the
gaseous phase, without any necessity for a discontinuous transition.

Figure 3(b) is a magnetic field versus temperature diagram for

a material undergoing a ferromagnetic phase transition. It exhibits a

16



(b)
(c)

FIGURE 3

Typical solid-1iquid-gas phase diagram.
Typical ferromagnetic phase diagram.
Typical variation of the order parameter
(pL - pG) with respect to temperature for
the liquid-gas phase transition.

Typical variation of the order parameter
M with respect to temperature for the

ferromagnetic phase transition.

17
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boundary line along the horizontal axis terminating at the critical
point. In zero field and at high temperature, one observes the para-
magnetic disordered phase, having no magnetization; as the temperature
drops, a transition takes place at the critical point T = TC. For
T < TC one observes the ordered ferromagnetic phase, which is
spontaneously magnetized. There is an analogy between this ferro-
magnetic phase transition and the liquid-to-gas transition; the magnetic
field and the pressure play analogous roles. The line XC is analogous
to the Tine H =0 (0 < T < TC).

The most fundamental idea which helps elucidate the behavior
near a critical point is the concept that this transition is describable
by an order parameter. The main characteristic of the order parameter
in any type of phase transition is that it vanishes above the critical
point and is nonzero in the region below the critical temperature Tc'
In the Tiquid-gas phase transition, the order parameter is the difference
between the 1iquid and gas densities, (pL - pG). Below the critical
temperature Tc’ that is in the two-phase region, this gquantity is nonzero.
As the critical point is approached from below, (pL - pG) gradually de-
creases in value and becomes zero at the critical point and above it. For
a ferromagnetic transition, the order parameter is the homogeneous magne-
tization, M. In this transition, the magnetization is nonzero in the
ordered phase, the ferromagnetic phase, and is zero in value in the dis-
ordered phase namely the paramagnetic phase.

When the order parameter has a discontinuity at the transition,
one says, following Landau,16 that one is dealing with a first-order
transition; when there is no such discontfnuity, the transition is at

least second order. In Figure 3(a) and 3(b), the transition lines are



1ines of first-order transitions; at the critical points the transition
are of second-order. If one plots the measured value of the order para-
meter as a function of temperature for a second-order transition, one
obtains typically curves 1ike the ones shown in Figure 3(c) and 3(d)

for the liquid-gas and the ferromagnetic phase transition respectively.
Note that in each case there is no discontinuity at TC in the order para-

meter, but there is a discontinuity in its slope.

B. Choice of Variables:

For the sake of simplicity, from now on we shall restrict our dis-
cussion to the more‘fami1iar 1iquid-gas phase transition. Analogies
between fluid and magnet systems will be given whenever it is necessary.

To describe thermodynamic behavior of a fluid system near the
critical point, there are two sets of independent variables we may use.
One set of the independent variables is volume V and temperature T; and
another set is density p (i.e. the number density p = N/V) and tempera-
ture T. If volume and temperature are chosen, then the characteristic
thermodynamic potential is the Helmholtz free energy per mole; in this
description pressure P and volume V are conjugate variables and the
equation of state P(V, T) is obtained by differentiation of the Helmholtz
free energy with respect to volume. If density and temperature are used,
then the characteristic thermodynamic potential is the Helmholtz free
energy per volume; in that description chemical potential u and density
p are conjugate variables and the corresponding equation of state
u(p, T) is obtained by differentiation of the Helmholtz free energy with
respect to p.

Thermodynamics, however, does not uniquely specify which set of

variables is to be preferred in describing the critical behavior of fluids.



To make the choice, we consider symmetry properties in the thermo-
dynamic variables. Figure 4 shows the coexistence curve of argon in
terms of volume and temperature and in terms of density and temperature.
As illustrated in the figure, the coexistence curve, when plotted as a
function of density shows considerably more symmetry than when plotted
as a function of volume. An equally striking difference in symmetry
features is noted above the critical temperature when a u(p) isotherm
is compared with a P(V) isotherm, as illustrated in Figure 5; the u{p)
isotherms are antisymmetric with respect to the point Pas u(pc), in con-
trast to the P(V) isotherms. In the magnetic systems, the spontaneous
magnetization is symmetric with respect to the line M=0, whereas the
magnetic field H is antisymmetric in M.

In view of these symmetry features we shall adopt density p and
temperature T as the independent variables to describe the behavior of
fluids near the critical point. The extensive thermodynamic functions,
such as Helmholtz free energy, A, entropy, S, and heat capacity at con-
stant volume, CV, are therefore taken per unit volume. The equation of
state to be considered will be the chemical potential u, as a function of
p and T. For ferromagnets, the obvious independent variables are magne-
tization M and temperature T, and the corresponding equation of state is
the magnetic field H(M, T).

In critical phenomena, all thermodynamic properties are made
dimensionless by expressing them in units of appropriate combinations of
critical parameters. We thus define

* = * = * =
p p/pc s T T/Tc » A A/Pc

WK = up /P, PY = P[P, S* = ST /P (5)

- - * o _ %2k



FIGURE 4

The coexistence curve of argon in terms of
volume and temperature and in terms of den-

sity and temperature. From Ref. 2.
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FIGURE 5

P(V) isotherms and u(p) isotherms of argon
in the critical region. In contrast to the
P(V) isotherms, the u(p) isotherms are nearly
antisymmetric with respect to Pc From Ref.

2.
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The scaled critical density, pressure and temperature are therefore unity by
definition. In the above equation, KT = —V_1 (%gJT is the isothermal
compressibility and

xp = (5707 = szT (6)
is defined as "the generalized compressibility" or equivalently "the
generalized susceptibility" in magnetic language. In addition, we
introduce quantities defined with respect to their values at the critical
point,

aT* = (T - T )/T (72)

C

sp* = (p - o )0, (7b)

and the chemical potential difference which is defined as
* = -
aw* = [ule,T) - ule.s TI o /P, (8)
where u(pc, T) is the chemical potential on the critical isochore at

temperature T.

C. Critical-Point Exponents and Power Laws:

In the description of the anomalous critical behavior of a
physical property, it is assumed that sufficiently close to the critical
point the property varies, to a first approximation, as a simple power.
of the temperature difference or the density difference from the critical
point. The exponent of the power will depend on the property chosen, the
path along which the critical point is approached and the way the dis-
tance from the c¢ritical point is measured. The most common]y used power
laws, and also the power laws needed for the purpose of this thesis, for

thermodynamic properties are defined as follows:

coexistence curve: ap* = 2B|aT*|F (9)

D (ap*)|ap*5 , (aT* = 0)  (10)

critical isotherm: Ap*
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]

compressibility: p*2 KX =T (aT*)”Y , (p* = 1, aAT* > 0) (11a)
T

p*2 K¥ = 1“'[.&T"‘|'YI , (coexistence curve,
(11b)
AT* < 0)
specific heat: Cy/T* = é—(AT*)'“ , (p* = 1, AT* > Q) (12a)
C/T* = a;—[AT*I'a , (coexistence curve,
(12b)
AT* < 0)
Ay -
C/T* = ¢ |aT*[™™ , (% = 1, AT* < 0,
(12¢)

two-phase region} .

In addition to all these, we also introduce the critical-point exponents
v', v and n which refer to the behavior of the pair correlation function
G(r) of a system in the critical region. Since a rather detailed dis-
cussion of this function is given in Reference 1, we give only a brief
definition of the exponents themselves here. The correlation length £ is
a measure of the spatial range of the density correlation function. It is

assumed that very close to the critical point,

g =g (aT9)™ , (aT* > 0, p* = 1)

' (13)
£y’ |aT*|™ , (AT* < 0, coexistence curve) .

The pair correlation function at T = TC falls off to zero with distance r

with the simple power Taw form

6(r) = & e U2 s g e =) (14)

Here d is the dimensionality of the system.
The paths along which all the above power laws are defined, namely

the critical isochore Ap* = 0, the critical isotherm AT* = 0 and the co-



existence curve are schematically indicated in Figure 6.

At one time, many thought that the values of the critical-point
exponents were all reciprocal of integers. However, these exponents have
now been measured with experimental accuracies that leave no room to
doubt that their values are indeed not inverse integers. Values of the
exponents a, 8, v, 6, v and n are given in Table 2 for selected fluid and
magnetic systems, and for a few theoretical models. If we study the
table, we notice a distinct similarity among the values found experi-
mentally for each exponent despite the fact that the materials are of
varied difference in nature. Table 2 also clearly shows the failure of
the classical theories to predict the observed values of the exponents.
Also failing in this regard are the various exactly soluble models such as
the two-dimensional Ising model and the three-dimensional spherical model.
On the other hand, the predictions of the three-dimensional Ising model
and the three-dimensional Heisenberg model do appear to mirror to a certain
extent the data on, respectively, fluid and magnet systems.

The scaling laws to be introduced later impose a number of condi-
tions upon the critical exponents in the power laws. First, as regards
the exponents a, vy, v, their primed values (Tow-temperature values,

T < TC) and unprimed values (high-temperature values, T > TC) are equal.
_Y,v'zv. (15)

Furthermore, between the seven exponents defined above there hold four
relations among them. The first three involved only the exponents them-

selves.
2 -a=8(8+1) (16a)

B (s -1) (16b)

<
n

(2 - n)v (16c)

-
n



FIGURE 6

Critical exponents for power-law anamolies
of thermodynamic properties. The diagram

is taken from Ref. 18.
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while the fourth involves also the dimensionality of space:
\)d = 2 - . (16d)

By virtue of these four relations, the problem of determining the seven

critical exponents reduces to determining any two of them.

D. Generalized Homogeneous Functions and the Homogeneity Postulate:

The concept of homogeneity plays a very important role in criti-
cal phenomena. As we shall see, the homogeneous function approach leads
to scaling laws for thermodynamic functions and thus equation of state of
a system, it predicts the power laws introduced in the previous section
and also gives the equality relations among the critical exponents, Eq.
(15) and Eq. (16). To introduce this concept we consider here functions of
two variables only; generalization to functions of more variables is
obvious. |

A function f(x,y) of two variables x and y is called a homogeneous

function if it satisfies the relation

b

(2% , A%) = x f(x,y) (17)

for two fixed exponents a and b and for all values of the parameter k.l

When a function has the property of homogeneity one can always
deduce a scaling law, that is the dependence on the two variables can be
reduced to the dependence on one new variable by an appropriate change

of scale. For this purpose we take 22 = x'l so that

foe) -, = f 18
wrCal ;gﬁ) (2) (18a)

where for simplicity, we consider only positive values of the variables

x and y. Hence, the function f(x,y) after scaling with the factor x1/a
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becomes a function of the single variable z = yx'b/a. Another possible
choice is AP = y'l so that
Flx,y) _ oo -
i = f(27p 1) = f(u) (18b)
Yy Y
/b

From Eq. (18) we note that a generalized homogeneous
/b . g

where u = xy 2

function satisfies a simple power Taw along any line xy'a

1/b

f(x,y) = f(B,1) y (19)

where f(B,1) is a constant coefficient. In particular, along the

special lines x = 0 and y = 0 the function behaves as

b

£(0,y) = £(0,1) y/P , £(x,0) = £(1,0) x}/? . (20)

The modern description of the thermodynamic behavior of a sys-
tem near a critical point is based on the assumption of homogeﬁeity of
the basic thermodynamic functions. It has been observed experimentally
that the singular parts of various thermodynamic properties follow a
power law when the critical point is approached along the critical
isochore 4p* = 0, the critical isotherm AT* = 0 and along the coexistence
curve ao*/|aT*|® = & B.

In analogy to Eq. (19) and Eq. (20), the homogeneity postulate
assumes that the singular parts of various thermodynamic functions are
generalized homogeneous functions of Ap* and AT*. This postulate was
first formulated by Widoml6 for the singular part of the chemical poten-

tial. Here, we adopt the formulation of Griffithsll

assuming that the
singular part A* of the Helmholtz free energy in the one-phase region is
a generalized homogeneous function of its characteristic variables Ap*

and AT*, that is,
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A*(23ap* , APAT®) = A A*(ap* , AT*) . (21)

From now on, we assume that any non-singular or the so-called background
terms in the A*(ap* , AT*) function and other thermodynamic functions
have been subtracted off.

The homogeneity property Eq. (21) for A* implies that the chem-
ical potential difference Au* = (aA*/ap*)T, the isothermal compressibility
xf-l = (au*/ap*)T, the singular contribution to the entropy
S§* = -(aA*/3T*)p, and the specific heat C}/T* = -(32A*/3T*2) are also gener-

alized homogeneous functioné of aAp* and AT*, After differentiating and

redefining the parameter X appropriately one obtains,16
apr (337 (172) pow3b7(1=2) yray oy puk(pp* , aTH) (22a)
(22b)
A Hae* , aTH)
s (327 (1-D) pow | D/(ID) yray oy swpox | aTH) (22¢)

¢ (Aa/(l'Zb) Ap* Ab/(l'b) AT*) = A ¢ (ap* , AT*), (22d)

———— —

T* T*

Along the critical isochore Ap* = 0 and along the critical iso-
therm AT* = 0 these thermodynamic properties will vary according to power

Taws analogous to Eq. (20). In particular,

XL (0, a™) = xx7! (0,1) (arw)(1-22)/B (23a)
G (0, at) = & (0,1) (a1 (172b)/D (23b)
T* T*

aux(80*,0) = + au*(1,0) |apx|(173)/a (23¢)
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For the two coexisting phases below the critical temperature ap* = 0,

while Ap* # 0. From the homogeneity assumption Eq. (22a) it follows

coex.
that at the coexistence curve,

|—a/b

Au* (| AT* ap*, - 1) = 0

so that

* 'a/b * a
IAT | Ap e + B

where B is a constant. The power law behavior of the compressibility

and the specific heat along the coexistence curve Ap*/[AT*[a/b =+ B

follows from Eq. (22b) and Eq. (22d) in analogy with Eq. (19)

1 1-2a)/b

L (aex o aT%) = 7l (B,-1) [aTH| (243)
*

G (mpr o aT%) = 6 (8,-1) [aTx| (120D (24b)
T . Wi

We thus have recovered the thermodynamic power laws introduced in the

last section with

o =a'=(2b-1)/b, 8 =a/b
(25)
y=v"=(1-2a)/b,s=(1-a)la
so that
1 _ 8 N WP
A= /T "7 * O ° B(6+1) Z2-a (26)

Thus, from the last two equations we obtain
2-a=g(8+1) , y=28(s+1)

which are the equality relations given in Eq. (16a) and Eq. (16b).
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The other two exponent relations given in Eq. (16c) and Eq. (16d)
can be obtained by finding the scaling law for the correlation function.

This is fully discussed in Reference 1.

E. Scaling Laws for Equation of State and Thermodynamic Functions:

The homogeneity postulate asserts that all thermodynamic func-
tions and thus the equation of state can be expressed in terms of only
one variable by proper scaling procedures. Here, we shall apply this
postulate to obtain scaling laws for equation of state of a system and
its thermodynamic functions.

Consider first the Helmholtz free energy of a system. According
to the homogeneity postulate Eq. (21), the Helmholtz free energy satis-

fies scaling law of the form

A*(Ap* , AT*) _
e LR (27)

The above expression is obtained by letting 2@ = (Ap*)~1 and using
a=1/(6 +1), Eq. (26). Notice that A* is indeed a function of one
variable, x, when scaled by the quantity !Ap*l6+1. The variable x is

called the scaling variable and is defined as

X = ﬂ.T*,/]A.:)"‘IU8 ; (28)

By introducing a new function a(x) we can rewrite A* as
A*(nao* , aT*) = |ap*|¥*1 a(x) . (29)

The chemical potential difference au*(Ap* , AT*), can be ob-
tained by redefining the parameter A in Eq. (22a). By letting
Aa/(1~a) = (&p*)-l and using the values of a and b in Eq. (26), we

obtain
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Ap*(Ap* , AT¥)
|ap*|°

= Ap*(1,x) . (30)

A new function h(x) is introduced in place of ap*(1,x); thus we obtain

a scaled equation of state of the form
su*(ap* , aT*) = |ap*|® n(x) - (31)

Since Au* = (BA*/aap*)T , the scaling function h{x) is related to the

scaling function a(x) for the free energy by
Bh(x) = -xa'(x) + B(s + 1) a(x) (32)

where the prime denotes differentiation with respect to x.
The scaled equation for the compressibility x§-1 = (au*/ap*)T

follows immediately from Eq. (31)

71 = Jaox| 81 [on(x) - 2400 g (33)

Thus we see that the compressibility is a function of the variable x
only, when scaled by the quantity fdp*}a'l .

The scaling function h(x) and the scaled variable x merit
further discussion. x = AT*/]Ap*|1/B assumes the value -x  at the
phase boundary, the value 0 on the critical isotherm and the value + «
on the critical isochore. Since the chemical potential is a constant
along any isotherm in the two-phase region, Au* = 0 at the coexistence
and, thus, h(-xo) = 0. The function h(x) becomes infinite at the
critical isochore. 1In addition to the boundary conditions h(—xo) =0
and h(=) = », the function h(x) is restricted by several conditions,

formulated by Griffiths.ll These conditions arise first of all from the

requirements of thermodynamic stability. Thus, for the compressibility
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to be positive, it is necessary that

gsh(x) > x X} (34)

as follows from Eq. (33). Additional conditions are imposed on h(x) by
the assumption that u(p,T) is an analytic function throughout the one-
phase region with the exception of the critical point and perhaps the
phase boundary. The relation Eq. (31) then implies that h(x) has to be
analytic in x in the range "Xy <X < =3 it can, therefore, be expanded
in power series in x at every point in this range.

From Eq. (29) and Eq. (31), scaled equations for other thermo-
dynamic functions can be obtained. For the purpose of this thesis, we
present the expressions for the scaled entropy and heat capacity in the

one-phase region which are of the forms

-s% = [apx| (170)E Gi(yy (35)
and

-Ch/ = [ao*| B an(x) (36)
respectively.

F. Universality:

The theoretical studies of various model systems have led to the
formulation of the hypothesis of universality. This hypothesis greatly
reduces the variety of different types of critical behavior by dividing
all systems into a small number of equivalent classes called univer-
sality classes. The hypothesis of universality states that systems be-

longing to the same universality class are expected to have identical
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critical exponents and scaling functions and thus obey the same scaled

19-21 14 further states that these critical expo-

d19,22

equation of state.
nents and scaling functions depen on: (a) the lattice or space
dimensionality d of a system, (b) the symmetry of the order parameter,
and (c) the spin dimensionality n of the system. This means, for
example, the exponents and scaling functions for the three-dimensional
Ising model denoted by (d = 3, n = 1) are different from those

for the (d=3, n=3) Heisenberg model.

The fact that systems in the same universality class have iden-
tical critical exponents are convincingly demonstrated by Table 2. The
Guggenheim plot displayed in Figure 2 experimentally supports this hypo-
thesis. It shows that the eight different fluids (Ne, Ar, Kr, Xe, NZ’
02, co, CH4) belong to the same universality class. The hypothesis is
also strongly supported by the renormalization group theory of critical
phenomena.23

The principle of universality also implies universality of the
amplitude ratios T/T', £/5 ' and A/A'S (see Egs. (11), (12), and (13)).
Thus the (3,1) Ising model should have amplitude ratios different from
the (2,1) Ising model and the (3,3) Heisenberg model. A more detailed

study of this subject will be presented in a Tater chapter.



Chapter 3

DERIVATION OF THE EQUATION OF STATE FROM
THE PSEUDOSPINODAL ASSUMPTION

The concept of the pseudospinodal has been briefly introduced
in Chapter 1. Here, a further discussion of the concept is given.
We shall first restate the pseudospinodal assumption initially introduced
by Benedek.9 According to Benedek, a given transport or thermodynamic

property, X, of a system along any isochore p diverges as
- -X
X = X UT-T(p))/T .} (37)

as the pseudospinodal temperature Ts(p) is approached. Xo and x in
Eq. (37) are the same critical amplitude and exponent found along the
critical isochore. Note that along the critical isochore Pes

T(p.) = Tc‘ Under this assumption, the shape of the pseudospinodal
curve is found to have the following form

.1-

2% = By LT T (0))/T " (38)

where BS is the amplitude of the curve. As pointed out by Chu et a].,lo

it is expected from the concept of homogeneity and scaling that B+ = 8,
the exponent describing the coexistence curve.

Despite the strong theoretical objection of nonanalyticity men-
tioned in Chapter 1, the pseudospinodal assumption has proven to be use-

ful in describing critical phenomena. Benedek,9 Chu et 31.10 and other

41
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12-14

workers found that the assumption given by Eq. (37) described very

well their fluid data along the off-critical isochores. Subsequently,

Sorensen and Semon15

showed that this assumption could be used to derive
an equation of state and universal amplitude ratios of systems near the

critical points. Their equation compare favorably to fluid data

(He4 and Xe); the universal amplitude ratios they obtained for the fluid
systems are in good agreements with experimental values and other theo-

retical results.

The equation of Sorensen and Semon, however, does not work for
systems of other universality classes. The universal amplitude ratios
they predicted for the universality classes (2,1), (3,2), and (3,3) do
not compare well with u:iata.37 Apparently, Benedek's pseudospinodal assump-
tion works only for the universality class (3,1). Hence, to obtain a
pseudospinodal assumption that works for all universality classes, we
obviously need to revise the original pseudospinodal assumption. Since
the spherical model (3, n + ») is exactly soluble and the behavior of
its isothermal compressibility or susceptibility is well-known, it is
most reasonable that we deduce a revised pseudospinodal assumption from
it.

In this chapter, we present the revised pseudospinodal assumption

and give a detailed derivation of the equation of state.

A. The Spherical Model:

Consider the scaled equation of state (see Eq. (31)) for the

spherical model,

(x)

6
* * %* = *
du*(ap* , AT*) = [ap*|® h
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30

derived by Joyce. According to his derivation, the scaling function

hsm(x) for the spherical model is given by

hn(x) = (-E; +1)Y (39)

where =X, is the value of x on the coexistence curve. For this model,

the spinodal curve and the coexistence curve coincide,30 therefore,
_ coaee o 31
Ry © xl where Xqs by def1n1t1qn,
x = lao* VB (1T (0))/7 3 (40)

is the value of x on the pseudospinodal curve. Hence, without affecting

Eq. (39), we can write hsm(x) as
- Y
hsm(x) (x/x1 +1) 9 (41)

As seen from the preceeding chapter, the scaled expression for
the isothermal compressibility is related to the scaling function h(x)

according to Eq. (33). Using Eq. (33) and (41) we find

§-1
x0T )T
x{ 1

(8- Dix+x)" L (42)

If we now replace x, and x in the above equation by their respective

1
values and also note that

x = |ao* "B (11 ) /T = e TVE (T (0))/T,

(43)
+ (Tg(p)-T)/T 2
we obtain
a7 = Y LHT-T ()T Y + xy (s-1)ap !/ -
44

UT-T (o) )/T 371
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Along the critical isochore (ap* = 0), Eq. (44) becomes
xat = x(V UT-T /T3 (45)

Comparison of this equation with Eq. (1la) gives x{ = r, the amplitude
of the iosthermal compressibility. Thus, for the spherical model, the

isothermal compressibility along the off-critical isochores behaves Tike

AT R UTT)/TIY + (6-1)(xy/raoxt/®

(46)
UT-Tg(e))/T 377

We may call Eq. (46) the pseudospinodal assumption for the spherical
model. Note that if the second term is zero, Eq. (46) reduces to the

Benedek assumption,

e b UTT /T (47)

The fact that the spherical model has a different pseudospinodal
assumption suggests that the form of the pseudospinodal assumption is
unique to each model system. Equation (46) also suggests that the
original pseudospinodal assumption is best revised by adding an extra or
correction term to it. The most reasonable correction term to use is
the second expression in Eq. (46), since it is homogeneous and of the
same order of homogeneity as the first term (i.e. the original assump-
tion). However, note that the term (8-1} in the expression is a uni-
versal quantity and thus depends only on each universality class.

We shall replace (6-1) with an adjustable parameter C in the event that
C is not equal to (6-1) for other universality classes. MNotice that the

original assumption is revived by choosing C = 0.
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B. Derivation of h(x) from the Revised Pseudospinodal Assumption:

Thus, following the above discussion, the pseudospinodal assump-

tion we shall use in deriving the scaling function h(x) is given by

A= UTT )T+ Clxy/r) faox|

(48)
UT-T(o)/T 37

The generalized compressibility x? is related to the scaling function
h(x) according to Eq. (33). We find it beneficial to rewrite the re-

lation here, which is as follows

Lo ae* 5T tsh(x) - X hr(x))

X5
If we now compare this expression with Eq. (48), we obtain a first order

differential equation for h(x):
h'(x) - (8s/x)h(x) = &1+ x/x)Y + (Ca/x)(1 + x/x)T™H (49)

with w = -sx{/r )

66, with k a con-

Equation (49) has a homogeneous solution kx
stant of integration to be determined by the boundary conditions. The

general solution to Eq. (49) is

h(x) = xB tk + o(-1)8% xPSr% ymB L (1.0)Y
(50)

+ wc(-1)P8 xIBSIZ yBs-1 (1--u)Y'1 du}

where z = —x/xl.
For typical values of 8 ~ 0.32 and § ~ 4.5, the integrals in

this equation diverge if we try to make the lower limit of each integral
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zero. However, we can temporarily impose the condition Re(Bs) < 0 so
that we can make the lower 1imit in both integrals to be zero and
identify them as the incomplete Beta functions. Next we can equate

each integral with the appropriate hypergeometric series in the region
Re(gs) < 0 and then analytically continue each series back into the
region Re(gs) > 0. Thus, the solution to the differential equation (47)

becomes

hix) = kxBS + (x{/ﬁr) 2Fl(-sa, -§; 1-B83z)
’ (51)
+ (Cx]/eT)  ,F (-8, 1-8; 1-8632)

where 2F1 is the hypergeometric function. The fact that Eq. (51) is the
solution to the differential equation (49) can be verified by substitu-
tion. (See Eq. (22) on p. 102 and Eq. (4) on p. 101 of Erdé]yi.32)

There are several conditions that h(x) has to satisfy, which are
(i) it has to be real, (ii) it must be continuous across z = -1 (x = Xl)’
and (ii1) as x + = (z + -=), h(x) should approach x¥. Condition (ii) can
be met by using an analytic continuation formula for the hypergeometric
series (Eq. (2), p. 108 of Erdé1y1). This continuation procedure plus
the third condition determines the constant k. Thus, the resulting equa-

tion of state is

h(x) = (x]/6T)[{r(1-88)1(8)/T(-¥)} (1 - ¢/(s-1)1z|z| B¢

+ oF (=88, -y; 1-883z) + C F (-8, 1-v; 1-86;2)]

(52a)
» |z] €1
h

= (X{/ﬁr)[a(‘Z)Y 2F1('Y5 B 1+S; Z_
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Cas {r(-1-8)/r(-8)} (-z)"" oF1(1-v, 1485 2+8; 271y]
(52b)

s |z] =1
where Eq. (52b) is the analytic continuation of solution (52a) into the
region |z| > 1. In the above equation r(y) is the gamma function which
should not be confused with the amplitude of the isothermal compressibil-
ity r.

Equation (52) with the choice of C = 0 gives the equation of

15 which works for the (3,1) univer-

state, derived by Sorensen and Semon,
sality class. In their paper, Sorensen and Semon have shown that in the
classical Timit this equation (C = 0) reduces to the mean-field or the

van der Waals equation of state,

h(x) = £ (x5 + %) . (53)

0

when its corresponding exponents 8 = %, vy = 1 and § = 3 are substituted
into the equation. Thus, the equation of state derived from the pseudo-
spinodal assumption is at least reasonable since it reduces to the proper
classical 1imit. Obviously, the choice of C = (§-1) yields the equation
of state for the spherical model (Eq. (41)) when the spherical model
critical exponents B =%, & = 5 and vy = 2 are substituted into Eq. (52).
In the next chapter, we shall test Eq. (52) to see if it works for other

model systems when the critical exponents of each model system are used

and the parameter C is properly adjusted.

. ; e . ;
C. Universal Amplitude Ratios: T/T ,goigﬁ and Rx

This section is concerned with the derivation of r/r', EO/EO' 5

and Rx . A/A" will be treated separately; its detailed derivation will
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be presented in the next section.

To obtain I'/T' , we express the inverse isothermal compressibility
on the coexistence curve in two ways. First, if the critical point is
approached from below along the coexistence curve, then the usual relation

is (K% p*2)'1 = x%'l = %1 |aT*]Y . Another independent expression that
is also valid on the coexistence curve is the pseudospinodal assumption

Eq. (48). If we equate these two we find
| I - T'l o
P/T' = (xq/xg = 1770 {{x/x ) (14C) - 1}, (54)

Relations analogous to I'/T' can be obtained for other parameters
diverging on the isothermal compressibility pseudospinodal defined by X1
This is easily done by generalizing Egq. (54). For example, the correla-

tion Tength satisfies the equation

£,/5," = (x/xg = V7L xy/x ) (140) - 1} (55)

However, this generalization procedure does not work for A/A'. Sorensen

15 found that the equation similar to Eq. (54) did not yield

and Semon
values for A/A' consistent with the relation they obtained from another
alternative derivation of A/A', which we shall present in the next sec-
tion.

We next consider RX which is given by24

_ 6-1
RX = DrB , (56)

and is also expected to be a universal quantity. In the above equation,
D = h(0), T is the compressibility amplitude, and B is the amplitude of

the coexistence curve. From Eq. (52), we find

D= (x{/.sr)(1+c) i (57)
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Substituting the above value of D into Eq. (54) yields

R, = 670 (140) (x, /%)Y (58)

Notice that all the three relations, equations (54), (55) and
(58) contain xllxo. Since h(—xo) =0 and z = -x/x1 , the inverse of
xlfxo is the zero of the equation of state Eq. (52) and is uniquely
determined by 8, & and C, therefore making it a constant for each uni-
versality class and thus a universal quantity. We also note that the
three amplitude ratios r/r', 50/50' and Rx are all uniquely determined
by B, & and C and the zero of the equation of state. Thus, they are
universal for systems within a universality class. As we will see in

the next section, this is also true of the ratio A/A'.

D. Derivation of A/A':

The derivation of A/A' is straight forward but. is rather tedious.
The ratio A/A' is related to the specific heat CV at constant volume
which is in turn derivable from the Helmholtz free energy.

To derive A/A', we shall first consider the singular or the scaled

part of the free energy given by Eq. (29) which is

x|+

A*(Ap* AT*) = |ap a(x)

and shall first evaluate the scaling function a(x). Since a(x) is re-
lated to h(x) by the differential equation (32), it can be derived from

the equation of state Eq. (52). We find that this differential equation,
Bh(x) = -xa'(x) + B(s+1)a(x)

has the following simple solution
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-0, 2-0 o

+ x“7% ya'3 h(y)dy (59)

where o = 2-8(8+1) and K is the constant of integration. The integra-
tion in Eq. (59) is easily evaluated since h(x) is given by simple

power series specifically the hypergeometric series 2F1' However,
special care has to be taken in the 1imit as x approaches zero, since in
this T1imit the integral is divergent. In order to make the integral in
Eq. (59) convergent, we need to subtract off the homogeneous term in

h(x) plus the first few terms in the hypergeometric series expansion.

It is found that the total number of terms to be excluded from the inte-

gral depends on the value of the exponent a. For 0 < a < 1, we find

at) = k] I ¢ hgx]x 8571+ L
Bh,x l-a o a-3 BS
ey eI YT ) - hgy (60)
-hy - hoy}dy
where from Eq. (52) we obtain

hg = -(x}/8T){r(1-88)T(8)/T(-a)}[1 - €/(5-1)1x]*° (61a)
hy = (x]/6T)(1+C) (61b)
hy = -(x]/er){(-88)(-a)/(1-88) + C(-88)(1-x)/(1-88)} . (6lc)

1 the constant K is determined from the fact that

Following Griffiths,l
h(x) and a{x) should have the same analyticity properties. Requiring
that a(x) has the same behavior as h(x) as x approaches zero, we con-

sequently get

BS _

K= -8/ ¥y “{h(y) - hyy L - hoyHy . (62)
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Equations (60) and (62) are completely analogous to those of
Grifffths,ll the difference being proper accounting for the homogeneous
term ho' We can get similar expressions for the value of o < 0 by sub-
tracting off the third term in each hypergeometric series expansion of
Eq. (52).

Since Ct/T* = -32A*%(Ap*, AT*)/3aT*2, the scaled specific heat

in the one-phase region is given by
-C;/T* = |Ap*|-u/6 a"(x)

which is Eq. (36) in Chapter 2. Differentiating Eq. (60) twice with

respect to x and taking the 1imit as x -+ =, we obtain
a"(x) = !((Z-cx)(l-cx)}(-GIL . (63)

If we now substitute Eq. (63) into Eq. (36) and use the fact that
X = rle*/./_\.p*lfB , the specific heat in the one-phase region becomes

C*

Y = K(2-) (1-a)aT* ™ (64)

where the constant K is given by Eq. (62). In the one-phase region,

the singular specific heat also satisfies the power law relation
A

Ct/T* = a—(AT*)'cl (Eq. (12a)). Equating this relation with the above

equation and solving for A gives
_ o =3 RS
A= as(z-a)(l-a)fo yo “{h(y) - hoy™ - h1 - hzy}dy (65)

for 0 <a<1.
In the two-phase region, the specific heat has the following

scaling form
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Y= (2-a)(1-a)(-aT*)™® x 92

. a(-xo) . (66)

Equation (66) is trivially derived by using

§+1

A*(pp*, AT*) = |ap*| ) (67)

a(-xO

which is the free energy on the coexistence curve, and realizing that
on the coexistence curve Ap* is a function of AT*, that is

pox = (A5)F (68)

0

The relation then is readily obtained by taking the derivative of Eq.
(67) twice with respect to AT*. Similarly, in the two-phase region the
specific heat along the coexistence curve obeys the power-law relation
C;/T* = %llaT*['a (Eq. (12b)). This relation and Eq. (66) when solved

yields the expression for A' which is given by

A = -(2-0)(1-a) @ x,* "% al-x)) . (69)

For 0 < a <1, we find

Bé
h x h His®
- 0]
A' = gp(2-a)(1l-a) }(om 2[ g - (2}u) + (%—g)
(70)
- - &=
+x 270 [y197S thy) - by 1y - ny - hpyrayd
-X
6]

Hence, to obtain A/A' we merely divide Eq. (65) by Eq. (70).
These expressions, Eq. (65) and (70), are completely analogous to those
of Barmatz et a1.33 for 0 < o < 1, the only difference being our treat-
ment of the homogeneous term ho' Numerical calculation of A/A' will be

described and the results obtained will be given in the next chapter.



Chapter 4

NUMERICAL CALCULATION AND RESULTS

In this chapter, we test to see if our proposed form for the
equation of state, Eq. (52), provides a good representation of the
following model systems: the (3,1), (3,2), (3,3), and the (2,1). We
first compare our predicted universal amplitude ratios to data and other
theoretical results. Then, we compare our equation of state to other
theoretical equations which are known to represent the model systems
reasonably well. Before these comparisons can be made, our initial
task is to find the parameter C for each model system. Indeed, there are
several ways in which C can be determined. We have chosen a simple and
fairly reliable method of obtaining C which we shall present in the next

section.

A. Numerical Calculation:

To numerically calculate h(x) and the universal amplitude ratios,
we replace the hypergeometric functions in Eq. (52) by their explicit

representations. Equation (52) then becomes

h(x) = (xI/sr)[{r(1-88)T(8)/T(=y)H1 - C/(s-1)}z|z|P®"!

PO T L (1-y) (71a)

n
5 £ 2
86ﬁ=0 (n-gs) n! BGC§=0 (n-gs) nl] » |zI<]

53
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o l=v)_ _-n
= (xJ/6r)[8(-2)" E TFe) aT - 8SCIT(-1-8)/r(-8)}

(71b)

-]

i (I=v), .0
(-2)71 (1+B)ﬁ=0 (n+611? ﬁ!

15 1z]>

where in general
(x), = T(n+x)/r(x)

In the above equation, the term x{/ﬁr depends on the detail of each
physical system under study, implying that h(x) is not universal. How-
ever, if we divide h(x) by this term, R(x) = h(x)/(x{/ar) becomes a uni-
versal function, and is called a scaled equation of state. If C for each
universality class has been found beforehand, ﬁ(x) is completely determined
by the universal quantities g8 and §. As far as the values of B and § are

34,35 which

concerned, we have used the most recent theoretical results
are as follows: 8 = 0.324+0.006 and § = 4.82+0.06 for the {3,1) model;
B = 0.346+0.009 and & = 4.81+0.08 for the (3,2) model; and 8 = 0.362+0.012
and § = 4,82+0.12 for the (3,3) model system. For the (2,1) model, we

36 which are also the values used by Gaunt

have used g = 0.125 and § = 15,
and Domb.3

To calculate the universal amplitude ratios we need to know Xo/xl’
which is the zero of the equation of state. xO/xl is determined using the

condition h(~x0) =0, i.e.,

X
-{r(1-88)T(8)/T(-v) }{1 - cx(a-ml;ﬁl’%“ -
. % (72)

. . 0 . w1 s B D)
ZFl('869 =Y 1"35: ;(—1') + C 2F1( B(Ss 1 Ys 1 663 xl) 0.

The parameter C for each universality class is determined by

adjusting C until a minimum total deviation of r/r', RX and 50/50' from
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their respective experimental values is obtained. In this exercise, we
are also interested to see whether the best fit to each universal ampli-
tude ratio would yijeld a consistent value of C. The parameter C does not
simply assume any arbitrary values. The range of C that we can adjust
lies between -1 and (§-1) (see Eq. (52)). If C is less than -1, we ob-
tain a negative value of xo/x1 which yields complex values of the
universal amplitude ratios. And, if C is greater than (6-1), we obtain
an unphysical value of xofxl ¥ L. xO/x1 > 1 means that the pseudospinodal
curve - lies above the coexistence curve. Thus, we find for the (3,1),
(3,2), and the (3,3) model systems the allowed range of C js -1 < C < 3.82;
and, for the (2,1) model the range is -1 < C < 14. The best value of the
parameter C obtained for each universality class is presented in the next
section.

Appendix A contains the computer program which we have written to
find C and numerically calculate xO/xl, ﬁ(x) and the universal amplitude

ratios.
B. Results:

1. Universal Amplitude Ratios:

Tables 3 to 6 1ist the predicted values of /', Rx and 50/50'
calculated, for all the universality classes, using several different
values of C. For completeness, we also include the value of xo/xl, ob-
tained for each C. Notice that we have only used T/T'' and Rx to determine
the C's for all the universality classes except the (3,1). The reason is
published experimental results of EO/EO' for the (3,2) and (3,3) model
systems are not available; and, as far as we know, the exact value of

go/so' for the two-dimensional Ising model has never been calculated.



Table 3: (3,1) Model System (8=0.324 and §=4.82):
Yalues of r/T', R_ and gofgo‘ obtained
using several different values of C. The
experimental values used are given in

brackets.
C xo/xl r/r' RX
(4.9)2 (1.69)2

-0.9 0.030 5.21 1.570 0.63
-0.5 0.124 4,84 1.378 1.47
-0.3 0.163 4.85 1.367 1.79
-0.2 0.182 4.85 1.367 1.94
-0.1 0.200 4.85 1.366 2.09
0.0 0.218 4.85 1.365 2l
Bl 0.236 4.85 1365 2.37
0.2 0.253 4.85 1.365 2.51
0.3 0.270 4.84 1.365 2.64
0«5 0.303 4.82 1.365 2.90
1.0 0.384 4.71 1.367 3.53

2 Reference 25.

b Reference 34.
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Table 4. (3,2) Model System (p=0.346 and
6=4.81): Values of T/T' and R
obtained using several differ-X
ent values of C. The experimental
values used are given in brackets.

C xo/x1 S Rx
(2.67)% (1.29)2
0.0 0.213 5.59 1.59
1.0 0.364 5.38 1.58
2.0 0.515 4.73 1.50
3.0 0.704 3.55. {.32
3.1 0.728 3.39 1.30
3.25 0.767 3.11 1.25
3.4 0.811 2.78 1.21
3.44 0.824 2.68 1.19
3.5 0.844 2.53 1.17
3.6 0.882 2.22 1.13
3.65 0.903 2.04 1.11
3.7 0.926 1.82 1.08

a
Reference 34.
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Table 5. (3,3) Model System (8=0.362 and
6=4.82): Values of r/r' and R
obtained using several differ-X
ent values of C. The experimental
values used are given in brackets.

C xo/x1 i RX
(3.8 (1.65)?

0.0 0.204 6.60 1.88
1.0 0.340 6.29 1.84
2.0 0.480 5.42 1.72
2.4 0.544 4.91 1.64
2.6 0.580 4.61 1.59
2.8 0.619 4.27 1.53
3.0 0.662 3.90 1.47
3.05 0.674 3.79 1.45
3.1 0.686 3.69 1.43
3.2 0.712 3.46 1.39
3.3 0.741 3.21 1.35
3.4 0.773 2.94 1.30

@ These are the average of the experimental results of

r/r' and Rx displayed in Table 9.
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Table 6. (2,1) Model (B=0.125 and 6=15): Values
of I'/T' and R obtained for several differ-
ent values of*C. The values in brackets
are exact results obtained from Ref. 33.

C xolxl r/r RX

(37.6936... (6.78)

-0.9 0.0272 39.11 3.66
-0.5 0.0783 34,27 2.88
-0.3 0.0956 34.12 2.84
0 0.1175 34.09 2.83

1 0.1735 33.95 2.86

3 0.2563 32.47 2.89

14 0.9808 0.75 1.04
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For the universality classes (3,1) and (3,3), there exists a
number of published experimental values of T/T', Rx and EO/EO', which
we may use in determining the C's. The problem of choosing the right
experimental values then arises; indeed, we do not know which are the
most accurate and thus the best values to use. In this situation, we
have chosen the most recent published experimental values. If, how-
ever, up-to-date values are not available, we have taken the average of
all the published experimental results. We should also stress that all
the experimental results of r/r', Rx and 50/50', which we have used in
obtaining C, are not results of direct experimental measurements. These
values were calculated using the parameters obtained from fitting various

33,3%  1pus,

PVT data to either the MLSG or Tinear model equation of state.
the accuracy of these values depends on the equation of state analysis.
Hence, the values of C we obtained in this work are only approximate.
However, if a consistent value of C is obtained, then our approach of
determining C is very reasonable. Of course, results of direct experi-
mental determinations of the universal amplitude ratios are desirable in
order to obtain a precise value of C for each universality class.

As can be seen from the tables, the best choice of C.we obtained
for each model system is as follows: C = 0.0x0.3 for the (3,1),
C = 3.4410.30 for the (3,2), C = 3.05+0.60 for the (3,3), and C = -0.9 for
for the (2,1) model. The approximate error in each C can be estimated by
inspection of the respective table. Examination of all tables
shows that the best fit to each universal amplitude ratio does indeed
produce a fairly consistent value of C that is within the range of the

experimental uncertainties. This is nearly true for all classes of sys-

tems except the (2,1). For this model, we fail to get any reasonable
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value of RX for -1 < C < 14; the best we could obtain is as large as 45%
from its exact value. This suggests that our equation of state may not

be a good representation of the two-dimensional Ising model.

Using the value of C we have determined for each universality class,
we next calculate other universal amplitude ratios. Our results, together
with other available theoretical results and data, are displayed in Tables
7 to 10. We should point out that since C = 0 is the best choice of C for
the (3,1) model system, the results we obtained for this model, which are
given in Table 7, are also the results obtained by Sorensen and Semon.l5
Inspection of this table shows excellent agreement between our predictions
and those of data and other theoretical estimates. For the (3,2) model,
other theoretical results are not available for comparison except the e-
expansion result for A/A'. Our estimate of A/A' is about 60% larger than
the experimental and the e-expansion results. The results we obtained for
the universality class (3,3) are presented in Table 9. OQur predicted
value of I/T' is favorably close in comparison to other experimental data;
similarly, the value of RX we estimated is also very comparable to other
theoretical results and data. However, our prediction of A/A' for this
model disagrees completely with data and other theoretical estimates.

Since our equation for r/r' works very well for the (3,2), (3,3)
and the (2,1) model, we expect that the 50/50' relation should work rea-
sonably well too for these models. Hence, even though no data and other
theoretical results are available for comparison, we feel that our re-
sults of EO/EO' are reasonable estimates for these classes of systems.

Sorensen and Semonl® observed that the value of A/A' for the

universality class (3,1) is extremely sensitive to the values of g8 and &.



Table 7. (3,1) Model: pB=0.324+0.006,
§=4.82+0.06,and C=0.0+0.3.
Comparison of universal ampli-
tude ratios.
Universal Qur Data Other Theoretical Results
Amp1itude Theory = =
Ratio Series Ising g-expansion
r/r 4.860.40 5 0 (xe) 5.03 4.80
g
9 (COZ)
R, 1.4+0.1 40 (xe) 1.75 1.6
.69 © (0,)
B! 2.23+0.07 04 ° (xe) 1.96 -
22 ® (c0,)
AZA' 0.58 * 44 (He3) 2 0.51 0.55
63 (Xe) 2

This is the value of A/A' obtained for Bg=0.324 and §=4.82.

Reference 24 and 33.

Reference 34.

Reference

25,
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Table 8. (3,2) Model: B=0.346+0.009,
§=4.81+0.08, and C=3.44+0.30.
Comparison of universal ampli-
tude ratios.

Universal Qur Data Other Theoretical Results
Amp1itude Theory g .
Ratio Series Ising g-expansion
r/r 2.68:0.30 | 2.67 © (He'x- - i
' point)
R, 1.19+0.10 | 1.29 ® (He®x- - -
point)
EO/EO 7.3+0.3 - s —
A/A' 1.74 * 1.07 & (Hex- w 1.03
point)
*

This is the value of A/A' obtained for B=0.346 and 6=4.81.
Reference 33.

Reference 34.
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Table 9. (3,3) Model: 8=0.362+0.012,
§=4.82+0.12, and C=3.05%0.60.
Comparison of universal ampli-
tude ratios.
Universal Our Data Other Theoretical Results
Amplitude Theory 2 5
Ratio Series Ising eg-expansion
/T 3.79+0.20 3.7 ¢ (Eu0) o -
3.9 2 (ni)
R, 1.450.14 1.6 ¢ (Eu0) 1.23 1.33
1.7 2 (i)
EO/EO‘ 6.22+0.10 - s -
A/A 26.16 * 1.6 ¢ (Eu0) 1.52 1.36
2.0 & (Ni)

This is the value of A/A' for B=0.362 and §=4.82.

Reference 33.
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Table 10. (2,1) Model: B8=0.125, 6=15,
and C=-0.9. Comparison of
universal amplitude ratios.

Universal Qur Exact Results
Amplitude Theory

Ratio

r/r! 39.11 37.6936...%

R 3.66 6.78 *

X
EO/EO' 2.68 -
A/A! -- 1

Reference 33.
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They found a large variation in A/A' when they let g vary by +0.006
around 0.324, and & by +0.06 around 4.82. We also observe a similar
behavior in A/A' for the universality class (3,2). If we let both

B = 0.346 and &6 = 4.81 vary by +0.009 and +0.08, respectively, we find
A/A' has a minimum value of 0.75 for the minimum 8(0.337) and &§{4.73),
and a maximum value of 3.04 for the maximum g(0.355) and §(4.89). When
we fix g at 0.346 and vary &, we get a minimum A/A' of 0.93 and a maxi-
mum of 2.01. The variation in A/A' is by far the worst for the univer-
sality class (3,3). A/A' varies very rapidly and extremely large with
respect to the variation in g when § is held fixed. For example, if we
fix 8 at 0.362 and vary & by £0.12 around 4.82, A/A' becomes as large
as 124.7 when ¢ = 4.83. A/A' has a value of 2.26 for the minimum &§(4.7),
and a value of 3.08 for the maximum &(4.94).

Since A/A' is extremely sensitive to g and &, the values of A/A'
we predicted for all the model systems are therefore not very reliable.
It may be just a coincidence that we get reasonably good estimate of A/A'
for the (3,1) model. The strange behavior of A/A' may be due to the fact
that our equation is not analytic at x = 0 and x = ». The analyticity

of our equation of state will be further discussed in the next section.

2. Comparison to Other Equations of State:

In this section, we compare our equation of state with the equa-

tion of Milosévic and Stanley>o

for the (3,3) model, and with the equa-
tions of Gaunt and Domb3 for the three- and two-dimensional Ising models.
There is no equation for the universality class (3,2) available for com-
parison.

Mi]osEviE and Stan]ey38 have used the Tow-temperature series

method to derive an equation of state for the three-dimensional Heisenberg
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model. In their paper, they have also compared the equation with experi-
mental data of CrBrB. The equation describes the data quite well for all
values of x; on the average it deviates within less than 15% from the
experimental data. For this reason, we have used their equation for com-
parison to ours. Figure 7 shows the deviation plot of our equation from
theirs for three different values of the adjustable parameter C. In
graphing the deviation plot, we have normalized our equation (Ho(x) =
ho(x)/hO(D)) and their eguation (ﬁms(x) = hMS(x)/hMS(O)) such that they
both match at x = i and x = 0 for any value of C. In order to be con-
sistent, we have also used their values of g8 = 0.385 and § = 4.71. Fig-
ure 7 shows that in the region x s 0 all the three curves deviate by more

than 20% from the equation of Mi]osévié and Stanley; the deviation is the

worst for the C = 0 curve. The large deviation around x = 0 is due to

the fact that our equation is not analytic at x = 0. However, in the
region of large x, the C = 3.05 curve approaches their equation within
less than 5% deviation. Such a plot lTike Figure 7 actually provides
another possible method of obtaining the best value of C. From Figure 7,
it is obvious that the C = 3.05 curve has the least overall deviation
from the equation of Mi1os§v15 and Stanley; and it is well within a
typical experimental error obtained by them, especially in the region of
Targe x. Indeed, C = 3.05 is a very reasonable choice for the (3,3) model
system.

In order to see how well our equation compares with other equa-
tions of state for the (3,1) model system, we have used the equation of

Gaunt and Domb3

for the three-dimensional Ising model derived from the
high-temperature series expansion. Again, to obtain consistency in our

comparison, we have adopted the same 8(0.3125) and 6(5.0) as were used



Figure 7

(3,3) Model System: percent deviation plot

of our equation of state, for three differ-

ent values of C, from the equation of Milosevic

and Stanley. ﬁo(x) = ho(x)/ho(o) is our normal-
ized equation and ﬁMs(x) = th(x)/hMS(O) is the

normalized equation of Milosavic and Stanley.
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by them. The deviation plot similar to Figure 7 for this model is shown
in Figure 8. Inspection of Figure 8 shows that the C = -0.9 curve has
the least overall percent deviation for all range of x, implying that

C = -0.9 is the best choice of the parameter C for the (3,1) model.

This contradicts the results we obtained from the previous section. It
turns out that this procedure of determining the best C is not a very
reliable one for this model system since the equation of Gaunt and Domb
does not compare very well with fluid data in the region of large x.
Their equation underestimates the data (Xe, CO2 and He') by more than

203

On the other hand, our equation with C = 0 shows excellent agree-
ment with data (Xe and He“)15 in this region. If this is the case, then
from Figure 8 we indeed find that C = 0 is actually the best choice of
C for the {(3,1) model.

In Figure 9, we compare our equation (C = -0.9) with the equa-
tion of Gaunt and Domb3 for the two-dimensional Ising model. Inspection
of Figure 9 and the results we obtained from the preceeding section shows
that our equation of state does not work very well for the universality
class (2,1).

From the results of this section and the last section, we conclude
that our equation of state is a reasonably good representation of the
(3,1) model system using C = 0 and of the (3,3) model system using C = 3.05.
Even though we have not compared our equation to other theoretical equa-
tions of state for the (3,2) model, we feel that our equation with C = 3.44

also provides a reasonable description of this class of systems. The

results of the previous section supports this.

C. Analyticity of Equation of State:

Inspection of Figure 9 shows that there exists an inflection of



Figure 8

(3,1) Model System: percent deviation plot
of our equation of state, for three differ-
ent values of C, from the equation of Gaunt
and Domb for the three-dimensional Ising

modeT . ﬁo(x) = hO(x)/ho(O) is our normal-
ized equation and WGD(x) = hGD(x)/hGD(O) is

the normalized equation of Gaunt and Domb.
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Figure 9

(2,1) Model System: comparison of our equa-
tion of state (using 8 = 0.125, 6 = 15, and
C = -0.9) to the equation of Gaunt and Domb

for the two-dimensional Ising model.
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the curve h(x)/h(0) at (x+x0)/x0 = 1. Similar inflections are also
observed when graphs of h(x)/h(0) versus (x+x0)/xO are plotted for the
other model systems. This particular feature of the curve h(x)}/h(0) is
due to the nonanalyticity in the equation of state Eq. (52).

10 the equation of state given by Eq.

As predicted by Chu et al.,
(52) and (71) is analytic in Ap* and AT* everywhere except on the criti-
cal isochore (Ap* = 0) and critical isotherm (AT* = 0). The nonanalyt-
icity in temperature on the critical isotherm is due to the homogeneous

|8(5'1 term, which makes the equation of state have only one continuous

x|x
derivative in temperature at x = 0 for g ~ %—and § ~ 4.8, and also for
g = 1/8 and & = 15. However, the latter, as in the case of the two-dimen-
sional Ising model, diverges faster as x - 0. The nonanalyticity in
density on the critical isochore can be seen by examining the power
series for Au* as x + = (Ap* > 0). In this case, h(x) is represented by
Eq. (71b), and power series of terms x' M, XY*I'n, with n = 0,1,2,...
Using x = AT*/(ﬂp*)l/B in these series, we find

Ap* = pp* T fn(ﬂT*)Ap*n/B (73)

n=0

as X » o (i.e. Ap* - 0). For g ~ %3 Au* has four continuous derivatives
in density on the critical isochore, but is not analytic there. On the

15

other hand, as pointed out by Sorensen and Semon™  in their paper, Ap*

is smooth on both the critical isochore and isotherm, thus satisfying

11 clearly states that the requirement

Griffiths' original intent. Griffiths
of analyticity follows "neither from the thermodynamic requirements nor
(excluding special cases) from statistical calculations and merely re-
flects the usual aesthetic desire in theoretical science to use functions
'as smooth as possibie'.” Of course, it will be ideal and most desirable

to have an equation of state that is analytic.
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We should point out that it is possible to make the equation of
state, Eq. (52), analytic in temperature on the critical isotherm. This
is achieved by letting C = §-1 in accordance with what the spherical
model would predict. A quick Took at Eq. (52) and (71) shows that this
choice of C eliminates the term x]x[sé'l. However, we find that this
improved analyticity in the equation of state poorly predicts the uni-
versal amplitude ratios when compared to data and other theoretical
results. For example, we obtain r/r'' = 0.98 and Rx = 1,02 for univer-
sality class (3,2); and T/r' = 1.47 and RX = 1.02 for the (3,3) class.
Hence, as far as our theoretical approach is concerned, we find that the
gquation of state which is nonanalytic in temperature on the critical
isotherm works better in predicting the universal amplitude ratios than
the analytic one.

In any event, as discussed above, the nonanalyticity is to be
expected from the approach and comes from assuming that the pseudospinodal
has the same exponents as the coexistence curve--an assumption required by

the scaling hypothesis'® and supported by data.210-12-14



Chapter 5

EVIDENCE FOR THE UNIVERSALITY
OF THE PSEUDOSPINODAL

In Chapter 3, we have seen that generalization of Egq. (54)
(i.e. the relation for I'/T'), to obtain other universal amplitude ratios
for other parameters diverging on the compressibility pseudospinodal,
does not work for A/A'. In the preceding chapter, we have also found
that the equation of state, derived either from Benedek's pseudospinodal
assumption (C = Q) or the revised assumption (C # 0), is unable to pre-
dict reliable values of A/A'. Alternatively, we could obtain an equa-

tion of state from fhe specific heat pseudospinodal, i.e.,

*/T = 5 ~0

CH/T = AL(T-T(e))/T 1 . (73)
A quick and trivial derivation, which involves the following relations

a"{x) = Alx + xs)'a

(74)
h{x) = (8 + 1) a(x) -%a‘(x)

where x. = ]Ap*l"l/B {(TC~TS(p))/TC} is the value of x on the specific
heat pseudospinodal, yields an equation of state that is different in
form from Eq. (52). We find that the egquation does not satisfy most of

(11

Griffiths requirements, nor agrees with data, and does not reduce pro-

perly to the van der Waals equation in the classical limit.

The first two results guoted above for A/A' indicate that the
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specific heat does not diverge on the compressibility pseudospinodal.

The failure to obtain a reasonable equation of state from the specific

heat pseudospinodal suggests that the pseudospinodal assumption (both

Benedek's form and the revised form) may not correctly represent the

approximate behavior of the specific heat along the off-critical isochores.
For these reasons, in this chapter we have used available experi-

mental evidence to see if specific heat and other thermodynamic and

transport properties of systems within a certain universality class

43

diverge on the same or universal pseudospinodal curve. To test the

universality of the pseudospinodal, we have attempted to use all avail-

10,12-18 (¢ pinary-fluid systems specifically

able experimental results
designed to test the pseudospinodal assumption. We have also analyzed
experimental data of liquid-gas systems not specifically designed for
this problem but with sufficient off-critical isochore data to allow for
our analysis. Suprisingly, such data are very rare. We have used spe-

cific heat data for He1+39 and C02,40 %

thermal diffusivity data for CO,,
and PVT data for He“.13 The PVT data were used to graphically obtain
inverse isothermal compressibility data of He" along the off-critical
isochores.

In analyzing each set of data, a background term of the form
B + Dap* + EAT*, where B, D and E are constants, was used to correct for
nonsingular behavior. A very detailed discussion of this background term
is given in Ref. 39. The backgrounds were found both graphically and
using a fitting procedure. Both methods were found to be consistent.

The data along each isochore were then fit with a least-squares method

to the original Benedek assumption, i.e.,
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-X
XO{(T—TS(p))/TC}

><
n

X, (aT* + ATZ.:)“X

by varying aT%, where ATg = (TC—TS(p))/TC, to obtain the best fit. The
results of this fitting procedure for all four sets of data are presented
in Tables 11 to 14. Inspection of all tables shows that fits to all iso-
chores yielded, within error, the same value of XO and x obtained on the
critical isochore. Thus, it is important to stress that the consistency
of the pseudospinodal is well verified. For completeness, the values of
ATg obtained along each isochore is also given in the tables.

To determine the amplitude BS and the exponent 5+ (i.e. the shape
of the pseudospinodal curve), the values of AT? obtained were then fit to

Eq. (38), i.e.,

.|.
= B
8% = BT T (0))/T 2P

When the pseudospinodal curve was found not to be symmetric, the following
form of Eq. (38),

150" ) & g (T -T_(p))/T 35
) oc gtilgTig\P c »

was used. In the above equation, o' and p" are densities or concentra-
tions of the two phases. Our results along with earlier published pseudo-
spinodal curves are displayed in Table 15. Inspection of Table 15 shows
that there is a small but persistent tendency for f34r 2 B in nearly all
cases. This is especially true fof both sets of specific heat data. In
fact, the values of s+ obtained from these two sets of data are extra-
ordinarily large compared to other Bf's. The data for CO2 have essentially

the mean field value of B+ = g



Table 11. Specific heat of He“: Results
of fitting the data along each
isochore to C¥/T = A(aT* + AT%)™.
P A o AT;’
~(g/cm. 3)
p.=0.06958 1.197 0.127 0
0.0694 1.245 0.132 1.95 x 1075
0.0766 1.220 0.126 2.14 x 1073
0.0623 1.313 G.J23 1.85 x 1073
0.0660 1.280 0.128 4.05 x 107"
0.0732 1.262 0.124 5.97 x 107%
0.0805 1.211 0.128 8.30 x 1073
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Table 12. Specific heat of COZ: Results
of fitting the data"along each
isochore to CV*/T = A(AT* +

-0
ATg) .
0 A o ATE
(g/cm.3)
p,=0.467 0.127 0.124 0
0.483 0.127 0.129 1.0 x 1073
0.513 0.127 0.127 2.0 x 1073
0.570 0.129 0.125 1.3 x 1072
0.606 0.128 0.124 1.8 x 1072
0.629 0.127 0.126 2.6 x 1072
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Table 13.

Thermal conductivity of CO
Results of fitting the dat
along each isochore to

A=A (AT + AT%) g

.

%

0 Ay K ATg
(amagat)
P =236 0.074 0.60 0
200 0.082 0.60 4.7 x 1073
210 0.083 0.60 2.3 x 1073
230 0.083 0.59 1.0 x 107%
220 0.081 0.60 7.0 x 107*
240 0.081 0.59 .0
250 0.079 0.58 1.0 x 107%
260 0.079 0.60 1.5 x 1073
270 0.077 0.57 3.6 x 1073
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Table 14. Inverse isothermal compressibility
of He": Results of fitting the
data along,each isochore to
(k& p*2)"" = 1/r(aT* + ATE)Y.
rt Y ATY
(g/cm.3)
p.=0.069 101 % 10¥ «1 55 0
0.040 1:1 % 10% .17 5.5 x 1072
0.051 9.94 x 103 18 2.3 x 1072
0.0566 8.6 x 103 .15 1.0 x 1072
0.064 8.56 x 1073 c b 1.0 x 1073
0.072 1.1 x 104 .14 5.0 x 107%
0.075 1.2 x 10% =12 1.5 % 1073
0.082 1.2 x 10% 12 2.0 x 1072
0.078 1.8 x 10% .19 4.0 x 1073
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To compare these various pseudospinodals, we normalized relative
to the coexistence curve of the fluid. However, some ambiguity in co-
existence curves arises. When possible, we used the coexistence curve
that was presented with or could be obtained from the data used to find
the pseudospinodal. Otherwise, the best literature value was used. The
ambiguity is usually only a few percent. Thus, along any given isotherm
AT*, we divide a given data va]ue|Ap§|= (ps - pc)/pC on the pseudospinodal
curve by a3 = (p - pc)/pc = B, AT*B, the value on the coexistence curve.
This method of normalization is preferable to simply dividing the pseudo-
spinodal by BC because of statistical correlations between BC and B.

Figure 10 is a plot of normalized pseudospinodal curve data,
[A°§|/Bc AT*®, versus reduced temperature aT*. To within the large scatter
of the data, the pseudospinodal curves for the various substances and
properties do display universal behavior. This possible universality
indicates that the concept of the pseudospinodal may have more physical
significance than we usually recognize. If B = B+, then these results
suggest the ratio BS/BC, equal to 0.66+0.13 for these data, is a uni-
versal quantity. For comparison, theoretical "spinodals" predict

1-:1/ =
B s, however), Bs/Bc

BS/BC = 0.58 for the mean field model (g

3 0.63 from, not surprisingly,

1]

0.82+0.1 for the Ising model,” and BS/BC
our equation of state (with C = 0).
Whether the specific heat diverges on the same pseudospinodal
curve as the other properties is still questionable. The results we
obtained from the theoretical side clearly suggest that the specific
heat diverges on the pseudospinodal different from the compressibility

pseudospinodal. The rather large values of B+ implied by the specific

heat data further supports this belief. On the other hand, from Figure



FIGURE 10

Plot of pseudospinodal curve data |A9§| normalized
by the coexistence curve BCAT*B versus AT* =
(T-TC)/TC. The symbols correspond to: ¢ diffu-
sivity and correlation length of isobutyric acid

+ water (Ref. 10), ¢ osmotic compressibility and
correlation length of polystyrene + diethyl malo-
nate (Ref. 14), ® viscosity of isobutyric acid +
water (Ref. 13), © correlation length of poly-
styrene + cyclohexane (Ref. 12), a isothermal com-
pressibility of He“ (Ref. 42), & specific heat of
C02 (Ref. 40), ® specific heat of He* (Ref. 39),
and o thermal conductivity of CO, (Ref. 41). The
value |Ap*|/BcAT*B = 1.0 represents the coexistence

curve. A typical error bar is also shown.
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10 we observe that even though B+ are large, the specific heat data,
when normalized with respect to the coexistence curve,.do Tie in the
same general area as the other data points. Hence, at this point we
cannot make any definite conclusion regarding the behavior of the
specific heat along the off-critical isochores. In order to do this,
we need more specific heat data.

As for now, we may conclude that the pseudospinodal data for
both variety of properties and systems 1ie in the same general area of
the phase diagram when normalized relative to the coexistence curve,
providing evidence for the concept of a universal pseudospinodal curve,
the ratio Bs/Bc being a universal amplitude ratio. However, there is
some tendency for B? 2 B, which is especially true for the specific

heat data.



Chapter 6
CONCLUSION

In this work, we have revised the Benedek pseudospinodal assump-
tion by adding an extra or correction term. From the revised assumption,
we have derived a general form of an equation of state, and subsequently,
general expressions for the universal amplitude ratios.

We have found that the correction term is negligibly small for
the universality class (3,1) but quite large for other classes. For the
(3,1) model, we have seen that the equation of state (with C = 0) does
not only compare better to the equation of Gaunt and Domb but fits PVT

15 Our predictions of the universal amplitude ratios

data favorably.
r/r', RX’ and 50/50’ for this model are in good agreement with data and
and other theoretical results. For the (3,3) model, we have observed

that the equation. of state (with C = 3.05) compares very well to the
equation of Milosdvic and Stanley; and, the estimated values of r/T' and
Rx that we have obtained agree favorably to data and other theoretical
predictions. We have also discovered that using C = 3.44, our estima-
tions of T/T' and Rx for the (3,2) model are comparable to other theo-
retical and experimental results. Thus in this work, we have found that
an addition of a correction term to the original pseudospinodal assumption
improves the results on the universality classes (3,3) and (3,2). Hence,
we conclude that the revised pseudospinodal assumption, which we have

introduced, is a reasonable generalization of the pseudospinodal assump-

tion since it works for all the model systems except the (2,1).
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Finally, by considering data on several thermodynamic and trans-
port properties of various liquid-gas and binary fluid systems, we have
also shown evidence for the existence of a universal pseudospinodal that
describes all these properties of the systems with one curve. It is
possible that this universality also exists in other universality classes
besides the (3,1).

Despite the fact that the equation of state derived from the pseudo-
spinodal assumption is not analytic, we have shown that it works satisfac-
torily in describing the (3,1), (3,2), and the (3,3) model systems. This
plus the possible existence of a universal pseudospinodal further supports
the usefulness of the pseudospinodal concept in critical phenomena. As

15 we therefore should not discard this

pointed out by Sorensen and Semon,
concept solely on the grounds of analyticity.

On the other hand, the nonanalyticity in the equation of state
does pose some disadvantages. We have seen that the equation does not
work very well for the universality class (2,1) because its nonanalyticity
is stronger for this model since 8 = 1/8. It is also at least part of the
problem in predicting the values of A/A'. An analytic equation of state
would possibly improve these results. However, the nonanalyticity in our
theoretical approach is expected since it comes from the assumption,

T B, that we have used in deriving the equation. There may be a way of

B
eliminating it in our equation which, at present, we have no knowledge of.
Besides the problem of nonanalyticity, another question arises from
this work, that is, the question of whether the isothermal compressibility
and the specific heat diverge on the same or on a different pseudospinodal.

The results of this work seem to support the latter. If indeed they

diverge on a different pseudospinodal curve, then it would be very



P

interesting to find out the behavior of the specific heat along the off-
critical isochores and the form of its pseudospinodal curve. A deeper
knowledge and understanding of this problem would definitely help us to
explain the results we obtained in Chapter 5, and possibly would enable
us to improve the A/A' calculation. Thus, we feel that a statistical
mechanic and thermodynamic investigation of mechanical and thermal meta-

stabilities is a promising extension of this work.
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APPENDIX A

The following is a computer program that we have written to
determine C, and to numerically calcuate R(x) = h(x)/h(o) and the
universal amplitude ratios. The program consists of two main programs
and six subprograms. Main program A is designed such that we can
determine C and numerically calculate ﬁ(x) for each universality class.
It can also be used to calculate r/r', Rx and go/go'. Main Program B
is written to compute r/T', Rx’ 50/50' and A/A'. It is also made so
that we can find the approximate range of error in each universal ampli-

tude ratio, which is done by varying g and s.
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ABSTRACT

Benedek's pseudospinodal assumption is revised by adding an
extra term. This extra term is suggested by the form of the pseudo-
spinodal assumption for the spherical model. The equation of state
derived from this assumption provides a good representation of the
universality classes (3,1), (3,2) and (3,3); the equation compares
well with other equations for these systems. From the revised
assumption and the equation of state, expressions for the universal
amplitude ratios are also derived. Agreement with data and other
theoretical predictions for these classes of systems is obtained.

Using all available experimental evidence, the possible
existence of a universal pseudospinodal for the universality class
(3,1) is shown.

These results support the usefulness of the pseudospinodal
concept in critical phenomena--a concept that has been argued by

some theoretical considerations.



