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Abstract 

The objective of this study was to evaluate the reproductive effects of supplementing 

normally cycling mares with marine-derived omega-3 (n-3) fatty acids during the estrous cycle.  

Fifteen mares were assigned to a control diet (CONT, n=7) or a fish oil supplemented diet (FO, 

n=8) containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).  The FO mares 

received 18.48 g EPA/10.08 g DHA/mare/d.  At the start of the trial, mares were synchronized 

using a progesterone and estradiol protocol.  Following synchronization, mares were monitored 

with transrectal ultrasonography throughout the second estrous cycle.  Ovarian activity, 

ovulation, and presence of a corpus luteum were noted.  Mares were ultrasounded throughout the 

third estrous cycle until a 35 mm follicle was detected.  Upon detection of the 35 mm follicle, 

hCG was administered.  Within 16 hr, transvaginal ultrasound-guided follicular aspiration 

(TUGA) was performed on the preovulatory follicle, signifying the end of the trial.  Follicular 

fluid was analyzed for fatty acid and hormone concentrations.  Serum fatty acids were measured 

every 2 wk and serum hormone concentrations were analyzed during the second estrous cycle at 

5 d to 1 d prior to ovulation, at ovulation, and 3 and 5 d post-ovulation.  Samples were also 

collected prior to hCG administration and on aspiration day for hormone analysis.  Serum 

estradiol-17β, progesterone, luteinizing hormone (LH), and insulin-like growth factor 1 (IGF-1) 

were measured. 

 Fish oil supplementation increased (P < 0.01) arachidonic acid (ARA), EPA, 

docosapentaenoic acid (DPA), and DHA in mare serum and increased (P<0.01) EPA, DPA, and 

DHA in follicular fluid.  No overall treatment effect was found on serum hormone 

concentrations during the second estrous cycle, but a decrease (P<0.05) in IGF-1 was noted in 

the FO group on aspiration day.  Concentrations of IGF-1 were also lower (P<0.05) in follicular 

fluid in the FO group compared to controls.  No other follicular fluid differences were observed. 

Supplementation resulted in a smaller diameter follicle (P<0.05, 38.0±0.47 mm) on aspiration 

day than the CONT group (39.5±0.5 mm).  Dietary n-3 fatty acids modify mare serum and 

follicular fluid fatty acid profiles, with supplementation of EPA and DHA decreasing serum and 

follicular IGF-1 concentrations.        
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Preface 

The inclusion of fat in the horse diet to maximize energy without negatively impacting 

the animal’s glycemic index or digestive tract has been a common practice for many years.  As 

monogastric herbivores, horses are designed to primarily consume forage which is high in fiber 

but low in DE.  However, unlike high amounts of starch and cereal grains, the horse has a 

relatively high tolerance for fat in the diet and it is considered a “safe” energy alternative to the 

more traditionally used cereal grains (Bush et al., 2001; Lewis, 2005).  In fact, horses can utilize 

up to 20% added fat in the total diet (Lewis, 2005).  The most commonly used forms of fat 

supplementation for horses are plant and vegetable oils, such as corn oil and soy oil, due to their 

high palatability and availability.  Plant and vegetable oils provide about 3 times more digestible 

energy than an equal weight of cereal grain, and 3.5 to 6 times more digestible energy than an 

equal volume of cereal grain (Lewis, 2005).  Fat added diets have been proven to be especially 

beneficial to those horses that have a heavy work load or exercise requirement (Hambleton et al., 

1980; Harkins et al., 1992; Eaton et al., 1995).  Dietary fat supplementation also affects follicular 

growth, pregnancy rates, milk composition (Mattos et al., 2002), and ovarian and uterine 

function in several livestock species (Beam and Butler, 1997; Mattos et al., 2000; Santos et al., 

2008).  Although not as extensively documented, a positive effect of added fats on reproduction 

in the equine species has been documented (Kubiak et al., 1987; Davidson et al., 1991; 

Ordakowski-Burk et al., 2005).  Fat supplementation of mares during late gestation and early 

lactation increased milk fat percentage, blood lipid concentration of their foals, and rate of gain 

in foals during their first week of life (Davidson et al., 1991).  Additionally, this study noted a 

trend for a shorter postpartum interval and fewer cycles to pregnancy in fat-supplemented mares.  

A particular group of fatty acids has been recently highlighted in research and the 

consumer market as having multiple health benefits for both humans and livestock species.  

Polyunsaturated fatty acids are defined as fatty acids with multiple double bonds, and can be 

categorized into omega-6 (n-6) and omega-3 (n-3) families.  Omega-6 fatty acids are found in 

plentiful amounts in common animal feedstuffs such as corn and corn oil.  Once digested, n-6 

fatty acids produce series 1 and 2 eicosanoids which are inflammatory in nature.  Omega-3 fatty 

acids are not commonly found in high amounts in a typical livestock diet, but can be 

supplemented with products like flaxseed oil and fish oil.  Marine-derived supplements, like fish 
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oil, are rich in two of the most commonly supplemented n-3 fatty acids, eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA).  Once digested, n-3 fatty acids produce series 3 

eicosanoids which are anti-inflammatory in nature.  Supplementing n-3 fatty acids can benefit 

many systems in the body, including the cardiovascular, skeletal, nervous, immune, and 

reproductive systems (Simopoulos, 1991; Pike and Barlow, 2000; Simopoulos, 2002; Dunnett, 

2005; Robinson and Stone, 2006). 

Omega-3 fatty acids have received increasing attention in the equine industry, primarily 

due to their anti-inflammatory properties (Calder, 2002; Munsterman et al., 2005; Skjolaas-

Wilson et al., 2005).  In stallion reproduction, n-3 fatty acids have been investigated in relation to 

improving spermatogenesis and cooled semen properties (Brinsko et al., 2005; Harris et al., 

2005).  In the mare, research has been focused on supplementation of the foal through mare n-3 

dietary supplementation (Kruglik et al., 2005; Skjolaas-Wilson et al., 2005; Poland, 2006).  

During the postpartum estrous period, mares receiving EPA and DHA in the form of fish oil had 

an increase in time from foaling to ovulation in the EPA and DHA supplemented group when 

compared to the control group and a group receiving DHA alone (Poland, 2006).  The EPA and 

DHA supplemented mares also held a preovulatory follicle significantly longer prior to ovulation 

than the other two groups (Poland, 2006).   

The current study was designed to further explore Poland’s findings regarding an n-3 

effect on mare cyclicity.  The objectives of this study were to determine the effects of feeding a 

marine-derived n-3 fatty acid supplement on plasma fatty acid profiles as well as several 

reproductive factors during the estrus periods of healthy, cycling mares. To this author’s 

knowledge, there have been no such studies evaluating the reproductive effects of n-3 fatty acid 

supplementation in non-pregnant mares during the natural breeding season.  
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CHAPTER 1 - GENERAL REVIEW OF LITERATURE 

Introduction 

Nutrition and reproduction have always been integrally linked in that the reproductive 

success of an animal depends on its nutritional status.  Throughout the years this link has been 

explored in research, often by altering diets in various ways and observing the resulting changes 

in reproductive parameters.  One of the most significant dietary changes that can be made to 

influence the reproductive system is the addition of fat to the diet.  Several studies on 

reproductive activity of fat-supplemented cattle demonstrated an increase in diameter and 

number of follicles present on the ovary, as well as a shorter period to the first postpartum 

ovulation (Hightshoe et al., 1991; Lucy et al., 1992; Thomas and Williams, 1996).   In addition, 

fat supplementation has also been shown to affect milk composition and fertility in several farm 

animal species (Ashes et al., 1992; Encinias et al., 2004; Mattos et al., 2000).  Originally, it was 

believed that the improvement in reproduction due to the addition of fat was solely a result of an 

increase in energy availability to the animal.  However, it soon became apparent that individual 

fatty acids themselves can play a role in influencing reproductive parameters.   

Fatty acids are defined as molecules consisting of a hydrocarbon chain with a methyl 

group at the omega end and a carboxylic group at the alpha end.  Fatty acids can be characterized 

by their structure in many ways.  Fatty acids with the hydrocarbon chain having the maximum 

number of carbon to hydrogen (C-H) bonds and no double bonds present are characterized as 

saturated fatty acids.  Those fatty acids that do not have the maximum number of C-H bonds but 

have double bonds are considered unsaturated.  Furthermore, those unsaturated fatty acids that 

have more than one double bond present within the hydrocarbon chain are considered 

polyunsaturated fatty acids (PUFAs).   

Polyunsaturated fatty acids can be separated again into omega-3 fatty acids (n-3), omega-

6 fatty acids (n-6), or omega-9 fatty acids (n-9).  Omega-3 and omega-6 fatty acids are 

considered to be essential fatty acids because mammals do not have the ability to synthesize 

them in vivo.  Omega-3 fatty acids have a double bond present between the third and fourth 

carbon from the omega end of the molecule, while omega-6 fatty acids have a double bond 

present between the sixth and seventh carbon from the omega end of the molecule. 
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Polyunsaturated fatty acids are a special group of fatty acids because, not only are they 

essential in the diet, but they are also considered “healthy fats”.   Omega-3 fatty acids and 

omega-6 fatty acids must be ingested by mammals due to the inability of mammalian desaturase 

enzymes to act on fatty acids at a position greater than the ninth carbon from the alpha end.  

Because of their inability to synthesize these fatty acids de novo, n-3 and n-6 fatty acids are 

considered essential fatty acids and are vital for many functions including growth, reproduction, 

vision, and brain development (Gurr et al., 2002).  They are also integral elements of 

phospholipids and cell membranes (Kinsella, 1991).  Additionally, PUFAs also have the ability 

to affect steroidogenesis and some transcription factors controlling gene expression (Wathes et 

al., 2007).   

Typically, PUFAs are naturally consumed by the horse and other livestock in two 

varieties, alpha-linolenic acid (ALA) and linoleic acid (LA).  Linoleic acid (C18:2 n-6) is by far 

the most prevalent polyunsaturated fatty acid consumed by the modern horse and is provided by 

many vegetable oils as well as cereal grains. Alpha-linolenic acid (C18:3 n-3) is an n-3 fatty acid 

plentiful in chloroplasts of plants and can be found in flaxseed or linseed oil, as well as fresh, 

leafy forage.   

In western societies, n-6 fatty acids are more predominant in the diet than n-3s, resulting 

in a much higher n-6 to n-3 ratio than the 5:1 ratio recommended for humans (Newton, 2001).   

Equine diets are similar in that feedstuffs high in n-6 fatty acids, such as many cereal grains and 

vegetable oils, are more commonly fed.  The practice of feeding preserved forage versus fresh 

pasture has also decreased the amount of n-3s naturally consumed.   Excess n-6 fatty acids 

present in the diet has been documented in several species to lead to issues such as 

cardiovascular problems and inflammation, so feedstuffs high in n-3 fatty acids, such as fish oil 

and flaxseed, have recently been considered as a way to lower the n-6 to n-3 ratio and achieve a 

more ideal fatty acid balance (Robinson and Stone, 2006). 

Once consumed and digested, LA and ALA travel to the liver and undergo enzymatic 

desaturation and elongation via n-6 and n-3 fatty acid pathways, respectively (Gurr et al., 2002).  

Both pathways utilize the same enzymes, resulting in competition between the two pathways, 

which affects the amount of intermediates and products produced (Figure 1.1, adapted from 

Bezard, et al., 1994).  Delta-6 desaturation enzyme is the first to manipulate the precursor fatty 

acids, with LA being converted into gamma-linoleic acid (GLA) and ALA transformed into 
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stearidonic acid.  This first step is rate-limiting in both pathways, although delta-6 desaturation 

enzyme is preferential to the n-3 pathway substrate, ALA.  This preference can shift production 

to favor n-3 pathway products if enough precursor is present (Bezard et al., 1994). 

Next, elongation takes place, converting GLA and stearidonic acid into dihomo-gamma-

linolenic acid (DGLA) and eicosatetraenoic acid (ETA), respectively.  Delta-5 desaturase then 

proceeds to transform DGLA to arachidonic acid (ARA) in the n-6 pathway and ETA to 

eicosapentaenoic acid (EPA) in the n-3 pathway.  Eicosapentaenoic acid can also undergo 

another desaturation and elongation reaction to produce docosahexaenoic acid (DHA) via the 

intermediate docosapentaenoic acid (DPA).  The EPA to DHA conversion is reversible, which 

allows DHA to be converted back to EPA if needed.  Once produced from the n-6 or n-3 

pathway (or possibly obtained from the diet in the case of ARA), DGLA, ARA, and EPA can 

enter other cascades resulting in the production of eicosanoids, including prostaglandins, 

thromboxanes, prostacyclines, and leukotrienes (Bezard et al., 1994).  
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Figure 1.1. Synthesis of n-3 and n-6 fatty acids via enzymatic pathways. 
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 A more efficient way of supplementing with n-3 fatty acids is to provide the 

supplementation in the form of DHA and EPA in the diet.  This allows for more rapid absorption 

into the plasma and tissues due to the omission of the rate limiting step in both pathways in 

which precursors ALA and LA are converted to GLA and stearidonic acid (Baur, 1994).  

Eicosapentaenoic acid and DHA are naturally found in marine based sources, especially fatty 

fish such as salmon and herring, because their diet of phytoplankton is rich in DHA and EPA 

(Popp-Snijders et al., 1986).  Therefore, fish oil is a supplement that is high in DHA and EPA.   

Dietary supplementation of n-3 fatty acids results in a gradual inclusion of n-3s into 

tissues and membranes while simultaneously displacing n-6 fatty acids present (Trujillo and 

Broughton, 1995; Wathes et al., 2007).  This incorporation of n-3s is in direct proportion to the 

amount consumed by the animal.  For example, feeding a diet rich in n-3 fatty acids to rats for 

three wk resulted in a 50% replacement of n-6 with n-3 fatty acids in rat uterine phospholipids 

(Trujillo and Broughton, 1995).  Recent research has indicated that incorporation of n-3 fatty 

acids into equine blood plasma and tissues occurs at a faster rate than in humans, with peak 

concentrations being achieved as quickly as 7 d post-supplementation (Arterburn et al., 2006; 

King et al., 2008).  This indicates that horses are capable of consuming and integrating n-3 fatty 

acids into their system quickly and effectively.  However, the need for supplementation in the 

horse is still being elucidated and consequently, the ideal level of supplementation in horses has 

not yet been determined. 

Supplementing omega-3 fatty acids into the diet can have many positive health benefits 

and affect various systems throughout the body, including cardiovascular, skeletal, immune, and 

reproductive systems.  Supplementation in humans has led to increased vascular compliance as 

well as anti-thrombotic and anti-atherosclerotic effects (Robinson and Stone, 2006).  A human 

study in 1998 also documented omega-3 fatty acids’ ability to suppress cytokine mediated 

aspects of inflammation (Grimble, 1998).  Omega-3 supplementation has also shown promise in 

treating renal disease, skin irritation, autoimmune disease, and possibly cancer in domestic 

animals (Baur, 1994).  Prenatally, n-3 fatty acids, especially DHA, also play an essential role in 

development of the fetus.  Brain development and visual acuity of human babies have been 

documented to be affected by maternal supplementation during pregnancy (Eilander et al., 2007).   

Omega-3 supplementation has increased trot stride length in horses when compared to a 

corn-oil fed control group (Woodward et al., 2007).  Exercising horses also displayed a 
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decreased heart rate when supplemented with n-3 fatty acids (O'Connor et al., 2004).  

Researchers have shown that inclusion of omega-3 supplements in the diets of horses resulted in 

a decrease in TNFα production, which is a major inducer of inflammation (McCann et al., 2000; 

Dinnetz, 2009).  A reduced cortisol secretion in n-3 supplemented horses in response to transport 

stress has also been observed (King et al., 2009).  Based on these findings, n-3 supplements may 

be able to decrease stress, increase stamina and serve as a possible alternative therapy for various 

inflammatory conditions, such as arthritis and developmental orthopedic disease, in the horse as 

well as other livestock species.    However, the exciting potential of n-3 supplementation shown 

in human studies cannot be extrapolated into the equine without further research.           

Follicular Development and Hormonal Changes in the Cycling Mare 

The mare is classified as a seasonally polyestrus, mono-ovulatory species and typically 

ovulates a single preovulatory follicle during regular intervals throughout its designated breeding 

period.  As a seasonal breeder, the mare is anovulatory during the winter and fall months and 

becomes reproductively active during the spring and summer months (Ginther, 1992a).  

Increasing day length causes the mare’s pineal gland to produce less melatonin, thus stimulating 

endocrine activity and initiation of estrous cycles.  The mare’s estrous cycle is 21 days long and 

consists of four stages: proestrus, estrus, metestrus, and diestrus (Palmer, 1978).  The proestrus 

and estrus stages compose the follicular phase, while metestrus and diestrus are components of 

the luteal phase.     

The duration of estrus is an average of 5 to 7 days during which the mare is physically 

and behaviorally receptive to breeding.  Various hormonal changes take place at this time to 

finish the growth and maturation of the preovulatory follicle as well as prepare the follicle for 

ovulation.  The oocyte is then ovulated from the ovulation fossa approximately 24 to 48 hours 

prior to the end of estrus, where it then travels through the oviduct to either be fertilized or 

degenerate (Ginther, 1992b). 

Endocrine Activity of the Estrous Cycle 

The hypothalamo-pituitary-gonadal (HPG) axis is responsible for hormonal regulation of 

the reproductive cycle.  This axis consists of 3 major organs; the hypothalamus, the pituitary, and 

the gonads.  In a normal estrous cycle, the hypothalamus secretes gonadotropin releasing 

hormone (GnRH) from neurons in the ventromedial and arcuate nuclei (Senger, 2003).  
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Gonadotropin releasing hormone travels to the anterior pituitary to cause release of 

gonadotropins from gonadotrope cells.  Gonadotropins then travel to the ovaries where they 

affect the tissues and create a response.  Throughout the HPG axis, positive and negative 

feedback mechanisms are in place to control endocrine activity during the estrous cycle.  The 

major hormones involved in the estrous cycle of the mare are described in detail below.     

Luteinizing Hormone  

Luteinizing hormone (LH) is a gonadotropin that is produced and released by the 

gonadotropes of the anterior pituitary due to stimulation by GnRH.  During the anovulatory 

season, low basal concentrations can be found in the circulation due to progesterone’s inhibitory 

effect on LH (Hafez, 1980).  However, during the breeding season an increasing pulsatile release 

of GnRH from the hypothalamus allows for increased production and release of LH.  Unlike 

other livestock species, no ovulatory surge of LH occurs in the mare.  Instead, a progressive 

increase in LH concentrations occurs over many days (Irvine and Alexander, 1994).  Luteinizing 

hormone travels through the circulation to the ovaries where it binds to available receptors to 

increase estradiol secretion and assist with maturation of follicles.  Levels of LH continue to 

increase throughout estrus and reach a maximum concentration one to two days after ovulation 

(Palmer, 1978).  This prolonged high level of LH is responsible for initiating the ovulatory 

process. 

Follicle Stimulating Hormone  

Follicle stimulating hormone (FSH) is a gonadotropin that, in conjunction with LH, is 

responsible for follicular growth and development through the proestrus and estrus period of the 

estrous cycle.  Follicle stimulating hormone is regulated by a dual mechanism that independently 

controls its basal secretion and pulsatile secretion (Padmanabhan et al., 1997).  Pulsatile FSH 

secretion occurs during proestrus and estrus phases of the estrous cycle.  The first peak in FSH 

secretion occurs when the largest follicle is approximately 13 mm in diameter, stimulating the 

growth of the follicles in the follicular wave (Donadeu and Ginther, 2001).  Concentrations of 

FSH then decline and are suppressed by inhibin produced by the growing follicles until another 

surge of FSH occurs at the time of ovulation (Hafez, 1980).  Follicle stimulating hormone travels 

through the circulation to the ovaries where it binds to available receptors and stimulates 

estradiol production and development of follicles.    
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Estradiol 

Estradiol is the major steroid hormone that is the driving force behind estrus behavior and 

physiological changes in the reproductive tract associated with estrus.  Estradiol is produced in 

the granulosa cells of the follicle under the influence of LH and FSH, and travels through the 

circulation to its receptor sites throughout the body.  Estradiol also exerts positive feedback on 

GnRH production and the hypothalamus, continually stimulating the release of LH from the 

anterior pituitary.  Although GnRH is also responsible for the synthesis and release of FSH, the 

growing follicles prevent the increase of FSH concentrations at this time.  As they grow, follicles 

produce inhibin which negatively feeds back on FSH receptors in the pituitary (Senger, 2003).  

High levels of estradiol in later stages of estrus ensure that LH is primarily responsible for 

maturation in the later stages of estrus, while FSH serves its role in earlier follicular development 

when estradiol concentrations are lower.    

Estradiol has several receptors throughout the reproductive tract and high estradiol 

concentrations during estrus result in physiological changes such as hyperemia, relaxation of the 

cervix, and increases in uterine gland secretions.  High concentrations are also directly associated 

with estrus behavior such as winking of the vulva, receptiveness to the stallion, and frequent 

urination.  Estradiol begins to increase the day prior to follicular deviation and concentrations 

peak just prior to ovulation (Ginther et al., 2001).  During diestrus, follicle development is 

subdued, but not eliminated, due to basal secretions of FSH (Padmanabhan et al., 1997).  Lower 

FSH concentrations and high progesterone levels prevent the follicles from developing to tertiary 

follicles and resultant estradiol production is low. 

 Progesterone 

Progesterone is the dominant steroid hormone during the diestrus phase.  After ovulation, 

granulosa and theca cells of the follicle undergo luteinization, form a corpus luteum (CL), and 

secrete progesterone.  Progesterone reaches a maximum about 6 d after ovulation, with 

concentrations in circulation reaching 10 ng/ml (Senger, 2003).  Progesterone has a negative 

feedback on GnRH production, resulting in minimal LH being secreted.  Basal concentrations of 

FSH are still being secreted, but high progesterone levels do not allow for follicles to mature 

enough to provide threshold estradiol levels needed for positive feedback on the hypothalamus 

and anterior pituitary (Senger, 2003).   
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While under the influence of progesterone, contractions of the myometrium are lessened, 

uterine secretions to promote conceptus survivability are initiated, and the cervix is rigid and 

closed.  The mare is not receptive to mating and does not show estrus behavior.  At the end of 

diestrus, the CL undergoes luteolysis and progesterone production decreases, resulting in 

removal of the negative feedback loop to the hypothalamus.  As a result, GnRH pulsatile 

production begins to increase and the follicular phase begins (Ginther, 1992b).  Typical 

progesterone serum concentrations during this period are less than 1 ng/ml or often undetectable 

(Ginther, 1992b; Amer et al., 2008).  

Prostaglandins 

Prostaglandins have many functions throughout the body.  However, during estrus 

prostaglandin-F2α (PGF2α) and prostaglandin-E2 (PGE2) are the most essential prostaglandins for 

a normal ovulatory process.  Originating from arachidonic acid, PGE2 and PGF2α production 

begins to rise in follicular fluid prior to ovulation, promoting inflammation and increased blood 

flow to the ovary, and aiding in follicular rupture (Espey, 1980; Watson and Hinrichs, 1988; 

Murdoch and Gottsch, 2003).  Prostaglandin-F2α also plays a role in luteolysis of the corpus 

luteum (CL) at the end of diestrus by altering blood flow to the CL as well as blocking LH’s 

ability to bind to its receptor on the luteal cells.  Prostaglandins will be discussed in more detail 

in a later section. 

Insulin-Like Growth Factor 1 

Insulin-like growth factor 1 (IGF-1) is a hormone secreted primarily from the liver, 

involved in the somatotrophic axis, and is also thought to influence follicular growth and 

ovulation (Daftary and Gore, 2005).  Although examining IGF-1’s role in equine reproductive 

activity is still relatively new, support for IGF-1 involvement has been documented by several 

researchers.  It has recently been found to be produced in equine granulosa cells, and insulin can 

inhibit its production (Davidson et al., 2002).  Insulin-like growth factor 1 has been noted to 

positively affect LH and FSH activity on ovarian tissues in several species, although the 

mechanism has not yet been elucidated (Spicer and Echternkamp, 1995).  Mitosis of granulosa 

cells during follicular development, androgen production from LH-induced theca cells, and 

estradiol production are all enhanced by IGF-1.   Insulin-like growth factor 1 is also thought to 

play a role in follicular deviation and dominance by allowing the future dominant follicle to 
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develop despite limited FSH availability (Ginther et al., 2001; Ginther et al., 2008).  Previous 

research has documented that free IGF-1 concentrations in large follicles increased in mares 

during the follicular phase and was simultaneous with an increasing estradiol:progesterone ratio 

(Spicer et al., 2005).  Additionally, a recent study revealed that the IGF-1 system plays a crucial 

role in follicular deviation without affecting steroid or gonadotropin hormone concentrations 

(Ginther et al., 2008).  The growing evidence suggests that IGF-1 and insulin-like growth factor 

binding proteins (IGFBPs) play a role in many aspects of follicular development and ovulation.  

Follicular Development in the Mare         

Follicle development begins with the emergence of follicles, which are usually 

represented as follicles 6 mm in diameter in mares (Ginther, 2000).  After emergence, the 

follicles enter a common-growth phase in which all follicles grow at the same rate and develop 

granulose cell layers with FSH receptors and theca cell layers with LH receptors.  The 

accumulation of receptors allows follicles to become sensitive to gonadotropin hormone release 

from the anterior pituitary and undergo further maturation.  These follicles go on to develop an 

antrum and begin to display steroidogenic activity as tertiary follicles.  The theca cells, under 

stimulation of LH, convert circulating cholesterol into androgens, androstenedione, and 

testosterone through a second messenger system and enzymatic stimulation.  Testosterone is then 

transported by a carrier protein to the granulosa cells where, under stimulation of FSH, a second 

messenger system activates aromatase to convert testosterone into estradiol.  Due to increasing 

concentrations, estradiol begins a positive feedback loop to the neurons of the hypothalamus and 

allows further development of tertiary follicles through LH stimulation, including granulosa cells 

accumulating LH receptors.    

After the common growth phase, which lasts approximately 6 days in the mare, the 

deviation process is initiated when the most developed tertiary follicle reaches a mean of 13 mm 

in diameter and begins to secrete inhibin (Ginther, 2000).  Inhibin serves to negatively feedback 

on FSH production at the anterior pituitary, resulting in lower FSH concentrations.  The 

decreasing FSH causes all smaller follicles to slow growth and eventually regress, but the largest 

follicle is able to continue development in spite of low FSH concentrations due to its increased 

gonadotropin sensitivity (Donadeu and Ginther, 2002).  This deviation in size and development 

occurs when the largest follicle reaches 21 to 23 mm in diameter, effectively separating the 
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dominant follicle from the subordinant follicles.    The dominant follicle, under increasing 

estradiol and LH concentrations, undergoes further maturation and becomes a preovulatory 

follicle that is capable of releasing a viable oocyte that can be fertilized and result in a 

pregnancy.  Preovulatory follicles continue to increase in size in the final 6 days prior to 

ovulation (Hafez, 1980).  The preovulatory follicle can vary from 30 mm to 70 mm in diameter, 

with an average diameter of 40 to 45 mm at ovulation (Blanchard et al., 1998). 

Composition of Follicular Fluid 

 Follicular fluid is composed of serum components as well as locally secreted factors, 

such as hormones, which play a part in the metabolic activity of follicular cells (Gerard et al., 

2002)  Follicular fluid is present in the antrum of a tertiary follicle and its content varies with the 

stage of estrous and the size of the follicle.  Gerard et al. (1999) noted that growth of an equine 

dominant follicle early in estrus is associated with a significant increase in intrafollicular 

estradiol and progesterone concentrations as well as a decrease in some IGFBPs.  During the 

final maturation of the preovulatory follicle just prior to ovulation, a slight decrease in 

intrafollicular estradiol concentrations occur along with a continued increase in progesterone 

concentrations.  Furthermore, the presence of an unknown 200,000 molecular weight protein was 

also detected (Gerard et al., 1999).  In a follow-up study using proton nuclear magnetic 

resonance, equine follicular fluid was found to be comprised of glycoconjugates, lipoproteins, 

glucose metabolites, amino acids, creatine, and polyamines (Gerard et al., 2002).  Follicle 

maturation was indicated by a decrease in glycoconjucates, trimethylamines, acetate, and 

estradiol with a subsequent increase in CH3 groups of lipoproteins and progesterone (Gerard et 

al., 2002).  Increased intrafollicular IGF-1 and changes in IGFBP concentrations have also been 

shown to be associated with increased estradiol, progesterone, and androstenedione 

concentrations in developing mare follicles (Bridges et al., 2002; Davidson et al., 2002; Spicer et 

al., 2005).  When compared to other mammals, the mare possesses unique differences in 

conditions of ovulation and oocyte maturation.  For example, the mare has a low in vitro 

maturation rate when compared other domestic species, which can often exceed 90% (Goudet et 

al., 1997a).  Therefore, it is speculated that equine follicular fluid has species-specific factors that 

are yet to be determined (Gerard et al., 1999). 



 11 

The Ovulatory Process in the Mare 

 Ovulation can be characterized by three main processes: a shift from estradiol to 

progesterone production, increased follicular pressure, and breakdown of the connective tissue of 

the follicular wall.  The transition from estradiol to progesterone production occurs immediately 

prior to ovulation.  In response to threshold levels of LH, follicular theca interna cells begin to 

produce progesterone instead of testosterone.  This production leads to a slight decrease in 

estradiol production as well as stimulates the theca interna cells to synthesis collagenase 

enzymes which will aid in the breakdown of the follicular wall (Senger, 2003).   

The preovulatory rise in follicular prostaglandin concentrations in response to increasing 

LH is necessary for ovulation to occur (Satoh et al., 1985).  Increases in PGE2 result in 

hyperemia and edema of ovarian tissue, while increasing levels of histamine at the site increase 

vascular permeability and promote swelling.  The increase in blood flow aids the preovulatory 

follicle in obtaining the hormonal and metabolic factors needed for final maturation.  

Additionally, a rise in PGF2α leads to smooth muscle contraction of the ovary which, along with 

PGE2 and histamine, increases follicular pressure inside the preovulatory follicle (Senger, 2003).   

Breakdown of the follicular wall through enzymatic degradation is also aided by 

prostaglandins.  While stimulating ovarian contractions, PGF2α also causes lysosomes in 

granulosa cells to rupture and release enzymatic components to aid in wall degradation.  

However, PGE2 plays a larger role in connective tissue breakdown by activating epithelial cells 

to produce urokinase-type plasminogen activator (uPA).  Plasminogen from serum is then 

converted to plasmin by the uPA enzyme.  Plasmin proceeds to activate collagenases, which 

break down collagen in the follicular wall, and free tumor necrosis factor-α (TNFα), which 

results in apoptosis of epithelial cells.  Collectively, these events degrade the follicle wall 

(Murdoch and Gottsch, 2003).        

After tissue breakdown and follicular pressure reach a threshold level, ovulation takes 

place and the ovum is released by way of the ovulation fossa.  The evacuated follicle becomes 

irregularly shaped, follicular cells mix, and local hemorrhaging occurs due to ruptured blood 

vessels (Senger, 2003).  At this stage, the newly ovulated follicle is known as a corpus 

hemorrhagicum.  The CL is formed when granulosa and theca cells are luteinized into large and 

small luteal cells and begin to produce large amounts of progesterone, initiating the luteal phase 

of the estrous cycle.      
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Effect of PUFAs on Reproduction 

Polyunsaturated fatty acids affect reproduction primarily through their role in the 

formation of eicosanoids, especially prostaglandins (Abayasekara and Wathes, 1999a).  The most 

biologically active group of prostaglandins are series 2 prostaglandins which originate from 

ARA through the cyclooxygenase pathway (see Figure 1.2).  Within this pathway, the 

cyclooxygenase-2 (COX-2) enzyme converts ARA to prostaglandin H2, which is the universal 

precursor for all series 2 prostaglandins.  The most common and reproductively relevant series 2 

prostaglandins are PGF2α and PGE2, both of which are pro-inflammatory and essential in the 

ovulatory process.  Series 1 prostaglandins, such as PGE1 and PGF1α, are synthesized from 

DGLA and also have a pro-inflammatory action (Heravi Moussavi et al., 2007).   

Supplementation of n-3s results in a shift of production from pro-inflammatory 

eicosanoids associated with n-6 fatty acids DGLA and ARA, to anti-inflammatory eicosanoids 

associated with EPA (Calder, 2002).  Series 3 prostaglandins, such as PGE3 and PGF3α, are 

synthesized from EPA and counteract the inflammatory process.  Eicosapentaenoic acid also acts 

as a potent inhibitor of the COX-2 enzyme, effectively reducing the amount of pro-inflammatory 

prostaglandins being produced, and competes for the same receptor site as ARA on target cells 

(Calder, 2002).  In a 1998 study, rat hepatoma cells were subjected to EPA derivatives in vitro, 

resulting in a decreased expression of the COX-2 gene, thus inhibiting series 2 prostaglandin 

production (Larsen et al., 1998).  Similar changes were also found in a 2002 study that reported 

dietary supplementation of n-3 in the form of sardine oil resulted in decreased production of 

PGF1α and PGE2 in mice (Broughton and Wade, 2002).  Competition between EPA and ARA for 

mutual enzymes results in a shift of production to the more available substrate.  
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Figure 1.2. Omega-3 and omega-6 substrates for eicosanoid production via the 

cyclooxygenase (COX) pathway. 

PUFA Supplementation and Female Reproduction  

When supplemented in the diet, n-3 concentrations in circulation, plasma membranes, 

and tissues are increased and production of anti-inflammatory prostaglandins is favored, which 

has the potential to seriously impact female reproduction.  Many studies have reported effects of 

dietary n-3 supplementation on prostaglandin production and subsequent changes in reproductive 

function.  Rats fed n-3s had a higher ovulation rate than those fed with n-6s, which the authors 

speculated was due to the observed decrease in production of PGE2 coupled with an increase in 

production of PGE3 (Trujillo and  Broughton, 1995).  A decrease in PGF2α metabolite was also 

found in response to estradiol and oxytocin injections given 15 d after synchronization in dairy 

cattle supplemented with fish meal versus dairy cattle not supplemented (Mattos et al., 2002).  In 

a follow-up study, Mattos et al. (2003) exposed bovine endometrial cells to EPA and DHA in 

vitro, which resulted in inhibition of PGF2α.  Feeding lactating dairy cows fish meal containing 

EPA and DHA at 5.4% dietary dry matter also inhibited uterine PGF2α secretion (Thatcher et al., 

1997).  However, a comparable study disputes Thatcher’s and Mattos’ results, finding no effect 
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on PGF2α or COX-2 production after supplementation of dairy cattle with n-3 fatty acids (Heravi 

Moussavi et al., 2007).   

Research has also documented that n-6 supplementation yields lower prostaglandin 

production.  Endometrial samples from n-6 supplemented cows revealed lower PGF2α and PGE2 

levels than n-3 supplemented or non supplemented cows (Cheng et al., 2001).  In a follow up 

study, ewe endometrial cells cultured with n-6 fatty acids and linoleic acid resulted in a lowered 

production of PGF2α (Cheng et al., 2004).  The conflicting literature suggests that many factors 

may be involved in prostaglandin production’s response to fatty acid supplementation and further 

research is needed to elucidate those factors.   

Polyunsaturated fatty acids can affect a wide range of other reproductive parameters 

across species, including gestation length, lactation, fertility, and development.  Recently, direct 

supplementation of EPA and DHA has gained quite a lot of attention commercially due to their 

inclusion in many human products.  These products mainly target infants and expectant mothers, 

due to EPA and DHA’s reported benefits on early neonatal development and cognition (Kinsella, 

1991; Eilander et al., 2007).  Birch and others documented significant improvements in visual 

acuity and visual stereo-acuity of infants fed formula supplemented with PUFAs (Birch et al., 

2002; Birch et al., 2005).  Pregnant women who consume diets high in n-3 PUFAs, such as 

Faroese women and Greenland Eskimos, have longer gestation lengths and increased birth 

weights (Olsen et al., 1991). This occurrence was also noted in 2001, as sows supplemented with 

salmon oil immediately post service to weaning had a longer gestation length and a lower 

preweaning mortality when compared to sows being fed a standard commercial diet (Rooke et 

al., 2001).  It has been suggested that the increased pregnancy rates noted with n-3 supplemented 

diets may be a result of decreased PGF2α secretion and a decreased sensitivity of the CL to PGF2α 

(Mattos et al., 2000).  A 2005 study in ewes supported this claim, as feeding a diet high in n-3 

fatty acids resulted in fewer peaks and a lower overall concentration of a PGF2α metabolite 

measured in plasma on d 14 of the estrous cycle, which may result in delayed regression of the 

CL (Naddafy et al., 2005).  In another study, beef cows supplemented with rumen-protected 

PUFAs displayed greater pregnancy rates and greater mean serum progesterone concentrations 

than non-supplemented controls (Lopes et al., 2009).  Evidence also points to an improvement in 

oocyte quality with supplementation of PUFAs.  In 2001, varying PUFA content in bovine 

oocytes was shown to enhance quality and maturation ability (Kim et al., 2001).  
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Supplementation of ewes with calcium soaps of fish oil resulted in an increased number, quality, 

and chilling resistance of oocytes (Zeron et al., 2002). 

 Alterations in follicular dynamics due to supplementation of EPA and DHA are 

controversial with conflicting results reported in the literature.  In some cattle studies, 

supplementation of PUFAs resulted in an increase in follicular number as well as the size of the 

dominant follicle (Beam and Butler, 1997; Robinson et al., 2002a; Bilby et al., 2006) whereas 

others found no such distinction (Petit et al., 2002; Petit et al., 2004).  Gilts fed a dietary n-3 

supplement showed no difference in ovulation rate or litter size when compared with controls 

(Estienne et al., 2006), but gilts fed a protected n-3 fatty acid source 30 d or more prior to 

breeding produced 1 more piglet than controls at farrowing (Spencer et al., 2004).  Sows fed the 

same protected n-3 fatty acid source 35 d or more prior to breeding had more live embryos at 35 

d of gestation compared to control sows (Webel et al., 2004).  These discrepancies may be the 

result of species differences, source and amount of PUFAs being supplemented, feeding 

duration, or a combination of these factors.   

PUFAs and Male Reproduction 

Unsaturated fatty acids are necessary components in the spermatozoa in human, 

livestock, and avian species due to their role in providing fluidity to the sperm plasma 

membrane.  However, too high of inclusion of PUFAs in spermatozoa increases the risk of 

oxidation and peroxidative damage (Wathes et al., 2007).  In male reproduction, research 

findings on PUFAs’ effect on sperm quality and fertility have been mixed and limited.  A study 

in turkeys discovered that reproductive capacity, defined as fertility, embryo viability, and 

hatching rate, was increased with n-3 supplementation.  Benefits were further increased with 

turkey age, increasing hatching rates by 2 points at 48 to 58 weeks in supplemented males 

(Blesbois et al., 2004).  Supplementing boars with 3% fish oil in the diet resulted in an increased 

number of sperm in the ejaculate but did not alter freezability in one study (Maldjian et al., 

2005), while another study revealed no improvement in nonreturn rates to artificial insemination 

with semen from boars supplemented with cod liver oil compared to semen from non-

supplemented control boars (Paulenz et al., 1995).  A recent study revealed that boars 

supplemented with dietary n-3 fatty acids increased ejaculation duration and sperm per ejaculate 

when compared with corn-supplemented controls (Estienne et al., 2008).    More research in this 
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area is needed to confirm the value of supplementation on male reproductive health and 

spermatogenesis.    

PUFAs and Equine Reproduction 

Omega-3 fatty acid research has received increasing attention in the equine industry, 

specifically due to their anti-inflammatory properties.  In the mare, reproductive research 

involving n-3 supplementation has been limited.  Lactating mares fed a marine-based source of 

n-3s showed increased levels of EPA and DHA in milk (Kruglik et al., 2005).  Further research 

from the same laboratory documented the effects of fish oil supplementation on mares 

supplemented 60 d prior to the expected foaling date until the second postpartum estrus (Poland 

et al., 2006).  Poland et al. (2006) found that supplemented mares had the ability to transfer 

dietary n-3 fatty acids to their foals in utero as well as through milk after the foal is born.  This 

study also indicated that EPA supplementation may play a role in altering follicular dynamics by 

delaying ovulation post-partum.  A 2009 study evaluated marine-derived n-3 supplementation’s 

effects on reproductive factors of quarter horse and miniature mares.  No difference among 

treatments or horse size was noted in number of estrous cycles, but the n-3 supplemented mares 

showed a tendency for greater serum progesterone concentrations across estrous cycles when 

compared to mares fed animal fat (Furtney et al., 2009).    

In stallions, studies have been centered on PUFA supplementation and improvements in 

sperm quality and fertility, with special attention being given to cryopreservation and cooling 

techniques.  A University of Arizona study paired 6 stallions by semen characteristics and 

allocated them to either a control diet or an n-3 supplemented diet (Harris et al., 2005).  

Researchers found that in n-3 supplemented stallions, lipid plasma concentrations increased by d 

19 of supplementation and remained elevated throughout d 90 of the feeding trial.  Furthermore, 

supplemented stallions increased daily spermatozoa output whereas control stallions remained 

constant.  However, no differences where found between groups in motility characteristics or 

cryopreservation tests (Harris et al., 2005).  Another study supplemented 4 stallions with 250 g/d 

of a DHA-enriched nutriceutical for 14 wk and compared semen quality to their 4 

contemporaries fed a control diet (Brinsko et al., 2005).  Researchers determined that 

supplemented stallions exhibited increases in overall sperm motility, velocity, and projectory 

after 48 hr of cooled storage.  It was also noted that a subset of stallions with lower than average 
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progressive sperm motility (less than 40%) after 24 hr of cooled storage showed improvements 

in mean progressive motility after 24 hr when fed the DHA supplement.  This finding suggests 

that stallions with poor motility or sperm production may benefit the most from supplementation 

(Brinsko et al., 2005).  In contrast, a Texas A&M University study reported that spermatozoa 

characteristics from miniature stallions were not affected by dietary supplementation of 150g/d 

fish oil or 60 g/d flaxseed and algae-based supplement for 84 d (Grady et al., 2009).          

Transvaginal Ultrasound Guided Aspiration 

Transvaginal ultrasound-guided follicle aspiration (TUGA) is a relatively safe and non-

invasive procedure commonly performed to collect follicular fluid and/or retrieve oocytes for 

oocyte transfer.  The procedure involves the manipulation of the ovary through rectal palpation. 

A needle is then guided through the vaginal wall and into the follicle using a transducer inserted 

vaginally.  Factors that have been show to impact the success of the TUGA procedure include 

hormone treatment, follicle size, aspiration frequency, breed and reproductive state, and needle 

size (Squires and Cook, 1996).  Although size of needle, ultrasound equipment, and usage of 

antibiotics and sedatives can vary within the procedure, the basic protocol holds constant for 

using TUGA in mares.  Before initiating the procedure, the mare is often given a rectal relaxer, 

such as propantheline bromide, and is sedated with intravenous drugs such as xylazine and 

butorphanol tartrate (Cook et al., 1992; Carnevale and Ginther, 1993).  The perineal region is 

then scrubbed with a disinfectant and an ultrasound probe is lubricated and inserted into the 

mare’s vagina with the transducer facing dorsally.  Through transrectal manipulation, the ovary 

is placed and stabilized against the vaginal wall over the face of the transducer.  Due to the large 

vessels and arteries present in the broad ligament and pelvic region, care must be taken to 

position the ovary anterior to the broad ligament before maneuvering it to a central and caudal 

position in the mare for aspiration.  The mare’s ovary is held within the hand that is palpating 

rectally and positioned between the bevel of the needle and the abdominal blood vessels 

(Carnevale, 2008).  A needle is then inserted through the vaginal wall and directly into the 

antrum of the follicle.  Follicular fluid is then aspirated using a vacuum pump (Gerard et al., 

2004) or a syringe.  The time from puncture to follicle evacuation averages 3 min (Carnevale and 

Ginther, 1993).      
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Since the 1980s, TUGA has been used for aspiration of follicles and collection of oocytes 

in both humans and cattle (Pieterse et al., 1988; Cook et al., 1992).  The first report of TUGA 

being performed in horses was in 1992 using a 6-MHz transducer and a single-lumen needle.  In 

this study, four aspirations were performed on preovulatory follicles 20 to 30 hr after hCG was 

given (Bruck et al., 1992). In another study, three different aspiration techniques were examined 

to determine the viability of using TUGA for routine oocyte collection in both diestrus and estrus 

phases (Cook et al., 1992).  The first technique used a 12 gauge single lumen needle with 

repetitive filling and evacuation of the follicle through flushing.  The second technique was 

identical to the first except a wire loop device was attached to the needle and rotated to remove 

cumulus cells.  Technique three involved a 12 gauge double-lumen needle which was used to 

continuously rinse the follicle for 2 to 4 min via a pressurized IV fluid system.  Researchers 

found technique three to be the most successful at oocyte recovery (84%) from preovulatory 

mares during estrus and validated TUGA as a safe and effective technique for oocyte recovery 

(Cook et al., 1992).   

Although the incidence of complications is low, some problems and potential hazards are 

to be noted with TUGA.  A small amount of blood is often present in the follicular fluid 

collected due to the disruption of the vascular follicular wall, but a large amount could indicate 

internal hemorrhaging or other complications (Carnevale, 2008).  In one isolated documented 

case, severe internal hemorrhage occurred after performing the TUGA procedure on a mare 

(Vanderwall and Woods, 2002).  Other less severe complications that have been recorded 

include severe ileus, treatable peritonitis, and mild cases of colic (Carnevale, 2008). 

No significant effects on fertility have been reported when mares were inseminated after 

several repeated TUGA procedures, as loss of follicular fluid does not appear to affect 

establishment of pregnancy (Mari et al., 2005; Vanderwall et al., 2006).  Cook (1995) conducted 

a study to evaluate the effect of repeated TUGA during four consecutive cycles in the mare.  It 

was noted that fewer experimental mares (53%) had a conventional duration of estrus after 

repetitive aspirations compared with non-aspirated controls (80%).  Concentrations of plasma 

FSH were increased in the experimental group after follicles were aspirated during diestrus when 

compared with non-aspirated controls.  No differences were found between the two groups 

regarding FSH, LH, or progesterone concentrations during estrus aspirations.  No adverse side 

effects or complications occurred and the author concluded that TUGA was a low-risk repeatable 
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method for in vivo equine oocyte collection with little effect on estrus cycle characteristics 

(Cook, 1995).  In contrast to Cook’s results, another study examining the effect aspiration of 

three different sized follicles has on plasma LH concentrations in the mare found that increased 

LH concentrations were present after aspiration of follicles in each size category.  Concentrations 

of FSH were also significantly higher in aspirated mares compared to controls (Hinrichs et al., 

1991). 
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CHAPTER 2 - EFFECTS OF SUPPLEMENTING MARE DIETS 

WITH MARINE-DERIVED N-3 FATTY ACIDS ON SERUM, 

FOLLICULAR FLUID AND FOLLICULAR DYNAMICS 

DURING THE ESTROUS CYCLE 

Introduction 

The inclusion of fat in the horse diet to maximize energy without negatively impacting 

the animal’s glycemic index or digestive tract has been a common practice for many years.  As 

monogastric herbivores, horses are designed to primarily consume forage which is high in fiber 

but low in DE.  However, unlike high amounts of starch and cereal grains, the horse has a 

relatively high tolerance for fat in the diet and it is considered a “safe” energy alternative to the 

more traditionally used cereal grains (Bush et al., 2001; Lewis, 2005).  In fact, horses can utilize 

up to 20% added fat in the total diet (Lewis, 2005).  The most commonly used forms of fat 

supplementation for horses are plant and vegetable oils, such as corn oil and soy oil, due to their 

high palatability and availability.  Plant and vegetable oils provide about 3 times more digestible 

energy than an equal weight of cereal grain, and 3.5 to 6 times more digestible energy than an 

equal volume of cereal grain (Lewis, 2005).  Fat added diets have been proven to be especially 

beneficial to those horses that have a heavy work load or exercise requirement (Hambleton et al., 

1980; Harkins et al., 1992; Eaton et al., 1995).  Dietary fat supplementation also affects follicular 

growth, pregnancy rates, milk composition (Mattos et al., 2002), and ovarian and uterine 

function in several livestock species (Beam and Butler, 1997; Mattos et al., 2000; Santos et al., 

2008).  Although not as extensively documented, a positive effect of added fats on reproduction 

in the equine species has been documented (Kubiak et al., 1987; Davidson et al., 1991; 

Ordakowski-Burk et al., 2005).  Fat supplementation of mares during late gestation and early 

lactation increased milk fat percentage, blood lipid concentration of their foals, and rate of gain 

in foals during their first week of life (Davidson et al., 1991).  Additionally, this study noted a 

trend for a shorter postpartum interval and fewer cycles to pregnancy in fat-supplemented mares.  

A particular group of fatty acids has been recently highlighted in research and the 

consumer market as having multiple health benefits for both humans and livestock species.  

Polyunsaturated fatty acids are defined as fatty acids with multiple double bonds, and can be 

categorized into omega-6 (n-6) and omega-3 (n-3) families.  Omega-6 fatty acids are found in 

plentiful amounts in common animal feedstuffs such as corn and corn oil.  Once digested, n-6 
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fatty acids produce series 1 and 2 eicosanoids which are inflammatory in nature.  Omega-3 fatty 

acids are not commonly found in high amounts in a typical livestock diet, but can be 

supplemented with products like flaxseed oil and fish oil.  Marine-derived supplements, like fish 

oil, are rich in two of the most commonly supplemented n-3 fatty acids, eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA).  Once digested, n-3 fatty acids produce series 3 

eicosanoids which are anti-inflammatory in nature.  Supplementing n-3 fatty acids can benefit 

many systems in the body, including the cardiovascular, skeletal, nervous, immune, and 

reproductive systems (Simopoulos, 1991; Pike and Barlow, 2000; Simopoulos, 2002; Dunnett, 

2005; Robinson and Stone, 2006). 

Omega-3 fatty acids have received increasing attention in the equine industry, primarily 

due to their anti-inflammatory properties (Calder, 2002; Munsterman et al., 2005; Skjolaas-

Wilson et al., 2005).  In stallion reproduction, n-3 fatty acids have been investigated in relation to 

improving spermatogenesis and cooled semen properties (Brinsko et al., 2005; Harris et al., 

2005).  In the mare, research has been focused on supplementation of the foal through mare n-3 

dietary supplementation (Kruglik et al., 2005; Skjolaas-Wilson et al., 2005; Poland, 2006).  

During the postpartum estrous period, mares receiving EPA and DHA in the form of fish oil had 

an increase in time from foaling to ovulation in the EPA and DHA supplemented group when 

compared to the control group and a group receiving DHA alone (Poland, 2006).  The EPA and 

DHA supplemented mares also held a preovulatory follicle significantly longer prior to ovulation 

than the other two groups (Poland, 2006).   

The current study was designed to further explore Poland’s findings regarding an n-3 

effect on mare cyclicity.  The objectives of this study were to determine the effects of feeding a 

marine-derived n-3 fatty acid supplement on plasma fatty acid profiles as well as several 

reproductive factors during the estrus periods of healthy, cycling mares. To this author’s 

knowledge, there have been no such studies evaluating the reproductive effects of n-3 fatty acid 

supplementation in non-pregnant mares during the natural breeding season.  
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Materials and Methods 

Management of Animals 

 This study was reviewed and approved by the Institutional Animal Care and Use 

Committee at Kansas State University.  Fourteen Quarter Horse-type mares and one 

Thoroughbred-type mare between 4 and 16 yr of age were used in this study.  Fourteen mares 

were leased from private owners for the duration of the study and one mare was owned by 

Kansas State University (KSU).  All mares were non-pregnant and cycling throughout the 

duration of the study.  Initially, 19 mares were placed in the study, however 4 mares were 

removed from the study after failing to establish a normal estrous cycling pattern within the first 

30 d.  Upon arrival, mares were vaccinated and dewormed according to KSU Horse Teaching 

and Research Unit herd health management policies.  Mares were group housed at the KSU 

Horse Unit in Manhattan, KS in dry lots and were allowed access to fresh water ad libitum 

throughout the study.  Brome hay was group fed based on 1.5% of each mare’s BW and spread 

throughout 4 bunks for equal access once daily.  Mares were also individually fed 1.81 to 2.5 kg 

of a 12% crude protein sweet feed with their treatment supplement once daily.  The amount of 

grain fed to each mare was adjusted to maintain a body condition score of 5 or above.  All 

feedstuffs and supplements were analyzed to ensure that the two treatment diets met or exceeded 

the nutritional requirements for horses at maintenance (Tables 2.1, 2.2, 2.4) as per the Horse 

NRC guidelines (National Research Council, 2007).  Additionally, feedstuffs and supplements 

were analyzed for fatty acid content prior to initiation of the study (Tables 2.3, A.1 and A.2).  

Treatment diets were initiated on d 0 and continued until follicular fluid was collected from a 

preovulatory follicle (35 to 45 mm) on the third and final estrous cycle of the study.  Grain and 

supplements were weighed, mixed, and fed daily at 0800 hr.  Mares consumed their grain ration 

in individual 12 x 12 pens and were given adequate time to finish their ration.  Any leftover feed 

was weighed and recorded.  Mares were group fed brome hay at 1700 hr daily.    The study 

began on June 8, 2009 and the final mare concluded the trial on August 18, 2009.             
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Table 2.1 Nutrient profile (on a dry matter basis) of brome hay and concentrate fed to 

mares during the breeding season 

Dry Matter (%) 91.97

Crude Protein (%) 7.56

 Acid Detergent Fiber (%) 36.73

 Neutral Detergent Fiber (%) 60.32

Digestable Energy (Mcal/kg) 2.34

Nonstructural CHO (per 100 g) 22.35

Fat (%) 2.65

Ash (%) 7.12

Calcium (%) 0.29

Phosphorus (%) 0.18

Potassium (%) 1.35

Digestible Energy (Mcal/kg) 2.63

Protein (min %) 12.00

Fat (min %) 3.00

Fiber (max %) 25.00

Calcium (min %) 1.20

Phosphorus (min %) 0.30

Salt (min %) 1.00

Potassium (min %) 0.60

Copper (min ppm) 5.00

Zinc (min ppm) 75.00

Selenium (min ppm) 0.01

Vitamin A (min IU/lb) 2600.00

Brome Hayac 

Concentratebc

cValues listed are LS means

aProximate Analysis by SDK Laboratories, Hutchinson, KS
bGuaranteed analysis provided by Nutrena® Animal Feeds

 

 



 24 

Table 2.2 Nutrient profiles of fish oil supplement and corn oil fed to mares during the 

breeding season 

Nutrient

Fish oila Corn oil

DM (%) 96.19 100

Digestible Energy (Mcal/kg) 3.82 9.19

Total Fat (%) 48.7

Crude Protein (%) 1

Crude Fiber (%) 7.19

Ash(%) 40.25
aValues for fish oil supplement provided by JBS United, Sheridan, IN

Supplements

 

 

Table 2.3 Fatty acid profile of feedstuffs, fish oil supplement, and corn oil fed to mares 

during the breeding season 

Concentratea Brome Haya Corn Oila Fish oilb

Total n-6:

LA 44.76 25.23 55.71 2.43

ARA 0 0.21 0 0.98

Total n-3:

ALA 2.9 20.28 1.17 1.08

EPA 0 0 0 13.54

DPA 0 0 0 2.43

DHA 0 0 0 7.29

n-6:n-3 15.43:1 1.25:1 47.62:1 0.14:1

bPercent Total Fat as reported by JBS United, Sheridan, IN

aPercent Total Fat calculated from total fatty acids measured by gas 

chromotography analysis

Feedstuffs Supplements
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Treatment groups 

Mares were divided into two treatment groups based on age, initial BW, and initial body 

condition score.  The treatments consisted of a control diet (CONT, n=7) and a diet 

supplemented with fish oil (FO, n=8).  The CONT group received the concentrate to which 120 g 

corn oil was added, while the FO group was given the concentrate supplemented with 280 g of 

Gromega 365
TM

, a powdered fish oil supplement containing EPA and DHA.  The fish oil 

supplement was added to the concentrate and water was added to aid in the mixing and binding 

of the powder to the concentrate.  The FO supplement provided 18.48 g EPA/d and 10.08 g 

DHA/d for each horse.  Gromega 365
TM

 was provided by JBS United, Inc. of Sheridan, IN and is 

currently marketed for use in the swine industry.  Corn oil was used to provide a similar amount 

of energy to the CONT group as the fish oil supplement provided to the FO group.  Corn oil also 

is extremely low in n-3 fatty acids (Table 2.3), minimizing any confounding effects due to 

supplementation (Reese, 2003). 

 

Table 2.4 Estimated nutrients provided in total diets for control (CONT) and fish oil 

supplemented mares (FO) during the breeding season 

Nutrienta Reqb CONT FO 

DE (Mcal/d) 16.65 23-25 23-25

CP (g/d) 630 783-866 786-869

Ca (g/d) 20 44-52 60-68

P (g/d) 14 18-20 18-20

Ca:P 1.4 2.4-2.6 3.3-3.4

K (g/d) 25 111-115 111-115

bRequirement based on 500 kg horse at maintenance 

aValues based on 1.81 - 2.5 kg grain fed/d/mare and 7.48 kg  

brome hay fed/d/mare
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Synchronization Protocol 

Upon initiation of treatment diets on d 0, the mares’ estrous cycles were synchronized by 

a standard progesterone and estradiol protocol (McKinnon and Voss, 1993) to aid in ease of 

tracking follicular dynamics via ultrasonography.  During synchronization, mares were also 

allowed to acclimatize to the treatment diets.  Mares were injected IM in the neck with 1 mL 

containing 150 mg progesterone and 10 mg estradiol-17β daily from d 0 to d 9 of the trial.  On d 

9 and 10, 5 mg of Lutalyse® was administered IM.  Mares were then ultrasounded to confirm 

ovulation and the presence of a CL, denoting the end of the first estrous cycle.  During the 

synchronization process, three mares had mild injection site reactions.  These reactions were 

treated with heat packs for 2 to 5 d and alternate locations were used for subsequent injections.   

Ultrasonography 

Five days after a CL was confirmed following synchronization, mares were monitored 

every other day through transrectal ultrasonography using a Sonovet 600 ultrasound equipped 

with a 5 MHz probe.  Once a 25 mm diameter follicle was detected, mares were ultrasounded 

daily through d 5 post ovulation.  Ovarian activity, follicular diameter, conformation of 

ovulation, and presence of a CL were noted.   

The same ultrasonography protocol was repeated for the third estrous cycle until a 35 mm 

follicle was detected.  On the day a 35 mm follicle was identified, hCG was administered and the 

transvaginal ultrasound-guided aspiration (TUGA) procedure was performed the following day, 

denoting the conclusion of data collection.  More detail on the TUGA procedure and hCG 

administration is provided in the sections that follow.  As mentioned previously, four mares were 

removed from the study after transrectal ultrasonography data revealed the mares failed to 

establish patterns consistent with normal estrous cyclicity. 

   Follicular Fluid Collection 

Follicular fluid was collected from each mare during the third estrous cycle via a TUGA 

procedure.  When a 35 mm follicle was first detected, 2500 IU hCG (Chorulon®, 

Intervet/Schering-Plough Animal Health) was administered intravenously that evening at 1800 

hr. Administering hCG to mares when a preovulatory follicle of 35 mm or greater is present 

results in ovulation 24 to 48 hr later in 73% of treated mares (Duchamp et al., 1987).  Therefore, 

giving each mare hCG helped ensure that the preovulatory follicles were maturing at 
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approximately the same rate and fluctuations in individual mares were minimized.   The TUGA 

procedure began the next day at 1000 hr after a final diameter of the preovulatory follicle was 

recorded.   

TUGA procedure 

Before initiation of the procedure, each mare was ultrasounded to determine final 

diameter of the preovulatory follicle.  The mare’s tail was then tied up and the vulva and 

buttocks thoroughly washed.  A 0.01 mg/kg dose of Detomidine was administered IV to induce 

mild sedation.  After 1 min, 0.3 mg/kg of Buscupan was given IV over a 30 sec interval.  

Lidocaine gel was then manually administered to the vaginal wall 2 to 5 min prior to needle 

puncture.  The ovary was rectally manipulated into position against the vaginal wall and an 

Aloka 5 MHz convex Equine/Bovine transducer was inserted vaginally.  Once the preovulatory 

follicle was located and maneuvered into position, a sterilized lumen needle attached to plastic 

tubing and a 20 cc syringe was inserted into the probe.  The needle was then punctured through 

the vaginal wall and into the follicle.  Simultaneously, slight suction was applied to the needle 

via the syringe to direct follicular fluid down the tubing.  At least 20 mL of follicular fluid was 

collected per mare and transferred to sterile 50 mL centrifuge tubes.  The entire procedure 

spanned approximately 20 min.  Samples were immediately put on ice and later transported to 

the laboratory for preparation and storage.  All TUGA equipment was sanitized with Dulbeccos 

Phosphate Buffered Saline (Gibcos®, Invitrogen Corp.) prior to and following each procedure 

and the needle was autoclaved.  After the procedure, the mare was allowed to recover from 

sedation before returning to the pen.  For the following 72 hr, the mare was monitored closely for 

any signs of depression, loss of appetite, or pain.  Rectal temperature was also recorded the 

evening of the procedure and twice daily for the following two days.  Each mare’s TUGA 

procedure signaled the end of data collection for that mare.   

After transfer to the laboratory, samples were centrifuged in a Beckman J6B centrifuge at 

1000 x g (2000 rpm) for 10 min.  The cell pellet portion of the follicular fluid was separated into 

a 1.5 mL microtube and centrifuged again for 10 sec at a steadily increasing rpm to further 

separate the cells and fluid.  Follicular fluid was stored at -70°C until fatty acid and hormone 

concentrations were analyzed. 
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   Blood Collection 

 

Blood samples were all collected at approximately the same time in the morning, either in 

the individual pens during morning feeding or in the stocks prior to ultrasound, to minimize 

differences in fatty acid levels due to circadian rhythms (Orme et al., 1994).  For fatty acid 

analysis, blood samples were collected from mares via jugular venipuncture using 10 mL 

vacuum tubes without additive.  Samples were collected at d 0 of the trial and every two wk until 

the termination of the study.  After collection, tubes were allowed to sit at room temperature for 

approximately 20 min until clotting and separation occurred.  Tubes were then centrifuged at 

2000 rpm for 20 min.  Serum was stored in 1.5 mL microtubes at -18° C until fatty acid 

concentrations were analyzed. 

Blood samples for hormone analyses were collected from mares during their second 

estrous cycle at 5, 4, 3, 2, and 1 d prior to ovulation as well as on d 1, 3, and 5 post-ovulation.  

Samples were also taken during the third estrous cycle prior to hCG administration and the day 

of follicular fluid collection.  Blood was collected via jugular venipuncture using 10 mL and 7 

mL vacuum tubes without additive.  After collection, tubes were allowed to sit at room 

temperature for approximately 20 min until separation occurred.  Tubes were then centrifuged at 

2000 rpm for 20 min.  Serum was stored in 5 mL collection tubes at -18° C until hormone 

concentrations were analyzed. 

Fatty Acid Analysis 

 

Serum and follicular fluid fatty acid concentrations were determined using gas 

chromatography.  Although many fatty acids were measured, only the main fatty acids of 

interest, including linoleic acid (LA), alpha-linolenic acid (ALA), arachidonic acid (ARA), EPA, 

docosapentaenoic acid (DPA), and DHA, were used for statistical analysis and noted in the 

results section.  The standard operating procedure used to measure long chain fatty acids in 

serum and follicular fluid is described in detail in the following paragraph.   

Serum (500 µl) was dispensed into 10 mL screw cap tubes and allowed to lyophilize 

overnight.  One mL of benzene containing internal standard (400 µg/ml methyl-C13) was then 

added and samples were vortexed to break up the pellet.  Next, 4 mL of Boron Triflouride-



 29 

Methanol reagent was added, tubes were gased with nitrogen for approximately 10 sec, and 

samples were vortexed.  Tubes were incubated at 60° C for 60 min, cooled to room temperature, 

and 4 mL of water and 1 mL of hexane were added.  Finally, tubes were centrifuged for 5 min at 

2000 rpm/1000 x g and upper layer methyl esters were transferred to a screw top gas 

chromatography vial for analysis using a Hewlett-Packard Model 5890 gas chromatographer.    

Hormone and IGF-1 Analysis of Serum and Follicular Fluid 

   Estradiol-17β 

Serum samples collected during the second and third estrous cycles were analyzed for 

estradiol-17β using a Becton Dickinson-4800 Ultra-Sensitive Estradiol Radioimmunoassay 

(RIA) kit from Diagnostic Systems Laboratories, Inc., which was previously validated for 

equine.  The extraction and assay were performed according to the manufacturer’s instructions 

with 400 µL aliquots of serum and samples were counted in a PerkinElmer Cobra II 5005 

gamma counter.  The intra-assay CV was 6.32% and the inter-assay CV was 6.54%.    

Follicular fluid samples for each mare were sent to the Louisiana State University equine 

physiology lab in Baton Rouge, Louisiana for analysis of estradiol-17β concentrations.  A 

Double Antibody Estradiol RIA kit (DSL-4400) manufactured by Diagnostic Systems 

Laboratory was used to measure concentration of estradiol in each follicular fluid sample.  Prior 

to the assay, samples were diluted 1:100,000 and run directly at 200 uL per tube.  The assay was 

performed according to the manufacturer’s instructions.  The intra-assay CV was reported as 

7.00%.  

   Progesterone 

Serum samples collected during the second and third estrous cycles were analyzed for 

progesterone using a DSL-3900 ACTIVE® Progesterone Coated-Tube RIA kit, which was 

previously validated for equine.  The assay was performed according to the manufacturer’s 

instructions with 25 µL aliquots of serum and samples were counted in a PerkinElmer Cobra II 

5005 gamma counter.  The intra-assay CV was 6.97% and the inter-assay CV was 8.16%. 

Progesterone content in follicular fluid samples was measured using a Coat-A-Count® 

Progesterone RIA kit, which was previously validated for equine.  The assay was performed 
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according to the manufacturer’s instructions with 100 µL aliquots of serum and samples were 

counted in a PerkinElmer Cobra II 5005 gamma counter.  The intra-assay CV was 1.0%. 

   Luteinizing Hormone 

 Serum samples collected 4 d prior to ovulation, on ovulation, and d 3 post ovulation 

during the second estrous cycle, during the third estrous cycle, and aliquots of follicular fluid 

were sent to the Louisiana State University equine physiology lab in Baton Rouge, Louisiana for 

analysis of luteinizing hormone (LH) concentrations.  The radioimmunoassay used to measure 

LH in these samples has been previously validated and documented in detail (Thompson D.L. Jr 

et al., 1983) and can measure up to 200 uL of serum.  The intra-assay CV was reported as 

6.00%.assayed. Duplicate 

   Insulin-Like Growth Factor-1 

Serum samples collected from the day before and the day of the TUGA procedure and 

aliquots of follicular fluid were analyzed for insulin-like growth factor-1 (IGF-1) content using 

the DSL-5600 ACTIVE® IGF-1 Coated-Tube IRMA kit, which was previously validated for 

equine.  The extraction and assay were performed according to the manufacturer’s instructions 

with 50 µL aliquots of extracted serum or follicular fluid and samples were counted in a 

PerkinElmer Cobra II 5005 gamma counter.  For serum samples, the intra-assay CV was 4.06%.  

For follicular fluid, the intra-assay CV was 1.5%.    

   Prostaglandin F2α 

Prostaglandin F2α (PGF2α) was measured in follicular fluid samples collected during 

aspiration using a PGF2α Enzyme-Linked Immunosorbent Assay (ELISA) kit manufactured by 

Neogen Corporation, which was previously validated for equine.  The assay was performed 

according to the manufacturer’s instructions with 50 µL aliquots of follicular fluid and samples 

were counted in a PerkinElmer Victor II microplate reader at 450 nm.  The intra-assay CV was 

8.9%.  

   Prostaglandin E2 

Prostaglandin E2 (PGE2) was measured in follicular fluid samples using a Correlate-

EIA
TM

 PGE2 Enzyme Immunoassay (EIA) kit manufactured by Assay Designs, which was 

previously validated for equine.  The assay was performed according to the manufacturer’s 
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instructions with 100 µL aliquots of follicular fluid and samples were counted in a PerkinElmer 

Victor II microplate reader at 405 nm.  The intra-assay CV was 14.2%. 

Statistical Analysis 

 A randomized complete block design was utilized for this study, with mares being 

allocated to the CONT or FO treatment diets independently within blocks.  Age, initial body 

weight, and initial body condition score were used to block mares into blocks of two.  Data were 

measured at one time point during the study or serially over time.  Statistical analyses for all data 

were performed using the Proc Mixed procedure of SAS 9.1 (Cary, NC).   

Data measured at one time point throughout the study include the following: follicular 

fluid fatty acid and hormone measurements, length of interval from ovulation to a 35 mm follicle 

during the second and third estrous cycle, length of interval from a 25 mm follicle to ovulation 

during the second estrous cycle, length of interval from a 35 mm follicle to ovulation during the 

second estrous cycle, mean growth per day from a 25 mm follicle to a 35 mm follicle during the 

second estrous cycle, and mean growth per day from a 35mm follicle to one day prior to 

ovulation during the second estrous cycle.  For this analysis, the model contained the factors 

treatment and block and F-tests were calculated to test treatment main effects.  Means and 

standard errors were also calculated for treatments. 

 Data measured serially over time include serum fatty acid and hormone measurements, 

mean follicular size per day from five days prior to ovulation to one day prior to ovulation during 

the second estrous cycle, mean follicular size on the day of hCG administration and on the day of 

aspiration.  An initial repeated measures analysis was conducted in the SAS GLM procedure to 

evaluate equal correlation between time points using the Greenhouse-Geisser and Huynh-Feldt 

adjustments to p-values.  It was determined that the model with a split-plot in time was 

appropriate and those results are reported in the following results section.  For this analysis, the 

model contained the factors block, treatment, block x treatment, day, treatment x day, and the 

split-plot error term.  Treatment main effects, day main effects, and the treatment x day 

interaction were calculated by F-tests.  Means and standard errors were also calculated for 

treatments, days, and the treatment x day interaction.  When the treatment x day interaction was 

significant, CONT and FO means were compared for each day. 
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Results 

Fatty Acids 

Mare Serum 

Changes in mare serum fatty acid concentrations were apparent on d 14, or two weeks 

after initiation of the diets.  Linoleic acid concentrations were similar (P>0.05) between 

treatments for the majority of the study, but were lower (P<0.01) in the FO group on the final 

day of the trial (Figure 2.1).  A treatment by day interaction (P<0.05) was evident.  Arachidonic 

acid concentrations were significantly higher (P<0.05) in the FO group from d 14 to d 56 of the 

study (Figure 2.2).  However on the final day of the trial, CONT horses had a higher (P<0.01) 

ARA serum concentration.   An overall treatment effect was found (P<0.01) as well as a 

significant treatment by day interaction (P<0.01).  

Similar to LA results, serum concentrations of ALA revealed fluctuations in both groups 

throughout the study (Figure 2.3).  On d 28, ALA concentrations were significantly higher 

(P<0.01) in FO horses than CONT horses, but a trend (P=0.07) for concentrations to be higher in 

the CONT group was noted on the final day of the trial.  A treatment by day interaction (P<0.05) 

was noted. 
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Figure 2.1 Serum linoleic acid (LA) concentration (LSMeans ± SE) in cycling mares fed a 

control diet (CONT) or a fish oil supplemented diet (FO) during the breeding season.  
a 
P<0.05    



 33 

0 14 28 42 56 End
0

10

20

30

40
CONT

FO

a
a

a

a b

Day of Collection

A
R

A
,


g
/m

L

 

Figure 2.2 Serum arachidonic acid (ARA) concentration (LSMeans ± SE) in cycling mares fed a 

control diet (CONT) or fish oil supplemented diet (FO) during the breeding season.  
a 
P<0.05,     

b
 P<0.01 
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Figure 2.3 Serum alpha-linolenic acid (ALA) concentration (LSMeans ± SE) in cycling mares 

fed a control diet (CONT) or a fish oil supplemented diet (FO) during the breeding season.           
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 P<0.01,  

c
 P=0.07 
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Eicosapentaenoic acid serum concentrations were higher (P<0.01) in the FO group by d 

14 and remained significantly higher throughout the trial when compared to horses in the CONT 

group (Figure 2.4).    An overall treatment effect was found (P<0.01) as well as a significant 

treatment by day interaction (P<0.01).  Serum concentrations of DPA were also found to be 

elevated (P<0.01) in the FO treatment group compared to the CONT group from d 14 to d 56 of 

the study, with no statistical difference being recorded on the final day of the trial (Figure 2.5).   

An overall treatment effect was found (P<0.01) as well as a significant treatment by day 

interaction (P<0.01).   

Similar to EPA results, DHA serum concentrations were increased (P<0.01) in horses 

allocated the FO treatment by d 14 and remained significantly higher throughout the trial when 

compared to the CONT group (Figure 2.6).  An overall treatment effect was found (P<0.01) as 

well as a significant treatment by day interaction (P<0.01).  Although the EPA, DPA, and DHA 

concentrations were declining throughout the study from their peak on d 14, they were still 

elevated when compared to horses in the CONT group. 

 

0 14 28 42 56 End
0

10

20

30

40

50
CONT

FO

b

b

b
b

b

Day of Collection

E
P

A
,


g
/m

L

 

Figure 2.4 Serum eicosapentaenoic acid (EPA) concentration (LSMeans ± SE) in cycling mares 

fed a control diet (CONT) or a fish oil supplemented diet (FO) during the breeding season.          
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Figure 2.5 Serum docosapentaenoic acid (DPA) concentration (LSMeans ± SE) in cycling mares 

fed a control diet (CONT) or a fish oil supplemented diet (FO) during the breeding season.          
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Figure 2.6 Serum docosahexaenoic acid (DHA) concentration (LSMeans ± SE) in cycling mares 

fed a control diet (CONT) or a fish oil supplemented diet (FO) during the breeding season.           

b
 P<0.01 

 

 

 



 36 

Mare Follicular Fluid 

Equine follicular fluid, which was collected on the final day of the study, appeared to 

have a similar capability for dietary fatty acid uptake as serum, with n-3 fatty acid concentrations 

being altered by fish oil supplementation (Figure 2.7).   A trend was revealed for ALA 

concentrations to be higher (P=0.06) in the FO group versus CONT horses.  Additionally, 

concentrations of EPA, DPA, and DHA were higher (P< 0.01) in the follicular fluid of the FO 

group when compared to the CONT group.  Concentrations of LA and ARA in follicular fluid 

were similar (P>0.05) between treatments (Figure 2.8). 
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Figure 2.7 Concentrations of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), 

docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) in follicular fluid collected 

from large ( >35 mm) follicles (LSMeans ± SE) in mares fed a control diet (CONT) or a fish oil 

supplemented diet (FO).  
b
 P<0.01, 

c
 P=0.06 
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Figure 2.8 Concentrations of linoleic acid (LA) and arachidonic acid (ARA) in follicular fluid 

collected from large ( >35 mm) follicles (LSMeans ± SE) in mares fed a control diet (CONT) or 

a fish oil supplemented diet (FO).            

 

Hormone Concentrations 

Mare Serum 

2
nd

 Cycle 

Hormone samples collected during the second estrous cycle followed a similar pattern.  

However, some differences were noted between the two treatment groups.  Estradiol-17β 

concentrations collected for 5 d prior to ovulation, on the d of ovulation, and on d 3 and 5 post-

ovulation during the second estrous cycle were similar (P>0.05) between treatments (Figure 2.9).  

Serum concentrations of LH were not significantly different (P>0.05) between the FO and 

CONT groups until d 3 post-ovulation, when concentrations were higher (P<0.05) in CONT 

mares compared to the FO mares (Figure 2.10).  Progesterone levels revealed a trend for FO 

concentrations to be higher (P=0.07) on d 3 post-ovulation (Figure 2.11).  This trend became 

significant on d 5 post-ovulation, with higher concentrations (P<0.01) in FO mares compared 

with CONT mares.  A treatment by day interaction (P<0.01) was also noted.   
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Figure 2.9 Serum estradiol-17β concentrations (LSMeans ± SE) in control mares (CONT) and 

mares supplemented with fish oil (FO) for 5 d prior to ovulation, at ovulation (OV), and on d 3 

and 5 post-ovulation.   
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Figure 2.10 Serum luteinizing hormone (LH) concentrations (LSMeans ± SE) in control mares 

(CONT) and mares supplemented with fish oil (FO) for 4 d prior to ovulation, at ovulation (OV), 

and on d 3 post-ovulation.  
a
 P<0.05  
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Figure 2.11 Serum progesterone concentration (LSMeans ± SE) in control mares (CONT) and 

mares supplemented with fish oil (FO) for 5 d prior to ovulation, at ovulation (OV), and on d 3 

and 5 post-ovulation.  
b
 P<0.01, 

c
 P=0.07 

 

3
rd

 Cycle 

Serum samples were collected during the third and final estrous cycle on the day a > 35 

mm follicle was first detected and hCG was administered, as well as on the following day when 

follicular aspiration was performed.  Serum estradiol-17β, progesterone, and LH concentrations 

were not different (P>0.05) between FO and CONT mares on either day (Figures 2.12, 2.13, and 

2.14).  Serum IGF-1 concentrations were similar (P>0.05) on the day hCG was administered, but 

higher (P<0.05) in the CONT mares than the FO mares on the day the aspiration procedure was 

performed (Figure 2.15). 
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Figure 2.12 Serum estradiol-17β concentrations (LSMeans ± SE) in control mares (CONT) and 

mares supplemented with fish oil (FO) on the day a > 35 mm follicle was first detected and hCG 

was administered, and the following day when follicular aspiration (Asp) was performed. 
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Figure 2.13 Serum luteinizing hormone (LH) concentrations (LSMeans ± SE) in control mares 

(CONT) and mares supplemented with fish oil (FO) on the day a > 35 mm follicle was first 

detected and hCG was administered, and the following day when follicular aspiration (Asp) was 

performed. 
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Figure 2.14 Serum progesterone concentrations (LSMeans ± SE) in control mares (CONT) and 

mares supplemented with fish oil (FO) on the day a > 35 mm follicle was first detected and hCG 

was administered, and the following day when follicular aspiration (Asp) was performed. 
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Figure 2.15 Serum insulin-like growth factor-1 (IGF-1) concentrations (LSMeans ± SE) in 

control mares (CONT) and mares supplemented with fish oil (FO) on the day a > 35 mm follicle 

was first detected and hCG was administered, and the following day when follicular aspiration 

(Asp) was performed.  
a
 P<0.05 
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Mare Follicular Fluid 

Concentrations of six hormones were measured in follicular fluid collected from a large 

preovulatory follicle during the third estrous cycle.  There were no differences (P>0.05) found 

between the two treatments for estradiol-17β, progesterone, LH, PGF2α, and PGE2 (Figures 2.16, 

2.17, 2.18, and 2.19, respectively).  However, IGF-1 results revealed that CONT mares had 

higher (P<0.05) concentrations than FO mares (Figure 2.20). 
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Figure 2.16 Follicular fluid estradiol-17β concentrations (LSMeans ± SE) in control mares 

(CONT) and mares supplemented with fish oil (FO) collected from a large (35 to 45 mm) 

preovulatory follicle one day following administration of hCG.  
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Figure 2.17 Follicular fluid progesterone concentrations (LSMeans ± SE) in control mares 

(CONT) and mares supplemented with fish oil (FO) collected from a large (35 to 45 mm) 

preovulatory follicle one day following administration of hCG. 
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Figure 2.18 Follicular fluid luteinizing hormone (LH) concentrations (LSMeans ± SE) in control 

mares (CONT) and mares supplemented with fish oil (FO) collected from a large (35 to 45 mm) 

preovulatory follicle one day following administration of hCG.         
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Figure 2.19 Follicular fluid concentrations (LSMeans ± SE) of prostaglandin F2α (PGF2α) and 

prostaglandin E2 (PGE2) collected from a large (35-45 mm) preovulatory follicle one day 

following administration of hCG in control mares (CONT) and mares supplemented with fish oil 

(FO).  
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Figure 2.20 Follicular fluid insulin-like growth factor-1 (IGF-1) concentrations (LSMeans ± SE) 

collected from a large (35-45 mm) preovulatory follicle one day following administration of 

hCG in control mares (CONT) and mares supplemented with fish oil (FO).   
a
 P<0.05 
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Follicular Dynamics 

 All mares ovulated after synchronization, which was denoted as the first estrous cycle, 

and ovulated naturally during the second estrous cycle.  Additionally, no mare ovulated before 

being aspirated during the third estrous cycle following administration of hCG.  One mare in the 

FO group developed and ovulated two follicles during the second estrous cycle.  A different 

mare in the FO group also developed two preovulatory-sized follicles during the third estrous 

cycle and the largest follicle was aspirated. 

2
nd

 Cycle 

 Mean follicular growth per day was not different (P>0.05) between the FO and CONT 

groups from 5 to 1 d prior to ovulation, during early follicular growth (25 mm follicle to 35 mm 

follicle) or late follicular growth (35 mm follicle to ovulation) during the second estrous cycle.  

Additionally, no difference (P>0.05) was found between treatments in length in days from the 

first estrous cycle ovulation to a 25 mm follicle, the length in days from a 25 mm follicle to 

ovulation during the second estrous cycle, or the length in days from a 35 mm follicle to 

ovulation during the second estrous cycle.  The mean size of the follicle ovulated was also 

similar (P>0.05) between treatments (Table 2.5). 

 3
rd

 Cycle        

 No difference (P>0.05) was found between treatments in length in days from the second 

estrous cycle ovulation to a follicle measuring at least 35 mm during the third estrous cycle.  The 

size of the follicle on the day hCG was administered did not vary between treatments, but the 

size of the follicle aspirated was greater (P<0.05) for the CONT group when compared to the FO 

group (Table 2.5).  A treatment by day interaction (P<0.05) for the size of the follicle aspirated 

was also noted. 
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Table 2.5 Follicular traits of control mares (CONT) and mares supplemented with fish oil 

(FO) recorded during two consecutive estrous cycle during the breeding season 

Follicular Trait

2nd cycle CONT FO

Time from synchronized ovulation to > 35 mm follicle (d) 17.3 ± 1.16 19.0 ± 1.09

Final size of preovulatory follicle (mm) 42.9 ± 1.98 47.5 ± 1.86

Time from 25 mm follicle to ovulation (d) 9.6 ± 0.59 8.5 ± 0.56

Time from  > 35 mm follicle to ovulation (d) 5.9 ± 0.59 5.9 ± 0.55

Growth rate (mm/d) from 25 mm to 35 mm follicle 2.6 ± 0.82 3.7 ± 0.77

Growth rate (mm/d) from 35 mm to ovulation 1.5 ± 0.34 2.08 ± 0.32

3rd cycle

Time from ovulation in 2nd Cycle to follicle measuring > 35 mm 19.6 ± 0.79 20.4 ± 0.74

Size of aspirated follicle (mm) 39.5 ± 0.50c 38.0 ± 0.47d

Avg d on trial 72.4 75.1

bAverage days on trial are listed as means

Treatmenta,b

c,dWithin a row, means without a common superscript differ (p<0.05)

aValues are listed as LSmeans±SEM   
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Discussion 

Fatty acids have long been recognized as a component in equine circulation.  An early 

study identified the plasma fatty acid profile of horses fed a complete pelleted diet without hay, 

with 44.04% LA, 2.76% ALA, and 1.31% ARA being reported (Luther et al., 1981).  Another 

study analyzed serum levels of horses being fed a control diet of first cut meadow hay and barley 

(Bergero et al., 2002).  They reported total n-6 serum concentrations of 36.19 ± 3.05%, with LA 

compromising 33.97 ± 3.04% and ARA compromising 1.27 ± 0.41% of the n-6 fatty acid total.  

Total n-3 serum concentrations of 1.72 ± 0.68% were also reported, with ALA compromising 

1.03 ± 0.36% of the total n-3 concentrations (Bergero et al., 2002).  It should be noted that in 

both of the previously mentioned studies, samples sizes were very small (n< 6) and the diet may 

have had additional dietary fat in the base diet affecting plasma and serum levels.  Neither study 

reported measurable quantities (<1%) of EPA, DPA, or DHA.  In both studies, the primary fatty 

acid found in equine circulation was LA. 

Our serum fatty acid results revealed similar proportions of n-6 and n-3 fatty acids, with 

LA being the primary long chain fatty acid in mare circulation.  Although significant differences 

were found at some time points between the two treatment groups, serum fatty acid profiles of 

LA and ALA showed no distinct pattern or difference overall due to supplementation.  This may 

be due to the fact that supplementation was provided further down the PUFA pathway at the 

EPA and DHA level.  By utilizing a supplement high in EPA and DHA instead of supplementing 

with a plant source high in ALA, such as flaxseed, dietary n-3s are absorbed and utilized within 

the body at a faster rate and in greater amounts by bypassing the rate-limiting reaction and loss 

due to bioconversion from ALA to DHA (Williams and Burdge, 2006). 

Arachidonic acid serum concentrations were significantly greater in the FO group from d 

14 to d 56 of the study.  Although ARA is not typically involved in the n-3 fatty acid pathway, a 

previous report from this laboratory (Poland, 2006) also noted a significant increase in plasma 

ARA concentrations in supplemented pregnant and lactating mares, while Kruglik et al. (2005) 

noted no significant treatment effect in pregnant and lactating mares.  More recently, a study in 

2008 found increases in plasma ARA in light horse mares of differing breeds supplemented with 

a marine-derived source of EPA and DHA (King et al., 2008), supporting another study which 

documented a significant decrease in serum ARA concentrations in corn oil supplemented 

control geldings when compared to geldings supplemented with fish oil (O'Conner et al., 2007a).  
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A 2003 study in cattle reported an increase in ARA accompanied by an increase in EPA and total 

n-3 in plasma in response to n-3 supplementation (Burns et al., 2003), but a conflicting study 

noted a decreased ARA concentration in lactating dairy cows fed 5% fish meal diet (Heravi 

Moussavi et al., 2007).  It appears that fish oil supplementation’s effect on ARA serum 

concentrations is variable.  In the current study, this increase may be due more to the level of 

ARA in the fish oil supplement (0.98% total fat) rather than as a consequence of the n-3 

supplementation.  Competition between metabolic n-3 and n-6 pathways for desaturase and 

elongase enzymes may also play a role.  In diets high in n-6 fatty acids, LA and ARA serve as 

the dominant substrates and are incorporated into tissues in larger quantities than n-3 fatty acids.  

However, as dietary n-3 supplementation provides more EPA and DHA, enzymes are shifted 

toward the n-3 pathway and used to continue the metabolization process and incorporation into 

phospholipids, while any ARA that is present is not the dominant substrate and is not being 

metabolized further, perhaps leading to higher serum ARA concentrations.  Additionally, n-3 

fatty acids may be incorporated into tissues at a higher rate than ARA because they are more 

accessible, leaving ARA concentrations high in circulation.      

Concentrations of serum EPA, DPA, and DHA in the FO mares peaked at d 14, but 

stayed significantly higher than the CONT group throughout the study.  These increases due to 

fish oil supplementation in the equine are supported by previous studies in this laboratory 

(Kruglik et al., 2005; Poland, 2006), as well as other authors (O'Conner et al., 2001; Vineyard et 

al., 2005).  The peak concentrations found at d 14 agree with results found by King et al. (2008) 

who reported an increase in plasma EPA and DHA concentrations by d 3 of marine-based n-3 

supplementation, with peak concentrations being found as early as 7 d after initiation of 

supplementation in the equine.  In contrast to King’s results, our EPA and DHA concentrations 

stayed significantly higher in fish oil supplemented horses compared to control horses 

throughout the study.  However, although still elevated, serum EPA, DPA, and DHA did decline 

after peak concentrations.  It is possible that serum concentrations peak initially due to 

supplementation and then decline over time as n-3 fatty acids are absorbed into various fluids 

and tissues (Vineyard et al., 2010).  From d 42 to the final day of the study, the decline of EPA, 

DPA, and DHA concentrations in serum becomes much more gradual, indicating that there may 

be a threshold level of n-3 fatty acids that the mare can absorb due to supplementation.  The peak 

serum concentrations of EPA noted in this study are similar to peak plasma concentrations found 
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by King et al. (2008) where mares were fed a marine-based supplement with a similar 

concentration of EPA (17.81 g/mare/d).  However, the supplement this study utilized had a 

higher concentration of DHA (21.32 g/mare/d) than our trial used, resulting in a peak plasma 

concentration of DHA that nearly doubled our recorded peak serum concentrations.  In addition, 

a previous study from our laboratory that supplemented pregnant mares with comparable levels 

of EPA and DHA noted peak plasma EPA concentrations of nearly 25 µg/ml and peak plasma 

DHA concentrations of approximately 30 µg/ml (Poland, 2006).    From these results, it appears 

that peak concentrations of fatty acids in circulation may partially depend on the amount 

supplemented.  A human study involving fish oil capsule supplementation found that doubling 

the level of supplementation yielded a minimal additional response in plasma concentrations, 

suggesting that the ability for n-3 incorporation into phospholipids may become less efficient at 

higher levels of supplementation (Blonk et al., 1990).                  

This author is unaware of any previous reports on the PUFA content of equine follicular 

fluid or the effect of n-3 supplementation on equine follicular fluid.  It appears that follicular 

fluid has a similar capacity to uptake dietary fatty acids as in circulation or other tissues.  High-

yielding dairy cows supplemented with flaxseed had approximately 5 fold greater ALA 

concentrations in follicular fluid than cows supplemented with sunflower oil and control cows 

(Zachut et al., 2010).  Supplementation with fish oil in heifers resulted in increased EPA 

follicular fluid concentrations and decreased LA follicular fluid concentrations (Childs et al., 

2008b).  Our results reveal that the FO group showed an increase in n-3 fatty acids (ALA, EPA, 

DPA, and DHA) measured in follicular fluid when compared with the CONT group beginning at 

59 days of n-3 supplementation.  The follicular fluid sample was collected from a preovulatory 

follicle that was matured using hCG administration.  This uptake of available fatty acids from 

circulation into the follicular fluid may occur gradually throughout the supplementation period or 

during the final maturation process just prior to ovulation.  Collection of follicular fluid from 

various sizes of follicles, as well as preovulatory follicles, would be needed to pinpoint the time 

period when increases in follicular fatty acid content occurs in relation to the time of n-3 

supplementation. 

Serum hormone concentrations recorded for FO and CONT mares revealed that n-3 

supplementation does have a limited effect on hormone levels in the mare.  During the second 

estrous cycle, an increase in progesterone concentration was noted in the FO group at 3 and 5 d 
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after ovulation, although all values were in the normal range for this time period.  This finding is 

supported by Furtney et al. (2009) who reported a tendency for increased progesterone plasma 

concentrations across estrous cycles in n-3 supplemented mares when compared to mares fed 

animal fat.  Previous research in other species both supports and refutes this finding.  Studies in 

cattle have reported no influence of n-3 supplementation on progesterone concentrations (Heravi 

Moussavi et al., 2007; Childs et al., 2008b), an increase in supplemented animals (Robinson et 

al., 1998; Staples et al., 1998), and a decrease in supplemented animals (Burke et al., 1997).  A 

recent study in sows documented no effect of flaxseed supplementation on circulating 

progesterone concentrations (Farmer et al., 2010).   The inconsistency in results could be due to 

numerous factors, including the varied supplementation levels, source of n-3 fatty acids, and 

physiological status of the animals used.  In the current study, the increase in progesterone may 

be due to a more effective corpus luteum with luteal cells that have the ability to uptake more 

cholesterol to produce more progesterone when compared to horses fed a diet higher in n-6 fatty 

acids.  It is possible that n-3 supplementation might also upregulate lipoprotein receptors present 

on luteal cells.  The mechanism by which progesterone can be increased through n-3 

supplementation is not clear, as n-3 supplementation has been documented to increase (Staples et 

al., 1998; Childs et al., 2008b) have no effect on (Heravi Moussavi et al., 2007) or even decrease 

(O'Connor et al., 2004; O'Conner et al., 2007b) circulating cholesterol and triglyceride levels, 

which act as precursors for steroid hormone production.  Supplementation of n-3 fatty acids may 

also simply redistribute cholesterol stores, as fish oil is thought to decrease the efficiency of 

cholesterol ester transfer protein which serves to transport cholesterol esters from high-density 

lipoproteins (HDL) to low-density lipoproteins (LDL) (Nestel, 2000).  Changes in enzymatic 

activity associated with steroidogenesis, via alteration of transcription factors, may be partially 

responsible (Wathes et al., 2007).  Specifically, n-3 supplementation has been documented to 

inhibit COX-2 and increase steroid acute regulator (STAR) protein (Wang et al., 2003).  

Evidence also exists implicating an effect of n-3 supplementation on PPARs, which play a role in 

gonadal steroid synthesis (Wathes et al., 2007).  Others have also speculated that increases in 

plasma progesterone due to fat-added diets may be due to a decreased clearance of progesterone 

from circulation rather than increased synthesis (Hawkins et al., 1995).   

In contrast to progesterone, significant differences in estradiol-17β during the second 

estrous cycle were not found and all values were within the normal range at that point in the 
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estrous cycle. The differential effects of n-3 supplementation on steroid hormones shown in this 

trial may be due to selective alterations in steroidogenic enzymes that affect the conversion of 

cholesterol to progesterone but do not hinder or enhance the synthesis of estradiol-17β from 

testosterone.    Supplemented n-3 fatty acids may also be utilized in a different capacity prior to 

and during ovulation rather than influencing estradiol-17β production.  Our estradiol results are 

in agreement with some work in cattle, in which plasma estradiol concentrations were not 

affected by fish meal supplementation (Heravi Moussavi et al., 2007; Childs et al., 2008b), but 

differs from another study in which plasma estradiol in lactating cows was increased with 

supplementation of a linseed-derived supplement providing ALA during the follicular phase 

(Robinson et al., 2002a).  Conflicting results could be due to supplementation being provided in 

plant versus marine form as well as the physiological status of the supplemented animals.   

Concentrations of LH during the second cycle were not different until d 3 post-ovulation, 

with LH decreasing in FO mares.  Calcium soaps containing long chain fatty acids have been 

documented to increase (Sklan et al., 1994), decrease (Sklan et al., 1994), or have no effect 

(Lucy et al., 1992) on circulating LH concentrations in dairy cattle.  Sklan et al. (1994) noted that 

PUFA supplementation increased circulating LH concentration in primiparious cows and 

decreased LH concentrations in multiparious cows during the follicular phase, indicating that the 

effect of PUFA supplementation on LH concentrations may vary with physiological status or age 

of animal.  The difference noted in our trial may be due to individual mare differences, as 

abnormally high concentrations were also found in mares of both the CONT and FO groups 

compared to normal ovulatory concentrations during the estrous cycle.  Additionally, differences 

in LH concentrations may relate indirectly to supplementation through IGF-1 concentrations, 

which will be discussed below.        

During the third estrous cycle, serum hormone concentrations were not significantly 

different on the day of hCG administration.  However, on the following day of aspiration, IGF-1 

concentrations were significantly lower in the FO group when compared to the CONT group.  

This is the first time, to this author’s knowledge, that an effect of n-3 supplementation on serum 

IGF-1 concentrations has been recorded in the equine.  A recent study in heifers documented a 

dose-dependent increase in plasma IGF-1 concentrations in fish oil supplemented animals, with 

the highest concentration present at the highest level of supplementation (Childs et al., 2008b).  

Another trial in the same lab documented no effect of n-3 supplementation on plasma IGF-1 
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concentrations in beef heifers (Childs et al., 2008a).  Supplementation levels and length of 

supplementation were similar between the two studies, but the study that found no effect of 

supplementation on IGF-1 concentrations utilized exogenous FSH to induce superovulation, 

possibly affecting final IGF-1 concentrations.  The inconsistencies of the results cited above and 

results in the current study may be due to species differences or variations in supplementation 

levels and length.  Insulin-like growth factor-1 is positively correlated with follicle selection and 

maturation, and is thought to be an important factor in the ovulatory process in the equine 

(Ginther et al., 2001; Ginther et al., 2008).  Changes in IGF binding proteins in circulation have 

also been implicated as having a role in follicular growth and regression in cattle, sheep, and 

swine (Spicer and Echternkamp, 1995).  Our finding may provide an alternate explanation to 

results found by Poland (2006), in which mares were fed a control diet, a DHA supplemented 

diet, and an EPA and DHA supplemented diet during pregnancy and early lactation.  Poland 

noted that after parturition, EPA and DHA supplemented mares displayed a longer interval from 

foaling to the first postpartum ovulation than the DHA supplemented or control mares.  

Additionally, EPA and DHA mares held a preovulatory follicle for a longer period of time prior 

to ovulation than DHA supplemented or control mares.  In addition to peripheral production, 

IGF-1 can also be synthesized within neurons of the brain and has been implicated to act as a 

direct regulator of GnRH neurons, generally having an excitatory or biphasic effect (Daftary and 

Gore, 2005).  Lower IGF-1 concentrations in n-3 supplemented mares could affect gonadotropin 

and steroid hormone levels via reduced stimulation of the hypothalamo-pituitary-gonadal axis, 

subsequently delaying the final maturation process necessary to prepare a follicle for ovulation.   

Serum estradiol-17β concentrations between the two groups during the third estrous cycle 

were not found to be significant, but a noticeable numerical difference on the day of follicular 

aspiration indicates that concentrations may have turned significant with a larger sample size or a 

longer supplementation period.  It is tempting to deduce that IGF-1 and estradiol concentrations 

on aspiration day are related, as previous research in the equine has also noticed a positive 

correlation during follicular development (Bridges et al., 2002; Spicer et al., 2005).  

Additionally, a  recent study noted that bovine endometrial cells treated with IGF-1 had an 

increase in estradiol-17β production, cell number, type 1 IGF-1 receptors, and follicle-

stimulating hormone receptors (Murugan Mani et al., 2010).   
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Previous research evaluating equine follicular fluid has established hormone 

concentrations associated with preovulatory follicles (Gastal et al., 1999; Bogh et al., 2000; 

Tsukada et al., 2008).  In large preovulatory follicles, estradiol-17β and prostaglandin levels are 

more concentrated than in circulation, along with detectable IGF-1 concentrations (Gerard and 

Monget, 1998; Davidson et al., 2002; Ginther et al., 2008).  Follicular fluid samples were 

collected on the final day of the study to compare hormone concentrations with serum 

concentrations.  Our results indicate that estradiol-17β and progesterone concentrations were 

within the normal range for a preovulatory follicle and not significantly different between the 

treatment groups, which contrasts with a recent study in ewes that noted increased progesterone 

concentrations in follicular fluid of n-3 supplemented ewes compared to n-6 supplemented ewes 

(Wonnacott et al., 2010).  Follicular IGF-1 concentrations were lowered by n-3 supplementation, 

supporting the decreased serum IGF-1 concentrations that were also noted.  This finding further 

implies that IGF-1 concentrations, which are important factors in the ovulatory process, can be 

altered by n-3 supplementation. 

Follicular fluid concentrations of PGF2α and PGE2 were also similar between treatments 

and within the normal range for a preovulatory follicle.  Theoretically, production of series 2 

prostaglandins, like PGF2α and PGE2, would be suppressed in n-3 supplemented animals via the 

competitive nature of the n-6 and n-3 pathways.  These separate pathways compete for the same 

enzymes and when n-3s are supplemented, enzymatic activity shifts toward the n-3 pathway at 

the expense of n-6 fatty acids (Mattos et al., 2000).  Additionally, the PGHS-2 enzyme, which is 

essential to prostaglandin production, is known to convert EPA into series three prostaglandins in 

a slower and less efficient way than it converts ARA into series two prostaglandins (Kulmacz et 

al., 1994).  Unless ARA production is significantly reduced, series two prostaglandins will 

continue to be synthesized at a normal level.  The current study showed no difference between 

treatment groups in follicular ARA concentrations, which serve as the precursor fatty acid for 

series 2 eicosanoid production.  This finding does not agree with our serum results, in which 

ARA was significantly higher in the n-3 supplemented group.  This discrepancy between serum 

and follicular fluid results could point to a difference in how ARA is absorbed from serum and 

incorporated into other tissues compared to the n-3 fatty acids.   

No previous studies were found documenting prostaglandin levels in follicular fluid of n-

3 supplemented animals.  Many studies have reported n-3 supplementation’s effects on 
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prostaglandin in circulation or in endometrial tissue, but results in the literature are mixed.  A 

study in exercising horses documented no effect of supplementation on plasma PGE2 metabolites 

(Woodward et al., 2007), while leukocytes isolated from pregnant mares supplemented with n-3 

fatty acids failed to stimulate an increase in PGE2 in vitro in response to a lipopolysaccharide 

challenge, producing an anti-inflammatory effect (Skjolaas-Wilson et al., 2005).  In contrast, 

intravenous infusion of n-3 fatty acids in sheep reduced plasma concentrations of PGE2 within 4 

days (Baguma-Nibasheka et al., 1999).  Furthermore, an n-3 supplemented diet led to a decrease 

in serum PGE2 concentrations in response to a lipopolysaccharide challenge in dogs (LeBlanc et 

al., 2008) and horses (Munsterman et al., 2005; LeBlanc et al., 2008).  Subsequent research in 

rats revealed that rodents consuming EPA reduced ova release by 16%, had higher PGE2 

concentrations in ovarian tissue, and did not alter their expression of COX enzymes in the ovary 

(Broughton et al., 2009).  In the bovine, previous research documented lower plasma PGF2α or 

prostaglandin metabolite concentrations in n-3 supplemented groups in vivo in response to an 

oxytocin (Thatcher et al., 1997; Mattos et al., 2002; Mattos et al., 2004) or an oxytocin and 

estradiol challenge (Mattos et al., 2002).  Lower prostaglandin production was also noted in n-3 

supplemented bovine endometrial cells in vitro (Mattos et al., 2003).  Supplementation with fish 

meal did not affect PGF2α production in heifers with normal progesterone levels, but lowered 

synthesis in heifers with low luteal-phase progesterone (Wamsley et al., 2005).  The 

discrepancies found in previous research may be due to slight differences in cycle length 

between animals, which may confound results (Wathes et al., 2007).  Additionally, Heravi 

Moussavi et al. (2007) suggested that the net inhibition of PGF2α by n-3 supplementation may 

depend on the amount of n-6 fatty acids reaching the target tissue.    

In this trial, follicular data was collected via ultrasound during the second and third 

estrous cycle.  During the second estrous cycle, follicular growth patterns measured were not 

different between the FO and CONT groups.  These results contrast with Poland (2006) in which 

supplemented mares had an increased ovulatory interval and displayed a follicle measuring 

>35mm longer compared with the control group.  The conflicting results may be due to the 

differences in mare physiological status, the n-3 supplementation level, length of 

supplementation, or the EPA to DHA ratio.  In Poland’s trial, supplemented mares were 

ultrasounded for follicular traits during their first postpartum estrous period, indicating that 

mares which have recently undergone parturition may mobilize their fatty acid stores differently 
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than open and cycling mares.  Furthermore, mares from a comparable group in Poland’s trial 

were supplemented beginning 60 d prior to the expected foaling date through first postpartum 

estrous cycle, providing slightly different ratios for a longer period of time.   

Literature in other livestock species regarding n-3 supplementation and follicular 

responses has been mixed.  Studies in cattle have noted both a stimulation in follicular activity as 

a result of supplementation (Lucy et al., 1992; Abayasekara and  Wathes, 1999b), as well as no 

effect of n-3 supplementation on follicle number or size (Petit et al., 2002; Robinson et al., 

2002b; Petit et al., 2004; Heravi Moussavi et al., 2007).  Another study in n-3 supplemented 

cattle has documented a decrease in the interval from calving to the first postpartum ovulation 

when compared with controls (Hightshoe et al., 1991; Lucy et al., 1992), while dairy cows 

supplemented with flaxseed had a longer interval from PGF2α administration to behavioral 

estrous, delaying the luteal phase of the subsequent estrous cycle (Zachut et al., 2010).  Gilts fed 

a dietary n-3 supplement showed no difference in ovulation rate or litter size when compared 

with controls (Estienne et al., 2006), and sows supplemented with flaxseed had a similar weaning 

to estrus interval as controls (Farmer et al., 2010).      

In the current trial, the lack of significant differences in follicular traits measured may 

also be due to the length of supplementation (≈ 46 days) not being adequate enough to cause 

changes in follicular growth and ovulation time during the second estrous cycle.  This theory is 

supported by a study assessing n-3 supplementation’s effects on plasma, red blood cell 

membrane composition, and immune function in yearling horses in which the authors speculated 

that the time required for complete incorporation of dietary n-3 fatty acids into cell membranes 

may be longer than that of plasma (Vineyard et al., 2010).   During the third estrous cycle, the 

size of the aspirated follicle was smaller in the FO mares when compared to the CONT mares in 

response to hCG administration.  This may be an indication that supplementation affects final 

maturation of the follicle in some way, possibly by limiting IGF-1 production, or that an 

extended period of dietary supplementation may be necessary in the mare before differences can 

be noted. 
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Conclusions and Implications 

In conclusion, n-3 fatty acids can be successfully incorporated into equine serum through 

dietary supplementation and can affect the equine species in multiple ways.  With increased 

concentrations of EPA available for eicosanoid production, a shift from pro-inflammatory to 

anti-inflammatory products can occur.  The suppression of inflammatory responses may have 

enormous potential for the treatment of equine joint ailments, developmental orthopedic 

diseases, and pulmonary inflammation (Munsterman et al., 2005; Khol-Parisini et al., 2007).  In 

this study, n-3 supplementation increased ARA, EPA, DPA, and DHA levels in serum and 

increased ALA, EPA, DPA, and DHA in follicular fluid.  No significant pattern was identified 

for LA and ALA in serum.  With incorporation of dietary fatty acids, n-3s are more available as a 

substrate for enzymes in the omega fatty acid pathways.  This allows for a shift in production 

towards the n-3 pathway.      

Modifications in fatty acid profiles also altered hormone concentrations in serum and 

follicular fluid.  The effect of dietary n-3 supplementation on hormone concentrations are 

potentially important to many systems in the body, but especially to the reproductive system.  

Changes in the hormonal balance have the potential to affect follicular growth and development, 

estrous cycle length, and also CL function and duration.  Concentrations of IGF-1 were altered in 

both serum and follicular fluid, with supplemented mares having lower concentrations than 

control mares.  Insulin-like growth factor-1 is an essential component to the ovulatory process, 

and decreasing concentrations prior to ovulation by feeding n-3s could postpone ovulation by 

affecting other hormonal levels or the maturation of the follicle directly.  Delayed ovulation 

would make it more difficult for the timing of ovulation to be identified for breeding purposes, 

especially if using artificial insemination, with a potential negative consequence on pregnancy 

rates. 

Although the effect of dietary n-3 supplementation on CL properties and the luteal phase 

were not noted in this study, serum progesterone concentrations increased in n-3 supplemented 

mares immediately after ovulation.  Increased progesterone concentrations may indicate an 

increased capacity for the luteal cells of the CL to produce progesterone or a larger CL 

comprised of more luteal cells may be present.  Supplementing older mares or mares that have a 

history of early pregnancy loss with n-3 fatty acids may be advantageous to increase pregnancy 

rates and decrease the need for a supplemental progesterone regimen during early pregnancy.       
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In the current trial, no changes in follicular dynamics were identified until the third 

estrous cycle, supporting the conjecture that a longer supplementation period, similar to the study 

by Poland (2006), may be needed to notice changes in follicular traits between the treatment 

groups.  This author’s recommendation for similar future research is to allow for 

supplementation over at least three full estrous cycles so that follicular traits can be documented 

at each estrous cycle and the length of supplementation necessary to induce any changes can be 

more accurately identified.  Care should be taken to ensure that the mares are not transitional 

during the collection of data.  On the day of aspiration, a smaller preovulatory follicle was 

measured in the FO group compared with the CONT group.  This may indicate a slower 

maturation rate in supplemented animals in response to hCG, which may result in delayed 

ovulation. 

A limited amount of research is currently available on marine-derived n-3 

supplementation of horses and conflicting results prevent researchers from making general 

recommendations to the industry.  Many supplements currently available are associated with 

high costs and storage requirements. Some odor and palatability issues have also been linked 

with marine-derived supplements, although most mares used in the current study readily 

accepted the fish oil supplement after a short acclimatization period during synchronization.  

Until researchers can provide more concrete answers, horse owners may be reluctant to pay for 

expensive supplements that are still an emerging area of research in the equine. 

This study confirmed previous research in this laboratory and others that dietary n-3 

supplementation rapidly alters serum fatty acid concentrations.  Research on n-3 

supplementation’s effects on reproductive parameters has just begun to uncover multiple 

possibilities in the mare.  Equine follicular fluid fatty acid profiles were also impacted through 

supplementation, with hormonal concentrations of both serum and follicular fluid being altered.  

Our results did not confirm the findings of Poland (2006) on follicular retention and delayed 

ovulation, but differences in preovulatory follicular size during the day of aspiration indicate that 

further research needs to be done to determine n-3 supplementation’s effects on estrous cycle 

characteristics including the effect of supplementation duration on follicular dynamics.  

Additionally, future research with more intensive collection of serum and follicular fluid for 

hormone evaluation would be helpful in making further conclusions as to the mare’s hormonal 

response to n-3 supplementation.  Currently, no recommendations can be given in regards to 
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length of supplementation or the ideal combination of EPA and DHA in supplements as it 

impacts estrous cycle characteristics in mares.  Unlimited opportunities are available for 

researchers to discover the impact of n-3 supplementation on the equine species and educate the 

industry on the potential of these marine-derived products.   
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Appendix A - Fatty Acid Profiles 

Table A.1 Fatty acid profile of FO supplement (expressed as percent total fat) 

Fatty Acidab % Total Fat

C14:0 9.41

C14:1 0.15

C15:0 0.64

C16:0 20.02

C16:1 11.34

C17:0 0.42

C17:1 1.77

C18:0 3.41

C18:1t9 0

C18:1n9 6.77

C18:1n7 3.3

C18.2 2.43

C18:3n3t 1.08

C18:4n3t 2

C20:0 0.28

C20:1n9 1.02

C20:3n3 0.11

20:4n6 0.98

20:4n3 1.18

C20:5n3 13.54

C22:0 0.17

C22:1n9 0.18

C22:5n3 2.43

C22:6n3 7.29

C24.0 0.12

C24:1n9 0.23

C24.0 0.12

C24:1n9 0.23
aAnalysis provided by JBS United, Sheridan, IN
bPrimary n-6 and n-3 fatty acids of concern are bolded  
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Table A.2 Fatty acid profile of brome hay, grain, and corn oil (µg/g feed as is)

Supplements

Fatty Acidab
Grain Mix Brome Hay Corn Oil

C6:0 25.50 10.16 303.37
C8:0 104.31 35.45 1033.08
C10:0 0.00 0.00 0.00
C11:0 18.80 13.14 0.00
C12:0 10.45 31.06 61.65
C14:0 60.05 22.32 376.95
C14:1 0.00 0.00 0.00
C15:0 19.34 8.00 120.80
C15:1 0.00 0.00 0.00
C16:0 5230.77 546.49 110022.91
C16:1 81.70 8.96 1087.03
C17:0 53.71 14.54 710.87
C17:1 0.00 0.00 0.00
C18:0 628.96 55.41 18700.34
C18:1n9t 0.00 0.00 21.83
C18:1n10t 0.00 0.00 0.00
C18:1n11t 0.00 0.00 190.05
C18:1n9c 8242.49 209.43 258352.44
C18:1n11c 334.63 14.78 6170.64
C18:2n6t 0.00 0.00 0.00
C18:2n6c 13266.15 567.71 528143.00
C20:0 136.30 47.37 4283.09
C18:3n6 0.00 0.00 0.00
C20:1 149.92 9.58 2517.09
C18:3n3 859.80 456.24 11071.30
CLA 9c, 11t 0.00 0.00 0.00
C21:0 16.38 7.28 106.43
CLA 10t, 12c 0.00 0.00 0.00
CLA 9c, 11c 14.20 25.93 0.00
CLA 9t, 11t 9.27 3.83 240.73
C20:2 24.03 0.00 570.71
C22:0 100.72 63.41 1461.83
C20:3n6 0.00 0.00 108.14
C22:1n9 22.68 4.17 109.99
C20:3n3 13.51 0.00 0.00
C20:4n6 0.00 4.63 0.00
C23:0 25.91 14.75 235.03
C22:2 0.00 0.00 0.00
C24:0 169.32 69.08 1763.72
C20:5n3 0.00 0.00 0.00
C24:1 17.75 6.51 237.03
C22:5n3 0.00 0.00 0.00
C22:6n3 0.00 0.00 0.00

Total Fatty Acids 29636.64 2250.24 948000.05
aAnalysis done by gas chromotography
bPrimary n-6 and n-3 fatty acids of concern are bolded

Feedstuffs

 

 


