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Abstract
This thesis contains three chapters split into two parts. In the first chapter, the dis-

crete p-modulus of families of walks is introduced and discussed from various perspectives.

Initially, we prove many properties by mimicking the theory from the continuous case and

use Arne Beurling’s criterion for extremality to build insight and intuition regarding the

modulus. After building an intuitive understanding of the p-modulus, we proceed to switch

perspectives to that of convex analysis. From here, uniqueness and existence of extremal

densities is shown and a better understanding of Beurling’s criterion is developed before

describing an algorithm that approximates the value of the p-modulus arbitrarily well.

In the second chapter, an exclusively edge-based approach to the discrete transboundary

modulus is described. Then an interesting application is discussed with some preliminary

numerical results.

The final chapter describes four different takes of the Susceptible-Infected (SI) epidemic

model on graphs and shows them to be equivalent. After developing a deep understanding

of the SI model, the epidemic hitting time is compared to a variety of different graph

centralities to indicate successful alternative methods in identifying important agents in

epidemic spreading. Numerical results from simulations on many real-world graphs are

presented. They indicate the effective resistance, which coincides with the 2-modulus for

connecting families, is the most closely correlated indicator of importance to that of the

epidemic hitting time. In large part, this is suspected to be due to the global nature of both

the effective resistance and the epidemic hitting time. Thanks to the equivalence between

the epidemic hitting time and the expected distance on an randomly exponentially weighted

graph, we uncover a deeper connection- the effective resistance is also a lower bound for the

epidemic hitting time, showing an even deeper connection.
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Chapter 1

The Modulus

The modulus of families of walks on graphs (or just modulus) is a generalization of the in-

tuitively familiar concept of capacity from an electrical circuit. The generalization allows us

to consider concepts like capacitance and hence effective resistance on multigraphs, directed

graphs, and even graphs with self-loops. However the power of the modulus does not end

there. The modulus of a family of walks can be thought of as an indicator of the richness

of short paths in the family. In fact, the modulus has been shown to be equivalent to the

effective resistance, the max-flow/min-cut problem4. Since the modulus is equivalent to the

effective resistance, it also shares many relations to random walks. Moreover, it can even

be used in parabolic vs. hyperbolic type problems on graphs5.

1.1 Walks on Finite Graphs

1.1.1 Preliminaries

Basic Graph Theory

A simple graph or simple network is an ordered pair G = (V,E) where V , the
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vertex-set, is a collection of objects treated as nodes and E, the edge-set, is a collection

of objects treated as links between elements in V . An element of the edge-set, denoted

e = {v1, v2} ∈ E for v1, v2 ∈ V means that there is an undirected link between nodes v1 and

v2. Moreover, in this case, we say that v1 and v2 are neighbors, denoted v1 ∼ v2. Further,

a simple graph has no self-loops, i.e., {v, v} 6∈ E for all v ∈ V , and edges between pairs of

nodes all have multiplicity one. The above is a complete characterization of simple graphs.

Depending upon the application, the meaning of nodes and edges can vary greatly.

For example, see Figure 1.1, Zachary’s Karate Club, for a popular example of a graph

representing a social network. Therein, each vertex represents a person and each edge

between two vertices represents a friendship.

A graph is called a finite graph if the vertex and edge sets are both finite. For a

simple graph, it is sufficient that the vertex set is finite, since if N denotes the number of

nodes, then there are at most
(
N
2

)
edges. It is common to represent a graph by a matrix

A = (aij)1≤i,j≤N , called the adjacency matrix, where aij = 1 if vi ∼ vj and zero otherwise.

Figure 1.1: Karate Club Network: A network
of friendships between the 34 members of a
karate club at a US university, just before the
club split. The network is as described by
Wayne Zarchary1

Densities and the Modulus

A mapping ρ : E → [0,∞] is

called a density. A walk (with n

hops) on a graph is a string, W :=

v0 e1 v1 e2 v2 · · · en vn, of alternating ver-

tices and edges, so that ek = {vk−1, vk},

for each k ∈ {1, 2, ..., n}. For a given

density ρ, the corresponding ρ-length of

2



a walk, W , denoted `ρ(W ) is defined by

`ρ(W ) :=
N∑
k=1

ρ(ek). If Γ is a collection of walks on a graph G, we say that ρ is admissible

for Γ if `ρ(W ) ≥ 1 whenever W ∈ Γ. Further, we denote the set of admissible densities of a

family of walks Γ as Adm(Γ). We define the p-energy of a density by Ep(ρ) :=
∑
e∈E

ρ(e)p for

1 ≤ p <∞. Finally, the p-modulus of a family of walks Γ is denoted Modp(Γ) and defined

Modp(Γ) := inf
ρ∈Adm(Γ)

Ep(ρ).

An admissible density ρ0 that achieves this infimum, is called an extremal density.

For a walk γ ∈ Γ, we say the trace of γ is the subgraph of vertices and edges of γ. That

is, the trace of a walk γ = v0 e1 v1 e2 · · · en vn is J(γ) =
(
{vj}nj=0, {ej}nj=1

)
=
(
V (γ), E(γ)

)
.

A common type of family of walks is the connecting family of walks. Formally, if

G = (V,E) and if A,B ⊂ V such that A ∩B = ∅, then the connecting family is defined by

ΓG(A,B) :=
{
W = v0 e1 · · · en vn

∣∣v0 ∈ A and vn ∈ B, for some {ej}nj=1 ⊂ E, {vj}nj=0 ⊂ V
}
.

When the underlying graph is understood, we will suppress the dependence of our notation

on G. Furthermore, a subset of vertices C ⊂ V is called a cut for ΓG(A,B) if ∀γ ∈

ΓG(A,B), V (γ) ∩ C 6= ∅.

I have stated that the modulus of families of walks is a good measure of the wealth of

short paths. However, this does not seem evident from the definition. To shed light on

this matter, we consider several basic graphs and compare the modulus to other intuitive

measures of the “richness of shortest paths.” Two such intuitive measures of the wealth of

shortest paths are (1) simply count the number of shortest simple paths, or walks that

repeat no vertex, and (2) to count the length of the shortest path.

Example 1.1.1. Consider the three graphs G,H, and K depicted in Figure 1.2 and the

3



1

2

3

4

G has two simple paths, a
shortest path of length two
from 1 to 4, and Mod2(ΓG) =
1.

1

2

3

4

H has two simple paths, a
shortest path of length one
from 1 to 4, and Mod2(ΓH) =
3
2 .

1

2

3

4

K has three simple paths, a
shortest path of length one
from 1 to 4, and Mod2(ΓK) =
2.

Figure 1.2: Three simple graphs

connecting family of walks Γ({1}, {4}) for each graph. I claim that:

Mod2 ΓG({1}, {4}) = 1 Mod2 ΓH({1}, {4}) =
3

2
Mod2 ΓK({1}, {4}) = 2.

Showing these are the correct values of the modulus is is not easy directly from the

definition. However, after the next section, namely Theorem 1.1.3, the reader should view

verifying these values as a simple exercise. The values of the modulus are desirable, as we

would not want to consider any two of these three graphs as having an equivalently rich

family of walks from vertex 1 to vertex 4. Intuitively, we would want ΓK({1}, {4}) to be

strictly richer than ΓH({1}, {4}) which is strictly richer than ΓG({1}), {4}). However, we

see that the number of simple paths overlaps for G and H, and the length of the shortest

path overlaps for H and K. Hence, only the modulus differentiates between all three graphs.

At best, we still only have a little evidence that the modulus should be a measure of the

richness of shortest paths. The following demonstrates how the modulus is directly related

to the richness of shortest paths.

Proposition 1.1.1. (Alternative Definition). Let Γ be a non-empty family of non-trivial

4



(non-constant) walks. Given a density ρ : E → [0,∞], define LΓ(ρ) := infγ∈Γ `ρ(γ), and let

S(Γ) := {ρ : LΓ(ρ) > 0}. Then,

Modp Γ = inf
ρ∈S(Γ)

Ep(ρ)

LΓ(ρ)p
.

Proof. (≥) We note that if ρ ∈ Adm(Γ), then LΓ(ρ) ≥ 1. Therefore,

inf
ρ∈S(Γ)

Ep(ρ)

LΓ(ρ)p
≤ inf

ρ∈Adm(Γ)

Ep(ρ)

LΓ(ρ)p
≤ inf

ρ∈Adm(Γ)
Ep(ρ) = Modp Γ.

(≤) On the other hand, if ρ̃ ∈ S(Γ) is an arbitrary density, define ρ := ρ̃
LΓ(ρ̃)

so that,

LΓ(ρ) = 1. Then ρ ∈ Adm(Γ) and

Modp(Γ) ≤ Ep(ρ) =
1

LΓ(ρ̃)p

∑
e∈E

ρ̃(e)p =
Ep(ρ̃)

LΓ(ρ̃)p
.

Taking the infimum over ρ̃ ∈ S(Γ) completes the proof.

a b

c

2 2

1 1

Figure 1.3: Walks vs. Curves: The values next to the edges define a density ρ.

Remark 1.1.1. Another common family of walks is the via-family of walks:

ΓG(A,B;C) =
{
W = v0 e1 · · · en vn|v0 ∈ A, vn ∈ B, and vj ∈ C for some 0 < j < n

}
.
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This quickly leads to the question, what is the shortest walk from a to b that traverses c

in Figure 1.3? By first taking the shortest walk from a to c and then the shortest walk

from c to b, one can easily observe that the shortest walk has ρ-length equal to 5. On the

other hand, a curve is any connected subgraph of G. So, the shortest curve between a and

b that visits c has length equal to 4. It turns out that finding a shortest walk is a fairly

easy problem to handle using, for instance Dijkstra’s algorithm, which runs in polynomial

time O(N2). Meanwhile, finding a shortest curve through 3 vertices is an instance of the

Graphical Steiner Minimal Tree Problem, which is NP-complete. This is the main reason

why in the discrete case it is more convenient to work with families of walks than families

of curves.

1.1.2 Beurling’s Criterion and Extremal Densities

In this section we will discuss the historically relevant and intuitively helpful adaptation

of the modulus from the continuous setting. However, in the discrete case, one can gain a

“complete” understanding of the modulus from the point of view of convex analysis. Hence,

we will begin by borrowing a fact that will be developed in Section 1.2 when we switch our

attention to techniques from convex analysis.

Fact 1.1.2. For 1 < p < ∞ and any family of walks Γ that contains no constant walks,

there exists a unique extremal density ρp. That is, for each 1 < p <∞ there exists ρp such

that

Modp Γ = Ep(ρp).

In Example 1.1.1, I made a claim regarding the value of the 2-modulus for a few simple

connecting families of walks but did not attempt to show that those values were indeed

the value of the modulus. Since the modulus is defined as an infimum, it is easy to get

upper-bounds on the value of the modulus. Typically, it is difficult to attain non-trivial

(for instance the modulus is always non-negative) lower bounds. However, Arne Beurling’s

6



famous criteria for extremality is a very useful sufficient condition to test for extremality of

a density.

Theorem 1.1.3. (Beurling’s Extremality Criterion). For a fixed 1 < p <∞, a density

ρ ∈ Adm Γ is extremal if there exists Γ̃ ⊂ Γ with `ρ(γ) = 1 for all γ ∈ Γ̃ such that

∑
e∈E

h(e)ρp−1(e) ≥ 0 whenever h : E → R with `h(γ) ≥ 0 for all γ ∈ Γ̃. (1.1.1)

Proof. (Beurling’s Criterion)

Let ρ, Γ̃ be as in the hypothesis of (1.1.1) and let σ ∈ Adm Γ. Define h := σ − ρ. Then

`h(γ) ≥ 0 for all γ ∈ Γ̃. By (1.1.1) we have

∑
e∈E

σ(e)ρ(e)p−1 −
∑
e∈E

ρ(e)p =
∑
e∈E

h(e)ρp−1(e) ≥ 0,

so that

0 ≤
∑
e∈E

ρ(e)p ≤
∑
e∈E

σ(e)ρ(e)p−1 ≤

∑
e∈E

σ(e)p

 1
p
∑
e∈E

ρ(e)(p−1)q

 1
q

, where
1

p
+

1

q
= 1.

The second inequality is an application of Hölder’s Inequality. Since q = p
p−1

, the above

reads ∑
e∈E

ρ(e)p ≤

∑
e∈E

σ(e)p

 1
p
∑
e∈E

ρ(e)p

1− 1
p

.

Consequently, ∑
e∈E

ρ(e)p

 1
p

≤

∑
e∈E

σ(e)p

 1
p

.

Taking the pth power of both sides and recalling that σ is an arbitrary admissible density

shows that ρ is indeed extremal.

7



A subfamily Γ̃ that satisfies the hypothesis in Beurling’s Extremality Criterion is called

a Beurling subfamily. For connecting families it is always sufficient, but not necessary to

look at the collection of all simple walks in the family of walks Γ. For a given density ρ and

family of walks Γ, we define

Γ0(ρ) := {γ ∈ Γ : `ρ(γ) = 1}. (1.1.2)

The converse to Beurling’s Criterion, which will be proved in [Section 1.2, Theorem 1.2.4]

states

Theorem 1.1.4. If ρ is extremal then Γ0(ρ) is always a Beurling subfamily.

Even in the face of a converse to Beurling’s criterion, the true power of Beurling sub-

families is the following.

Theorem 1.1.5. If Γ̃ is a Beurling subfamily of Γ, then for each 1 < p < ∞ it follows

Modp Γ̃ = Modp Γ.

Proof. Since Γ̃ is a Beurling subfamily, letting ρ0 ∈ Adm(Γ) be the extremal density for Γ,

we see that Γ̃ ⊂ Γ0(ρ0) and by hypothesis (1.1.1) holds for ρ0 with Γ̃.

By monotonicity, Modp(Γ̃) ≤ Modp(Γ). On the other hand, let ρ ∈ Adm(Γ̃). Define

h : E → R by h = ρ− ρ0. Then, for every γ ∈ Γ̃ we have `h(γ) = `ρ(γ)− `ρ0(γ) = 0 and

∑
e∈E

h(e)ρp−1
0 (e) ≥ 0,

follows as a consequence of (1.1.1). Expanding out h, yields

Ep(ρ0) ≤
∑
e∈E

ρ(e)ρp−1
0 (e) ≤

∑
e∈E

ρ(e)p

 1
p
∑
e∈E

ρ0(e)p

1− 1
p

.

The latter inequality follows by applying Hölder. Dividing over and taking the pth power

achieves the desired result.

8
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Figure 1.4: Left: House Graph. Right: House graph with the values assigned to each edge
by the extremal density of the connecting family Γ({1}, {2}) for 1 < p <∞.

Example 1.1.2. Consider the House graph G as in Figure 1.4 and the connecting family

of walks Γ = ΓG({1}, {2}). If we restrict ourselves to the simple walks in Γ, denoted Γs,

then it’s straightforward to verify that Γs only contains the three paths P1 = (1, 2), P2 =

(1, 5, 2), P3 = (1, 4, 3, 2). For clarity, if e = {x, y}, we write h(e) = h(x, y). Letting Γs play

the role of the Beurling subfamily, we can verify that ρ0 defined as in the right half of Figure

1.4 is extremal. Indeed, for h : E → R suppose h satisfies

`h(γ) ≥ 0 for all γ ∈ Γs. (1.1.3)

For each k = 1, 2, 3, let γk be the walk that traverses the vertices of Pk in the same order.

Since the walks γ1, γ2, and γ3 partition the edges of G and traverse each edge exactly once,

∑
e∈E

h(e)ρp−1
0 (e) =

∑
e∈γ1

h(e)ρp−1
0 (e) +

∑
e∈γ2

h(e)ρp−1
0 (e) +

∑
e∈γ3

h(e)ρp−1
0 (e).

9



Moreover, since ρ0 is constant on each walk γj, the above can be reduced to

∑
e∈E

ρp−1
0 (e)h(e) =

∑
e∈γ1

h(e) +

(
1

2

)p−1∑
e∈γ2

h(e) +

(
1

3

)p−1∑
e∈γ3

h(e)

= `h(γ1) + 21−p `h(γ2) + 31−p `h(γ3) ≥ 0,

due to (1.1.3). Therefore, ρ0 and Γs satisfy the hypothesis of Theorem 1.1.3 for each p > 1.

Consequently, ρ0 is the extremal metric for the p-modulus on the House graph G. It is a

coincidence, caused by the lack of edges shared by any walks in Γs, that the same density

ρ0 is extremal for all p.

Remark 1.1.2. At this point, the reader is encouraged to follow the method of Example

1.1.2 to verify the value of the 2-modulus proposed in Example 1.1.1 for each graph.

1.1.3 Properties of the p-Modulus

Here we build the basic properties of the p-modulus of families of walks and discuss suitable

examples to lend intuition to how these properties are used.

Remark 1.1.3. If Γ is a family of walks on a finite graph G that contains a constant walk,

i.e., a walk with zero hops. Then Modp Γ =∞.

Indeed, if γ0 ∈ Γ is a constant walk, then `ρ(γ0) = 0 for every ρ- density. Consequently,

Adm(Γ) = ∅ and infρ∈∅ Ep(ρ) =∞.

Proposition 1.1.6. (The modulus is an outer measure). Assume that Γj is a family

of walks in a finite graph G for each j ∈ N. Then,

1. (Empty Family). If Γ1 = ∅, the empty family, then Modp Γ1 = 0.

2. (Monotonicity). If Γ1 ⊂ Γ2, then Modp(Γ1) ≤ Modp(Γ2).

3. (Countable Subadditivity). Modp

 ∞⋃
j=1

Γj

 ≤ ∞∑
j=1

Modp Γj.

10



Proof. For each j ∈ N let Γj be a family of walks in a finite graph G.

1. If Γ1 = ∅, then every ρ is admissible, including ρ0 ≡ 0. Hence 0 ≤ Modp Γ ≤ Ep(ρ0) =

0.

2. If Γ1 ⊂ Γ2 then ρ ∈ Adm(Γ2) implies that ρ ∈ Adm(Γ1), so that Adm(Γ2) ⊂ Adm(Γ1).

Therefore,

Modp Γ1 = inf
ρ∈Adm Γ1

Ep(ρ) ≤ inf
ρ∈Adm Γ2

Ep(ρ) = Modp Γ2.

3. Let Γ :=
⋃∞
j=1 Γj and fix ε > 0. For each j, choose ρj ∈ Adm(Γj) such that

Ep(ρj) ≤ Modp Γj +
ε

2j
.

Define ρ :=
(∑∞

j=1 ρ
p
j

) 1
p
. For any γ ∈ Γ, there exists k ∈ N so that γ ∈ Γk. Since

ρ ≥ ρk we have that `ρ(γ) ≥ 1. Hence, ρ ∈ Adm(Γ). Moreover,

Modp Γ ≤ Ep(ρ) =
∑
e∈E

ρ(e)p =
∑
e∈E

∞∑
j=1

ρj(e)
p =

∞∑
j=1

∑
e∈E

ρj(e)
p

=
∞∑
j=1

Ep(ρj) ≤ ε+
∞∑
j=1

Modp Γj.

We can interchange the order of summation without concern by Tonelli’s theorem. Hence,

taking ε to zero attains the desired result.

Remark 1.1.4. Exclusively using monotonicity, we observe that in Example 1.1.1 we have

Mod2(G) ≤ Mod2(K) and Mod2(H) ≤ Mod2(K). Infact, this relationship will hold for

p 6= 2 as well.

Definition 1.1.7. Given two walks γ1 and γ2 on a graph G = (V,E) we say that γ1 � γ2,

(in words, either γ1 is subordinate to γ2 or equivalently γ2 dominates γ1) if `ρ(γ1) ≤ `ρ(γ2)

for every density ρ.
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We note that in particular it is not required that ρ is admissible, as the ordering � is

independent of the family of walks.

Proposition 1.1.8. For 1 ≤ p <∞, let G = (V,E) be a simple finite graph, and let Γ, Γ1,

and Γ2 be families of walks.

• (Shorter Walks). Suppose Γ1 and Γ2 are two families of walks. Further, suppose for

every γ ∈ Γ2 there exists σ ∈ Γ1 such that σ � γ then Modp Γ2 ≤ Modp Γ1.

• (Symmetry). Suppose T : V → V is a bijection and a graph isomorphism, that is,

{v1, v2} ∈ E ⇐⇒ {T (v1), T (v2)} ∈ E and T ◦ T = Id. Then for any T -invariant

family of walks Γ, the extremal density for Γ is in the closure of the T -invariant

admissible densities, i.e.,

Modp Γ = inf
ρ∈AT (Γ)

Ep(ρ)

where AT (Γ) :=
{
ρ ∈ Adm(Γ)

∣∣ρ ◦ T = ρ
}

.

Proof.

• (Shorter Walks). Let ρ ∈ Adm Γ1. Then by hypothesis, for each γ ∈ Γ2, there exists

σ ∈ Γ1 so that σ � γ. Therefore, 1 ≤ `ρ(σ) ≤ `ρ(γ) and consequently ρ ∈ Adm Γ2.

Hence, Adm Γ1 ⊂ Adm Γ2 which yields the desired result:

Modp Γ2 = inf
ρ∈Adm Γ2

Ep(ρ) ≤ inf
ρ∈Adm Γ1

Ep(ρ) = Modp Γ1.

• (Symmetry Rule). Let ρ ∈ Adm Γ. Define ρ1 = ρ ◦ T so that `ρ1(γ) = `ρ(T ◦ γ).

Since T (Γ) = Γ, this shows ρ1 ∈ Adm(Γ). Moreover, since T is an involution, it

is in particular a bijection. Hence, Ep(ρ1) = Ep(ρ). Next, define ρ2 = ρ1+ρ
2

. It is

easily verified that ρ2 ∈ Adm(Γ)1 and ρ2 = ρ1+ρ
2

=
(
ρ+ρ1

2

)
◦ T = ρ2 ◦ T . Therefore,

1Infact, we will see that every convex combination of admissible densities is admissible.
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ρ2 ∈ AT (Γ). By the discrete version of Jensen’s inequality,

(
ρ1(e) + ρ(e)

2

)p
≤ 1

2
ρ1(e)p +

1

2
ρ(e)p ∀ e ∈ E, ∀ 1 ≤ p <∞,

so that,

Ep(ρ2) =
∑
e∈E

(
ρ1(e) + ρ(e)

2

)p
≤
∑
e∈E

1

2
ρ1(e)p +

1

2
ρ(e)p =

1

2

(
Ep(ρ1) + Ep(ρ)

)
= Ep(ρ).

Taking the infimum over ρ ∈ Adm Γ in the above yields

inf
ρ∈AT (Γ)

Ep(ρ) ≤ Modp Γ.

Finally, since AT (Γ) ⊂ Adm Γ, the reverse inequality follows.

The hypothesis of the symmetry rule may seem complicated at first blush. However, a

particularly useful informal interpretation of the symmetry rule is that for any graph G and

family of walks Γ, if there are two connected subgraphs H1 = (V1, E1) and H2 = (V2, E2)

such that H1 and H2 are disjoint and switching H1 with H2 does not change G or Γ, then

there exists a bijection T : E1 → E2 so that all extremal densities ρp for p ≥ 1 satisfy

ρp(e) = ρp(T (e)) for all e ∈ E1.

The last result we adapt from the continuous case is reminiscent of the parallel and serial

rules for circuits. We will see in the next section that the particular case when p = 2, not

only are there comparisons to circuits, but these rules are precisely the familiar rules for

calculating the effective capacitance when circuits are combined in series or in parallel.

Proposition 1.1.9.

• (Parallel Rule). Let G = (V,E) and Aj, Bj ⊂ V for j = 1, 2. Suppose Γ =

Γ1(A1, B1) ∪ Γ2(A2, B2) are such that E(γ1) ∩ E(γ2) = ∅ for all γ1 ∈ Γ1 and γ2 ∈ Γ2.
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Then

Modp Γ = Modp Γ1 + Modp Γ2.

• (Serial Rule). Let C be a cut for Γ := Γ(A1, A2). For j = 1, 2 define Γj := Γ(Aj, C).

Then for 1 < p <∞ and 1
p

+ 1
q

= 1,

1

Modp Γ
≥


(
Modp Γ1

) q
p +

(
Modp Γ2

) q
p[

Modp Γ1 Modp Γ2

] q
p


p
q

=


(

1

Modp Γ1

) q
p

+

(
1

Modp Γ2

) q
p


p
q

R1 R2 R1

R2

Figure 1.5: On the left is an example of a circuit in series. The effective resistance is
computed as Reff = R1 + R2. On the right is an example of a circuit in parallel. Here,
the effective resistance is computed as 1

Reff
= 1

R1
+ 1

R2
. Consequently the effective capacity,

satisfies 1
Ceff

= 1
C1

+ 1
C2

for the circuit in series on the left and it satisfies Ceff = C1 + C2 for
the circuit in parallel on the right.

Proof.

• (Parallel Rule). (≤). This follows from subadditivity of the modulus.

(≥). Let Ej = ∪γ∈Γj
E(γ) for j = 1, 2. Then by hypothesis, E1 ∩ E2 = ∅. For

ρ ∈ Adm(Γ) define ρj(e) = ρ(e)1Ej
(e). Then Ep(ρ) ≥ Ep(ρ1) + Ep(ρ2), so that

inf
ρj∈Adm Γj

Ep(ρ1) + Ep(ρ2) ≤ inf
ρ∈Adm

Ep(ρ) = Modp Γ.
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• (Serial Rule). Without loss of generality, assume G = (V,E) is connected and Γj 6= ∅.

For j = 1, 2, let Ej =
⋃
γ∈Γj

E(γ) and for ρ̃j ∈ Adm(Γj) define ρj = ρ̃j1Ej
. Then

ρj ∈ A(Γj).

Let ρ = aρ1+bρ2 for some a+b = 1 to be determined later. Then for γ ∈ Γ, there exists

γj ∈ Γj such that γj � γ for j = 1, 2. Hence, 1 = a + b ≤ a`ρ1(γ1) + b`ρ2(γ2) = `ρ(γ)

and consequently ρ ∈ Adm Γ.

We observe,

Ep(ρ) = apEp(ρ1) + bpEp(ρ2) =: apx+ bpy =: f(a, b).

Using Lagrange multipliers, we can minimize f constrained to a+ b = 1. In doing so,

one attains the system of equations,


λpap−1x = 1

λpbp−1y = 1

a+ b− 1 = 0.

Since a, b, p, and Modp Γj are non-zero, we solve for λ in the first equation and find

λ = 1
pap−1x

. Substituting into the second yields,

bp−1y

ap−1x
= 1.

Using a = 1− b we attain,

b

1− b
=

(
x

y

) 1
p−1

.

Hence,

b =

(
x
y

) 1
p−1

1 +
(
x
y

) 1
p−1

=
x

1
p−1

y
1

p−1 + x
1

p−1

.
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Back substitution shows

a =
y

1
p−1

y
1

p−1 + x
1

p−1

.

With this choice of a and b it follows that,

Ep(ρ) =

(
y

1
p−1

y
1

p−1 + x
1

p−1

)p

x+

(
x

1
p−1

y
1

p−1 + x
1

p−1

)p

y = xy

 x
1

p−1 + y
1

p−1(
x

1
p−1 + y

1
p−1

)p
 =

xy(
x

q
p + y

q
p

)p−1 ,

where 1
p

+ 1
q

= 1. The penultimate equality follows simply because p
p−1

= 1 + 1
p−1

. As

a consequence of the preceding equation,

Modp Γ ≤ Ep(ρ) =
xy(

x
q
p + y

q
p

)p−1 .

By back substituting for x and y, simplifying, and taking the infimum over ρj ∈ Adm Γj

one attains the generalized serial rule,

1

Modp Γ
≥


(
Modp Γ1

) q
p +

(
Modp Γ2

) q
p[

Modp Γ1 Modp Γ2

] q
p


p
q

=


(

1

Modp Γ1

) q
p

+

(
1

Modp Γ2

) q
p


p
q

.

1.1.4 Capacity

Here, we briefly demonstrate the connection between the 2-modulus and the capacity.

For G = (V,E) and A,B disjoint subsets of V , we consider the potential function u :

V → R that has the property u|A ≤ 0 and u|B ≥ 1. The gradient of a potential function,
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ρu : E → [0,∞) is a density defined on an edge e = {v1, v2} by ρu(e) = |u(v1)− u(v2)|. The

ordered pair (A,B) is called a condenser and its capacity is defined as

Cap(A,B) := inf
u|A≤0
u|B≥1

E2(ρu).

The function U : V → R that attains the infimum is called the capacitary function. A

capacitary function always exists and is unique. This can be seen by introducing the degree

matrix D = (dij) where dii is the degree of the ith node and dij = 0 whenever i 6= j. Then,

the combinatorial Laplacian, L := D − A is symmetric. Hence,

E2(ρu) =
1

2

∑
e∈E

ρu(e)
2 = UTLU,

is a quadratic form and minimization can be handled by Lagrange multipliers. Also U is

harmonic, i.e., LU = 0 on V \ (A ∪ B). Therefore, uniqueness can be derived from the

maximum principle of harmonic functions. For more details regarding the capacity and

effective resistance on graphs, see6.

Proposition 1.1.10. It is always true that

Cap(A,B) = Mod2(Γ(A,B)).

Proof. If U is the capacitary function for (A,B) and v0e1v1e2 · · · envn = γ ∈ Γ(A,B), then

1 ≤ |U(b)− U(a)| =

∣∣∣∣∣∣
n∑
k=1

U(xk)− U(xk−1)

∣∣∣∣∣∣
≤

n∑
k=1

|U(xk)− U(xk−1)| =
n∑
k=1

ρU(e1) = `ρU (γ).
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Hence ρU ∈ Adm(Γ(A,B)), so that

Mod2 Γ(A,B) ≤ E2(ρU) = Cap(A,B).

On the other hand, if ρ ∈ Adm(Γ(A,B) for U defined by

U(v) = inf{`ρ(γ) : γ = v0e1v1 · · · env and v0 ∈ A},

we observe U ≡ 0 on the set A, and U ≥ 1 on the set B. Moreover, if e = {v, w},

U(v) ≤ U(w) + ρ(e) and U(w) ≤ U(v) + ρ(e) so that |U(w)−U(v)| ≤ ρ(e). Hence, ρU ≤ ρ.

If U ≡ 1 on B then this shows that Cap(A,B) ≤ Mod2 Γ(A,B). So, we consider the case

where there exists vj ∈ B such that U(vj) > 1. Here, define F (v) = min{U(v), 1} for each

v ∈ V . Then for e = {v, w} there are three cases (by switching rolls of v and w if necessary).

Case 1: If U(v) and U(w) < 1. Then ρF (e) = ρU(e).

Case 2: If U(v) ≥ 1 and U(w) < 1. Then, ρF (e) ≤ ρU(e) since |1−U(w)| ≤ |U(v)−U(w)|.

Case 3: If 1 ≤ min{U(v), U(w)}. Then, 0 = ρF (e) ≤ ρU(e).

Thus ρF (e) ≤ ρU(e) for all e ∈ E. Consequently, Cap(A,B) ≤ E(ρF ) ≤ E(ρU) ≤ E(ρ).

Taking the infimum over ρ ∈ Adm(Γ(A,B)) completes the proof.

As a special case, if A = {a} and B = {b} for some a, b ∈ V with a 6= b, we write

Cap(a, b) = Mod2 Γ(a, b), which says the effective conductance, or the multiplicative inverse

of the effective resistance, between a and b is the connecting families 2-modulus (see 1.1.1)

between {a} and {b}. Effective resistance can be computed by Equation ER. For more

details on the modulus and effective conductance see6 and for more details on effective

resistance see7.

When comparing the Parallel and Serial rules to their respective results from physics,

keep in mind that
(
Mod2 ΓG(A,B)

)−1
is interpreted as the effective resistance in the graph

G from A to B. (See Figure 1.5.) We now review Proposition 1.1.9 in the case where p = 2.
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Corollary 1.1.11.

• (Parallel Rule). Let G = (V,E) and Aj, Bj ⊂ V for j = 1, 2. Suppose Γ =

Γ1(A1, B1) ∪ Γ2(A2, B2) are such that V (γ1) ∩ V (γ2) = ∅ for all γ1 ∈ Γ1 and γ2 ∈ Γ2.

Moreover, let p = 2. Then,

Mod2 Γ = Mod2 Γ1 + Mod2 Γ2. (1.1.4)

• (Serial Rule). Let C be a cut for Γ := Γ(A1, A2). For j = 1, 2 define Γj = Γ(Aj, C).

Then,

1

Mod2 Γ
≥ 1

Mod2 Γ1

+
1

Mod2 Γ2

.

1.2 Discrete Modulus via Convex Optimization.

Here, we see that for any family of walks Γ in a finite graph, there exists a finite subfamily

Γ∗ ⊂ Γ with the property that Adm(Γ∗) = Adm(Γ), and hence Modp Γ = Modp Γ∗ for all

1 ≤ p. This will be very important when we consider the modulus as a convex optimization

problem in Section 1.2.2. We call such a subfamily Γ∗ an essential subfamily.

The subfamily Γ∗ is by no means unique, since if Adm(Γ∗) = Adm(Γ) then for any

γ ∈ Γ \ Γ∗ we have Adm(Γ∗ ∪ {γ}) = Adm(Γ). But, as Γ is frequently an infinite family

of walks, knowing the existence of an essential subfamily is immediately beneficial. In

fact, in Section 1.2.3 we discuss how existence of an essential subfamily guarantees that an

algorithm will terminate in finite time when it is within a fixed ε > 0 of the actual value of

the p-modulus. Moreover, the algorithm that will be described computes the corresponding

approximation to the extremal density.
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1.2.1 Existence of Essential Subfamilies

The construction of Γ∗ can be understood through the partial order � on walks defined in

Definition 1.1.7. Now, we define the nonnegative edge multiplicity of a walk by

m : Γ× E → N0 m(γ, e) = the number of times γ crosses edge e.

Choosing an enumeration of the edges, the edge multiplicity can be used to define a

mapping from Γ into N|E|0 by associating to each walk its vector of multiplicities, i.e.,

γ 7→ xγ :=
(
m(γ, e1),m(γ, e2), ...,m(γ, e|E|)

)
. (1.2.1)

Considering walks as vectors in R|E|, we have an equivalent definition of the partial order

� in terms of the vector representation of walks. If x and y are the vector representations

of γx and γy, then

x � y if and only if xi ≤ yi ∀ i ∈ {1, 2, ..., |E|}. (1.2.2)

The corresponding inequality is strict if in addition x 6= y. It’s straightforward to check the

asserted equivalence

γx � γy ⇐⇒ x � y, (1.2.3)

by defining for each i ∈ {1, 2, ..., |E|} the ρ-density ρi(ej) = δij since `ρk(γ) = m(γ, ek).

Hence, γx � γy implies x � y. On the other hand, for any density ρ it follows

`ρ(γ) =

|E|∑
k=1

m(γ, ek)ρ(ek). (1.2.4)

As a consequence, x � y implies γx � γy.

To show that an essential subfamily always exists, one must first build-up some machin-

20



ery. To this end,

Lemma 1.2.1. Every non-empty X ⊂ Nn
0 has a minimal element with respect to the partial

ordering defined in (1.2.2).

Proof. Define the mapping h : Nn
0 → N0 by2

h(x) :=
n∑
j=1

xj.

By the well-ordering of the natural numbers, the set {h(x) : x ∈ X} has a smallest value.

Let x ∈ X be such that h(x) equals this smallest value. Then x must be a minimal element.

Indeed, suppose that y ∈ X with y � x. Then yi ≤ xi for all i = 1, 2, ..., n. But h(x) ≤ h(y)

implies that no yi can be strictly less than the corresponding xi and consequently y = x.

Theorem 1.2.2. Let X ⊂ Nn
0 . Then there exists a finite subset X∗ ⊂ X such that

X = ∪x∗∈X∗ {x ∈ X : x∗ � x} .

Proof.

We proceed by induction on n. If n = 1, the theorem follows since N0 is well-ordered;

X∗ can be taken as the minimum of X.

Now supposed the result holds for dimensions n = 1, 2, ..., k − 1. Then we need to show

the result holds for dimension n = k. To this end, let X ⊂ Nk
0. If X is empty, there is no

work to be done. Otherwise, let x0 be a minimal element of X, as guaranteed by Lemma

1.2.1. Define X0 to be the set of elements in X that do not dominate x0, i.e.,

X0 := {x ∈ X : x0 6� x}.
2When x = xγ , the function h counts the number of edges traversed (with multiplicity) by the walk γ.
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For each subset I ⊂ I := {1, 2, ..., n}, define

X0
I := {x ∈ X0 : xi < x0

i ∀ i ∈ I, and xi ≥ x0
i , ∀ i 6∈ I}.

That is X0
I is the subset of X where the domination fails exclusively on the components in

I. Moreover,

X0 =
⋃
I⊂I

X0
I .

Since for every I ⊂ I, X0
I ⊂ X0, and x ∈ X0 implies x0 6� x, it follows that X0

∅ = ∅,

since x ∈ X0
∅ must dominate x0 in every coordinate, contradicting x ∈ X0.

On the other extreme, X0
I = ∅, since x ∈ X0

I means x ≺ x0 contradicting the minimality

of x0.

Thus, we restrict our attention to I ⊂ I such that 1 ≤ |I| ≤ k− 1 and X0
I is non-empty.

Let ` := |I|. Then we have seen that 1 ≤ ` ≤ k − 1. Hence, by reordering, any x ∈ X0
I can

be rewritten as x = (x′, x′′) where x′ ≺
(
x0
)′

and
(
x0
)′′ � x′′, and x′ is made up of the first

` entries of x and x′′ makes up the remaining k − ` entries.

To simplify the notation, we consider projections pI , qI where pI(x) = x′ and qI(x) = x′′.

Since Nn
0 is finite dimensional and in each dimension there are only finitely many values

in N0 smaller than x0
i for each component i = 1, 2, ..., `, then there can only be finitely

many images of projections pI(xI,j) so that pI,j(xI,j) ≺
(
x0
)′

for some xI,j ∈ X0
I and

j = 1, 2, ...,mI . Hence, we let {zI,j}mI
j=1 ⊂ N`

0 be an enumeration of vectors satisfying

zI,j = pI(xI,j) for xI,j as described. Then for each I ⊂ I and j = 1, 2, . . . ,mI we define the

set

X0
I,j :=

{
qI(x) ∈ Nk−`

0 : (zj, qI(xI,j)) ∈ X0
I

}
.

Since 1 ≤ k − ` ≤ k − 1, the inductive hypothesis applies to X0
I,j so that there exists

some Y ∗, an essential subset of X0
I,j. Consequently, the set

X∗I,j := {(zI,j, y) : y ∈ Y ∗}
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is finite for each j = 1, 2, ...,mI and has the property that every x ∈ X0
I with x = (zj, x

′′)

dominates some element of X∗I,j.

Being careful to properly re-index appropriately for each I ⊂ I, we can now define

X∗I :=

mI⋃
j=1

X∗I,j, and X∗ := {x0} ∪

⋃
I⊂I

X∗I

 ,

where X∗I = ∅ whenever X0
I = ∅. Since each X∗I is a finite union of finite sets, and X∗ is

a finite union of the sets X∗I , we have that X∗ is finite. Moreover, given any x ∈ X, either

x0 � x or x ∈ X0
I,i for some I and j and hence dominates at least one x∗ ∈ X∗I,j. Thus, X∗

has the desired properties and is a finite subset of X.

Now we have the necessary tools to prove the main result.

Theorem 1.2.3. Any family of walks Γ admits an essential subfamily.

Proof. The mapping of Γ into N|E|0 defined in (1.2.1) preserves partial orders as described

in (1.2.3). Therefore, let X = {xγ : γ ∈ Γ} and X∗ ⊂ X be the finite essential subset

guaranteed by Theorem 1.2.2. We can construct Γ∗ by adding one3 γ to Γ∗ for each xγ ∈ X∗.

Then Γ∗ is finite. Moreover, since the mapping preserves partial orders, every γ ∈ Γ

dominates some element of Γ∗. Thus, if ρ ∈ Adm(Γ∗) and γ ∈ Γ then by the design of Γ∗

there exists γ∗ ∈ Γ∗ so that

`ρ(γ) ≥ `ρ(γ
∗) ≥ 1.

Hence, Adm(Γ∗) ⊂ Adm(Γ). On the other hand, Γ∗ ⊂ Γ, implies Adm(Γ∗) ⊃ Adm(Γ),

attaining both inclusions.

3More than one walk γ can correspond to each xγ . For example, consider Γ to be the set of all walks
that are loops with 5 hops. Then for each xγ the loop can start in 5 different nodes and have 2 different
directions, so that there are 10 unique γ ∈ Γ for each xγ in this particular family of walks.

23



1.2.2 Karush-Kuhn-Tucker conditions and the Modulus as a

Convex Program

We say that v is a linear combination of {vk}k∈I , where I is an arbitrary index set if

there exists a finite I ⊂ I such that

v =
∑
k∈I

akvk = ak1vk1 + ak2vk2 + ...+ akmvkm . (1.2.5)

For vector spaces X, Y , a function f : X → Y is said to be linear if it preserves linear

combinations, i.e.,

f

 m∑
j=1

ajvj

 =
m∑
j=1

ajf(vj) ∀ aj ∈ R, ∀ vj ∈ X.

A convex combination is a special case of a linear combination. We say that v is a convex

combination of {vk}k∈I if v can be expressed as in 1.2.5 with the additional constraint that∑
k∈I ak = 1 and each ak ≥ 0. Any set that is closed under convex combinations is called a

convex set. For example, Adm(Γ) is a convex set, since ρ := a1ρ1 + · · · amρm ∈ Adm(Γ)

whenever a1 + ...+ am = 1, as demonstrated below.

ρ(γ) =
m∑
k=1

akρk(γ) ≥
m∑
k=1

ak = 1, ∀ γ ∈ Γ,

where the inequality follows since ρk ∈ Adm(Γ) for all k.

A function f : X → R is called convex if for any v = a1v1+...amvn, a convex combination

of elements of X, it follows that

f(v) ≤ a1f(v1) + ...+ amf(vm). (1.2.6)

For example, the mappings x→ xp are convex for p ≥ 1.
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An affine transformation is a special case of a convex combination where equality holds

in (1.2.6). Less formally, an affine transformation is a translation of a linear transformation.

In particular, the Euclidean dot product against a fixed vector x, denoted 〈·, x〉 : Rm → R,

is a linear transformation, so that 1 − 〈·, x〉 : Rm → R is an affine transformation, and

consequently a convex function.

A standard convex optimization problem is an optimization problem where one

minimizes a convex functional over a convex set, subject to finitely many convex equality

and inequality constraints. We will show that in the discrete setting, computing the modulus

is a standard convex optimization problem.

In the preceding section, we have already discussed that after enumerating the edges, each

density ρ can be thought of as a vector in R|E| by ρ = (ρ(e1), ρ(e2), ..., ρ(en)). Similarly, by

(1.2.1), every walk γ corresponds to a vector xγ ∈ N|E|0 ⊂ R|E|. In (1.2.4) it was demonstrated

that the ρ-length is simply the dot product in R|E| of a vector with a ρ-density. With these

observations and the examples of convexity and convex functions given above, we can write

the modulus as a standard convex optimization problem. A first (very reasonable) attempt,

would look like

minimize Ep(ρ)

subject to ρ ∈ Adm(Γ).

Expanding the meaning of this, we have (after enumerating the edges) the equivalent convex

program,

minimize

|E|∑
k=1

ρ(ek)
p

subject to 1−
|E|∑
k=1

ρ(ek)m(γ, ek) ≤ 0 ∀ γ ∈ Γ.
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We see that the functional Ep(ρ) is convex, as it is a linear combination of convex func-

tions. Further, one can observe that the above looks like a convex program with zero equality

constraints. However, the astute reader will have observed the difficulty that there are |Γ|

(and hence, potentially infinitely many) inequality constraints. Therefore, we have not yet

written the modulus as a standard convex optimization problem. Moreover, Theorem 1.2.3,

guarantees the existence of an essential subfamily Γ∗ so that we instead consider,

minimize Ep(ρ)

subject to ρ ∈ Adm(Γ∗),

which is a standard convex optimization problem with finitely many inequality constraints.

After enumerating Γ∗ we can expand this as an “ordinary convex program” (language from8)

minimize Ep(ρ) (1.2.7)

subject to 1− `ρ(γk) ≤ 0 k = 1, 2, ...,m,

where m := |Γ∗|.

How does writing the modulus as an ordinary convex program help? Since convex

analysis is a large field of mathematics, this provides a whole new set of tools to use to

inspect the modulus. In particular, we define the Lagrangian, which should be reminiscent

of Lagrange multipliers.

L(ρ, λ) := Ep(ρ) +
m∑
k=1

λk(1− `ρ(γk)). (1.2.8)

An optimization problem is said to have the property of strong duality if the La-

grangian has a saddle point, i.e., if there exists some (ρ∗, λ∗) so that

L(ρ∗, λ) ≤ L(ρ∗, λ∗) ≤ L(ρ, λ∗) ∀ ρ : E → R, ∀ λ ∈ Rm
+ .
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For convex problems, Slater’s condition (see8 Theorem 28.2) states that if the optimal

value is bounded below, then the existence of a strictly feasible point is sufficient to ensure

strong duality. A strictly feasible point, is a point where every inequality constraint holds

with strict inequality. Since the modulus is bounded below by zero, so long as Γ does not

have any walks with zero hops, it is sufficient to consider the particular ρ ≡ 2 to show that

there is indeed a strictly feasible point.

Since the ordinary problem is convex, sufficiently smooth (in fact infinitely smooth), and

exhibits strong duality, the Karush-Kuhn-Tucker (KKT) conditions provide necessary and

sufficient conditions for optimality. The KKT conditions ensure the existence of an optimal

ρ∗ : E → R and dual optimal λ∗ ∈ Rm
+ (8 Theorem 28.3) satisfying

λ∗k ≥ 0, 1− `ρ∗(γk) ≤ 0 for k = 1, 2, ...,m (1.2.9)

λ∗k(1− `ρ∗(γk)) = 0 for k = 1, 2, ...,m (1.2.10)

∇ρL(ρ∗, λ∗) = 0. (1.2.11)

In addition to being sufficient conditions that an optimal ρ∗ exists, in the case where p > 1

and the functional Ep(ρ) is strictly convex, the KKT conditions also guarantee uniqueness

of the solution. The density ρ∗ is the minimizer of (1.2.7). Moreover, the property exhibited

in (1.2.10), called complementary slackness provides a meaningful interpretation of Γ̃

from Beurling’s criterion in terms of the values of the Lagrange multipliers λ∗ in Beurling’s

Criterion.

Theorem 1.2.4. Assume Γ is a finite (and enumerated) family of walks. Let ρ∗ and λ∗ be

a saddle point for the Lagrangian L. Then

Γ̃ := {γk : λ∗k > 0} (1.2.12)

can be taken to be the subfamily Γ̃ in Beurling’s Criterion (Theorem 1.1.3). The converse
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of Beurling’s Criteron (Theorem 1.1.4) follows as a consequence.

Proof. First, if Γ̃ is as in (1.2.12) and Γ0(ρ∗) as in (1.1.2), then complementary slackness

guarantees Γ̃ ⊂ Γ0(ρ∗).

Next, suppose h : E → R satisfies `h(γ) ≥ 0 for all γ ∈ Γ̃, and that µ > 0.

The saddle-point property ensures that

0 ≤ L(ρ∗ + µh, λ∗)− L(ρ∗, λ∗)

=
∑
e∈E

(
ρ∗(e) + µh(e)

)p −∑
e∈E

ρ∗(e)p +
m∑
k=1
λ∗k>0

λ∗k(1− `ρ∗+µh(γk))

=
∑
e∈E

(
ρ∗(e) + µh(e)

)p −∑
e∈E

ρ∗(e)p +
m∑
k=1
λ∗k>0

λ∗k(1− `ρ∗(γk)− `µh(γk))

=
∑
e∈E

(
ρ∗(e) + µh(e)

)p −∑
e∈E

ρ∗(e)p − µ
m∑
k=1
λ∗k>0

λ∗k`h(γk)

= µ


∑

e∈E
(
ρ∗(e) + µh(e)

)p −∑e∈E ρ
∗(e)p

µ
−

m∑
k=1
λ∗k>0

λ∗k`h(γk)

 .

The fourth line follows since `ρ∗(γk) = 1 for all γk ∈ Γ̃.

Moreover, since µ > 0, we have

∑
k=1
λ∗k>0

λ∗k`h(γk) ≤
∑

e∈E
(
ρ∗(e) + µh(e)

)p −∑e∈E ρ
∗(e)p

µ
∀ µ > 0.

Taking the limit as µ ↓ 0 achieves,

m∑
k=1
λ∗k>0

λ∗k`h(γk) ≤ ∇
[
(ρ∗(~e))p

]
· h(~e) = p

∑
e∈E

ρ(e)p−1h(e).

By the hypothesis on h, and the fact that 0 < 1 < p we have shown that (1.1.1) holds.
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1.2.3 Computing the Modulus

There are many computational libraries that exist to solve convex optimization problems.

So, it would not be unreasonable to believe that after seeing the discrete version of the

modulus can always be written as in (1.2.7), that all computational difficulties have been

handled.4 However, it can be very difficult to find a small Γ∗, so the number of inequality

constraints, that is the cardinality of Γ∗, is reasonable for computation.

To expand upon this idea we introduce the notion of a choked graph in Figure 1.6. It

is not hard to imagine a generalization of this graph, to a complete graph on N − 1 nodes.

After enumerating this complete graph, we add an Nth node, and only connect it to node 1.

Then, consider the family of walks from node 2 to node N , denoted Γ(2, N) and the family

Γs := {γ : 2 7→ N
∣∣γ is simple} as a candidate for Γ∗.

Figure 1.6: Node 2 is depicted as blue and node N is depicted as red. Here N = 10. Despite
how quickly |Γ∗| as the size of the clique grows, the number of paths necessary to consider
by the algorithm is relatively very small.

Since the proper subset of Γs that is defined as the subset of walks that each have

4Especially since it is easy to see that the family Γs = {all simple walks in the family Γ} is a superset of
the necessary family of constraints Γ∗.
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precisely N − 1 hops, has exactly (N − 3)! walks in it, it’s clear that |Γs| > (N − 3)!.

However, the edge connecting node 1 and N represents a “choke point” or bottleneck,

where every path must traverse this edge. Therefore, it is natural to expect that there may

exist a relatively small family Γ′ ⊂ Γ such that Modp(Γ
′) ≈ Modp(Γ).

In this section, an algorithm for approximating the modulus of a family of curves Γ is

presented. This algorithm performs especially well in cases where such a small Γ′ exists. In

the following, we assume that there exists an algorithm, denoted shortest(ρ), which produces

a ρ-shortest walk that exists in Γ. That is, given any ρ : E → [0,∞)

γ∗ = shortest(ρ) =⇒ ∀ γ ∈ Γ : `ρ(γ
∗) ≤ `ρ(γ).

For connecting families of walks, there are many well-known and rapid algorithms that

satisfy the job of shortest(ρ), for example, Dijkstra’s algorithm, see9 is discussed in Section

3.1. Pseudocode for the modulus approximation algorithm is given in Algorithm 1.

Algorithm 1 Approximates Modp(Γ) with an error tolerance of 0 < εtol < 1.

ρ← 0
Γ′ ← ∅
loop
γ ←shortest(ρ)
if `ρ(γ)p ≥ 1− εtol then
stop

end if
Γ′ ← Γ′ ∪ {γ}
ρ← argmin{Ep(ρ) : ρ ∈ Adm(Γ′)}

end loop

During each iteration through the loop, a shortest walk is chosen from Γ using the

provided shortest algorithm. If the stopping criterion is not met, the new walk is added

to Γ′ and the convex optimization problem described in (1.2.7) is solved using a standard

convex programming package.

In an attempt to simplify notation for the next theorem and its proof, we observe that
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Ep(ρ) = ‖ρ‖pp. Moreover, we will have continue to let (p, q) be Hölder exponents, that is,

1
p

+ 1
q

= 1.

Theorem 1.2.5. Let Γ be a family of walks on a finite graph and suppose that ρ∗ is the

extremal density for Modp(Γ) with 1 < p < ∞. Fix an error tolerance 0 < εtol < 1. Then,

Algorithm 1 will terminate in finite time, and will output a family Γ′ ⊂ Γ and a density ρ.

Moreover, Γ′ has the property that

0 ≤ Modp(Γ)−Modp(Γ
′)

Modp(Γ)
≤ εtol, (1.2.13)

while ρ satisfies

‖ρ∗ − ρ‖p
‖ρ∗‖p

≤


2

1
q ε

1
p

tol p ≥ 2

2
1
p

(
q
p
εtol

) 1
q

1 < p < 2.

(1.2.14)

Proof. In Theorem 1.2.3, we saw that the size of Γ′ is bounded above by |Γs|, some finite

number. Therefore, since the size of Γ′ is monotonically increasing with integer step-size

within the loop, the algorithm will definitely terminate in finite time. Despite the upper

bound that guarantees termination of the algorithm, we will see in some examples that it

actually terminates in relatively very few iterations.

To see that (1.2.13) holds, we observe that the identity Ep(ρ) = Modp(Γ
′) is a loop

invariant. Moreover, the loop can only terminate if ` := `ρ(γ) > 0. However, when ` > 0,

then the choice of γ in the loop implies that 1
`
ρ ∈ Adm(Γ). Consequently,

Modp(Γ) ≤ Ep
(
ρ

`

)
=

1

`ρ
Ep(ρ) =

1

`p
Modp(Γ

′).

When the loop terminates, `p ≥ 1− εtol, which implies

Modp(Γ) ≤ (1− εtol)
−1 Modp(Γ

′).
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Hence,

1− εtol ≤
Modp(Γ

′)

Modp(Γ)

so that
Modp(Γ)−Modp(Γ

′)

Modp(Γ)
= 1− Modp(Γ

′)

Modp(Γ)
≤ 1− (1− εtol) = εtol,

where the lower bound in (1.2.13) follows by monotonicity.

In order to prove (1.2.14), consider the Clarkson inequality for p ≥ 2:

Ep(ρ+ ρ∗) + Ep(ρ− ρ∗) ≤ 2p−1(Ep(ρ) + Ep(ρ∗)). (1.2.15)

Since ρ∗ ∈ Adm(Γ) (because it is extremal) and (1− εtol)
−1
p ρ ∈ Adm(Γ) by the stopping

condition of Algorithm 1, then

ρ+ ρ∗

1 + (1− εtol)
1
p

∈ Adm(Γ),

since

`ρ∗+ρ(γ) = `ρ∗(γ) + `ρ(γ) ≥ 1 + (1− εtol)
1
p ∀ γ ∈ Γ.

Hence,

Ep(ρ+ ρ∗) ≥
(

1 + (1− εtol)
1
p

)p
Modp(Γ). (1.2.16)

Moreover, since ρ∗ is extremal and Γ′ ⊂ Γ, we know that

Ep(ρ) = Modp(Γ
′) ≤ Modp(Γ) = Ep(ρ∗). (1.2.17)

Substituting (1.2.16) and (1.2.17) into (1.2.15) (in the second and third lines respectively)
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yields

Ep(ρ− ρ∗) ≤ 2p−1
(
Ep(ρ) + Ep(ρ∗)

)
− Ep(ρ+ ρ∗)

≤ 2p−1
[
Ep(ρ) + Ep(ρ∗)

]
−
(

1 + (1− εtol)
1
p

)p
Modp(Γ)

≤ 2p−1
(
2 Modp(Γ)

)
−
(

1 + (1− εtol)
1
p

)p
Modp(Γ)

= 2p Modp(Γ)

1−

1 + (1− εtol)
1
p

2

p


≤ 2p Modp(Γ)

[
1− 1 + (1− εtol)

2

]
= 2p−1 Modp(Γ)εtol.

The final inequality follows by applying Jensen’s inequality to the convex function p 7→ xp.

Dividing by Modp(Γ) yields the desired result,

‖ρ∗ − ρ‖pp
‖ρ∗‖pp

≤ 2p−1εtol.

It remains to show the case when 1 < p < 2. In this case, the Clarkson inequality reads:

‖ρ+ ρ∗‖qp + ‖ρ− ρ∗‖qp ≤ 2
(
‖ρ‖pp + ‖ρ∗‖pp

) q
p
. (1.2.18)

Starting with the same procedure as in the p ≥ 2 case, we substitute (1.2.16) and (1.2.17)
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into (1.2.18) to achieve,

‖ρ− ρ∗‖qp ≤ 2
(
‖ρ‖pp + ‖ρ∗‖pp

) q
p − ‖ρ+ ρ∗‖qp

≤ 2
(
‖ρ‖pp + ‖ρ∗‖pp

) q
p −

(
1 + (1− εtol)

1
p

)q
‖ρ∗‖qp

≤ 21+ q
p

(
‖ρ∗‖pp

) q
p −

(
1 + (1− εtol)

1
p

)q
‖ρ∗‖qp

=

[
21+ q

p −
(

1 + (1− εtol)
1
p

)q]
‖ρ∗‖qp

= 2q

1−

(
1 + (1− εtol)

1
p

2

)q
 ‖ρ∗‖qp

≤ 2q

1−

(
1 + (1− εtol)

q
p

2

) ‖ρ∗‖qp,
where the penultimate equality used 1

q
+ 1

p
= 1 and the final inequality once again used

discrete Jensen’s inequality. Moreover, picking up in the last chain of inequalities/equalities,

computing the common denominator inside the square brackets yields,

‖ρ− ρ∗‖qp ≤ 2q−1
[
1− (1− εtol)

q
p

]
‖ρ∗‖qp

≤ 2q−1

[
1−

(
1− q

p
εtol

)]
‖ρ∗‖qp

=
2

q
p q

p
εtol‖ρ∗‖qp = 2

q
p
qεtol

p
‖ρ∗‖qp,

where the second inequality follows from the tangent line approximation to x → (1 − x)
p
q

at the point x = 0. (Since q
p
> 1, the tangent line is a lower bound, and consequently, sub-

tracting a smaller number, makes the right-hand side larger.) This final bound is equivalent

to (1.2.14) when 1 < p < 2.

While it is great to know that the modulus and extremal density can be approximated

arbitrarily well in finite time, there is much more our understanding can gain by viewing
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the modulus as a convex program. For some of the much broader theory and intuition, see4.
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Chapter 2

Transboundary Modulus

2.1 More graph theory

A multigraph is an ordered pair G = (V,E) where V is still a vertex-set, but E is an edge

multiset. A multiset is a generalization of the idea of a set, where multiple instances of an

element can occur. In terms of sets, {a} = {a, a}, however as a multiset {a} ( {a, a}. In

order to be able to identify different edges in a multigraph, we consider edges in a multigraph

as ordered triples {v1, v2, j} ∈ E for v1, v2 ∈ V and j ∈ N. Multigraphs can be directed or

undirected. An example of a directed multigraph would be the network of flights between

cities in the United States, where nodes are airports, and edges represent specific flights

between two airports.

A graph is called planar or a planar map if it can be embedded into the plane in such

a way that no edges cross (see Figure 2.1a). Kuratowski’s theorem, stated below and proved

in10, is a sufficient and necessary condition to check if a graph has a planar embedding based

on isomorphisms of smoothed subgraphs. A vertex of degree two, say w, can be smoothed.

That is, if e1 = {w, v} and e2 = {u,w}, we can remove the vertex w and replace it with the

edge e = {u, v}. While Kuratowski’s theorem is stated for graphs (and not multigraphs), it

is easy to see that the only limitation to planar embeddings of a multigraph comes from its
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(a) A planar embedding of a multigraph with
self-loops.

(b) The complete graph on 5 vertices is a non-
planar map.

underlying graph (when you include the same edges, but all with multiplicity one). This can

be seen by drawing the edges of higher multiplicity thinner and closer together as needed.

Theorem 2.1.1. (Kuratowski). A graph G is planar if and only if it has no subgraph G′

that can be smoothed into either K5 or Bipartite(3, 3).

Figure 2.2: Despite only having three vertices
and three sides, this is an example of quad-
rangle in a graph.

In a graph, a quadrangle is a collection

of vertices and edges, so that starting at any

one of the (up to) 4 vertices, you can follow

the edges in a fixed order and end up where

you started in exactly 4 hops. In this sense,

every quadrilateral is a quadrangle. How-

ever, some quadrangles can be quite surprising (see Figure 2.2).

A tree is a graph G = (V,E) that has no closed loops. It is immediate to see that

no strict, undirected multigraph is a tree, as any edge with multiplicity greater than one,

immediately creates a loop.
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2.2 Transboundary modulus

Random-cluster models are important in graph theory as well as many applications. We

will briefly discuss one such application to Quantum Liouville Gravity (QLG) surfaces,

particularly an approach of Scott Sheffield, Jason Miller, and Bertrand Duplantier11. One

key property of a QLG surface is conformal invariance. Hence, we introduce a discrete

analog of Oded Schramm’s conformally invariant transboundary modulus as a proposed tool

to better understand the random planar maps that arise in this particular random-cluster

model.

2.2.1 Preliminaries

For a graph G = (V,E) we say that a subset of edges is connected if the minimal subgraph

induced by the edge-set is connected. The transboundary modulus is defined on an ordered

pair (G,C) where G = (V,E) is a (multi)graph and C = {C1, ...Cm} is a set of clusters. A

cluster is connected subset of E, i.e., Cj = {ej1, e
j
2, ..., e

j
mj
}. It is further necessary that the

clusters Cj are pairwise-disjoint subsets of E. The set ∂Cj ⊂ V is called the boundary of Cj

and is defined as the set of vertices that are an endpoint to edges in Cj as well as endpoints

to edges not Cj. That is,

∂Cj := {v ∈ V : there exists some (v, u) ∈ Cj and some (v, w) ∈ E \ Cj}.

Given such a multigraph G = (V,E) and clusters {Cj} we define the set

E0 = E \
⋃

Cj.

Then a walk on (G,C) is a string of vertices and edges,

γ = v0 e1 v1 · · · en vn.
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The walk γ is said to enter the cluster Cj whenever ek ∈ Cj but ek−1 6∈ Cj. For a family

of walks Γ we can define the function NC : E0 ∪ C × Γ→ N0 for each γ ∈ Γ by

NC(ω, γ) =


The number of times γ crosses edge e if ω = e ∈ E0,

1 if ω = Cj ∈ C and E(γ) ∩ Cj 6= ∅

0 if ω = Cj ∈ C and E(γ) ∩ Cj = ∅.

A ρ-density on (G,C) is a function ρ : E0 ∪ C → [0,∞). The ρ-length of a walk on (G,C)

is defined as

∆ρ(γ) =
∑
e∈E0

N (e, γ)ρ(e) +
∑
Cj∈C

N (Cj, γ)ρ(Cj).

A ρ-density on (G,C) is said to be admissible for a family of walks Γ if ∆ρ(γ) ≥ 1 for

every γ ∈ Γ. The set of all admissible densities for Γ on (G,C) is denoted Adm(Γ; (G,C)).

Moreover, the (p, q)-energy of a density ρ on (G,C) is defined as

Ep,q(ρ) =
∑
e∈E0

ρ(e)p +
∑
Cj∈C

ρ(Cj)
q.

Finally, the (p, q)−transboundary modulus of Γ on (G,C) is defined as

Modp,q(Γ, C) = inf
{
Ep,q(ρ)

∣∣ ρ ∈ Adm(Γ; (G,C))
}
.

2.2.2 Virtual Graphs

The definition of the transboundary modulus for a graph G = (V,E) over the set of clusters

C is a natural way of thinking about the transboundary modulus as an adaptation from the

continuum case. However, as with the p-modulus, the discrete setting allows for a simpler

approach to the transboundary modulus. This approach requires creating a so called virtual

graph G̃ = (Ṽ , Ẽ) induced by (G,C).

To create the virtual graph G̃ = (Ṽ , Ẽ) we begin with the graph G(E0), that is, the
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The G = (V,E) with clusters C in blue and red. Only the edges in C are shown.

Only the edges in E0 are shown. The virtual graph G̃.

Figure 2.3: From (G,C) to G̃.

subgraph of G induced by the edges in E0. We define the set Vv = {nj}mj=1 where nj is the

virtual node corresponding to Cj. Then, Ṽ := V ∪ {Vv}. Moreover, for j = 1, 2, ...m, create

the edge-sets Ej = {ej1, e
j
2, . . . , e

j
jn
}, which contain the virtual-edges connecting nj to each

node in ∂Cj. Then Ẽ =
m⋃
j=0

Ej. In this manner, you can always create the virtual graph G̃

corresponding to (G,C). See Figure 2.3.

A ρ-density on the virtual graph G̃ = (Ṽ , Ẽ) is a map ρ : Ẽ → [0,∞). A walk on the
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virtual graph G̃ is a string of alternating nodes and edges,

W = v0 e1 v1 · · · en vn,

where {ek} ⊂ Ẽ and {vk} ⊂ Ṽ . To define the ρ-length on a virtual graph G̃, we first define

the function η : E0 ∪ Vv × Γ→ N0 for each γ ∈ Γ by

η(ω, γ) :=


the number of times γ traverses ω if ω ∈ E0

1 if ω ∈ Ṽ ∩ V (γ)

0 if ω ∈ Ṽ \ V (γ).

Then, the ρ-length of a virtual walk γ is defined as

L(γ) =
∑
e∈E0

η(e, γ)ρ(e) +
m∑
j=1

∑
e∈Ej

ρ(e)

|Ej|
η(nj, γ). (2.2.1)

A density is called admissible for Γ̃ on G̃ if it satisfies

L(γ) ≥ 1 ∀ γ ∈ Γ̃ and ρ(ejk) = ρ(ej`) ∀ ej`, e
j
k ∈ Ej ∀ j = 1, 2, . . . ,m.

The reason it is natural to require that all edges in a set Ej have the same weight is

because this ensures that when visiting the virtual node nj, has the same ρ-cost regardless

of where you came from or where you left. In particular, the cost to visit node nj equals

ρ(ej1), for all Ej. Hence, the (p, q)-energy on a virtual graph is defined as

Ep,q(ρ) =
∑
e∈E0

ρ(e)p +
m∑
j=1

ρ(ej1)q. (2.2.2)

Moreover, for a family of walks Γ̃ on G̃,

Modp,q(Γ̃; G̃) = inf{Ep,q(ρ) : ρ ∈ Adm(Γ̃, G̃)}.
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We now describe a mapping σ that takes walks on (G,C) into walks on the virtual graph

G̃ in a canonical way. For a walk γ on (G,C), let γ̃ be the walk satisfying:

i) N (e, γ) = η(e, γ̃) for all e ∈ E0

ii) N (Cj, γ) = η(nj, γ̃) for all j = 1, 2, ...,m,

iii) the order in which γ visits vertices while not in a cluster Cj is the same as the order γ̃

visits vertices of G̃, and

iv) the order in which γ enters clusters Cj is the same as the order γ̃ visits the corresponding

virtual nodes nj.

Remark 2.2.1. While the mapping σ is not one-to-one because it ignores the number of

hops γ takes while within a cluster Cj, it is well-defined since the (i)-(iv) define the vertices,

edges, and their orders that the walk γ̃ can take on G̃.

Furthermore, for any density ρ on (G,C) there is a canonical transformation σ′ to a

density ρ̃ on G̃ defined by

ρ̃(e) := ρ(e) ∀ e ∈ E0 and ρ̃(ejk) := ρ(Cj) for each j = 1, 2, ...,m, and all 1 ≤ k ≤ jn.

Proposition 2.2.1. If σ, σ′ are as described, then

∆ρ(γ) = Lσ′(ρ)(σ(γ)) and Ep,q(ρ) = Ep,q(σ′(ρ)).

Proof. Starting from the definition of ∆ρ we attain,

∆ρ(γ) =
∑
e∈E0

N (e, γ)ρ(e) +
∑
Cj∈C

N (Cj, γ)ρ(Cj)

=
∑
e∈E0

η(e, σ(γ))ρ(e) +
m∑
j=1

η(nj, σ(γ))ρ(Cj)

=
∑
e∈E0

η(e, σ(γ))σ′(ρ(e)) +
m∑
j=1

η(nj, σ(γ))σ′(ρ(ej1)).
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The second and third equalities used the definition of σ and σ′ respectively. Moreover,

σ′(ρ(ejk) = σ′(ρ(ej`)) for all 1 ≤ j ≤ m and 1 ≤ k, ` ≤ nj, that is σ′(ρ(·)) is constant on Ej.

Consequently,

η(nj, σ(γ))σ′(ρ(ej1)) =
∑
e∈Ej

σ′(ρ(e))

|Ej|
η(nj, σ(γ))

As a result,
m∑
j=1

η(nj, γ)σ′(ρ(e1
j)) =

m∑
j=1

∑
e∈Ej

σ′(ρ(e))

|Ej|
η(nj, σ(γ))

Hence,

∆ρ(γ) =
∑
e∈E0

η(e, σ(γ))σ′(ρ(e)) +
m∑
j=1

∑
e∈Ej

σ′(ρ(e))

|Ej|
η(e, σ(γ)) = Lσ′(ρ)(σ(γ)).

Now, using the definition of the (G,C) energy of a density, the definition of σ′, and then

the definition of the energy of a density of a virtual graph, we attain

Ep,q(ρ) =
∑
e∈E0

ρ(e)p +
∑
Cj∈C

ρ(Cj)
q =

∑
e∈E0

σ′(ρ(e))p +
m∑
j=1

σ′(ρ(ej1))q = Ep,q(σ′(ρ)).

An immediate consequence is the following corollary.

Corollary 2.2.2. If Γ is a family of walks on (G,C), then

σ′
(
Adm(Γ; (G,C))

)
= Adm(σ(Γ); G̃) and Modp,q(Γ; (G,C)) = Modp,q(σ(Γ); G̃).

This result guarantees the validity of using virtual networks to compute the transbound-

ary modulus. The advantages of a virtual network approach to the transboundary modulus

are numerous. The greatest benefit is that by compressing each cluster down to a sin-

gle node, the function shortest() as used in Algorithm 1 is much easier to write and much
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quicker computationally in the case of a virtual graph as opposed to a graph with clusters.

Moreover, the algorithm defined in Algorithm 1 is guaranteed to terminate in finite time

while computing the transboundary modulus on a virtual node. While the style of proof

that achieved the error bounds in Theorem 1.2.5 can be followed to find similar bounds for

virtual networks, the bounds themselves are no longer the same.

2.3 Quadrangulations of the sphere

2.3.1 Sheffield’s Bijection

There is a well-known and canonical bijection between planar maps and quadrangulations.

If you begin with a planar map M = (V,E), we will call the graph M the primal map,

and we call its vertices and edges are called primal-vertices and primal-edges. To create the

quadrangulation of M denoted Q(M), first add a dual-vertex to each face of the planar

map. As we think of planar maps as being on the surface of a sphere, the “outside” face

also should have a dual-vertex added. Then, for each dual-vertex, create one dual-edge

connecting said vertex to each primal-vertex in the polygon surrounding its face. Removing

your primal-edges, you have created the quadrangulation Q(M) (see Figure 2.4).

In12, Scott Sheffield introduced a bijection between rooted planar maps decorated with

a conformal loop ensemble (CLE) and words on a certain semi-group Θ. This bijection is

closely related to the Schaeffer bijection13 between trees and rooted planar maps.

The Sheffield bijection actually creates a quadrangulation. As it happens, the “outside”

of the map, is always a quadrangle, so it is natural to imagine these quadrangulations as

being embedded on a sphere. Sheffield’s bijection can be used to show that these planar

maps with CLEs converge to Liouville Quantum Gravity (LQG) with a CLE11 in the limiting

case where the “size” of the faces of the quadrangles converge to zero.

A mnemonic to remember the semi-group Θ is to think of a peculiar burger shop that

makes hamburgers, H , and cheeseburgers, C . Customers can order hamburgers H , cheese-
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(a) The primal map M (b) Dual vertices are added in red.

(c) Quadrilateral edges are added in green. (d) The quadrangulation Q(M).

Figure 2.4: The canonical bijection from a planar map to a quadrangulation in four steps.
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burgers C , or the most recent (freshest) burger made F . The owner of the shop has a

Last-In-First-Out (LIFO) business model, and a single burger chute where all burgers made

are placed. If a customer orders a cheeseburger, they search through the chute until the first

cheeseburger they find and eat it to fulfill their order. However, if there is no cheeseburger

in the chute, the customer leaves (angrily). There is nothing special about cheeseburgers,

i.e., the shop follows the same procedure when a customer orders a hamburger. When a

customer orders a “freshest” burger, F , they take whatever burger is on the top of the

chute, eat it, and their order is fulfilled.

This story is formalized through the associative semi-group Θ with elements
{

C , H , C , H , F
}

.

A string of symbols in Θ is called a word and is read from left to right. The symbols in a

word can be “reduced” in the following two ways:

C H = H C and H C = C H (2.3.1)

C C = ∅ = C F and H H = ∅ = H F . (2.3.2)

The equations (2.3.1) and (2.3.2) and called the commutivity and order-fullfillment relations

respectively.

Recalling the mnemonic, a word can be thought of keeping track of a burger shop’s

activity for a day. For example, the word W = C C H C H C , would mean that the

shop had a customer order a cheeseburger and leave emptyhanded, then the shop made

a cheeseburger, a hamburger, and another cheeseburger before two customers ordered a

hamburger and then a cheeseburger. This means, that at the end of the day, keeping track

of unfullfilled orders and unordered burgers the shop left one cheeseburger order unfulfilled

and had one uneaten cheeseburger. Using first the commutivity relation then the order

fullfillment relations, we discover

W = C C H C H C ∼ C C H H C C ∼ C C =: W.
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The ∼ symbol denotes equivalence under the relations (2.3.1) and (2.3.2). We will continue

to use a bar to denote that a word is in reduced form. The fact that this is a convention

should be a hint to the fact that the reduced form of a word always exists and is unique, if

we rigorously define what is meant by “reduced form”. A word W is said to be in reduced

form if there are no burger orders following the production of any burger. In particular, a

typical reduced word is a string of burger orders followed by a string of burgers. However,

it is possible that there are no unfulfilled orders and/or no un-ordered burgers. A proof of

this claim is made in12 and is based off of induction on the length of the word.

The Sheffield bijection is based upon the canonical quadrangulation achieved in Figure

2.4 and described in the preceding section. The key to the Sheffield bijection is that in

Figure 2.4c, the primal and quadrilateral edges actually create a triangulation, with each

quadrilateral face containing a primal diagonal. The Sheffield bijection allows us to choose

either primal or dual diagonal edges. A dual edge, is an edge connecting two dual vertices.

It is possible to replace each primal diagonal with the corresponding dual diagonal. In this

manner a word W chooses a set of diagonals and a particular quadrangulation of the sphere,

hence creating a triangulation.

2.3.2 Maps and words with one loop

We use an example to describe how the Sheffield bijection works. Herein, we only describe

the simple case where the diagonals are chosen to create a primal tree and a dual tree.

In Figure 2.5a, we show such a choice of diagonal edges, along with a root of the map,

i.e., a special edge that tells us where to begin. To create the word W corresponding to

the map M , we want to trace a path that crosses each quadrilateral edge once and never

crosses a diagonal edge. We let primal-diagonal edges correspond to cheeseburgers and

dual-diagonal edges correspond to hamburgers in the sense that the first time that this path

enters a quadrilateral with a primal/dual edge, a cheeseburger/hamburger (respectively) is

produced. The second time that this path enters a quadrilateral with a primal/dual edge, a
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(a) The orange (primal) diagonals correspond
to cheeseburger orders/consumption and the
purple (dual) diagonals correspond to ham-
burger orders/consumption. The bold edge and
larger vertices denote the root of the map.

(b) The unique path that crosses each quadri-
lateral edge once and never crosses a diagonal
edge.

cheeseburger/hamburger (respectively) is ordered. In Figure 2.5b, the unique loop is drawn,

and we can trace out the corresponding word to be:

W = C C C H C H H H C C H H H C C C C H . (2.3.3)

Upon inspection, it is straightforward using the reduction relations to show that W = ∅.

This is no coincidence. Every representation of the empty word creates a rooted mating

of two trees, and every rooted mating of two trees creates a unique representation of the

empty word.

It is more difficult to describe how to create a planar map from a word W . Figure 2.6

shows the first few steps in re-creating the planar map in Figure 2.5a from its corresponding

word. Here, I describe the process. When creating the graph, we will follow the procedure

that the vertices pk/dk are the kth primal/dual vertices which for k > 0 coincides with the
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kth cheeseburger/hamburger respectively.1 For k ≥ 1, the edges qk/ck/hk denote the kth

quadrilateral/primal/dual edges respectively. The kth primal/dual edges correspond to the

kth cheeseburger/hamburger respectively. Meanwhile, typically2 the kth quadrilateral edge

corresponds to the the kth letter in the word, the kth primal/dual edges correspond to the

production or consumption of a cheeseburger/hamburger respectively. For clarity in creating

the map, we will also keep track of our “current inventory”, where we have an evolving

cheeseburger/hamburger queue Pt/Dt that contains the primal vertices corresponding to

the cheeseburgers/hamburgers produced but not ordered at time t.

To create the the map M , begin with the map that only includes our root. So, we

let M0 = ({p0, d0}, {q0}) where edge q0 connects p0 to d0. At this point our cheese-

burger/hamburger queues are P0 = [p0] and D0 = [d0]. Since the first symbol in the

word from (2.3.3) is a C , we define M1 by adding a vertex p1 to M0. We connect p1 to p0

(the most recently produced, unconsumed cheeseburger) with primal edge c1 and connect

p1 to d0 (the most recently produced, unconsumed hamburger) with edge q1. We then have

P1 = [p0, p1] and D1 = [d0]. Since the next symbol in W is another C , M2 is created by

adding a new vertex p2 connected to p1 and d0 with edges c2 and q2 respectively. Now,

P2 = [p0, p1, p2] and D2 = [d0]. The third symbol in W is again C so that M3 is created

by adding vertex p3 connecting it to vertices p2 and d0 with edges c3 and q3 respectively.

Now, P3 = [p0, p1, p2, p3] and D3 = [d0]. Since the 4th symbol in W is H , M4 is created

by connecting vertex d1 to nodes p3 and d0 through edges q4 and h1 respectively. Now,

P4 = [p0, p1, p2, p3] and D4 = [d0, d1]. The 5th symbol in W is C , so we consume the most

recently produced cheeseburger. Looking at P4, we see that the most recently produced

(unordered) cheeseburger corresponds to node p3, so M5 is created by adding a quadrilat-

eral edge q5 between nodes p2 (the most recently produced, uneaten cheeseburger preceding

p3) and nodes d1 (the most recently produced, uneaten hamburger). This process, proceeds

1The endpoints of the rooted edge, (p0, d0) do not correspond to hamburgers and cheeseburgers in the
word W , as they do not have a primal or dual edge connected to them as they are created.

2It is a little inconvenient that the the 0th quadrilateral edge, q0, corresponds to the final letter in the
word, replacing the fact that no action is taken when the last letter is observed.
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similarly until the final symbol in the word. After treating the penultimate symbol in the

described manner, we do nothing for the final symbol since the rooted edge q0 corresponds

to the action that would otherwise be determined by the final symbol.

A Python algorithm that creates a multigraph from a given representation of the null-

word, labels, colors, and identifies both the nodes and edges in the described method above

can be found at https://www.math.ksu.edu/~maxximus/Sbijection. Despite only dis-

cussing the special case of the bijection where the word reduces to the empty-word and uses

no symbols F , the algorithm can handle a “freshest” order. To handle the case where your

word does use the symbol F , one analyzes the word to see whether F consumes a C or H

and then treat F as a C or H respectively. This is the only other (stilll relatively simple)

case discussed in greater detail in see12. In particular, words corresponding to customers

who leave with an unfilled order are not discussed.

2.3.3 Maps and words with more than one loop

In the previous section, we looked at the special case where the planar map M was always

the mating of two trees. This case corresponded nicely with the words W in Θ that reduce

to the empty word. Here we see this is one of many relationships between the global geo-

metric properties of a planar map with conformal loop ensembles and the local quantitative

observations on the corresponding words. The full results are summarized in Table 2.1.

Given this intimate relationship between the symbols that make-up a word W and the

geometry of the corresponding planar map M , we would expect to find a strong relationship

between the length of words and the transboundary modulus, of the corresponding map

and a relationship between the ratio of C : H : F . Some preliminary numerical results

regarding this first hypothesis are included below.
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p1

p2

p0

d0

The graph M2.

p1

p2

p3

p0

d0

The graph M3.

p1

p2

p3
d1

p0

d0

The graph M4.

p1

p2

p3
d1

p0

d0

The graph M5.

Figure 2.6: Steps two through five of creating the planar map M from the word in (2.3.3).
It’s worth noting the creation of the planar map is only unique up to graph isomorphisms.
Also, it is particularly hard to draw the map M with a planar embedding that uses only
straight edges. The graph layout shown would either lose the pattern of straight edges, or
lose its planar embedding within the next few steps.
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ROOTED MAP/EDGE SET: (M,T ) CORRESPONDING WORD: W

Number of edges in T̃ Number of H ’s in W .

Number of edges in T̃ ′ Number of C ’s in W .

Original number of loops 1 plus number of F ’s in W .

Number of components of T 1 plus number of F ’s matched to C ’s.

Number of components of T ′ 1 plus number of F ’s matched to H ’s.

Number of edges in T Number of H to H or C to F matches.

Number of edges in T ′ Number of C to C or H to F matches.

Table 2.1: Summary of quantitative local observations and their corresponding global ge-
ometric properties. T̃ and T are the sets of primal diagonal edge-sets before and after
(respectively) merging the conformal loop ensemble into a single loop. Similarly, T̃ ′ and T ′

are the dual diagonal edge-sets before and after merging the conformal loop ensemble into
a single loop.
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Chapter 3

Graph centralities and epidemic

measures

Dynamics on graphs has long been a central research topic across many applied disciplines.

Several graph related quantities have proven successful in studying different applications.

In particular, the effective resistance metric appears to be an important tool for studying

a variety of dynamics over graphs, including, but not limited to, random walks on graphs,

electrical networks networks, Markov chains, and averaging networks14. Since the effec-

tive resistance is a special case of the p-modulus, it is also interesting to study different

centralities and metrics related to the modulus of families of walks on graphs.

It comes as no surprise that effective resistance is important for all these dynamic pro-

cesses because they are gradient driven processes. The effective resistance is closely related

to the Laplacian matrix of the underlying graph. However, epidemic spreading dynamics is

a branching process and behaves very differently from gradient driven dynamics.

In this chapter, we seek graph quantities that help describe epidemic dynamics. Central-

ities are frequently used to determine properties of the underlying topology of a network.

In fact, comparing different centralities on the same network can be used to classify the

network structure2. Herein, we compare common centralities as well as graph metrics to
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see how to best understand epidemic dynamics. We use many of the same real-world data

sets as in2 and conclude that surprisingly, regardless of the underlying network structure,

numerics indicate that the effective resistance is the most relevant graph quantity to the

epidemic spreading. A partial explanation is offered at the end of the chapter.

3.1 Dijkstra’s Algorithm

Many of the graph centralities and epidemic models we discuss will unsurprisingly require

heavy use of knowing the shortest path between two nodes, whether the shortest path is the

shortest number of hops, or the shortest path given some weighted edges. As the “number of

hops” case can be recovered from setting all edge weights to one, we here discuss Dijkstra’s

algorithm on a weighted graph. Dijkstra’s algorithm is a greedy algorithm for computing the

shortest path length between a seed node s and every other node in V with the convention

that the distance is infinite if there is no path between s and some node a.

The input to Dijkstra’s algorithm is a triple (G, `, s) where G = (V,E) is a graph, s is

a seed node, and ` : E → [0,∞] is a weighting function, so that `(a, b) is the weight of the

edge {a, b}. If {a, b} is not an edge, then `(a, b) =∞. The goal of Dijkstra’s to output:

(1) a function d : V → [0,∞] so that d(a) is the weighted distance from the seed s to

node a and

(2) return a function pred(), where pred(s) = ∅ and u = pred(v) means that a shortest

path from s to v reaches u immediately before reaching v.

The function pred() allows the creation of a shortest path from s to v by reversing the

chain v, pred(v), pred ◦ pred(v), ..., pred(k)(v), ... where pred(k)(v) denotes iterating pred(), k

times starting at v. The iterations stop when pred() returns the empty set.

To implement Dijkstra’s algorithm, we make use of a function δ : V → [0,∞] where

we claim that δ(v) ≥ d(v) for all v ∈ V and that this inequality holds at every loop. We
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also make use of a set W ⊂ V where we claim that δ(v) = d(v) for all v in W . Dijkstra’s

algorithm can be implemented as in Algorithm 2.

It can be seen that

Algorithm 2 Dijkstra’s algorithm

Require: (G, `, s)
1: W ← ∅
2: δ(s)← 0
3: δ(u)←∞ for all s 6= u ∈ V .
4: while There exists u 6∈ W satisfying δ(u) <∞ do
5: 1a) u← argmin{δ(u) : u 6∈ W}
6: 1b) W ← W ∪ {u}
7: 1c)
8: for Each v 6∈ W that neighbors u do
9: if δ(u) + `(u, v) < δ(v) then

10: δ(v) = δ(u) + `(u, v)
11: pred(v)← u.
12: end if
13: end for
14: end while

One can see that Dijkstra’s Algorithm 2 returns the desired shortest path lengths and

pred() function, as a result of the following proposition.

Proposition 3.1.1.

(1) At every point of the algorithm δ(v) ≥ d(v) for all v ∈ V .

(2) If u = pred(v) and δ(u) = d(u) then δ(v) = d(v).

(3) At the end of each iteration of the while loop, δ(x) = d(x) for all x ∈ W .

We note that after proving (3), we can reinterpret (2) as: If u = pred(v) and u ∈ W then

d(v) = d(u) + `(u, v). A proof of Proposition 3.1.1 can be found at http://www.cs.yale.

edu/homes/spielman/365/shortestPaths.pdf.

In order to determine how helpful a graph quantity is in determining properties of an

epidemic process, we must first choose a framework in which to work. Herein, we consider

the Susceptible-Infected (SI) model of epidemiology.
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3.2 The four fold path to the SI model

3.2.1 The SI model

The SI Epidemic Model is a model where every interaction between an infected and suscep-

tible node can lead the susceptible node to become infected at a rate β called the infection

rate. This means, that if two people, say Alice and Bob interact, and at time t Alice is

infected while Bob is susceptible, then the probability that Alice infects Bob in the time

interval (t, t+h] equals βh+ o(h). Further, in the SI epidemic model, we assume that infec-

tions occur independently and once someone becomes infected they remain infected forever.

In particular, by independence, the probability that two separate infections occur during a

time interval (t, t+ h] is o(h).

In realistic models, these interactions are described by links of a contact network G =

(V,E).

It’s well-known that the hypothesis above amount to defining independent Poisson pro-

cesses with strength β, one for each link in E, and then equating an infection episode to an

arrival in the Poisson process. Since Poisson processes have the lack-of-memory property

and can be restarted at any given deterministic time, and even at stopping times, we will

be able to let these processes run independently in the background and then consider them

when needed.

In order to keep track of the infection, we introduce the state vector ωt, where ωt(i) is

the state at time t of the i–th node in the network. If ωt(i) = 0 we say node i is susceptible

and if ωt(i) = 1 we say node i is infected. In order to make the scenario with Alice and

Bob rigorous, we let N = |V | and A = [A(i, j)]1≤i,j≤N be the adjacency matrix representing

network G. Then A(i, j) = 1 if node i can be infected by node j and zero otherwise. Finally,

let It = {i : ωt(i) = 1} be the set of nodes that are infected by time t. Since at most one

infection occurs during (t, t + h], we can partition using the possible infection occurrences

and get:
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P
[
ωt+h(i) = 1 | ωt(i) = 0, ωt

]
=
∑
j∈It
j∼i

(
βh+ o(h)

)
=
∑
j∼i

ωt(j)βh+ o(h)

= βh
N∑
j=1

A(i, j)ωt(j) + o(h),

Next we consider the process Nt which counts the total number of infected nodes in the

network at time t. We find the transition probabilities for Nt by summing over all susceptible

nodes St = {i : ωt(i) = 0}. In other words, writing Nt = ωt · 1 where 1 = [1 · · · 1]T is a

vector of ones, we have that for h > 0 small,

P
[
Nt+h −Nt = 1 | ωt

]
= E

[
(ωt+h − ωt) · 1 | ωt

]
=
∑
i∈V

E
[
ωt+h(i)− ωt(i) | ωt

]
=
∑
i∈V

E
[
ωt+h(i)− ωt(i) | ωt(i) = 0, ωt

]
P
[
ωt(i) = 0 | ωt

]
=
∑
i∈V

P
[
ωt+h(i) = 1 | ωt(i) = 0, ωt

]
E
[

1− ωt(i) | ωt
]

=
∑
i∈V

(1− ωt(i))βh
∑
j∈V

A(i, j)ωt(j) + o(h)

= βh
∑
i,j∈V

A(i, j)ωt(j)− βh
∑
i,j∈V

A(i, j)ωt(i)ωt(j) + o(h)

= βh
(
ωTt A1− ωTt Aωt

)
+ o(h)

The second line follows by linearity of expectation. The third line follows because ωt+h(i)−

ωt(i) is either equal to 0 or 1 and can only equal 1 when ωt(i) = 0.
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Note that A1 = d where d(j) = deg(j) is the degree of node j. Write D = diag(d) for

the diagonal matrix of the node degrees. Then, since ωt(i)D(i, j)ωt(j) = ωt(i)D(i, j),

ωTt A1 = ωTt d = ωTt D1 = ωTt Dωt.

So letting L = D − A be the combinatorial Laplacian, we get that

ωTt A1− ωTAωt = ωTt Dωt − ωTt Aωt = ωTt Lωt

Then

P
[
Nt+h −Nt = 1 | ωt

]
= βhωTt Lωt + o(h). (3.2.1)

We learned to use the Laplacian in this equation from15.

Assume that an orientation has been chosen for every edge. Define the |E|×|V | incidence

matrix

B(e, x) =


1 if ∃y ∼ x such that e = (y, x).

−1 if ∃y ∼ x such that e = (x, y).

0 else

We think of B as a “gradient” operator that turns functions defined on V into functions

defined on E by assigning the end-points difference to each edge. Then the transpose BT

is a “divergence” operator that turns functions defined on the edges to ones defined on the

vertices.

Moreover, the Laplacian can be written as in the continuous case as the “divergence of

the gradient”:

L = BTB.

To see this, write L(x, y) =
∑

e,e′ B
T (x, e)B(e′, y) =

∑
eB(e, x)B(e, y), and note that if

x = y, then B(e, x)B(e, y) = 1 for every edge incident at x and is zero otherwise, so we get

deg(x); but if x 6= y and x ∼ y, then B(e, x)B(e, y) = −1 for the edge between x and y and
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zero otherwise, so we get −1.

The matrix B is sometime referred to as the “square root” of the Laplacian L. Given a

function u on V , let ∇u(e) = |u(y)− u(x)| if e connects x to y. Then the “gradient norm”

of u is given by

uTLu = uTBTBu = (Bu)T (Bu) = ‖Bu‖ =
∑
e∈E

[
(∇u)(e)

]2
.

In our case, the set V is split into two subsets St and It and ωt is the indicator function of

the set It. This partition defines a subset of edges called the edge-boundary, ∂It, consisting

of all the edges that connect a node in It with a node in St. With this in mind, the quadratic

form

ωTt Lωt =
∑
e∈E

[
(∇ωt)(e)

]2
=
∑
e∈∂It

1 = |∂It|

counts the number of edges in ∂It.

So equation (3.2.1) becomes

P
[
Nt+h −Nt = 1 | It

]
= βh|∂It|+ o(h). (3.2.2)

Note that conditioning on ωt or It is equivalent.

In particular, we see Nt is a doubly stochastic Poisson process with rate β times the

number of active edges at time t.

Now we determine the probability that a susceptible node i will be the next node infected

after time t, given ωt and given that an infection occurs. Using the definition of conditional
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probability,

P
[
ωt+h(i)− ωt(i) = 1 | ωt, Nt+h −Nt = 1

]
=

P
[
ωt+h(i)− ωt(i) = 1, Nt+h −Nt = 1 | ωt

]
P
[
Nt+h −Nt = 1 | ωt

]
=
βh(Aωt)(i) + o(h)

βh|∂It|+ o(h)
=

(Aωt)(i) + o(1)

|∂It|+ o(1)

Letting h ↓ 0 yields,

P
[
node i is the next infected | ωt

]
=

number of infected neighbors of node i at time t

number of active edges at time t
.

(3.2.3)

So It evolves by choosing an active edge in ∂It uniformly at random, and then infecting

the susceptible endpoint of the chosen edge.

The arrival times Y0, Y1, . . . of the SI epidemic ωt are defined by Y0 = 0 and

Yk = inf{t ≥ 0 : Nk = k} for k = 1, 2, . . .

The interarrival times T1, T2, . . . are the times between successive arrivals,

Tk = Yk − Yk−1 for k = 1, 2, . . .

Since Y1 < Y2 < . . . the arrival times are not independent of each other. However, as an

assumption of the SI model, infection processes are taken to be independent of each other.

Hence, the interarrival times T1, T2, . . . are independently distributed random variables. We

will see that typically they are decidedly not identically distributed.

Theorem 3.2.1. In the SI epidemic model on the network G = (V,E) with epidemic pa-
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rameter β, given the set of infected nodes IYk , the next arrival time Tk+1 satisfies

Tk+1 ∼ Exponential(β|∂IYk |).

More precisely,

P
[
Tk+1 ≤ t | IYk = I

]
= 1− e−β|∂I|t.

Proof. To show that the inter-arrival times are exponentially distributed we will show that

they have the memoryless property and then apply Proposition A.1.2.

The proof will rely on equation (3.2.2) and the independence of the competing infection

processes.

Fix an arbitrary k, Yk, and ωYk . Then, we observe that for a > 0 the following are

equivalent:

1. Tk+1 > a,

2. Yk+1 − Yk > a,

3. NYk+a = k,

4. NYk+a −NYk = 0.

In the above, it’s easily seen that (1) ⇐⇒ (2) by way of the definition of the interarrival

time and (2) ⇐⇒ (3) via the definition of the arrival times and (3) ⇐⇒ (4) by applying

the definition of the arrival times once again.

Then, using the equivalence of (1) and (4),

P
[
Tk+1 > a | IYk = I

]
= P

[
NYk+a −NYk = 0 | IYk = I

]
= 1− β|∂I|a+ o(a),

where the final equality follows from (3.2.2) and the fact that the competing infection

procesesses are independent and exponentially distributed.

Moreover, the equivalence of (1) and (4) yields,
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P
[
Tk+1 > a+ b | Tk+1 > b, IYk = I

]
= P

[
NYk+(a+b) −NYk = 0 | NYk+b −NYk = 0, IYk = I

]
= P

[
NYk+(a+b) −NYk+b = 0 | NYk+b −NYk = 0, IYk = I

]
= P

[
NYk+(a+b) −NYk+b = 0 | IYk = I

]
= 1− βa|∂I|+ o(a)

= P
[
Tk+1 > a | IYk = I

]
.

The second line follows from subtracting zero of the form NYk+b−NYk = 0. In the third

line, we used the independence of the infection process, and in the penultimate line (3.2.2)

was once again used.

For k = 1, 2, . . . , we have seen that Tk+1 is exponentially distributed conditional on IYk .

Consequently, choose λk+1 so that Tk+1 ∼ Exponential(λk+1) conditional on IYk . We can

then compute the parameter λk+1 given IYk = I. Indeed,

β|∂I| = lim
h↓0

βh|∂I|+ o(h)

h

= lim
h↓0

P
[
NYk+h −NYk = 1 | IYk = I

]
= lim

h↓0
P
[
Tk+1 ≤ h | IYk = I

]
= lim

h↓0

1− e−λk+1h

h
= − lim

h↓0

e−λk+1h − e0

h
= λk+1.

The second line used (3.2.2). The third line used the equivalence between (1) and (4). The

fourth line follows since Tk must be exponentially distributed for some λk conditional on

IYk . Hence, we have shown that

Tk+1 ∼ Exponential(β|∂I|)
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given that IYk = I.

3.2.2 Node-event based model

This event based model is the model most commonly used to simulate an SI epidemic. It

focuses on the independently competing infection processes of each susceptible node, as

oppose to each pairwise competing infection process described in the SI model.

Consider the Markov chain {ψk}∞k=1, with state space A consisting of all subsets I of V

that are connected and contain the seed node a. To relate to the SI model, we will think of

Ik as being a set of infected nodes. Then we let Ik be the set of infected nodes, ∂Ik be the

set of active edges, ∂Ik(s) be the subset of active edges that are connected to susceptible

node s, and Sk denote the set of susceptible nodes (always respective to the kth event).

Then, ψk+1 is determined by ψk in the following sense.

Given s ∈ Sk we let ∂Ik(s) denote the set of edges connecting s to some v ∈ Ik. Then,

for each node s ∈ Sk flip an exponential coin Xs ∼ Exponential(β|∂Ik(s)|). Let Xs0 be

the minimum over the independent random variables {Xs}s∈Sk
. We say that s0 “wins”

against the other independent competing infection processes, and hence is the next infected

node. In particular, Ik+1 = Ik ∪ {s0} and then ψk+1 is defined accordingly. Consequently,

the transition probability matrix for the Markov chain ψk coincides with the transition

probability matrix in (3.2.3). Indeed,

P
[
Ik+1 = Ik ∪ {s0} | ψk

]
= P

[
Xs0 = min{Xs : s ∈ Sk} | ψk

]
=

β|∂Ik(s0)|
β
∑

s∈Sk
|∂Ik(s)|

=
|∂Ik(s0)|
|∂Ik|

.

Where the second line follows by Proposition A.1.1 part 2.

Moreover, from Proposition A.1.1 part 1 we see that the random variable min{Xs :

s ∈ Sk}, is distributed like Exponential
(
β
∑

s∈Sk
|∂Ik(s)|

)
= Exponential

(
β|∂Ik|

)
. Hence,

inter-arrival times of the node-event based Markov process and the inter-arrival times of the
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the SI model (compare to Theorem 3.2.1) are distributed identically.

3.2.3 Edge-event based model

The SI edge-event based model, is a model to simulate an SI epidemic which requires flipping

relatively fewer random exponential coins. It’s based off of knowing the desired transition

probabilities and desired inter-arrival time as opposed to focusing on the independent and

competing infection processes of each susceptible node.

Consider the Markov chain {ηk}∞k=1, with state space A, consisting of all subsets I of V

that are connected and contain the seed node a. Given ηk, let Ik, Sk, and ∂Ik be as before.

The Markov chain ηk evolves in the following way.

Given a seed node a, we set η0 = {a} and iteratively define ηk+1 by choosing a uniformly

random ek+1 ∈ ∂Ik and infecting its susceptible endpoint vk+1. In particular, Ik+1 = Ik ∪

{ek+1}. Moreover, we define the random variable Tk+1 ∼ Exponential(β|∂Ik|) to be the

inter-arrival time. Then, by Theorem 3.2.1, we see the inter-arrival times coincide with the

SI model. Moreover, the transition probability matrix coincides as well, since

P
[
Ik+1 = Ik ∪ {vk+1} | ηk

]
= P

[
ek+1 ∈ ∂Ik(vk+1) | ηk

]
=
|∂Ik(vk+1)|
|∂Ik|

is the same as (3.2.3).

3.2.4 Variable-lengths model

We describe a continuous time Markov chain with seed a denoted, Wt, on the state space

A, where A is as before. In this model, we let time be parametrized by a random distance

on the contact network G = (V,E). More precisely, for each edge e ∈ E we assign a weight

given by i.i.d. random variables Xe ∼ Exponential(β). Then, we define the length of a walk

64



γ to be

`X(γ) =
∑
e∈E

N (γ, e)Xe

where N (γ, e) denotes the number of times the walk γ traverses the edge e. Then, the

distance from a to b, is d(a, b) = inf
γ:a;b

`X(γ), and the continuous time process Wt with seed

a in V is defined as

Wt = {v ∈ V : d(a, v) ≤ t}.

We let {Yk} denote the arrival times. That is, Y0 = 0 and Yk = inf{t ≥ 0 : Nt = k} where

Nt = |Wt|. Moreover, let {Tk} denote the set of inter-arrival times, so that Tk+1 = Yk+1−Yk.

Finally, the sets It, ∂It, St, and ∂It(s) will be as before.

Theorem 3.2.2. For a contact network G = (V,E) with i.i.d. edge-weights Xe ∼ Exponential(β)

for each e ∈ E, the continuous time process Wt with seed a in V is a jump process with

probability transition matrix satisfying

P
[
WYk+1

= WYk ∪ {s} | WYk

]
=
|∂IYk(s)|
|∂IYk |

for each s in SYk (3.2.4)

and the randomly distributed inter-arrival times

Tk+1 ∼ Exponential(β|∂I|) (3.2.5)

given IYk = I.

Proof. This proof relies on induction on k + 1. We first start with the base case k = 0.

Then IY0 = {a} and v ∈ SY0 if and only if v ∼ a. Then, letting eu denote the edge {a, u}

for each u neighboring a, we see that

T1 = Y1−Y0 = min{Xeu+d(a, a)−Y0 : eu ∈ ∂I0} = min{Xeu : eu ∈ ∂I0} ∼ Exponential(β|∂IY0|)

by Proposition A.1.1. Moreover, since each Xeu is i.i.d., then the location of the minimum
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of {Xeu} has a uniform probability distribution over the links that have a as an endpoint.

In particular,

P
[
Xes = min{Xe : e ∈ ∂I0} | WY0

]
=
|∂IY0(s)|
|∂IY0|

,

coinciding with (3.2.3).

Now, assume that (3.2.4) and (3.2.5) continue to hold for n = 2, 3, ..., k. We wish to show

that it holds for n = k + 1 as well. For convenience, re-label each link in ∂IYk so that they

are called ej = {yj, sj} with yj ∈ IYk and sj ∈ SYk for j = 1, 2, . . . ,mk. We note that in the

base case yj = a for all ej ∈ ∂IY0 . Now, since yj ∈ IYk for all j, it follows from the definition

of Wt that d(a, yj) ≤ Yk for each j. However, since sj 6∈ IYk we also have d(a, yj) +Xej > Yk

for each j, or alternatively

Xej > Yk − d(a, yj) ∀ej ∈ ∂IYk . (3.2.6)

Then, fixing arbitrary j ∈ {1, 2, ...,mk} we observe,

P
[
Xej + d(a, yj) > Yk + h | WYk

]
= P

[
Xej > Yk − d(a, yj) + h | WYk

]
= P

[
Xej > Yk − d(a, yj) + h | WYk , Xej > Yk − d(a, yj)

]
= P

[
Xej > h | WYk

]
= P

[
Xej > h

]
= e−βh for all j = 1, 2, . . . , |∂IYk |.

The second line follows by (3.2.6) and the third by the strong memoryless property (see

Proposition A.1.2). The fourth line follows due to independence of Xej and the current

state of the Markov chain, and the final equality follows since each edge-weight was chosen

i.i.d. and distributed like Exponential(β).

In particular, each random variable d(a, yj) +Xej conditioned on the current state of Wt
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is exponentially distributed with parameter β, so that the edge achieving the minimum of

d(a, yj) + Xej is chosen uniformly at random from the set of active edges. This completes

induction on the transition probability matrix. On the other hand, if we let Zj be the

random variable Xej + d(a, yj) conditioned on WYk and ej ∈ SYk , then

Tk+1 = Yk+1 − Yk = min{Zj − Yk | j = {1, 2, . . . , |∂IYk |} ∼ Exponential(β|∂IYk |).

This can be seen by applying Proposition A.1.1 to the preceding calculation.

3.2.5 Dijkstra on the Fly

I believe that Dijkstra on the fly is the same model as the exponential weights model, except

that instead of tossing all of the random edge lengths at the beginning, we only toss an i.i.d.

Exponential(β) weight for an edge if and when the edge is in the active edge-set the first

time. As this model flips fewer exponential random coins, it’s faster to compute than the

random lengths model.

The typical Dijkstra’s algorithm is described in Section 3.1.

For Dijkstra on the fly, you modify the typical Dijsktra’s algorithm, see Algorithm 2, by

inserting a new line after line 8:

set `(u, v) = X{u,v}

where X{u,v} is an i.i.d. random variable and X{u,v} ∼ Exponential(β). Consequently, the

modified Dijkstra’s algorithm does not require you to input an edge-density function `.

Thus we can see the reason that this equivalence appears to be immediate is that the

algorithm is blind to whether we flip an exponential coin when we need it, i.e., when they

edge is active (as in the Dijkstra on the fly algorithm), or if we flip a lot of coins and embed

them in the function `(u, v) and then only look at them when we need them, i.e., when the
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edge {u, v} is an active edge.

3.3 Metrics and Centralities

A graph centrality is a function P : V → R that assigns a value to each node. This value

represents how important a node is with respect to the graph topology. It is often convenient

to normalize a centrality so that it can be thought of as a probability distribution, i.e., the

sum of its values over every node adds up to one.

A graph metric is a symmetric, non-degenerate function d : V × V → [0,∞] that

satisfies the triangle inequality. Every graph metric induces a centrality denoted Pd on the

graph. In particular, we define

Pd(vi) := N−1
∑
vj∈V
vj 6=vi

d(vi, vj)
−1.

Heuristically, this induced centrality says that if node vi is close (with respect to the

metric d) to many nodes, then it is important to the graph topology.

3.3.1 Metrics

Epidemic Hitting Time: We have established a model to describe the epidemic process.

There are different properties of the same epidemic model one may wish to study. Herein,

we analyze the epidemic hitting time. The epidemic hitting time turns out to be a graph

metric, H, where H(i, j) is the expected time it takes for an infection starting at node i to

infect node j. To numerically approximate the epidemic hitting time, one can run an SI

simulation starting at node 1 a large number of times and then for each simulation keep

track of the time at which each node was infected. Then, repeat this process for nodes

2, 3, 4, ..., N .

One may wonder why not just use the epidemic hitting time as our graph quantity? It
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is the most accurate for understanding how quickly an infection will spread. However, this

accuracy comes at a cost. Analytically the epidemic hitting time would be impossible to

compute for any network that is large enough to represent a real-world community. Even

numerically the epidemic hitting time is very computationally difficult to compute. Even

for the modest sized networks analyzed here, the epidemic hitting time sometimes required

several weeks to compute.

Effective Resistance: The effective resistance, which we have seen can be realized as

a special case of the p-modulus on finite graphs, is a graph metric, R, that naturally arises

by consider a graph to be an electrical circuit, where each edge has 1 Ohm of resistance.

The pairwise effective-resistance, R(i, j) is the total effective resistance measured between

two nodes in the circuit. The effective resistance, first studied as a graph metric in16, can

be defined from the graph Laplacian as in Equation (ER). The effective resistance has been

shown to be closely related to many properties of random Markov processes17, including

capturing the covering and commute times of random walks18 and recurrence/transience of

random walks19.

L† =
(
L+ 11T/N

)−1

− 11T/N

R = diag(L†) + diag(L†)T − 2L† (ER)

3.3.2 Centralities

Spectral Centrality: The spectral centrality (S) is an important measure of centrality,

designed to keep the principle ‘the importance of a node depends on the importance of

its neighbors’ in mind. Spectral centrality does well in characterizing simple dynamics like

diffusion, and is the basis of Google’s PageRank algorithm20. The spectral centrality of a
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node i is defined by

S(i) = λ−1
∑
j∼i

vj,

where λ is the largest eigenvalue of the adjacency matrix and vj is the jth component of

the corresponding eigenvector.

Degree Centrality: The degree centrality (D) is perhaps the simplest measure of net-

work centrality, where a nodes centrality is exactly the number of neighbors a node has.

One benefit of degree centrality is its simplicity to compute. However, two immediate short-

comings are that it ignores how important a node’s neighbors are, and that it will frequently

rank the importance of large numbers of nodes to be the same.

Betweenness Centrality: The betweenness centrality (B) first introduced in21 and pop-

ularized by Freeman22 is a method of measuring the importance of a node based off of the

percentage of shortest paths that it lies on. It is a measure of the influence a node has over

the spread of information through a network. In particular, the betweenness centrality is

defined by

B(i) = N−1
∑
j 6=i 6=k

σjk(i)

σjk
,

where σjk denotes the number of shortest paths between j and k and σjk(i) is the number

of shortest paths from j to k that visit node i. The betweenness centrality is good at

determining bottlenecks of networks, however does not take into account non-geodesic paths.

Communicability Centrality: The communicability centrality (C) is an adaptation of

Freeman’s betweenness centrality that takes into account all independent walks between two

nodes, instead of just the geodesic paths. The pairwise communicability can be computed

from the spectrum of the adjacency matrix23 by

C(i) =
N∑
j=1

(
vj,i
)2
eλj ,

where λ1 ≥ λ2 ≥ ... ≥ λN are the eigenvalues of the adjacency matrix, and vk,` is the `th
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element of the eigenvector corresponding to the kth eigenvector.

3.4 Real-World Networks

In simulations, we used real-world networks. All of which are available for download at

http://ece.k-state.edu/epicenter_wiki/index.php/Products. Included is a brief de-

scription of each network and a citation of where they have been popularized.

Adjnoun: This is the network of common adjective and noun adjacencies for the novel

”David Copperfield” by Charles Dickens, as described by M. Newman. Nodes represent the

most commonly occurring adjectives and nouns in the book. Edges connect any pair of

words that occur in adjacent position in the text of the book.24

Power: An undirected unweighted representation of the topology of the western states

power grid of the United States compiled by Watts and Strogatz25.

Karate: The network of friendships between the 34 members of a karate club at a US

university, just before the club split, as described by Wayne Zachary1.

Football: The football network, compiled by Girvan and Newman26, is a network of

American football games between Division I colleges. A link between two teams represents

that a game was played between the two teams during the fall of 2000 season.

Dolphins: The network contains an undirected social network of frequent associations

between 62 dolphins in a community living off Doubtful Sound, New Zealand, as compiled

by Lusseau27.

High Energy Physics Collaboration (HEP): The collaboration network of scientists post-

ing preprints on the high-energy physics to the archive at www.arxiv.org during 1995-1999,

as compiled by Newman28.

Lesmis: The weighted network of coappearances of characters in Victor Hugo’s novel

”Les Miserables”. Nodes represent characters in the novel and edges connect any pair of

characters that appear in the same chapter of the book.29
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Polblogs: Political blogosphere Feb. 2005 Data compiled by Adamic and Glance30.

Links between blogs were automatically extracted from a crawl of the front page of the

blog.

Netscience: A coauthorship network of scientists working on network theory and ex-

periment, as compiled by Newman24. The network was compiled from the bibliographies

of two review articles on networks, with a few additional references added by hand. The

version used here contains just the largest component of 379 scientists.

Facebook: This dataset consists of ‘friends lists’ from Facebook. Facebook data was

collected from survey participaants using the Facebook app and their information was

anonymized. The original data set has 4,039 nodes and 88,234 edges. We looked at a cluster

of only approximately 3,000 edges. This data was compiled by Leskovec and McAuely and

used in31.

General Relativity and Quantum Cosmology Collaboration (GRQC): This graph repre-

sents the collaboration network in General Relativity and Quantum Cosmology from e-prints

on arXiv during the period January 1993 to April 2003 (124 months). This data was com-

piled by Leskovec, Kleinberg, and Faloutsos and used in32.

Summary of Network Structure Properties:

Network Number Number Average Degree Degree Average Diam- Dens- Spectral Algebraic Normalized
of of Node Second Assort- Clustering eter ity Radius Connectivity Effective
Nodes Edges Degree Moment ativity Coefficient Resistance

Adjnoun 112 425 7.589 104.53 -0.1293 0.1569 5 0.0683 13.15 .695 8.927
Dolphins 62 159 5.129 34.903 -0.0436 0.309 8 0.0841 7.194 0.173 11.725
Football 115 615 10.695 115.217 0.153 0.407 4 0.0938 10.818 1.460 2.447
Hep 8361 15751 3.768 32.731 0.294 0.329 19 4.5E-4 23 -8.84E-14 Inf
Karate 34 78 4.588 35.647 -0.476 0.256 5 0.139 6.726 0.468 6.029
Lesmis 77 254 6.597 79.532 -0.1652 0.499 5 0.087 12.006 0.205 11.876
Netscience 1589 2742 3.451 23.947 0.467 0.693 17 2.1E-3 19.024 -1.94E-14 Inf
Polblogs 1490 19090 25.624 2499.357 -0.229 0.226 9 8.6E-3 46.514 NAN 1.98E+32
Power 4941 6594 2.669 10.333 3.46E-3 0.103 46 5.4E-4 7.483 7.59E-4 9670.86
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3.5 Numerical Methods and Results

For each network described above, the epidemic hitting time was approximated by averaging

the results of 100 SI simulations, then symmetrizing the resulting matrix by averaging it

with its transpose. This creates the epidemic hitting time graph metric, from which the

corresponding network centrality was computed as described at the beginning of Section

3.3. These results were compared to the effective resistance metric as well as the spectral,

degree, betweenness, and communicability centralities. Comparisons were done in two ways.

Total variation distance of probability measures: One comparison was to compute the

total variation between two centralities after normalizing the centralities so that they can

be interpreted as a probability measure on the nodes of the graph. The total variation, δ

between two distributions, P,Q on the probability space (Ω,F) is defined by

δ(P,Q) := sup
A∈F

∣∣∣∣∣∣
∑
e∈A

P (e)−Q(e)

∣∣∣∣∣∣ .
In the case of a finite graph, this is equivalent33 to

1

2

∑
e∈E

∣∣P (e)−Q(e)
∣∣ .

In particular, the total variation distance of probability measures is a value between zero

and two, where zero means the distributions overlap completely, and two means they are

mutually singular.

Spearman’s Rank Correlation Coefficient: The Spearman correlation coefficient is the

Pearson correlation coefficient for ranked variables. Hence, it takes values between negative

one and one and should be interpreted like the Pearson correlation coefficient34. In partic-

ular, here it can be interpreted as how well a monotonic funciton can be defined between

two distributions, where the sign indicates whether the function would be monotonically

increasing or decreasing. Below are the results of these comparisons.
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Network ER BC DC CC SC
Adjoun 0.9918 0.8514 0.9814 0.9732 0.9727
Dolphins 0.9846 0.7483 0.8579 0.8533 0.8521
Facebook 0.9603 0.4960 0.6715 0.8559 0.8875
Football 0.8725 0.6142 0.6753 0.3683 0.6471
GRQC 0.9651 0.5181 0.7536 0.7969 0.7960
HEP 0.9554 0.5387 0.6956 0.8834 0.8976
Karate 0.9125 0.7814 0.8540 0.9419 0.9525
Lesmis 0.9900 0.7076 0.9490 0.9643 0.9288
Netscience 0.9744 0.3800 0.4543 0.6389 0.6583
Polblogs 0.996 0.8824 0.9933 0.968 0.9681
Power 0.8277 0.3133 0.3247 0.4207 0.5919

Figure 3.1: A table of values of the Spearman Rank coefficient between each centrality and
the epidemic hitting time centrality. We note that in every network except the Karate club
network, the Effective Resistance outperforms every other centrality. We also remark that
in2, there was a similar observation of the Karate club network not behaving like the other
networks, likely due its being a small network with a few dominating nodes.

The raw data is pretty convincing that the effective resistance is a strong indicator of

the influence that a node has over the spread of an epidemic throughout a social network.

However, the tables give little insight as to why the effective resistance outperforms other

graph quantities. To try to build this intuition as to why, we look at the heatmaps of the

Lesmis network Figure 3.3 that represents the importance of each node according to the

respective graph quantity. We see that effective resistance and the epidemic hitting time

are the only two graph quantities that assign relative importance to peripheral nodes of the

network. Since in section 1.1.4 we showed that the effective resistance is equivalent to the

pairwise 2-modulus, this coincides well with our intuition that the modulus assigns high

values to nodes on short walks, but also takes into account the many longer walks.

3.5.1 Properties of the Epidemic Hitting Time

While we have witnessed that the effective resistance is a good indicator of the importance

of a node in an epidemic process, we still know very little about the epidemic hitting time

metric. Here are a few properties of the epidemic hitting time metric. Throughout this
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Network ER BC DC CC SC
Adjnoun 0.0304 0.4834 0.2123 0.4377 0.2172
Dolphins 0.0288 0.4155 0.1631 0.3424 0.347
Facebook 0.0308 0.8277 0.4633 0.7698 0.5904
Football 0.0080 0.1701 0.0233 0.1113 0.0681
GRQC 0.0485 0.6710 0.3498 0.9669 0.8935
Hep 0.0492 0.6296 0.2698 0.9633 0.9635
Karate 0.0259 0.5841 0.2181 0.3271 0.1617
Lesmis 0.0296 0.6902 0.2363 0.5282 0.3490
Netscience 0.0252 0.7706 0.2452 0.6294 0.7331
Polblogs 0.0214 0.6436 0.3734 0.6293 0.3875
Power 0.0433 0.7098 0.2220 0.2972 0.9846

Figure 3.2: A table of values of the total variation between each centrality and the epidemic
hitting time centrality. We note that in every network, the Effective Resistance outperforms
every other centrality. This is in large part due to the weight of the peripheral nodes.
The effective resistance and epidemic hitting time assign a large enough weight to these
peripheral nodes, while the other centralities underestimate their importance.

section we let ρ : E × E → [0,∞] and d : E × E → [0,∞] be the shortest walk length and

exponential weights length of a graph G = (V,E).

Proposition 3.5.1. The epidemic hitting time is a metric.

Proof. Using the equivalence of the SI model and the exponential lengths model, we see that

the epidemic hitting time can be thought of as an average of graph metrics and is hence a

metric itself.

We say that a graph G1 = (V1, E1) is a refinement of G = (V,E) if V ⊂ V1 and E ⊂ E1.

Remark 3.5.1. We note that if G1 is a refinement of G, then for all a, b ∈ V , the epidemic

hitting time τa,b(G) ≥ τa,b(G1). This is because adding more edges can only shorten a graph,

and adding new vertices cannot length the shortest walk between two nodes.

Proposition 3.5.2. If G is a tree, then the epidemic hitting time H and the shortest path

metric d are scalar multiples of each other. Furthermore, for an arbitrary graph G̃, the

epidemic hitting time is bounded above by the shortest path metric.
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Centrality via Effective Resistance Centrality via Epidemic Hitting Time Spectral Centrality

Degree Centrality Betweenness Centrality Communicability Centrality

Least Central

Most Central

Lesmis Network

Figure 3.3: Each figure shows the importance of the nodes in the Lesmis network, based off
of a different centrality. We observe that not only do the effective resistance and epidemic
hitting time centralities visually appear to match up quite well, they are also the only two
centralities that assign relative importance to the peripheral nodes. See3.

Proof. This also follows most clearly from the exponential lengths model of the SI epidemic.

On a tree, since there is a unique simple path from a to be b, then the expectation of the

distance d(a, b) can be computed using linearity of the expectation. That is, if γab denotes

the unique simple path starting at a and ending at b,

E(d(a, b)) = β−1
∑
e∈E

N (e, γab) = β−1ρ(a, b),

where ρ : V × V → N is the unweighted graph distance.
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Example 3.5.1. If G = (V,E) is a star-shaped graph, that is one node connected to N − 1

other nodes each with degree 1 and if c is the central node, then

H(c, v) = β−1 for all v ∈ V \ {c}. (3.5.1)

This follows since the graph distance from c to v on the star-shaped graph (a special instance

of a tree) is 1 for all v ∈ V \ {c}.

Proposition 3.5.3. For the complete graph KN on N nodes, the epidemic hitting time

satisfies

HN(i, j) ≡ 1− δij
N − 1

N−1∑
n=1

n∑
k=1

1

k(N − k)
. (3.5.2)

Therefore, for an arbitrary graph G, the epidemic hitting time is bounded below by the

expression in (3.5.2).

Proof. Let a be the initially infected node. Then for any b 6= a, we want to compute

H(a, b) = E(τab). Let Xk ∼ Bernoulli( 1
N−k ) be i.i.d. random variables. Then {Xk}N−1

k=1 are

Bernoulli random variables with the same probability of a ‘win’ as the probability that b

is infected kth given b was not previously infected. Let Yb be the random variable that

represents which infection b was. Then,

P(Yb = k) = P(X1 = 0, X2 = 0, ..., Xk−1 = 0, Xk = 1)

= P(X1 = 0)P(X2 = 0) · · ·P(Xk−1 = 0)P(Xk = 1)

=

(
1− 1

N − 1

)(
1− 1

N − 2

)
· · ·
(

1− 1

N − (k − 1)

)
1

N − k

=

(
N − 2

N − 1

)(
N − 3

N − 2

)
· · ·
(

N − k
N − (k − 1)

)
1

N − k
=

1

N − 1
.

This result should not be surprising, based off the symmetry of the complete graph.

Moreover, after k − 1 nodes have been infected, this means there are k total nodes

infected (the seed node) and N − k susceptible nodes. Since the graph is complete, this
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means there are k(N − k) edges connecting susceptible nodes to infected nodes, so that tk

the kth inter-arrival time is distributed like Exponential(k(N − k)β), and consequently, the

time until the kth infection is Tk :=
∑k

j=1
1

βk(N−k)
. Conditioning on Yb attains,

E(τab) =
N−1∑
k=1

E(τab|Yb = k)P(Yb = k) =
1

N − 1

N−1∑
k=1

Tk.

Since b was arbitrary in KN other than not b 6= a, and since H is a metric so that H(i, j) = 0

whenever i = j,we have shown (3.5.2).

Combining our refinement observation (Remark 3.5.1) with Propositions 3.5.2 and 3.5.3,

we have proven the corollary,

Corollary 3.5.4. Given a contact graph G = (V,E) with a, b being nodes in V , then

β−1ρ(a, b) ≤ τa,b ≤ HN(a, b).

The variable lengths model not only lends itself to better demonstrating desirable prop-

erties of the epidemic hitting time, but it also offers a partial explanation as to why numerics

indicate the effective resistance is so closely correlated to the epidemic hitting time. In the

work of Lyons, Pemantle, and Peres35, it was shown that the expected shortest path on a

graph with i.i.d. exponentially distributed random weights is bounded below by the effective

resistance on the graph with unit resistance. In particular, this shows that the epidemic

hitting time is bounded below by the effective resistance. This result confirms the recent

finding of other authors (for example Sikic et al.36) that the impact of peripheral nodes is

typically underestimated in epidemic models.
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Appendix A

Probability

A.1 The Exponential Distribution

A continuous random variable X is said to have the exponential distribution with parameter

λ if its probability density function, fX(t) is defined as in (A.1.1).

fX(t) = lim
h→0

P(X ≤ t+ h)− P(X ≤ t)

h
=

λe−λt t ≥ 0

0 t < 0.
(A.1.1)

Remark A.1.1. It is straightforward to compute the integral to calculate the cumulative

distribution function,

FX(t) = P(X ≤ t) =

1− e−λt t ≥ 0

0 t ≤ 0.
(A.1.2)

The expectation of X, denoted E(X), is

E(X) =

∫ ∞
−∞

tfX(t) dt = λ−1. (A.1.3)

The exponential distribution has many nice properties. Most notable are the memoryless

property and strong memoryless property. However, we first summarize a few other.
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Proposition A.1.1. (Properties of exponentially distributed random variables). If X1, X2, . . . , Xn

are independent and distributed as an Exponential(λj) for j = 1, . . . , n. Then:

i) Y = min{X1, X2, . . . , Xn} is distributed as an Exponential(λ1 + λ2 + · · ·+ λn).

ii) Moreover, for k = 1, . . . , n:

P
(
Xk = min{X1, . . . , Xn}

)
=

λk
λ1 + · · ·+ λn

Proof. Throughout this problem X1, . . . , Xn are as in the statement of the proposition.

i) Let Y = min{X1, . . . , Xn}. Since each exponentially distributed random variable Xi has

the cumulative distribution function

FXi
(x) = P(Xi ≤ x) = 1− e−λixi ,

we compute the cumulative distribution function of Y as follows:

FY (t) = P(Y ≤ t) = 1− P(Y ≥ t) = 1− P(min{X1, X2, ..., Xn} ≥ t)

= 1− P(X1 ≥ t,X2 ≥ t, . . . , Xn ≥ t) = 1−
n∏
i=1

P(Xi ≥ t) = 1−
n∏
i=1

e−λit

= 1− e−t
∑n

i=1 λi .

Independence was used in the second line. Next, we observe

fY (t) =
d

dt
FY (t) = (λ1 + · · ·+ λn) e−t(λ1+···+λn),

as desired.

ii) To compute the probability that Xk equals the minimum, we condition on the value of
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Xk.

P(Xk = min{X1, ...Xn}) =

∫ ∞
0

P(Xj > Xk for j 6= k|Xk = t)λke
−λkt dt

=

∫ ∞
0

P(Xj > t for j 6= k)λke
−λkt dt

= λk

∫ ∞
0

e−λkt
n∏
j=1
j 6=k

P(Xj > t) dt

= λk

∫ ∞
0

e−λkt
n∏
j=1
j 6=k

e−λjt dt

= λk

∫ ∞
0

e−t(λ1+···+λn) dt =
λk

λ1 + · · ·+ λn
.

In the third line we used independence.

Proposition A.1.2. (The memoryless property of exponentially distributed random variables).

A random variable X has the distribution Exponential(λ) for some λ > 0 if and only if X

has the memoryless property, that is for a, b > 0:

P(X > a+ b | X > b) = P(X > a).

Moreover, X also has the strong memoryless property. In other words, for any non-

negative random variable Y that is independent from X

P(X > a+ Y |X > Y ) = P(X > a).

Proof. Since FX(t) = 1− e−λt whenever t > 0, we observe

P(X > a+b|X > b) =
P(X > a+ b,X > b)

P(X > b)
=

P(X > a+ b)

P(X > b)
=
e−λ(a+b)

e−λb
= e−λa = P(X > a).

For the other direction we recall the fact that is a fun exercise in analysis. Namely, if
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f : [0,∞)→ (0, 1] satisfies, f(x+ y) = f(x)f(y), then f(x) = ax for some a < 1. Moreover,

you can find λ > 0 so that f(x) = e−λx.

So, we suppose that X is a memoryless random variable, and consider the function

G(a) = P(X > a). Due to the memoryless property for a > 0, we have that,

G(a) = P(X > a) = P(X > a+b|X > b) =
P [ X > a+ b,X > b ]

P [ X > b ]
=

P [X > a+ b]

P [X > b]
=
G(a+ b)

G(b)
.

We conclude from the above that, G(a + b) = G(a)G(b). Moreover, since G(x) is a

probability, then, 0 ≤ G(x) ≤ 1 for all x ≥ 0. Consequently, G(x) = e−λx for some λ. Since

G(x) = 1 − FX(x), we see that X is distributed exponential with parameter λ for some

positive λ.

To see the strong memoryless property, let Y be a non-negative random variable inde-

pendent of X. Conditioning on the outcome of Y , we observe,

P(X > Y + a|X > Y ) =

∫ ∞
0

P(X > Y + a | X > Y, Y = t)fY (t) dt

=

∫ ∞
0

P(X > t+ a | X > t)fY (t) dt

=

∫ ∞
0

P(X > a)fY (t) dt

= P(X > a)

where we used independence in the second line.
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