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Abstract 

  Horseweed and Palmer amaranth are common weeds in Kansas that compete against 

many row crops. Horseweed can emerge in different seasons depending on the year. Palmer 

amaranth emerges from spring throughout the summer months and has a rapid growth rate with 

higher temperatures. Three separate studies were conducted near Manhattan, KS from 2016 to 

2018 to determine (1) emergence timing in KS of eight horseweed populations collected from 

MO, IL, KS, and KY, (2) horseweed control in no-till soybean with cover crops and herbicide 

programs with and without residual activity, and (3) Palmer amaranth control in response to 

three Protoporphyrinogen Oxidase (PPO) inhibitors applied every three days once Palmer 

amaranth plants reached 2.5 cm tall. Cereal rye reduced weeds biomass by 78% and weed 

density by 75% by 8 weeks after cover crop seeding in the fall. At cover crop termination two 

weeks prior to soybean drilling. Cereal rye reduced horseweed biomass more than herbicide 

treatments, but after termination weed control was similar across treatments. Soybean yields 

were greater with herbicide treatments in year one, but there were no differences in soybean 

yields among cover crop and herbicide treatments in the second year. Emergence of all eight 

horseweed populations occurred at the same time. Most horseweed emergence occurred in the 

spring in the first year, while all horseweed populations emerged in the fall in the second year. 

Environmental conditions were driving factors for horseweed emergence, but horseweed seed 

source did not influence emergence timing. All PPO-inhibitor herbicides controlled Palmer 

amaranth at similar levels within an application timing. PPO-inhibitor herbicides need to be 

applied within three days after Palmer amaranth plants reach 2.5 cm tall to achieve greater than 

90% control.               
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Chapter 1 - Literature Review 

 Glyphosate Resistance and Soybean 

Additional tools for weed control are needed as no-tillage acres sown to soybean [Glycine 

max (L.) Merr.] and the development of glyphosate-resistant weeds increase. By decreasing 

tillage the number herbicide applications have increased to control weeds (Seehusen et al. 2017). 

For example, glyphosate was applied to more than 50 million soybean acres in the U.S. in 2006 

after the release of glyphosate-resistant soybean, but decreased to 20 million acres by 2012, 

likely as a result of glyphosate resistant weeds (USDA 2018). From 1996 to 2012, herbicide use 

in the U.S increased from 62 million to 128 million pounds of active ingredients. Up to 27% of 

soybean yields in the U.S. were lost due to herbicide resistant weeds in 2012 (Fickett et al. 

2013). Heap (2019) reported that there have been 566 unique cases of herbicide resistant weeds 

in the United States, 39 of which involve horseweed. No-till production systems are becoming 

more popular to preserve soil and in drier environments to conserve moisture, but as weeds 

develop resistance to herbicides new strategies for weed control are needed to control weeds. 

 Horseweed 

Horseweed [Conyza canadensis (L.)] is native to North America and found infesting 

orchards, vineyards, corn, soybean, cotton, hay crops, pastures and rangeland (Weaver, 2001). 

The broad geographic distribution of horseweed, between latitudes N°55 and S°45, suggests it 

can establish in various climates (Weaver 2001).  Horseweed is also found throughout western 

Europe and around the Mediterranean Basin. It was likely introduced into Europe from North 

America and has become one of the most abundant plant species there (Thebaud and Abbott 

1995). Horseweed often establishes best in fields receiving minimum or no tillage practices.  
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Horseweed is a competitive plant, with reported soybean yield loss of 83% from 150 

plants m–2 in a no-till cropping system (Bruce and Kells 1990).                                           

In Kansas, horseweed typically emerges from late August through October and forms 

basal rosettes that can overwinter (McCall 2018). If environmental conditions are right, seedlings 

also emerge in spring, from March through early May. Plants bolt from rosettes around May and 

bloom in mid-July, with seed production peaking in late August and into September. Each flower 

head (capitulum) is composed of many outer, white pistillate ray florets, and central florets, and 

is about three to five mm in diameter (Yamasue et al. 1992). Approximately 60 to 70 seeds per 

flower head are produced (Thebaud and Abbott 1995). Total seed production is proportional to 

stem height. A plant 40 cm tall produces about 2000 seeds, while a plant 1.5 m tall produces 

about 230,000 seeds (Regehr and Bazzaz 1979). 

Time of establishment 

Horseweed can be difficult to control. Depending on the year and geographic location, 

herbicide applications may not control horseweed plants that emerge in the spring. Spring 

emerging horseweed accounted for 5 to 32% of total emerged plants IA (Buhler and Owen 

1997). Fall-applied herbicides can decrease horseweed densities in the fall, and since competition 

is low horseweed emergence in the spring can increase (Davis et al. 2010).  

Winter survival  

Horseweed is capable of substantial carbon fixation and energy storage at low 

temperatures, but not all horseweed plants that emerge in the fall survive into spring. Winter 

survival of horseweed was 59% in one year and 91% survived the winter in the second year of a 

two year experiment (Buhler and Owen 1997). Rosettes larger than five cm in diameter survived 

into spring, but cohorts of smaller rosettes had low probabilities of winter survival (Regehr and 
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Bazzaz 1979). Davis and Johnson (2008) concluded that horseweed plants emerging underneath 

the soybean canopy prior to harvest had the best chance of surviving the winter. The results of 

these studies indicate that it is difficult to predict when and how many horseweed seedlings 

establish, increasing the difficulty for producers to make timely weed management decisions.  

Germination 

Horseweed germinates better under 24 and 20 C day and night temperatures under light 

as compared to in the dark (Nandula et al. 2006). Horseweed emergence was greatest from the 

soil surface and no seedlings emerged from depths greater than 0.5 cm.  The base temperature for 

horseweed emergence is 13 C (Steinmaus et al. 2000). Horseweed emergence in the field from 

seeds buried one cm or less was reduced by 90% compared to seeds sown on the soil surface, 

and no germination occurred below six cm (Tremmel and Peterson 1983). Horseweed emerged 

during April and September in Tennessee with average daytime temperatures of 10 and 15.5 C 

and in any month when temperatures fluctuated between 10 to 25 C (Main et al. 2006). 

Herbicide resistance 

Horseweed control is often reliant upon herbicide applications, but with repeated 

herbicide applications the number of horseweed-resistant biotypes increases, otherwise known as 

selection. Herbicide-resistant horseweed biotypes have been found in 16 countries and the first 

glyphosate-resistant biotype in Kansas was reported in 2005 (Heap 2019). Within three years of 

using only glyphosate for weed control in continuous glyphosate-resistant soybean, glyphosate 

failed to control horseweed in some fields (VanGessel 2001). Now, glyphosate-resistant 

horseweed has been confirmed in 25 states in the U.S. (Heap 2019).  

One horseweed plants was found to be resistant to both paraquat and atrazine (Pölös et al. 

1988). Triazine resistance in horseweed is conferred by a mutation at the target site of the 
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herbicide in the chloroplast and generally reduces fitness in the resistant biotype, compared to 

the susceptible (Gronwald 1997). Horseweed resistance to paraquat is through sequestration 

paraquat away from its site of action in the chloroplast and increased activity of enzymes 

working to detoxify herbicide molecules is thought to be the mechanism of (Powles and Holtum 

2018).  

Horseweed resistance to auxinic herbicides have not been reported (Heap 2019) and these 

herbicides are still viable options to control horseweed when applied to small weeds. Soybean 

cultivars with dicamba tolerance is now available to purchase, and much of the aim is to control 

horseweed in no-tillage soybean. Dicamba applied postemergence at 600 g a.e. ha-1 provided 90 

to 100% control of glyphosate-resistant horseweed (Byker et al. 2013). Preemergence dicamba at 

1121 g ha-1 provided 97% control of horseweed (Johnson et al. 2010). Dicamba provided good 

control of horseweed plants less than 30 cm tall, but it is important to make applications to 

smaller weeds to slow development of resistance (Davis et al. 2010).  

Herbicide-resistant horseweed can occur in fields without the application of that 

herbicide, but from the spread of seeds from resistant populations. Only five years after the first 

glyphosate-resistant population was reported, resistant biotypes were found in more than 44,000 

ha of cropland in the U.S. Horseweed offspring are easily dispersed from the plant and can 

transport long distances and establish. Horseweed seed can travel kilometers from source 

populations before settling, however, 99% of seeds fall on the soil surface within 100 m of parent 

plants (Dauer et al. 2007). The attached pappus, extending twice as long as the seed, and the tall 

stems that position seeds high above the ground, are biological traits that make seed dispersal 

and long distance transport possible (Weaver 2001).  
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Horseweed competes strongly against crops as it emerges before summer annual crops, 

develops resistance to herbicides, spreads seeds across areas by wind, and can establish in 

different seasons. Find additional tools to integrate with other weed control strategies is 

important for sustainable weed management. 

 Cover Crops 

 Weed suppression 

As weeds become resistant and herbicides begin to lack control, the need for alternative 

weed management tools are needed. Crops work to suppress weeds in similar ways that weeds 

work to suppress crops, by limiting sunlight and nutrients from the weeds. As cover crop 

produce more biomass weed suppression increases by competing for water and nutrients. Cover 

crops can also suppress weeds through the production of allelopathic chemicals.  

Cover crops shade the soil surface, decreasing the amount of sunlight available to weeds 

(Moore et al. 1994). Carr et al. (2013) found that early spring-emerging horseweed can be 

suppressed by 83 to 99% using winter wheat (Triticum aestivum L.). Cover crops controlled 

weeds similar to chemical and mechanical methods early in the season (Osipitan et al. 2018). 

Others found that cover crop mixtures can suppress weeds by 66% compared to fallow (Kunz et 

al. 2016).  

Oil-seed radish [Raphanus sativus (L.)], canola (Brassica napus), and rye (Secale cereal) 

reduced weed biomass, compared to bare soil, six weeks after planting. Rye alone reduced weed 

density by 20% and suppressed early-season weed growth by 85% (Crawford et al. 2018). Barley 

(Hordeum vulgare), crimson clover (Trifolium incarnatum), or barley plus crimson clover 

reduced weed density by 50% and increased squash yield compared to the control (Buchanan et 

al. 2016). After termination cover crop residues suppressed weeds into the soybean growing 
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season (Teasdale 1996). Italian ryegrass (Lolium multiflorum) residue persisted nine weeks after 

soybean planting and reduced density of weeds in the early soybean growing season. Late-

emerged weeds were adequately controlled with oat, rye, wheat, hairy vetch, crimson clover, and 

subterranean clove (Trifolium subterraneum) with no affect to soybean yield (Reddy, 2001). 

Cover crops can be good alternative to herbicides in spring and fall, but for excellent weed 

control it is important integrate other weed control strategies during soybean growing season. 

Weed seed predation 

Cover crops can increase insect densities and diversity in the soil, which may increase 

weed seed predation. In plots with cover crop mulch, predation by beet armyworm pupae was 

33% greater and significantly reduced weed seeds from the soil seedbank compared to 

conventional production plots (Pullar et al. 2006). Cover crops can also positively affect the 

diversity of arthropods and the plant community (Carpio et al. 2018).  

Allelopathy 

Allelopathic chemicals are defined as “any direct or indirect harmful or beneficial effect 

by one plant or microorganisms on another through the production of chemical compounds that 

escape into the environment” (Rice 1984). Radish (Raphanus sativus), buckwheat (Fagopyrum 

esculentum), and black oats (Avena strigosa) suppressed weeds by 28% in a greenhouse study 

(Sturm et al. 2018). Weed suppression was 78% greater in plots that received a rye cover crop 

treatment, but alfalfa yield from the first cutting was reduced by 35% in rye plots, likely due to 

residual allopathic chemicals (Adhikari et al. 2018).    

Additional benefits 

Cover crops increase the health of the soil by reducing soil erosion, water runoff, and 

solar radiation to the soil surface. Cover crops increase organic material in the soil, help water 
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infiltrate into the soil, and increase microbial density and diversity, and can increase transpiration 

of water compared to fallow (Dabney 1998). The availability of nitrogen to succeeding crops can 

be greater after a cover crop has been growing, as it is either prevented form leaching or nitrogen 

deeper in the soil profile is brought to shallower depths (Frye et al. 1988). Rose et al. (2019) 

examined how a pinto peanut (Arachis pintoi) cover crop reduced emissions of nitrogen more 

than poultry litter alone. Faba bean (Vicia faba) increased soil organic carbon sequestration 

compared to conventional tillage (Novara et al. 2019). 

 Palmer Amaranth 

Palmer amaranth is a summer annual C4 plant native to northwest Mexico and has spread 

into the U.S. Palmer amaranth in the U.S. was first documented in Virginia in 1915, but was not 

a major problem until the late 1980’s. In 1989 it was found in a weed survey in South Carolina 

and in 1995 it was the most troublesome weed in cotton in the Carolinas (Heap 2019).  

Palmer amaranth has the highest photosynthetic rate among other C4 Amaranthus species 

and is three to four times the rate of row crops like corn, cotton, and soybeans (Ehleringer 1983). 

Palmer amaranth has the fastest growth rate and the greatest maximum growth among 

Amaranthus species (Horak and Loughin 2000). Palmer amaranth was the fastest growing 

species followed by common waterhemp (Amaranthus tuberculatus) and redroot pigweed 

(Amaranthus retroflexus) in KS (Bensch et al. 2003). Palmer amaranth can angle it’s leaves 

towards the sun (heliotropism) to intercept more red and blue light and increase the rate of 

photosynthesis.  

Palmer amaranth reached 10 cm tall and was at least 78% larger than six Amaranthus 

species and 65% greater than redroot pigweed alone two weeks after planting (Sellers et al. 

2003). Horak and Loughin (2000) also found that Palmer amaranth produced the most biomass 
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compared to the other Amaranthus species. Palmer amaranth growth increased and specifically 

root biomass and photosynthesis increased as air temperature increased (Guo and Al-Khatib 

2003). One Palmer amaranth plant can produce 200,000 to 600,000 seeds if it emerges between 

March and June (Keeley 1987) and 32 Palmer amaranth plants 6 m-1 of row can produce 1.2 

billion seeds ha-1 (Burke et al. 2007).  

Peanut pod weight decreased by 2.9 kg ha-1 for every one gram of increase in Palmer 

amaranth biomass m-1 row (Burke et al. 2007). Others found that for every additional Palmer 

amaranth plant 15 m-1 row, grain sorghum yield was reduced by 2 to 3.5% and for each 

additional kilogram of Palmer amaranth grain sorghum yield 68 m-2 was reduced by 5 to 9% 

(Moore et al. 2004). Palmer amaranth emerging at the same time as corn emergence reduced 

corn yield from 11 to 91%, as Palmer amaranth density increased from 0.5 to 8 plants m-1 of crop 

row (Massinga et al. 2001). Palmer amaranth reduced soybean yield by 32, 48, 64, and 68% at 

densities of 1, 2, 3, and 10 plants m-1 of row, respectively (Klingaman and Oliver 1994). Palmer 

amaranth is very competitive against other plants even at low densities.  

Palmer amaranth has developed resistance to five herbicide modes of action (MOA) in 

KS, including photosystem II (atrazine), HPPD (mesotrione, tembotrione, and topramezone), 

EPSPS (glyphosate), VLCFA’s (pyrasulfotole) and auxins (dicamba). Additionally, Palmer 

amaranth has developed resistance to microtubule inhibitors in TN and NC and 

protoporphyrinogen inhibitors (PPO-inhibitors) in AR, TN, and IL (Heap 2019). 

 Protoporphyrinogen Oxidase Inhibitors (PPO-inhibitors) 

Protoporphyrinogen oxidase is an enzyme in the chloroplast that oxidizes 

protoporphyrinogen IX to produce protoporphyrin IX, which is a precursor molecule for both 
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chlorophyll and the electron transfer chain. This forms reactive molecules that destroy lipids and 

protein membranes, therefore making cells leaky and leading to lipid peroxidation (Al-Khatib 

2019).  

The first case of PPO resistant Palmer amaranth was documented in 2011 in AR (Heap 

2019). Palmer amaranth resistant to PPO-inhibitors is now widespread in AR, especially in the 

northeast part of the state (Varanasi et al. 2018). PPO-inhibitors are often applied to weeds in 

soybean late in the growing season when weeds (pigweeds especially) are too large to control. 

PPO-inhibitors are effective at controlling Palmer amaranth when plants are small. This also 

decreases the chance of plants developing resistance. It is also important that the herbicide 

reaches the target weeds. 

Thorough coverage is essential to achieve excellent control of Palmer amaranth when 

using contact herbicides applied postemergence. Palmer amaranth has many growing points, 

even on young plants, making them difficult to control. Many factors influence weed coverage, 

including total volume applied per acre, pounds of operating pressure per square inch used, wind 

speed, droplet size and retention, nozzle type. For example, carrier volume amount did not affect 

control of small weeds, but on larger plants control was reduced with reduced spray volume 

(Berger et al. 2014). 

The objective of this research was to evaluate (1) horseweed control in no-till soybean 

with cereal cover crops, herbicides with and without residual activity, and a cover crop and 

herbicide combination treatment (2) emergence timing of eight horseweed populations collected 

from MO, IL, KS, and KY and sown in Kansas, and (3) Palmer amaranth control with PPO-

inhibitor herbicides applied every three days starting when Palmer amaranth plants were 2.5 cm 

tall. 
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Chapter 2 - Horseweed Emergence Patterns and Response to 

Herbicides from Populations Across Four States  

 Abstract 

Predicting when horseweed will germinate and emerge is often difficult. Horseweed, in 

some regions, may germinate in the fall and behave as a winter annual or may germinate in the 

spring and behave as a summer annual. It is important to investigate the extent to which time of 

germination is influenced by the environment, inherited traits, or both. A common garden field 

study was conducted in KS, with an objective to determine the emergence timing of eight 

different horseweed populations. Horseweed seeds were collected from 30 plants in each of two 

locations across the four states, from KY, IL, and MO to KS. At least 200 viable seeds of the 

eight populations were sown into individual rings at the Department of Agronomy Research 

Field near Manhattan, KS on October 19, 2016, and on October 1, 2017. The experimental 

design was a randomized complete block with six replications and eight populations. There was 

an additional control ring to assess emergence of naturally occurring horseweed populations. 

Emergence counts were taken on a weekly basis during fall and spring months and on a monthly 

basis during winter months. Once cotyledons were visible, plants were pulled, and horseweed 

number was recorded. In 2016-2017, majority of horseweed emerged in spring, while in 2017-

2018 the majority emerged in the fall, therefore, years were different. Across populations, all 

plants emerged at the same time, therefore, a single model was used to describe cumulative 

horseweed emergence across GDD for each year. In 2016-2017, across populations, 50 and 

100% cumulative horseweed emergence occurred at 230 and 269 growing degree days (GDD). 

Good temperature and moisture conditions occurred during the two weeks before emergence 

started (March 23 to April 11, 2017) with 159 mm of precipitation and average daily maximum 
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and minimum air temperatures were 16 and 7 C, respectively. In 2017-2018, across populations, 

50 and 100% cumulative horseweed emergence occurred at 100 and 143 GDD. In the two weeks 

before emergence, 53 mm of precipitation fell, and the maximum and minimum air temperatures 

were between 30 and 17 C. 

 Introduction 

Horseweed (Conyza canadensis) is a problematic weed in soybeans, especially in 

minimum tillage situations (Bruce and Kells 1990). In order to manage horseweed effectively, 

one must understand when plants emerge, allowing the producer to implement timely weed 

control. In KS, horseweed typically emerges in the fall and behaves as a winter annual (McCall 

2018). Fall emerging horseweed overwinters as a rosette, bolts in April or May, flowers in July, 

and disperses seeds in late August through September (Regehr and Bazzaz 1979; Weaver 2001).  

A small percentage of plants do emerge in the spring in Kansas and the number varies by 

year depending on weather conditions. Horseweed seed that is dispersed and reaches the soil in 

late September or October may miss warm temperature and moisture and will not germinate in 

the fall. Horseweed seeds will lay on the soil surface through winter and germinate in the spring 

when favorable weather conditions return. In Indiana, Davis and Johnson (2008) found that 

horseweed primarily emerged in the spring with peak densities occurring in late April through 

mid-May. Any plants that emerged in the fall in Indiana had low winter survival. In Tennessee, 

Main et al. (2006) found that horseweed seeds germinated and emerged during almost any month 

when the maximum and minimum temperatures ranged between 25 and 10 C, respectively. Other 

researchers found that seeds from multiple populations across Missouri emerged in the fall for a 

northern Missouri location and in the spring for a southern Missouri location (Bolte 2015).  
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Suitable temperatures and precipitation are important for horseweed seeds to emerge 

from the soil. Nandula et al. (2006) found that horseweed germinates under 24/20 C day/night 

temperatures, which occurs in both fall and spring in KS. For a horseweed population in 

California the base temperature for germination was 13 C and that is what was used in this 

experiment as the base temperature to calculate growing degree days (GDD) (Steinmaus et al. 

2000).   

As one moves from north to south locations, temperatures change and may influence the 

time of horseweed emergence. In southern Ontario, Canada, Tozzi and Van Acker (2014) 

reported emergence occurred from August 27 to September 9 and spring emergence occurred 

from May 14 to May 27 but fall emergence was 90% greater. Horseweed at these more northern 

locations act more as a winter annual and in southern locations as a summer annual.  

In KS, based on a 30-yr average, September is the last month that the maximum air 

temperature is above 25 C and is typically when horseweed seed is dispersing. The time period 

between seed dispersal and germination can be relatively short in KS, and late dispersed seed 

may miss the opportunity to establish in the fall. In this case, seeds will emerge in the spring 

when temperature increases, or be lost to the environment.  

Horseweed germination and emergence research is sparse and variable, and that is 

possibly due to the delicate nature of the seed and the difficulty to work with it. However, based 

on previous research, horseweed emergence is environmentally driven, and populations that 

typically behave like summer annuals will likely behave as winter annuals if seeded in KS. This 

is important to know because as more farmers progress to no-tillage or minimum tillage 

operations, their chances for horseweed infestations will increase. Additionally, horseweed seed 

can travel long distances with the wind, possibly kilometers from source populations (Dauer et 
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al., 2007), thus spreading genetically different populations across the Midwest. Producers may 

experience poor control of horseweed in their fields because of resistance to herbicides that have 

never been applied.  

It is important to understand how the environment impacts horseweed germination and 

emergence patterns and determine if seed source influences horseweed emergence timing. The 

objectives of this study were to (1) determine the influence of population source on timing of 

horseweed emergence with eight populations sown in a common environment of KS, (2) 

determine temperature and moisture conditions that favor horseweed emergence over two 

growing seasons, and (3) determine the response of each horseweed population to six different 

herbicides.  

 Materials and Methods 

 Procedure for horseweed seed establishment and data collection  

Horseweed seed heads from 30 plants were collected in each of two locations across four 

states: KY, IL, MO and KS, along a transect of eight locations at least 200 km apart (Table 2.1). 

Heads were placed in paper bags, dried in the greenhouse for three to five days, and then seed 

was shaken and collected from all heads. Seed viability for each population was assessed by 

identifying 50 plump, healthy seeds by using a microscope, and placing seed into plastic Petri-

dishes on the surface of moist potting mix with four replications. Germinated seeds were counted 

every day for one week to determine the seed viability of the source to adjust seeding rates.  

The experimental design was a randomized complete block with six replications of eight 

horseweed populations and one empty ring to document naturally-occurring seedlings, for a total 

of 54 rings. At least 200 viable seeds of each of the eight populations were sown into individual 

20 cm diameter PVC rings, placed one meter apart, at the KSU Department of Agronomy 
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Ashland Bottoms Research Farm near Manhattan, KS on October 19, 2016, and at the 

Department of Agronomy North Farm in Manhattan, KS on October 1, 2017. Emergence counts 

were taken on a weekly basis during fall months and spring months and on a monthly basis 

during winter months. Once cotyledons were visible, plants were counted, pulled and discarded. 

Emergence counts ended in near the end of May for each year.  

In 2016-2017 daily precipitation and max/min air temperature was collected from a 

weather station near Manhattan, KS (latitude/longitude: 39.126/-96.667) and 2017-2018, a 

different station located in Manhattan, KS (latitude/longitude: 39.209/-96.552).  

Cumulative emergence of horseweed seedlings was determined using the maximum 

number observed for a given ring. Cumulative emergence was plotted against accumulated 

growing degree days (GDD), where GDD accumulation started on October 1, for both years, and 

ended past emergence counts on July 4, 2017 and June 13, 2018. GDD was calculated as 

follows: 

𝐺𝐷𝐷 = {[(𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛) ÷ 2] − 𝑇𝑏𝑎𝑠𝑒}                           Equation 2.1 

where 𝑇𝑚𝑎𝑥 was the maximum temperature (C) for each day, 𝑇𝑚𝑖𝑛 was the minimum temperature 

for each day, and 𝑇𝑏𝑎𝑠𝑒 was the base air temperature (13 C) for horseweed emergence 

(Steinmaus et al. 2000). A non-linear 3-parameter sigmoidal regression curve was fit to 

cumulative horseweed emergence data across GDD in SigmaPlot v. 12.3 (Systat Software Inc., 

San Jose, CA):  

𝑦 =
𝑎

1+𝑒
−(

𝑥−𝑥𝑜
𝑏

)
                                            Equation 2.2 

where 𝑦 was the cumulative percentage of total emerged horseweed plants, 𝑥 was the cumulative 

GDD, 𝑥𝜊 was the cumulative GDD for 50% horseweed emergence (inflection point), 𝑎 was the 

maximum percentage of total emerged horseweed plants (100), and 𝑏 is the slope of the line at 
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the inflection point. To determine if the populations had different emergence patterns, the 

regression lines were compared using a pairwise F-test: 

𝐹 =
(𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑅−𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝐹)/(𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝑅−𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝐹)

𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝐹/𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝐹
                         Equation 2.3 

where F was the calculated value, 𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑅 was the residual sum of squares for one line fit to 

data from two population, 𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝐹 was the sum of the residual sums of squares for two 

separate lines fit to the data for each population, 𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝑅 was the residual degrees of freedom 

for one line fit to the data, and 𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝐹 is the sum of the degrees of freedom for two separate 

lines fit to the data. The calculated F-value was compared to the distribution of F (Table A 14, 

Snedecor and Cochran 1989) with df determined using: 

𝑑𝑓𝑁

𝑑𝑓𝐷
=

(𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝑅−𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝐹)

𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝐹
                                         Equation 2.4 

where 𝑑𝑓𝑁 was the degrees of freedom in the numerator, 𝑑𝑓𝐷 was degrees of freedom in the 

denominator, 𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝑅 was the residual degrees of freedom for one line fit to the data, and 

𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝐹 was the sum of the degrees of freedom for two separate lines fit to the data. If the 

calculated value of F was greater than the F-value in the table, two separate lines were different 

than one line fit to all the data.  

 Herbicide screening 

The eight horseweed populations collected in 2017-2018 were screened for response to 

six different herbicides. The experimental design was randomized complete block with eight 

populations, six herbicides and non-treated control, and replicated five times (one plant per 

replication). Seed from each horseweed population were sown into flats (30 cm wide by 40 cm 

long by 10 cm deep) filled with Pro-mix in the greenhouse on May 23, 2018. Individual 

seedlings were transplanted on June 6, 2018 into 10 by 10 cm wide pots and randomized. Rosette 

diameters were measured prior to herbicide applications made on July 18, 2018. The six 
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herbicides, rates, and appropriate adjuvants were glufosinate at 738 g ha-1
 plus 1% v/v AMS, 

paraquat at 841 g ha-1 plus 1% v/v NIS, dicamba at 560 g ha-1, glyphosate at 1260 g ha-1 plus 2% 

v/v AMS, chlorimuron at 13.1 g ha-1 plus 1% AMS and 2% v/v COC, and atrazine at 560 g ha-1 

plus 1% v/v COC.   

Herbicide applications were made using XR Teejet 8003 nozzles (TeeJet Technologies, 

Wheaton, IL) calibrated to deliver 187 L ha-1 at 207 kPa, producing medium sized droplets in a 

bench-type chamber sprayer (DeVries Manufacturing, Inc.).  

Percent control of each horseweed plant was recorded at 1, 2, and 4 WAT on a visual 

scale from 0 (no injury) to 100% (dead plants) relative to a non-treated control. Influence of 

horseweed population source on rosette size and response to herbicides were tested using PROC 

GLM in SAS 9.4 (SAS Institute Inc., Cary, NC) and differences were detected at alpha =0.05.  

Results and Discussion 

 Horseweed emergence patterns in Kansas environments 

In a common garden in Kansas all horseweed populations emerged at the same time but 

in different seasons; in year one all emerged in the spring and in year two all emerged in the fall; 

therefore, years were different and will be presented separately. There were no differences in 

emergence timing among populations within a given year, therefore, a single model was used to 

describe cumulative horseweed emergence across GDD across populations for each year. 

Across populations, 33% of approximately 200 viable seed that were seeded emerged 

(Tables 2.2 and 2.3). The slopes of the lines at the inflection points (parameter b) were 4.8 in 

year one and 6.2, and cumulative GDD for 50% horseweed emergence was 224 GDD in year one 

and 89 GDD in year two (Table 2.4).  
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In the first year, horseweed emergence occurred in the spring, indicated by the greater 

GDD needed for 50% emergence (Figure 2.1). No emergence occurred in fall because sowing 

occurred in mid-October (too late), and weather conditions had become cool and dry for the 

remainder of the fall (Figure 2.1). Steinmaus et al. (2000) found that the base temperature for 

horseweed emergence was 13 C. Also, only 7 mm of precipitation occurred in the two weeks 

after sowing, with only 7 mm falling. Then fall temperatures began to cool and were below 

threshold temperatures for horseweed germination. The 8 days from October 19 to 27, 2016 had 

an average maximum air temperature of 23 C and a minimum temperature of 5 C (Figure 2.2). 

Nandula et al. (2006) discovered that horseweed seeds did not germinate when maximum and 

minimum temperatures were 12 and 6 C, but germination increased with temperature, peaking at 

24 and 20 C maximum and minimum air temperatures.  

Cumulative 50 and 100% horseweed emergence occurred at 230 and 269 GDD, 

respectively, across populations in 2016-2017 (Figure 2.1). This corresponded to April 14 and 

April 21, 2017.  In the week prior (April 7 to April 14, 2017), 159 mm of precipitation was 

received, and average maximum and minimum air temperatures were 24 and 10 C, respectively 

(Figure 2.2). These conditions were conducive to horseweed emergence in the spring in Kansas. 

Other researchers in Tennessee observed greatest horseweed emergence, when the average 

daytime temperature fluctuated between 15.5 and 10 C, which occurred in the spring in April and 

in the fall in September, and some plants emerged in any month when temperatures ranged from 

10 to 25 C (Main et al. 2006).  

In the second year of the study (2017-2018) horseweed mostly emerged in the fall of 

2017 (Figure 2.3). Based on the model, 50% horseweed emergence occurred by 88 GDD. During 

that time, 53 mm of precipitation fell, and the maximum and minimum air temperatures were 
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between 30 and 17 C, respectively (Figure 2.4). After this first emergence flush, the average 

maximum and minimum air temperatures were 18 and 3 C, respectively between October 15 and 

November 11, 2017, which was becoming cool for horseweed to emerge and it was also too dry 

as only 1 mm of rain fell (Figure 2.4). McCall (2018) observed that naturally-occurring 

horseweed plants mostly emerged in fall in KS.  

 By the spring of the second year (2018) there was no new emergence. There was much 

less spring moisture in 2018 than 2017. There was only 55 mm of precipitation between March 1 

to April 30, 2018, compared to 230 mm of precipitation in the same period in 2017.  

 Herbicide screening of eight horseweed populations from 2017-2018. 

At transplanting horseweed rosettes were 2 to 4 cm in diameter and 42 days later when 

herbicides were applied, plants ranged from 8.5 cm (± 0.23) to 12 cm (± 0.26) (Table 2.5). At the 

time of herbicide application, horseweed plants were healthy, with approximately 30 leaves and 

no visual nutrient deficiency.  

Glufosinate controlled all horseweed plants across all populations (Table 2.6). 

Glufosinate works well when applied POST to small actively growing weeds. There are no cases 

of glufosinate-resistant horseweed in the U.S. (Heap 2019).   

Paraquat provided greater than 95% control of horseweed across all populations, at one 

and two WAT, but randomly sized individual plants that were not completely controlled began to 

regrow and produce new leaves by four WAT (Table 2.6). Horseweed resistance to paraquat in 

the U.S. has been documented in MS, DE, and CA (Heap 2019). 

Dicamba provided good control of horseweed, with greater than 95% observed weed 

control for all populations besides Garnett, KS (Table 2.6). In a greenhouse study, diglycolamine 

rate salt of dicamba provided 97% control of horseweed plants 30 cm tall or less (Kruger et al. 
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2010). Currently, no horseweed populations have been identified as resistant to group 4 

herbicides in the U.S (Heap 2019). Dicamba remains a good option for POST horseweed control 

and is now available to apply in soybeans when a dicamba tolerant variety is used, but the size of 

horseweed plants at this time may be too large for good control.  

Glyphosate did not control the two populations from KY and IL, or the one from 

Columbia, MO, with 53% or less control observed (Table 2.6). Both populations from Kansas 

and the one from Louisville, MO were controlled by at least 92%. There were no differences in 

plant sizes across all eight populations. The populations with low levels of control are likely 

resistant to glyphosate, and occurrence of glyphosate-resistant populations have been confirmed 

in MO, KS, IL, and KY (Heap 2019).  

Chlorimuron, an ALS-inhibitor, did not control any population well with less than 42% 

control observed (Table 2.6). In this study, the rate for chlorimuron was lower than the maximum 

rate a producer can apply, which may explain the reduction in horseweed control with 

chlorimuron. Chlorimuron is labeled for small actively growing broadleaf weeds and to be 

applied at 30 to 50 g ha-1 (Anonymous 2019). Horseweed resistance to chlorimuron itself has 

been confirmed in OH, MI, and IN, but not MO, KS, IL, and KY; horseweed resistant to other 

ALS-inhibitors has been confirmed in KS and IL, specifically, chlorsulfuron, iodosulfuron-

methyl-sodium, metsulfuron-methyl, rimsulfuron, thiencarbazone-methyl, thifensulfuron-methyl, 

and tribenuron-methyl (Heap 2019). Chlorimuron should not be applied alone to control 

horseweed, as it is not permitted on the label (Anonymous 2019) but, there are already 

horseweed-resistant populations to similar ALS-inhibitors (Heap 2019). Further evaluations are 

needed to confirm if plants were resistant to chlorimuron or if POST chlorimuron alone is poor at 

controlling horseweed of that size.  
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Atrazine applied as a POST herbicide was not effective at controlling any horseweed 

population with less than 60% control observed (Table 2.6). One would need to increase the rate 

or consider it as a PRE to effectively control horseweed. The only cases of atrazine-resistant 

horseweed have been from MI (Heap 2019). Further evaluations of horseweed response to PSII-

inhibitors are needed to confirm resistance.  

Conclusions 

 Common Garden 

The environment and year have a significant role in timing of horseweed emergence. In 

Kansas, September is the last month that maximum air temperatures are above 25 C, based on a 

30-yr climate record of Manhattan, KS (NOAA, 2019), and is often the month when horseweed 

seed are dispersing. Horseweed typically sheds seed between late July and October (Shields et al. 

2006). The time period between seed dispersal and germination can be relatively short in Kansas, 

and late dispersed seed may miss the opportunity to establish in the fall. Compared to fall, the 

probability of horseweed seeds that germinate in the spring is low, because many seeds do not 

last long on the soil surface during winter months or may be lost to predation. Horseweed seed 

that has been buried is more likely to remain viable longer, compared to seeds sitting on the soil 

surface (Vargas et al. 2018). Additionally, seeds that survive to spring still may not germinate 

and emerge until conditions become favorable.  

In Kansas, horseweed can behave like a winter annual by germinating in the fall, 

surviving the winter as rosettes, bolting in the spring, and producing seed in late summer. 

Horseweed can also germinate in the spring and behave like an early-established summer annual 

weed, especially if conditions were unfavorable for germination in the fall, but favorable in the 

spring. As weather conditions shift from cool to warm temperatures, so may horseweed 
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emergence. Producers will need to watch for horseweed emergence in the fall and spring to 

conduct management accordingly for effective control. More work is needed to quantify the most 

favorable weather conditions for horseweed emergence in Kansas environments, specifically 

related to soil temperature and moisture.  

 Herbicide screening 

Horseweed resistance may quickly spread throughout a field; therefore, it is important 

that suspected resistant plants be controlled before seeds are shed. Only five years after the first 

glyphosate-resistant population was reported, resistant biotypes were found in more than 44,000 

ha of cropland in the U.S. (VanGessel 2001). Herbicides remain effective at controlling 

horseweed, but when rosettes are too large, herbicides rates are too low, or there are no effective 

modes of action in the herbicide mixture, horseweed control may be reduced. By integrating 

more weed management strategies, the pressure of any one control method is reduced.  
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Table 2.1 Locations of horseweed patches where seed was collected and corresponding 

abbreviations, for both years. 

 

Years Locations/Seed Source Abbrev. 

2016-2017 Ashland Bottoms, KS ASHKS 

 Garnett, KS GARKS 

 Blackwater, MO BLAMO 

 Louisville, MO LOUMO 

 Desoto, IL DESIL 

 Belleville, IL BELIL 

 Lexington, KY LEXKY 

 Princeton, KY PRIKY 

2017-2018 Ashland Bottoms, KS ASHKS 

 Garnett, KS GARKS 

 Columbia, MO COLMO 

 Louisville, MO LOUMO 

 Desoto, IL DESIL 

 Belleville, IL BELIL 

 Lexington, KY LEXKY 

 Princeton, KY PRIKY 

Ashland Bottoms is an incorporated town near Manhattan, KS. 
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Table 2.2 Horseweed emergence (mean + SE) for each population across sampling dates in 

2016-2017 for Ashland Bottoms, KS. 

 

Date Population 

 ASHKS GARKS BLAMO LOUMO DESIL BELIL PRIKY LEXKY Non-seeded 

 ---------------------------------------------------------Plants ring-1----------------------------------------------------------------- 

1-Nov 0 0 0 0 0 0 0 0 0 

16-Nov 0 0 0 0 0 0 0 0 0 

12-Dec 0 0 0 0 0 0 0 0 0 

27-Mar 0 0 0 0 0 0 0 0 0 

6-Apr 0 0.3 (0.2) 0.2 (0.2) 0.3 (0.2) 1.7 (1.1) 0.8 (0.8) 0.5 (0.5) 0.3 (0.2) 0 

14-Apr 17.3 (2) 47.8 (3.7) 30.5 (3.7) 83.7 (7.4) 223.5 (4.6) 23.3 (2.4) 43.5 (2) 35.3 (6.4) 1.2 (0.2) 

21-Apr 1.2 (0.7) 2.8 (0.8) 1.7 (0.5) 8.8 (2) 13.2 (4.3) 2 (1.2) 4 (1.9) 3.2 (0.6) 0.5 (0.3) 

1-May 0 0 0.2 (0.2) 0.7 (0.7) 1.5 (1) 0 0.5 (0.5) 0.8 (0.5) 0 

Total 18.5 50.9 32.6 93.5 239.9 26.1 48.5 39.6 1.7 
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Table 2.3 Horseweed emergence (mean + SE) for each population across sampling dates in 

2017-2018 for Manhattan, KS. 

 

Date Population 

 ASHKS GARKS COLMO LOUMO DESIL BELIL PRIKY LEXKY Non-seed 

 ----------------------------------------------------Plants ring-1-------------------------------------------------- 

10-Oct 0 0 0 0 0 0 0 0 0 

16-Oct 20.5 (2) 31.8 (3) 14.7 (2) 9.5 (1) 13.7 (3) 13.3 (2) 42.8 (6) 21.3 (3.5) 0 

24-Oct 7.5 (3) 5.7 (3) 2.5 (2) 1.5 (1) 0.7 (0.1) 0.2 (0.2) 3.8 (1.5) 3.2 (2) 0.5 (1) 

1-Nov 0 0.3 (0.2) 0 0.84 (1) 0.7 (0) 0.2 (0) 1 (1) 0 1.3 (0) 

17-Nov 0 0.2 0 0.17 (0) 0 0 0 1 (1) 0 

Total 28.0 38.0 17.2 12.1 15.1 13.7 47.6 25.5 1.8 
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Table 2.4 Parameter estimates describing the relationship between cumulative horseweed 

emergence and cumulative GDD using Equation 2.2 and the predicted date of 50% 

emergence. 

 

Year 

 

Location of Study Parameter Estimates  

 

 

R2 

Date of 50%   

Emergence 

  a (SE) b (SE) x0 (SE)   

  %  GDD   

2016-2017 Ashland Bottoms 

Farm 

99.5 (0.18) 4.8 (0.25) 224 (0.65) 0.99 April 14, 2017 

2017-2018 North Farm 99.8 (0.6) 6.2 (3.5) 89 (6.5) 0.99 October 16, 2017 

a is maximum proportion of total horseweed emergence, b is slope at the inflections point, and 

Xo is cumulative GDD for 50% horseweed emergence.  
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Table 2.5 Average diameter (cm) of horseweed rosettes and SE for each population prior to 

herbicide applications. Horseweed size was not different among populations prior to the 

herbicide applications. 

 

Herbicide Population 

 ASHKS GARKS LOUMO COLMO DESIL BELIL PRIKY LEXKY 

 --------------------------------------------------------cm------------------------------------------------------ 

dicamba 9 (0.5) 8.6 (0.2) 12.1 (1.1) 9.8 (0.6) 9.8 (0.4) 7 (0.3) 9.8 (0.4) 12.4 (0.8) 

paraquat 8.2 (0.2) 10.2 (0.5) 11.2 (0.5) 9.4 (0.5) 8.8 (0.4) 7.2 (0.6) 10.4 (0.5) 9.2 (0.4) 

atrazine 9.2 (0.4) 9.8 (0.2) 11.6 (0.5) 9.6 (0.5) 11 (0.4) 9.8 (0.5) 10 (0.3) 11 (0.3) 

glyphosate 8.8 (0.2) 11 (0.5) 11.8 (0.9) 11.6 (0.4) 8.6 (0.2) 9 (0.3) 11 (0.5) 12.8 (0.2) 

chlorimuron 8.6 (0.2) 10.2 (0.6) 12.8 (0.2) 11.6 (0.5) 9.8 (0.4) 8.6 (0.4) 12.2 (0.4) 13.2 (0.2) 

glufosinate 10.2 (0.2) 10.8 (0.4) 11.2 (0.5) 12.2 (0.5) 9.8 (0.4) 8.8 (0.2) 10.8 (0.7) 11.6 (0.4) 
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Table 2.6 Visual control rating (0 to 100%) and SE at 4 WAT with six herbicides applied to 

each of eight populations. 

 

Herbicide Population 

 ASHKS GARKS LOUMO COLMO DESIL BELIL PRIKY LEXKY 

 -----------------------------------------------------------------% (SE)--------------------------------------------------------------- 

dicamba 96.4 (1.2) 84 (4.1) 99.8 (0.2) 87 (9.7) 100 100 100 96.8 (3.0) 

paraquat 100 100 82 (18.0) 100 100 84 (16.0) 83 (17.0) 100 

atrazine 42 (16.2) 53 (19.2) 35 (16.4) 55 (19.6) 37 (4.6) 10 (1.6) 60 (19.9) 28 (10.1) 

glyphosate 92 (8.0) 100 (0) 97 (3.0) 53 (19.5) 10 (0) 5 (0) 14 (2.9) 15.4 (8.1) 

chlorimuron 7 (1.2) 7 (2.0) 42.4 (21.1) 15 (3.2) 11 (3.7) 7.4 (3.2) 23 (11.0) 15 (8.8) 

glufosinate 100 100 100 100 100 100 100 100 
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Figure 2.1 Cumulative percent of total horseweed emergence in 2016-2017. See Table 2.4 

for parameter estimates for the regression. 
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Figure 2.2 Maximum and minimum air temperature (C) and total precipitation (mm) for 

2016-2017. Horseweed seed was sown on October 19, 2016. 
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Figure 2.3 Cumulative percent of total horseweed emergence in 2017-2018. Table 2.4 for 

parameter estimates for the regression. 
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Figure 2.4 Maximum and minimum air temperature (C) and total precipitation (mm) for 

2017-2018. Horseweed seed sowing on October 1, 2017. 
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Chapter 3 - Evaluating Cover Crops and Herbicides for Horseweed 

Management in No-till Soybean 

 Abstract 

Horseweed establishes well in no-till environments and in many fields, plants are 

resistant to several key herbicides used in no-till soybean, including glyphosate, chlorimuron, 

and atrazine.  A field experiment was conducted in 2016-2017 and 2017-2018 near Manhattan, 

KS to evaluate cover crops and herbicides for horseweed management in no-till soybean. In year 

one, fall-seeded cover crops were winter triticale and spring oat and spring-seeded cover crops 

were spring triticale and spring oat. In year two, only fall-seeded cover crops of winter rye and 

spring oat were studied. In each year, residual herbicides were applied in the fall and non-

residual herbicides were applied in fall and spring. Horseweed and all other weeds biomass were 

reduced the most with winter triticale, cereal rye, and cereal rye plus a herbicide at the time of 

terminating cover crops, in both years. Fall-and spring-seeded oat were least effective at 

suppressing horseweed during the growing season. Herbicides applied in the spring with no 

residual controlled horseweed better than fall-applied herbicides with or without residual, across 

years. In year one, soybean yields were greater with herbicide treatments compared to cover 

crops treatments, because a) soybeans did not establish well in winter triticale plots (residue too 

thick and wet), b) fall-seeded oat did not provide weed suppression into the spring, and c) spring-

seeded cover crops did not establish well due to cool and wet conditions. In year two, there were 

no differences in soybean yield across cover crop and herbicide treatments because a) soybeans 

established well in all cereal rye plots, and b) there was no difference in weed control after cover 

crop termination. Cover crops are an effective integrated weed management tool that producers 

can use to manage horseweed.  
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 Introduction 

It is common for horseweed to establish in no-till soybean fields in the U.S. In KS, 

horseweed typically emerges in the fall, soon after seeds have shed (McCall 2018). Fall-emerged 

plants overwinter as rosettes, bolt in April or May, flower in July, and disperse seed in late 

August through September (Regehr and Bazzaz 1979; Weaver 2001). Some horseweed 

emergence does occur in the spring in KS (McCall 2018). In that case, producers would need to 

plan horseweed management activities in the fall and spring to adequately manage horseweed in 

no-till soybean in KS.  

The availability of herbicides with effective sites of action to control horseweed is 

lessening as herbicide-resistant biotypes evolve and spread. The first case of glyphosate-resistant 

horseweed occurred in one producer’s field within three years after using glyphosate exclusively 

(VanGessel 2001). Horseweed is resistant to glyphosate in more than 25 states in the U.S. (Heap 

2019). The mechanism of horseweed resistance to glyphosate is altered translocation and 

sequestration of glyphosate. Susceptible plants move glyphosate from source to sink tissue, but 

in resistant horseweed plants much less glyphosate is translocated and instead resistant 

horseweed sink-leaf vacuoles accumulate the majority of glyphosate (Ge et al. 2010).  

It is important to use a wide variety of weed management strategies to control weeds to 

slow the development of resistant weeds. Cover crops have been proven to provide many 

benefits to the soil, along with their use as weed suppressants. Cover crops can shade the soil 

surface and decrease the amount of solar radiation available to weeds, thus affecting 

germination, emergence, and growth of weeds (Moore et al. 1994). A meta-analysis revealed that 

cover crops can suppress weeds comparable to chemical and mechanical control in the early-

season (Osipitan et al. 2018).  
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Winter hardy cereals are commonly used as cover crops in KS, like cereal rye and winter 

triticale, to suppress weeds in no-till environments. Italian ryegrass and rye biomass residue 

persisted up to nine weeks after soybean planting and reduced the density of weeds emerging in 

the early-season (Reddy 2001).  

Although many herbicides, such as glyphosate, provide little control of horseweed if 

resistant, herbicides such as dicamba and 2,4-D remain good options for horseweed control with 

no known resistance. Little resistance has been developed to auxinic herbicides, and if used 

correctly and in combination with other weed management strategies, dicamba and 2,4-D may 

continue to control horseweed. Cover crops have shown that they can be good suppressors of 

weeds and relieve the efforts of effective herbicides, such as dicamba and 2,4-D, so they can be 

used longer and when needed. The objective of this study was to determine the effectiveness of 

fall and spring-planted cover crops and fall and spring-applied herbicides, both with and without 

soil residual, on horseweed management in a no-till soybean crop. 

 Materials and Methods 

Field experiments were conducted through two growing seasons in 2016-2017 and 2017-

2018 at Kansas State Department of Agronomy North Farm, located in Manhattan, KS (Table 

3.1). In year one, field plots were established in no-till stubble immediately after grain sorghum 

harvest. Grain sorghum was planted 76 cm wide row spacing at 170,000 seeds ha-1. Soil type in 

the study area was a Wymore silty clay loam (Fine, smectitic, mesic Aquertic Argiudolls). In 

year two, field plots were established in a no-till fallow field. After grain sorghum harvest in 

2016 the field remained fallow until establishment of cover crops in fall 2017. Weeds were not 

controlled during the fallow season; the field was mowed prior to establishing the experiment. 

The soil type was a Kahola silt loam (Fine, alluvium parent material, well drained, loamy 
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lowland). Soil samples were collected, and nutrient levels were analyzed. Filed sites were 

selected because of naturally occurring horseweed populations. 

The experiment was arranged in a randomized complete block design, plots were 3 m 

wide by 7 m long, and four replications. Nine weed management treatments were evaluated in 

the first year. There were four cover crop and three herbicide treatments, as well as weed-free 

and non-treated checks (Table 3.3). Ten treatments were evaluated in the second year. There 

were two cover crop, three herbicide, two cover crop and herbicide combinations, and cover crop 

plus tillage, as well as weed-free and non-treated checks.  

In 2016-2017, the four cover crop treatments included fall-seeded winter triticale and 

fall-seeded spring oat, which were seeded on October 25, 2016, and spring-seeded spring triticale 

and spring-seeded spring oat, which were seeded on March 11, 2017. Cover crops were seeded in 

19 cm row spacings using a no-till drill (Model 3P605NT, Great Plains Manufacturing, Inc., 

Salina, KS) with double-disc openers at a depth of approximately 3 cm. The fall-applied residual 

herbicide treatment was a tank mix of dicamba plus chlorimuron and flumioxazin applied on 

October 27, 2016 and fall and spring-applied non-residual herbicide treatments were a tank mix 

of dicamba plus 2, 4-D applied on October 27, 2016 and March 20, 2017, respectively (Table 3.3 

and 3.3).  

In 2017-2018, fall-seeded cover crop treatments were cereal rye and spring oat drilled in 

19 cm wide row spacing on September 28, 2017 (Table 3.3). Fall treatments included cereal rye 

alone, cereal rye plus saflufenacil (no residual), cereal rye plus tillage, cereal rye plus spring-

applied dicamba plus 2,4-D (no residual). Tillage was conducted using a three meter wide disc 

set to a shallow depth with two passes per plot on September 27, 2017. A fall residual herbicide 

treatment was a tank mix of dicamba plus chlorimuron plus flumioxazin applied on September 
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29, 2017. Fall and spring-applied non-residual herbicide treatments were a tank mix of dicamba 

plus 2, 4-D was applied September 29, 2017 and May 3, 2018, respectively for the second year. 

Herbicides were applied using a backpack sprayer at 140 L ha-1 and 276 kPa, using 

TT110015 Turbo TeeJet wide angle flat fan nozzles. In 2016-2017, all plots were terminated on 

May 24, 2017 with glyphosate plus 2,4-D and saflufenacil with 2% AMS v/v (Table 3.4). In 

2017-2018, plots with cover crops were terminated using glyphosate on May 10, 2018 and plots 

without cover crops were terminated using paraquat on May 23, 2018. Plots with spring-applied 

no residual herbicide were sprayed on May 3, 2018 and did not receive a termination application. 

Timing of termination was before cover crop heading and when weeds were present, actively 

growing, and small. 

Liberty Link P37T09L soybeans were seeded perpendicular to the cover rows on June 7, 

2017 and parallel to the cover crop rows on May 26, 2018, at a rate of 346,000 seeds ha-1 in 38 

cm wide row spacings, using a Great Plains no-till drill spanning 4.6 m. Each year a POST 

application of glufosinate with 2% v/v AMS at a volume of 140 L ha-1 at 276 kPa was applied 

using a tractor-mounted sprayer on June 15, 2017 and on July 1, 2018 (Table 3.5). Clethodim 

was applied in the second year, on June 16, 2018 to control a flush of summer annual grass 

species (Table 3.5).  

Visual weed control was evaluated on a scale of 0 (no effect) to 100% (all plants dead) in 

the fall at 2, 4, 8, and 16 weeks after establishing fall treatments (WAFT) and in the spring 

before and after cover crops were terminated for both years. Horseweed height, density, and 

biomass and cover crop biomass were collected prior to cover crop termination from two random 

0.25 m2 quadrats in every plot in the first year. Horseweed and other weeds density and biomass 

and cover crop biomass were collected prior to termination from two random 0.25 m2 quadrats in 
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every plot in the second year. Additionally, cover crop biomass and all weeds biomass were 

collected on December 12, 2017 in the second year. All biomass samples were oven dried at 70 

C for 72 hours and then dry biomass was recorded. Cereal rye height was measured on several 

key dates during the growing season.  

Soybean plant density was determined at V2 (early vegetative) growth stage in each year.  

Additionally, soybean plants were collected on September 13, 2018 from 0.5 m of 2 rows (0.38-

m2) and leaf area, number of nodes, number of pods, and stem height were measured for each 

soybean plant. All weeds biomass was also collected. Soybean pods were pulled and placed into 

separate bags and remaining plant parts were bulk stored. All plant samples were oven dried at 

70 C for 72 hours and then dry biomass was recorded.  

Soybeans were harvested from each plot on November 1, 2017 in the first year to 

determine seed yield. Soybeans plants were clipped from 1.14 m2 quadrats and threshed using a 

stationary thresher and soybean seed weight was recorded. In year two, soybeans were harvested 

from each plot on October 23, 2018 to determine seed yield. Soybeans were collected from 6.1 

m2 quadrats and threshed using a stationary thresher and soybean seed weight was recorded. 

Data for visual weed control, horseweed density and biomass, other weeds density and 

biomass, cover crop biomass and height, and soybean health parameters were analyzed using 

PROC GLM procedure in SAS 9.4 (SAS Institute Inc., Cary, NC) and least significant 

differences (LSD) at an alpha of 0.05 was used to test for differences among treatments. Each 

year had different treatments and therefore, the years will be analyzed separately.  
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Results and Discussion 

 Weather and fall cover crop establishment 

The weather was different between year one and year two from the time of seeding cover 

crops in the fall to soybean harvest the following year. More specifically, fall weather was 

compared to spring weather to better understand effects of treatments. Cover crops can 

accumulate more biomass with warmer fall temperatures. Maximum and minimum yearly 

temperatures were higher than 30-yr averages in year one, and lower in year two (Table 3.6). 

From August to July 850 and 552 mm of precipitation was received in year one and two, 

respectively. Both years received less precipitation than the 30-yr average of 904 mm. Average 

maximum and minimum temperatures and precipitation were greater in the fall (measured 

August to October) and spring (measured February to April) of year one, compared to year two 

(Table 3.6)  

One week after seeding cover crops in the fall 15 and 53 mm of precipitation were 

received in year one and two, respectfully. Overall, the fall in year one was warmer than fall in 

year two. October maximum and minimum temperatures were 24.0 and 9.7 C, respectively, for 

year one and 14.4 and 1.6 C, respectively, for year two. From the time of seeding fall cover crops 

to the last day of December 56 and 140 GDD were accumulated in year one and two, 

respectively. Warm weather extending longer into fall may increase cover crop biomass in the 

fall. Between time of fall cover crop seeding to cover crop termination 284 and 276 GDD were 

accumulated in year one and two, respectively. The number of GDD were similar because cover 

crop termination timing was when cereal rye and winter triticale were in boot stage. 
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 Weed diversity for both years 

 The main weed of interest for this study was horseweed and it occurred with an average 

density of 24 plants m-2 in non-treated plots, but other weed species included Palmer amaranth 

(Amaranthus palmeri), henbit (Lamium amplexicaule), foxtail species (Setaria spp.), volunteer 

wheat, common chickweed (Stellaria media), prickly lettuce (Lactuca serriola), and dandelion 

(Taraxacum officinale) (Table 3.2). There were fewer summer annual and more winter annual 

species in year one compared to year two, and in year one there was a high presence of Palmer 

amaranth in certain areas of the field.  

 Fall weed control 

Visual weed control was evaluated for both herbicide and cover crops treatments. Year 

one and two were different and therefore will be reported separately. In year one, weed control 

was greatest with fall residual treatment at 92% (±1.8) and then fall no residual treatment with 

72% (±2.5) observed weed control, measured 8 weeks after fall treatment (WAFT) (Table 3.7). 

In a similar study it was observed that the emergence of winter annual weed species were 

reduced when a residual herbicide was added to the tank mixture, such as chlorimuron plus 

sulfentrazone plus 2,4-D, or chlorimuron plus tribenuron plus 2,4-D, compared to no residual in 

the mixture, such as glyphosate plus 2,4-D ( Monnig and Bradley 2008). 

Weed control was greater than 95% with fall residual and fall no residual treatments 16 

WAFT, but it is important to note that some plants may have died from continuous freeze and 

thaw cycles and not from the herbicides (personal observation). Weed control was lowest with 

fall-seeded cover crops by 8 WAFT (<10%), as cover crops were small (Table 3.7). Earlier cover 

crop seeding can increase cover crop biomass in the fall. It is recommended to seed cover crops 

as soon as temperatures are warm, moisture is adequate, and the ground is available.    
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Weed control was 94% by 8 WAFT with all fall-applied herbicide treatments and 

treatments with a mixture of cover crop and herbicide. Weed control with winter rye plus tillage 

controlled weeds the least compared to the other cover crop treatments. Tillage may have 

increased the germination of weeds by decreasing field residue.  

By December 2017, fall rye biomass was 73% greater than fall-seeded spring oat, 

however, many oat plants froze out by that point (Table 3.8). Winter rye reduced weed biomass 

by 78% and density by 75%, while the oat cover crop reduced weed biomass by 69% and density 

by 35%. By this point in the season most oat plants had died from cold temperatures. Lawley et 

al. (2011) found that rye and forage radish provided complete suppression of winter annual 

weeds such as horseweed and henbit during the fall cover crop growing season.  

 Spring cover crop establishment and weed control 

Spring triticale and spring oat cover crop stands were poor in the first year because 

weather conditions became cool and wet after seeding cover crops on March 11, 2017. From the 

time of seeding to the March 20, 2017 the average maximum and minimum temperatures were 

13.7 and 3.2 C, with 100 mm of precipitation occurring (Table 3.6). For maximum competition 

against weeds it is important to seed cover crops earlier and achieve a high level of plant 

establishment.  

Weeds did not grow as fast in the spring in the second year compared to the first year, 

therefore, the spring no residual treatment was applied later in the spring of the second year 

(March 20, 2017 vs May 3, 2018). Weed control during spring was different between years and 

will be reported separately by year. Weed control evaluation timing was relative to spring 

treatments but weed control across all treatments was evaluated.   
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Spring no residual and fall residual weed control levels were greater than 94% and fall no 

residual and fall triticale were greater than 88% on May 20, 2017 8 weeks after spring treatments 

(WAST), in year one (Table 3.9). Fall triticale plants were >80 cm tall at this point in the 

growing season (Table 3.10). Fall-seeded spring oat only controlled weeds by 8% at 8 WAST. 

In the second year, by April 2018 weed control evaluated in the fall reduced to 75% with 

fall residual and 52% with fall no residual herbicides evaluated in the spring (Figure 2.4). Weed 

control further reduced to 70% with fall residual and 20% with fall no residual by May 10, 2018, 

the day of cover crop termination. McCall (2018) found that fall herbicides suppressed biomass 

by 93% and density by 86%, compared to no fall application, but effectiveness of herbicides may 

depend on field and growing conditions of each year. Weed control was lower in the spring with 

fall-applied herbicide treatments as compared to the first year because weeds were small and 

dense and underlying a thick layer of residue, thus resulting in poor coverage and escaped weeds.  

Weed control in plots that include cereal rye (23 cm tall) increased from 30% to greater 

than 90% between the time of seeding cover crops in the fall to April 20, 2018 (Tables 3.9 and 

2.9). On April 20, 2018 winter rye was similar in size across treatments that included cereal rye 

(Table 3.10). Weed control in the same cereal rye plots was >94% and plants were 

approximately 78 cm tall by May 10, 2018. Other research indicated that cereal rye suppressed 

weed shoot biomass from 60 to 90% across years compared to a non-treated control in 

Wisconsin (Ateh and Doll 2018).   

 Weed control immediately prior to termination 

No horseweed plants remained with spring no residual in year one, but that was not the 

case in year two (Tables 3.11 and 3.12). Horseweed density was not reduced with spring 

treatments at the time cover crops were terminated, but horseweed biomass was reduced by 74%. 
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Weed control increased over the next two weeks as the herbicide treatment was still affecting the 

weeds.  

Horseweed density was reduced by 92% and horseweed biomass reduced by 86% with 

fall residual treatment compared to the non-treated check, which was greater than the fall-applied 

no residual treatment in year one (Table 3.11). Wilson and Worsham (1988) found that 

horseweed control was better, no matter the size of plants, when adding residual herbicides to the 

fall-applied mixture.  

Horseweed density was reduced by 83% and horseweed biomass by 30% with fall 

residual treatment compared to the non-treated check in the second year (Table 3.12). Horseweed 

density and biomass were greater with fall no residual compared to with residual. Fall no residual 

reduced horseweed density and biomass by 50 and 65%, respectively, and all other weeds 

density and biomass were reduced by 47 and 20%, respectively, compared to the non-treated 

control, in the second year (Table 3.12).  

Fall triticale reduced horseweed density and biomass by 78 and 84%, respectively, 

compared to the non-treated control in the first year. Fall-seeded spring oat reduced horseweed 

density and biomass by 45 and 31%, respectively, compared to the non-treated control. Other 

researchers found that winter hardy cover crops can significantly reduce weed biomass. For 

example, winter wheat reduced Palmer amaranth biomass by 97% (McCall 2018).  

Neither spring triticale or spring oat reduced horseweed density and biomass compared to 

the non-treated control by cover crop termination in the first year (Table 3.11). Establishment of 

spring cover crops were low due to cool and wet conditions after seeding. However, other 

researchers demonstrated that when spring-seeded cover crops, like spring oat, get established 

they significantly reduce Palmer amaranth biomass into early summer (McCall 2018).  
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Horseweed density was reduced by 80% and horseweed biomass was reduced by 94% 

with cereal rye treatment in the second year (Table 3.12). All other weeds densities and biomass 

were reduced more when a herbicide or tillage program was combined with cereal rye compared 

to cereal rye treatment alone, however, there was no difference in all other weeds biomass 

between the two treatments. Other researchers in Kansas found that weed density was not 

reduced much by cover crops, but weed biomass was reduced (Christenson 2015). Fall-seeded 

spring oat was not able to reduced horseweed density, but biomass was reduced by 45%.   

 Weed control after terminating plots 

Glyphosate was applied to terminate all plots prior to soybean seeding in year one (Table 

3.5). In year two, cover crops were terminated two weeks before soybean seeding with 

glyphosate and one week before soybean seeding non-cover crop plots were terminated with 

paraquat. 

Weed control increased in all plots after termination occurred, but the amount varied by 

treatment in the first year (Table 3.11 and 3.12). Winter triticale provided the greatest weed 

control after termination with 95% (±1.9) control observed. Weed control after termination was 

greater than 89% with fall residual, fall no residual, and spring no residual in year one. Spring-

seeded oat and triticale provided the lowest weed control after termination in year one (<31%) 

(Table 3.11). 

Weed control was similar across treatments two weeks after termination in the second 

year. The greatest weed control was with cereal rye plus a herbicide, providing greater than 97% 

observed weed control. Rye alone controlled weeds by 94% (±1.3) (Table 3.12). Fall residual 

provided the greatest weed control among treatments with herbicides only, with 94% (±1.8) 

observed weed control. Fall-seeded spring oat and fall no residual weed control was similar and 



54 

 

the lowest among treatments, with 77% and 84% observed weed control, respectively, in the 

second year (Table 3.12).  

 After seeding soybeans 

Soybean stands were more variable in the first year than the second year (Table 3.14). 

Plots with winter triticale had poor soybean stands; there were high levels of triticale biomass 

and when drilling soybean triticale plants were flattened, creating a thick layer of residue on the 

soil surface. This was followed by cool and wet conditions that suppressed soybean emergence 

(Table 3.14). This was less of an issue with cereal rye in the second year, as cereal rye biomass 

was considerably less compared to winter triticale. 

 Mid-to-late season soybean and weed assessment in year two 

Soybean densities ranged from 24 plants m-2 with cereal rye plus fall tillage to 37 plants 

m-2 with winter rye plus fall no residual, but there was no difference in soybean stands among 

treatments (Table 3.15). Overall, soybean leaf area was greater with fall treatments compared to 

spring treatments. The greatest number of pods per plant was with fall residual, compared to all 

other treatments. Cereal rye alone and the non-treated control had the fewest nodes, but there 

were no differences across the other treatments. Soybean height was lowest in the non-treated. 

Soybean biomass was lower with spring applied treatments. Overall, soybeans were just as 

healthy with cereal rye as with herbicide treatments.  

Horseweed density and biomass were greatest with fall-seeded spring oat and the fall 

residual herbicide treatment (Table 3.16). All other treatments had similar levels of weed control. 

All other weeds biomass was lowest with cereal rye, cereal rye plus fall or spring no residual, 

and spring no residual treatments. There were in horseweed biomass and density when 

comparing cover crops to herbicides. 
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 Soybean yield 

Soybean yield was greatest with spring no residual treatment with 2,633 kg ha-1 (±214) in 

year one (Table 3.17). Yield was the lowest with winter triticale and spring oat and spring 

triticale, compared to yields with herbicide treatments. Weed control in the spring was poor with 

spring cover crops, subsequently effecting yield. Among cover crop treatments fall-seeded spring 

oat yielded most with 1478 kg ha-1. Winter triticale controlled weeds similar to herbicide 

treatments up to soybean planting, but yield was low with winter triticale because soybeans were 

poorly established. There were no differences of soybean yield among all treatments (excluding 

weed-free and non-treated checks) in the second year.  

Conclusions 

 Winter triticale controlled horseweed and all other weeds from fall to soybean seeding 

similarly as the herbicide treatments in year one and treatments with cereal rye controlled weeds 

from fall to soybean seeding in year two. Burndown and cover crop termination applications 

controlled weeds better among treatments in the second year compared to the first year. There 

was a high density of winter annual weeds in the second year that competed against each other 

and were not able to grow as tall as weeds in the first year by time of termination. Fall treatments 

with residual herbicides were more effective at controlling horseweed and other weeds than 

without residual herbicides in the mix, but overall, spring residual controlled weeds the best 

going into soybean seeding, in both years. In Kansas, sometimes horseweed can behave as a 

summer annual and germinate in the spring. In this case, fall-applied herbicides would need last 

long in the soil, or an additional application would need to be made in the spring. Based on this 

research, a producer could wait until spring to make herbicide applications, with effective modes 

of action, to control winter annual weeds in similar environments. However, if winter annual 
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weeds are big or resistant to the herbicides in the system, herbicide applications may be less 

effective. Winter hardy cover crops are a good alternative to herbicides for horseweed 

management, as  they provide similar weed control to fall-applied herbicides both with and 

without residual and to spring applied herbicides, but keep in mind that weed density was not 

reduced nearly as much as biomass with cover crops in this study, however, weed control will 

likely be excellent when weeds are small. Burndown/termination would likely need to include 

glyphosate plus another herbicide with a different site of action, in case of resistance, to kill any 

small weeds and the grass cover crop. Good soybean establishment and control of weeds after 

soybean seeding is essential to maintain high soybean yield potential. Soybean establishment in 

the second year was better in cover crop plots compared to year one because cover crops were 

terminated at boot stage in year two and at heading in year one. It is important to terminate cover 

crops before heading because cereals will lay over quickly and create thick residues that can lock 

in moisture and cooler air in the furrow, making it difficult for soybeans to emerge. With good 

establishment of winter hardy cover crops in the fall and good soybean establishment in the early 

summer, winter annuals weeds, such as horseweed, can be controlled in similar levels with 

winter hardy cereal cover crops as the best herbicide treatments used in this study.  
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Table 3.1 Study locations and soil types for each year.  

 

 

Year 

Location 

Name 

 

Coordinates 

 

Soil Type 

 

Landform 

Parent 

Material 

Water Storage 

Capacity 

2016-2017 Manhattan, 

KS 
39.215394° W 

96.598889° N 

Smolan 

silt loam 

Paleoterraces Loess Moderately low 

to moderately 

high 

2017-2018 Manhattan, 

KS 
39.220357° N 

96.580446° W 

Kahola 

silt loam 

Flood plains Alluvium Moderately high 

to high 
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Table 3.2 Initial horseweed density (mean and SE) for both years. 

Years Treatments Horseweed density 

  plants 0.25 m-2 (SE) 

2016-2017 Fall-seeded spring oat 2.3 (4.3) 

 Winter triticale 3.5 (6.7) 

 Fall no residual 5.3 (5.4) 

 Fall residual 5.5 (10.7) 

 Spring oat 10.3 (11.3) 

 Spring triticale 10.3 (6.7) 

 Spring no residual 6.2 (4.5) 

 Non-treated check 11.5 (12.3) 

 Weed-free check 7.8 (7.1) 

2017-2018 Fall-seeded spring oat 8.2 (2.5) 

 Fall rye 12.8 (4.4) 

 Fall no residual 7.8 (4.6) 

 Fall residual 16.5 (13.6) 

 Fall rye + fall no residual 19.5 (8.7) 

 Fall rye + fall tillage 6.9 (4.6) 

 Fall rye + spring no residual 9.3 (3.7) 

 Spring no residual 4.8 (2.1) 

 Non-treated check 9.3 (3.5) 

 Weed-free check 16.8 (3.5) 
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Table 3.3 Common name, trade name, and manufacture. 

 

Common Name Trade Name Manufacturer 

dicamba Clarity BASF, Ludwigshafen, Germany 

2,4-D 2,4-D LV4 Albaugh, Inc., Ankeny, IA 

flumioxazin Valor Valent U.S.A. Corporation, Walnut Creek, CA 

chlorimuron Classic Corteva (Dupont) Indianapolis, IN 

glyphosate Roundup PowerMax Bayer (Monsanto), Leverkusen, Germany 

saflufenacil Sharpen BASF, Ludwigshafen, Germany 

glufosinate Liberty  Bayer CS, Leverkusen, Germany 

paraquat Gramaxone SL Syngenta, Basel, Switzerland 

clethodim Select Max  Valent U.S.A. Corporation, Walnut Creek, CA 
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Table 3.4 List of establishment season, treatments, herbicides, and rates for each year.   

 

All cover crops were seeded at 112 kg ha-1, except fall-seeded spring oat in 2017-2018, which 

was seeded at 90 kg ha-1.  

 

 

  

 

Year 

 

Timing 

 

Treatments 

 

Herbicides 

Herbicide rate 

(g ai/ae ha-1) 

2016-2017 Fall Spring oat   

  Winter triticale   

  No residual dicamba + 2,4-D 71+1135 

  Residual dicamba + 

flumioxazin + 

chlorimuron 

285+85+29 

 Spring Spring oat   

  Spring triticale   

  No residual dicamba + 2,4-D 71+1135 

2017-2018 Fall Spring oat   

  Cereal rye   

  Cereal rye + no residual saflufenacil 98 

  Cereal rye + tillage   

  Cereal rye + spring no residual dicamba + 2,4-D 71+1135 

  No residual dicamba + 2,4-D 71+1135 

     

  Residual dicamba + 

flumioxazin + 

chlorimuron 

285+85+29 

 Spring No residual dicamba + 2,4-D 71+1135 
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Table 3.5 Additional herbicide application made each year. 

 

Year Applications Herbicides Rate Adjuvants 

   g ai/ae ha-1 v/v 

2016-2017 cover crop termination glyphosate + 2,4-D + 

saflufenacil 

1270 + 544 + 25 2% AMS 

 maintenance glufosinate 740 2% AMS 

2017-2018 cover crop termination glyphosate 1125 2% AMS 

 cover crop termination paraquat 1686  

 maintenance clethodim 281 NIS 0.25% + 

AMS 2% 

 maintenance glufosinate 740 2% AMS 
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Table 3.6 Monthly maximum and minimum and 30-yr average temperature (C) and 

precipitation for each study year for Manhattan, KS. 

 

 Temperature Precipitation 

  

2016-2017 

 

2017-2018 

30-yr 

Average 

 

2016-2017 

 

2017-2018 

30-yr 

Average 

Month Max Min Max Min Max Min    

 C mm 

August 30.4 19.8 29.1 16.8 32.3 18.8 149.6 144.0 104.6 

September 28.6 16.5 29.5 15.7 27.7 13.2 156.9 33.0 87.1 

October 24.1 9.7 14.4 1.6 20.9 6.2 55.1 3.3 68.3 

November 17.4 4.0 14.4 1.6 13.0 -0.7 10.9 3.3 43.9 

December 5.6 -6.5 6.9 -5.2 5.8 -6.7 19.1 2.8 27.2 

January 6.3 -4.6 5.7 -7.4 4.8 -8.1 34.3 14.2 16.0 

February 13.5 -0.7 7.2 -6.7 8.1 -5.9 11.7 14.5 27.4 

March 15.2 2.9 14.3 0.7 13.9 -0.9 100.6 15.2 63.2 

April 19.5 7.9 16.2 1.6 19.6 5.4 114.8 38.6 80.5 

May 24.7 11.6 30.2 15.8 24.8 12.0 80.0 96.0 129.3 

June 31.2 17.9 33.1 20.4 30.1 17.2 74.4 65.3 144.8 

July 33.7 21.1 33.6 20.1 33.1 20.2 38.9 61.5 112.3 

Total precip.       850 552 904 
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Table 3.7 Weed control (% and SE) observed 2, 4, 8, and 16 weeks after fall treatments 

(WAFT) for each year. Means followed by the same letter in a column were not different at 

α=0.05. 

 

Year Treatments 2 WAFT 4 WAFT 8 WAFT 16 WAFT 

  -----------------------------% (SE)----------------------- 

2016-2017 Fall-seeded spring oat 0 d 6 (6.3) d 9 (4.8) d 33 (24) c 

 Winter triticale  5 (3.5) c 8 (2.5) c 11 (1.3) c 80 (3.3) b 

 Fall no residual 16 (2.4) b 51 (1.3) b 71 (2.4) b 96 (0.3) a 

 Fall residual 63 (4.3) a 79 (3.1) a 91 (1.3) a 97 (0.5) a 

2017-2018 Fall-seeded spring oat 4 (0.9) d 6 (1.3) c 18 (1.4) cd 22 (1.8) c 

 Cereal rye  4 (0.8) d 13 (5.9) c 31 (3.4) b 33 (1.4) b 

 Fall no residual 65 (3.5) c 82 (2.7) ab 93 (1.2) a 96 (0.8) a 

 Fall residual 74 (1.8) b 81 (3.1) b 94 (2.1) a 96 (1.0) a 

 
Cereal rye + fall no residual 84 (2.2) a 91 (0.6) a 95 (2.5) a 97 (0.7) a 

 Cereal rye + fall tillage 9 (2.2) d 11 (4.7) c 24 (3.1) cd 29 (2.4) bc 

 
Cereal rye + spring no residual 6 (0.9) d 13 (3.9) c 27 (3.1) bc 34 (1.5) b 
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Table 3.8 Cover crop biomass and weed biomass and density sampled in December of year 

two. Means followed by the same letter in a column were not different at α=0.05. 

 

Treatment Cover crop biomass Weeds biomass Weeds density 

 g m-2 (SE) g m-2 (SE) plants m-2 (SE) 

Non-treated control 0 17.3 (2.7) c 146 (34) c 

Fall-seeded spring oat 12.5 (2.5) b 9.4 (0.9) b 95 (16.1) b 

Cereal rye 45.4 (11.2) a 4 (1.3) a 40 (12.2) a 
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Table 3.9 Weed control (% and SE) at 2, 4 and 8 weeks after spring treatments (WAST) for 

each year. Means followed by the same letter in a column for each year were not different 

at α=0.05. 

 

Year Treatment  2 WAST 4 WAST 8 WAST 

2016-2017   --------------------------- % (SE)-------------- 

 Fall-seeded spring oat  19 (2.5) d 26 (21.4) c 9 (4.8) c 

 Winter triticale   64 (5.0) b 81 (3.1) b 88 (1.4) b 

 Fall no residual  95 (0.3) a 95 (0.5) a 91 (0.8) ab 

 Fall residual  95 (1.8) a 94 (1.2) a 95 (2.9) a 

 Spring-seeded spring oat  5 (1.3) e 3 (1.2) d 6 (1.3) c 

 Spring-seeded spring triticale  2.5 (1.4) e 5 (0.0) d 5 (0.0) c 

 Spring no residual  56 (3.1) c 80 (4.6) b 94 (0.8) a 

2017-2018 

 

Before Spring 

App. 

1 WAST 2 WAST 3 WAST 

  ------------------------------- % (SE) ------------------------------- 

 Fall-seeded spring oat 10 (2.0) d 14 (2.4) d 81 (2.4) bc 77 (3.6) b 

 Cereal rye  95 (1.0) a 95 (0.3) a 95 (0.3) a 94 (1.3) a 

 Fall no residual 53 (6.0) c 33 (3.2) d 30 (2.5) d 38 (8.3) d 

 Fall residual 78 (3.2) b 70 (7.4) b 64 (8.0) c 58 (3.2) c 

 Cereal rye + fall no residual 94 (0.8) a 95 (0.5) a 96 (1.0) a 95 (0.9) a 

 Cereal rye + fall tillage 94 (0.8) a 93 (1.4) a 97 (0.9) a 95 (0.3) a 

 Cereal rye + spring no residual 93 (1.2) a 94 (1.3) a 96 (1.2) a 97 (0.8) a 

 Spring no residual 0 31 (7.5) c 82 (1.3) bc 86 (2.5) ab 

In year one, all treatments were assessed later into the growing season, as spring treatments were 

established earlier than year two. In year two, 2 and 3 WAST include terminating herbicide for 

cover crop plots but not for herbicide plots. 
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Table 3.10 Winter rye height and SE for year two. Means followed by the same letter in a 

row were not different at α=0.05. 

 

Sampling Dates Cereal rye Cereal rye + 

fall no residual 

Cereal rye + 

fall tillage 

Cereal rye + spring 

no residual 

 ------------------------------------cm (SE)---------------------------------------- 

12/12/2017 9.5 (0.6) b 9.2 (0.6) b 10.5 (1.1) a 8.9 (0.5) b 

2/18/2018 12.0 (1.1) a 12.5 (0.8) a 11.4 (1.3) a 11.0 (1.2) a 

4/20/2018 22.5 (0.3) b 21.0 (1.6) b 24.0 (1) a 23.2 (1.7) a 

5/8/2018 78.7 (2.3) a 73.7 (2.1) b 80.0 (3.3) a 79.0 (1.6) a 
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Table 3.11 Horseweed height, density, and biomass prior to cover crop termination, and 

weed control by 4 weeks after termination (WAT) in year one. Means followed by the same 

letter in a column were not different at α=0.05. 

 

 Horseweed Weed control 

Treatments height density biomass 4 WAT 

 cm (SE) plants m-2 (SE) g m-2 (SE) % (SE) 

Fall-seeded spring oat 24 (7.0) c 24 (18.2) c 195 (112.6) c 45 (10.8) c 

Winter triticale 24 (2.2) c 11 (8.1) b 45 (37.6) b 95 (1.9) a 

Fall no residual 8 (7.1) b 20 (40.4) c 130 (120.6) c 89 (2.5) b 

Fall residual 8 (6.3) b 4 (8.3) a 40 (38.4) b 91 (2.2) ab 

Spring-seeded spring oat 21 (1.7) c 45 (23.1) cd 255 (101.5) d 25 (4.0) d 

Spring-seeded spring triticale 28 (5.1) d 64 (21.7) cd 340 (96.6) e 31 (4.7) d 

Spring no residual  0 a 0 a 0 a 90 (1.0) b 

Non-treated check 27 (1.5) d 49 (19.5) cd 280 (108.2) d 0 e 

Weed-free check 12 (4.5) b 4 (4.4) a 36 (19.3) b 98 (1.8) a 
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Table 3.12 Density and biomass of horseweed and other weeds prior to cover crop 

termination and efficacy of weed control at 1 and 2 weeks after termination (WAT), in year 

two. Means followed by the same letter in a column were not different at α=0.05. 

 

 Horseweed Other weeds Weed control 

Treatments density biomass density biomass 1 WAT 2 WAT 

 plants m-2 

(SE) 

g m-2 (SE) plants m-2 (SE) g m-2 (SE) 
----------% (SE)---------- 

Fall-seeded 

spring oat 
78 (18.6) d 7.1 (2.9) cd 121 12.3) de 60.8 (9.8) c 81 (2.4) c 77 (3.6) c 

Cereal rye 13 (5.3) a 1.1 (0.4) ab 63 (16.5) abc 6.3 (1.5) a 95 (0.3) a 94 (1.3) ab 

Fall no residual 31 (10.9) c 5.3 (1.7) bc 70 (13.2) cd 57.8 (14.6) 

c 

88 (0.5) b 84 (1.4) b 

Fall residual 11 (4.1) a 10.6 (3.4) d 61 (19.2) abc 34.5 (7.8) b 95 (1.2) ab 94 (1.8) ab 

Cereal rye + fall 

no residual 

8 (3.7) a 0.8 (0.4) ab 24 (5.2) abc 8.2 (3.2) a 95 (1.0) ab 97 (0.9) a 

Cereal rye + fall 

tillage  

11 (5.3) ab 1.9 (1) ab 19 (2.5) abc 3.9 (0.9) a 95 (0.9) ab 97 (0.5) a 

Cereal rye + 

spring no residual 

16 (13.5) ab 0.4 (0.3) ab 14 (5.3) ab 3.2 (0.3) a 98 (1.2) a 97 (1.1) a 

Spring no residual 24 (4.9) b 2.6 (1.7) abc 57 (18.2) abc 34.1 (7.7) b 
* 

89 (9.7) b 

Non-treated 

control 

62 (23.9) cd 15.3 (1.6) d 130 (43.7) e 71.6 (10.6) 

c 

0 d 0 d 

Weed-free control 2.5 (1) a 1.2 (0.4) a 9 (1) a 3.3 (1) a 99 a 99 (0.6) a 

**Spring no residual did not receive a terminating herbicide.  
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Table 3.13 Cover crop biomass and SE prior to termination for both years. Means followed 

by the same letter in a column were not different at α=0.05.   

 

Years Treatments Biomass  

  g m-2 (SE) 

2016-2017 Fall-seeded spring oat 325 (60) b 

Winter triticale 1210 (109) a 

Spring-seeded spring oat 30 (24) c 

Spring-seeded spring 

triticale 

33 (9) c 

2017-2018 Fall-seeded spring oat 31 (4.3) c 

 Cereal rye 689 (12.3) a 

 Cereal rye + fall no residual 557 (18.8) b 

 Cereal rye + fall tillage 676 (15.6) a 

 Cereal rye + spring no 

residual 

598 (25.4) b 
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Table 3.14 Soybean stands 4 weeks after seeding for each year. Means followed by the same 

letter in a column were not different at α=0.05.   

 

Year Treatments Soybean stand 

  Plants m-2 (SE) 

2016-2017 Fall-seeded spring oat 30.5 (2.6) a 

 Winter triticale 15.3 (2.1) c 

 Fall no residual 29.3 (3.1) a 

 Fall residual 27.3 (4.5) a 

 Spring-seeded spring oat 24.5 (2.9) b 

 Spring-seeded spring triticale 25.5 (3.4) a 

 Spring no residual 31.5 (2.3) a 

 Non-treated control 28.5 (2.8) a 

 Weed-free control 30.8 (2.6) a 

2017-2018 Fall-seeded spring oat 33.5 (2.1) a 

 Cereal rye 33.1 (1.1) a 

 Fall residual 28.8 (1.7) b 

 Fall no residual 27.3 (2.1) bc 

 Cereal rye + fall no residual 34.3 (1.8) a 

 Cereal rye + fall tillage 23.5 (2.2) c 

 Cereal rye + spring no residual 34.5 (2.1) a 

 Spring no residual 27.3 (1.7) bc 

 Non-treated check 30.5 (0.8) b 

 Weed-free check 30.1 (2.3) b 
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Table 3.15 Mid-season soybean health assessment for year two. Means followed by the 

same letter in a column were not different at α=0.05.   

 

Treatments  Soybean 

 Stand LA Pods Nodes Height Stems Pods Leaves 

 plants m-2 cm2 plant-1 ---------No. plant-1-------- cm plant-1 ---------------------g m-2----------------------- 

Fall-seeded 

spring oat 36 (4) a 1604 (253) a 88 (4) b 17 (0.4) a 155 (25) a 239 (34) a 587 (73) a 135 (38) ab 

Winter rye 33 (4) a 1258 (55) b 84 (6) bc 16.5 (0.4) b 162 (27) a 281 (69) a 662 (52) a 154 (59) a 

Fall residual 28 (4) bc 1346 (407) b 93 (19) b 17.5 (0.7) a 161 (25) a 214 (62) a 461 (63) b 198 (56) a 

Fall no 

residual 28 (5) bc 1901 (401) a 107 (11) a 17 (0.8) a 162 (29) a 253 (82) a 604 (203) a 143 (38) a 

Winter rye + 

fall no residual 37 (4) a 1666 (228) a 89 (9) b 17 (0.5) a 168 (16) a 213 (25) a 617 (30) a 150 (8) a 

Winter rye + 

fall tillage 24 (2) c 1801 (304) a 94 (5) b 17.5 (0.6) a 167 (30) a 223 (65) a 528 (42) b 131 (53) ab 

Winter rye + 

spring no 

residual 37 (3) a 1309 (200) b 94 (8) b 17 (0.3) a 164 (24) a 271 (116) a 533 (117) b 148 (76) a 

Spring no 

residual 28 (5) bc 1109 (163) b 94 (8) b 17 (0.7) a 153 (23) a 257 (47) a 570 (68) b 138 (54) ab 

Non-treated 

control 31 (2) b 991 (102) c 95 (9) b 15.5 (0.1) b 136 (22) b 171 (56) b 503 (43) b 113 (48) b 

Weed-free 

control 30 (3) b 1885 (197) a 87 (5) b 17 (0.5) a 168 (19) a 267 (68) a 638 (91) a 150 (53) a 
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Table 3.16 Mid-to-late season horseweed biomass and density and other weeds biomass for 

year two. Means followed by the same letter in a column were not different at α=0.05.  

  

 Horseweed Other weeds 

Treatments density biomass biomass 

 plants m-2 (SE) -------------g m-2 (SE)---------- 

Fall-seeded spring oat 35 (5.5) c 14 (3.1) c 19 (2.2) c 

Cereal rye 8 (2.0) a 5 (6.6) b 5 (2.9) a 

Fall residual 23 (12.3) bc 2 (2.0) ab 17 (13.6) c  

Fall no residual 4 (3.9) a 1 (0.7) a 18 (17.5) c 

Cereal rye + fall no residual 1 (0.7) a 1 (0.7) a 6 (3.5) a 

Cereal rye + fall tillage 1 (0.8) a 2 (2.9) a 4 (2.1) a 

Cereal rye + spring no residual 1 (0.7) a 1 (0.7) a 12 (10.1) b 

Spring no residual 0 a 0 a 7 (4.7) a 

Non-treated check 10 (7.4) b 12 (1.5) c  21 (3.9) c 

Weed-free check 3 (3.3) a 1 (0.8) a 4 (3.1) a 
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Table 3.17 Soybean yield and SE for each year. Means followed by the same letter in a 

column were not different at α=0.05.   

 

Years Treatments Yield 

  kg ha-1 (SE) 

2016-2017 Fall-seeded spring oat 1478 (229) c 

 Winter triticale 1283 (198) c 

 Fall no residual 2229 (180) b 

 Fall residual 2548 (166) a 

 Spring oat 1427 (153) c  

 Spring triticale 1279 (101) c 

 Spring no residual  2633 (214) a 

 Non-treated control 1238 (96) c 

 Weed-free control 2762 (131) a 

2017-2018 Fall-seeded spring oat 2913 (184) a 

 Cereal rye 3098 (203) a 

 Fall no residual 2974 (54) a 

 Fall residual 3377 (109) a 

 Cereal rye + fall no residual 2948 (230) a 

 Cereal rye + fall tillage  2820 (308) a 

 Cereal rye + spring no 

residual 
3121 (171) a 

 Spring no residual 3033 (183) a 

 Non-treated control 2605 (177) b 

 Weed-free control 3266 (89) a 
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Chapter 4 - Application Timing of PPO-inhibitor Herbicides 

Influences Level of Palmer Amaranth Control 

 Abstract 

Application timing is critical for postemergence PPO-inhibitor herbicides to control Palmer 

amaranth because of rapid weed growth. The best herbicide option needs to be selected based on 

weed height and growth stage. A field experiment was conducted in 2016 and repeated in 2017, 

near Manhattan, KS to evaluate application timing of three PPO-inhibitor herbicides for Palmer 

amaranth control. Seven application timings were evaluated for each of three herbicides. 

Herbicides were applied every three days for 18 days, starting when the average height of Palmer 

amaranth in the field was 2.5 cm. Acifluorfen, fomesafen, and lactofen were applied at 426 g ha-

1, 280 g ha-1, and 224 g ha-1, respectively, in 140 L ha -1 spray solution in combination with 

methylated seed oil at 1.2 L ha-1 and ammonium sulfate at 2.3 L ha-1. Palmer amaranth height 

was documented prior to each herbicide application timing. Visual control was evaluated at one 

and two week intervals after each herbicide application timing. Palmer amaranth control was 

below an acceptable level (70%) when lactofen was applied six days after initial application, 

while acifluorfen and fomesafen still provided acceptable control (>95%). All herbicides applied 

12 days after the initial application resulted in 65% Palmer amaranth control or less, with Palmer 

amaranth 30 cm tall and corresponded to a growth rate of 2.5 cm per day. Due to the fast growth 

rates of Palmer amaranth, PPO-inhibitor herbicides must be applied within 3 days after plants 

reach 2.5 cm to achieve greater than 90% control of Palmer amaranth.   
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 Introduction 

Palmer amaranth is currently ranked by as the most problematic weed in the U.S. (WSSA 

2019). Among Amaranthus species, Palmer amaranth has the fastest growth rate and the greatest 

maximum growth compared to waterhemp and redroot pigweed (Horak and Loughin 2000). 

Palmer amaranth reached 10 cm tall two weeks after seeding and was at least 78% larger than all 

other five Amaranthus species that were studied when not competing with a crop (Sellers et al. 

2003).  

A single Palmer amaranth plant can be extremely competitive against crops. Densities of 

1, 2, 3 and 10 plants m-1 of soybean row reduced yield by 32, 48, 64, and 68%, respectively 

(Klingaman & Oliver, 1994). One plant can produce between 200,000 to 600,000 seeds if it 

emerges between March and June (Keeley et al. 1987) and 32 plants 6 m-1 of row can produce 

1.2 billion seeds ha-1 (Burke et al. 2007).  

Palmer amaranth can emerge many times during summer months in KS, once the right 

temperature is reached and soil moisture is adequate. All Palmer amaranth and smooth pigweed 

seed germinated on the first day at a temperature of 30 C, while seven other Amaranthus species 

required three to eight days to achieve 50% emergence. Germination increased with increased 

temperatures, with < 8% emergence at 5 C and > 71% at 35 C (Steckel et al. 2006). Palmer 

amaranth growth rate was greatest at higher temperatures and likely due to its extensive growth 

and high photosynthetic rates. The largest root volume among three Amaranthus species was in 

Palmer amaranth grown at 35/30 C (Guo and Al-Khatib 2003).  

Palmer amaranth populations were identified to be resistant to six herbicide modes of 

action (MOA) in KS (Heap 2019). These MOA include PSII, HPPD, ALS, EPSPS, PPO and 

synthetic auxin inhibitors. The specific herbicides are atrazine, mesotrione, tembotrione, 
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topramezone, pyrasulfotole, thifensulfuron-methyl, imazethapyr, glyphosate, and 2,4-D. 

Additionally, Palmer amaranth has developed resistance to microtubule inhibitors in TN and NC 

and protoporphyrinogen oxidase (PPO) inhibitors in AR, TN, and IL (Heap 2019). 

PPO-inhibitor herbicides applied POST have been very effective at controlling Palmer 

amaranth, but they do not provide good control when used as “rescue” applications for escaped 

weeds late in the soybean growing season because weeds are too tall (Johnson and Legleiter, 

2013). Grichar (1997) evaluated the control of Palmer amaranth in peanuts and found that 

acifluorfen at 560 g ha-1, when applied early POST controlled 94% of Palmer amaranth plants 

and lactofen at a rate of 280 g ha-1 provided 99%. For each herbicide used in this study, the 

labels sate that if Palmer amaranth plants are taller than approximately 14 cm or have more than 

six true leaves applications will not be effective (Anonymous 2019). Fomesafen and lactofen 

must be applied before Palmer amaranth is 8 cm tall to be effective (Prostko 2011; Steckel et al. 

2012) and if that window is missed, it is recommended that soybean crops in the southern U.S. 

be plowed under and replanted because of impending competition (Norsworthy et al. 2012; 

Steckel et al. 2012).  

To effectively control Palmer amaranth with PPO-inhibitor herbicides, applications must 

be made when weeds are small. However, because of Palmer amaranth’s fast growth rate, it can 

be difficult to determine when to apply these herbicides. The objective of this study was to 

determine the impact of time of application of three different PPO-inhibitor herbicides on Palmer 

amaranth control in a no-crop situation.   
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 Materials and Methods 

Field experiments were conducted in 2016 and in 2017 at the Department of Agronomy 

Ashland Bottoms Research Farm near Manhattan, KS. The experimental design was a split plot 

with four replications in a no-crop situation. Main plots were seven application timings and 

subplots were three PPO-inhibitor herbicides. One non-treated control treatment was included. 

Each herbicide was applied on three-day intervals for 18 days starting when average height of 

Palmer amaranth was 2.5 cm tall. The first herbicide application was July 10 in 2016 and May 25 

in 2017. Acifluorfen, fomesafen, and lactofen were applied separately and at labeled rates for 

Palmer amaranth control in soybeans (Table 4.1). Rates for acifluorfen were 426 g ha-1, 

fomesafen at 280 g ha-1, and lactofen at 224 g ha-1. Each herbicide treatment was made in 

combination with methylated seed oil at 1.2 L ha-1 and urea ammonium sulfate at 2.3 L ha-1. All 

herbicide treatments were applied using a CO2 backpack sprayer with four Turbo Teejet 11002 

nozzles (TeeJet Technologies, Wheaton, IL) spaced 48 cm apart and calibrated to deliver 140 L 

ha-1 spray solution at an operating pressure of 276 kPa.  

Average height of Palmer amaranth plants in 0.25 m-2 per subplot were measured 

immediately prior to each herbicide application. Palmer amaranth height data were modeled over 

time and a 3-parameter sigmoid model was fit in SigmaPlot 12.3 (Systat Software, Inc): 

𝑦 =
𝑎

1+𝑒
(

𝑥−𝑥𝑜
𝑏

)
      Equation 4.1 

Visual injury of Palmer amaranth was evaluated at one and two weeks after treatment 

(WAT) on a scale of 0 (no injury) to 100% (all plants died). Visual control ratings were analyzed 

in SAS using PROC GLM procedure to determine which herbicides worked best and when. 
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 Results and Discussion 

The average density of Palmer amaranth in the experiment was 37 plants m-2. The rate of 

Palmer amaranth growth was approximately 3 cm (± 1.3) per day between July 10 and 28, 2016. 

It grew from 2.5 to 38 cm tall in that period of 18 days. In the second year, the rate of growth 

was 3.8 (± 2.9) cm per day between May 25 and June 10. It grew from 2.5 to 72 cm over this 

period of 18 days (Figure 4.1).  

A 3-parameter, sigmoidal model was used to describe parameters of Palmer amaranth 

growth in height. The maximum estimated height of Palmer amaranth was greater in 2017, and 

specifically was estimated to be 43 cm (±3) in 2016 and 122 cm (±27) in 2017 (Table 4.2). 

Growth of Palmer amaranth was faster in 2016 than in 2017; in 2016 the steepness of the curve 

was 4.5 (±0.6) and 3.8 (±0.6) in 2018. Critical height for control is 10 cm and it took only six 

days for Palmer amaranth to grow from 2.5 to 10 cm in both years.   

Differences in Palmer amaranth percent control were observed in 2016 and 2017. There 

was no interaction between main effects of application timing and herbicides; therefore, data for 

each effect will be reported separately for each year. 

Across all application timings, herbicides controlled Palmer amaranth differently in 2016, 

but no differences in percent control were observed in 2017 (Figures 4.2 and 4.3). In 2016, 

acifluorfen was the best herbicide, providing 83 and 80% control at 1 and 2 WAT, respectively; 

fomesafen provided 79 and 72% control at 1 and 2 WAT, respectively, while lactofen provided 

69 and 62% control at 1 and 2 WAT, respectively. Although herbicide rates were slightly greater, 

Grichar (1997) evaluated the control of Palmer amaranth in peanuts and found that acifluorfen at 

560 g ha-1, when applied early POST controlled 94% of Palmer amaranth plants in 2 of 3 years 
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of the study. Lactofen at a rate of 280 g ha-1 provided better control at 99% compared to 

acifluorfen in the same 2 of 3 years. 

In 2017, each herbicide controlled Palmer amaranth by at least 66 and 59% at 1 and 2 

WAT, respectively, across all application timings. The timing of application was more important 

than the specific PPO-inhibitor herbicide.  

There were differences in Palmer amaranth percent control in both 2016 and 2017 among 

the different application timings. Overall, as the time of application was delayed, percent control 

of Palmer amaranth control decreased (Figures 4.3 and 4.4). When herbicides were applied by 

the first two timings (0 and 3 days), Palmer amaranth control was at least 95% in 2016 and near 

100% in 2017; 12 days later Palmer amaranth control was reduced to 40 and 30%, in 2016 and 

2017, respectively.  

In 2017, applications made three days later (18 days) resulted in only 15% control of 

Palmer amaranth. Bell et al. (2015) found that Palmer amaranth control with glufosinate at 595 g 

ha-1 plus S-metolachlor at 1,217 g ha-1 plus fomesafen at 266 g ha-1 applied 21 days after planting 

(DAP) followed by glufosinate at 738 g ha-1 plus acetochlor at 1,260 g ha-1 applied 42 DAP, was 

26, 50, and 18% in 19, 45, and 90 cm soybean row spacings, respectively. Control was low 

because Palmer amaranth was at least 10 cm tall at the time of application.  

Once Palmer amaranth plants are noticed in the field, they are likely already 2.5 cm tall 

and these results suggest that applications must be made within 6 days from observing 2.5 cm 

tall Palmer amaranth plants or by the time plants are 8 cm tall to achieve greater than 95% 

control. Given Palmer amaranth’s competitiveness, even 95% control may not be good enough in 

the long-term. Massinga et al. (2001) reported that 0.5 Palmer amaranth plants m-1 row can 

decrease corn yield by 11%. Bensch et al. (2003) found that 8 Palmer amaranth plants m-1 row 



82 

 

can reduced soybean yield by 78.7, 56.2, and 38.0% for Palmer amaranth, common waterhemp, 

and redroot pigweed, respectively. Furthermore, one female Palmer amaranth plant can produce 

200,000 to 600,000 seeds (Keeley et al. 1987).  

Growers need to control all plants in their fields to ensure greater yields and decrease the 

chance of developing herbicide resistant biotypes. In a field study, less than two years after 

introducing 20,000 glyphosate resistant seeds into a 1 m-2 area, seeds were found in 1,000 m-2   

(Norsworthy et al. 2014).  

For each PPO-inhibitor herbicide studied, the label indicated that applications are not 

permitted when Palmer amaranth plants no taller than 7.5 cm or have more than six true leaves 

(Anonymous 2019). This research coincides with what is already mentioned in each herbicide 

label, however, keeping in mind that 10 cm tall plants is the absolute maximum height that one 

should apply PPO-inhibitor herbicides to effectively control Palmer amaranth; and to achieve 

this it must be done within six days after Palmer amaranth has reached 2.5 cm tall.  
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Table 4.1 Herbicide common name, trade name, application rate, product concentration, 

and manufacturer for the herbicides used in this study. 

 

Herbicide Trade name Rate (g ai ha-1) Manufacturer Location 

acifluorfen Ultra Blazer ® 426 United Phosphorus. King of Prussia, PA 

fomesafen Flexstar ® 280 Syngenta Basel, Switzerland 

lactofen Cobra ® 224 Valent Walnut Creek, CA 
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Table 4.2 Parameter estimates describing Palmer amaranth growth over time in 2016 and 

2017, using Equation 4.1.  

 

Year Parameter Estimates R2 

 a (SE) b (SE) 𝑥0 (SE)  

 cm  days  

2016 43 (3) 4.5 (0.5) 10 (0.8) 0.92 

2017 122 (27) 3.8 (0.6) 16 (1.8) 0.90 
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Figure 4.1 Height of Palmer amaranth measured every three days, prior to each herbicide 

application, starting on day 0, for 2016 and 2017.  
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Figure 4.2 Palmer amaranth control with three PPO herbicides, averaged across 

application timings in 2016. 
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Figure 4.3 Palmer amaranth control with three PPO herbicides, averaged across 

application timings in 2017. 
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Figure 4.4 Palmer amaranth control within an application timing, averaged across 

herbicides in 2016. 
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Figure 4.5 Palmer amaranth control within an application timing, averaged across 

herbicides in 2017. 
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