DEVELOPMENT OF HARD WHITE WINTER WHEATS FOR A HARD RED WINTER WHEAT REGION

by

Madhusudan P. Upadhyay

B. S. Ag (Hons.), University of Udaipur

Rajasthan, India

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

AGRONOMY

KANSAS STATE UNIVERSITY Manhattan, Kansas

1984

Approved by:

1. Deyn Co-major professor

20-major professor

LD 2668		TA	BLI	E (ΟF	С	ONT	CEN	JT S	3										
.T4 1984 .U62		Al	1.	20	2	66	- 5	94	16											Page
c, 2 Introduction			•			•				•	•					•	•	•		
Materials and Methods	•	•	•				•	•	•	•	•	•	•	•	•			•	•	2
Results	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•	6
Discussion	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
References	•	•			•				•	•	•	•	•	•	•		•			20

LIST OF TABLES

Table 1	L.	Pedigrees of hard white winter wheat genotypes grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82 and 1982-83
Table 2	2.	Range and mean plant characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Kansas during 1981-82 and 1982-83
Table 3		Range and mean grain yield characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82 and 1982- 83
Table 4		Range and mean whole grain quality character- istics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981- 82 and 1982-83
Table 5		Range and mean breadmaking quality character- istics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981- 82
Table 6		Range and mean grain sprouting characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82 and 1982-83 14

LIST OF APPENDICES

Page

Table	I.	Entry numbers and pedigrees of hard white winter wheat genotypes grown at Manhattan, Hutchinson, and Powhattan, Kansas, during 1981-82 and 1982- 83	24
Table	II.	Mean plant characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Kansas, during 1981–82 and 1982–83 .	26
Table	III	. Mean grain yield characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas, during 1981-82 and 1982-83	28
Table	IV.	Mean whole grain quality characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas, during 1981-82 and 1982-83	30
Table	V.	F-ratios and coefficient of variation for ash content, SDS-sedimentation value, and whole grain protein concentration of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas, during 1981-82 and 1982-83	32
Table	VI.		33
Table	VII.	Mean grain sprouting characteristics of hard white winter wheat genotypes grown at Manhattan, Hutchinson, and Powhattan, Kansas, during 1981– 82 and 1982–83	35

INTRODUCTION

High grain yield and desirable grain quality are major selection criteria for improvement of wheat (<u>Triticum aestivum</u> L.). The major quality considerations for hard winter wheats are functional quality for milling and baking and adequate protein for baking and nutrition (Jackel, 1979; Johnson and Mattern, 1978). Conceptual quality in terms of grain color also is important. Hard white winter wheat is grown to a very limited extent in the U.S. (Briggle et al., 1982), but its purported advantages suggest that it may have a place in the hard red winter wheat area, the major wheat area in the U.S. (Paulsen and Heyne, 1981; Paulsen et al., 1983).

Improvement of wheat quality is hindered by the inverse relationship between grain yield and protein concentration (McNeal and Davis, 1954; Pushman and Bingham, 1976) and the strong environmental influence on grain protein (Miezan et al., 1977). Although new highyielding wheat cultivars frequently have low grain protein concentration (Terman, 1979), development of high yielding and high protein white wheat cultivars appears to be plausible (Corpuz et al., 1983).

Preharvest sprouting, especially under adverse conditions, is characteristic of white wheat and greatly lowers its yield, test weight, and functional quality (Bhatt et al., 1981; Lorenz et al., 1983). Successful production of hard white winter wheat requires that it be cultivated where weather conditions are unlikely to induce preharvest sprouting or that cultivars with resistance to the problem be developed (Nielsen et al., 1984). The range of preharvest sprouting in white wheat genotypes indicates that breeding for resistance is feasible (McCrate et al., 1981). Objectives of studies reported here were to (1) develop hard white winter wheat experimental lines that combine desirable traits-yield, functional quality, and preharvest sprouting resistance--in single genotypes and (2) compare ability of the experimental lines to compete with popular cultivars in the major U.S. hard red winter wheat regions. Seven parental combinations were used and progeny were compared with standard hard red winter wheat cultivars at three locations for two years.

MATERIALS AND METHODS

Forty-four hard white winter wheat experimental genotypes from seven parental combinations (Table 1) were compared with check genotypes 'Newton', 'Plainsman V' and 'KS75216' during the 1981-82 and 1982-83 crop seasons. Newton, a popular Kansas hard red winter wheat cultivar, has medium maturity, good baking quality, and resistance to sprouting. KS75216, an experimental hard white winter wheat, is similar to Newton in most agronomic traits and quality attributes except for its susceptibility to preharvest sprouting in adverse weather (Paulsen et al., 1983). The parentage of Newton and KS75216 is 'Pitic 62'//II53-526 ('Chris' Sib)/'Sonora 64'/3/Sonora 64/'Klein Rendidor'/4/'Scout' (Heyne and Niblett, 1978). Plainsman V, a hard red winter wheat cultivar, is early maturing, high in grain protein level, and resistant to sprouting. It is a privately developed cultivar protected under Title V of the Plant Variety Protection Act. Plainsman V was used as the major donor parent for high grain protein and sprouting resistance. KS75216 and 'Timwin' were the only white wheat genotypes in the crossing block; other white wheat segregates

1981-82 and 1982-83.		
Pedigree	Abbreviation	Number of lines
Plainsman V/KS73159	PV/KS73159	2
KS75216/Plainsman V	KS75216/PV	23
Plainsman V/KS75216	PV/KS75216	7
Timwin/Bezostaia	Tw/Bez	5
Plainsman V/3/Sturdy//Atlas 50/Kaw	PV/3/Sdy//A/K	1
Plainsman V//Caprock/Purdue HP	PV//Crc/PHP	2
Plainsman V/Newton	PV/Nwt	4

Table 1. Pedigrees of hard white winter wheat genotypes grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82 and 1982-83.

from red wheat parents were possible because of the trigenic inheritance of seed coat color (Nielsson-Ehle, 1914). Selection for hard white winter wheat genotypes occurred in early segregating generations and the populations were raised to advanced generations for homozygosity.

The experimental and check genotypes were evaluated in randomized complete block designs with three replications at Manhattan, Powhattan, and Hutchinson, Kansas during 1981-82 and 1982-83. Plot dimension, at all locations, was 0.5 m x 5 m; each plot contained three rows 17 cm apart. Seeds (25 g) were weighed for each plot and planted with a precision disc-type drill. The soil types were Wymore silty clay loam, Grundy silty clay loam, and Clark Ost complex at Manhattan, Powhattan, and Hutchinson, respectively. Seed bed preparation, seeding date, fertilizer application, and pest control followed locally recommended practices (Wilkins et al., 1978).

Plant characteristics, preharvest sprouting, grain yield and grain quality attributes were studied. Plant height was measured from the soil surface to the apex of spikes of the main stems. Days to anthesis occurred when anthers extruded from florets on half of the spikes. Days to physiological maturity occurred when threefourths of the peduncles turned yellow. Days to anthesis and maturity are reported in Julian days.

A 2.5-m² area in each plot was mechanically harvested both years. A 100-kernel sample and 0.946-L sample were weighed to determine kernel weight and test weight, respectively. Kernel number per spike was counted on twenty-six randomly harvested spikes threshed by a .

Seven randomly harvested spikes from each plot were treated in a rain simulator one week or six weeks after harvest (McMaster and Derera, 1976). Five cm of simulated rain at 20 C were applied to the spikes for two h and the interior of the rain simulator was maintained at 100% relative humidity for 48 h. The treated spikes were dried at 40 C, manually threshed, and the percentage of sprouted kernels was measured. Kernels were considered sprouted when the pericarp over the embryo was ruptured.

Grain α -amylase activity was estimated by a colorimetric method using Phadebus dye-bound starch substrate (Mathewson and Pomeranz, 1977). Relative starch viscosity, a measurement of liquifying grain enzyme activity, was determined by a falling number procedure (Anonymous, 1972). Falling number is the time in seconds for a plunger to stir for 60 s and traverse a viscous medium of 7 g flour and 25 ml water at 100 C.

Grain protein was determined on 10 g of whole wheat flour by infrared reflectance calibrated against the standard kjeldahl method. SDS-sedimentation, an indicator of protein functional quality, was measured on 6 g of whole wheat flour (Axford et al., 1979). Ash content was determined gravimetrically after incinerating 2 g whole wheat flour at 200 C for 2 h and 500 C for 6 h.

Functional quality was evaluated in terms of dough mixing time, loaf volume, and loaf weight. The balance of the grain of each genotype from all replications and locations was bulked and milled to assess breadmaking quality (Junge and Hoseney, 1981). Mixing time used a 10-g mixograph procedure (Finney and Shogren, 1972). Loaf volume and loaf weight were assessed by the procedure of Junge and Hoseney (1981). Optimally developed doughs were fermented for 180 min, punched at 105 and 155 min, and proofed for 55 min.

Loaves were baked at 218 C for 24 min and their quality was judged by visual ratings of bread appearance, crumb structure, and texture.

Weather during the 1981-82 and 1982-83 seasons was characterized by excellent conditions for seeding both years. Winter temperatures were moderate during 1981-82, but were below normal during much of 1982-83. Spring precipitation generally was abundant both years. Low temperatures during spring 1983 delayed crop development. Moisture and temperature conditions were favorable for crop ripening and harvesting both years.

Analysis of variance procedures of the Statistical Analysis System (SAS, 1982) were used to analyze data. All tests were analyzed as completely random designs.

RESULTS

Mean plant characteristics and their ranges of experimental lines from each parental combination and the check cultivars are presented in Table 2. Days to anthesis, days to maturity, and plant height ranged widely in some combinations, but means were generally similar to values for Newton. Genotypes from the cross KS75216/Plainsman V flowered earliest both years and reached physiological maturity earliest in 1981-82. Those from the cross Plainsman V/KS73159 flowered latest both years and reached physiological maturity latest in 1981-82. That cross also produced the tallest lines, whereas the lines from the cross Plainsman V/3/Sturdy//Atlas 50/Kaw was shortest both years.

Grain yields of most experimental lines--45% in 1982 and 93% in 1983--were similar to those of Newton (Table 3). Highest yields

Range and mean plant characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Kansas during 1981-82 and 1982-83. Table 2.

)		D				
Crosses	Days to anthesis 1981-82 1982	anthesis 1982-83	Days to physiol. 1981-82	Days to physiological maturity 1981-82 1982-83	Plant 1981-82	Plant height -82 1982-83	1
		Juli	-Julian days			cm	
PV/KS73159 Range Mean	139.3-140.0 139.6	150.0-150.6 150.3	172.0-173.0 172.5	180.0-180.3 180.1	86.6-94.6 90.6	94.6-95.0 94.8	
KS75216/PV Range Mean	128.0-139.6 135.4	143.6-150.0 146.2	166.3-171.3 169.6	175.0-179.3 177.0	75.6-92.3 84.2	86.3-99.0 92.2	
PV/KS75216 Range Mean	135.0-139.6 137.0	145.6-148.6 146.9	169.0-172.3 170.2	176.3-179.0 177.5	79.3-93.0 84.9	89.3-95.3 92.1	
Tw/Bez Range Mean	139.0-140.0 139.5	145.0-150.3 147.5	168.6-173.0 171.5	177.3-180.3 178.3	87.0-91.0 89.7	89.3-94.6 91.6	
PV/3/Sdy//A/K Range Mean	136.6 136.6	149.6 149.6	170.6 170.6	180.3 180.3	76.0 76.0	88.6 88.6	
PV/Crc/PHP Range Mean	137.6-138.3 137.9	146.0-148.6 147.3	170.6 170.6	177.3 177.3	76.0-86.0 81.0	89.3-92.3 90.7	
PV/Nwt Range Mean	134.3-136.3 135.3	145.3-149.3 146.8	165.6-170.6 168.7	176.6-181.0 178.3	70.6-86.6 79.2	90.0-93.6 92.2	
			(continued)				

7

.

Table 2. Range and checks gro	ge and mean placks grown at M	ant characteri anhattan, Kans	Range and mean plant characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Kansas during 1981-82 and 1982-83 (continued).	te winter wheat g and 1982-83 (con	enotypes and a tinued).	standard wheat
	Days to anthesis	anthesis	Days to physiol	Days to physiological maturity	Plant height	eight
Crosses	1981-82	81-82 1982-83	1981-82	1982-83	1981-82 1982-83	1982-83
		i lul-	Julian days		CIII	1
Newton	139.0	147.6	171.5	178.3	87.5	95.0
Plainsman V	135.1	147.0	168.6	177.1	76.5	90.5
KS75216	137.8	146.6	171.3	177.8	87.3	93.8

7.2

4.0

3.2

2.6

4.8

1.5

LSD (.05)

				number	100-kernel	ernel		
Crosses	Grain 1981-82	Grain yield -82 1982-83	1981-82	spike 1982-83	weight 1981-82 1	<u>ght</u> 1982–83	Test 1 1981-82	Test weight 81-82 1982-83
	kg ha	1a-1				0		m_3
PV/KS73159 Range Mean	4288-4780 4534	3398-3611 3505	25-30 27	30-31 30.5	2.9-3.0 3.0	3.2-3.4 3.3	724-727 725	765-778 771
KS75216/PV Range Mean	4161-4991 4601	3277-3605 3441	23-31 27	27-34 31	2.5-3.3 3.0	3.0-3.6 3.3	687-746 724	745-796 776
PV/KS75216 Range Mean	4286–5000 4564	3267-3742 3496	25-29 27	29-34 32	2.5-3.1 2.8	3.0-3.4 3.2	691-733 719	752-775 765
Tw/Bez Range Mean	4404-4722 4556	2701-3511 3213	26–30 28	34-35 35	2.6-3.2 2.9	2.9-3.3 3.1	713-723 719	707-748 728
PV/3/Sdy//A/K Range Mean	4130 4130	3158 3158	25 25	33 33 33	2.7	3.0 3.0	713 713	737 737
PV//Crc/PHP Range Mean	3843-4696 4269	3218-3315 3266	26-28 27	34-35 34.5	2.7-2.9 2.8	2.9-3.2 3.0	698-707 702	749-775 762
PV/Nwt Range Mean	3889–5016 4581	3170-3605 3330	24-29 26	31-33 32	2.8-3.1 2.9	3.1-3.3 3.2	708-745 722	761-785 777

(continued)

Range and mean grain yield characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82 and 1982-83 (continued). Table 3.

			Kernel	number	100-ker	nel		
Crosses	Grain 1981-82	Grain yield 81-82 1982-83	per s 1981-82	per spike 1981-82 1982-83	weight 1981-82 198	it 1982-83	Test weight 1981-82 1982-83	eight 1982-83
		-						ر (
		ha			60		kg m ~	u u
Newton	5020	3501	29	34	2.8	3.1	737	783
Plainsman V	4491	3471	23	31	2.9	3.2	730	790
KS75216	4827	3508	28	33	2.8	3.1	714	760
LSD (.05)	510	327	2	4	0.2	0.3	17	

were from the crosses KS75216/Plainsman V and Plainsman V/KS73159, which also had the highest 100-kernel weights and high test weights both years. Lowest grain yields, kernel number per spike, and 100kernel weight were usually from the cross Plainsman V/3/Sturdy// Atlas 50/Kaw.

Mean grain ash content, SDS sedimentation value, and grain protein content of experimental lines equalled or exceeded that of Newton (Table 4). The lowest mean ash content occurred in progeny from Plainsman V/Newton in 1981-82 and in progeny from Timwin/ Bezostaia in 1982-83. Sedimentation values were lowest in Plainsman V/KS73159 progeny and grain protein concentration was lowest in Timwin/Bezostaia progeny both years. Grain from the experimental line Plainsman V/3/Sturdy//Atlas 50/Kaw had the highest ash, sedimentation and grain protein values both years.

Mean breadmaking quality characteristics of experimental lines and check genotypes were substantially similar (Table 5). Mixing time was shortest for the Plainsman V/3/Sturdy//Atlas 50/Kaw progeny and longest for the Timwin/Bezostaia progeny. Mean loaf volume was greater in all experimental lines than in the Newton check; within the experimental lines it was lowest in KS75216/Plainsman V progeny and highest in Plainsman V/3/Sturdy//Atlas 50/Kaw progeny. Mean loaf weight differed little, being 142 g for the Newton check and KS75216/ Plainsman V and Plainsman V/KS75216 progeny and 144.5 for the Plainsman V/KS73159 progeny.

Grain sprouting characteristics in terms of falling number and α -amylase activity were within acceptable limits in all genotypes (Table 6). Progeny of Plainsman V//Caprock/Purdue HP had the

	Ash c	ontent	SDS-sedim val		Grain	protein
Crosses	1981-82	1982-83	1981-82	1982-83	1981-82	1982-83
	g k	.g ⁻¹	c	m ³	g k	.g ⁻¹
PV/KS73159 Range Mean	16.8-17.6 17.2	17.2-17.4 17.3	60.5-61.6 61.0	76.4-77.6 77.0	121-129 125	115-125 120
KS75216/PV Range Mean	15.4-19.6 16.8	15.5-17.1 16.2	60.3-76.3 67.1	72.3-87.8 80.8	114-126 120	111–123 117
PV/KS75216 Range Mean	16.0-17.6 16.8	15.6-16.8 16.0	63.8-72.5 68.2	79.1-90.8 83.6	110–128 119	110-122 116
Tw/Bez Range Mean	15.9-18.4 16.8	15.5-16.2 15.9	66.1-67.1 66.0	77.4-81.8 79.3	111–115 113	111-114 112
PV/3/Sdy//A/K Range Mean	17.5 17.5	17.6 17.6	77.0 77.0	88.1 88.1	136 136	134 134
PV//Crc/PHP Range Mean	16.6-17.2 16.9	16.2 - 16.3 16.2	54.5-79.5 67.0	69.5-87.2 78.3	103-137 120	111-133 122
PV/Nwt Range Mean	16.0-17.8 16.6	15.7-16.5 16.0	67.8-74.6 71.1	77.6-88.7 84.5	116-127 120	114-119 116
Newton Plainsman V KS75216	15.7 17.2 16.9	15.6 16.6 15.9	60.6 82.0 55.7	79.9 89.5 66.5	109 139 106	108 131 109
LSD (.05)	1.3	0.6	4.6	6.0	6.4	

Table 4. Range and mean whole grain quality characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82 and 1982-83.

Crosses	Mixing time		e Loaf weig	ht Quality $estimate^{\dagger}$
	min:sec	cm ³	g	
PV/KS73159 Range Mean	3:48-4:12 4:0	845-885 850	144-145 144.5	1(OK),1(OK ⁻)
KS75216/PV Range Mean	2:40-7:02 4:54	760-912 840	139-144 142	7(OK ⁺),7(OK),9(OK ⁻)
PV/KS75216 Range Mean	3:30-6:18	830-880 851	141-144 . 142	2(0K ⁺),2(0K),3(0K ⁻)
ſw/Bez Range Mean	4:0-6:35 5:34	750-815 778	142-145 143	1(0K ⁺),4(0K ⁻)
PV/3/Sdy//A/K Range Mean	3:35 3:35	965 965	144 144	1(0K ⁻)
PV//Crc/PHP Range Mean	3:42-5:08 4:25	762–988 875	142-145 143.5	2(0K ⁻)
PV/Nwt Range Mean	3:35-6:25 5:01	815-912 861	142-145 143	3(0K ⁺),1(0K)
Newton Plainsman V XS75216	5:01 3:38 5:23	757 929 790	142 144 141	ок ⁺ ок ₊ ок+

Table 5. Range and mean breadmaking quality characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82.

 $^+_{\rm OK=Average performance; OK}^+, OK^-=deviation from average performance.$

genotypes and	as during 1981-	
and mean grain sprouting characteristics of hard white winter wheat genotypes and	ard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during	
Range and mean grain sprouting chare	standard wheat checks grown at Manh	82 and 1982-83.
Table 6.		

	1							14
1tor) veek 1982-83		60.9-64.8 62.8	68.6-86.9 73.4	63.6-75.2 69.5	72.8-83.5 78.5	67.5 67.5	64.7-75.8 70.2	72.5-75.4 74.8
(rain simulator) 6th week 1981-82 19		86.6-88.2 87.4	94.5-97.5 96.3	94.6-98.0 96.5	0.0-99.0 97.0	97.4 97.4	91.9-98.6 95.2	92.4-97.0 95.5
11 sprouting veek 1982-83	%	16.8-20.4 18.6	20.4-38.3 28.2	17.1-32.0 26.1	28.5-34.6 31.3	28.7 28.7	14.1-27.6 20.8	18.3-31.4 27.7
Visual s 1st week 1981-82 1		24.8-34.8 29.8	29.9-61.2 44.6	32.5-60.0 41.8	52.9-63.5 60.0	58.5 58.5	10.0-66.1 38.0	.5 27.9-49.7 42.9 (continued)
e activity 1982-83	-1 s-1	6.0-8.1 7.0	5.6-11.6 8.6	5.9-11.1 8.0	9.3-22.3 13.1	7.7	5.7-14.2 9.9	7.9-24.5 13.8 (con
Sprouting (field) ber <u>α-amylase</u> 81-82 1981-82	-mDU kg ⁻¹	3.1-5.5 2.7	2.6-9.5 4.4	3.4-6.4 4.4	4.4-10.4 6.4	4.5 4.5	3.2-9.6 6.4	2.9-7.5 5.3
Sproutir number 1981-82		360-404 382	349-444 394	372-442 402	347-370 360	391 391	304-419 361	330-401 371
Falling 1981-82	sec	396-472 434	329-539 450	366-496 449	332-436 392	438 438	289-482 385	393-508 431
Crosses		PV/KS73159 Range Mean	KS75216/PV Range Mean	PV/KS75216 Range Mean	Tw/Bez Range Mean	PV/3/Sdy//A/K Range Mean	PV/Crc/PHP Range Mean	PV/Nwt Range Mean

mean grain sprouting characteristics of hard white winter wheat genotypes and	d wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-	1982-83 (continued):	
grain s	checks	(contin	
Range and mean	standard wheat	82 and 1982-83	
able 6.			
Ξ.			

		Sproutir	Sprouting (field)		Visu	Visual sprouting (rain simulator)	(rain simu	lator)
	Falling	Falling number	<i>α</i> -amylase	activity	lst	a-amylase activity 1st week	6th	6th week
Crosses	1981-82	1981-82	1981-82	1982-83	1981-82	1982-83	1981-82 1982-83	1982-83
	Sec			1 s ⁻¹		%		
	1		5	I				
Newton	476	396	3.2	5.3	2.9	12.3	87.4	66.3
Plainsman V	581	456	2.2	5.6	2.8	5.5	92.0	66.7
KS75216	310	301	10.1	15.8	62.0	34.4	0.06	81.4
LSD (.05)	48	43	0.9	1.0	10.3	3.8	6.6	3.8

lowest mean sprouting susceptibility in terms of α -amylase activity in harvested grain and percentage sprouting in the rain simulator both years. Lines from the cross Timwin/Bezostaia, on the other hand, usually had the lowest sprouting resistance in terms of the same parameters.

DISCUSSION

Development of hard white winter wheats that are equivalent, and in some ways superior, to popular hard red winter wheat cultivars in their major region in the U.S. seems eminently feasible. Plant and grain yield characteristics of the best experimental white wheat lines were similar to those of the most popular hard red winter wheat cultivar, Newton. Low ash content, high grain protein concentration, and high SDS-sedimentation values--indicators of high grain quality (Axford et al., 1979; Jackel, 1979)--were characteristic of most experimental lines. There apparently is no agronomic barrier to high yields of high quality hard white wheat grain in the U.S. "Breadbasket".

The purported functional advantages of white grain over red grain were not considered in the present study. These advantages--higher flour extraction rate, higher flour protein content from closer milling, greater aesthetic appeal of whole-grain products, more valuable bran, and better flour color scores (Paulsen and Heyne, 1981; Paulsen et al., 1983)--are substantial. Any one of them would warrant consideration of white wheats where only red wheats are now grown. The combination of favorable grain yield and functional traits clearly merits regard.

Plainsman V is an effective source of the high protein trait for breeding improved genotypes (Corpuz et al., 1983). Mean grain protein content was higher in all experimental lines having Plainsman V as a parent than in the Newton and KS75216 check genotypes. Mean grain yield, on the other hand, was lower only in progeny from two crosses, Plainsman V/3/Sturdy//Atlas 50/Kaw and Plainsman V//Caprock/Purdue HP. These results were consistent with

the general trend of lower yields when wheat grain protein content is increased by breeding (Miezan et al., 1977). The numerous exceptions to this trend observed among the experimental lines, however, show that substantial progress can be made toward increasing grain protein content without sacrificing grain yield.

Preharvest sprouting probably is the major agronomic limitation associated with white wheats (Bhatt et al., 1976, 1981; Derera, 1980; McCrate et al., 1981). The inferior sprouting resistance of white wheats relative to red wheats was more evident in spikes placed in the rain simulator than in field-harvested grain. Field sprouting as measured by mean falling number was more severe only in experimental lines from Timwin/Bezostaia and Plainsman V//Caprock/Purdue HP than in Newton in 1981-82. α -Amylase activity nevertheless was usually higher in the white wheat lines in 1981-82 and 1982-83. Field sprouting of all genotypes as measured by both falling number and α -amylase activity was well below grain trade requirements (Anonymous, 1972; Mathewson and Pomeranz, 1977) both years.

The moderate level of sprouting resistance in the experimental white wheat lines would be adequate for the U.S. hard red winter wheat region. Preharvest sprouting undoubtedly was favored by the abundant precipitation during early spring of both years, but was disfavored by the more arid conditions that prevailed during grain development (Nielsen et al., 1984). At least two sources are available if higher levels of preharvest sprouting resistance are needed during extraordinarily adverse seasons. Moderate levels of resistance can be achieved by proper screening of lines, as evidenced by the generally higher resistance in progeny of KS75216/Plainsman V and Plainsman V/KS75216 than in KS75216. High levels of resistance, if

needed, can be obtained from white wheat genotypes that possess the trait (Bhatt et al., 1981; McCrate et al., 1981).

Hard white winter wheat appears to be a viable and potentially valuable class in the major U.S. hard red winter wheat region. Many advantages favor its production and no agronomic disadvantages are apparent. Introduction of a new class of wheat, however, must recognize the tradition of the established class and the adjustments that must be made by the grain trade. These challenges are beyond the scope of the present study.

Anonymous, 1972. Approved methods of the AACC. American Assoc. Cereal Chemists, St. Paul, Minn. Method 56-81B.

- Axford, D. W. E., E. E. McDermott and D. G. Redman, 1979. Note on the sodium dodecyl sulfate test of breadmaking quality: Comparison with Pelshenke and Zeleny tests. Cereal Chem. 56:582-584.
- Bhatt, G. M., N. F. Derera and G. J. McMaster, 1976. Breeding white-grained spring wheat for low α -amylase synthesis and insensitivity to gibberellic acid in the grain. Cereal Res. Comm. 4:245-249.
- , G. M. Paulsen, K. Kulp and E. G. Heyne, 1981. Preharvest sprouting in hard winter wheats: Assessment of methods to detect genotypic and nitrogen effects and interactions. Cereal Chem. 58:300-302.
- Briggle, L. W., S. L. Strauss, D. E. Hamilton and G. H. House, 1982. Distribution of the varieties and classes of wheat in the United States in 1979. Stat. Bul. 676. USDA, Washington, D. C. 107 pp.
- Corpuz, L. M., G. M. Paulsen and E. G. Heyne, 1983. Relationship between kernel color and protein content of hard red x hard white winter wheat progeny. Euphytica 32:617-624. Derera, N. F., 1980. The audit of sprouting. Cereal Res. Comm. 8:15-22.

Finney, K. F. and M. D. Shogren, 1972. A ten-gram mixograph for determining and predicting functional properties of wheat flour. Bakers Digest 46:32-41.

- Heyne, E. G. and C. L. Niblett, 1978. Registration of Newton wheat. Crop Sci. 18:696.
- Jackel, S. S., 1979. The baker's view. <u>In</u> Wheat Protein Conference, Manhattan, Kansas. USDA SEA ARM-NC-9. p. 1-10.
- Johnson, V. A. and P. J. Mattern, 1978. Improvement of wheat protein quality and quantity by breeding. Adv. Exp. Med. Biol. 105:301-316.
- Junge, R. C. and R. C. Hoseney, 1981. A mechanism by which shortening and certain surfactants improve loaf volume in bread. Cereal Chem. 58:408-412.
- Lorenz, K., P. Roewe-Smith, K. Kulp and L. Bates, 1983. Preharvest sprouting of winter wheat. II. Amino acid composition and functional quality of flour and flour fractions. Cereal Chem. 60:360-366.
- Mathewson, P. R. and Y. Pomeranz, 1977. Detection of sprouted wheat by a rapid colorimetric determination of α -amylase. J. Assoc. Off. Anal. Chem. 60:16-20.

McCrate, A. J., M. T. Nielsen, G. M. Paulsen and E. G. Heyne, 1981. Preharvest sprouting and α-amylase activity in hard red and hard white winter wheat cultivars. Cereal Chem. 58:424-428.

McNeal, F. H. and D. J. Davis, 1954. Effect of nitrogen fertilization on yield, culm numbers and protein content of spring wheat varieties. Agron. J. 46:375-378.

- McMaster, G. J. and N. F. Derera, 1976. Methodology and sample preparation when screening for sprout damage in cereals. Cereal Res. Comm. 4:251-254.
- Miezan, K., E. G. Heyne and K. F. Finney, 1977. Genetic and environmental effects on the grain protein content in wheat. Crop Sci. 17:591-593.
- Nielsen, M. T., A. J. McCrate, E. G. Heyne and G. M. Paulsen, 1984. Effect of weather variables during maturation on preharvest sprouting of hard white winter wheats. Crop. Sci. 24 (in press). Nilsson-Ehle, H., 1914. Zur kennthis der mit der keimphysiologie
- des weizenes in zusammenhang stehenden inheren Faktoren. Z. Pflanzenzuchtung 2:153-187.
- Paulsen, G. M. and E. G. Heyne, 1981. Development of hard white winter wheats for the Great Plains. Wheat Grower 4(5):26-28.

, ____, T. L. Walter and R. C. Hoseney,

1983. Argonomic and quality attributes of sibling hard white and hard red winter wheats. Crop Sci. 23:859-862.

- Pushman, F. M. and J. Bingham, 1976. The effect of a granular nitrogen fertilizer and a foliar spray of urea on the yield and breadmaking quality of ten winter wheats. J. Agric. Sci. 87:281-292.
- SAS, 1982. Users Guide. Statistical Analysis System Institute, Cary, N.C. 119 pp.
- Terman, G. L., 1979. Yields and protein content of wheat grain as affected by cultivar, N, and environmental growth factors. Agron. J. 71:437-440.

Wilkins, H., H. Follett, D. Whitney and E. Nilsen, 1978. <u>In</u> Wheat Production Handbook. Bull. C-529. Coop. Ext. Serv. Kansas State Univ., Manhattan, Kansas. p. 3-12.

Entry No.	Pedigree	
KS82W401	Plainsman V/KS73159	
KS82W402	11	
KS82W403	KS75216/Plainsman V	
KS82W404	н	
KS82W406	11	
KS82W407	11	
KS82W408	11	
KS82W409	11 .	
KS82W410	11	
KS82W411		
KS82W412	11	
KS82W414	11	
KS82W415	11	
KS82W416	11	
KS82W410 KS82W417	11	
	11	
KS82W418	11	
KS82W419		
KS82W420		
KS82W422	Plainsman V/KS75216	
KS82W423	11	
KS82W424	11	
KS82W425	H ⁽	
KS82W426	11	
KS82W427	11	
KS82W428	11	
KS82W429	11	
20011/01		
KS82W431	KS75216/Plainsman V	
KS82W432	11	
KS82W433	11	
KS82W434	11	
KS82W435	11	
KS82W436		
XS82W437	Timwin/Bezostaia	
KS82W439	IIIWIII/ DEZOSCAIA	
KS82W440	11	
20020440		

Table I.	Entry numbers and pedigrees of hard white winter wheat								
	genotypes grown at Manhattan, Hutchinson and Powhattan,								
	Kansas, during 1981-82 and 1982-83.								

(continued)

Intry No.	Pedigree
S82W441	11
S82W442	11
S82W443	Plainsman V/3/Sturdy//Atlas 50/K
S82W444	Plainsman V//Caprock/Purdue H.P.
S82W445	"
82W447	Plainsman V/Newton
S82W448	11
S82W449	11
S82W450	11

Table I. Entry numbers and pedigrees of hard white winter wheat genotypes gwown at Manhattan, Hutchinson and Powhattan, Kansas, during 1981-82 and 1982-83 (continued).

Selection number	Days to anthesis	Days to maturity	Plant height	Days to anthesis	Days to maturity	Plant height
	Julian	n days	cm	Julia	n days	cm
KS82W401	139.3	173.0	86.6	150.6	180.3	95.0
KS82W402	140.0	172.0	94.6	150.0	180.0	94.6
KS82W403	135.0	171.3	89.6	145.0	176.6	94.3
KS82W404	134.3	168.3	75.6	145.3	176.6	91.0
KS75216	137.8	171.3	87.3	146.6	177.8	93.8
KS82W406	135.0	169.6	86.0	143.6	176.0	93.3
KS82W407	135.3	170.6	88.3	147.3	177.6	99.0
KS82W408	135.6	171.3	85.6	146.6	177.0	88.0
KS82W409	135.6	171.0	92.6	145.6	177.3	94.6
KS82W410	136.6	171.0	89.6	150.0	179.3	95.6
KS82W411	136.0	170.0	86.0	144.6	176.0	90.0
KS82W412	135.3	170.6	85.3	144.6	175.6	95.0
Plainsman V	135.1	168.6	76.5	147.0	177.1	90.5
KS82W414	134.3	166.3	80.0	146.3	176.6	92.3
KS82W415	135.6	171.0	85.3	148.3	178.3	93.6
KS82W416	135.0	167.6	79.6	144.6	176.3	86.3
KS82W417	136.3	170.6	81.0	147.3	178.3	88.6
KS82W418	139.3	171.0	92.3	149.6	179.0	93.0
KS82W419	128.0	169.6	86.0	146.6	177.0	92.0
KS82W420	139.3	170.6	85.3	148.3	178.3	87.6
Newton	139.0	171.5	87.5	147.6	178.3	95.0
KS82W422	139.6	172.3	93.0	146.6	177.6	91.6
KS82W423	138.6	170.6	86.0	147.6	178.0	91.0
KS82W424	139.3	171.3	88.6	148.6	179.0	95.3
KS82W425	135.0	169.6	84.3	146.6	177.0	89.3
KS82W426	135.6	169.0	81.0	.147.6	178.0	94.6
KS82W427	135.6	169.6	82.6	145.6	176.6	91.0
KS82W428	135.3	169.0	79.3	146.0	176.3	92.0
KS82W429	135.6	170.0	84.0	144.0	175.6	91.3
KS82W431	135.0	169.3	85.0	146.3	177.3	96.0
KS82W432	134.6	169.3	79.3	145.6	176.3	93.0
KS82W433	133.6	166.6	78.0	145.3	176.3	91.6
KS82W434	139.6	171.3	86.0	147.6	178.0	94.6
KS82W435	135.3	167.6	77.3	144.6	175.0	90.6

Table II. Mean plant characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Kansas, during 1981-82 and 1982-83.

(continued)

		1981-82			1982-83	
Selection number	Days to anthesis	Days to maturity	Plant height	Days to anthesis	Days to maturity	Plant height
	Julia	n days	cm	Julia	n days	cm
KS82W436	135.6	168.3	80.0	147.0	178.0	91.3
KS82W437	139.6	168.6	90.0	147.3	178.3	90.6
KS82W439	139.3	171.3	87.0	145.0	177.3	90.3
KS82W440	140.0	173.0	91.0	146.6	177.3	94.6
KS82W441	139.6	172.6	90.6	148.3	178.3	93.3
KS82W442	139.0	172.0	90.3	150.3	180.3	89.3
KS82W443	136.6	170.6	76.0	149.6	180.3	88.6
KS82W444	137.6	170.6	86.0	146.0	177.3	89.3
KS82W445	138.3	170.6	64.3	148.6	177.3	92:3
KS82W447	136.3	170.6	84.3	145.3	177.0	93.6
KS82W448	134.3	168.0	75.3	145.6	176.6	93.0
KS82W449	136.3	170.6	86.6	149.3	178.6	92.3
KS82W450	134.3	165.6	70.6	147.0	181.0	90.0
LSD (.05)	1.5	2.6	4.0	4.8	3.2	7.2

Table II. Mean plant characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Kansas, during 1981-82 and 1982-83 (continued).

Selection		Kernel number	100- kernel	Test		Kernel number	100- kernel	Test
number	Yield	per spike	weight	weight	Yield	per spike	weight	weight
	kg ha	·1	g	kg m ⁻³	kg ha	1	g	kg m ⁻³
KS82W401	4780	30	3.1	727	3611	31	3.4	778
KS82W402	4288	25	2.9	724	3398	30	3.2	765
KS82W403	4831	27	3.3	746	3323	30	3.6	772
KS82W404	4696	26	3.1	743	3394	33	3.3	786
KS75216	4827	28	2.9	743				
K212210	4027	20	2.9	/14	3508	33	3.1	760
KS82W406	4813	27	3.1	734	3421	31	3.3	781
KS82W407	4429	25	3.3	728	. 3277	30	3.5	769
KS82W408	4706	26	2.9	737	3488	31	3.3	773
KS82W409	4991	26	3.1	734	3345	29	3.4	775
KS82W410	4464	29	2.9	733	3512	33	3.1	792
KS82W411	4759	27	3.0	731	3339	31	3.3	771
KS82W412	4803	26	3.2	734	3581	27	3.6	787
Plainsman V		23	2.9	730	3471	31	3.2	790
KS82W414	4456	24	3.0	725	3448	31	3.2	781
KS82W415	4960	29	3.0	730	3533	31	3.5	777
KS82W416	4552	23	3.3	739	3392	28	3.5	780
KS82W417	4161	28	2.9	720	3444	30	3.3	790
KS82W418	4604	31	2.7	687	3605	34	3.1	783
KS82W419	4497	28	2.7	696	3373	31	3.1	775
KS82W420	4471	29	2.6	694	3474	30	3.2	765
Maastan	5000	20	0.0	707	0501		0.1	700
Newton	5020	29	2.8	737	3501	34	3.1	783
KS82W422	4727	25	3.2	751	3699	30	3.3	768
KS82W423	4363	25	3.1	733	3434	32	3.1	772
KS82W424	5000	29	2.9	711	3634	34	3.4	771
KS82W425	4294	28	2.5	715	3267	31	3.1	765
KS82W426	4548	27	2.6	704	3334	33 .	3.0	752
KS82W427	4286	29	2.5	691	3363	29	3.4	753
KS82W428	4730	25	3.0	733	3742	32	3.2	775
KS82W429	4382	26	2.8	726	3529	31	3.2	776
KS82W431	4570	31	3.0	725	3449	31	3.4	777
KS82W432	4339	25	3.3	736	3473	31	3.4	796
KS82W433	4362	27	2.6	688	3330	32	3.0	752
KS82W434	4797	26	3.0	715	3461	29	3.3	776
KS82W435	4373	24	2.9	733	3374	32	3.1	776

Table III.	Mean grain yield characteristics of hard white winter
	wheat genotypes and standard wheat checks grown at Manhattan,
	Hutchinson, and Powhattan, Kansas, during 1981-82 and 1982-
	83.

,

(continued)

Selection number	Yield	Kernel number per spike	100- kernel weight	Test weight	Yield	Kernel number per spike	100- kernel weight	Test weight
	kg ha	1	g	kg m ⁻³	kg ha	1	g	kg m ⁻³
KS82W436	4812	28	2.9	721	3573	32	3.3	745
KS82W437	4722	28	3.1	730	3511	34	3.3	748
KS82W439	4428	30	2.6	713	3236	35	2.9	726
KS82W440	4525	30	2.7	717	3409	36	3.1	725
KS82W441 ·	4702	27	3.2	723	3208	34	3.3	735
KS82W442	4404	26	3.0	714	2701	35	3.1	707
KS82W443	4130	25	2.7	713	3158	33	3.0	786
KS82W444	4696	28	2.9	707	3315	34	3.2	749
KS82W445	3843	26	2.7	698	3218	35	2.9	775
KS82W447	5016	29	2.8	745	3605	33	3.1	782
KS82W448	4412	24	3.1	708	3170	32	3.2	761
KS82W449	5009	26	2.9	729	3292	31	3.4	785
KS82W450	3889	24	2.9	708	3253	32	3.1	782
LSD (.05)	510	2	0.2	17	327	4	0.3	

Table III. Mean grain yield characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82 and 1982-83 (continued).

		1981-	82		1982-	83
Selection number	Ash content	Protein content	Sedimentation value	Ash content	Protein content	Sedimentation value
		 1	3	g k	-1	cm ³
	———g k	g				
KS82W401	16.8	121	61.6	17.2	125	77.6
KS82W402	17.6	129	60.5	17.4	127	76.4
KS82W403	17.4	119	67.6	15.7	117	83.0
KS82W404	17.1	120	68.1	16.2	115	80.5
KS75216	16.9	106	55.7	15.9	109	66.5
KS82W406	16.6	118	73.3	16.3	116	84.2
KS82W407	17.4	118	64.5	17.1	118	74.7
KS82W408	17.2	122	71.1	. 17.0	118	82.8
KS82W409	16.3	118	60.3	15.8	116	78.2
KS82W410	16.5	120	68.3	16.2	117	86.5
KS82W411	16.2	126	76.3	16.8	118	87.0
KS82W412	16.7	117	62.8	16.4	120	74.3
Plainsman V	17.2	139	82.0	16.6	131	89.5
KS82W414	17.3	121	74.6	16.9	118	86.1
KS82W415	16.8	115	64.3	16.3	114	72.3
KS82W416	15.4	124	69.8	15.8	117	80.8
KS82W417	19.6	126	63.3	16.5	122	81.2
KS82W418	16.4	122	61.8	16.1	121	74.0
KS82W419	16.8	123	72.8	16.1	117	80.0
KS82W420	16.0	114	61.1	15.8	112	83.5
Newton	15.7	109	60.6	15.6	108	79.9
KS82W422	16.6	110	67.3	15.7	110	82.5
KS82W423	17.6	112	64.3	16.1	117	79.2
KS82W424	16.8	118	63.8	15.7	113	79.1
KS82W425	17.2	126	67.3	16.8	121	87.1
KS82W426	16.9	123	70.8	16.4	122	84.8
KS82W427	16.0	128	71.6	16.0	121	81.7
KS82W428	17.0	114	72.5	15.6	114	90.8
KS82W429	15.4	124	71.5	15.5	114	82.3
KS82W431	17.5	118	67.3	16.4	113	82.8
KS82W432	17.4	123	62.5	15.9	117	78.7
KS82W433	16.0	124	66.1	15.9	123	78.2
KS82W434	15.9	116	64.0	17.1	111	78.2
KS82W435	18.2	125	63.5	15.8	120	81.6

Table IV. Mean whole grain quality characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas, during 1981-82 and 1982-83.

(continued)

		1981-8	2		1982-8	3
Selection number	Ash content	Protein content	Sedimentation value	Ash content	Protein content	Sedimentation value
	——g kg		cm ³	g k	.g ⁻¹	cm ³
KS82W436	16.8	119	69.5	16.8	123	87.8
KS82W437	16.0	113	67.1	16.0	111	78.1
KS82W439	15.9	113	64.3	16.2	114	78.5
KS82W440	16.3	113	66.1	15.7	113	77.4
KS82W441	17.4	111	66.1	15.5	112	80.8
KS82W442	18.4	115	66.6	16.2	114	81.8
KS82W443	17.5	136	77.0	17.6	134	88.1
KS82W444	17.2	103	54.5	16.3	111	69.5
KS82W445	16.6	137	79.5	16.2	133	87.2
KS82W447	16.6	119	71.5	15.7	117	87.5
KS82W448	16.0	127	74.6	15.9	119	88.7
KS82W449	16.0	116	67.8	16.2	114	86.2
KS82W450	17.8	119	70.5	16.5	116	77.6
LSD (.05)	1.3	6.4	4.6	0.6		6.0

Table IV. Mean whole grain quality characteristics of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas during 1981-82 and 1982-83 (continued).

Table V. F-ratios and coefficient of variation for ash content, SDS-sedimentation value, and whole grain protein concentration of hard white winter wheat genotypes and standard wheat checks grown at Manhattan, Hutchinson, and Powhattan, Kansas, during 1981-82 and 1982-83.

Source	Ash cor 1981-82	1982-83	SDS-sedim val 1981-82		Grain protein 1981-82
Location	22.74**	11.58**	4.96*	296.83**	10.70**
Line	2.86**	4.8**	14.07**	6.77**	12.17**
Location X Line	2.39**	1.27	1.67**	1.57**	1.16
Block (Loc)	2.36	0.53	14.88**	2.15*	0.48
C.V.	6.9	4.4	6.0	8.0	4.7

*,** Significant at 5% and 1% levels, respectively.

Selection number	Mixing time	Loaf volume	Loaf weight	Quality estimate [†]
	min:s	cm ³	g	
KS82W401	4:12	845	144	OK
KS82W402	3:48	855	145	OK
KS82W403	4:55	830	142	OK_
KS82W404	3:00*	865	142	OK,
KS75216	5:23	790	141	ОК ОК+
KS82W406	3:40*	825	140	OK_
KS82W407	4:45	867	142	OK T
KS82W408	5:38	852	144	ок+
KS82W409	5:18	825	144	OK
KS82W410	4:48*	832	143	OK
KS82W411	5:20	890	142	OK
KS82W412	5:10	815	142	OK
Plainsman V	3:38*	929	144	ок_
KS82W414	3:48*	912	139	OK
KS82W415	5:38	840	142	ОК
KS82W416	2:40*	865	143	ок-
KS82W417	4:50	835	144	OK
KS82W418	4:00*	800	144	OK_
KS82W419	6:28	900	141	OK
KS82W420	4:50	832	142	OK
Newton	5:01*	757	142	ок+
KS82W422	6:18	840	141	OK
KS82W423	3:30*	840	141	OK,
KS82W424	4:42	840	144	OK ⁺
KS82W425	4:52	865	143	OK
KS82W426	4:18	880	143	ок-
KS82W427	5:02	868	144	OK_
KS82W428	4:15*	830	141	OK ⁺
KS82W429	5:32	888	141	ок+ ок+
KS82W431	6:20	810	143	ок_
KS82W432	4:05	760	143	OK_
KS82W433	5:02	812	143	OK_
KS82W434	4:32	785	142	OK+
KS82W435	5:30	860	144	OK_

Table VI. Mean breadmaking quality characteristics of hard white winter wheat genotypes and standard wheat checks during 1981-82.

(continued)

Selection number	Mixing time	Loaf volume	Loaf weight	Quality estimate [†]
	min:S	cm ³	g	
KS82W436	7:02	820	144	OK
KS82W437	6:08	788	145	OK _
KS82W439	5:18	752	143	OK
KS82W440	5:50	750	143	OK
KS82W441	4:00*	788	142	OK,
KS82W442	6:35	815	142	ок- ок+
KS82W443	3:35*	965	144	OK
KS82W444	5:08	762	142	OK
KS82W445	3:42	988	145	OK
		0.60	1/0	·+
KS82W447	6:25	860	142	ок+ ок+
KS82W448	3:45*	912	145	
KS82W449	3:35*	815	143	OK+
KS82W450	6:20	860	142	OK '

Table VI. Mean breadmaking quality characteristics of hard white winter wheat genotypes and standard wheat checks during 1981-82 (continued).

 $^+$ OK = Average performance; OK $^+$, OK $^-$ = deviation from average performance.

* Oxidant required to reduce mixing time.

Mean grain sprouting characteristics of hard white winter wheat genotypes grown at Manhattan, Hutchinson, and Powhattan, Kansas, during 1981-82 and 1982-83. Table VII.

		. 1981-82	-82			1982-83	83	
Selection number	Falling number	<pre> α-amylase activity </pre>	t S	Sprouting eek 6th week	Falling number	α-amylase activity'	Sprouting lst week 6t	ting 6th week
	S	mDU kg ⁻¹ S ⁻¹	%		S	mDU kg ⁻¹ S ⁻¹		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
KS82W401	472	3.1	24.8	86.6	404	6.0	16.8	60.9
KS82W402	396	5.5	34.8	88.2	360	8.1	20.4	64.8
KS82W403	513	3.1	36.9	96.6	438	6.5	21.2	70.6
KS82W404	423	5.6	55.8	97.5	403	10.5	32.3	71.6
KS75216	310	10.1	62.0	0.06	301	15.8	34.4	81.4
KS82W406	514	3.2	45.2	96.2	417	8.5	34.7	78.6
KS82W407	450	4.3	37.5	97.2	371	10.1	31.3	73.3
KS82W408	531	3.2	39.1	95.8	777	6.5	23.6	72.4
KS82W409	438	3.8	42.4	95.8	397	7.6	24.9	70.7
KS82W410	469	3.2	43.3	96.5	426	5.6	25.8	71.3
KS82W411	499	3.3	41.9	95.8	413	6.9	24.8	79.1
KS82W412	413	5.4	41.4	95.8	391	8.2	20.4	68.7
Plainsman V	581	2.2	2.8	92.0	456	5.6	5.5	66.7
KS82W414	422	4.5	39.0	98.0	349	7.9	38.3	82.9
KS82W415	486	3.2	50.0	95.3	406	5.8	23.1	73.1
					•			
KS82W416	394	5.7	4,6.0	97.6	353	11.5	32.9	74.7
KS82W417	539	2.6	29.9	94.6	420	6.4	24.2	69.2
KS82W418	497	4.0	34.9	94.8	403	10.5	26.3	68.6
KS82W419	497	3.3	37.8	96.7	378	9.3	35.4	86.9
KS82W420	443	4.0	52.1	97.7	375	8.2	25.8	73.3

(continued)

35

,

	Hutchinson,	on, and Powhattan, 1981-82	an, Kansas,	during 1981-82	-82 and 1982-83	(continue 1982	-83	
Selection number	Falling number	<pre></pre>	lst we	Sprouting ek 6th week	Falling number	α-amylase activity	Spro lst week	Sprouting ek 6th week
	S	mDU kg ⁻¹ S ⁻¹		8	S	mDU kg ⁻¹ S ⁻¹	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Newton Ks87W422	476 366	3.2	2.9 60.0	87.4 97.5	396 372	5.3 11.1	12.3 24.3	66.3 71.6
KS82W423	442	4.4	32.3	96.6	420	0.0	26.6	69.8
KS82W424 KS82W425	451 496	4.8 3.6	46.3 33.7	96.2 94.5	401 373	7.8 8.2	24.5	/1.3 63.6
KS82W426 KS82W427 KS82W428	475 421 493	3.9 4.6	38.3 36.2 45.7	97.5 94.9 97.0	407 442 396	7.5 5.9 6.6	29.0 17.1 32.0	68.2 67.4 75.2
KS82W429	407	4.8	51.2	97.3	391	11.3	27.0	71.9
KS82W431 KS82W432 KS82W433 KS82W434 KS82W434 KS82W435	329 471 423 431	9.5 6.0 3.9 3.9	61.2 47.7 45.3 54.7 42.8	97.2 96.6 97.9 97.1	349 406 363 420 377	11.6 8.9 8.3 7.1 8.6	34.0 31.4 33.1 22.6 30.1	71.2 74.2 69.2 75.3
KS82W436 KS82W437 KS82W439 KS82W439 KS82W440	390 429 402	5.6 5.1 5.0	50.4 63.5 60.6 52.9	95.9 96.9 97.1 94.0	365 370 357 363	11.2 10.9 9.3 10.4	27.4 34.6 30.8 28.5	69.2 80.0 80.0 76.3
KS82W441 KS82W442 KS82W443 KS82W444 KS82W444 KS82W445	363 332 438 482	6.8 10.4 9.6 3.2	61.0 62.2 58.5 66.1 10.0	99.0 98.0 97.4 98.6 91.9	362 347 391 419	.12.6 22.3 14.2 5.7	31.4 31.3 28.7 27.6 14.1	83.5 72.8 67.5 64.7

(continued)

Table VII.	Mean grain Hutchinson,	sprouting characteristics of hard white winter wheat genotypes grown at Manhattan, and Powhattan, Kansas, during 1981-82 and 1982-83 (continued).	acteristics , Kansas, du	of hard whi ıring 1981-8	te winter v 2 and 1982-	vheat genotype -83 (continuèd	s grown at]).	Manhattan,
		1981-82	32			1982-83	3	
Selection	Falling	Q-amylase	Sprouting	ıting	Falling	α -amylase	Spro	Sprouting
number	number	activity	1st week 6th week	6th week	number	activity	lst week	6th week
	S	mDU kg ⁻¹ S ⁻¹		%	S	mDU kg ⁻¹ S ⁻¹	%	
KS82W447	508	2.9	27.9	92.4	401	7.9	18.3	75.4
KS82W448	393	7.5	49.7	96.3	378	10.8	30.7	77.6
KS82W449	429	4.8	47.6	97.3	330	24.5	30.6	73.8
KS82W450	397	6.3	46.5	96.3	373	12.1	31.4	72.5
LSD (.05)	48	0.9	10.3	6.6	43	1.0	6.0	3.8

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. G. M. Paulsen and Dr. E. G. Heyne for their valuable guidance and inspiration during the entire course of study. Appreciation is also due to Dr. F. W. Schwenk for his critical review of the manuscript and to Dr. J. A. Higgins for his help on the statistical analysis. I take this opportunity to thank my colleagues in the crop physiology laboratory for their cooperation.

I am indebted to my parents, Mr. and Mrs. Anand P. Upadhyay, and brother-in-law, Mr. Badri Nath Sharma for their affection and encouragement in accomplishing this task. Special thanks are due to my wife, Mrs. Rita Sharma, and beloved son Nishant, Prashant and Shushant.

Last, but not the least, thanks must be expressed to H.M.G.'s of Nepal and I.A.D.S. for their liberal assistance during my study period.

DEVELOPMENT OF HARD WHITE WINTER WHEATS FOR A HARD RED WINTER WHEAT REGION

Ъy

Madhusudan P. Upadhyay

B. S. Ag (Hons.), University of Udaipur Rajasthan, India

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Agronomy

KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

Hard white winter wheat (HWWW) occupies a very limited area of the U.S., but its purported advantages suggest its production in the major hard red winter wheat (HRWW) region may be feasible. Objectives of our investigations were to develop experimental HWWW lines that combined desirable attributes--yield, functional quality, and resistance to preharvest sprouting--in single genotypes for comparison with popular cultivars in the major U.S. HRWW region. Forty-four lines from seven parental combinations were tested in randomized complete block designs at three Kansas locations during the 1981-82 and 1982-83 seasons. Agronomic traits, grain yield, grain quality, and preharvest sprouting were measured. Plant characteristics and grain yield were similar in the HWWW experimental lines and the HRWW check cultivar, Newton. Mean grain, SDS-sedimentation value and grain protein content of most experimental lines equaled or exceeded that of Newton. Dough mixing times were frequently shorter for the experimental lines than Newton, whereas loaf volumes were greater. Falling number was usually similar in all genotypes, but α -amylase was higher in field-harvested grain of white lines than the HRWW checks; both measures were more favorable than grain trade standards. We concluded that production of high yields of high quality hard white winter wheat grain in the U.S. "Breadbasket" is feasible.