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INTRODUCTION

Torsion, which results essentially from the monolithic
character of concrete construction is generally considered as
a secondary effect in the design of reinforced concrete build-
ingss In some cases, such as balcony girders, the'torque may
contribute to the controlling stress in the member. However,
the behavior of reinforced concrete beams under pure torque or
torque combined with flexural moment is still not clearly under-
stood. Theoretical and experimental research is still being
undertaken in an attempt to understand this phenomena. Several
fheories,have been developed, and under certain circumstances,
these theories predict the true ultimate load in very good
agreement with test results.

In this report, lessig's theory and Hsu's theory are re-
viewed. Furthermore, these theories are compared with the
results of tests conduéted by Mason(12), using small scale
models loaded in pure torgue. Lessig's theory combines the
effect of torque, bending moment and transverse load. However,
his general equations can be applied to the pure torque case
by setting the bending moment and the transverse load egqual to

Zero.



REVIEW OF LITERATURE

In 1929, Rausch presented 2 method for prediectinm the
ultimate resistance of a reilnforced concrete rectanrular beamn
being loaded with torque. His method was later modified by
Andersen(1) and Cowan(2,3). The Andersen-Cowan theory starts
from plain concrete elements analysed by Saint-Venant's theory
as well as Prandtl's membrane analogy for both elastic and
plastic stress distribution. The stresses caused by twisting
moment are divided into a diagonal principal tensile force and
a diagonal brincipal compressive force. The maximum torque
that the beam can resist is the torque that would cause tensile
failure of the concrete. For larger torques, the excessive
principal tensile force is assumed to be taken by the steel
reinforcement. This theory was adopted in,the 1958 Australian
Code. Studying this code, it is found that most of the equations
were derived on the baées of elastic stress distribution,
However, some concepts of plastic redistribution of shear stress
were introduced.

A different theory concerning torque on reinforced concrete
beams was proposed by Lessig(4,5,6,7) in 1959. This was consider=-
ed to be a more reliable theory which explained some observed
phenomena prior to failure quite reasonably. The ultimate loads
predicted by using the equation derived by her were also in
fairly good agreement with test results, provided that the beam

failed through the yielding of the longitudinal and transverse
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reinforcement which intersects the failure surface. Her ctudy
included the effect of flexure and transverse force combined
with torque.

By 1962, the Portland Cement Association Laboratory hesan
some research on a torsional theory for rectangalar reinforced
concrete beams. By comparison of the results of the experimental
tests carried out by P:C.A. and results reported by others, Hsu
(8,9,10,11) pointed out that there are some discrepancies be-
tween Lessig's theory and observed phenomena. In 1948, he
suggested a theory in which a different surface of failure was
pronosed. Based on this failure surface, he derived an egquation
for rectangular beams under pure torsion.

Small scale model tests can be divided into two categories
in both design and research, the direct method and the indirect
method. In direct model analysis,; the behavior of structures
both in the elastic and inelastic ranges can be-investigated.

In indirect model analysis, only elastic behavior of prototype
structures can be examined. These techniques have been developed
over the past half cenfury, but the significant use of thenm as
tools in structural design and research has occurred only for

the past 10 to 15 years.

4n application of small scale model tests to prestressed
corcrete structure in the inelastic range was carried out by
Burton in 1964, In his report, he demonstrated that a mix of

Ottowa sand and plaster could have the required compressive
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étrenﬁh and demonstrate similar behavior to the concrete used
in prototype structures.

In a Master's thesis published in 1965, Cardenas compared
the experimental results he obtained, for rectangular reinforced
plaster medel beams subjected to combined bending and torque,
with Lessig's theory. .Armésunably good agreement between his
results and Lessig's theory was reported.

Mason(12) examined the ultimate resistance of small scale
models of rectangular reinforced beams subjected to pure bending
and pure torque in 1967. The test results are good for pure
bendiné. But for pure torque, Lessig's theory overestimated
the test results. The same type of'discrepangy wés reported

in papers by Yudin in 1962 and Hsu in 1968(11).
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LESSIG'S THEORY FOR PURE TORQUE

In 1956, Lessig, through experimental observations,
defined two possible modes of failure for reinforced concrete
beams subjected to bending moment, transverse load and torsion,
These failure modes are dependent on the ratios between these
applied loads. If the beam is subjected to a large flexure
moment gccompanied by a small twisting moment, the beam fails
by the first mode, that is the neutral axis intersecis both
vertical sides of the beam (Fig. 1). On the other hand, if the
beam is subjected to a large torsional moment and a smal} bend-
ing moment, 1t fails by the second mode, that is the neutral
axis intersects both horizontal sides of the beam. (Fig. 2)

A complete theory to explain these failure modes was re-
ported in 1959. (4,5) In these papers, Lessig pointed out
that the position of. the compression zone, the angle between
- the neutral axis and beam axis, and the load-bearing capacity
depend on:

(1)e the magnitude of the forces acting in the beam at

the surface of failure.

(2). the steel and concrete properties.

(3). the width as well as the depth of the beam.

(4)., +the quantities of the longitudinal and transverse

reinforcement as well as the ratio between them.

In order to derive the equations, the following assump=-

tions nmust be made:



(1)

(2).

(3).

(&),

(5)e

when a spatial plastic hinge forms, all steel
intersecting the tension part of the failure sur-
face reaches its yield stress.

the tension in the concrete at the surface of fail-
ure is completely ignored.

the compressive stress in the concrete at the section
under study reaches its ultimate strength as in
flexure compression.

the quantity of transverse reinforcement is assumed
constant and uniformly distributed over the beam.
no external loads are applied within the length

where failure takes place.

Based on the above assumptions and the failure modes that

Lessig defined, the ultimate resistance of a beam can be found

by the use of equilibrium equations. For pure torque, which

is the case to be considered here, the failure mode would have

the neutral axis pass through both horizontal faces and

M
Q

0
0

(see Fige 3)« The moment equilibrium equétion about the neutral

axis is

in which

c : _ )
By = T -I. | - (1)

1 - length of the neutral axis.
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FI1G, 2 - SECOND [MODE OF FAILURE
DEFINED BY LESSIG

I, - moment about the neutral axis.

o)
Fy, 1s made up of four parts, designated as Iy, ¥Mp, H3, and
¥pe In order to make the derivation straight forward, each part
is discussed individually.
A)e Iy, (due to the compréssion in the concrete).
My, - fa * Sp |
wherein
f, = ultimate strength of concrete, can be approximated

as the compressive strength in flexure, 0.854.
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Sp - static moment of compression area about the neutral
axis, BC.
refering to Fig. 3¢
BC = 1, AD = / h? + c?
and R
X PP+ R

Sp = [adA * S = [px ¢ 4§« (
b= A k 2 1

In this integral, x is a function of §

( ) 3 x11"' + (xp-x37)E (2)
X + {(x - X — =
1 2 1 if h2 + cz 18

Introducing 1 ==Jh2,+ c2.

Substituting 1' into the expression for Sy,

X =

then
l 1’ 2
Sp = . ] [ x11°® + (xp-x1) §] d§
| 21'1 O ,
102 , 5
= (%7 + X1%x3 + x5)
61
thus  £o(n?x &%) . 5
My = , (x1-+ x1%3 + x3) (3)

61
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FIG. 3 = FREE BODY AND THE FAILURE SURFACE
DEFINED BY LESSIG

B).

point halfway between the two longitudinal bars. Putting

E=1'/ 2 into (2),

and

11" + (xp~x3)1'/2
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Mo (due to the longitudinal bars on the right side)

From assumption (1), the total tensile forces act at a

(&)



wherein
i‘y - tensile yielding stress of the longitudinal steel,
Ag - area of longitudinal steel on one side of the beam,
h' - the projection of BC(Fig. 3c) on a plane perpendi-
cular to the beam axis.
g)a N3 (due to the vertical stirrups).
Ave X1+, ©

&’13=fvy.'_ — (e+0) (b=b1 - =) — (5)

wherein
fvy - tensile yielding stress of the stirrup steel.
A;s - cross-sectional area of'one stirrup.

D). Fy (due to the horizontal stirrup of the beam).

Assume the angle between the cracks on both horizontal
faces of the beam and the beam axis are the same and let (see
Fig.3a)

7 (L -98)c

ctn a =
2b = (xy+x2)

then the lever arm of the total stirrup steel on the upper face

is ,
L ) ] h c
[— (b=x1) ctna | — - h ¢ —
{ 2 c l} i 8
thus A . b=-x7 h o
yﬁ = 1, E—-EE;— (b-x3) ctn o] [—— ctna — - hl}——
J = s 2 c 1

(6)
Similarly, the lever arm of the total stirrup steel on the

bottom face is



{[ 1 ( $ ] h } c
— (b=x ctn o/ = =~ h —_— and
2 2 o! a 1

Avs b-x2 h &
(b=x,) ctn a] [ ctno— - hl}ET (7)
c

b
My = £ [

Gombining equation(6) and equation(?7) yields

A, cf h(1-86) (b=x; )2+(b-x,)?
M = T —_— e —(l-0 . - h 8
Ty 1( 'L 2 (2= -x, )® 1l ()

Since My, My MB’ M), are all taken about the neutral axis,

MO=MJ_+M2+M3 +Mj+

and c fc(02+h2) (<2 2y
T o s 2 XT + XX, + X
ko fy AS (jbO'-'. 2 ) 3
' X, + X

.o f . A‘.—’E . -—-g——- (b - bl.;_ l 2 )
vy s 1 2
: ' " B 2

g h(l-a) (b=xq ) +(b=x2)

+ £, v & (1-0) [ : - > =hp ] (9)

y s 1 ’ 2 (2b-xl-x2)

In equation(9), the internalvmoment is a function of four
parameters = Xy, Xg, C and ® . For a certain value of ¢ and@ ,
a change in either Xq or xp will change the value of internal
resisting moments, Recognizing that the beam would fail in
such a étate that the location of the neutral axis corresponds

to the minimum internal moment, equation(9) is differentiated
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with respect to xl'and Xps This procedure yields the result

that x; = x,. As a consequence, equation{9) can be written:

£, (c? + n®)

Teg = — - x? + Ag £y (by=x) h
Ay h(1-6)
* fyy — c2{0(b-by~x) + (1-9_')[-—4--— - hl]} (10)
A, T
.0 (cP4n®)x = Age £ B o~ s vy L 2 2o (11)

Equation{ll) is obtained by differentiating equation(10)
with respect to x. This equation indicates the equilibrium of
the projections of all forces acting normal to the plane of the
compression zone. Solfing for x ylelds

L sy n g gy c?e/ s
f, (¢ + h?) (12)

Multiplying equation(ll) by x/2 and subtracting from equation(10),

Tege = ASG_ fy(bo— -32;—) h = fvyf"ﬁ Cz{e(b"'bl- %)
. : S :
h (1-8)
+ (1 = 0) [—1;_- - ny 7} (13)

If the following expressions are introduced,

fvy » AVS « %

fy. .AS e S

P=

z = b, - x/2 | (14)
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y = 6(b - by - %) + (1-9)[9—%—'91--111]

equation (13) can be simplified as

' z + pe?y/bh
= Ag*f,,*

The value of ¢ corresponding to the minimum value of beam
resistance can be obtained by differentiating equation (14)

partially with respect to ¢. The result is

¢ =4JZ258 7 Py (16)

In many cases, ¢ obtained from equation (16) is larger
than the actual values of ¢ measured in tests. This is because

of the effect of the concrete in tension. Lessig suggested that
Cmax S_ Zb + h
Due to the fact that the transverse reinforcement is not
uniformly distributed and the cross-sectional area of the
stirrups intersecting the surface of failure could be less than
that assumed in deriving the désign equations, a correction
should be applied to the value of y in equation (14) as follow-
ing,
s x h 2s bhy
y = (0 = g)b-by~ 7) + p(1-0~ —)(1-6~ —=) (17)
In order to simplify computation, a correction coefficient

of 0.7 to 0.8 is generally applied to p instead of using equation

(17). This coefficient takes into account the reduction in the



actual cross-sectional area of the stirrups that intersect the
surface of failure.

To compute the ultimate torgue in a test, the actual wvalue
of ¢ and & can be measured. However, there is no such infornma-
tion available when designing a heam. Thus an approximation
of & with sufficient accuracy for practical purposes was pro-

posed by Lessig based on her experience.
8 =h/ (2o + h) (18)

Eauation (18) is reasonably good for pure torsion, since
the cracks of concrete start before stress redistribution and
the principal tensile stresses at this stage always have an
angle of 45° to the beam axis.

If the principal tensile stresses in torsion are constant
over the entire cross-section and equal to the ultimate tensile
strengfh of the concrete, the twisting momentvthat produces the

formation of cracks is determined by the plasticity equation

b2
T = £y —(3h - b) (19)

Starting from equation (18), and letting z/y = 1/6, the
value of ¢ in equation (16) can be calculated. Substituting
this value into equation (12), the ultimate torque T as well
as values of z and y can be obtained by using equations (14)
and (15). For a more accurate solution, a second computation

can be carried out by putting the value of z and y that are

14
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thug obtained into equation (16) and repeating the same
procedures as before.

It is necessary to point out that the design equations
derived in this section are on the basis of some assumptions.
Thus, these equations are vazlid only when failure starts with
vielding of the reinforcement. And at the present stage, to
the best of our knowledge, the ultimate load-bearing capacity
of a reinforced concrete beam that fails through the failure
of the concrete is still unknown. Lessig suggested (6) an
empirical equation for calculating the ultimate torsional

moment in case that the beam is over-reinforced.
M =k o fo°+ 2 + h (20)

The coefficient k in equation (20) must be obtained from
experimental data. A value of 0.07 is considered to be on
the safe side.

However, it is preferred to have beams which are not over-
reinforced. Theoretically there exists a ratio of transverse
to longitudinal steel which guarantees that the steel in both
directions will reach the yield stress. before there is inad-
'ﬁissible deformation or objectional cracking during the stress
redistribution in the steel. For a beam loaded in pure torsion,
the optimum value of p(in equation 14) under which yielding
of reinforcement occurs simultaneously in all tension bars

crossing the crack was given by Lessig as 1.0. Empirical data,



however, confirm: that any value between 0.5 and 1.5 is

applicable without producing complications in practical design.
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H3U'S THEORY FOR PURE TORQUE

A series of 53 beams loaded in pure torsion was tested by
Hsu, beginning in 1962. After study of these test results and
the results reported by.others, Hsu pointed out (11) that
Lessig's theory overestimates the torsional resistance of a
beam and that her theory does not agree with the following
observed phenomenas:

1). The horizontal stirrups usually have small tensile
stresses when the failure madﬂnism forms. Occasionally, these
horizontal legs are in compression. Lessig assumed that they
were in tension and that they all reach the yield point.

2 Vi Diagonal cracks on the wider face of the beam extend
pernendicular to the corner into the shorter face. The angle
of the cracks on the shorter faces is freguently much less
than 45 degrees.

3). The dowel acfion which exists in the longitudinal
steel was not consideréd in Lessig's theory. This action was
confirmed, by Hsu, by ﬁeasuring the bending stresses from
diametrically opposite sides of a longitudinal corner bar.

Ly, At ultimate torque, the cracks at the corners and on
the shorter faces are wider than those at the center of the
wider faces, This indicates that the neutral axis about which
the free body rotates is different from what Lessig assumed,

In 1968, Hsﬁ presented a new approach to the analysis of
a reinforced concrete beam subjected to Ttorsion. His theory

involves the assumption of a new surface of failure which is
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compatible with his experimental observations. To study Hsu's
theory, both the behavior of plain concrete beams and reinforced

concrete beams nust be considered.

I. Plain Concrete Rectangular Beams

According torHsu'g paper (9), the surface of failure for
a plain concrete rectangular beam as found in tests is shown
in Fig. 4, Instead of a spiral form, the crack starts from the
middle of one wider face and extends into the two shorter faces
almost perpendicualr to the corner then turns gradually toward
45 degrees as it approaches the opposite wider face. The cracks
on the wider faces are at approximately 45 degrees to the
edges of the face and the failure surface is approximately =2
plane. Furthermore, fhe concrete near the face where the cracks
begin seems to fail in tension but the concrete near the other
face seems to be in compression. These observations indicate
that a concrete beam sﬁbjected to pure torsion fails by bending
action on a plane which is normal +to both the wider faces and
inclined at an angle of ¢ to the beam axis. (See Fig. 5)

The equilibrium equation about the neutral axis can be set
up as

Mg = Typ ° cos @ (21)

This equation can be simplified through the use of the
concept of the modulus of rupture, f,, which is defined as the
value of f calculated by using the flexure equation f=M-y/I,

when 1 is the maximum bending moment in a beam loaded to rupture.



jrct
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Using the flexure equation anéd the above definition of the
modulus of rupture we obtain
0
b“ h
Mg = —— s cSC ¢« Ty (22)
wherein, M, - moment about the neutral axis.
Tup - ultimate torque applied to the plain concrete
rectangular beam.
¢ - angle between the assumed fallure surface and the
beam axis.
f. = modulus of rupture of concrete.

combining equation (21) and (22) yields

b? h \
Tup = _Ef__ « fro v (sec ¢ csc d) (23)

Eguation (23) yields the torsional resistance of a bean
which varies as a function of the parameter ¢ . The value of ¢
corresponding to the minumum strength of the beam can be found
by differentiating this equation with respect to ¢ and setting
the differentiated equation equal to zero., This yields the
result, ¢ = 45°,

Consequently,

Tup

]

2 « h v £,/ 3 (24)

The value of f,. in equation (24) is obtained by a flexure
test. It should be reduced, according to Mohr's theory, in
case that perpendicular compression exists. Since perpendicu-

lar compression doés net exist in the flexure test but always



FIG. 4 - FAILURE SURFACE OF 10x15-in. BEAM(Al)
IN HSU'S TESTS -

FAILURE PLANE
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exists in torsion, Hsu applied a reduction factor equal to 0.85
to f.. This factor was obtained from experimen tal data.

Thus, equation (24) is written in the form

Top = 2 « h o« (0.85 £.)/3. ' (25)

A comparison of the results calculated using equation (25)
and the test results is shown in Table I-1l, Appendix I. It
can be seen that the values obtained by this equation are
reasonably close, within- 6 percent, to the test results.

For practical purposes, it is more advantageous to use the
tensile dr compressive strength of concrete rather than the
modulus of rupture. If the relationship between them can be
found, equation (25) can be transformed into a more suitable
form for design purposes. To establish sugh a relationship,

the tensile strength of concrete, fy, is considered first,

Let fr = K .. ft-

Here K is a coefficient which is influenced by many factors.

But of all these factors, the size of the beam and the tensile
strength of the concrete will predominate in determining the
magnitude of this coefficient. The influences of these two fac-
tors are'found from the test results and reported by Hsu (9).

For beams having depths larger than 4 inches, the value of

K is as follows:
7.17 10

L R (26)*
3T 12



27
and equation (25) becomes
T, = 2 (b2 + 10) » h 3./ T2 - (26)

For beams having depths between 2 inches and 4 inches, a2 differ-

ent value was obtained.

?ol? 2.“‘ .

K = . (2?)'
e o WE

Typ = 49 3./69 + n 3/ 12 | (27)

The relationship between tensile strength, fi» and com=-
pressive strength, f',, depends on age, water-cement ratio,
mix proportion, moisture conﬁent. etc. But generally, it can

be expressed as
ft =5 Jf'c (28)

Using this expression, equations (26) and (27) are transformed

into a form based on f'y. Egquation (26) yields

7,, = 6 (b2 +10) h 3870 (29)

p

and equation (27) yields
T =14.3 3/35 h 3 £
Equations (29) and (30) are equations for calculating the
ultimate resistance of a plain concrete rectangular beam. A

comparison of the values calculated from equation (29) and
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experimental results was made by Hsu in his paper (9). EHEquation
(29) appears to be acceptable., Egaution (30) is to be used
primarily for model tests. However, Hsu did not check the va-

lidity of this equation.

II. Reinforced Concrete Rectangular Beams

For a reinforced concrete rectangular beam subjected to
pure torgue, the behavior before the concrete cracks is quite
different from the behavior after the concrete cracks. It has
been shown in experiments (10) that before cracking, the beam
will behave just like a plain concrete beam. However, there
are some stresses in the steel prior to cracking, and the torque
which causes cracking will increase as the amdunt of steel

reinforcement increases. The relationship is

in which, Toy = the quantity of torgque when beam cracking was
first seen on the concrete surface.
Dy - the percentage of total steel by volume in the
concrete beam.
Typ — the ultimate resistance of a plain concrete
rectangular beam of the same size.
A8 soon as the cuﬁcrete cracks; the angle of twist of the
beam will continue to increase under a constant torque until

a new state of equilibrium is generated, and the stresses in

the reinforcement increase suddenly during this stage. This
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new type of equilibrium after cracking is considered to be an
equilibrium of moments as well as forces in a plane, the fzilure
plane, which is perpendicular to two vertical faces 2nd has an
angle of 45° to the béam axis (Fig. 6). In other words, the
fallure surface of a reinforced concrete beam is identical to
that of a plain concrete beam. The reason for this is that

the reinforcement has only a small effect before the beam cracks.
\fter cracking, the surface of failure will not be significantly
changed although the re;nforcement then begins to carry the
tensile forces. For this reason, the neutral axis is a straizght
line in the failure plane and is parallel to the vertical faces
of the beam. The compression zone, which is also subjected to

shear, is shown as the shaded area in Fig. 6.
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FIG. 6. = FAILURE SURFACE AND CROSS SECTION
PROPOSED BY HSU



Since the surface of failure as well as the failure mcde
has been determined, the design equation can be derived from
the equilibrium equations of the free body. Refering to Fig.
6, the resisting moment of the beam about the axis of twist is
made up of several parts - the tensile forces in the steel
reinforcement, the compression in the concrete, and the dowel
forces in the steel reinforcement. As mentioned before, the
forces contributed by the horizontal stirrups are excluded in
Hsu's theory because during the tests they appeared to be small,
irregular, and at least part of the time were compressive forces.
On the other hand, the dowel forces which are not considered in
Lessig's theory will Dbe considered here.

The resisting moment contributed by the vertical stirrups is

hlc

M’VS = S . AVS . fvy . dlt (31)

wherein, M, = moment about the axis of twist due to the
| vertical stirrups that intersect the surface of
failure in the tensile zone.
hi, = larger center-to-center dimension of a closed
rectangular stirrup.
d, 4 =-distance from the center of the vertical stirrups
in the tensile zone to the axis of twist.
The resisting moment contributed by the horizontal dowel forces
of the longitudinal steel is
hae
2 -,

Mep = 2 Fp = F + hpg (32)
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wherein, Fn - horizontal dowel force of one longitudinal bvar
in the tensile zone.
hpe = vertical center-to-center distance of the longltu-
dinal corner bars.
The resisting moment contribut9d3b§ the wvertical dowel forces

in the longitudinal steel is

wherein, Fv - vertical dowel force in one logitudinal bar in
the tensile zone.
dot - horizontal distance between the center of the
‘ longitudinal bars. in the tensile zone and the
axis of twist.

So far, we have not considered the forces acting in the
direction of the beam axis. In the wvertical direction, the
concrete compression, concrete shear and tensile force in the
longitudinal bars in the shear-compression zone must combine
to yield .a vertical force whichis nequilibrium with the sum of
the vertical dowel forces and the tensile stirrup forces. Let

this vertical force be P, then

h
Ple S A+ fyy + 2 Fy (34)
S

The magnitude of P can be determined from the force polygon
shown in Fig. 7. There are three known forces in the polygon,
the shear Torce in the concrete, Pg, the compressive force in

the concrete, Py, and the horizontal force in the longitudinal
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steel, Pl' From the geometry
P=.2 Py +P (35)*

For under-reinforced beams, the steel reaches its yield

stress before the concrete crushes.

P1 P%i/

P=,2 Pg+Py
=J2—.Ps+Méf y

FIG. 7 - THE FORCE POLYGON IN THE SHEAR=
COMPRESSION ZONE -

Thus, equation (35)' can be transformed to
P=yJ2 « P + AL Ty (35)

wherein, A!{ - cross-sectional area of longitudinal bars within
the shear compression zone. Generally, it is
equal to one-half of the total longitudinal

steel area and 1s therefore equal to Age

» - an efficiency coefficient introduced because the

longitudinal steel is not uniformly distributed
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over the shear-compression zone and should not
be considered fully effective.
The moment contributed by this forece is +the product of

this force times its lever arn.
He = (/27 Pg + M{ £) doy (36)

in which, dct - the distance from the center of the shear=-
compression zone to the axis of twist.
The total resisting moment is obtained by summing equations

(31), (32), (33), and (36).

h
5 1.8
+ Fp hy, + 2 Fy doy (37)

Equations (34) and (35) are combined to obtain

h'l
LC 3 = T
—= yg Ty + 2Ry JZ Py + ML £y (38)

EQuations (37) and (38) represent equilibrium of the
moments about the axis of twist and the forces in the vertical
direction respectively. By using equation (38), the vertical
dowel force Fv in equation (37) can bg eliminated, In addition,

some alzebraic work will bring equation (37) to a simpler form,

b T, b d
12 v le 2c
m - 4 2 P «d + | m— s M = (l + ——— — ]
u s 2¢ Eblc fvy hie " Pic
b h A £
le “le “ws ~vy
X + Fh hzc

s : (39)



29
wierein, dpe =~ the distance from the center of the longitudi-
nal steel to the center of the compreszion zone
(equal to the sum of dpt and dg¢).
b2 - the distance from the center of the stirrup to
the center of the nearest longitudinzl har (equal
to the sum of the radius of the longitudinal bar
and the radius of stirrup).
by, =~ small center-to-center dimension of a closed
rectangular stirrup.
m = ratio of the volume of longitudinal bhars to the
volume of stirrups, i.e., m = Ages /[Ayge (brethie)].
Te find the horizontal dowel force in the longitudinal steel,
two assumptions must be made which are based on experimentzl
observations. These two assumptions are
a)s. the dowel force is proportional to the cross-sectional
area of the bars.
b). the dowel fofce is proportional to the relative lat-
| eral displacement of the bars across the failure surface,
Then the equation for the horizontal dowel force is
P, = a*(As/2) + 8 + (h2c/2) (L0)
wherein, g - dowel stresses per unit displacement, in in-1b per

- 3

cusin., a constant.
® - relative angle of twist of the two surfaces of the
failure crack, in radians, roughly a2 constant.
Substituting, 2¢Aq = meAyg+(biethic)/s, into equation (40),

rearranging it and multiplying both side by hp, yields



2
9 n? b 1’1 AT "'f‘
Py hZf‘ — l c (1 + 10) 1001 0l ys £y (1)
pis L}. 'F'VJ- ]'llc blc 8

The dowel action is gtili not well understond,

3

revealed that the dowel stress is affected by the spaci

Hy
f
o
D

o0

stirruns too. However, for stirrup spacing smaller than 0.5h

b
o]

the effect of snacing is not large and can apparently be neglected,

Substituting equation (41) into equation (39) results in the

following:
,blz bJP
= —dh 1+
1 .9 h h B1ch)cAve vy
& (q f2c (1 + 25 m] lefll cfivelyy (42)
fvy hlc blc =

In order o

simplify equation (42), two identities can be intro-

duced.
T' = 2 Pgedae
and biz b d
K' = —= + m V(l o+ —ic _25
bic Tvy hic” bie
9 h hlc
~ 2y EE (s (43)
4 fvy Nie b1p
Equation (42) then becomes
A . Ays Ty
T, = T' + K' byg hi, 4 (144s)

Equation (44) is in the
equations for pure torque in
Ausitralian Code., However it

tion to predict the ultimate

same form as the ultimate design
the 1958 German Code and the 1958

is inconvenient to use this equa-

torsional resistance of 2 beam



cince we have not determined values of T' and X'. ‘Yurther
discussion of this equation is necessary. The digcuscion will
be divided into two parts, one concerning T' and the other
concerning K',
A). T' - the resisting torgue provided by the shear strength
of the concrete in the shear-compression zone.

If the effect of stirrups within this region is neglected,

and the average shear stress is denoted by vay

tThen

Pe=vay * 20 v x (45)
the values of vgy and x can be expressed as |

Vav = k1 « V'co X =kp + b
in which k7 and ks, are undetermined coefficientss Now

Pg = /2 kyekgebehev'y . (46)

To transform v's in equation (46) in terms of f',, the

relationship v'o = [£'c / (£ + ft)]ft is used (13). Hsu
suggested a value of 0.9 for the ferms in the parenthesis,
[£s / (£f4 + f4)], since the uniaxial tensile strength, fi, is
rather small in comparison to the cylinder compressive strength,
As stated before on page 19, T, = 58«

Thus, .
Py = 6.4 * k9 * kp » b+ h o JEE (47)

Substituting equation (47) into equation (43) and assuming
dzc - Ole,
T = 7,2 ¢« k3 » ko * b2+ WY (48)

It is difficult to evaluate k; and k2, because of insuf-
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ficient infermation. However, it c2n be zhown that 7' iz

M

-

prroximately a constant (11) and roushly equal to the value

+3

o (See Fig. 8) which is obtained experimentally as the inter-

[FE =5

cent of a test curve with the T, axis, The wvalue of T, was
found by Hsu from his experimental data as -
2.4 § ,
Ty = 7§— « D% « h « JI] ' (49)

As shown in Fig. 8, the terms T' and T, have different
reanings. However, for the purpose of design, these two can

be set egual.

Then ki ko = 0.33 / /b
2.4

and v o Z_ b2 h ST , (50)
= B

TEST CURVE
Avsfvy
K'bjch) g
S
ey B Ayt
vs
blchlc-—g—xx

FIG. 8 - THE RELATIONSHIP BETWEEN T, AND T®
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A comparison of the values obtained using eguation (50)
and test results was done by Hsu (11). This comparison is
copiled in Table I-2, Appendix I, which shows that they compare

favorably with each other.

B). K' - the coefficient in the =z=coné Zar..

The value of K!' should be evaluated from equation (43).
However, there are three coefficients, A, g and 5, which are not
available because a reasonable analysis for them has not been
established. Due to this fact, Hsu used experimental data to
evaluate K' rather than determining it theoretically.

By carefully studying the relationships of K' versus m,
fy / Tyyr i / 1. and hzc,'it can be seen that the effect of
h,, can be neglected due to its small effect. Furthermore, if
f, = fyy and assuming K' is a function of these factors to the

J
first power, then the value of K' is

The coefficients ji, Jjp and j3 have to be evaluated from

experimental results. For the case when m = 1.0, i‘y = fvy'
hlc / blC = 2-6,
Hsu found hlc

K' = 0,66 + 0.33 (52)

b1e
Equating equations (51) and (52) gives



further investigation shows j; can reasonably he taken as 0,

so
h10
K' = 0.66 m + 0.33 (53)
b1
In case fy V4 fvy’ the value of K' should be
£, h
K' = 0,66 + m ¥ G99 28 (54)
fvy blc

Combining equations (44), (50) and (54) gives the design
equation for a reinforced concrete rectangular beam in pure

torque.

2.4 £
T. = ;E; b®h/TL + (o.ééznf—— + 0433

v - T (55)

}Ec) blchichvsivy
5

Equation (55) is the design equation obtained by using
equation (4&) and the experimental data. According to Hsu's
tests, this equation should be checked against the following
limitations in order to aszsure its validity.

A if hlc/blc>2.6, a value of 2.6 should be used in

equation (54). Consequently,

- £ b, h P
Tu=§/':5‘jEt b2h/TTe + (0.66m—L_ + 0.858). L Leve vy (56)
Fory s

b. The total reinforcement provided must be less than the

balanced total veoclume percentage, Pyp. This limitation assures
Tthat the beam will not fail through the crushing of the concrete.

An empirical equation for Py as found by Hsu is (10).

Hy
(D =

(57)
By
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As a matter of fact, Py is affected by m and hy /by too.
3ut these effects are neglected due to insufficient datz =2nd
also vecause they éppear to be small in comparison with the
effects of £ and fyy.

f the total reinforcement is larger than P4y, the total
percentage of steel is to be taken as 2400 prg“ / fvy “while
maintaining the same m fy/fyy ratio.

c« The full utilization of the reinforcement is affected
by the ratio of the volume of longitudinal steel to the volume
of stirrup steel, m. For a small perbentage of reinforcement,
m could have a large permissible variation. But for 2 high
percentage of reinforcement, the beam is very sensitive to the
variation of m. To assure the full utilization of reinforce-
ment, the value of m-fy/fvy can not te larger than 1.5 or
smaller than 0.7. If m-fy/fvy>l.5, the excessive longitudinal
stgel should be neglected. On the other hand, if m-fy/fvy<0.?,
the excessive percentage of stirrups reinforcement should be
neglected.

de The height-to-width ratio should be equal or larger
than l.5. Por smaller ratios, a different type of crack pattern
was observed.

e. The spzcing of the stirrups has some influence on the
vltimate torque of beams. For equal percentages of reinforce-
ment, larger spacing will result in lower resisting torque.
Though this influence is not large, it has been proposed to

limit the maximum stirrup spacing to smax = 0.5 hjc.
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An important phenomenon which appeared in Hsu's tects 1

19

that the ultimate torgue may not follow the law of similitude
(11). Thus the relationship between the model and its proto-
type in direct model tests may not be considered to be linearly
simulated. This phenomenon is still not clear. However, fur-
ther research in this area is necessary. In this report, 2
compmarison of the results of model tests and Hsu's theory as

well as Lessig's theory will be presented.
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REVIEW OF SMALL SCALE NODEL TESTS BY MASOXN

A). Review of the Experiment

The material used in model .tests must be able to simulate
the material properties of the ﬁrototype. In the test, the
substitute for concrete was o mix of 40 percent Ultracal 30,

20 percent Standard Ottowa Sand and 40 percent local crushed
limestone between the No. 8 and No. 16 sieves. The weizht of
water added was 33.3 percent of the weight of the Ultracal 30,
The ingredients were mixed with mechanical mixer. Steel forms
were used and saturated cloths were placed over the specimens
for curing control. All specimens were.reméved from the forms
at the end of the first hour, then covered with saturated cloths
for-23 hourse The total curing period was 24 hours and the
tests were made on the specimens immediately after the curing
period.

The specimens thus-obtained were tested for compressive
strength and modulus of rupture. The samples cast for these
tests were of 1xlxk-in. size. Three batches were tested to de-
termine the uniformity of properties from batch to batch. In
each batch, six specimens were tested, three for compression
and three for modulus of rupture. The modulus of rupture results
were obtained by using a third-point loading test. The results
are shown in Table.l.

The relationship between the average value of the compressive

strength and the modulus of rupture in each batch can not be
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checked by the equations established by Hsu (p. 21) since the
samnles are smaller than 2 inches. However, the corpressive
strength of the plaster mix simulated that of 3,000 psi. ccnecrete,

Although the stress-strain curve showed that the modulus of

TABLE 1L
RESULTS FROM COKPRESSION AND MODULUS OF RUPTURE TESTS OBTAINED
BY MASCN
Test Batch Number
Specimen
1 2 ‘3
Compressive 1 2855 3000 2716
Strength, 2 2690 2800 2830
in psi. 3 2790 2845 2900
Average 2778 2882 2813
liodulus of ¥ Lk L27 Lo2
Rupture, 2 439 377 389
in psi. 3 389 L52 L39
Average L1k Lig 410

elasticity of the Ultracal mix was different from that of the
conerete(l2), this does not affect the ultimate . torsional
resistance of the beams.

The element used to simulate the longitudinal bar was a



#6=32 threaded rod, that is, a rod with a #6 nominzl dizmeter
and having 32 threads per inch. The tensile area was comznuiad
as 0.0075 sqsine 1In order for the rods to exhibit a definite
yield péint, it was necessary to anneal the rod before using
it. Three samples were tested after annealling. The details
of the process of annealling as well as the.construction of the
stress-strain curve were presented by Mason in his thesis(12),
Taking the average of the modulus of elastieity and the yield
point respectively for the three samples, the idealized stress-
strain curve was constructed. It was thus found that for the
longitudinal reinforcement
fy = 86,000 psi E =190 x 106 psi

The transverse reinforcement for the 1x2-inch beams was
No.l5 gage smooth black annealed wire and the transverse rein-
forcement for the 1.4132.83-inch beams was No.l5 gage smooth
bright basic wire. The stress-strain curve for each of these
elements was constructed in-the same way as for the longitudi-

nal reinforcement. The results are listed in Table 2.

TABLE 2

e

MECHANICAL PROPERTIES FOR THE TRANSVERSE REINFORCEMENT

(2

Floduvlus of

Yield Stress,psi Elastici‘ty,usi

Black £&nnealled Wire 6
(for 1x2-in. beams) 22,800 12,0 x 10

Bright Basic Wire . 6
(for 1.41x2.83-in. beams) 53,000 ) 26.6 x 10
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The beams under investigation were of two sizes, 1lx2-in.
and 1. 41x2.83=-in. Eachfsize grouping had nine heams in which
the longitudinal reinforcement was identical. Theze bezams
were designed with three different values of p, 0.4, 0.5 and
0.6. That is, each group of three beams had different amounts
of transverse reinforcement. This made a total of 18 beams to
be tested as shown in Table 3. The typical cross sections of
the beams are shown on Fig. 9.

TABLE 3 DESIGN OF -KASON'S TESTS FOR PURE TORQUE

Cross Section D
0!4 Ol5 006
£} i 1
1x2-in., | 2 2 2
3 3 3
1 1. 1
2 3 a

Four quality control samples were cast for each torsion
specimen, two for compreésion tests and two for flexure tests.
The results of the tests are presented in Tables 4 and 5. The
beams were numbered in such a way that the first numeral indi-

cates the number in each group, the second indicates the beam



~—— 1. 41 oS?

2.83

| 7

i

i L .57
021-"—"

(a) Typical Cross=-section of l.41 x 2.83-in. Beam
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(b) Typical Cross-section of 1 x 2-in. Beanm

FIG. 9 - TYPICAL CROSS-SECTION OF TORSION
SPECIMENS IN MASON'S MODEL TESTS
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width and the third indicates the value nf p. The unper and
lower strencth for individuval batch means are shown at the
bottom of the tables. It can be ceen that the average strenzth
of each individual batch falls within these ranges.

The torgue was applied concentrically, to the beam tested,
through a 20 in. lever arm by a hydraulic jack. The load cell
was attached to the lever arm and the force from the jack was
applied through the load cell. The cell was designed for a
maximunm regding of 50,000 lbs. and lMason pointed out that some
difficulties were encountered wifh the accuracy of the load
readings since the loads being read were less than 100 lbs.
However, the ultimate load cell readings which were obtained
are tabulated in Table 6. The average load cell reading, stand-
ard deviation and coefficient of variation for each combination:
of the cross-sectional érea and p are also given in this table,
Table 7 was prepared by'taking some data from Mason's work,
such as the actual failure torque and the calculzted torgue.

To allow a comparison of those values against the theoretical
results, the ultimate resistances predicted by Lessig's theory
are presented in this téble too. The computation of the theo-
retical values 'is shown in Appendix II. In Table 7

Tectu - actual failure torgque determined from load cell

readings, in in-1bs.

Tcale - ultimate torque calculated by Lessig's' theory

using the measured parameters, in in-lbs,



TABLE 6

ANALYSIS OF ULTIMATE LOAD CELL READING OF TCRSION EZAIS

3
Crogse 0.4 0.5 044
Section
Ultimate Load Cell Readings

32 32% 2%

1 ¥ 2-in. 2 b 30 30
37% 33% 39

Averanse 31 32 31
Standard Deviation 6.56 2.24 2,55
Cocefficient of Variation 21.20 1.58 24,35
34 Ll Lh

1.41 x 2.83-in. ,, Iyl how U7
Ll 39% Lo%*

Average L L2 Lty
Standard Deviation - 5.79 255 3.81
Coefficient of Variation 14,24 6.12 8.59

* [leasured value of ¢ obtained by adding twice the horizontal

vrojection of the bottom crack to c8. (See Reference 12).
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Tiheo - Wltimate torque obtained by Lessiz's theory, in
in-1bs.
B). Comparison and Analysis of Test Results with Theoraticzl

Results

From Table 6, it can be seen that the difference in cross-
sectional area of the beams will influence the ultimate load
cell readings significantly. The variation of p was expected
to be significant in each individuval area groupings. It was
found that this was not true in the tests.

The crack pattern, according to Mason's report, did not
follow the type that Lessig defined. Thus some difficulties
were induced in measuring the masnitudes of "c" as used in
Lessig's equations. The beams involved in these difficuifies
are marked by asterisks in Table 6.

Lessig's theory over-estimated the ultimate torsional
resistance for both 1x2~inch beams and 1.41x2.83-inch beams in
these tests. It is interesting to note that if the reinforce-
ment were increased beyond a certain critical amount, the beams
would fail through the crusﬁing of the concrete. The ultimate
torsional resistances for this case, calculated by using equa-
tion (20), are lower than the torgques measured for the 1lxZ2-inch
beams as well as the theoretical values for both beam size-
groupings. This means that equation (20) is not valid for all
cases. Otherwise, it would follow that increasing the amount

of reinforcement would correspond to a decreasing torsional



resistance of the beam.

The computation of the ultimate torsional resistance usin
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Hsu's theory is presented in Appendix II. The results are
tabulated in Table 8. fwo figures having blchchvsfvy S versus
torque were constructed for comparison of the experimental
results and the theoretical results of Hsu's theory as well zas
Lessig's theory, those are Fig. 10 and Fig. 11 for 1lx2-inch
beams and 1l.41x2.83-inch beams respectively. It can be seen
from these figures that Hsu's theory results in strength pre-
dictions which are considerably lower than those of Lessig's
théory and that they are in closer agreement with HMason's
experimental results than is Lessig's theory. Taking 1x2-inch
beams for example, the average of the ratios of T,/Tycty for
Lessig's theory is 1.539 whereas it is 1.087 for Hsu's theory.
However, both theories tend to over-estimate the torsional
resistance of 1l.41x2.83~inch beams as determined experimentally
by Kason.

In Hsu's experiment (L0), beam series G and series N have
the same height~to-width ratic and the same value of "m". How-
ever, the slope "K'" for series G is 1l.45 and the slone for
series N is 1.30 (See Pig. 10-13, Reference 10)., This might
tend to indicate that the slope for a small beam is smeller.
The slope of the curves for both beam size groupings having
the same value of p, constructed by Hsu's %heory, are essential-

ly identical in this test. But according to the results calcu-
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lated by Lesci'c thvofy, the curves for the larger bezmz in
Thig went had 1 nmnllef slope. It is sugmested that come

v anntisntions of the 6ffect of the beanm size on the slones of
the design curves should be undertaken. The effect of beom
size on the value of K' may not be significant for prototyve
tests due to the small variations in the beam sizes. Never-
theless, it could be important in model tests since the sizes
of models are much smaller than their prototypes. 1In other
words, the slopes of the curves may differ considerably between
the models and their prototypes. If this is truve, the design
equation for prototypes will not be valid for models unless
some modificatidns are made to take into account the size

2ct, Comparing the design equations of the two theories,
cne of the curves constructed using equation (15) are

(== |
= =

affected by the beam size, whereas equation (55) will yield

The curves plotted by Lessig's theory in Fig. 10 and Fig.
11 are considerably steeper than that of Hsu's theory. While
Hsu's curves seem to fit the data points in Fig. 10 a little
better than Lessig's, it is difficult to tell as to which one
is more reasonable because only one point was obtained for each
curve.

The dotted lines in Fig. 10 and Fig. 11 are the best fit

for the measured torgques. The fact that these lines are al-



most horizontal indicates that the variation of p had 1little
effect on the ultimate torque for beams of the came size group-
ings. This phenomena was not expected since these beams were
reinforced purposely to obtain a variation in the ultimate torgus.
It is ossumed that there were some mistakes involved in the
fabrication or testing of the beams since the test results
differed considerably within batches. This assumption may also
be indicated by the fact that the 1.41 X 2.83-inch beams had
about twice the cross-sectional area and reinforcement of the
1X2-inch beams but the torsional capacities of the two size
groupings were not much different.

It was expected in both theories that the beam would con-
tinue to take load after the initial tension cracks started.
Purthermore, Hsu stated that the behavior after initial crack-
ing should be much different from the behavior before initial
cracking. In lMason's tests,(lz), the load dropped off immedi-
ately after the initial cracks occured and continue to drop
until the beam failed. The reason for this phenomena is unclear.
Over-reinforcement of the beams is suggested by the fact that
the failure torques measured in the tests were almost constant
within the same area grouping and, according to Lessig's theory,
the torsional capacities of the 1XZ2-inch beams calculated by
equation (20) are smaller than the results of egquation (15).
However, this is not the case since the total volume percentaze
of reinforcement is smaller than the balanced percentage defined

in both theories.



Inability to simulate the properties of the actwal mater-
ials by the model materials could also have influenced the
test results. Mason pointed out that the two tynes of zmnoth
wire used as transverse reinforcement in this test had many un-
desirable pronerties(l2)., The black annealed wire used in the
smaller torsion specimens was extremely soft and exhibited a
low yield point. Lack of bond by using smooth wire as rein-

forcement should also be considered. Poor bond stress could

o]

revent the reinforcement from reaching it's yield stress at

Hy

2ilure, This might also explain the fact thet the beams under
testing failed to behave as described in either Lessigz's theory
and Hsu's theory. Since no tests were devoted to the determi-
nation of the bond stresses for these wires, an analysis of
this'variable was not possible.

The 1lx2-inch beams had a closer agreement between the theo-
retical results and the experimental results, especially for
Hsu's theory. This does not necessarily indicate that Hsu's
theory is applicable to these beams, since these beams were
reinforced with only two lohgitudinal bars, rather-than four;

which was the case considered by Hsu.



55

'GENERAL CONCLUSIONS

Extensive research and experiments on the behavior of rein-
forced concrete beams subjected to torque have been undertaken.
The Andersen-Cowan theory, the most widely accepted theory in the
past, was based on Saint-Venant'’s theory and treated the rein-
forced concrete as an isotropic material. More compatible theo-
ries based on ultimate torsional strength of the reinforced
concrete rectangular beams have been developed.  These theories
can exhibit the real load-bearing capacities of the beans.

Two theories dealing with the ultimate torsional strengths
of beams were reviewed, Lessig's theory and ﬁsu's theory. The
derived design equations for both theories had essentially the
same form as those of the German and Ausiralian codes.

Lessig's theory conside:s the combined effects of torsion,
flexure moment and transverse forces. Two modes of failure were
proposed and the surfaceé of failure for both modes were assumed
to be spiral shaped. For pure torsion, the neutral axis passes
through both horizontal sides of the beam. The dowel forces are
not considered. |

Hsu's theory proposes a failure plane perpendicular to both
vertical sides of the beam and inclined 45° to the beam axis.
Thus, the horizontal stirrups are not assumed to coniribute to
the torsional resistance of the beam. The dowel forces are con-
sidered in his theory. The final design equations were derived

from empirical data since some of the coefficients could not be
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obtained by theoretical investigations because of insufficient
information.

The results from Mason's small scale model test were used
to compare with these two theories. In Mason's experiments, two
sizes of model beams were tested. The material adopted as a sub-
stitution for concrete, longitudinal reinforcement and transverse
reinforcement were Ultracal-30 mix, #6-32 threaded rod and smooth
wire respectively. The properties of these substituting materials
simulated their prototypes satisfactorily. However, the experi-
mental results were considerably lower than those predicted by
Lessig's theory or by Hsu's theory. Hsu's theory had a better
agreement with the test results but the comparison is still un-
favorable. It is believed that there were probably some mistakes
induced in the fabrication or testing of the beams. If not,
either a modification of the theories is necessary or the simu=-
lation of a model and its prototype can not be considered as

linear for reinforced concrete beam models loaded in torsion.
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RECOMMENDATIONS FOR FURTHER RESEARCH

To the best of our knowledge in the field of the concrete
strength theory, the torsional capacity of a reinforced concrete
beam which fails <through the failure of the concrete is still
mainly obtained through the use of empirical equations. In Hsu's
theory, a maximum limitation was given to the total steel-concrete
volume percentage to assure that the beam would not fail through
the crushing of the concrete. For beams having larger percentages
of reinforcement than thé limiting value, the excessive reinforce=-
ment is simply ignored. 1In Lessig's theory, an empirical equation
was given for this case. More extensive theoretical and experi=-
mental investigations on the behavior of this type of failure
should be undertaken.

Equation (54), which is an extension of equation (53), covers
beams reinforced with different grades of longitudinal and trans-
verse steel. This equation is not yet affirmed by substantially
experimental data (1l). Thus, equation (55) should be justified
by more tests for cases wherem#l.

The dowel-force actions for both longitudinal steel and
stirrups are not clear. Tests revealed that they are affected by
the cross-sectional area and the distortion of the reinforcing
bars. They are also affected by the spacing of the stirrups.

The quantities of these forces can not be accurately evaluated at
present. MNore information is needed.

A square section is usually considered as a special case of
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rectangular sections., However, it was found that a square beam
subjected to torsion would form a different type of crack pattern
than a rectangular section would have (1l). A study to determine
the relationship between the square section and the rectangular
section should be undertaken.

In the small scale model tests discussed, more accurate
results could have obtained if a more sensitive load cell had been
used. Furthermore, more detailed and more successful analyses
in the model tests could have been achieved if the models had been
instrumented for measurement of the plaster and reinforcement
strains. Further model tests should be able to resolve the ques-

tions relating to 'size effects on Hsu's theory.



H O 1 = =

ll

59

LIST OF SYMBOLS

flexure moment applied to a beam, in-lbs.

moment about the neutral axis, in-lbs,

twistiﬁg moment applied {0 a beam, in-lbs.

shear force applied to a beam, in-lbs.

length of the neutral axis at the surface of failure, in.
projection of 1 on the vertical face of the beam, in.

length of the horizontal projection of 1 in a direction

along the beam axis, in.

horizontal measurement of the concrete compression zone at
the surface of failure, in.

see Fige 3Db.

see Fig. 3Dbs

a variable introduced for integration.

over-all dimension of the beam height, in.

see page 10.

over-all dimension of the beam width, in,

distance from the center of the vertical stirrups to the
nearer vertical face of the beam, in.

distance ffom'the center of the wvertical stirrups to the
farther vertical face of the beam, in.

distance from the center of the longitudinal steel to the
nearer vertical face of the beam, in.

distance from the center of the horizontal sfirrups to

the nearer horizontal face of the beam, in,
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distance from the center of the longitudinal steel to

the nearer horizontal face of the beam, ine

a non-dimensional coefficient, see Fig. 3a.

angle between the cracks on horizontal faces of the beanm
and the beam axis, radians.*®

center-to-center spacing of the stirrups, iﬁ.

statical moment of the compression area about the neutral
axis. _

ultimate strength of concrete, psi. See page 7.

cylinder compressive strength of condrete, psi.

tensile strength of concrete, psi.

tensile yielding strength of the longitudinal steel, psi.
tensile yielding strength of the stirrup steel, psi.

area of the longitudinal steel on one side of the beam, in%.
cross-sectional area of the longitudinal bars within the
shear-compression. zone, in2,

cross-sectional area of one stirrup, in®,

a coefficient, see page 12,

distance from the center of the longitudinal bars in the
tension area to the center of the concrete compression zone.¥*
a coefficient, see page 13.

a coefficient obtained from experimental data, see page 135.
ultimate torque applied to the plain concrete rectangular

beam, in-lbs.

* Lessig®'s theory.
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the torgque when beam cracking was first seen on the
concrete surface, in-lbs.

ultimate torgue of reinforced concrete members, in-lbs.
resisting torque provided by the shear strength of the
concrete in the shear-compression zone, in-lbs.

value of T, where a Ta veréus blchchvsfvy s curve inter-
cepts the vertical coordinate, in-lbs.

angle between the assumed failure surface and the beanm
axis, radians.®#* |

modulus of rupture of concrete, psi.

ratio between the modulus of rupture and the tensile
strength.

balanced total volume percentage of reinforcement, in
percentage.

the percentage of total steel by volume in the concrete
beam, in percentage. |

larger center-to~center dimension of a closed rectangular

stirrup, in.

vertical center-to-center distance between the longitudinal

- corner bars, in.

distance from the center of a stirrup_to the nearest
center of longitudinal corner bars, in.

distance from the center of the longer leg of stirrups
outside the shear-compression zone to the center of shear-
compression zone, in.¥%#*

*%* Hsu's theory.
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distance between the center of the vertical stirrups in
the tensile zone and the axis of twist, in.

horizontal distance between the center of the longitudinal
bars in the tensile zone and the axis of twist, in.
distance from the center of the shear-compression zone to
the axis of twist, in.

horizontal dowel force of one longitudinal corner bar in
the tension zone, lbs,.

vertical dowel force of one longitudinal corner bar in

the tension zone, 1lbs.

vertical force-component on the shear-~compression zone, lbs.
shear forée of the concrete on the shear-compression zone,
1bs.

tensile force of the longitudinal bars in the shear-
compression zone, lbs. |

concrete compressive force perpendicular to the shear-
compression zone, lbs.

an efficiency coefficient, see page 27.

ratio of volume of longitudinal bars to volume of stirrups.
dowel stresses per unit displacement, in in-lb per cu.in.,
a constant.

relative angle of twist of the two surfaces of the failure
crack, in radians, roughly a constant.

average shear stress in the shear-compression zone, psi.

pure shear strength of concrete, psi.
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ratio between Vg, and v.
ratio between x and b,
slope of a T, versus blchlcavsfﬁy/b curve.
modulus of elasticity, psi.
actual failure torque determined from load cell readings,
in~1bs or ft-lbs.
ultimate torgue calculated by Lessig's theory using the
measured parameters.
ultimate torque obtained by Lessig's theory.
permissible torque calculated by elastic theory.
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TABLE I-2

COMPARISON OF CALCULATED VALUE OF T, AND A WITH TEST RESULTS

Beam Series Test Results Equation 50 Equation 53
Designation Tgs “k K Tos "k K° ‘

B 75 Le2C 74 1.20

D 75 1.20 74 1.20

b 75 1.70 7% 1l.56

I 95 1.37 92 1.20

J 60 1l.20 54 1.20

G 95 1.45 98 1.38

N 30 1.30 28  1.38

| K L4s 1.50 Ls 1.52
C

50 0.95 k9 0.99

Details are reported in Reference 10.
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10
11

20

100

ULTIMATE TCRQUE CALCULATED BY THE THECRY CF LESSIG
D2 100 I=1s2 ‘

READ 19 B.HeBlsH1SBC

READ 1sFVYsAVS»FYsAS

D2 10C MmM=1,9

READ 1s PsFC1

FCRMAT(5F15.6)

CA=H/ (2 .0%8+H)

C=(BxH/(P*CA) ) ##0.5

S=(FVYXAVS#B) /{FY¥®¥AS®P)
CMAX=2.0%B+H

PUNCH 1s CAsCseS

DT 20 N=1,3

IF (C-CMAX)11s51110

C=CMAX
X1={ASHFY#H+AVSHFVY® (C#%2. 0} %CA/S)
XK=X1/{0e8o%FC1%*(C*%2.0+H¥%¥201})
Z2=BC=0.5%X
Y=CA%({B=B1=0e5%¥X)+(1e0=CA)*(0e25%H%(]1.,0-CA)—-H1)
PUNCH 1s XsZsY
C={Z*%B*H/(P*Y))%*%0.5

PUNCH 1sC

CCNTINUE
T=AS%FY#H# (Z+P* {(C#*2,0)#Y/(B*¥H)1/C
PUNCH 1, T

CCNTINUE

STCP

END
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10

11
12

13

21
22
23

31

40

41

100

THE ULTIMATE TCORQUE CALCULATED BY USING THE THECRY CF HSU

DC 100 [=1418

READ 1:AVS,ASFVYsFYHB,P
FCRMAT (6F10.4)
S={Ays*FVY#B) /(PR*ASHFY)
PUNCH 23S

FCRMAT (Fl0.6)

READ 1sHsrCsH1CsB1C
HBR=H1C/B1C

PUNCH 2+HBR
IF{HBRR—246)11513510
HSR=2<6

Gz T 13
IF{HBR=1e5)12513513

PUNCH 3 ;
FCRMAT ({16HUNPRCPER SECTICN)
T1=24% (BH%L. 5V #HH (FCH%G5)
RMzAS*S/ (AVSH(B1C+H1IC) )
PUNCH 2sRM

F=RM¥FY/FVY
[IF(F-15)22531,21

F=1l.5

6o T¢ 31

IF(F=0.7123531:31

RM=( THFVY/FY
AVS=AS*S/({RM#(B1C+H1C))
F=0o7

DUNCH 2¢F
PTB=240C . 0% (FC*%#0.5) /FVY
PS=2.0%{AS+({ AVSH#(H1C+B1C)/S) }/ (B%H)
IF(PS=PTBI413541+40
AS=ASHPTB/PS
AVE=AVS®*PTB/PS
Cl=0a66%F+0433%HBR
C2=BlC+*HIC*AVYSH#FVY/S

PUNCH 25C2

T2=C1%C2

TU=T1+T2

PUNCH 1,TU

"READ 2-TA

RT=TU/TA -
PUNCH 2sRT
CCNTINUE
STCP

END
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ABSTRACT

The purpose of this report was to study two theories con-
cerning the ultimate torsional resiétance of reinforced concrete
rectangular beams and to compare these theories with the results
of some small scale model tesis in an attempt to determine whe-
ther the plaster model tests could verify the results predicted
by either theory. The theories reviewed were Lessig's theory
and Hsu's theory. Both theories have the governing equations
derived on the basis of assuming a failure surface from exﬁeri-
mental observations.

The experiments carried out by Mason were designed for a
range of cross-section-p combinations. The materials used in
these tests simulated the properties of their prototypes satis-
factorily. By comparison of the test resulis with the theoreti-
cal results of the two theories studied, it was foun& that the
experimental values did.not agree well with either of the theo-
ries., The reasons for this result are unclear. Further research
is needed to examine whether plaster model tests are applicable
to the investigation of the torsional behavior of reinforced

concrete beams.



