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Abstract 

Currently, the majority of adhesives used for wood veneer, plywood, and composite 

applications are formaldehyde-based. Formaldehyde is derived from petroleum and natural gas, 

making it non-renewable and toxic. Therefore, extensive research has been conducted to develop 

bio-based adhesives to replace formaldehyde-based adhesives. Soy protein has shown great 

potential to partially replace formaldehyde adhesives, and canola protein has similar properties to 

soy protein. However, little research has been conducted on the feasibility of using canola 

protein for wood adhesive applications. The objective of this research was to study the adhesion 

performance of canola protein. Canola protein was modified with different chemical modifiers 

including sodium dodecyl sulfate (SDS), calcium carbonate (CaCO3), zinc sulfate (ZnSO4), 

calcium chloride (CaCl2), and 2-octen-1-ylsuccinic anhydride (OSA) as well as combined 

chemical modifications. The wet, dry, and soak shear strengths of the adhesive formulations 

were determined. Viscosity testing, differential scanning calorimetry, and TEM and SEM 

imaging were used to characterize protein properties.  

Chemical modification with SDS (1%, 3%, and 5%), CaCO3 (1%, 3%, and 5%), ZnSO4 

(1%), and OSA (2%, 3.5%, and 5%) improved the dry and soak shear strengths compared to 

unmodified canola protein. Canola protein modified with 3.5% OSA had improved wet, dry, and 

soak shear strengths. Combined chemical modification of canola protein did not show significant 

improvement on shear strength. Thermal modification of canola protein adhesives showed a 

trend of increasing shear strength with increasing press temperature. The data suggests that with 

further research, canola protein has potential to be used as a commercial adhesive or as an 

additive to formaldehyde-based adhesives to make them more environmentally-friendly. 
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1. Introduction 

The United States uses approximately 20 billion pounds of adhesives annually, including 

8 billion pounds of formaldehyde-based adhesives utilized by the wood industry (Sun 2011). The 

main type of wood adhesive used is formaldehyde-based, with primary types being phenol-

formaldehyde, resorcinol-formaldehyde, urea-formaldehyde, melamine-formaldehyde, and 

isocyanate adhesives (Frihart 2005).  

Though the wood adhesive industry is thriving, many concerns have arisen over the use 

of formaldehyde-based adhesives because they are derived from petroleum and natural gas, 

making the adhesives non-renewable. Therefore, producing formaldehyde-based adhesives 

depends on the use of unsustainable, finite resources. When the world supply of oil is depleted, 

formaldehyde-based adhesives will cease to exist. As the supply of oil decreases, the price of 

petroleum increases, raising the cost of wood adhesives as well. Another concern about 

formaldehyde-based adhesives is that formaldehyde is a toxic substance as well as a known 

carcinogen. Workers and homeowners are often exposed to harmful formaldehyde emissions 

through adhesives. In order to aid the environment, improve human health, and ease resource 

limitation, renewable sources that benefit both the environment and sustainable economic 

development must be used for adhesives.  

Currently, bio-based adhesives are being researched and developed to replace 

formaldehyde adhesives. Bio-based protein adhesives such as soy and canola have benefits over 

formaldehyde adhesive because they are renewable, non-toxic, and can be produced from low-

cost sources such as byproducts from oil extraction. To produce protein-based adhesives, oil is 

first extracted from plant seeds, leaving behind a protein rich meal. The meal is then further 

processed and the protein is separated from the rest of the meal and typically modified in order to 

increase performance. The resulting product is then utilized as an adhesive. 

At present, most research focuses on soy protein adhesives which, when modified, have 

comparable performances to formaldehyde-based adhesives. Many different modifications and 

processing parameters for soy protein wood adhesives have been studied and reported (Huang 

and Sun 2000a; Mo et al. 2004; Qi et al. 2013). Recently, research on the use of modified canola 

protein for wood adhesives has been reported (Li et al. 2011; Li et al. 2012).  
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Canola is an abundant oilseed crop grown primarily in Canada and the United States. 

Canola protein is similar to soy protein, but limited research has been conducted in order to 

develop canola-based adhesives. Due to a high amount of protein, canola meal has potential to be 

used in various industrial products such as composites, plastics, and adhesives (Manamperi et al. 

2007). While soy meal can be used in products for human consumption, the utilization of canola 

meal for human consumption is more difficult due to the presence of hazardous compounds in 

canola meal. Generating canola-protein-based adhesives, therefore, does not compete with the 

food industry. Canola protein shows great promise as a novel source for wood adhesive 

applications. 

The objectives of this research were to evaluate the physical and chemical properties of 

modified canola protein and to increase the adhesion performance of canola protein through 

physical and chemical modifications. Previous research has utilized many chemical modifiers, 

including sodium dodecyl sulfate (SDS), calcium carbonate (CaCO3), zinc sulfate (ZnSO4), 

calcium chloride (CaCl2), and 2-octen-1-ylsuccinic anhydride (OSA), to successfully modify soy 

protein in order to increase adhesion strength and water resistance of adhesives (Mo et al. 2004; 

Liu et al. 2010; Qi et al. 2013). In this research, canola protein was modified with SDS, CaCO3, 

ZnSO4, CaCl2, and OSA to improve adhesive performance. Adhesion performance, rheological 

properties, thermal properties, and morphological properties were measured. 
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2. Literature Review 

2.1 Canola 

Canola is an oilseed from the Brassica family, originally bred from rapeseed. Rapeseed 

contains high levels of erucic acid and glucosinolates, making it unsuitable for human and 

animal consumption. In order to overcome nutritional problems associated with rapeseed, canola 

was bred from rapeseed in the 1970s. The name canola is derived from “Canadian oil, low in 

acid” due to canola being primarily grown and bred in Canada. By definition, a variety must 

contain less than two percent erucic acid and less than 30 micromoles of glucosinolates to be 

classified as canola (Canola Council of Canada 2011). Canola is the second largest feed meal and 

ranks third in the world of oilseed crops produced (USDA 2010). 

2.1.1 Seed composition 

Canola typically has an oil content of approximately 45-50% (Manamperi et al. 2007). To 

extract oil, canola seeds are first flaked, which ruptures cell walls, making oil extraction easier. 

The flaked seeds are screw-pressed at either room temperature or an elevated temperature to 

remove the oil (Canola Council of Canada 2011). The product remaining after oil extraction is 

canola meal. Canola oil is used to make edible oil and biodiesel, and the meal is often used as 

animal feed.  

Canola meal contains 30-40% protein and is usually not used in human food applications 

due to the presence of glucosinolates, erucic acid, phytates, and phenolics (Manamperi et al. 

2007). The meal is primarily used as animal feed, but this also has limitations due to the 

previously listed compounds. The effects of these compounds on food and feed applications are 

vast.   

Glucosinolates are sulphonated oxime thioesters of glucose that, when hydrolyzed, yield 

an unstable aglucone that can be broken down into a variety of products, including 

isothiocyanates and nitriles (Uppström 1995). In excess, the resulting products can lead to 

reduced growth, thyroid function interference, and skeletal abnormalities in humans (Manamperi 

et al. 2007; Uppström 1995). Therefore, one of the reasons canola meal is not used in human 

applications is because of the associated risks with ingesting excess amounts of glucosinolates. 



4 

 

However, glucosinolate levels in canola remain low enough for the meal to be used in animal 

feed applications.  

Erucic acid is a monosaturated omega-9 fatty acid found in rapeseed oil. Rapeseed oil is 

not suitable for human consumption because erucic acid can produce toxic effects in the heart. 

Canola oil is used instead because it eliminates the health risks associated with erucic acid.  

Phytic acid exists as mixed salts (phytates) of calcium, magnesium, and potassium in 

Brassica varieties (Uppström 1995). Phytates are found inside protein bodies, and concentration 

is greatly affected by phosphorus availability in the soil in which the plant is grown. The 

function of phytates is to be a reserve for phosphorus, energy, and cations for the plant. 

However, the presence of phytates in food sources can reduce mineral availability, digestibility, 

amino acid availability, and starch hydrolysis, therefore limiting metabolism (Uppström 1995).  

Phenolics are chemical compounds consisting of a hydroxyl group bonded to an aromatic 

hydrocarbon group. The presence of phenolics leads to the dark color, bitter taste, and 

astringency of canola meal (Uppström 1995).  

2.1.2 Protein isolation 

The most common protein extraction method used to extract canola protein from canola 

meal is alkaline extraction (Tan et al. 2011). A schematic flowchart for alkaline extraction can be 

found in Figure 1.  
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Figure 1. Alkaline extraction process (Modified from Tan et al. 2011) 

Canola meal is first defatted with hexane to remove residual oil, and then sodium 

hydroxide is added to solubilize the protein by adjusting the pH to 11 or 12. (Manamperi et al. 

2011). After the protein has been solubilized, the solution is centrifuged to remove the meal 

residue. A dilute acid, usually hydrochloric acid, is added to the remaining solution to precipitate 

the protein by adjusting pH between 3 and 5 (Tan et al. 2011). The pI is the pH where the protein 

has the lowest solubility and is commonly the pH value used to precipitate the protein. The 

solution is then centrifuged to separate the insoluble protein from the solution. Finally, the 

insoluble protein is freeze-dried or spray-dried. Optionally, the soluble proteins can be isolated 

by ultrafiltration and diafiltration and then dried to increase yield.  

The pH used to solubilize the protein and the pH used to precipitate the protein greatly 

affect the protein yield from alkaline extraction. Different protein fractions are soluble at 

different pH values. The protein composition of canola is very complicated, containing protein 

with varying isoelectric points and molecular weights (Tzeng et al. 1990). Therefore, using one 
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pH value cannot solubilize all proteins or precipitate all proteins. Multiple pIs have been used in 

various studies so that different protein fractions can be isolated (Tan et al. 2011). Therefore, 

multiple centrifugation steps had to be completed in order to isolate the maximum amount of 

protein.  

2.1.3 Protein composition 

The major components of canola protein are cruciferin and napin. Cruciferin and napin 

are storage proteins that account for 60% and 20% of canola storage protein respectively (Wu 

and Muir 2008). Storage proteins can be categorized according to the Osborne method based on 

solubility in water (albumins), salt solutions (globulins), alcohol (prolamins), and alkali solutions 

(glutelins) (Manamperi et al. 2007). Protein properties can vary due to the isolation method used, 

as well as plant variety and environmental conditions.  

Cruciferin is a 12S globulin with a total molecular mass of 300,000 (Rödin 1990). The 

structure of cruciferin is very complex, having an oligomeric complex composed of six subunits 

(Rödin 1990). Within the subunits, four different subunit pairs exist, with the majority being 

disulphide linked. Wu and Muir (2008) found the denaturation temperature of cruciferin to be 

91°C, which is similar to other globulins. Cruciferin has high foaming capacity and acts as a 

gelling agent in its undenatured form (Schwenke 1994; Manamperi et al. 2007).  

Napin is a 2S albumin with a total molecular mass of 12,500 to 14,500 (Manamperi et al. 

2007). Napin consists of two polypeptides linked covalently by disulphide bonds (Uppström 

1995). Wu and Muir (2008) found the denaturation temperature of napin to be 110°C, which is 

comparatively high due to the high thermal stability of the disulfide bonds.  

Oleosin is another type of protein found in canola, accounting for 8% of the total canola 

protein. Oleosin is a structural protein associated with oil bodies. It is a low molecular weight 

protein. 

The amino acid composition of canola varies by species and environmental conditions.  

Amino acid compositions of winter and summer Brassica napus are shown in Table 1.  
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Table 1. Amino acid composition of Brassica napus (Adapted from Uppström 1995) 

Amino acid  Winter Summer 
Alanine 4.6 4.6 
Arginine 6.6 6.8 
Aspartic acid 7.7 8.0 
Cystine 2.8 2.5 
Glutamic acid 18.7 18.3 
Glycine 5.2 5.5 
Histidine 4.2 4.5 
Isoleucine 4.5 4.5 
Leucine 7.4 7.4 
Lysine 6.3 5.9 
Methionine 2.3 2.2 
Phenylalanine 4.2 4.2 
Proline 6.1 6.0 
Serine 4.8 5.0 
Threonine 4.8 4.9 
Tryptophan nd nd 
Tyrosine 3.3 3.1 
Valine 5.5 5.5 

 

Overall, canola contains substantial amounts of lysine and threonine, with high levels of 

sulfur amino acids, methionine and cysteine, compared to other cereal oilseeds (Uppström 1995). 

Canola also contains very high amounts of glutamic acid, aspartic acid, and leucine in both the 

winter and summer varieties.  

2.2 Adhesion 

Adhesion can be defined as the molecular attraction force within the contact area of two 

bodies that acts to hold them together (Dictionary.com). Adhesives have been used for centuries 

to bond materials together. Many different theories of adhesion have been proposed including 

mechanical interlocking theory, electronic theory, adsorption theory, diffusion theory, and 

chemical bonding theory. The following sections describe the history of adhesives, theories of 

adhesion, and wood adhesion.  
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2.2.1 History of adhesives 

Wood adhesives have been used for bonding for centuries. Modern history of wood 

adhesives includes the use of blood and casein-based adhesives in the early 1900s. With the start 

of WWI, these blood and casein-based adhesives were further improved by chemical and heat 

modifications. Soybean glues were developed and used for construction, packaging, and 

transportation during WWII, but were soon replaced with adhesives derived from petroleum 

sources (Lambuth 1989). Petroleum-based adhesives were developed because of the high 

availability and low cost of petroleum. Today, petroleum-based adhesives are still the primary 

type of wood adhesive used; however, protein-based adhesives currently are heavily researched. 

2.2.2 Theories of adhesion 

Many different theories of adhesion have been proposed, including mechanical 

interlocking theory, electronic theory, adsorption theory, diffusion theory, and chemical bonding 

theory (Schultz and Nardin 1994). These theories are based on mechanical or chemical bonding 

between the substrate and the adhesive along with the assumption that adhesion requires a 

variety of mechanisms, depending on adhesive and substrate type. Mechanical properties can 

determine the force on the chemical bonds, and chemical structure and interactions can 

determine the mechanical properties of the adhesive (Frihart 2005). 

The mechanical interlocking theory states that adhesive adheres to a substrate by 

interlocking with irregularities in the substrate surface (Kinloch 1987). Adhesion occurs due to 

adhesive seeping into pores of the substrate, consequently binding the substrates together. 

Generally, mechanical interlocking provides greater resistance to shear forces than normal forces 

(Frihart 2005). In order for the mechanical interlocking theory to be valid, the substrate surface 

must be adequately irregular to allow adhesive to penetrate into the pores. Abrasion can be used 

to roughen the substrate so there is adequate pore space into which the adhesive can penetrate.  

The electronic theory is the result of work by Deryaguin and co-workers (1948) and is 

based on the difference in electric band structures between an adhesive and its substrate. An 

electron transfer mechanism is generated between the adhesive and the substrate during de-

bonding, equalizing the Fermi levels and thus creating a double layer of electrical charge at the 

interface (Schultz and Nardin 1994). The resulting electronic forces occurring from the double 

layer of electrical charge contribute significantly to adhesive strength. The junction between the 
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adhesive and the substrate is considered a capacitor. When distance between two substrates 

increases during an interface rupture, so does potential difference until a discharge occurs. The 

adhesive strength is a result of attractive electrostatic forces across the double layer of electrical 

charge. However, the electronic theory of adhesion is controversial because it asserts that 

electronic forces are a cause, instead of a result, of high joint strength.  

The adsorption theory is a thermodynamic model based on the work of Sharpe and 

Schonhorn (1963) and is a widely accepted approach in adhesion science (Schultz and Nardin 

1994). The theory states that adhesion is based on interatomic and intermolecular forces 

established at the interface resulting from van der Waals and Lewis acid-base interactions, given 

that intimate contact is achieved. The strength of these forces is dependent on thermodynamic 

qualities, including, surface-free energies of the adhesive and substrate.  

The diffusion theory claims that polymers from the adhesive and substrate mix to form a 

single commingled phase (Frihart 2005). In other words, the polymer’s adhesion strength is 

dependent on mutual diffusion of molecules across the interface, therefore creating an interphase 

between the adhesive and the substrate (Schultz and Nardin 1994). In order for this theory to be 

valid, the macromolecular chains must be adequately mobile and mutually soluble. The strength 

of the bond is dependent on factors such as contact time, curing temperature, and characteristics 

of the polymers.  

The chemical bonding theory states that adhesion is based on primary bonds formed 

between the adhesive and the substrate. Ionic, covalent, and metallic bonds are the three types of 

primary bonds that can be formed. Covalent bonds are generally the strongest and most desired 

bond relating to wood adhesion.  

2.2.3 Wood adhesion 

Wood adhesion is complex because wood is a non-homogeneous, porous, and cellular 

substrate. Therefore, multiple adhesion theories relate to wood bonding. The first step into 

generating a strong wood adhesion bond is wetting of the wood substrate. Wetting is the 

molecular interaction at the interface of liquids and solids in the adhesive (Gardner 2005). A low 

contact angle, or angle between the edge of a droplet and the surface plane of the material, is 

desired for wetting (Frihart 2006). In order for a strong bond to be formed, adhesive must flow 
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into the wood cell walls and lumens so that molecular level contact can be achieved (Frihart 

2006).  

After wetting and contact between the adhesive and substrate is established, setting or 

curing of the adhesive must take place. Setting is the conversion of an adhesive into a hardened 

state by physical or chemical methods (Frihart 2005). Setting can be achieved by polymerization 

or solidification by cooling. Polymerization is the cross-linking of polymers to other polymers 

and to the wood surface. Methods for activation of polymerization include heat, catalyst, change 

in pH, radiation, or addition of a second component (Frihart 2005). Heat polymerization is 

commonly used to set wood adhesives, but uniform heating is difficult since wood is a good 

insulator. Non-uniform and incomplete heating leads to poor bond strength. Adhesive formulas 

must have advanced polymerization to insure that desired reactions are achieved during heating 

(Frihart 2005).  

2.3 Soy protein for adhesives 

Soybean adhesives were first developed in the late 1920s by the I. F. Laucks Company 

(Keimel 1994). When synthetic adhesives evolved, development of soybean adhesives was 

phased out by the stronger synthetic adhesives. Currently, research has focused on extracting and 

modifying soy protein to improve adhesion strength and water resistance in order to develop 

more environmentally-friendly adhesives as compared to formaldehyde and other synthetic 

adhesives. Certain formulations of soy protein adhesives have been commercialized for 

consumer use.  Protein modification, adhesive viscosity, and hot press processing conditions are 

three major parameters that must be considered when developing soy protein adhesives.  

2.3.1 Protein modification 

In order to improve water resistance and shear strength of soy protein, the protein is 

typically modified first. Chemical modification, enzymatic modification, and mixing with 

commercial adhesive are all processes that have been used to modify soy proteins. 

2.3.1.1 Chemical modification 

Chemical modification of soy protein helps to denature and unfold protein, thus 

increasing the interaction between protein and wood surface in order to form strong bonds. In 

native unmodified protein, most polar and apolar groups are unavailable for bonding due to 
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internal forces. When modification is performed, the polar and apolar groups become exposed 

and are able to interact with the wood surface, increasing shear bonding strength (Hettiarachchy 

et al. 1995). Chemical modification is a common modification type to unfold protein groups. 

Common chemical modifiers of soy protein include alkali, detergent, and chemicals containing 

amino groups.  

Alkali modification of soy protein raises the pH of soy protein in order to induce protein 

unfolding. Hettiarachchy et al. (1995) found that alkali modification of soy protein improved 

adhesive shear strength and water resistance of soy protein adhesives. As the pH increased from 

8 to 12, adhesive strength increased as well. Alkali modification is one modification type which 

can be used to improve soy protein adhesives.  

Modification with detergent is another way to modify soy protein adhesives. Detergent, 

like alkali, also helps to unfold soy protein groups. When detergent interacts with protein groups, 

inner hydrophobic groups can be exposed, resulting in protein unfolding (Sun 2011). Sodium 

dodecyl sulfate (SDS) is one type of detergent that unfolds and denatures protein. Huang and Sun 

(2000a) found that soy protein modified with 0.5% and 1% SDS had higher shear strengths than 

unmodified protein. Protein modified with SDS also had better water resistance as measured by 

soak strength than unmodified protein. Soy protein modified with 3% SDS did not show 

improved strength due to a considerable extent of protein unfolding (Huang and Sun 2000a). 

When soy protein is modified with detergent at certain concentrations, shear strength and water 

resistance increase.  

Chemicals that have amino groups, such as urea, can also be used to modify soy protein 

by unfolding protein groups. Huang and Sun (2011b) found that modifying soy protein with urea 

at certain concentrations increased the shear strength of adhesives. At high concentrations of urea 

(8 M), the protein became completely denatured, leading to decreased shear strength (Sun 2011). 

Lower concentrations of urea, such as 1 M and 3 M, partially unfolded soy protein. Since the 

protein was only partially unfolded, it still retained some secondary structure, leading to 

increased shear strength (Sun 2011). The partial protein unfolding increases shear strength 

because it allows more protein groups to be exposed for bonding and cross-linking. Chemicals 

containing amino groups help to improve shear strength of soy protein adhesives by partially 

unfolding the protein.  
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Overall, the purpose of chemical modification is to unfold protein so that the polar and 

apolar groups that are usually unavailable for wood interaction are exposed. The groups can then 

interact with the wood surface leading to enhanced shear strength and water resistance.  

2.3.1.2 Enzymatic modification 

Another protein modification type is enzymatic modification. Enzymes modify protein by 

changing the protein structure. A major advantage of enzymatic modification is the specificity of 

enzymes in cleaving bonds (Kumar et al. 2002). Proteases including pepsin, trypsin, 

chymotrypsin, papain, and pronase are commonly used to modify soy protein (Kumar et al. 

2002). Proteases hydrolyze certain bonds depending on the specific enzyme used to modify the 

protein. When specific bonds are hydrolyzed within the protein, secondary structure is altered, 

leading to better bonding and interaction with the wood surface. In one study, soy protein was 

modified with trypsin and, consequently had increased adhesive strength (Kalapathy et al. 1995).  

2.3.1.3 Modification by mixing with commercial adhesive 

Protein modification can also be achieved by mixing soy protein with commercial 

adhesive, thus requiring less commercial adhesive and lessening their negative environmental 

impact. Though the complete discontinuation of commercial formaldehyde-based adhesives 

would be ideal, mixing commercial adhesive with protein is a short-term solution for limiting the 

amount of formaldehyde adhesives produced and used (Sun 2011).  

In one study, soy protein was mixed with various synthetic commercial adhesives (Qi and 

Sun 2011). Of the formulations used, urea-formaldehyde-based resin (60%) mixed with modified 

soy protein (40%) demonstrated higher wet shear strength than all other commercial mixtures 

and the control. The results of the study indicated that modified soy protein is able to act as an 

acidic catalyst for urea-formaldehyde-based resins (Qi and Sun 2011). 

In another study, soy protein was mixed with phenol-formaldehyde resin for plywood 

adhesives (Zhong and Sun 2007). Viscosity of the adhesive mixtures was increased with 

increasing amounts of phenol-formaldehyde resin. Adhesive strength was improved by adding 

phenol-formaldehyde at ratios of 100:20 and 100:40 (soy protein: phenol-formaldehyde), and the 

blends had higher shear strengths than the pure resin at a pH of 7.1 (Zhong and Sun 2007). The 

increase in adhesion strength was attributed to the phenol-formaldehyde reacting with the protein 

functional groups which were cross-linked, leading to stronger bonding with the wood.  
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Overall, mixing soy protein with commercial adhesives offers a short-term solution for 

limiting the amount of formaldehyde produced. Ideally, adhesive mixtures should be developed 

that do not utilize commercial adhesives or formaldehyde.  

2.3.2 Adhesive viscosity 

The viscosity of adhesives is an important parameter when regarding adhesive 

application and strength. Sufficient viscosity and uniformity are necessary for easy application 

and processing of soy protein adhesives as viscosity must be high enough to allow for easy 

application, but low enough for the wood surface to be wetted. Factors such as protein 

concentration and modification affect viscosity.  

The concentration of soy protein within adhesive formulations greatly affects the 

viscosity of soy protein adhesives. Increasing the concentration of soy protein increases the 

viscosity because more molecules are suspended in solution and protein unfolds in solution. The 

unfolded proteins lead to increased intermolecular interactions due to covalent bonding and 

electrostatic interactions (Kumar et al. 2002).  

Protein modification affects the viscosity of soy protein adhesives. At high concentrations 

of SDS modification, soy protein adhesives demonstrate increased viscosities (Zhong et al. 

2001). Increased viscosity with increasing SDS concentration is due to protein unfolding, thus 

causing molecules to become swollen, leading to an increase in the effective volume, decreasing 

the space between the protein molecules, and, therefore, increasing viscosity (Zhong et al. 2001). 

Other detergents typically have an identical effect on viscosity: increasing viscosity with 

increasing detergent concentration. In addition, various protein modifications also have 

dissimilar effects on protein viscosity. Qi et al. (2013) found that 2-octen-1-ylsuccinic anhydride 

(OSA) has a decreasing effect on viscosity of soy protein adhesives. Viscosity decreased as 

concentration of OSA was increased likely due to pH being lowered, compacting and 

aggregating protein molecules. Modification type is important to shear strength, but viscosity of 

adhesive formulations must be optimized as well. 

2.3.3 Hot press processing conditions 

Processing conditions used to hot press soy protein adhesives affect the shear strength of 

the adhesives. The curing process makes soy protein harder as a result of cross-linking reactions 
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(Sun 2011). The assembly time, press temperature, press pressure, and press time are all 

important processing parameters that affect the adhesive strength of soy protein adhesives.  

2.3.3.1 Assembly time 

In order to achieve surface wetting of the wood substrate, assembly time is required for 

preparing soy protein adhesives. Assembly time is the time between adhesive application and 

pressing. Zhong et al. (2001) modified soy protein with SDS and found that increasing the 

assembly time from one minute to fifteen minutes increased the shear strength of fiberboard 

adhesives. The increase in strength was likely due to protein molecular chains penetrating the 

wood surface and water evaporation during assembly. When the samples were pressed, water 

continued to evaporate and the protein further interacted with the wood surface (Zhong et al. 

2001). If assembly time is too short, the protein does not have enough time to interact with the 

porous structure in the wood; consequently, if assembly time is too long, excessive water can 

evaporate, leading to negative effects on shear strength. Assembly time is an important 

parameter and should be optimized for varying adhesive formulations. 

2.3.3.2 Press temperature 

After protein adhesives have had sufficient assembly time, the adhesive and wood 

samples are hot pressed. Without hot pressing, the adhesive does not sufficiently interact with the 

wood leading to poor adhesion strength. The pressing temperature of the wood affects the 

protein’s interaction with the wood and therefore affects adhesion of the protein to the wood 

surface. Zhong et al. (2001) found that increasing the press temperature of SDS modified soy 

protein to fiberboard from 25°C to 120°C increased the adhesive strength as well. The adhesive 

strength improved as temperature increased because of the proximity to and surpassing of the 

protein’s denaturation temperature. When the temperature exceeded the denaturation 

temperature, protein molecules were initially unfolded, but became folded upon curing, leading 

to increased adhesion strength (Zhong et al. 2001). The denaturation temperature of soy protein 

is lowered with increasing water content (Sun 2011). However, when assemblies are pressed, 

water content begins to decrease due to water evaporation. Therefore, the relationship between 

water content and protein denaturation temperature should be considered.  
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2.3.3.3 Press pressure 

The amount of pressure applied to soy protein adhesive wood assemblies is crucial for 

sufficient bonding. Without enough pressure, the protein is not forced to interact sufficiently 

with the wood. When press pressure increases, more contact between the substrate surface and 

protein at the interface can be achieved (Sun 2011). Sufficient pressure must be applied to 

protein adhesives and wood in order to gain adequate contact and successful bonding for high 

shear strength.  

2.3.3.4 Press time 

The amount of time that the adhesive and wood is pressed is another important 

processing condition. Increasing press time encourages protein molecules to penetrate the wood 

surface and promote chemical interactions at the interface (Sun 2011). Zhong et al. (2001) found 

that increasing the press time of SDS modified soy protein adhesives increased the shear strength 

of the adhesives as well. Press time is related to press temperature in that longer pressing time is 

needed for lower press temperatures (Sun 2011). In general, increasing press time increases the 

shear strength of soy protein adhesives.  

2.4 Research objectives 

The overall objective of this research was to determine the potential of canola proteins for 

bio-based wood adhesives. The specific objectives of this research were: 

1. To evaluate the adhesion performance of unmodified and modified canola protein. 

2. To improve the wet shear strength of canola protein through chemical modification.  

3. To determine the effects of chemical modification on canola protein structure, 

thermal properties, and rheological properties.  
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3. Materials and Methods 

3.1 Materials 

Hexane, hydrochloric acid (HCl), sodium hydroxide (NaOH), calcium chloride (CaCl2), 

and zinc sulfate (ZnSO4) were purchased from Fisher Scientific (Pittsburg, PA, USA). Sodium 

dodecyl sulfate (SDS), calcium carbonate (CaCO3), and 2-octen-1-ylsuccinic anhydride (OSA) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA).  

Cold screw-pressed canola meal with 11% moisture content (wet base) was purchased 

from Planet Natural (Bozeman, MT, USA). Cherry wood was purchased from The Home Depot 

(Manhattan, KS, USA). Veneers were prepared from the cherry wood with dimensions of 50 x 

127 x 5 mm (width x length x thickness).  

3.2 Methods 

The methods used to prepare samples and to analyze samples are outlined in the sections 

below, including protein extraction, protein purity, protein modification, shear strength 

measurements, rheological properties, thermal properties, and morphological properties.  

3.2.1 Protein extraction 

Protein was isolated from canola meal using methods similar to Li et al. (2011) with 

modifications. Canola meal was first dried in an oven at 49°C for 24 hours. The meal was then 

milled into powder with a cyclone sample mill (Udy Corp., Fort Collins, CO) to ensure a particle 

size of <0.50 mm. The meal was then defatted with hexane at a solid to liquid ratio of 1:10 (w/v) 

for two hours at room temperature and was repeated for three cycles. The defatted canola meal 

was then dried in a fume hood overnight to remove excess hexane. Next, the protein was 

separated from the meal by first adding distilled water at a solid to liquid ratio of 1:12 (w/v) to 

the meal and mixing for one hour with a stir plate. The pH of the solution was then adjusted to 

12 with 6M NaOH and mixed for two hours in order to solubilize the protein. The solution was 

then centrifuged at 7500 x g for 15 minutes and the supernatant was decanted through six layers 

of cheesecloth. The pH of the supernatant was adjusted to 3.5 with 2M HCl and stirred for 15 

minutes to precipitate the protein. The solution was then centrifuged at 7500 x g for 15 minutes 

in order to obtain the proteins. The protein was washed with distilled water three times to remove 

residual salts and then freeze-dried.  
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3.2.2 Protein purity 

Protein content of isolated canola protein was measured using a PerkinElmer Model 2400 

Series II CHNS/O Analyzer (Shelton, CT, USA). Nitrogen percentage was recorded and 

converted to protein percentage using a factor of 6.25. The samples tested were of the defatted 

canola meal, canola meal residue (from the extraction process), and the extracted canola protein. 

3.2.3 Protein modification 

In an attempt to improve the adhesion strength of canola protein, different protein 

modifications were used. The control was made by mixing 1.2g canola protein with 10mL 

distilled water, yielding a protein content of 12%. Chemical modification and combined 

chemical modification were used to improve adhesion strength. The modifications methods used 

are described in the following sections.  

3.2.3.1 Chemical modification 

The chemicals used for modification included SDS, CaCO3, ZnSO4, CaCl2, and OSA. For 

the SDS modification, the methods used to prepare the samples were similar to those described 

by Huang and Sun (2000a). SDS solutions (0.5%, 1%, 3%, and 5%) were prepared at room 

temperature. Milled canola protein (1.2g) was suspended in each of the SDS solutions (10mL) 

and stirred for six hours.  

The CaCO3, ZnSO4, and CaCl2 modified samples were prepared using the same method 

as the SDS samples, but different concentrations of the chemicals were used; CaCO3: 1%, 3%, 

and 5%, ZnSO4: 0.1%, 0.5%, and 1%, and CaCl2: 0.5%, 1%, 3%, and 5%. The CaCO3, ZnSO4, 

and CaCl2 modified samples were mixed for one hour, unlike the SDS samples which were 

mixed for six hours. The OSA modified samples were prepared by first mixing canola protein 

(12%) with distilled water. OSA was added to the protein solution at concentrations of 2%, 

3.5%, and 5% (w/v) and the solutions were mixed for two hours.   

3.2.3.2 Combined chemical modification 

For the combined chemical modification of canola protein, two different combinations 

were used: SDS and CaCO3, and SDS and ZnSO4. The SDS modification was done first by 

making SDS solutions of 1% and 3% in distilled water. Canola protein (12%) was added to the 

SDS solutions and stirred for two hours. Next, CaCO3 (1%, 3%, or 5% w/v) or ZnSO4 (0.1%, 
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0.5%, or 1% w/v) was added to the various SDS/canola protein solutions and mixed for an 

additional two hours. Overall, 12 different combinations (1% SDS with either 1% CaCO3, 3% 

CaCO3, 5% CaCO3, 0.1% ZnSO4, 0.5% ZnSO4, or 1% ZnSO4; 3% SDS with either 1% CaCO3, 

3% CaCO3, 5% CaCO3, 0.1% ZnSO4, 0.5% ZnSO4, or 1% ZnSO4) were used. 

3.2.4 Shear strength measurements 

Shear strength was tested using the prepared adhesives and cherry wood veneers with 

dimensions of 50 x 127 x 5 mm (width x length x thickness). The wood veneers were 

conditioned for at least seven days at 25°C and 50% relative humidity (RH) in an environment 

chamber (Model 518, Electro-Tech Systems, Inc., Glenside, PA, USA). Prepared canola protein 

adhesives were applied to two pieces of wood with an application area of 127 x 20 mm (length x 

width). Approximately 500 µL of adhesive was brushed over the application area of each piece 

of wood until uniform and then allowed to set for 15 minutes. 

The wood was assembled with adhesive areas combined as described by Mo et al. (2004). 

The assemblies were pressed in a Model 3890 Auto M hot press (Carver, Inc., Wabash, IN, 

USA) for 10 minutes at 2 MPa. The press temperature was 170°C, 180°C, or 190°C depending 

on the test. The pressed assemblies were then conditioned for two days at 25°C and 50% RH, 

and the conditioned assemblies were cut into five specimens, measuring 20 x 80 x 5 mm (width x 

length x thickness).  

Shear strength was tested using an Instron Model 4465 (Canton, MA, USA) with a 

crosshead speed of 1.6mm/min. The shear strength at maximum load was recorded with reported 

values being the average of 3-8 different specimen measurements. Three different shear strength 

tests were performed on the samples: dry strength, wet strength, and soak strength. The dry 

strength was tested after conditioning the cut samples in the environment chamber at 25°C and 

50% RH for five days according to the ASTM Standard Method D2339-98 (ASTM 2002). The 

wet strength was performed after soaking the cut samples in tap water for 48 hours and then 

testing immediately according to ASTM Standard Method D1183-96 (ASTM 2002). The soak 

strength was performed after soaking the cut samples in tap water for 48 hours, followed by 

conditioning them for seven days in the environment chamber at 25°C and 50% RH and then 

testing according to ASTM Standard Method D1151-00 (ASTM 2002). 
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3.2.5 Rheological properties 

The apparent viscosity of the prepared samples was tested using a Bohlin C-VOR 

rheometer model CVO150 (Malvern Instruments, Westborough, MA, USA) with a 20-mm cone 

diameter. The distance between the cone and plate was set to 500µm for all measurements. All of 

the experiments were conducted in duplicate with the average values reported.  

3.2.6 Thermal properties 

The thermal transition properties of the samples were measured using Differential 

scanning calorimetry (DSC). Measurements were made with a DSC Q200 (TA Instruments, New 

Castle, DE, USA). Samples of modified freeze-dried protein adhesive weighing approximately 

3mg were placed in DSC pans. The samples were first equilibrated to 20°C and then heated to 

250°C at a heating rate of 10°C/min. 

3.2.7 Morphological properties 

The morphological properties of the canola protein adhesives were measured using 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The 

program ImageJ was used for analysis of the images (http://rsb.info.nih.gov/ij/). 

SEM was used to determine surface properties of canola protein adhesives. Samples were 

prepared by freeze-drying modified adhesive mixtures, then milling them into powder. The 

milled, modified canola protein was then affixed to an aluminum stub using two-sided carbon 

tape by gently dipping the stub into the protein powder. SEM images were taken with an FEI 

Nova NanoSEM 430 (Hillsboro, OR, USA) at an accelerating voltage of 5 kV with either a vCD 

(low-voltage high-contrast backscatter electron detector) detector or an EDS (energy dispersive 

spectroscopy) detector (x-max EDS 80mm2 silicon drift detector).  

TEM was used to determine protein structure and interaction. Samples were prepared by 

first mixing modified canola protein (1% weight) with distilled water. The diluted samples were 

then absorbed onto Formvar/carbon-coated 200-mesh copper grids for 60 seconds. Excess 

solution was wicked off with filter paper and the grids were suspended in 2% uranyl acetate for 

60 seconds at room temperature. Excess uranyl acetate was removed from the grids, and the 

grids were stored for imaging. All TEM images were taken with an FEI CM 100 at an 

accelerating voltage of either 80 kV or 100kV (Hillsboro, OR, USA).  
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4. Results and Discussion  

4.1 Percent protein composition 

The total amount of defatted canola meal used for protein extraction was 1150g. The total 

amount of canola protein extracted from the defatted meal was 176.16g. After the protein was 

extracted, it was freeze-dried and then modified prior to application. Freeze-drying extracted 

proteins provides the advantage of not changing the protein structure while simultaneously 

increasing the shelf-life of the protein. If the protein is modified during the extraction process, 

often it must be assembled and pressed following extraction. The current method allows the user 

to store the protein for long periods of time and modify it directly prior to use.  

The nitrogen content of the isolated canola protein was determined by elemental 

composition analysis and then converted to protein percent by multiplying the nitrogen 

percentage by a factor of 6.25. The protein content of the defatted canola meal was 51.61%, the 

protein content of the meal residue was 30.44%, and the protein content of the extracted protein 

was 83.88%, as shown in Table 2. 

 

Table 2. Nitrogen and protein composition 

Sample % Nitrogen % Protein 
Defatted canola meal 8.26 51.61 
Meal residue 4.87 30.44 
Extracted protein 13.42 83.88 

 

Overall, the pure protein extraction rate was 24.9% calculated from the equation:  

 

( ) 100% ×=
mealtheinproteinTotal

extractedproteinTotal
rateextractionproteinPure

 

 

The extraction rate was lower than reports using similar methods. Li et al. (2011) 

reported a protein recovery rate of 31.33% for unmodified canola protein extraction. Li et al. 

(2012) reported a protein recovery yield of 31.45% for unmodified canola protein extraction at a 

pH of 7.0. The differences in extraction rate between the previous reports and current work were 
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most likely due to slight differences in methods as well as equipment used for extraction. Also, 

nitrogen content was determined using dissimilar equipment, thus allowing for a possibility in 

the differences in numbers.  

Canola contains protein fractions that are soluble in different solutions. Prolamins are the 

protein fraction soluble in ethanol. Ethanol was not used in the extraction and therefore, some of 

the protein fractions were not extracted from the meal. Klockeman et al. (1997) reported that 

prolamins in canola meal have 33.9% solubility in 60% (v/v) ethanol. If ethanol was used for the 

extraction, the protein extraction rate possibly could be higher than 24.9%.  

Solubilization pH and precipitation pH are important factors affecting protein extraction. 

Manamperi et al. (2011) found that slightly alterations of solubilization pH and precipitation pH 

significantly affect the protein yield of canola meal. In order to increase protein yield in the 

current work, protein solubilization pH and precipitation pH could be optimized. Also, because 

many diverse protein fractions exist, multiple solubilization pHs and precipitation pHs could be 

used in order to extract the maximum amount of protein from canola meal.  

4.2 Protein modification 

Protein modification was performed in an attempt to improve the shear strength of canola 

protein adhesives. An image of the SDS modified canola protein samples are shown in Figure 2. 

 

 

Figure 2. Image of SDS modified canola protein adhesives 
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As shown in Figure 2, SDS modification affected the color of canola protein adhesives. 

From left to right, the image shows the unmodified protein, 0.5% SDS modification, 1% SDS 

modification, 3% SDS modification, and 5% SDS modification, respectively. As the SDS 

concentration increased, the darkness of the samples increased, indicating more protein 

denaturation. In the 0%, 0.5%, and 1% SDS samples, the protein did not solubilize in solution 

and settled out of solution after approximately 15 minutes of no activity. In the 3% and 5% SDS 

samples, the protein did not settle out of solution, indicating that the protein was more unfolded 

and in a more denatured state. Overall, the color of the canola protein adhesives was fairly dark. 

A light to neutral colored adhesive is usually preferred for commercial applications.  

For commercial adhesives, the consistency and uniformity of the adhesive are crucial. For 

canola protein adhesives to be commercially feasible, the protein needs to be solubilized and 

equally dispersed in solution. If the protein settles out of solution, it is very difficult to apply the 

adhesive to the substrate surface.  

4.3 Adhesion performance of canola protein adhesives 

The canola protein adhesives were tested for adhesion performance on dry, wet, and soak 

strengths. The results for adhesion performance of canola protein based on chemical 

modification, combined chemical modification, and temperature modification can be found in 

the following sections.  

4.3.1 Effect of chemical modification on mechanical properties  

SDS, CaCO3, ZnSO4, CaCl2, and OSA were used as chemical modifiers. The effects of 

chemical modification on mechanical properties of canola protein adhesives are shown in Table 

3. The samples were all pressed at 170°C with a press time of 10 minutes and a pressure of 2 

MPa. 
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Table 3. Shear strength of chemically-modified canola protein 

Adhesive Dry Strength Wet Strength Soak Strength 
Formulation (MPa) (MPa) (MPa) 
Unmodified 5.73±0.77 2.20±0.15 4.99±0.33 

0.5% SDS 5.30±0.21 2.16±0.30 4.88±0.35 

1% SDS 6.59±0.42 1.98±0.34 6.37±0.96 

3% SDS 8.19±0.36 1.82±0.35 6.76±0.28 

5% SDS 7.33±0.73 1.31±0.33 5.07±0.56 

Unmodified 5.73±0.77 2.20±0.15 4.99±0.33 

1% CaCO3 6.39±0.88 1.16±0.25 5.77±0.22 

3% CaCO3 6.38±0.68 1.42±0.61 5.06±0.28 

5% CaCO3 7.41±1.20 0.82±0.33 5.84±0.76 

Unmodified 5.73±0.77 2.20±0.15 4.99±0.33 

0.1% ZnSO4 5.56±0.44 1.80±0.21 5.13±0.51 

0.5% ZnSO4 5.39±0.96 1.32±0.37 5.22±0.43 

1% ZnSO4 6.10±0.42 1.33±0.39 5.37±0.64 

Unmodified 5.73±0.77 2.20±0.15 4.99±0.33 

0.5% CaCl2 6.53±0.75 1.37±0.26 n/a 

1%CaCl2 5.90±1.05 1.74±0.43 n/a 

3% CaCl2 5.71±0.97 1.22±0.39 n/a 

5% CaCl2 5.37±0.78 1.03±0.41 n/a 

Unmodified 5.73±0.77 2.20±0.15 4.99±0.33 

2% OSA 5.91±0.76 1.96±0.49 6.14±0.96 

3.5% OSA 5.89±0.92 2.72±0.74 5.19±0.78 

5% OSA 5.99±0.42 1.70±0.63 5.02±0.80 

 

For canola protein adhesives modified with SDS, dry strength increased as SDS 

concentration increased, up to 3% with 100% wood cohesive failure (WCF) for 0.5%, 1%, and 

3% and partial WCF for 5%. Soak strength increased as SDS concentration increased up to 3%. 

Wet strength decreased as concentration of SDS increased. Protein unfolding and denaturation 
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may also have increased as SDS concentration increased. The decrease in wet strength as the 

concentration of SDS increases could be due to the SDS creating negative surface charges on the 

adhesive and therefore making the adhesive hydrophilic. Hydrophilic adhesive tends to absorb 

water, therefore disrupting the bond between adhesive and wood. Overall, the SDS modification 

increased dry shear strength and soak strength, but decreased the wet shear strength. The wet 

shear strength of this modification is too low for outdoor adhesive purposes but could possibly 

be used for indoor applications. 

The canola protein adhesives modified with CaCO3 had slightly higher dry and soak 

shear strength than the unmodified sample. CaCO3 modification did not show any improvement 

on wet strength. CaCO3 does not dissolve in water, therefore making a reaction with the protein 

impossible. The purpose of a modifier is to either unfold, denature, or crosslink protein, but 

CaCO3 was not able to act as a modifier because it did not dissolve in solution with the protein. 

In the protein adhesive samples, the CaCO3 settled below the protein in solution; therefore, the 

CaCO3 was not able to react with the protein. The adhesive solution was not uniform, causing 

difficulty in achieving uniform application on the wood. Adding CaCO3 did not significantly 

improve the wet, dry, or soak strengths.  

The canola protein adhesives modified with ZnSO4 had lower dry shear strengths than the 

unmodified protein samples. The wet strengths of the ZnSO4 modified samples were lower than 

the unmodified protein but better than the CaCO3 modified samples. The soak strengths of the 

ZnSO4 modified samples were slightly higher than the unmodified protein but were not 

significantly greater. Overall, the canola protein modified with ZnSO4 did not show significant 

improvement on shear strengths as compared to unmodified protein. When the ZnSO4 was added 

to water, the ZnSO4 dissolved in solution. However, the protein was not denatured and settled 

out of solution if the solution was not constantly mixed. Therefore, the ZnSO4 did not act as a 

worthy modifier for canola protein and did not show any improvement on shear strength 

compared with the unmodified protein.  

The canola protein adhesives modified with CaCl2 had high dry strength, with 100% 

WCF for the 0.5, 1, and 3% modifications. The wet strength of the 1% CaCl2 modification was 

relatively high, but was still not as high as the unmodified protein. Soak strength was not tested 

for the CaCl2 samples because the wet strength was not increased with modification. The CaCl2 

dissolved in water when the samples were prepared; however, the protein was not modified or 
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denatured when added to the modified solution because the protein would settle down to the 

bottom. The adhesive was therefore not uniform and difficult to apply.   

The canola protein adhesives modified with OSA had improved dry and soak strengths. 

The 3.5% OSA modification had a wet strength greater than the unmodified adhesive and caused 

partial wood failure. The 2% and 5% OSA modifications had wet shear strengths slightly lower 

than the unmodified protein. The increase in wet shear strength of the 3.5% OSA samples could 

be attributed to the fact that OSA is an oil-like substance, making it hydrophobic. The OSA 

could have made the protein groups hydrophobic as well, thus preventing water from penetrating 

between the adhesive and wood surface, leading to higher shear strength (Qi et al. 2013).  

Overall, the 3.5% OSA chemical modification of canola protein had the greatest wet 

shear strength. All other chemical modifications decreased wet strength compared to unmodified 

canola protein. Other chemical modifications had increased dry and soak shear strengths at 

certain modifier percentages but lower wet shear strengths compared to unmodified protein 

(Table 3).  

4.3.2 Effect of combined chemical modification on mechanical properties  

The combined chemical modification of canola protein by SDS and CaCO3 or ZnSO4 was 

evaluated. The effects of combined chemical modification of canola protein adhesives on 

mechanical properties are shown in Table 4. All wood specimens were pressed at 170°C and 2 

MPa for 10 minutes. 
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Table 4. Shear strength of canola protein with combined chemical modification 

Adhesive Dry Strength Wet Strength Soak Strength 
Formulation (MPa) (MPa) (MPa) 
Unmodified 5.73±0.77 2.20±0.15 4.99±0.33 

1%SDS 1% CaCO3 4.39±0.56 1.38±0.28 4.31±1.26 

1%SDS 3% CaCO3 5.30±0.55 1.23±0.33 4.57±0.53 

1%SDS 5% CaCO3 5.30±1.15 0.84±0.34 4.37±0.99 

3%SDS 1% CaCO3 5.84±1.79 0.75±0.62 4.31±1.38 

3%SDS 3% CaCO3 4.88±0.63 0.17±0.29 2.71±0.95 

3%SDS 5% CaCO3 3.75±1.01 0.05±0.05 0.39±0.31 

Unmodified 5.73±0.77 2.20±0.15 4.99±0.33 

1%SDS 0.1% ZnSO4 5.04±0.27 1.87±0.36 4.34±0.40 

1%SDS 0.5% ZnSO4 4.24±0.58 1.97±0.42 4.36±0.67 

1%SDS 1% ZnSO4 3.91±1.15 1.57±0.47 4.68±0.77 

3%SDS 0.1% ZnSO4 4.02±0.80 1.78±0.43 4.33±1.14 

3%SDS 0.5% ZnSO4 3.44±0.36 1.42±0.27 3.67±1.42 

3%SDS 1% ZnSO4 3.23±0.61 0.89±0.32 3.29±0.76 

 

The canola protein adhesives modified with both SDS and CaCO3 showed decreased wet 

strength compared to the unmodified protein samples. The samples with 3% SDS and various 

concentrations of CaCO3 were so weak that the Instron equipment barely measured the strength, 

and the samples could be easily broken apart by hand. The poor strength is possible due to the 

3% SDS solution denaturing the protein and the CaCO3 not dissolving in solution. Overall, the 

SDS and CaCO3 modified samples had decreased dry, wet, and soak strengths compared to 

unmodified canola protein.  

Samples modified with SDS and ZnSO4 showed little to no wood failure for dry strength 

and poor wet strength. For all modifications of SDS and ZnSO4, the dry, wet, and soak strengths 

were lower than that of the unmodified protein. Samples that contained 3% SDS and ZnSO4 had 

lower wet shear strengths than the samples with 1% SDS and ZnSO4 likely due to SDS 
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excessively denaturing the protein. None of the samples had wood failure, indicating combined 

chemical modification did not improve the adhesion performance of canola protein adhesives. 

4.3.3 Effect of temperature on mechanical properties 

The effects of press temperature on mechanical properties of canola protein adhesives are 

shown in Table 5. Canola protein adhesives modified by SDS were used to determine the effect 

of temperature (170°C, 180°C, and 190°C) on shear strength. All samples were pressed at 2 MPa 

for 10 minutes.  

 

Table 5. Shear strength of SDS modified canola protein at 170°C, 180°C, and 190°C 

Adhesive Dry Strength Wet Strength Soak Strength 
Formulation (MPa) (MPa) (MPa) 

Unmodified 170°C 5.73±0.77 2.20±0.15 4.99±0.33 

0.5% SDS 170°C 5.30±0.21 2.16±0.30 4.88±0.35 

1% SDS 170°C 6.59±0.42 1.98±0.34 6.37±0.96 

3% SDS 170°C 8.19±0.36 1.82±0.35 6.76±0.28 

5% SDS 170°C 7.33±0.73 1.31±0.33 5.07±0.56 

Unmodified 180°C 6.61±0.37 3.49±0.36 6.48±1.25 

1% SDS 180°C 6.52±0.40 2.68±0.36 6.28±0.51 

3% SDS 180°C 5.71±1.58 2.13±0.39 5.30±1.02 

Unmodified 190°C 7.03±0.70 3.14±0.89 7.76±0.34 

0.5% SDS 190°C 6.00±0.69 3.52±0.48 6.66±0.07 

1% SDS 190°C 6.35±0.92 3.45±0.28 6.41±0.82 

3% SDS 190°C 5.69±1.88 2.42±0.39 6.71±0.88 

5% SDS 190°C 6.47±0.84 1.91±0.68 6.46±0.69 

 

For unmodified canola protein, the general trend indicated that as the temperature 

increased, the dry, wet, and soak shear strengths of the samples increased as well. Increasing the 

press temperature increases protein cross-linking, therefore increasing the shear strength. At 

press temperatures of 180°C and 190°C, the wood was slightly darkened, which is not desirable 

for a commercial process. Therefore, the temperatures of 180°C and 190°C are too high for the 
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wood type used even though the shear strength was increased. Kumar et al. (2002) obtained 

similar results with soy protein adhesives; as press temperature increased, so did the shear 

strength of soy protein wood adhesives. The increase in strength is likely due to the temperature 

being increasingly above the denaturation temperature of the protein. As protein denaturation 

increases, interaction between the protein and wood surface is improved.   

The samples modified with SDS and pressed at a temperature of 180°C, had similar dry 

and soak strengths to the 170°C SDS samples. However, the wet shear strength of the 180°C 

SDS samples was greater than the 170°C SDS samples. Wood with the 180°C SDS samples was 

slightly darkened due to the increased press temperature.  

The samples modified with SDS and pressed at a temperature of 190°C instead of 170°C 

had increased strengths. However, the 190°C temperature had a negative darkening effect on the 

wood surface even though the adhesion strength was increased.  

Figure 3 summarizes results from Table 5 by comparing shear strength vs. concentration 

of SDS for dry strength, wet strength, and soak strength.  
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Figure 3. Shear strength vs. concentration of SDS at 170°C, 180°C, and 190°C 
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As illistrated in Figure 3, the dry, wet, and soak strengths of unmodified protein adhesive 

increased as the hot press temperature increased. However, for the wet strength, the 180°C 

samples had an average shear strength greater than the 190°C samples average.  

The trends for wet, dry, and soak strength vary when comparing the 1% SDS modified 

samples. Hot press temperature did not have a significant effect on the dry and soak strength; all 

three temperatures registered approximately 6.5 MPa. However, hot press temperature 

significantly effected the wet strength, showing that wet strength increased as temperature 

increased. Increasing temperature also had a positive affect on wet shear strength.  

Comparing the 3% SDS modified samples, the wet, dry, and soak strengths did not have 

similar trends. The dry strength was highest at 170°C and was approximately 5.7 MPa for the 

180°C and 190°C temperatures. The wet strength of the 3% SDS modified samples increased as 

temperature increased. The soak strength was similar for 190°C and 170°C, with 180°C being 

the lowest. Overall, for the 3% SDS samples, no clear trends emerged for the dry, wet, or soak 

strength averages.  

Figure 4 displays the shear strength vs. temperature of unmodififed canola protein 

adhesives for dry, wet, and soak strengths.  

 

 

Figure 4. Shear strength vs. temperature of unmodified canola protein 



31 

 

As seen from Figure 4, the general trend for unmodified canola protein adhesives was 

that the shear strengths increased as press temperature increased. The only data point that does 

not follow this trend is the wet strength of the unmodified protein samples at 190°C. As press 

temperature increases, immobilization of the protein adhesive, as well as the possibilty of 

chemical reactions at the interface are enhanced (Sun 2011).  

Overall Table 5 indicates, that the shear strength of canola protein adhesives increased as 

the press temperature increased. However, high temperature may damage the wood surface, 

leading to an unpleasing product appearance. 

4.4 Rheological properties of canola protein adhesives 

Viscosity is an important factor in adhesive handling and application. A relatively high 

apparent viscosity is desirable because it allows for easier adhesive application. The viscosity 

results for different chemical modifications can be found in the following sections.  

4.4.1 Effect of chemical modification on rheological properties  

The results for viscosity vs. shear rate for SDS modified canola protein can be found in 

Figure 5. All of the SDS modified adhesive samples exhibited shear thinning behavior.  
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Figure 5. Viscosity vs. shear rate of canola protein modified with SDS 

Apparent viscosity increased as SDS concentration increased. The 0.5% SDS modified 

adhesive sample had the lowest viscosity, followed by the 1% SDS sample, 3% SDS sample, and 

5% SDS sample. The unmodified adhesive sample with 0% SDS had a viscosity between 3% 

SDS and 1% SDS. The color of the modified samples in Figure 2 corresponds to the viscosity of 

the samples in Figure 5. The 5% SDS solution was the darkest, then 3% SDS and unmodified, 

followed by 1% SDS and 0.5% SDS. Therefore, for the SDS modified samples, the darker color 

indicates the adhesive has a relatively high viscosity.  

The samples modified with 5% SDS and 3% SDS were the most uniform and viscous of 

all the samples. The color of the 5% SDS and 3% SDS modified samples was darker than the 

other samples and the protein did not settle out of solution when not mixed. The uniformity and 



33 

 

color difference could be due to the protein being denatured. The 1% SDS and 0.5% SDS 

modified adhesives were not as uniform and the protein settled out.  

The results for viscosity vs. shear rate of canola protein modified with OSA can be found 

in Figure 6.  

 

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50

V
is

co
si

ty
 (

P
a

s)

Shear Rate (1/s)

Viscosity vs. Shear Rate of Canola Protein 

Modified with OSA

2% OSA

3.5% OSA

5% OSA

Unmodified

 

Figure 6. Viscosity vs. shear rate of canola protein modified with OSA 

The viscosity of the OSA modified samples was lower than the unmodified canola 

protein (Figure 6), but all samples displayed shear thinning behavior. No significant difference 

was apparent in viscosity among the 2%, 3.5%, and 5% OSA modified samples. Qi and Sun 

(2013) found a similar trend for soy protein modified with OSA; the OSA modified samples had 

a lower viscosity than the unmodified soy protein sample. Increasing the concentration of OSA 

decreased the viscosity of the soy protein samples. The viscosity probably decreased due to the 

protein reaching its isoelectric point, therefore decreasing electrostatic repulsion and compacting 

the protein molecules in aggregate form (Qi and Sun 2013). However, for the OSA modified 

samples in this study (Figure 6), pH was not measured and therefore no conclusion can be 

reached regarding if the pH of the samples was near the protein isoelectric point. No clear 

distinction exists between the 2% OSA, 3.5% OSA, and 5% OSA modified samples, possibly 
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due to lack of uniformity of the samples. The OSA did not completely mix with the protein and 

water and, consequently, excess OSA remained at the top of the solution. The specific samples 

used for the viscosity testing could have not been completely uniform, leading to no trend for the 

various concentrations of OSA.  

Overall, chemical modification affected the viscosity of the canola protein samples. 

Increased SDS concentration increased the viscosity of the samples. The color of the adhesives 

was an indicator of the viscosity, with the darker color indicating a higher viscosity. In general, 

OSA modification decreased the viscosity of the samples compared to the unmodified samples. 

Chemical modification of canola protein affects the viscosity of adhesive samples.  

4.4.2 Effect of combined chemical modification on rheological properties  

The viscosity vs. shear rate of canola protein modified with SDS and ZnSO4 is shown in 

Figure 7.  

 

 

Figure 7. Viscosity vs. shear rate of canola protein modified with SDS and ZnSO4 

The viscosity results for the protein modified with SDS and ZnSO4 are shown in Figure 

7. Both samples were not uniform and therefore gave poor viscosity results. Changing the ZnSO4 
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concentration from 0.1% to 0.5% had little effect on the viscosity. Both samples were not 

uniform and the protein settled out shortly after mixing. The overall pattern of the two modified 

adhesive samples shows a shear-thinning behavior, but the lowness of the viscosity causes 

difficulty in determining the effect of ZnSO4 concentration on viscosity.  

The results of viscosity vs. shear rate of canola protein modified with SDS and CaCO3 

are demonstrated in Figure 8.  

 

 

Figure 8. Viscosity vs. shear rate of canola protein modified with SDS and CaCO3 

Viscosity results for the protein modified with SDS and CaCO3 are shown in Figure 8. 

Increasing the CaCO3 concentration slightly increased the viscosity of the adhesive samples. 

Results show that the adhesives are shear-thinning; however, the samples were not uniform and 

separated when not mixed due to the protein not being denatured and/or sufficiently cross-linked.  

The viscosity of the samples was very low.  

Overall, combined chemical modification with SDS and ZnSO4 or CaCO3 decreased the 

viscosity of canola protein adhesives compared to unmodified canola protein adhesives. The 

shear strength of the combined chemical modifications was very low and could partially be 

attributed to the low viscosities of the samples.  
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4.5 Thermal properties of canola protein adhesives 

Thermal properties of canola protein adhesives were measured using Differential 

Scanning Calorimetry (DSC). Denaturation temperature (Td) and enthalpy of denaturation (∆H) 

were determined from DSC thermograms. DSC was performed with the unmodified protein, 

SDS modified protein, and combined-chemical modified protein.  

The thermal stability of protein can be affected by many structural factors, including 

protein-protein interaction, binding of groups and metals, internal linkages, amino acid 

composition, and environmental factors (Wu and Muir 2008).  

4.5.1 Effect of chemical modification on thermal properties 

The DSC thermograms of SDS modified canola protein are demonstrated in Figure 9.  
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Figure 9. DSC thermograms of SDS modified canola protein 

The SDS modified samples and the control had a broad peak between 100°C and 170°C, 

indicating the denaturation temperature, Td (Figure 9). The broad peak could be attributed to the 

denaturation of two major protein components, cruciferin and napin, overlapping one another. 

The denaturation temperatures and enthalpies of denaturation for the SDS modified samples are 

shown in Table 6.



38 

 

Table 6. Denaturation (Td) temperatures and enthalpy of denaturation (∆H) of SDS 

modified canola protein 

Modification Td (°C) ∆H (J/g) 
unmodified 148.69 184.5 
0.5% SDS 145.13 154.0 
1% SDS 144.16 146.4 
3% SDS 139.14 131.4 
5% SDS 149.87 134.4 

 

In general, protein modification with SDS decreased the denaturation temperature and 

enthalpy of denaturation. This trend is consistent with other studies using soy protein modified 

with OSA (Qi et al. 2013) and canola protein modified with sodium bisulfite (Li et al. 2012). 

However, the trend of the current study varied slightly from previous studies in that 5% SDS 

modified canola protein had a higher denaturation temperature than the unmodified canola 

protein. One reason the data does not follow a consistent trend could be variations in water 

content since the water content of each sample was not measured. For soy protein, the 

denaturation temperature decreases with increasing water content (Sun 2011). Canola protein 

could behave similarly to soy protein and, therefore, the water content of the 5% SDS modified 

sample could have been lower, yielding a higher denaturation temperature than other samples.  

The denaturation temperatures of SDS modified samples in Table 6 are relatively high 

compared to the denaturation temperatures of canola protein found in previous works. In one 

study, Wu and Muir (2008) found the denaturation temperature of extracted canola protein 

isolate to be 83.9°C. Mu and Muir (2008) also found the denaturation temperature of the 

cruciferin portion of protein to be 90.7°C and napin to be 109.9°C. The extraction methods and 

sample type used in Wu and Muir’s study were different than extraction methods used in the 

current work. Another reason for reported high temperatures could be the presence of non-

protein components. Purity of the extracted canola protein was 83.88% (Table 2); therefore, 

samples tested in Figure 9 were not 100% pure protein samples. Li et al. (2012) also reported 

temperatures higher than those reported by Wu and Muir (2008). However, denaturation 

temperatures reported in the current study were approximately 30°C higher than those reported 

by Li et al. (2012).  
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4.5.2 Effect of combined chemical modification on thermal properties 

DSC thermograms of canola protein modified with SDS and CaCO3 and SDS and ZnSO4 

are illustrated in Figure 10. 

 

 

Figure 10. DSC thermograms of SDS and CaCO3 or ZnSO4 modified canola protein 

Increasing the concentration of either CaCO3 or ZnSO4 decreased the denaturation 

temperature of canola protein samples. All of the samples contained broad peaks between 120°C 
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and 170°C with denaturation temperatures around 130°C. The denaturation temperatures and 

enthalpies of denaturation are shown in Table 7. 

Table 7. Denaturation (Td) temperatures and enthalpy of denaturation (∆H) of SDS and 

CaCO3 or ZnSO4 modified canola protein 

Modification T d (°C) ∆H (J/g) 
unmodified 148.69 184.5 
1% SDS 1% CaCO3 136.97 130.7 
1% SDS 3% CaCO3 131.29 119.4 
1% SDS 0.1% ZnSO4 137.22 138.0 
1% SDS 0.5% ZnSO4 128.71 115.8 

 

As modifier concentration increased, the denaturation temperature decreased along with 

the enthalpy of denaturation (Table 7). This trend is consistent with results from Huang and Sun 

(2000a) for modified soy protein. The denaturation temperature and enthalpy decreased due to 

higher degree of protein unfolding that occurs with increased modifier concentration. The 

denaturation temperature of the samples is higher than reported averages of approximately 100°C 

(Wu and Muir 2008), possibly due to the difference in isolation technique as well as the specific 

variety of canola used.  

Overall, the high denaturation temperature of canola protein could be attributed to low 

shear strength for various samples in the current study. The denaturation temperature was 

approximately 130-150°C and the samples were pressed at 170°C. However, when SDS samples 

were pressed at 190°C the strengths increased greatly. Increasing the press temperature improved 

the shear strength of samples due to greater protein cross-linking (Sun 2011). The denaturation 

temperature of canola protein is a challenge for commercializing canola protein adhesives.  

4.6 Morphological properties of canola protein adhesives 

SEM and TEM imaging were used to determine morphological properties of canola 

protein adhesives. Unmodified protein and SDS modified protein (0.5%, 1%, 3%, and 5%) were 

examined with SEM and TEM imaging. The results for morphological properties of canola 

protein adhesives are described in the following sections.  
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4.6.1 SEM results of chemically-modified canola protein adhesives 

Figure 11 shows SEM images of unmodified milled canola protein at magnifications of 

3000x and 10741x. 

 

 

Figure 11. SEM of unmodified canola protein: 3000x (A) and 10741x (B)  

The unmodified canola protein had irregular particle sizes with diverse surface structures 

(Figure 11) and small, rough particles attached to large particles. The irregularity of particle size 

could be due to the freeze-drying and milling process. A slight contrast in small particles, most 

likely due to charging from the electron beam of the microscope, is evident in image A and the 

large particle in the bottom left of image B is much smoother than the smaller particles. The 

protein is not uniform and has a variety of textures and sizes within the aggregates. 

Figure 12 shows canola protein modified with SDS at concentrations of 0.5% and 1% 

with magnifications of 500x and 2000x. ImageJ was used to improve brightness and contrast.  

 

A B 
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Figure 12. SEM image of modified canola protein: 0.5% SDS 500x (A), 0.5% SDS 2000x 

(B), 1%SDS 500x (C), and 1% SDS 2000x (D)  

The images in Figure 12 show similar irregular particles, in the form of large clumps with 

smaller attached particles, similar to Figure 11. The large particles are fairly smooth, whereas the 

small particles are rough and irregular. In all four images, various particles are much lighter in 

color than the surrounding material due to differences in material density and composition. The 

light color cannot be attributed to charging because the images were taken in low vacuum mode 

and the back scattered electrons give elemental analysis. For 0.5% SDS modified protein, images 

A and B, the large particles have an approximate diameter of 20-50µm (measured with ImageJ). 

A B 

C D 
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The 1% SDS modified protein samples, images C and D, also have diameters of approximately 

20-50µm. Images C and D have distortion lines due to unknown interference in the building 

where the images were taken. Images B (0.5% SDS) and D (1% SDS) were similar, indicating 

that different concentrations of SDS did not significantly affect protein structure in the freeze-

dried samples.  

To determine if the small white particles in Figure 12 were different from the other 

darker material, EDS was conducted and a copper grid was used for calibration.  

 

 

Figure 13. EDS images of 0.5% SDS modified canola protein 

The EDS spectrum was analyzed with INCA to determine the elemental composition of 

various spectrums. From the analysis, Spectrum 2 was found to have 30.94% O, 20.26% Na, 

5.85% S, 34.08% Cl, and 2.93% K. Spectrum 2 contains no carbon, indicating that it is not 

protein but rather a type of salt or other non-protein component. Spectrum 4 was found to have 

66.19% C, 26.00% O, 0.80% P, 3.43% S, 2.02% Cl, and 1.57% Zn. Spectrum 4 is thought to be 

protein and has very different composition percentages from Spectrum 2.  

Figure 14 shows canola protein modified with SDS at concentrations of 3% and 5% with 

magnifications of 500x and 2000x. ImageJ was used to improve brightness and contrast.  
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Figure 14. SEM image of modified canola protein: 3% SDS 500x (A), 3% SDS 2000x (B), 

5% SDS 500x (C), and 5% SDS 2000x (D)  

The images in Figure 14 show similar structure to Figure 11 and 12; however, images in 

Figure 14 show slightly larger chunks with fewer smaller particles on top. The large particles in 

images A (3% SDS) and C (5% SDS) are smoother than the images at the same magnification in 

Figure 12 of the protein modified with 0.5% SDS and 1% SDS. The images in Figure 14 also 

showed fewer white particles than the images in Figure 12. Images A and B of Figure 14 show 

the large particles have an approximate diameter of 20-100µm. While smaller diameter particles 

remain, more large particles are present than in images from Figure 12. In image C, large 

A 

D C 
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particles have a diameter of approximately 20-80µm. Overall, more large particles are present in 

Figure 14 than in Figure 12, indicating that the increase in SDS concentration could have an 

effect on particle size.  

4.6.1.1 SEM discussion 

All of the SEM images show similar morphology: large particles of protein with smaller 

particles attached. The protein most likely has this shape due to the freeze-drying and milling 

process. During the freeze-drying process, the protein dries in the same configuration it is in 

when suspended in water. The milling process changes the particle size of protein particles and is 

likely the reason for variation in particle size as well as very small particles. A more accurate 

demonstration of how protein forms in water could be seen if the milling step eliminated. 

Relation of the SEM images to adhesion strength is difficult because the protein is not suspended 

in water.  

Figure 11 exhibits various particles that are very light in color due to area charging of the 

microscope. Figures 12, 13, and 14 have light-colored particles as well, but color cannot be 

attributed to charging because they were taken in low vacuum mode using back-scattered 

electrons. Back-scattered electrons give elemental information and, therefore, the areas of lighter 

color were due to differences in material density. When light areas were compared to darker 

areas using EDS, the light areas did not contain carbon. The lighter areas were likely a type of 

salt possibly resulting from protein extraction or some type of non-protein component. Figure 12 

has more light-colored particles than Figure 14 perhaps because of how SDS affects protein and 

salts. 

Overall, particle sizes in Figure 14 (3% and 5% SDS) are slightly larger than particle 

sizes in Figure 12 (0.5% and 1% SDS). Figure 14 also demonstrates slightly smoother surfaces 

than Figure 12, but particle size and structure are difficult to relate to adhesion strength because 

the adhesive was applied in a wet form, not a dry form, and the protein was milled before 

imaging. Results affirm that SDS modification does alter protein structure.  

Li et al. (2012) found similar SEM images when canola protein was modified with 

sodium bisulfate. The unmodified protein had a more rigid, rough surface structure, whereas 

when the modification was increased, the surface structure became smoother. The increase in 

surface smoothness as the modification increased could be attributed to weaker protein-protein 

interaction during milling (Li et al. 2012). 
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4.6.2 TEM results of chemically-modified canola protein adhesives 

An FEI CM 100 was used to take all TEM images and was set at an accelerating voltage 

of either 80kV or 100kV. 

Figure 15 shows two images of unmodified canola protein at magnifications of 13500x 

and 130000x. 

 

 

Figure 15. TEM image of unmodified canola protein: 13500x (A) and 130000x (B) 

In image A, many small white circular units that have correlating stain are observed. The 

protein layer is thicker in lighter areas and the stain collected in pools and crevices around the 

globular protein. The primary structure of the protein included small white subunits, whereas the 

quaternary structure was shown by the larger globular circles. The white circles of globular 

protein in image B were approximately 20-30nm in diameter.  

Figure 16 shows two images of 3% SDS modified canola protein at magnifications of 

46000x and 130000x. 

 

A B 
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Figure 16. TEM image of 3% SDS modified canola protein: 46000x (A) and 130000x (B) 

In image A, the protein forms large areas of aggregation in the light-colored areas while 

the dark areas demonstrate the presence of stain collected in pools. The images are very 

dissimilar from the unmodified protein in Figure 15 because the darker areas are congregated 

together and spread out in web-like figures. As shown in image B, the darker areas still contain 

smaller circular subunits found in the unmodified protein, which can also be seen at the top of 

the image, where more protein has collected. The subunits in image B have diameters of 10-

15nm instead of 20-30nm like the unmodified protein. The difference is most likely due to SDS 

impacting the protein structure. 

Figure 17 shows images of 5% SDS modified canola protein magnifications of 46000x 

and 130000x. 

A B 
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Figure 17. TEM image of 5% SDS modified canola protein: 46000x (A) and 130000x (B) 

The web-like structure formed by the dark areas is similar to the structure shown in 

Figure 16. The darker areas verify where stain has collected and pooled. The top portion of the 

image reveals denser clumps of protein. The very small dark circles in the two images are 

contamination, not protein. The form of the small white subunits is shown in image B; however, 

the subunits were not clear enough in the picture to clearly discerned and measured, possibly due 

to resolution difficulty. The dark dense circles in the images are not protein but likely a type of 

contamination. 

4.6.2.1 TEM discussion  

The TEM images all show similar globular white protein structures which are not exactly 

spherical but have variation within the same sample as well as in different samples. The variation 

in size could be due to protein concentration, solubility, hydrophobicity, and denaturation 

conditions. The small white circles are composed of peptides, but the magnification and 

resolution were not high enough to clearly identify the individual peptide units. 

The material in Figures 16 and 17 appears in a web-like structure. The proteins have 

different thicknesses, therefore causing stain to collect in darker areas. Figures 16 and 17 are 

A B 
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very different from Figure 15 in overall appearance, likely due to the presence of SDS. The 

difference in appearance could also be attributed to a difference in protein concentration in the 

imaging area. The 3% SDS protein (Figure 16) has a tighter structure with more chain-like 

structures than the 5% SDS protein (Figure 17), possibly due to the greater extent of protein 

unfolding and denaturation in the 5% SDS modified protein. The web-like structure of protein in 

Figures 16 and 17could be favorable for dry adhesion strength of the protein, but a negative 

effect on the wet shear strength of the protein adhesives was observed. The decrease in wet 

strength is likely due to SDS creating negative surface charges on the surface of the adhesive, 

making the adhesive hydrophilic, thus causing the adhesive to take up water and disrupt the bond 

between adhesive and wood surface. 

Figure 17 contains artifacts in the form of dark circles that are not protein. The dark 

circles are fairly uniform with dark, dense spots in the middle. The contamination is probably a 

virus that contaminated the sample and/or grid before imaging.   

Li et al. (2011) found similar TEM imaging results for canola protein modified with 

sodium bisulfite. The protein also formed clusters with smaller aggregates, and the diameter of 

globular protein decreased when chemical modification was performed (Li et al. 2011).  
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5. Conclusions and Recommendations 

5.1 Conclusions 

Depending on chemical and concentration, modifying canola protein improved the shear 

strength of canola protein wood adhesives. Chemical modification with SDS (1%, 3%, and 5%), 

CaCO3 (1%, 3%, and 5%), ZnSO4 (1%), and OSA (2%, 3.5%, and 5%) improved the dry and 

soak strengths compared to unmodified canola protein. These modifications may have potential 

for interior applications but not exterior due to the low wet shear strengths. The viscosity of the 

SDS-modified canola protein adhesives increased as the SDS concentration increased, due to the 

greater extent of protein unfolding and crosslinking. TEM images show the protein arrangement 

as well as protein denaturation due to chemical modification. In general, SDS lowered the 

denaturation temperature of canola protein. The 3.5% OSA chemically-modified canola protein 

adhesive was the only modification that had improved wet, dry, and soak shear strengths. The 

increase in wet shear strength is possibly due to the hydrophobic nature of the OSA imparting 

hydrophobic behavior on the protein, therefore preventing water to disrupt the bond between 

adhesive and wood surface. The viscosities of the OSA-modified samples were lower than that 

of unmodified canola protein. The 3.5% OSA modified canola protein adhesive had improved 

properties compared to the other modifications.  

The combined chemical modifications of canola protein using SDS and CaCO3 and SDS 

and ZnSO4 did not improve the shear strength of the canola protein adhesives. Combined 

chemical modification decreased the denaturation temperature and shear strength of the modified 

samples because of too much protein denaturation through SDS and excess undissolved 

chemicals in the adhesive formulation.  

Results showed that press temperature had a significant effect on shear strength of canola 

protein adhesives. The shear strength increased as press temperature increased likely due to press 

temperature being increasingly distinct from denaturation temperature, allowing for more 

chemical interactions at the interface, increasing the adhesion. However, increasing the press 

temperature is not economically feasible due to high energy inputs required and the darkening 

effect on wood.  

Overall, canola protein was modified with different types of chemicals and combinations 

of chemicals to produce wood adhesives. Of the chemical modifications used, the 3.5% OSA 



51 

 

modification had wet, dry, and soak shear strengths greater than unmodified canola protein, 

making it the most successful chemical modification. As the press temperature of adhesives 

increased, the shear strengths of unmodified canola protein increased as well as SDS-modified 

canola protein.  

5.2 Recommendations 

Based on the results of this study, future research on canola protein adhesives should 

focus on the following:  

 

1. Optimizing the protein extraction process to increase the extraction rate as well as 

improve protein purity.  

2. Separating different protein fractions within canola protein to test adhesion strength 

of individual types of canola protein.  

3. Chemically modifying canola protein simultaneously with extraction instead of after 

the extraction process.  

4. Testing other chemical and enzymatic modifications on canola protein, as well as 

varying the concentration of protein used.  

5. Mixing canola protein with various types of commercial adhesives to increase the 

amount of bio-based material within the adhesive mixtures.  

 

Overall, canola protein has potential to be utilized as a commercial wood adhesive; 

however, many obstacles must be overcome and optimizations must be performed before 

commercialization. Process optimization is a critical first step to increase the extraction rate of 

canola protein and to increase the purity of the extracted protein. After the extraction process is 

optimized, other modification techniques should be researched to further improve adhesion 

strength and adhesive uniformity. With more research, canola protein adhesive has the potential 

to be an environmentally-friendly alternative or additive to formaldehyde-based adhesive. 
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