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Abstract 

Cattle shed Shiga toxin-producing Escherichia coli (STEC) in their feces.  Therefore, 

cattle pose a risk to contaminate produce, water, and beef products intended for human 

consumption.  The United States Department of Agriculture Food Safety and Inspection 

Service consider seven STEC serogroups (O26, O45, O103, O111, O121, O145, and O157) as 

adulterants in raw, non-intact beef products.  Contrary to O157, the frequency and 

distribution of non-O157 serogroups and virulence genes have not been well-established in 

cattle.  Therefore, the objectives of my thesis research were: 1) to appraise and synthesize 

data from peer-reviewed literature on non-O157 serogroup and virulence gene prevalence, 

and 2) to determine the prevalence of seven STEC in feedlot cattle feces across seasons.  A 

systematic review and meta-analysis of published literature were conducted to gather, 

summarize, and interpret the existent data regarding non-O157 serogroup and virulence 

gene prevalence in cattle.  Random-effects meta-analyses were used to obtain pooled non-

O157 fecal prevalence estimates for continents worldwide and meta-regression analyses 

were conducted to evaluate effects of specific factors on between-study heterogeneity.  

Results indicated that non-O157 serogroup and virulence gene fecal prevalence 

significantly differed (P < 0.05) by geographic region, with North America yielding the 

highest pooled prevalence estimate worldwide.  While previous research has demonstrated 

a strong seasonal shedding pattern of STEC O157, data regarding the seasonality of non-

O157 STEC shedding in cattle is very limited.  A repeated cross-sectional study was 

conducted to obtain serogroup and virulence gene prevalence data for the seven STEC in 

pre-harvest cattle feces, in summer and winter.  We found that non-O157 serogroups were 

recovered in fecal samples collected in both seasons but virulence genes, thus STEC, were 



  

rarely detected in summer and undetected in winter.  In conclusion, non-O157 STEC are 

present in cattle feces at very low frequencies, but STEC O103 and O157 significantly 

differed (P < 0.05) between seasons.  Overall, the research described in this thesis greatly 

contributes to the limited body of data regarding non-O157 serogroup and virulence gene 

distribution in cattle and provides a better understanding of two major risk factors, season 

and geographic distribution, associated with STEC fecal shedding in cattle.
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Preface 

The second and third chapters in this thesis, entitled “Prevalence of Non-O157 Shiga 

Toxin-producing Escherichia coli Serogroups (O26, O45, O103, O111, O121, and O145) and 

Virulence Genes in Feces, Hides, and Carcasses of Cattle in North America and Worldwide: 

A Systematic Review and Meta-analysis of Published Literature” and “Summer and Winter 

Prevalence of Shiga Toxin-producing Escherichia coli (STEC) O26, O45, O103, O111, O121, 

O145, and O157 in Feces of Feedlot Cattle”, will be submitted and were submitted for 

publication in Animal Health Research Reviews and Foodborne Pathogens and Disease, 

respectively; therefore, these chapters were formatted according to the respective journal 

specifications.  
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Chapter 1: Review of the Epidemiology of Shiga Toxin-

producing Escherichia coli and the Bovine Reservoir 

 

 Introduction 

Shiga toxin-producing Escherichia coli (E. coli) (STEC) are foodborne pathogens of 

public health importance in the United States. Members of the Enterobacteriaceae family, 

STEC are Gram-negative, rod-shaped, facultative anaerobic organisms. Currently, the 

United States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) 

declare seven STEC—O26, O45, O103, O111, O121, O145, and O157 (STEC-7)—as 

adulterants in raw, non-intact beef products (e.g., ground beef, mechanically tenderized 

steak).  The STEC-7 is comprised of the Shiga toxin-producing E. coli most commonly 

associated with human illness. In the United States, there were 5,763 laboratory-confirmed 

human STEC illnesses reported to the CDC in 2011 (CDC, 2013). The STEC-7 accounted for 

73.5% of  total human STEC illnesses reported; STEC serogroups O157, O26, O103, O111, 

O121, O45, and O145 caused 41.1, 10.6, 9.5, 5.6, 3.1, 2.3 and 1.3% of human illnesses, 

attributed to STEC, respectively (CDC, 2013).  

Human STEC infections are acquired through fecal-oral contact; direct or indirect 

contact with contaminated human and animal feces lead to STEC infections in humans 

(Evans and Evans, 1996). Once ingested, STEC have the ability to evade human defenses 

allowing for bacterial colonization and, potentially, human illness. In humans, STEC 

infections range in severity depending on the immune status of the infected individual, in 

addition to the amount of bacteria consumed.  In comparison to healthy adults, high risk 
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groups such as the young, the elderly, and the immunocompromised are more likely to 

suffer severe illnesses and life threatening complications when infected with STEC.  

Human infections can be acquired from a wide variety of sources: environment, 

infected humans, contaminated food and/or water, and animals. Although STEC can survive 

in the environment and non-bovine mammals, cattle serve as the primary reservoir of 

STEC. Shiga toxin-producing E. coli are commensal organisms in the gastrointestinal tract 

of cattle; consequently, these enteric pathogens are shed in their feces—serving as a source 

of contamination of water and food products. Cattle feces have been the source of 

contamination in human illness outbreaks; cattle have most commonly been implicated as 

the reservoir responsible for ground beef STEC contamination (Rangel et al., 2005; 

Williams et al., 2010; USDA, 2014). Prevalence of STEC in cattle feces and on hides, prior to 

slaughter, offer a proxy of risk for potential beef contamination. Data regarding prevalence 

of non-O157 STEC in the cattle reservoir are lacking in the United States (Pihkala et al., 

2010); data are needed to populate quantitative microbial risk assessments of these 

pathogens as non-O157 STEC human illnesses are becoming increasingly recognized 

nationwide  (Brooks et al., 2005; Pihkala et al., 2012).  

Escherichia coli O157, the most common STEC, has been widely researched in cattle 

following its declaration as an adulterant, approximately 20 years ago. Prevalence of E. coli 

O157 in cattle has been shown to be associated with human illness outbreaks, in the United 

States, demonstrating the importance of the cattle reservoir in human illness (Williams et 

al., 2010). In cattle, a transient, or intermittent, shedding pattern has been established for 

E. coli O157 (Besser et al., 1997; Hancock et al., 1997a; Sargeant et al., 2000). Escherichia 

coli O157 shedding in the bovine reservoir has been shown to be influenced by 
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environmental factors, including but not limited to season and geographic location, as well 

as host factors: diet, age, and type (Barkocy-Gallagher et al., 2003; Smith et al., 2005; Berry 

et al., 2006; Edrington et al., 2006; Fox et al., 2007; Jacob et al., 2009; Callaway et al., 2009, 

2013; Jeon et al., 2013; Ekiri et al., 2014; Islam et al., 2014). While non-O157 STEC are 

contributing to human illnesses (cases, hospitalizations, and deaths) (Crim et al., 2014), the 

current data regarding the prevalence of non-O157 STEC in the bovine reservoir is limited 

in the United States (Cernicchiaro et al., 2013; Dargatz et al., 2013; Ekiri et al., 2014). The 

majority of data regarding non-O157 STEC are in regards to prevalence in food products, 

such as ground beef and dairy products, while data on the prevalence and risk factors of 

non-O157 STEC in cattle is lacking (Pihkala et al., 2012). Non-O157 STEC prevalence in the 

bovine reservoir needs to be further evaluated in order to assess the environmental and 

host factors influencing non-O157 STEC shedding in cattle, in addition to evaluating the 

importance of cattle as a reservoir for non-O157 STEC.  

 

 Pathogens of Public Health Importance 

Shiga toxin-producing Escherichia coli—the bacteria. Escherichia coli are ubiquitous 

organisms, most of which do not cause human illness.  However, there are six pathotypes of 

E. coli that cause diarrhea in humans: Enteropathogenic E. coli (EPEC), Enteroinvasive E. 

coli (EIEC), Enteroaggregative E. coli (EAEC), Enterotoxigenic E. coli (ETEC), Diffusely 

Adherent E. coli (DAEC), and Shiga toxigenic E. coli (STEC) (Croxen et al., 2013).  Based on 

the Kauffman classification scheme, the O (somatic/lipopolysaccharide), H (flagellar), and 

sometimes K (capsular) antigens are determined (Croxen et al., 2013), and then E. coli are 
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classified into their respective pathotypes.  Commonly, E. coli are classified in regard to 

their O:H antigen combination, or serotype.  Shiga toxin-producing E. coli, or Shiga 

toxigenic E. coli, is the most important pathotype of public health importance worldwide.  A 

subset of STEC that is commonly associated with human illness is referred to as 

Enterohemorrhagic E. coli (EHEC).   The STEC pathotype refers to E. coli that harbor a Shiga 

toxin gene (stx1 and/or stx2), whereas EHEC refers to E. coli that harbor at least one Shiga 

toxin gene and the eae gene—which encodes essential proteins for the bacterial attachment 

necessary in causing human disease.  The most common EHEC serotype associated with 

human disease worldwide is E. coli O157:H7 (Croxen et al., 2013).  In the United States, E. 

coli O157:H7 was classified as an adulterant in raw, non-intact beef products by USDA-FSIS 

in 1994.    

More recently, in addition to E. coli O157, other E. coli serogroups are becoming 

increasingly recognized as important human pathogens (CDC, 2013).  In 2012, six 

additional serogroups—O26, O45, O103, O111, O121, and O145—were declared 

adulterants in raw, non-intact beef products by FSIS; 70% of the non-O157 STEC associated 

illnesses in the United States are attributed to these six serogroups (Brooks et al., 2005).   

The USDA-FSIS defines a sample (e.g., ground beef) to be adulterated by STEC if it harbors 

an O antigen of public health importance (O26, O45, O103, O111, O121, O145, or O157), a 

Shiga toxin gene (stx1 and/or stx2), and an eae gene.  This adulterant case definition 

represents EHEC, a subset of STEC, due to the presence of the eae gene.  Shiga toxigenic E. 

coli will only cause human disease if they harbor the eae gene needed to encode for 

proteins essential for bacterial colonization in the large intestine. 
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Bacterial mechanism of disease. The pathogenesis of Shiga toxigenic E. coli is very 

complex; a general overview has been adapted from Gyles 2007 and Gragg 2014.  Shiga 

toxin-producing E. coli are ingested via an indirect vehicle, such as contaminated food 

and/or water, or by directly ingesting fecal material.  These pathogens have the ability to 

survive the low pH in the human stomach allowing them to reach their target—the large 

intestine—where they have the potential to colonize.  Shiga toxigenic E. coli can only attach 

to the host epithelial cells in the large intestine provided they harbor the eae gene.  The eae 

gene encodes for the protein intimin, which is necessary for bacterial attachment; the eae 

gene is essential for STEC to cause human illness.  Intimin is encoded on a pathogenicity 

island on the bacterial chromosome termed the locus of enterocyte effacement, or LEE 

island.  Once the E. coli cells reach the large intestine, intimin allows the bacterial cell to 

attach to the intestinal epithelial cells, or enterocytes.  Following the adherence to the host 

cell, the bacterial cell uses a type III secretion system where a protein, tir, is injected into 

the host cell.  Tir is a receptor for intimin and is encoded by the tir gene.  The tir protein 

allows the STEC cell to be tightly bound to the host cell.  After this strong, intimate 

attachment occurs, the bacterial cell manipulates and rearranges the actin present in the 

host cell to form a pedestal—creating the characteristic attachment and effacement lesion 

on the microvilli in the intestine of the host.  Once the pedestal is formed, STEC cells begin 

to export virulence factors, notably—Shiga toxin(s).  Virulence genes will not be expressed 

if the cell does not have the ability to attach (i.e., the cell lacks the eae gene).  Shiga toxins 

exported from the bacterial cell in the large intestine can directly damage blood vessels in 

the colon, leading to gastroenteritis and hemorrhagic colitis (Gyles, 2007).  Shiga toxins 

may also be absorbed by the large intestine and circulated in the blood causing systemic 
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infections primarily in the target areas—the central nervous system and kidneys—where 

toxin receptors, globotriaosylceramide or Gb3, are abundant (Gyles, 2007; Croxen et al., 

2013).   

Shiga toxin, a cytotoxic enterotoxin, is the main virulence factor in human STEC 

infection severity, leading to life threatening complications such as HUS and TTP.  There 

are two types of Shiga toxins (encoded by the stx gene) produced by E. coli, Shiga toxin 1 

(stx1) and Shiga toxin 2 (stx2); subtypes of these toxins include: stx1a, stx1c, stx1d, stx2a, 

stx2b, stx2c, stx2d, stx2e, stx2f, and stx2g (Croxen et al., 2013).  Shiga toxin-producing E. coli 

can carry stx1, stx2, both stx1 and stx2, or a combination of stx2 genes (Croxen et al., 2013).  

Shiga toxins have an A1B5 structure and are encoded on a prophage inserted into the 

bacterial chromosome.  Shiga toxin 1 produced by STEC is closely related to the Shiga toxin 

produced by Shigella dysenteriae serotype 1 (O’Brien et al., 1982; Johannes and Roemer, 

2010).  Shiga toxin-producing E. coli are believed to have acquired stx production by 

horizontal gene transfer from S. dysenteriae.  Through bacterial evolution, STEC have 

evolved to produce stx2, in addition to stx1, which results in a more severe human illness 

(Gyles, 2007; Gould et al., 2013).  Shiga toxin-producing E. coli can also harbor other 

virulence factors such as  hemolysin (ehx) that also have the potential to increase disease 

severity; hemolysin is a protein that is responsible for lysing red blood cells and is also 

potentially cytotoxic to endothelial cells (Croxen et al., 2013).  Although Shiga toxin and 

intimin are the key virulence factors in human disease, there are many other bacterial 

factors aiding in the complex pathogenesis of Shiga toxigenic E. coli infections; however, the 

disease pathogenesis is also influenced by host factors.   
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Human illness.  The severity of human STEC infections depends on the serotype, dose, and 

the infected individual’s age and health status.  The infectious dose necessary to cause 

human illness is very low; only 10 to 100 cells are needed to cause disease.  However, 

ingestion of fewer than 10 cells of E. coli O157:H7 has been reported to cause human 

infection (Hara-Kudo and Takatori, 2011).  The incubation period of STEC can range from 

24 hours to 10 days, with symptoms usually occurring 3 to 4 days after exposure, 

depending on the amount of bacteria ingested and the current immune status of the 

infected individual (CDC, 2014).  High-risk groups such as young children, elderly adults, 

and immunocompromised individuals tend to suffer more severe infections.  Shiga toxin-

producing E. coli human illness severity can range from: no clinical signs (asymptomatic), 

mild to severe watery diarrhea (gastroenteritis), bloody diarrhea (hemorrhagic colitis), 

and severe life threatening complications such as hemolytic uremic syndrome (HUS) or 

thrombotic thrombocytopenia purpura (TTP).  Symptoms of HUS include low platelet count 

(thrombocytopenia), low red blood cell count (hemolytic anemia), and acute renal failure 

(Mayo Clinic, 2012).  Acute renal failure occurs when an individual’s kidneys become 

impaired and lose the ability to filter blood; blood accumulates waste products previously 

filtered by kidneys leading to severe complications and death (Mayo Clinic, 2012).  

Hemolytic uremic syndrome is more commonly associated with young children and is the 

leading cause of acute renal failure in children (Siegler and Oakes, 2005; Kuter, 2014).  

Shiga toxin-producing E. coli O157:H7 is a major cause of HUS worldwide (Croxen et al., 

2013).  The other life threatening complication associated with STEC is TTP, which is more 

commonly associated with adults.  Thrombotic thrombocytopenia purpura is characterized 

by the same symptoms as HUS except individuals suffering from TTP are less likely to 
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suffer kidney failure and more likely to suffer neurological symptoms such as confusion 

and coma—which aren’t commonly associated with HUS (Kuter, 2014).  Shiga toxin-

producing E. coli can cause debilitating illnesses and have the potential to be lethal with the 

ingestion of a very low dose.   

According to FoodNet active surveillance data, there were a total of 19,056 

infections, 4,200 hospitalizations, and 80 deaths due to foodborne pathogens reported in 

2013 (Crim et al., 2014).  Shiga toxin-producing E. coli (non-O157 and O157) are among the 

top foodborne bacterial pathogens reported to the Center for Disease Control and 

Prevention (CDC) in addition to Salmonella, Campylobacter, Shigella, Listeria, Vibrio, and 

Yersinia. Salmonella and Campylobacter are the most frequently reported bacterial 

pathogens associated with foodborne disease annually; in 2013, Salmonella and 

Campylobacter were the causative agent in 7,277 and 6,621 cases,  2,003 and 1,010 

hospitalizations, and 27 and 12 deaths, respectively, as reported by FoodNet (Crim et al., 

2014).  Shiga toxin-producing E. coli account for a fraction of the total foodborne illnesses 

annually; 1,113 cases, 286 hospitalizations, and 4 deaths were attributed to STEC in 2013 

(Crim et al., 2014).  However, foodborne illnesses are believed to be underreported (Scallan 

et al., 2011).  Each year it is estimated that 63,153 STEC O157 and 112,752 non-O157 STEC 

illnesses occur; 68% and 82% of STEC O157 and non-O157 STEC infections, respectively, 

are foodborne (Scallan et al., 2011).   

 

Sources of bacterial transmission.  Shiga toxin-producing E. coli infections are 

transmitted via the fecal-oral route (Evans and Evans, 1996).  There are many sources of 

human exposure to STEC pathogens that have been linked to human illnesses including, but 
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not limited to: daycares, elementary schools, nursing homes, correctional facilities, 

swimming pools, lake water, contaminated food or water, contact with animal or human 

feces, and direct contact with animals and animal environments (Pihkala et al., 2012).  

Additionally, STEC infections can be transmitted by human-to-human contact which tends 

to be more common in facilities where immunocompromised individuals reside or poor-

hygiene practices may be common (e.g., daycare, nursing home). In the United States, 

between 1990 and 2010, non-O157 STEC outbreaks have been attributed to the following 

sources of transmission: foodborne (45%), human-to-human contact (39%), and the 

remaining outbreaks (16%) were attributed to water, contact with animals, contact with 

animals and ill humans, and unknown sources of transmission (Luna-Gierke et al., 2014).  

Similarly, E. coli O157:H7 outbreaks in the United States, between 1982 and 2002, were 

comprised of the following sources of transmission: foodborne (52%), human-to-human 

contact (14%), waterborne (9%), contact with animals (3%), and unknown sources (21%) 

(Rangel et al., 2005).  Although there are many sources of STEC transmission that have 

been linked to human illness, the primary source of transmission, for both non-O157 and 

O157 STEC human illness outbreaks, is foodborne (Rangel et al., 2005; Luna-Gierke et al., 

2014).   

 

Implicated food products.  There are a variety of food products that have been linked to 

STEC illness in humans such as milk, cheese, beef sausage, ground beef, lettuce, spinach, 

sprouts, apple cider, apple juice, coleslaw, berries, and grapes (Rangel et al., 2005; Pihkala 

et al., 2012).  Food products become contaminated with STEC through various transmission 

cycles, ultimately with a common source—feces.  Animal feces, from bovine and other 
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species, have been shown to directly contaminate irrigation water, municipal water, and 

field crops, subsequently causing human illness outbreaks (Anonymous, 2000; Jay et al., 

2007; Oliveira et al., 2012; Laidler et al., 2013).  Proper manure management by cattle 

producers (e.g., feedlots, dairies) must be employed to minimize environmental 

contamination and potential human exposure and illness; however, uncontrollable 

environmental factors may aid in the spread of STEC organisms.  In 2000, Canadians 

suffered a large gastroenteritis outbreak due to contamination of the municipal water 

supply in Ontario; evidence suggests E. coli O157:H7 was the etiologic agent and bovine 

manure—the source (Anonymous, 2000).  Drainage from surrounding cattle farms were 

likely the source of contamination of this large outbreak in Ontario; the spread of E. coli 

through rainfall has also been displayed elsewhere (Anonymous, 2000; Ferguson et al., 

2007).   

Irrigation with contaminated water is a source of contamination of field crops 

including fruits and vegetables.   Shiga toxin-producing E. coli can persist in the 

environment aiding in the contamination of subsequent produce (e.g., lettuce, spinach) 

grown in contaminated soil.  Crops grown in soil with E. coli O157:H7 present have been 

shown to become contaminated due to bacterial transport via the root system of plants 

(i.e., lettuce); soil contaminated with higher amounts of E. coli O157:H7 were associated 

with a higher prevalence of lettuce leaf contamination (Solomon et al., 2002; Oliveira et al., 

2012).  Although there is no scientific evidence for non-O157 STEC, it can be hypothesized 

that bacterial transport via plant root systems would occur similarly for non-O157 STEC; 

however, data are needed to support this hypothesis.  On the other hand, in the dairy cattle 

environment, STEC can contaminate soil, and other bedding, which can contaminate the 
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udders of dairy cattle leading to contamination of milk and other dairy products if proper 

sanitation practices aren’t employed during milking and milk is consumed raw.  This cross-

contamination in the cattle environment, due to the lack of proper sanitation during the 

milking process, poses a threat to unpasteurized dairy products.  While Shiga toxin-

producing E. coli have been implicated as a causative agent in many foodborne illness 

outbreaks, ground beef is a commonly implicated source of STEC leading to foodborne 

illness in humans in the United States. 

The USDA-FSIS estimates that approximately one-third of human illnesses are 

attributed to beef, based on E. coli O157:H7 outbreak data from 2000 to 2006 (Withee et al., 

2009).  Similarly, between 1982 and 2002, ground beef was the source of human illness in 

41% of the foodborne outbreaks attributed to E. coli O157:H7 in the United States (Rangel 

et al., 2005).  In 2013, the USDA-FSIS reported five class I recalls due to STEC 

contamination (USDA, 2014).  A class I recall indicates that agents (STEC) with the 

potential to cause health problems or death when the product is consumed are present in 

the food product (USDA, 2014).  All recalled products due to STEC contamination were 

labelled either “ground beef products” or “beef products” (USDA, 2014).  Four of the STEC 

recalls were attributed to STEC O157 while a single recall was attributed to non-O157 

STEC; in total, 1,840,533 pounds of beef were recalled in 2013 due to STEC contamination 

(USDA, 2014).  Nearly two-million pounds of beef were recalled in 2013, resulting in a huge 

loss for the beef industry.  The average price of ground beef in 2013 was $3.40, these five 

recalls due to STEC contamination result in roughly a $6,257,812.20 economic loss to the 

beef industry (US Department of Labor, 2014).  The importance of detecting and mitigating 
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the risk of STEC in the beef supply is at an all-time high, both for the consumers and the 

producers.    

While it is important to note that Shiga toxin-producing E. coli can be inactivated 

when food products are properly cooked, many consumers are unaware of how to properly 

cook meat products although aware of the risk associated with consuming under-cooked 

beef.  A study by Røssvoll et al., found that only 8.6% (65 out of 755) of survey participants 

stated they knew what the core temperature should be in a hamburger and only 0.2% (2 

out of 768) of survey participants measured the inside temperature of a hamburger to 

decide if the hamburger was “sufficiently cooked” (Røssvoll et al., 2014).  Ground beef must 

be cooked to an internal temperature of 160° F (71°C) to inactivate bacterial pathogens, 

including STEC, which may be present.  Contrary to their current cooking habits, 94.5% 

(966 out of 1,022) of the survey participants were aware that raw ground beef may contain 

harmful bacteria (Røssvoll et al., 2014).  Due to the improper cooking techniques practiced 

by the majority of consumers, the beef industry cannot rely on the consumers to ensure 

elimination of potential pathogens present.  In order to reduce STEC infections attributed 

to beef products, the presence of these pathogens in the cattle reservoir must be 

considered.   

The primary source of cross-contamination of beef at the harvest facility is cattle 

hides (Loneragan and Brashears, 2005).  Cattle fecal material contaminates hides of cattle 

and subsequently poses a threat to cross-contaminate beef carcasses and beef products at 

the harvest facility.  Therefore, cattle fecal and hide prevalence of STEC can be indicators of 

potential cross-contamination of beef carcasses prior to harvest (Renter et al., 2008).  In a 

mathematical model, fecal and hide prevalence of E. coli O157 in cattle were statistically 
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associated (Loneragan and Brashears, 2005).  Feces are ultimately the source of STEC 

organisms and subsequent hide and beef contamination.  Fecal prevalence of STEC in the 

cattle reservoir provides an estimate of risk of beef contamination at slaughter and the 

subsequent potential for human illnesses.   

Due to USDA-FSIS and industry standards, the beef industry has employed many 

interventions to decrease the bacterial load of STEC, and other pathogens, in cattle (pre- 

and post-harvest); therefore, reducing entry and subsequent contamination from these 

organisms in the food supply.  There have been a wide variety of interventions employed 

by the beef industry to mitigate the risk of E. coli O157 in beef.  Pre-harvest interventions 

include, but are not limited to: management practices to maintain a clean environment 

including clean water and feed, rations including prebiotics and/or probiotics, vaccination 

regimen, hide washes, and use of bacteriophage while post-harvest interventions often 

include hide and carcass washes (hot water and organic acids (e.g., lactic acid)), steam 

vacuuming, carcass trimming, and proper sanitation and disinfection of equipment at the 

harvest facility (Koohmaraie et al., 2005; LeJeune and Wetzel, 2007).  These 

implementations in the cattle industry, pre- and post-harvest, and in other food production 

systems seem to be successful in decreasing human illnesses attributed to E. coli O157 

since 2000 (Gould et al., 2013). However, due to the recent declaration of these foodborne 

pathogens, this trend has not been established for non-O157 STEC.  The incidence of 

human illnesses attributed to non-O157 STEC has increased in the United States; however, 

the incidence likely appears inflated due to a recent increase in testing and development of 

detection methods for these non-O157 STEC (Gould et al., 2013). 
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 Detection of Shiga Toxin-producing Escherichia coli  

Diagnostic methods have been well established in the past for E. coli O157; however, 

due to biochemical differences between E. coli O157 and non-O157 serogroups, 

differentiating these STEC serogroups poses a challenge.  Escherichia coli O157 does not 

ferment sorbitol within 24 hours, therefore Sorbitol MacConkey agar (SMAC) can be used 

to easily distinguish potential E. coli O157 colonies from other serogroups, as they appear 

clear or gray on this medium (March and Ratnam, 1986).  In contrast, the non-O157 

serogroups ferment sorbitol making them difficult to distinguish using SMAC for culture 

isolation as non-O157 serogroups appear pink.  However, chromogenic media is available 

to differentiate the non-O157 serogroups by color phenotype based on biochemical 

properties (Possé et al., 2008; Tillman et al., 2012; Wylie et al., 2013).  Enrichment and 

immunomagnetic separation (IMS) culture techniques paired with the use of various 

culture methodology have been shown to improve the detection of STEC, thus increasing 

apparent prevalence estimates obtained in the cattle reservoir, when utilized (Smith, 

2014).  Molecular detection methods like polymerase chain reaction (PCR) are available to 

identify O antigens and virulence genes (Bai et al., 2010; Bai et al., 2012; Paddock et al., 

2012).  The use of commercially available antisera is used to serotype isolates, usually after 

the O gene has been identified (Guinée et al., 1972).   

The IMS procedure, which consists of antibody coated magnetic beads, is employed 

to increase detection of a specific organism while decreasing the background organisms 

that may be present.  The use of IMS has been shown to increase diagnostic test sensitivity 

compared to other methods where IMS is not employed for STEC O157 in cattle feces 

(Chapman et al., 1994; Islam et al., 2014).  Recently, the use of culture-based detection 
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methods, including an IMS step, has been shown to increase the apparent prevalence of 

non-O157 STEC detected in cattle feces when compared to direct PCR (Cernicchiaro et al., 

2013).  The serogroup-specificity of the beads used to detect specific E. coli O groups of 

interest also influences the prevalence estimates obtained.  Non-specific binding between 

IMS beads and their target serogroup of interest has been shown (Cernicchiaro et al., 

2013).  This poorly understood phenomena may result in unequal test sensitivities among 

the STEC serogroups of interest due to the lack of IMS bead specificity; this issue needs to 

be further evaluated to assess diagnostic test sensitivity and specificity.  The diagnostic 

methods employed directly impact the prevalence estimates obtained. 

Even though there are assays available to aid in detection of STEC of public health 

importance, there is a lack of a formal standardized method to identify these pathogens and 

virulence genes in the live cattle reservoir.  This lack of standardization makes it difficult to 

interpret and compare prevalence estimates among published literature, even within the 

same matrix (e.g., feces, hide, carcass), and over the years with advances in detection (e.g., 

enrichment, IMS).  Detection methods have been well established for detecting E. coli O157 

in bovine feces; however, diagnostic methods for non-O157 STEC are still being explored 

and evaluated.  Evaluation of current literature suggests that culture-based detection 

methods employing enrichment and IMS techniques increases the diagnostic test 

sensitivity (Chapman et al., 1994; Cernicchiaro et al., 2013); however, standardized 

diagnostic methods for identifying STEC in cattle feces are still needed.  Cattle fecal 

prevalence is a potential indicator STEC contamination risk at the harvest facility and valid 

standardized procedures would provide the estimates necessary to understand the burden 

of STEC in cattle prior to harvest. 
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While methods of detection have not been standardized for identifying STEC in 

cattle feces, hides, or carcasses, the FSIS presently has a standard operating procedure in 

place for detecting these adulterants in ground beef.  Currently the FSIS uses the DuPont™ 

BAX® system for detecting these pathogens in retail raw ground beef (Wasilenko et al., 

2014).  Briefly, the DuPont™ BAX® system is comprised of the following methodology: 

sample preparation and enrichment, real-time PCR screening procedure for eae and stx 

genes—if samples test positive to the initial screen they then undergo IMS and the bead 

suspensions are subsequently plated and colonies are then serologically agglutinated and 

confirmed by BAX® Real-time PCR STEC Suite (for non-O157 confirmation) or BAX® Real-

time PCR assay for E. coli O157:H7 (Wasilenko et al., 2014).  In the future, there should be 

steps taken to outline a standard methodology for STEC in other matrices besides ground 

beef.  Standardization in detection methodology for STEC would lead to a more conclusive 

and consistent estimate of STEC risk between matrices, allowing more robust comparisons 

to be made between studies while assessing the risk of these pathogens prior to their entry 

into the food supply. 

 

 Non-human Sources of Shiga Toxin-producing Escherichia coli 

In addition to cattle, STEC serogroups have been identified in other animals such as 

domestic animals—goats, sheep, poultry, swine, cats, and dogs, and wild animals—deer, 

elk, coyotes, feral swine, birds, opossums, raccoons, and bison (Asakura et al., 1998; Shere 

et al., 1998; Zschӧck et al., 2000; Renter et al., 2001, 2004; Bentancor et al., 2007; 

Bettelheim, 2007; Jay et al., 2007;  Cooley et al., 2013; Laidler et al., 2013; Callaway et al., 
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2014; Swirski et al., 2014).  Domestic animals, more commonly ruminants (cattle, sheep, 

and goats), pose a direct risk to humans, especially high-risk groups, at petting zoos, 

agricultural fairs, rodeos, and other events where humans are in direct contact with 

animals or the animal environment and proper hygiene practices aren’t employed.  Wild 

animals also have the potential to contaminate produce, animal feed, field crops, and the 

environment by shedding these pathogens in their excrement and indirectly causing 

human illness.  Feral swine and deer have been implicated as sources of STEC outbreaks in 

the United States (Jay et al., 2007; Laidler et al., 2013).  In 2006, feral swine feces 

contaminated baby spinach farms in California which resulted in a multi-state E. coli 

O157:H7 outbreak resulting in 183 illnesses, 95 hospitalizations, 29 HUS cases, and one 

death (CDC, 2006; Jay et al., 2007).  More recently, in 2011, fresh strawberries were 

implicated as a vehicle of 15 E. coli O157:H7 illnesses, six hospitalizations, and four HUS 

cases—two of which resulted in death; deer feces were the source of strawberry 

contamination in Oregon (Laidler et al., 2013).   

In addition to animal reservoirs, insects, such as stable flies (Stomoxys calcitrans) 

and house flies (Musca domestica), have been shown to carry STEC (Bailey et al., 1973; 

Alam and Zurek, 2004; Castro et al., 2013).  Stable flies have the potential to spread STEC 

long distances—up to 18 miles in 24 hours, potentially aiding in STEC transmission 

between cattle and within the cattle environment (Bailey et al., 1973; Castro et al., 2013).  

House flies (Musca domestica) have demonstrated a potential role in transmission of E. coli 

O157:H7 between cattle and the surrounding environment (Alam and Zurek, 2004).  Viable 

bacterial cells and virulence genes have been previously isolated from the mouth, body 

surface, and intestinal contents of the stable fly, further indicating that these insects may 
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spread STEC (Castro et al., 2013).  While STEC have been isolated from many animal 

sources, with respect to the beef industry—cattle remain the primary reservoir of concern 

regarding human STEC infections in the United States. 

 

 Biology of Shiga Toxin-producing Escherichia coli in Cattle 

Escherichia coli, including commensal and pathogenic organisms, are mesophiles 

and prefer the animal gastrointestinal (GI) tract due to the favorable growth conditions 

provided—anaerobic environment with a temperature between 20 to 45°C.  Shiga toxigenic 

E. coli are commensal organisms in the gastrointestinal tract of cattle, as well as other 

animals, and these human pathogens are shed in their feces.  Cattle are the principal 

reservoir for STEC in the United States.  Shiga toxin-producing E. coli have the ability to 

colonize cattle at any age (Baehler and Moxley, 2000).  The primary site for STEC 

colonization is the recto-anal junction, or the distal colon, in the cattle hindgut (Naylor et 

al., 2003).  Similar to human disease pathogenesis, colonization requires STEC organisms to 

possess the necessary genes to successfully attach to the host epithelial cells; this 

attachment yields the same attaching and effacing lesions found in human patients 

(Baehler and Moxley, 2000).   

Once the STEC colonize the hindgut of cattle they are shed in feces; these organisms 

are shed intermittently (Sargeant et al., 2000).  Studies show that cattle can shed STEC for 

approximately a month; although cattle are often not persistently infected, re-infection is 

common when cattle are in close contact (e.g., feedlot, transport) (Besser et al., 1997; 

Khaitsa et al., 2003).  Although inflammation and immune responses occur following E. coli 
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O157 colonization in cattle, adult cattle do not show clinical symptoms of STEC infection 

(Moxley and Smith, 2010).  In the event that STEC organisms do not colonize the hindgut, 

the organisms will still be shed in their feces, although for a shorter duration (e.g., days).   

The transient nature of E. coli O157 fecal shedding in cattle has been well 

established (Besser et al., 1997; Hancock et al., 1997a; Sargeant et al., 2000), intermittent 

shedding has also been observed for non-O157 STEC (Menrath et al., 2010).  In cattle 

populations, there are long periods of low prevalence and short periods of high prevalence 

within herds (Renter and Sargeant, 2002); this has been demonstrated for E. coli O157 in 

cattle feces (Hancock et al., 1997a; Renter and Sargeant, 2002).  Cattle shedding E. coli 

O157:H7 at a concentration greater than 104 colony forming units (CFU) per gram of feces 

are termed “super-shedders” (Chase-Topping et al., 2008).  Most cattle shed E. coli O157 

below this super-shedder threshold; however, these small populations of super-shedder 

cattle have been documented to shed the majority of the E. coli in the herd (Omisakin et al., 

2003; Chase-Topping et al., 2007).  In the United Kingdom, 9% of the cattle population 

tested were super-shedders, this small proportion of cattle accounted for over 96% of E. 

coli O157 shed in the entire population at slaughter (Omisakin et al., 2003); similar results 

were also established in Scotland (Chase-Topping et al., 2007).   

More recently, this super-shedding phenomenon has been observed in non-O157 

serogroups as well; cattle in a herd with super-shedders were twice as likely to be positive 

by PCR in comparison to cattle in a herd with no super-shedders present (Menrath et al., 

2010).  Identifying super-shedder cattle at harvest could exponentially decrease the risk of 

STEC exposure to other cattle and subsequent food products at that specific point-in-time.  

The temporality component of STEC in cattle populations makes it difficult to identify and 
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control super-shedders due to the transient nature of fecal shedding in cattle.  Super-

shedding in cattle is intermittent, therefore cattle are not super-shedders the duration of 

their lives, rather they are termed super-shedders when observed to shed STEC at 

concentrations greater than 104 CFU/g.  Although representative of a small part of the 

cattle population, super-shedders are hypothesized to play a key role in STEC exposure and 

transmission within cattle cohorts; this super-shedding status poses a serious risk to beef 

contamination due to the high concentrations of bacteria harbored at slaughter (Omisakin 

et al., 2003; Chase-Topping et al., 2007). In addition to the transient shedding patterns of 

STEC observed in cattle, the prevalence of STEC in the bovine reservoir can be altered by 

many cattle risk factors, such as the environment, diet, and age. 

 

Cattle Risk Factors Affecting Shiga Toxin-producing Escherichia coli Fecal 

Prevalence 

Environment.  Although the primary habitat of E. coli organisms is in the gastrointestinal 

tract of animals, E. coli can survive in the environment in secondary habitats like water and 

soil, aiding in the transmission of STEC between cattle.  Escherichia coli can survive outside 

of the host animal in the environment for long periods of time, which poses a persistent 

problem as this allows for re-infection within a herd, or introduction to a new cohort, 

aiding in the transmission of STEC in cattle populations.  In manure, E. coli O157:H7 has 

been shown to survive for up to 21 months, although uncommon (Kudva et al., 1998).  

Environmental temperature and fecal moisture content have been shown to influence the 

survivability of fecal bacteria present in manure (Wang et al., 2004).  Though extreme, E. 

coli O157:H7 has been shown to survive subzero conditions (-20°C) in bovine manure for 
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at least 100 days, demonstrating the ability of E. coli to endure harsh environmental 

conditions allowing for its survival in the cattle environment (Kudva et al., 1998). In the 

cattle environment, water troughs harbor STEC and are a vehicle for transmission between 

animals sharing a common water source (Midgley and Desmarchelier, 2001; Callaway et al., 

2013).  Fecal-contaminated feed bunks and cattle grooming behaviors are also plausible 

routes of horizontal STEC transmission between cattle (McGee et al., 2004).  In addition to 

fomites, migratory birds, particularly European starlings, have been shown to spread E. coli 

O157:H7 between farms, demonstrating starlings as a potential mechanical and biological 

vector of STEC transmission into the cattle environment (Cernicchiaro et al., 2012; 

Callaway et al., 2014; Swirski et al., 2014). 

 In feedlots, a commercial environment of beef cattle in the United States, pen-floor 

conditions have been shown to influence the prevalence of STEC O157 shedding in cattle.  

In Smith et al. 2001, within-pen prevalence of E. coli O157:H7 was higher in cattle housed 

in pens with muddy or dusty floors compared to cattle housed in an intermediate or 

normal pen condition (Smith et al., 2001).  However, Stanford et al. suggests that hide 

contamination may play a more important role in E. coli transmission between cattle 

compared to pen-floor contamination (Stanford et al., 2011).  Increased cattle density has 

been associated with an increased prevalence of fecal-contaminated hides (Renter et al., 

2008; Stanford et al., 2011; Callaway et al., 2013).  During transport to the harvest facility, 

cattle are transported on large trailers and are in close quarters—this is a potential route of 

pre-harvest contamination of hides with feces and transmission of STEC within a cohort.  

The contamination of the cattle environment paired with the survivability and 

transmissibility of STEC within the bovine reservoir and the environment leads to the 
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continuous cycle of STEC transmission in feedlots through various cohorts of cattle 

(Midgley and Desmarchelier, 2001).  In addition to the numerous routes of transmission, 

constant re-exposure, and asymptomatic carriage of STEC in cattle, there are also 

manageable as well as uncontrollable cattle risk factors that have been shown to influence 

fecal shedding in the bovine reservoir.  Shedding patterns and STEC prevalence in cattle 

can be altered by a variety of factors, most of which the mechanism of action are poorly 

understood.  In addition to the cattle environment, cattle diet, cattle age, and cattle type are 

a few of the risk factors that have been shown to influence fecal shedding. 

 

Diet.  In the gastrointestinal tract of cattle, E. coli O157 colonization and subsequent 

shedding can be influenced by a variety of factors in the gut, including but not limited to 

pH, volatile fatty acids (VFA), and competitor organisms (Reviewed in Jacob et al., 2009).  

Diet has been associated with E. coli O157 prevalence in cattle (Reviewed in Callaway et al., 

2009).  Distiller’s grains, an ethanol by-product and common feedstuff in commercial 

operations, have been shown to be associated with higher levels of E. coli O157 fecal 

shedding in cattle (Jacob et al., 2010).  Forage-fed cattle typically have lower fecal 

concentrations of E. coli, including E. coli O157:H7, when compared to grain-fed cattle 

(Callaway et al., 2013).  Grain form has also been shown to impact fecal shedding of E. coli 

O157.  Fox et al., 2007 showed that cattle fed diets containing steam-flaked grains rather 

than dry-rolled grains increased E. coli O157 fecal shedding in commercial feedlot cattle 

(Fox et al., 2007).  A plausible hypothesis of the contribution of grain form to E. coli O157 

fecal shedding is that dry-rolling of grains, opposed to steam-flaking, allows more starch to 

be passed to the large intestine and colon of cattle where it is fermented to produce VFA’s 
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consequently reducing E. coli O157 populations shed in feces (Fox et al., 2007).  Other 

dietary inclusions such as probiotics (e.g., direct-fed microbials), beta-agonists, ionophores, 

and other feedstuffs have been shown to affect fecal shedding (Reviewed in Callaway et al., 

2009).  The impact of diet on fecal shedding of STEC O157 in cattle is not consistent across 

studies, demonstrating the complexity of microbial ecology and E. coli shedding in cattle 

(Jacob et al., 2009).  While cattle diet has been widely researched for E. coli O157 fecal 

shedding, data are needed to assess the role of diet in non-O157 STEC shedding in cattle. 

 

Age.  In addition to environmental and management factors, host factors, such as age, also 

play a role in E. coli shedding in cattle.  Zhao et al., 2013 reported a significant increase of 

STEC shedding in the youngest group of calves when compared to their dams (Zhao et al., 

2013).  In a study by Nielsen et al., 2002, a strong effect of age was observed; cattle 

between two and six months of age shed significantly higher levels of STEC O157 than cows 

(Nielsen et al., 2002).  Shaw et al., 2004 demonstrated an association between STEC O26 

fecal shedding and very young calves (less than 7 weeks of age); as the calves aged, STEC 

O26 shedding prevalence decreased over the 21-week study period (Shaw et al., 2004).  

Non-O157 and O157 STEC were most common in feces of calves post-weaning compared 

their prevalence observed during the finishing period and at slaughter (Ekiri et al., 2014).  

The associations found may be a function of calf age, but it may also be attributed to change 

in diet, immunity, or environment (Nielsen et al., 2002; Shaw et al., 2004; Zhao et al., 2013; 

Ekiri et al., 2014).  The colonization of E. coli in calves may be due to a naïve microbial 

population in the gut attributed to calf age and immune status.  Therefore, when calves are 

introduced to STEC in the environment, from their dam, or exposed to stressors (e.g., 
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weaning), they are easily colonized and shed these pathogens at higher levels than cows 

with well-established gut microbiota.  It is important to note that some studies are 

inconsistent with the conclusions regarding STEC fecal shedding influenced by cattle age, 

this inconsistency could be due to various contributing factors (e.g., environment, diet) or 

confounding by unknown variables. 

 

Type.  Cattle genetics have been the motivation for testing hypotheses regarding E. coli 

fecal shedding (Berry et al., 2006; Jeon et al., 2013).  In a comparison of Bos taurus and Bos 

indicus cattle, no differences were identified in generic E. coli carriage based on cattle 

genotypes (Berry et al., 2006).  However, more recently, genetic factors have been shown to 

affect E. coli O157 colonization.  Jeon et al., demonstrated that Brahman cattle (Bos indicus) 

were more resistant to E. coli O157 colonization than Angus (Bos taurus) and Angus-

Brahman cross-bred cattle (Jeon et al., 2013).  Cattle genetics and their influence on fecal 

shedding of E. coli are contradictory, elucidating the need for more data to support either 

hypothesis.  Similarly, cattle type, beef or dairy, is also a plausible risk factor influencing 

shedding of E. coli in cattle.  A meta-analysis by Islam et al., 2014 reported overall, 

worldwide E. coli O157:H7 prevalence estimates of 1.75%, 6.84%, and 19.58% for dairy, 

beef, and feedlot cattle, respectively, significant differences were observed between dairy 

and feedlot cattle (Islam et al., 2014).  While differences based on cattle genetics and cattle 

type may be observed, the prevalence outcome is confounded within a multitude of factors, 

primarily production system.   

In the United States, beef cattle are raised in a pasture-based system and/or a 

feedlot setting.  In a pasture-based production system, cattle are often housed at a lower 
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stocking density compared to a feedlot operation where animals are more densely stocked.  

The stocking density, or concentration of animals per area, is vastly different between 

pasture and feedlot systems in the United States.  Increased cattle density allows for 

disease transmission to occur between cattle more frequently.  Cattle density has been 

positively associated with prevalence of contaminated hides, a route for beef 

contamination (Renter et al., 2008; Stanford et al., 2011; Callaway et al., 2013); this 

association demonstrates the increase of STEC exposure with increasing number of 

animals housed together.  Additionally, in a feedlot setting, animals of all ages are 

constantly entering and leaving the feedyard, allowing for more disease exposure and 

susceptible individuals to enter a population.  In contrast, dairy cattle are raised in similar 

settings as feedlot cattle however, the turnover rate is lower (Sanderson, 2015).  Dairy 

cattle stay in the production setting longer than beef cattle in a feedyard, thus reducing the 

introduction of STEC and other agents into the herd.  In the E. coli O157 fecal prevalence 

meta-analysis findings by Islam et al., the lack of a statistically significant difference in fecal 

shedding between dairy and beef cattle may indicate this similarity in production system, 

while fecal prevalence in feedlot cattle is observed to be significantly higher (Islam et al., 

2014). 

While cattle genetics and cattle type may be risk factors influencing fecal shedding, 

the production environment impact on shedding offers a more plausible hypothesis.  The 

function of the cattle environment, management, and other practices associated with 

different production systems offer a reasonable hypothesis influencing the epidemiological 

triad (host-agent-environment) of STEC in cattle populations (Sanderson, 2015).  Cattle 

risk factors, both known and unknown, affect E. coli shedding in cattle, additionally, 
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extrinsic factors such as season and geographic region have been shown to be associated 

with STEC shedding in the bovine reservoir and human illnesses.   

 

 Seasonality of Shiga Toxin-producing Escherichia coli 

Escherichia coli O157:H7 has a strong seasonal pattern.  In summer months, E. coli 

O157 is the most prevalent serogroup shed by cattle (Barkocy-Gallagher et al., 2003; 

Williams et al., 2010).  While E. coli O157 reaches peak prevalence in the cattle reservoir 

during summer months, E. coli O157 is rarely isolated from cattle during winter months 

(Barkocy-Gallagher et al., 2003; Smith et al., 2005; Edrington et al., 2006); demonstrating 

that significant differences between summer and winter E. coli O157 shedding in cattle 

exist.  In contrast, a study evaluating the seasonal trend of non-O157 STEC observed a 

different pattern; non-O157 STEC were more prevalent in spring and fall rather than 

summer and winter in cattle (Barkocy-Gallagher et al., 2003).  Although a seasonal trend 

has been well established for E. coli O157, the seasonality of non-O157 STEC has not been 

widely researched in the cattle reservoir.     

The seasonality component of STEC shedding in cattle is not completely understood; 

however, there are some plausible hypotheses believed to contribute to cattle fecal 

shedding such as the effect of day length and ambient temperature (Edrington et al., 2006).  

Edrington et al., suggests that day length and subsequent physiological changes that occur 

within the cattle reservoir may be a more important contributing factor to the seasonality 

component of E. coli O157:H7 in cattle, opposed to ambient temperature alone (Edrington 

et al., 2006).  Day length may alter seasonally secreted hormones (e.g., melatonin) in cattle, 
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subsequently modifying bacterial populations, shedding patterns, and/or immunity which 

contribute to the observed seasonal trend of E. coli O157:H7 shedding in cattle, in addition 

to ambient temperature (Edrington et al., 2006, 2008).  Contrary to this suggested 

hypothesis, ambient temperature seems to be the most plausible and widely-accepted 

hypothesis.  Increased ambient temperature may favor bacterial growth and increase STEC 

survival in the cattle environment (e.g., feed, water, soil) and cattle reservoir (e.g., feces, 

hides), allowing for increased disease transmissibility between cattle, leading to 

subsequent beef contamination and human illnesses (Smith et al., 2005).  While there are 

multiple hypotheses regarding the etiology of seasonal STEC shedding in the cattle 

reservoir, the mechanism is poorly understood.   

The seasonality of STEC shedding observed in cattle correlates to human illnesses 

attributed to E. coli O157:H7 (Williams et al., 2010).  This correlation demonstrates the 

importance of the cattle reservoir in human illness.  As illustrated in a mathematical model, 

the supply of ground beef remains fairly constant year-round; however, in summer months, 

E. coli O157:H7 prevalence in cattle peaks in June followed by a peak in ground beef 

contamination and human illness attributed to E. coli O157:H7 one month later (Williams 

et al., 2010).  The observed one-month delay between peak in cattle prevalence and human 

illness is reasonable as it may take a month, on average, for beef products to be processed, 

shipped, and consumed (Williams et al., 2010).  In addition to STEC O157, human illnesses 

attributed to non-O157 STEC outbreaks are also more common in the summer months. 

Most of the non-O157 STEC outbreaks reported (58%) in the United States occurred in four 

months—between June and September (Luna-Gierke et al., 2014); these outbreaks 

encompassed all reported outbreaks from various sources and haven’t been associated 
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with cattle prevalence (Luna-Gierke et al., 2014).  Prevalence and seasonality of non-O157 

STEC in the cattle reservoir must be further evaluated to assess the correlation, or lack 

thereof, of non-O157 STEC in cattle and subsequent human illnesses attributed to non-

O157 STEC.   

Alternate hypotheses regarding the seasonality of human illnesses attributed to 

STEC exist.  While food handling, preparation, and storage are all key factors in mitigating 

foodborne illness year-round, some argue that an increase in poor food handling and 

storage practices occur during the warmer months, as picnics and barbeques are more 

common.  This hypothesis is plausible as these are key factors influencing any foodborne 

pathogen and resulting illness.  However, the evidence of prevalence in the bovine 

reservoir peaking prior to beef contamination, constant consumption of beef year-round, 

and increased human illness in warmer months indicate the role of cattle in this 

transmission process.  While the increase of poor food handling and preparation 

techniques likely increase foodborne illnesses, including those attributed to STEC, cattle 

feces are responsible for initially contaminating the food product.  Although the seasonality 

component of STEC pathogens is not fully understood in the bovine reservoir, there is a 

strong correlation present between prevalence of STEC shed by cattle and subsequent 

human illnesses attributed to these foodborne pathogens. 

 

 Geography of Shiga Toxin-producing Escherichia coli 

In addition to seasonality, geographic location may impact Shiga toxigenic E. coli 

prevalence in cattle and consequently, the frequency of human infection.  Surveillance by 
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the CDC shows that the laboratory-confirmed incidence rate for STEC infections, both O157 

and non-O157 serogroups, tend to be geographically distributed in the upper Midwestern 

United States (CDC, 2013).  However, this geographic distribution has not been correlated 

to prevalence in cattle (Hancock et al., 1997b).  Although regional differences in E. coli 

O157 shed by cattle have not been established in feedlots within the United States 

(Hancock et al., 1997b), a meta-analysis by Islam et al. demonstrates that E. coli O157 fecal 

prevalence in cattle significantly differs between geographic regions worldwide (Islam et 

al., 2014).  Worldwide E. coli O157 cattle prevalence was estimated to be 5.68% (95% CI 

5.16-6.20%); however, E. coli O157 prevalence in cattle from North America (Canada, 

United States, Mexico) was higher than other regions—7.35% (95% CI 6.44-8.26%) (Islam 

et al., 2014).  In North America, the estimate was fairly robust, including 46 studies and 

110,641 cattle sampled (Islam et al., 2014).  In further analysis, the United States was the 

region of highest prevalence in North America—7.6% (Islam et al., 2014).  The increased E. 

coli O157 burden in the United States demonstrates the importance of the cattle reservoir 

to public health in this country.   

The six non-O157 STEC of public health importance in the United States have also 

been identified in cattle feces worldwide, including the following regions: Asia, Europe, 

North America, and South America (Zschӧck et al., 2000; Kobayashi et al., 2001; Jenkins et 

al., 2002; Khan et al., 2002; Meichtri et al., 2004; Padola et al., 2004; Shaw et al., 2004; 

Bonardi et al., 2005; Kijima-Tanaka et al., 2005; Zweifel et al., 2005; Jeon et al., 2006; Pearce 

et al., 2006; Bonardi et al., 2007; Renter et al., 2007; Karama et al., 2008; Joris et al., 2011; 

Monaghan et al., 2011;  Sasaki et al., 2011; Lynch et al., 2012; Thomas et al., 2012; 

Cernicchiaro et al., 2013; Sasaki et al., 2013a, 2013b; Baltasar et al., 2014).  Similar to E. coli 
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O157, evaluation of the literature indicates cattle in the United States to have the highest 

non-O157 STEC burden reported in North America.  Non-O157 STEC cattle fecal prevalence 

by region ranged from undetected to: 17% in North America, 12% in South America, 4% in 

Asia, and 2.4% in Europe (Padola et al., 2004; Shaw et al., 2004; Jeon et al., 2006; 

Cernicchiaro et al., 2013).  Although non-O157 STEC fecal prevalence in cattle has been the 

primary objective of studies in Australia and Africa, pathogenic non-O157 STEC have not 

been detected in cattle feces from these regions (Cobbold and Desmarchelier, 2001; Musa 

et al., 2013).  While geographical differences in cattle type, production system, cattle diet, 

season, and laboratory methodology employed must also be taken into account to assess 

true geographic differences, it appears that E. coli prevalence in the bovine reservoir may 

be influenced by region. 

 

 Conclusion 

The many risk factors affecting the epidemiology of Shiga toxin-producing E. coli 

shedding in cattle poses a challenge when attempting to establish the true prevalence of 

these foodborne pathogens in the bovine reservoir.  Fecal prevalence estimates obtained 

from cattle offer a proxy for subsequent risk of beef contamination and human illnesses.  

This literature review regarding the epidemiology of Shiga toxigenic E. coli and the bovine 

reservoir reveals some of the major inconsistencies and data gaps that exist in the 

published literature to date, especially for non-O157 STEC.  In order to assess and mitigate 

the risk of these non-O157 STEC pathogens in the beef supply, their presence in the cattle 

reservoir must be further evaluated.  Data regarding non-O157 STEC in cattle are lacking; 
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therefore, this thesis will focus on presenting data, both empirical and gathered from the 

body of literature, on the prevalence of non-O157 STEC (O26, O45, O103, O111, O121, and 

O145), in addition to STEC O157, in the bovine reservoir.   

This thesis is structured as follows:  

» Chapter 2 systematically reviews non-O157 STEC peer-reviewed 

published literature worldwide with respect to the cattle reservoir.  

Three matrices (fecal, hide, and carcass) were included in the search. 

Non-O157 fecal prevalence data was analyzed by region using random-

effects meta-analyses models to obtain pooled prevalence estimates and 

meta-regression techniques to explore factors contributing to between-

study heterogeneity. Hide and carcass data were presented descriptively 

as very few articles were retrieved.     

» Chapter 3 examines the seasonality of the STEC-7 in cattle during 

summer and winter months.  This cross-sectional study evaluates the 

fecal prevalence of STEC in pre-harvest commercial feedlot cattle in the 

central United States during summer and winter months—known high 

and low prevalence seasons of E. coli O157 fecal shedding in cattle. 

» Chapter 4 reflects on the conducted research, identifying key conclusions 

and additional research questions that need to be further evaluated 

regarding STEC in pre-harvest cattle. 
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 Abstract 

The objective of this study was to gather, integrate, and interpret scientific data on 

prevalence and concentration of non-O157 Shiga toxin-producing Escherichia coli 

serogroups (O26, O45, O103, O111, O121, and O145) and virulence genes (stx and eae) in 

fecal, hide, and carcass samples in pre- and peri-harvest cattle.  Following formal 

systematic review methodology, four electronic databases (Agricola, Web of Science, 

PubMed, and Food Safety and Technology Abstracts) were used to retrieve peer-reviewed 

articles of interest.  The search retrieved 2,365 articles; however, only 105 articles 
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qualified for the risk of bias assessment.  Sixty articles failed the quality criteria, thus only 

45 articles were eligible for meta-analysis inclusion.  Based on the number of articles 

retrieved, fecal (n=42) prevalence data were synthesized quantitatively using random-

effects meta-analyses, whereas hide (n=4) and carcass (n=3) prevalence, and concentration 

(n=1) data were summarized descriptively.  Meta-analysis results indicate that global non-

O157 fecal prevalence significantly differs (P < 0.01) between geographic regions (Africa, 

Asia, Australia, Europe, North America, and South America).  Meta-regression analyses 

were conducted to assess the effect of specific factors (e.g., continent, specimen type) on 

between-study heterogeneity for each outcome classification.  Non-O157 serogroup and 

virulence gene pooled prevalence estimates were highest for North America.     

 

Key-words: cattle; concentration; Escherichia coli; non-O157; pre-harvest; prevalence; 

review; Shiga toxin; STEC 

 

 Introduction 

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that can 

cause severe human illness and even death.  The United States Centers for Disease Control 

and Prevention (CDC) reported that six non-O157 STEC (O26, O45, O103, O111, O121, and 

O145) are responsible for over 70% of non-O157 STEC-associated human illnesses in the 

United States (Brooks et al., 2005; Scallan et al., 2011).  Cattle, a known reservoir of STEC, 

shed these pathogens in their feces; therefore, posing a risk to contaminate produce, water, 

and beef products intended for human consumption (Bettelheim, 2000; Pihkala et al., 

2012).  Currently, the United States Department of Agriculture Food Safety and Inspection 
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Service (USDA-FSIS) considers seven STEC (O26, O45, O103, O111, O121, O145, and O157) 

as adulterants in raw, non-intact beef products.  The USDA-FSIS defines a beef product (e.g., 

ground beef) to be adulterated by STEC if an isolate harboring an O antigen (O26, O45, 

O103, O111, O121, O145, or O157), a Shiga toxin gene (stx1 and/or stx2), and an eae gene is 

detected.   

The primary source of beef contamination at the harvest facility is via fecal 

contamination through cattle hides (Loneragan and Brashears, 2005).  Therefore, cattle 

fecal and hide STEC prevalence estimates offer a proxy of the potential STEC risk at 

slaughter (Renter et al., 2008), whereas concentration estimates provide a quantification of 

the risk these pathogens represent.  Prevalence and concentration estimates of non-O157 

pathogens are crucial to assess the frequency and bacterial load of these bacteria in the 

bovine reservoir and to better understand mitigation strategies aiming to lower the risk of 

these foodborne pathogens present in the host in order to decrease risks through multiple 

mechanisms of human exposure (e.g., water, produce, beef, direct contact).  Escherichia coli 

O157, the most common STEC in North America, has been extensively studied in cattle 

since it was declared an adulterant in 1994;  however, the prevalence and distribution of 

the non-O157 serogroups have not been well-established in cattle.  In order to mitigate the 

risk of these pathogens in food products, we must evaluate pathogen frequency in the 

bovine reservoir. 

Despite the apparent increase in human clinical cases in North America due to non-

O157 STEC, data in cattle, a known STEC reservoir, are lacking.  Most of the literature 

regarding non-O157 STEC reports prevalence of STEC in food products (e.g., ground beef 

and dairy products) and is rarely reported as serogroup-specific estimates.  Epidemiology 
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of non-O157 serogroups and virulence genes in the cattle reservoir are not well-

understood as the frequency and distribution have not been well-established in cattle and 

their environment, especially in North America.  Therefore, the objective of this study was 

to gather, integrate, and interpret peer-reviewed data on the prevalence and concentration 

of non-O157 STEC serogroups (O26, O45, O103, O104, O111, O121, O145) and virulence 

genes in fecal, hide, and carcass samples in pre- and peri-harvest adult cattle using research 

synthesis methods (systematic review, meta-analysis, and meta-regression) to yield a 

comprehensive summary of peer-reviewed scientific literature published across the globe.   

 

 Materials and Methods 

 Systematic Review 

 Study Question 

  

The original research question formulated was—What is the prevalence and 

concentration  of non-O157 serogroups (O26, O45, O103, O111, O121, O145) and virulence 

genes (stx1, stx2, eae) in fecal, hide, and carcass samples in pre- and peri-harvest North 

American (USA, Mexico, and Canada) cattle? Pre-harvest cattle were defined as cattle (8 

months of age and older) housed at a feedlot/farm up until loading onto transport to the 

harvest facility; while peri-harvest was defined as the time after the adult cattle leave the 

farm or feedlot until after stunning and hide removal but prior to the application of any 

carcass interventions at the processing plant.  Due to the low number of publications 

originating from North America, the research question and search were refined to include 

peer reviewed literature from any region of the world. 
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In order to generate a complete list of all primary research that could answer our 

research question, search terms were created to account for the population and outcomes 

of interest.  The search algorithm included the following terms: “(Beef OR Dairy OR Cattle 

OR Cow) AND (Escherichia coli OR STEC OR Shiga toxin OR Shiga toxin producing OR non-

O157) AND (hide OR fecal OR carcass) AND (prevalence OR concentration)”.  The actual 

Boolean expressions used (i.e., format), varied depending on the search engine.  Protocols 

and tools were developed, pre-tested, and implemented for each step of the review process 

using spreadsheets created in Excel (Microsoft Windows, 2010).  The relevance screening 

was pre-tested using a set of ten abstracts that were reviewed for relevance by two 

reviewers (DD and NC) to determine reproducibility. 

 Search Strategy 

Electronic databases accessed through the Kansas State University Library in July 

2014 included: Agricola, Web of Science, PubMed, and Food Safety and Technology 

Abstracts (FSTA).  After all relevant references were identified they were imported into a 

bibliographic management program (EndNote, Thomas Reuters).  In addition, peer-

reviewed articles retrieved by three epidemiologists (DR, MS, and NC) who have collected 

literature over the last 20 years on Escherichia coli, were also reviewed for inclusion.   

 Relevance Screening  

The title and abstract of articles identified through electronic databases and hand 

searches were screened for relevance by a trained reviewer (DD) based on preset inclusion 

and exclusion criteria (Table 2.1).  A second reviewer (NC) validated the first reviewer’s 

work.  Literature pertaining to experimental studies, in vitro experiments, statistical 

models, or non-primary research (e.g., literature reviews, short communications) was 
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excluded, in addition to non-peer reviewed and grey literature.  Although the original 

search did not restrict articles based on publication year, we only included articles 

published after 2000, because diagnostic protocols used in articles published prior to 2000 

were generally very different than the methods currently used.  Studies considered 

relevant based on eligibility criteria advanced to the risk of bias assessment.  Subsequently, 

the full versions of papers written in English were retrieved.  No language restrictions were 

set on the original search in July 2014; however, after the retrieval of full-text articles, 

articles were excluded if they were not available in English, due to budgetary constraints 

that prevented us from using translation services.   

 Risk of Bias Assessment 

Two reviewers independently evaluated the risk of bias of all retrieved full-text 

articles using a set of quality criteria (Table 2.2).  Disagreements were resolved by 

consensus or a third reviewer’s opinion.  The risk of bias assessment tool was pre-

evaluated using a sample of ten full-text articles.  A set of seven quality criteria were 

designed to assess internal and external validity factors from primary studies.  Internal 

validity (i.e., bias) factors assessed included study design and study population (cattle 

type).  External validity (i.e., generalizability) factors appraised were animal production 

setting and study catchment area.  Criteria were created based on guidelines described by 

Sargeant et al.  (2006) and Higgins and Green (2011).  Four of the quality criteria (2, 3, 5, 

and 7) were necessary for an article to advance to data extraction as they were deemed 

crucial to address the research question and extract relevant data, while meeting internal 

and external validity characteristics.  In some instances, cattle type (criterion two) was not 

explicitly stated but if there was enough information (e.g., breed, age, diet, housing) 
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provided to indicate that the study population referred to healthy, adult cattle, the article 

was still considered for data extraction.  If authors stated a specific breed, reviewers 

assigned the breed to a cattle type category.  Criterion three posed a challenge regarding 

articles published from countries where animal production practices were not familiar to 

the reviewers; therefore, unless the authors specifically stated that the animals were 

housed in a research farm, it was assumed that animals were housed in representative field 

conditions for that country.  Articles meeting at least those four criteria underwent data 

extraction.   

A second risk of bias assessment consisted of subgroup analysis conducted to 

explore the study characteristics as covariates in meta-regression models (see below in 

section “Data Analysis: Meta-analysis and Evaluation of Heterogeneity”). 

 Data Extraction 

A data extraction spreadsheet tool was developed in Microsoft Excel (2010), where 

each column represented a field of interest when extracting data from the full-text papers.  

The data extraction form was pre-tested by all reviewers using a sample of ten full-text 

articles.  Data extraction was performed independently by two reviewers.  Disagreements 

were resolved by consensus or a third reviewer’s opinion.  Data were extracted for the 

different outcomes of interest (O26, O45, O103, O111, O121, and O145) reported at the 

various hierarchical levels (e.g., sample, animal, pen, feedlot, lot, processing plant).  

Outcomes of interest were further classified into three case definitions (or outcome 

classifications)—serogroup, Shiga toxin-producing E. coli (STEC), or Enterohemorrhagic E. 

coli (EHEC), to assess the prevalence of serogroup and virulence gene combinations.  The 

three outcome classifications were defined as follows: 1) “serogroup” refers to samples 
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that tested positive for an E. coli serogroup gene of interest (O26, O45, O103, O111, O121, 

or O145), 2) “STEC”, refers to samples that tested positive for a specific E. coli O serogroup 

and at least one Shiga toxin (stx1 and/or stx2) gene,  and 3) “EHEC” refers to samples that 

tested positive for an E. coli O serogroup, at least one Shiga toxin gene, and the intimin 

(eae) gene.  Data extracted from each article included the following: author, title, year of 

study, month of study, country of study, continent of study, cattle type (beef, dairy, 

unknown), breed, age, specimen type (cecal, pen-floor, rectal grab, rectal swab), and time of 

harvest (pre- or peri-harvest).  Variables related to the outcome measures that were 

extracted included: number of positive samples, number of samples tested, prevalence (as 

reported by authors or calculated) or proportion positive, standard error of the prevalence 

(provided or calculated), outcome classification (serogroup, STEC, or EHEC), non-O157 

gene of interest (O26, O45, O103, O111, O121, and O145), diagnostic methodology (use of 

immunomagnetic separation (IMS) or other methods), and hierarchical level of data 

reported (sample, animal, pen, feedlot, lot, processing plant).  If data from a study were not 

explicitly presented but enough information was available (e.g., prevalence and number of 

samples tested), reviewers conducting the data extraction computed the required values.  If 

the authors stated that they tested for serogroups and/or virulence genes of interest but 

did not detect them, it was recorded as a data point equal to zero for the respective case 

definition with the provided denominator.   

The data were extracted as unique events (hereafter defined as “datasets”) and 

individual rows were included, from the same article in the data extraction form, when 

articles presented information on prevalence or concentration for different outcome 

definitions.  Therefore, an article (a peer-reviewed publication describing prevalence or 
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concentration of non-O157 in bovine fecal samples eligible for data extraction) could 

contain more than one dataset.  Each entry (dataset) into the database reflected one 

outcome classification (e.g., serogroup O26, STEC O45, EHEC O103), at a single time point 

(e.g., day, month, season, year), as classified by a diagnostic test, representing one cattle 

type (dairy, beef), at different hierarchical levels.   

 Data Analysis 

Fecal prevalence results were summarized quantitatively, whereas hide and carcass 

data were summarized descriptively.  Only results presented at the sample-level were 

included in the meta-analysis; data presented at different hierarchical levels (e.g., pen-, 

feedlot-, farm-, plant-level) were excluded from the analyses.  Using EpiTools (Sergeant, 

2015), prevalence estimates obtained from pooled fecal samples were adjusted to compute 

individual sample-level prevalence estimates using the pooled prevalence calculator for 

fixed pool size (assuming a perfect test).  Non-pooled sample-level data were not adjusted; 

only crude estimates were used in the analysis.  All data were analyzed using STATA 12.0 

(StatCorp LP, College Station, Texas, USA).   

  Meta-analysis and Evaluation of Heterogeneity 

Fecal prevalence values and their standard errors were logit transformed using the 

following formulae: 𝑙𝑜𝑔𝑖𝑡 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 = ln  [
𝑝

1−𝑝
] and 𝑙𝑜𝑔𝑖𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 =  √

1

𝑛𝑝
+

1

𝑛(1−𝑝)
 

where p = proportion positives of the study population for the respective outcome 

classification/serogroup and n = sample size (Sanchez et al., 2007; Lambert et al., 2015).  

Data entries equivalent to zero number of positive values (i.e., n = 0) were replaced with 

0.5 prior to the logit transformation.  Random-effects meta-analyses were conducted to 
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estimate the prevalence of non-O157 serogroup, STEC, and EHEC outcome classifications in 

bovine fecal samples using the logit prevalence and logit standard error computed from 

primary studies.  Pooled fecal prevalence estimates and 95% confidence intervals were 

obtained using the DerSimonian-Laird random-effects method (DerSimonian and Laird, 

1986) in meta-analysis models using the “metan” command in STATA.    

Between-study heterogeneity was quantified using the Cochrane’s chi-square test of 

homogeneity (Q) and the I2 statistic (Higgins et al., 2003; Higgins and Thompson, 2004).  

Cochrane’s Q statistic was used to evaluate whether the variation between studies exceeds 

that expected by chance and is used to compute the I2 statistic; I2 = [ 
𝑄 − 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚

𝑄
] ∗

100 (Higgins et al., 2003).  P-values less than 0.10 indicated significant between-study 

heterogeneity.  The I2 statistic represents the percentage of variation across studies that are 

due to heterogeneity rather than chance (Higgins et al., 2003).  Using the scale suggested by 

Higgins et al., I2 values between 25-50%, 50-75%, and ≥75% indicate low, moderate, and 

high degrees of heterogeneity, respectively (Higgins et al., 2003).  Causes of heterogeneity 

were explored using subgroup analysis and meta-regression techniques.  Worldwide 

pooled fecal prevalence estimates were obtained by stratifying by continent, and by 

outcome classification (serogroup, STEC, and EHEC).  Additionally, meta-analyses were 

conducted to obtain serogroup-specific pooled fecal prevalence estimates stratified by 

outcome classification in North America.  The final pooled logit results (including their 95% 

confidence intervals) obtained in the meta-analyses models were back-transformed using 

the formula p=
𝑒𝑙𝑜𝑔𝑖𝑡

𝑒𝑙𝑜𝑔𝑖𝑡+1
 and were expressed as percentages (Sanchez et al., 2007; Lambert 

et al., 2015).   
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Meta-regression models were used to explore additional potential sources of 

between-study heterogeneity among articles reporting fecal prevalence using the 

“metareg” command.  Univariable and multivariable meta-regression models were built to 

explore variables contributing to the between-study heterogeneity for the worldwide 

pooled fecal prevalence estimates obtained for each outcome classification.  Explanatory 

variables included in the meta-regression models were: time of harvest (pre- or peri-

harvest), cattle type (beef, dairy, or unknown), use of IMS (yes or no), specimen type (cecal, 

rectal grab, pen-floor, rectal swab, or unknown), and continent (Asia, Europe, North 

America, or South America).  Initially, univariable meta-regression models were built to 

explore the unconditional associations between each of the explanatory variables and the 

fecal prevalence for each outcome classification.  Variables with P < 0.10 in the univariable 

screen were included in the multivariable meta-regression models.  The final pooled logit 

regression coefficients (and their 95% confidence intervals) were back-transformed and 

expressed as percentages.  P-values less than 0.05 were deemed significant.  Due to the 

limited number of articles retrieved, meta-regression analyses were not conducted to 

explore heterogeneity between studies from articles reporting prevalence within North 

America. 

 Assessment of Publication Bias 

Funnel plots were generated using the “metafunnel” command specifying the 

“egger” option to assess potential publication bias.  Although subjective, funnel plots allow 

visual interpretation of whether the association between prevalence estimates and a 

measure of study size (e.g., standard error) is greater than what may be expected to occur 

by chance (Sterne et al., 2000).  The Egger’s regression asymmetry test was used to 
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evaluate the presence of small study effects for non-O157 serogroup, STEC, and EHEC 

outcome classifications worldwide (Egger et al., 1997).  Bias coefficients were generated 

using the “metabias” command specifying “egger”.  P-values less than 0.05 indicated funnel 

plot asymmetry.  This regression-based test for detection of skewness determined whether 

the intercept deviated significantly from zero in a regression of standardized prevalence 

estimates (on a logit scale) against their precision (Steichen, 1998).   

 

 Results 

 Systematic Review 

The number of research articles retrieved in each step of the process is presented in 

Figure 2.1.  Initially, a total of 2,365 articles were obtained from four online databases.  

Nine hundred and seventy-three articles were duplicates, 977 were excluded based on the 

title and abstract screening, and 292 articles were excluded because they were published 

prior to the year 2000.  One hundred and twelve full-text articles were retrieved (11 

articles could not be retrieved as they were not accessible through the Kansas State 

University Library); however, twenty-nine were excluded as they did not meet our 

inclusion criteria (Table 2.1).  Twenty-two additional articles, considered relevant, were 

identified from the authors’ collections.  A total of 105 articles were subjected to the risk of 

bias assessment (Table 2.2).  Based on an a priori decision, full-text articles underwent a 

risk of bias assessment evaluating a set of seven criteria related to internal and external 

validity factors.  Sixty articles did not meet the risk of bias assessment criteria while 45 

articles did and thus proceeded to data extraction.  The majority of the articles were 

excluded based on failure to meet criterion seven as serogroup-specific data were often not 
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reported.  Many articles combined all non-O157 serogroups into one estimate or combined 

all serogroups, including O157 and other non-O157 serogroups, into a single estimate.   

Our systematic review identified a moderate number of articles reporting the 

prevalence of non-O157 serogroups and virulence genes in cattle feces (n = 42; Table 2.3) 

and very few pertaining to hide (n = 4; Midgley and Desmarchelier, 2001; Monaghan et al., 

2012; Thomas et al., 2012; Svoboda et al., 2013) or carcass (n = 3; Breum et al., 2010; 

Thomas et al., 2012; Svoboda et al., 2013) prevalence worldwide.  A few articles (n = 3) 

provided data for more than one matrix of interest (Midgley and Desmarchelier, 2001; 

Thomas et al., 2012; Svoboda et al., 2013).  Concentration data were scarce for all matrices: 

only one article (Thomas et al., 2012) was retrieved, thus, concentration data were 

summarized in the text. 

 Fecal Prevalence  

 Worldwide Fecal Prevalence Estimates  

Forty-two articles from six continents (Europe, n = 14; North America, n = 9; Asia, n 

= 10; South America, n = 6; Australia, n = 2; Africa, n = 1) were eligible for inclusion in the 

fecal prevalence meta-analysis (Table 2.3).  Nineteen countries were included in the 

analysis, with the following distribution of countries within each continent: Europe 

(Belgium, n = 1; France, n = 1; Germany, n = 1; Ireland, n = 3; Italy, n = 2; Scotland, n = 3; 

Serbia, n = 1; Spain, n = 1; Switzerland, n = 1), North America (United States, n = 6; Canada, 

n = 3), Asia (Bangladesh, n = 1; India, n = 2; Japan, n = 5; Korea, n = 2), South America 

(Argentina, n = 3; Brazil, n = 3), Australia (n = 2), and Africa (Nigeria, n = 1).  Pooled 

prevalence estimates significantly differed among continents for the serogroup, STEC, and 

EHEC outcome classifications (Table 2.4). 
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The worldwide non-O157 serogroup meta-analysis was comprised of 12 articles 

including a total of 111 datasets.  Given the scarcity of articles from Africa, Australia, and 

South America, these continents were omitted from the worldwide serogroup meta-

analysis; thus, datasets from only three continents (Asia, Europe, and North America) were 

included in the analysis.  The worldwide pooled non-O157 serogroup prevalence in cattle 

feces was estimated to be 4.33% (95% CI = 3.22-5.81%).  Pooled fecal prevalence was 

highest for North America (5.68%), followed by Asia (5.01%) and Europe (2.34%).  There 

was evidence of moderate to high between-study heterogeneity in the worldwide random-

effects meta-analysis model based on the I2 statistics.  Univariable meta-regression 

identified continent, time of harvest, cattle type, and specimen type as factors significantly 

(P < 0.10) contributing to between-study heterogeneity of non-O157 serogroup fecal 

prevalence estimates in cattle worldwide (Table 2.5).  All variables (continent, time of 

harvest, cattle type, IMS, and specimen type) were included in the multivariable meta-

regression.  Cattle type and specimen type were identified as significant (P < 0.05) factors 

contributing to between-study heterogeneity of non-O157 serogroup prevalence estimates 

in cattle worldwide.  The covariates (e.g., cattle type, specimen type) included in the 

multivariable meta-regression model explain 37.82% (adjusted R2) of serogroup between-

study heterogeneity. 

The meta-analysis conducted to summarize non-O157 STEC fecal prevalence 

included 30 articles and 144 datasets worldwide and yielded a non-O157 STEC pooled 

prevalence estimate of 1.01% (95% CI = 0.78-1.32%) (Table 2.6).  Pooled non-O157 STEC 

fecal prevalence estimates were computed for Asia, Europe, North America, and South 

America; no data were obtained for Africa or Australia.  As with the serogroup outcome, the 
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non-O157 STEC pooled fecal prevalence estimate was the highest for North America, 3.27% 

(95% CI = 2.46-4.35%).  The pooled non-O157 STEC prevalence estimates for Asia, Europe, 

and South America were 0.82, 0.31, and 0.62%, respectively.  Due to evidence of between-

study heterogeneity (I 2 statistic), meta-regression analyses were conducted (Table 2.6).  

Univariable meta-regression models identified all factors (continent, time of harvest, cattle 

type, IMS, and specimen type) to significantly (P < 0.10) contribute to between-study 

heterogeneity.  In the multivariable meta-regression model, all factors except cattle type 

remained significant (P < 0.05) thus contributing to between-study heterogeneity; this 

multivariable model explained 55.84% (adjusted R2) of the STEC between-study 

heterogeneity. 

Lastly, a meta-analysis comprising 97 unique datasets was conducted to obtain 

pooled fecal EHEC prevalence estimates by continent (Table 2.6).  No data were obtained 

for Africa, therefore only data from five continents (Asia, Australia, Europe, North America, 

and South America) were included in the worldwide meta-analysis.  Two articles (3 

datasets) were identified containing non-O157 EHEC prevalence estimates in Australian 

cattle; however, the prevalence values extracted were equal to zero.  Due to data 

replacement where zero values were present (i.e., no samples tested positive), the meta-

analysis produced an EHEC estimate for Australia despite the fact EHEC was not detected 

in Australia.  The worldwide non-O157 EHEC fecal pooled prevalence was 0.55% (95% CI = 

0.40-0.77%).  North America (2.17%, 95% CI = 1.32-3.54%) was the region with the 

highest non-O157 EHEC fecal prevalence in cattle.  Pooled non-O157 fecal EHEC prevalence 

estimates obtained for Asia, Australia, Europe, and South America were 0.81, 0.09, 0.33, 

and 0.66%, respectively.  Evidence of heterogeneity was identified between-studies of all 
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continents with the exception of Australia based on the I2 statistic.  Continent, specimen 

type, and cattle type were identified as factors significantly (P < 0.10) contributing to 

between-study heterogeneity in the univariable meta-regression analyses; however, in the 

multivariable meta-regression model, time of harvest and specimen type were the only 

significant factors contributing to between-study heterogeneity (Table 2.7).  Covariates 

(e.g., time of harvest, specimen type) in the multivariable meta-regression models 

explained 47.26% (adjusted R2) of EHEC between-study heterogeneity. 

Asymmetry in the funnel plots for serogroup, STEC, and EHEC outcomes worldwide 

indicated potential publication bias (data not shown).   Bias coefficients using the Egger’s 

test indicated that small study effects were present.  Bias coefficients (P-values) for 

serogroup, STEC, and EHEC outcomes were -2.14 (P = 0.02), -3.10 (P < 0.01), and -3.43 (P < 

0.01), respectively, indicating that the effect (i.e., fecal prevalence) estimated from the 

smaller studies was less than the effect estimated from the larger studies.   

 North America Fecal Prevalence Estimates 

Overall, North America yielded the highest pooled fecal prevalence estimates for all 

outcomes worldwide, 5.68, 3.27, and 2.17% for non-O157 fecal pooled serogroup, STEC, 

and EHEC prevalence estimates, respectively.  Nine articles included fecal prevalence 

estimates for North American cattle and were included in the meta-analyses models 

(Schurman et al., 2000; Thran et al.  2001; Renter et al., 2007; Karama et al., 2008; Paddock 

et al., 2012; Cernicchiaro et al., 2013; Dargatz et al., 2013; Baltasar et al., 2014; Ekiri et al., 

2014).  Although articles from the United States and Canada were included in the STEC and 

EHEC analyses (no studies from Mexico were available), only data from the United States 

were eligible for serogroup analysis.  The pooled fecal prevalence estimates for specific 
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non-O157 serogroup, STEC, and EHEC outcomes in North America are presented in Table 

2.8.  Across all outcome classifications, O26 and O103 were the two O-genes most 

frequently detected from cattle feces in North America.  The serogroup meta-analysis 

included 39 datasets from three articles.  Pooled fecal prevalence estimates for serogroup 

O26 and O103 were 19.25 and 11.85%, respectively.  The meta-analysis for the STEC 

outcome in North America included 60 datasets from six articles; fecal pooled prevalence 

estimates for STEC O26 and O103 were 5.84, and 4.20%, respectively.  Lastly, a meta-

analysis including 18 datasets from four articles was conducted for EHEC fecal prevalence 

in North America; estimates remained highest for EHEC O26 (3.75%) and O103 (4.46%) in 

cattle feces. 

In order to further explore fecal prevalence in North American cattle, random-

effects meta-analyses were conducted to obtain pooled fecal prevalence estimates for the 

United States and Canada for each outcome classification.  These analyses included six 

articles from the United States (Thran et al.  2001; Paddock et al., 2012; Cernicchiaro et al., 

2013; Dargatz et al., 2013; Baltasar et al., 2014; Ekiri et al., 2014) and three articles from 

Canada (Schurman et al., 2000; Renter et al., 2007; Karama et al., 2008).  Serogroup 

outcome data remained unchanged as the United States was the only country represented 

in the meta-analysis for North America.  However, STEC and EHEC outcomes were 

significantly (P < 0.05) different between the United States and Canada.  In the meta-

analysis of STEC by country, 51 datasets from four articles from the United States and nine 

datasets from two articles from Canada were included in the analysis.  Pooled fecal STEC 

prevalence estimates (95% CI) obtained for the United States and Canada were 5.23% 

(4.01-6.79%) and 0.17% (0.09-0.33%), respectively.  Meta-analysis conducted for non-
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O157 EHEC included ten datasets from two articles from the United States and eight 

datasets from two articles from Canada.  Pooled fecal EHEC prevalence estimates (95% CI) 

obtained for the United States and Canada were 4.94% (3.03-7.94%) and 0.14% (0.06-

0.33%), respectively.  Overall, non-O157 fecal prevalence estimates obtained for North 

America were highest for the United States compared to Canada.  Although there was 

evidence of between-study heterogeneity in North America for the different outcome 

classifications, due to the limited number of studies, meta-regression analysis was not 

attempted.   

 Hide Prevalence and Concentration  

Non-O157 serogroup and virulence gene prevalence and concentration data were 

extremely limited for cattle hides: only four articles were retrieved (Midgley and 

Desmarchelier, 2001; Monaghan et al., 2012; Thomas et al., 2012; Svoboda et al., 2013), 

thus results were reported descriptively.  All four articles contained data on peri-harvest 

beef cattle, two articles utilized IMS (Thomas et al., 2012; Svoboda et al., 2013), and three 

countries were represented (Australia, Ireland, and the United States).   

Two articles (five datasets) provided data on non-O157 serogroups O26, O103, 

O111, and O145 (Thomas et al., 2012; Monaghan et al., 2012).  These non-O157 serogroups 

were detected on peri-harvest beef cattle hides ranging from 0.0 to 27.1% (Monaghan et al., 

2012; Thomas et al., 2012); no data were extracted for serogroups O45 or O121.  The two 

predominately isolated serogroups from beef cattle hides were serogroups O26 and O103, 

with reported prevalence estimates of 6.0 (109/402) and 27.1% (24/402), respectively 

(Thomas et al., 2012).  Furthermore, Thomas et al., quantified serogroup O103 on cattle 

hides (n = 130) at harvest yielding estimates for six samples between 10 and 110 CFU/cm2, 
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the other 124 samples contained colony counts too low to estimate by direct plating 

methods (Thomas et al., 2012).   

Hide prevalence estimates were obtained for all six non-O157 STEC of interest in 

three articles (Monaghan et al., 2012; Thomas et al., 2012; Svoboda et al., 2013).  Non-O157 

STEC hide prevalence estimates in peri-harvest beef cattle ranged from 0.0 to 0.2% 

(Monaghan et al., 2012; Thomas et al., 2012; Svoboda et al., 2013).  Only STEC O26 and 

O103 were detected on cattle hides; reported prevalence estimates for both STEC O26 and 

O103 were 0.2% (1/402) (Thomas et al., 2012).  Other non-O157 STEC (O45, O111, O121, 

and O145) were investigated, but were undetected on peri-harvest cattle hides (Monaghan 

et al., 2012; Thomas et al., 2012; Svoboda et al., 2013). 

Three articles were identified containing non-O157 EHEC hide data (Midgley and 

Desmarchelier, 2001; Monaghan et al., 2012; Thomas et al., 2012).  Prevalence estimates 

reported for EHEC O26 ranged from 0.0 to 4.0% on cattle hides; EHEC O111, O103, and 

O145 were investigated, but were undetected on cattle hides prior to harvest (Midgley and 

Desmarchelier, 2001; Monaghan et al., 2012; Thomas et al., 2012).  No prevalence estimates 

were identified for EHEC O45 and O121 on cattle hides.   

 Carcass Prevalence  

Non-O157 serogroup prevalence estimates on beef cattle carcasses were obtained 

from two articles (Thomas et al., 2012; Svoboda et al., 2013).  Prevalence of the six non-

O157 serogroups ranged from 0.0 to 13.8% on carcass samples from cattle (Thomas et al., 

2012; Svoboda et al., 2013).  Serogroup O26 prevalence ranged from 0.5 (2/402) to 4.9% 

(10/203) on beef cattle carcass samples.  Svoboda et al., estimated serogroup O45 and 

O121 carcass prevalence to be 13.8 (28/203) and 10.8% (22/203), respectively (Svoboda 
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et al., 2013).  Serogroup O103 carcass prevalence ranged from 5.5 (22/402) to 11.8% 

(24/203) (Thomas et al., 2012; Svoboda et al., 2013).  Interestingly, in the study by Thomas 

et al. (2012), serogroup O103 was quantified from cattle hides; however, no quantifiable 

concentrations of serogroup O103 were detected on the corresponding cattle carcasses 

(Thomas et al., 2012).  Serogroup O145 prevalence in carcass samples ranged from 0.5 

(2/402) to 1.5% (3/203) (Thomas et al., 2012; Svoboda et al., 2013).  Serogroup O111 was 

not detected in the two studies (Thomas et al., 2012; Svoboda et al., 2013).  All prevalence 

estimates reported for STEC and EHEC O26, O103, O111, and O145 were zero (Breum et al., 

2010; Thomas et al., 2012).  STEC and EHEC data were not retrieved for O45 and O121 on 

cattle carcasses.   

 

 Discussion 

This study gathered and synthetized estimates of prevalence and concentration of 

Shiga toxin-producing E. coli non-O157 serogroups and virulence genes in fecal, hide, and 

carcass samples from pre- and peri-harvest cattle from North America and across the 

globe.  Besides summarizing measures of pathogen frequency and concentration from the 

existent body of work, this study demonstrated estimates of potential risks and identified 

some of the factors responsible for between-study heterogeneity as well as important 

knowledge gaps in published literature.  Collectively, data regarding non-O157 serogroups 

and virulence genes in cattle is very limited.  In regards to our initial study objective, data 

are still needed for non-O157 serogroup and virulence gene frequency and distribution in 

North American (Canada, United States, and Mexico) cattle.   
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Data retrieved for North America comprised fecal prevalence estimates in pre-

harvest beef cattle populations.  Sources of between-study heterogeneity were not assessed 

for North America due to the limited sample size.  In order to further understand the 

epidemiology of non-O157 serogroups and virulence genes, more data are needed from 

North American cattle populations.  Important knowledge gaps that need to be addressed 

include the potential difference in fecal shedding and overall bacterial load between cattle 

types (dairy and beef cattle).  Fecal, hide, and carcass non-O157 serogroup and virulence 

gene data from peri-harvest cattle are needed to estimate the potential of fecal 

contamination at harvest.  Comprehensive knowledge of non-O157 pathogen frequency 

gathered from the existing literature can be incorporated with experimental and 

observational data into quantitative microbial risk assessment models.   

The systematic review process identified 45 articles worldwide, most of which 

represented non-O157 serogroup and virulence gene prevalence data in pre-harvest beef 

cattle feces.   Results from the worldwide meta-analyses by non-O157 serogroup, STEC, and 

EHEC fecal outcomes indicated that cattle harbor and shed non-O157 serogroups and 

virulence genes in very low frequencies.  In terms of global fecal prevalence, North America 

yielded the highest estimate of pooled fecal prevalence for non-O157 serogroup, STEC, and 

EHEC outcome classifications, demonstrating the importance of cattle as a reservoir of non-

O157 organisms, especially in the United States.   Estimates of serogroup prevalence are 

less representative of the frequency of foodborne pathogens shed by cattle, as they only 

denote the presence of the O serogroup gene but not of the genes responsible for 

pathogenicity in humans.  However, their potential to acquire virulence genes substantiate 

their assessment in bovine matrices.  The most common non-O157 serogroups in the 



73 

articles included in this study were O26 and O103, in both fecal and hide samples.  Non-

O157 pathogens most commonly associated with human illnesses reported in the United 

States are O26 and O111 (Luna-Gierke et al., 2014).  However, in our study, EHEC O111 

was the second least frequent O group detected in cattle in the United States. A worldwide 

standardized case definition for reporting pathogenic STEC, in terms of serogroup and 

virulence gene profiles, is needed to accurately represent the risk of these foodborne 

pathogens throughout the beef continuum globally.   Although, beyond the scope of this 

review, the association between human illness outbreaks attributed to non-O157 

pathogens from cattle sources needs to be further elucidated. 

There were a few challenges encountered in this search and review process.  Firstly, 

there was no clear and consistent case definition for STEC and/or pathogenic STEC (i.e., 

EHEC) reported in the literature.  Therefore, case definitions were classified by reviewers 

into three outcome definitions as they pertained to serogroup, STEC, and EHEC data.  Many 

articles retrieved in the search included collective estimates of “STEC” or “non-O157 STEC” 

and therefore were not included in our analyses as they did not meet the criteria defined 

for the risk of bias assessment.   

Non-primary research (literature reviews, short communications, abstract-only, 

conference proceedings), non-peer reviewed, and grey literature were not included in our 

systematic review.  In general, these types of literature rarely contain sufficient 

information to allow data extraction of relevant information.  In addition, we aimed to 

obtain or calculate measures of disease frequency and their standard errors, and these 

publications generally lack that level of detailed information.  Searching through 

government reporting websites (i.e., Current Research Information System (CRIS-USDA)) 
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produced several reports, however, most of the ones deemed relevant contained data 

published in peer-reviewed journals, hence, to avoid potential duplication, we decided to 

only extract data from peer-reviewed articles.  We did use a hand search of our collections 

of peer-reviewed papers and reference lists from review papers on the subject to validate 

the results of the electronic search.  Some articles identified in the hand search that were 

included in the systematic review and meta-analysis, were not found in the electronic 

search.  Overall, there were limited reports pertaining to fecal prevalence in certain 

regions, few articles reporting hide and carcass prevalence and a single peer-reviewed 

manuscript on concentration of non-O157 serogroups and virulence genes in feces, hides, 

and carcass samples.  Due to low statistical precision because of the small number of 

studies included in some of the subgroup analysis and meta-regression models, estimates 

should be interpreted with discretion.  Likewise, very few articles reported model-adjusted 

prevalence estimates after accounting for the hierarchical structure of the data or the study 

design features.  In all but those cases, the precision of the estimates may be overestimated.  

To avoid such methodological differences, only raw data were included as well as sole 

information from one of the many organizational levels (i.e., animal-level).  

Heterogeneity in this study could not be attributed to a particular source of bias.  

Besides publication bias, many other sources of selection bias such as location and 

language bias could be present, along with poor study quality or design, true heterogeneity, 

and/or chance (Egger et al., 1997; Sterne et al., 2000; Chan et al., 2004; Higgins and Green, 

2011; Sterne et al., 2011; O’Connor et al., 2014).  It is possible that empirical data produced 

in certain geographical locations may be published in local reporting systems or journals in 

the native language rather than in international, peer-reviewed journals, due to cost 
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(publication costs, translation services, or similar), and restricted institutional or personal 

subscription access.  Similarly, there is potential for language bias given we excluded 

articles that were not published in English.   

Internal and external validity factors also could have biased the estimates of the 

present review, and as such they were incorporated in the risk of bias assessment step.  

Our risk of bias assessment included a set of criteria that were based on similar questions 

proposed by Sargeant et al. (2006) and Higgins and Green (2011).  Although, we recognize 

that excluding articles based on this stage can introduce bias in our estimates, some of the 

criteria were deemed crucial to address the research question and extract relevant data, 

while meeting internal and external validity criteria.  Some of the inclusion and exclusion 

criteria pre-determined in the relevance screening could potentially have introduced bias 

due to exclusion based on publication year.  By excluding articles published before 2000 we 

tried to minimize the variability in diagnostic methods and their corresponding sensitivity 

of detection.  Specifically, we wanted to incorporate studies that employed an 

immunomagnetic separation (IMS) step, as this procedure has improved the sensitivity of 

culture-based methods (Chapman et al., 1994; Cernicchiaro et al., 2013); however, the 

majority of articles relied on molecular testing and only twelve of the forty-five articles 

reported using IMS (Bonardi et al., 2005; Jeon et al., 2006; Pearce et al., 2006; Bonardi et al., 

2007; Joris et al., 2011; Sasaki et al., 2011; Lynch et al., 2012; Paddock et al., 2012; Thomas 

et al., 2012; Cernicchiaro et al., 2013; Svoboda et al., 2013; Ekiri et al., 2014).  Nevertheless, 

publication year did not necessarily reflect study year as some of the studies published in 

early 2000 were conducted in mid or late 90s, and as such, some of their diagnostic 

protocols are not comparable to the ones currently used.  The type of diagnostic methods 
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used was found to significantly explain some of the between-study heterogeneity in 

univariable meta-regression models for all outcome classifications, and for multivariable 

meta-regression models for non-O157 STEC prevalence.  Since apparent prevalence 

estimates are directly impacted by the accuracy of the detection protocols used, the 

estimates of the present analysis may be biased; however, given the diversity of detection 

protocols employed and their different accuracy, it would be difficult to predict the 

directionality of the potential bias.   

The differences in animal and farm management in addition to production systems 

in different regions likely also contributed to the between-study heterogeneity.  Although 

we attempted to classify cattle type into beef and dairy, many studies did not describe their 

study population; therefore, distinguishing between these cattle types was not possible for 

14 articles (Table 2.3).  Production systems and management practices differ worldwide; 

thus, we assigned the extracted fecal prevalence data into geographical regions to minimize 

variability in production and management.  However, between-study heterogeneity 

remained high and while covariates (e.g., specimen type, time of harvest) partially 

explained some between-study heterogeneity it appears that additional data on factors 

such as season, cattle age, and cattle diet may be necessary to further explain the observed 

variability among studies and prevalence estimates.  Season, cattle age and diet are factors 

that are known to influence E. coli O157 fecal shedding in cattle and have been well-

established in peer-reviewed literature (Barkocy-Gallagher et al., 2003; Edrington et al., 

2006; Callaway et al., 2009; Ekiri et al., 2014); therefore, future research is needed to 

address the effects of season, age, and diet in relation to non-O157 E. coli fecal shedding in 
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cattle.  Due the limitations of the data retrieved from the publications, these factors could 

not be evaluated. 

Our results indicated that most of the published literature reported data from cattle 

shedding non-O157 pathogens at low frequencies.  Pooled fecal prevalence estimates in 

meta-analysis models significantly varied by continent in subgroup analyses.  The lack of 

data prevented us from having a larger pool of relevant articles; however, based on the 

inclusion and exclusion criteria and the risk of bias assessment, the results of the present 

study are specific to the posed research question and can be generalized to scenarios 

describing cattle fecal prevalence of non-O157 organisms as detected by culture and 

molecular detection methods.  While it is difficult to assess the validity of the magnitude 

and the precision of the summary prevalence estimates from the meta-analyses, the factors 

we identified as responsible for the between-study variability (e.g., specimen type, 

diagnostic methods, cattle type, time of harvest) may help refine research priorities for 

future studies.  Minimal conclusions can be drawn from hide and carcass results reported 

due to the limited number of articles retrieved and the large variation between articles.  

Obtaining peri-harvest hide and carcass prevalence and concentration data are crucial as 

they are the closest indicators of the contamination burden of carcasses before being 

subjected to antimicrobial interventions at the harvest facility.   

In conclusion, the results of this study illustrated the need for obtaining prevalence 

and concentration data for non-O157 STEC pathogens in different production systems, and 

in different matrices, in pre- and peri-harvest cattle.  This study, to our knowledge, is the 

first systematic review and meta-analysis of studies reporting non-O157 serogroup and 

virulence gene fecal prevalence in cattle, in North America and worldwide.  Our findings 
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demonstrate the importance of cattle as a reservoir of non-O157 serogroups and virulence 

genes.  The prevalence estimates obtained using a systematic review and meta-analysis of 

peer-reviewed literature along with empirical data can be integrated into a quantitative 

microbial risk assessment model to assess the potential risks attributable to non-O157 

STEC in the beef chain.   
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Tables and Figures 

Table 2.1 Study inclusion and exclusion criteria for eligibility of articles for a systematic 

review of the literature 

Criteria Inclusion Exclusion 

Language English Languages other than English 

Publication year 2000-2014 Prior to 2000 

Population Healthy, adult cattle (8 months and 
older) pre- and peri-harvest   
 

Calves (< 8 months) 
Species other than cattle 
Diseased cattle 

Sample type Fecal: pen-floor, rectal swab, rectal 
grab/contents, cecal content 
(sampled pre- or post-harvest) 
Hide and carcass: samples (e.g., 
sponge, swab, etc) prior to any in-
plant intervention 

Hide and carcass: samples post in-
plant interventions (e.g., hide wash, 
carcass wash). 

Study type Observational studies (cross-
sectional, cohort, case-control) 
Laboratory trials (using field 
samples) 
 

Experimental studies 
In vitro (laboratory) experiments 
Non-primary research (e.g., literature 
reviews) 

Outcomes Escherichia coli O26, O45, O103, 
O111, O121, and O145 
Virulence genes: stx1, stx2, eae 

Bacterial species other than 
Escherichia coli  
All other Escherichia coli O 
serogroups 
All other virulence genes 

Outcome measures Prevalence (or proportion positive), 
concentration 

Outcomes other than prevalence and 
concentration 

Location North America (United States, 
Mexico, and Canada) 

See below† 

† Initially, the search was restricted to articles produced in North America; however, given 
the low number of articles, we expanded the search to include articles available in English 
from peer-reviewed literature and cattle populations worldwide.   
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Table 2.2 Risk of bias assessment criteria  

Criteria Outcome 
No. 

Articles 

1.   Was the sample size 
justified? 

No / unknown / not reported 41 

Yes 4 

†2.   Was the study population 
properly described? 

No / unknown 0 

Yes (cattle; beef and/or dairy cattle) 45 

†3.   Were the animals 
housed or grouped in a 
way that is representative 
of field/ commercial 
conditions? 

No / unknown / not reported 0 

In part - closed system; research farms 4 

Yes - typical of commercial operations 41 

4.   Study catchment area 

Single-site (one operation / farm / 
processing plant) 

15 

Multi-site (multiple operation / farms / 
processing plants / multiple states) 

30 

†5.    Were the numerator and 
denominator for the 
prevalence provided? 

No numerator and/or denominator (can't 
calculate prevalence) 

0 

Provided both numerator and denominator 
(or prevalence and 
numerator/denominator; can calculate 
prevalence) 

45 

6.   Was time/duration 
(month, season) of study 
reported? 

No / unknown / multiple seasons but 
cumulative prevalence 

33 

Less than 3 months 1 

Three months or more (full season) 11 

†7.   Can clearly identify at 
least one non-O157 STEC 
serogroup (O26, O45, O103, 
O111, O121, or O145) 

No 0 

Yes 45 

†Articles that did not meet quality assessment criteria 2, 3, 5 or 7 were excluded and were 
not considered for data extraction.
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Table 2.3 List of the articles included in the meta-analysis of fecal prevalence by study variables.  

Variable 
No. 

articles 
References 

Continent 
 

 

Africa 1 Musa et al., 2012 

Asia 10 
Das et al., 2005; Islam et al., 2008; Jeon et al., 2006; Kang et al., 2014; Khan et al., 2002; Kijima-
Tanaka et al., 2005; Kobayashi et al., 2001; Sasaki et al., 2011, 2013a, 2013b 

Australia 2 Cobbold and Desmarchelier, 2001; Midgley and Desmarchelier, 2001 

Europe 14 
Bonardi et al., 2005, 2007; Cobeljić et al., 2005; Jenkins et al., 2002; Joris et al., 2011; Lynch et al., 
2012; Monaghan et al., 2011; Orden et al., 2002; Pearce et al., 2006; Pradel et al., 2000; Shaw et 
al., 2004; Thomas et al., 2012; Zschӧck et al., 2000; Zweifel et al., 2005 

North 
America 

9 
Baltasar et al., 2014; Cernicchiaro et al., 2013; Dargatz et al., 2013; Ekiri et al., 2014; Karama et 
al., 2008; Paddock et al., 2012; Renter et al., 2007; Schurman et al., 2000; Thran et al., 2001 

South 
America 

6 
Farah et al., 2007; Fernández et al., 2010; Meichtri et al., 2004; Padola et al., 2004; Timm et al., 
2007; Vicente et al., 2005 

Time of Harvest   

Pre-harvest 30 

Baltasar et al., 2014; Cernicchiaro et al., 2013; Cobbold and Desmarchelier, 2001; Cobeljić et al., 
2005; Dargatz et al., 2013; Das et al., 2005; Ekiri et al., 2014; Fernández et al., 2010; Jenkins et 
al., 2002; Jeon et al., 2006; Kang et al., 2014; Khan et al., 2002; Kijima-Tanaka et al., 2005; 

Kobayashi et al., 2001; Lynch et al., 2012; Midgley and Desmarchelier, 2001; Monaghan et al., 
2011; Musa et al., 2012; Orden et al., 2002; Paddock et al., 2012; Padola et al., 2004; Pearce et al., 
2006; Renter et al., 2007; Sasaki et al., 2011, 2013a, 2013b; Shaw et al., 2004; Thran et al., 2001; 
Vicente et al., 2005; Zschӧck et al., 2000;  

Peri-harvest 12 
Bonardi et al., 2005, 2007; Farah et al., 2007; Islam et al., 2008; Joris et al., 2011; Karama et al., 
2008; Meichtri et al., 2004; Pradel et al., 2000; Schurman et al., 2000; Thomas et al., 2012; Timm 
et al., 2007; Zweifel et al., 2005 

Cattle Type†   

Beef 18 
Baltasar et al., 2014; Cernicchiaro et al., 2013; Dargatz et al., 2013; Ekiri et al., 2014; Farah et al., 
2007; Kang et al., 2014; Karama et al., 2008; Kijima-Tanaka et al., 2005; Meichtri et al., 2004; 
Midgley and Desmarchelier, 2001; Paddock et al., 2012; Padola et al., 2004; Renter et al., 2007; 
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Sasaki et al., 2011, 2013a; Schurman et al., 2000; Thomas et al., 2012; Timm et al., 2007 

Dairy 13 
Bonardi et al., 2005; Cobbold and Desmarchelier, 2001; Das et al., 2005; Fernández et al., 2010; 
Kang et al., 2014; Kobayashi et al., 2001; Lynch et al., 2012; Paddock et al., 2012; Sasaki et al., 
2013a, 2013b; Thran et al., 2001; Vicente et al., 2005; Zschӧck et al., 2000 

Unknown 14 
Bonardi et al., 2007; Cobeljić et al., 2005; Islam et al., 2008; Jenkins et al., 2002; Jeon et al., 2006; 
Joris et al., 2011; Khan et al., 2002; Monaghan et al., 2011; Musa et al., 2012; Orden et al., 2002; 
Pearce et al., 2006; Pradel et al., 2000; Shaw et al., 2004; Zweifel et al., 2005 

IMS‡   

Yes 11 
Bonardi et al., 2005, 2007; Cernicchiaro et al., 2013; Ekiri et al., 2014; Jeon et al., 2006; Joris et 
al., 2011; Lynch et al., 2012; Paddock et al., 2012; Pearce et al., 2006; Sasaki et al., 2011; Thomas 

et al., 2012 

No 35 

Baltasar et al., 2014; Cernicchiaro et al., 2013; Cobbold and Desmarchelier, 2001; Cobeljić et al., 
2005; Dargatz et al., 2013; Das et al., 2005; Ekiri et al., 2014; Farah et al., 2007; Fernández et al., 
2010; Islam et al., 2008; Jenkins et al., 2002; Kang et al., 2014; Karama et al., 2008; Khan et al., 
2002; Kijima-Tanaka et al., 2005; Kobayashi et al., 2001; Lynch et al., 2012; Meichtri et al., 2004; 
Midgley and Desmarchelier, 2001; Monaghan et al., 2011; Musa et al., 2012; Orden et al., 2002; 
Paddock et al., 2012; Padola et al., 2004; Pradel et al., 2000; Renter et al., 2007; Sasaki et al., 
2013a, 2013b; Schurman et al., 2000; Shaw et al., 2004; Thran et al., 2001; Timm et al., 2007; 
Vicente et al., 2005; Zschӧck et al., 2000; Zweifel et al., 2005 

Specimen Type   

Pen-floor 6 
Jenkins et al., 2002; Midgley and Desmarchelier, 2001; Monaghan et al., 2011; Paddock et al., 
2012; Pearce et al., 2006; Renter et al., 2007 

Rectal grab 15 
Baltasar et al., 2014; Cernicchiaro et al., 2013; Ekiri et al., 2014; Islam et al., 2008; Joris et al., 
2011; Karama et al., 2008; Kobayashi et al., 2001; Musa et al., 2012; Orden et al., 2002; Sasaki et 
al., 2011, 2013a, 2013b; Shaw et al., 2004; Thomas et al., 2012; Thran et al., 2001 

Rectal swab 10 
Dargatz et al., 2013; Farah et al., 2007; Fernández et al., 2010; Kang et al., 2014; Lynch et al., 
2012; Padola et al., 2004; Schurman et al., 2000; Timm et al., 2007; Vicente et al., 2005; Zschӧck 
et al., 2000 

Cecal 3 Bonardi et al., 2005, 2007; Meichtri et al., 2004 

Unknown 8 
Cobbold and Desmarchelier, 2001; Cobeljić et al., 2005; Das et al., 2005; Jeon et al., 2006; Khan et 
al., 2002; Kijima-Tanaka et al., 2005; Pradel et al., 2000; Zweifel et al., 2005 

† Three articles contain more than one cattle type (Kang et al., 2014; Sasaki et al., 2013a; Paddock et al., 2012). 
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‡Four articles used two types of detection methodology (IMS and molecular test) (Cernicchiaro et al., 2013; Ekiri et al., 2014, 
Lynch et al., 2012; Paddock et al., 2012). 
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Table 2.4 Pooled serogroup, STEC, and EHEC fecal prevalence estimates by continent obtained from random-effects meta-

analysis models*  

Outcome Continent 
No. 

articles 
No. 

datasets# 
Prevalence, % 

95% Confidence 
Interval (CI), % 

Cochrane’s 
chi-square 

statistic (Q) 
I2, % P-value 

Serogroup 
        

 
Africa‡ 1 1 - - - - - 

 
Asia 3 50 5.01 3.45-7.20 165.73 70.4 <0.01 

 
Australia 0 0 - - - - - 

 
Europe 6 22 2.34 1.19-4.52 1497.41 98.6 <0.01 

 
North America 3 39 5.68 3.54-8.97 3674.94 99.0 <0.01 

 
South America‡ 1 1 - - - - - 

 
Worldwide 12 111 4.33 3.22-5.81 5640.56 98.0 <0.01 

STEC 
        

 
Africa 0 0 - - - - - 

 
Asia 10 28 0.82 0.50-1.33 107.43 74.9 <0.01 

 
Australia 0 0 - - - - - 

 
Europe 9 39 0.31 0.19-0.51 158.09 76.0 <0.01 

 
North America 6 60 3.27 2.46-4.35 578.22 89.8 <0.01 

 
South America 5 17 0.62 0.24-1.61 48.96 67.3 <0.01 

 
Worldwide 30 144 1.01 0.78-1.32 1920.23 92.6 <0.01 

EHEC 
        

 
Africa 0 0 - - - - - 

 
Asia 9 19 0.81 0.45-1.44 75.71 76.2 <0.01 

 
Australia† 2 3 0.09 0.02-0.45 0.29 0.0 0.86 

 
Europe 12 46 0.33 0.22-0.49 134.76 66.6 <0.01 

 
North America 4 18 2.17 1.32-3.54 374.8 95.5 <0.01 

 
South America 4 11 0.66 0.18-2.36 40.23 75.1 <0.01 

 
Worldwide 31 97 0.55 0.40-0.77 1338.54 92.8 <0.01 

* This table depicts results from three meta-analysis models, one for each outcome classification (Serogroup, STEC and EHEC). 
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#Each dataset represents data pertaining to one outcome classification, in a specific study period, as classified by a specific 
diagnostic test, representing one cattle type, at different hierarchical levels.  An article can include multiple datasets. 
 

‡Africa and South America were omitted from the worldwide meta-analyses as only one study was identified in each of those 
continents. 
 

† Articles retrieved from Australia (Cobbold and Desmarchelier, 2001; Midgley and Desmarchelier, 2001) did not detect EHEC. 
Estimates extracted as zero, were assigned a value equal to 0.5 during logit transformation. 
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Table 2.5 Univariable and multivariable meta-regression models for non-O157 serogroup fecal prevalence in cattle worldwide 

‡Few articles present data for more than one covariate (e.g., both beef and dairy cattle-types). 
 

†Ref = referent category; P-values highlighted in bold indicate overall significance of polychotomous variables based on Wald 
tests.  

Variables Covariate 
No. 

articles‡ 
No. 

datasets 
Univariable 

 
Multivariable 

    Prevalence (95%CI), % P-value 
 

Prevalence (95%CI), % P-value 

Continent 
    

<0.01  
 

0.58 

 
Asia 3 50 4.26 (2.39-7.46) <0.01  Ref.† - 

 
Europe 6 22 2.10 (0.42-9.80) 0.16  2.91 (0.00-94.87) 0.34 

 
North America 3 39 5.39 (1.33-19.48) 0.56  3.11 (0.01-95.09) 0.31 

Time of Harvest 
     

 
 

0.14 

 
Peri-harvest 3 9 4.56 (0.34-40.00) 0.04  Ref. - 

 
Pre-harvest 9 102 1.12 (0.31-3.95) <0.01  3.83 (0.01-93.88) 0.31 

Cattle Type     0.02  
 

<0.01 

 Beef 5 38 3.30 (1.84-5.86) <0.01  Ref. - 

 Dairy 3 15 13.50 (2.68-46.93) 0.01  3.87 (0.02-89.75) 0.03 

 Unknown 5 58 3.31 (0.84-12.18) 0.10  0.10 (0.00-27.97) 0.02 

IMS        0.21 

 No 8 39 2.76 (1.51-5.00) <0.01  Ref. - 

 Yes 7 72 5.09 (1.31-17.82) 0.11  2.10 (0.01-81.40) 0.21 

Specimen Type     <0.01   <0.01 

 Pen-floor 2 16 18.85 (0.95-23.35) <0.01  Ref. - 

 Rectal grab 5 19 3.72 (0.50-22.93) <0.01  0.53 (0.00-57.87) 0.43 

 Rectal swab 2 26 1.58 (0.22-10.33) <0.01  0.08 (0.00-16.71) <0.01 

 Unknown 3 50 4.23 (0.66-22.35) <0.01  4.48 (0.01-97.16) 0.22 
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Table 2.6 Univariable and multivariable meta-regression models for non-O157 STEC fecal prevalence in cattle worldwide 

‡Few articles present data for more than one covariate (e.g., both beef and dairy cattle-types). 
 

Variables Covariate 
No. 

articles‡ 
No. 

datasets 
Univariable 

 
Multivariable 

    Prevalence (95%CI), % P-value 
 

Prevalence (95%CI), % P-value 

Continent 
   

 <0.01   0.02 

 
Asia 10 28 0.75 (0.43-1.32) <0.01  Ref.† - 

 
Europe 9 39 0.31 (0.08-1.15) 0.02  0.07 (0.00-1.58) 0.60 

 
North America 6 60 2.70 (0.79-8.78) <0.01  0.17 (0.01-3.81) 0.10 

 South America 5 17 0.67 (0.14-3.09) 0.81  0.50 (0.01-14.96) <0.01 

Time of Harvest 
 

   <0.01   <0.01 

 
Peri-harvest 9 43 1.41 (0.46-4.25) <0.01  Ref. - 

 
Pre-harvest 21 101 0.40 (0.24-0.68) <0.01  0.39 (0.02-6.98) <0.01 

Cattle Type     <0.01   0.18 

 Beef 14 88 1.75 (1.26-2.43) <0.01  Ref. - 

 Dairy 9 22 0.34 (0.11-1.05) <0.01  0.04 (0.00-0.96) 0.08 

 Unknown 9 34 0.42 (0.16-1.12) <0.01  0.09 (0.00-2.24) 0.94 

IMS        0.04 

 No 24 94 0.77 (0.54-1.10) <0.01  Ref. - 

 Yes 8 50 1.43 (0.55-3.63) 0.04  0.15 (0.01-2.41) 0.04 

Specimen Type     <0.01   <0.01 

 Cecal 1 2 0.00 (0.06-4.36) <0.01  Ref. - 

 Pen-floor 2 8 0.12 (0.00-11.61) 0.26  0.03 (0.00-3.59) 0.38 

 Rectal grab 14 85 1.87 (0.02-61.65) 0.24  0.36 (0.00-25.97) 0.22 

 Rectal swab 8 36 0.34 (0.00-23.36) 0.75  0.09 (0.00-6.74) 0.99 

 Unknown 5 13 0.89 (0.01-46.08) 0.63  0.37 (0.00-29.35) 0.23 
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†Ref = referent category; P-values highlighted in bold indicate overall significance of polychotomous variables based on Wald 
tests. 
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Table 2.7 Univariable and multivariable meta-regression models for non-O157 EHEC fecal prevalence in cattle worldwide 

‡Few articles present data for more than one covariate (e.g., both beef and dairy cattle types). 
 

Variables Covariate 
No. 

articles‡ 
No. 

datasets 
Univariable 

 
Multivariable 

    Prevalence (95%CI), % P-value 
 

Prevalence (95%CI), % P-value 

Continent 
   

 <0.01   0.21 

 
Asia 9 19 0.76 (0.39-1.47) <0.01  Ref.† - 

 Australia* 2 3 0.09 (0.01-1.57) 0.06  0.09 (0.00-5.44) 0.55 

 
Europe 12 46 0.31 (0.07-1.34) 0.03  0.21 (0.01-3.67) 0.79 

 
North America 4 18 1.76 (0.36-8.14) 0.07  0.47 (0.02-8.84) 0.09 

 South America 4 11 0.78 (0.12-4.84) 0.95  1.14 (0.02-38.40) 0.08 

Time of Harvest 
 

      <0.01 

 
Peri-harvest 9 39 0.39 (0.22-0.67) <0.01  Ref. - 

 
Pre-harvest 22 58 0.67 (0.19-2.32) 0.12  0.81 (0.06-10.85) <0.01 

Cattle Type     <0.01   0.29 

 Beef 12 39 1.07 (0.66-1.71) <0.01  Ref. - 

 Dairy 9 18 0.26 (0.06-1.08) <0.01  0.07 (0.00-1.74) 0.16 

 Unknown 11 40 0.38 (0.12-1.21) <0.01  0.19 (0.01-3.19) 0.95 

IMS        0.11 

 No 23 66 0.54 (0.35-0.82) <0.01  Ref. - 

 Yes 9 31 0.55 (0.18-1.72) 0.93  0.31 (0.02-4.02) 0.11 

Specimen Type     <0.01   <0.01 

 Cecal 3 7 0.45 (0.13-1.60) <0.01  Ref. - 

 Pen-floor 5 14 0.14 (0.01-2.36) 0.14  0.02 (0.00-0.94) 0.03 

 Rectal grab 12 43 0.94 (0.07-11.73) 0.28  0.23 (0.01-6.47) 0.73 

 Rectal swab 5 19 0.37 (0.02-5.66) 0.79  0.07 (0.00-2.13) 0.21 

 Unknown 6 14 0.70 (0.04-10.38) 0.56  0.27 (0.01-9.17) 0.64 
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†Ref = referent category; P-values highlighted in bold indicate overall significance of polychotomous variables based on Wald 
tests. 
 
* Articles retrieved from Australia (Cobbold et al., 2001; Midgley and Desmarchelier, 2001) did not detect EHEC. Estimates 
extracted were zero, however during logit transformation a non-zero prevalence estimate was generated for Australia. 
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Table 2.8 Random-effects meta-analysis pooled fecal non-O157 specific serogroup, STEC, and EHEC prevalence estimates in 

North America stratified by outcome 

Outcome O gene 
No. 

articles 
No. 

datasets 
Prevalence, % 

95% Confidence 
Interval (CI) 

Cochrane’s chi-
square statistic 

(Q) 
I2, % P-value 

Serogroup† 
        

 
O26 3 7 19.25 6.56-44.72 1010.50 99.4 <0.01 

 
O45 3 6 9.46 3.10-25.43 500.73 99.0 <0.01 

 
O103 3 7 11.85 3.69-32.08 881.12 99.3 <0.01 

 
O111 3 7 1.49 0.43-5.04 172.06 96.5 <0.01 

 
O121 3 6 6.31 1.44-23.69 568.74 99.1 <0.01 

 
O145 3 6 0.69 0.19-2.47 63.05 92.1 <0.01 

 
Overall non-O157 3 39 5.68 3.54-8.97 3674.94 99.0 <0.01 

STEC 
 

       

 
O26 5 11 5.84 3.36-9.96 71.25 86.0 <0.01 

 
O45 3 8 1.69 0.46-6.05 26.78 73.9 <0.01 

 
O103 5 12 4.20 2.42-7.18 86.49 87.3 <0.01 

 
O111 3 9 1.36 0.51-3.59 34.14 76.6 <0.01 

 
O121 5 12 3.10 1.41-6.67 86.74 87.3 <0.01 

 
O145 3 8 2.58 0.87-7.38 36.88 81.0 <0.01 

 
Overall non-O157 6 60 3.27 2.46-4.35 578.22 89.8 <0.01 

EHEC 
 

       

 
O26 2 3 3.75 0.79-15.95 88.44 97.7 <0.01 

 
O45 2 2 1.15 0.02-47.13 9.83 89.8 <0.01 

 
O103 3 4 4.46 2.32-8.42 21.62 86.1 <0.01 

 
O111 3 4 0.79 0.27-2.32 14.85 79.8 <0.01 

 
O121 2 2 1.50 0.01-68.00 12.70 92.1 <0.01 

 
O145 3 3 0.46 0.05-4.12 10.52 81.0 <0.01 

 
Overall non-O157 4 18 2.17 1.32-3.54 374.80 95.5 <0.01 

†United States is the only country representing North America in this analysis; no articles were identified for serogroup data in 
Canada or Mexico.
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Figure 2.1 Flow chart of study selection for meta-analysis eligibility 
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 Abstract 

The United States Department of Agriculture Food Safety and Inspection Service 

have declared seven STEC serogroups (O26, O45, O103, O111, O121, O145, and O157) as 

adulterants in raw, non-intact beef products.  The objective of this study was to determine 

the prevalence of these seven serogroups and the associated virulence genes (stx1, stx2, 

and eae) in cattle feces during summer (June to August 2013) and winter (January to March 

2014) months.  Twenty-four pen floor fecal samples were collected from each of 24 cattle 

pens, in both summer and winter months, at a commercial feedlot in the United States.  

Samples were subjected to culture-based detection methods that included enrichment, 

serogroup-specific immunomagnetic separation and plating on selective media, followed 
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by a multiplex PCR for serogroup confirmation and virulence gene detection.  A sample was 

considered STEC positive if a recovered isolate harbored an O gene, a Shiga toxin gene (stx1 

and/or stx2), and the intimin gene (eae).  All serogroups of interest were detected in 

summer months, O26 (17.8%), O45 (14.6%), O103 (59.9%), O111 (0.2%), O121 (2.0%), 

O145 (2.7%), and O157 (41.6%); however most non-O157 isolates did not harbor 

virulence genes.  The cumulative model-adjusted sample-level prevalence estimates of 

STEC O26, O103, O145, and O157 during summer (n=576) were 1.0, 1.6, 0.8, and 41.4%, 

respectively; STEC O45, O111, and O121 were not detected during summer months.  In 

winter, serogroups O26 (0.9%), O45 (1.5%), O103 (40.2%), O121 (0.2%) were isolated; 

however, no virulence genes were detected in isolates from cattle feces collected during 

winter (n=576).  Statistically significant seasonal differences were identified for STEC O103 

and O157 (P < 0.05), but data on other STEC were sparse.  The results of this study indicate 

that although non-O157 serogroups were present, non-O157 STEC were rarely detected in 

feces from the feedlot cattle populations tested in summer and winter months.   

 

Key words: cattle; non-O157 STEC; prevalence; Shiga toxin-producing Escherichia coli; 

STEC   

 Introduction 

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens of public 

health importance.  Cattle serve as a principal reservoir of STEC and shed these bacteria in 

their feces (Bettelheim, 2000).  Human STEC infections are acquired through direct or 

indirect fecal-oral contact with human or animal feces (Evans and Evans, 1996), and can 
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lead to illnesses including mild to severe diarrhea, hemorrhagic colitis, and potentially life 

threatening complications such as hemolytic uremic syndrome or thrombotic 

thrombocytopenia purpura (Kuter et al., 2014; Siegler et al., 2005).  Several foods, 

including beef, have been implicated in STEC outbreaks in humans in North America 

(Painter et al., 2013; Scallan et al., 2011). As a result, the United States Department of 

Agriculture Food Safety and Inspection Service (USDA-FSIS) has declared STEC of seven 

serogroups (O26, O45, O103, O111, O121, O145, and O157) as adulterants in raw, non-

intact beef products.   

 Although there has been extensive research on the epidemiology and ecology of 

STEC O157 in cattle, information on the prevalence and distribution of non-O157 STEC in 

the cattle reservoir is limited.  A strong seasonal pattern has been identified for E. coli 

O157:H7, where fecal prevalence in cattle peaks during summer months and greatly 

decreases in winter months (Barkocy-Gallagher et al., 2003; Smith et al., 2005; Edrington et 

al., 2006).  In a mathematical model, prevalence of E. coli O157:H7 in cattle was correlated 

with ground beef prevalence and human illnesses attributed to E. coli O157:H7 (Williams et 

al., 2010).  Frequency of human disease attributed to STEC O157 has declined since 2000; 

however, illnesses due to non-O157 STEC in the United States (US) have increased (Gould 

et al., 2013), with the majority (58%) of outbreaks occurring during summer months 

(Luna-Gierke et al., 2014).  The recent apparent increase in the incidence of non-O157 

STEC human illness may be overstated due to a recent increase in the development and 

application of detection methods (Gould et al., 2013; Crim et al., 2014).  However, 

accounting for the under-reporting of foodborne illness, it is estimated that more non-O157 

STEC infections occur annually compared to STEC O157 (Scallan et al., 2011).   
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Recently, fecal prevalence of non-O157 serogroups and virulence genes in cattle and 

their environment has been studied in the US.  Non-O157 serogroup and STEC fecal 

prevalence estimates reported in cattle range from 0.0 to 90.7% and  0.9 to 16.9%, 

respectively, in the US (Paddock et al., 2012; Cernicchiaro et al., 2013; Dargatz et al., 2013; 

Baltasar et al., 2014; Ekiri et al., 2014).  However, only a few studies have assessed 

seasonality of non-O157 STEC shedding in cattle (Barkocy-Gallagher et al., 2003; Alexa et 

al., 2011; Tanaro et al., 2012).  Often publications report combined prevalence estimates 

for all non-O157 STEC collectively, rather than reporting serogroup-specific prevalence 

estimates.  Collective prevalence estimates may inaccurately represent the prevalence of 

the non-O157 STEC serogroups of regulatory or public health importance.  Therefore, the 

objective of this study was to determine the prevalence of seven STEC O serogroups (O26, 

O45, O103, O111, O121, O145, and O157) and their virulence genes (stx1, stx2, and eae) in 

feces of pre-harvest commercial feedlot cattle during summer and winter months. 

 Materials and Methods 

 Study Population and Sample Collection 

Pens of crossbred beef cattle from a large commercial feedlot in the central US were 

sampled weekly for 12 weeks in summer (June to August 2013) and 10 weeks in winter 

(January to March 2014).  Cattle were managed following standard operating procedures of 

the feedlot.  This study followed a repeated cross-sectional design.  During summer 

months, two pens of finishing cattle within 24 hours (h) of harvest were sampled each 

week.  Two to four pens of cattle, within two weeks of harvest, were sampled weekly 

during winter months.  Sample sizes were determined using prevalence estimates from a 

previous study (Cernicchiaro et al., 2013) to detect seasonal differences as low as 5%, with 
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a power of 80%, and Type I error of 5%.  Twenty-four pen floor fecal samples were 

collected from each of 24 pens in both summer and winter months.  Approximately 10 

grams (g) of freshly voided feces were collected in individual plastic bags (WHIRL-PAK®, 

Nasco, Wisconsin, US) using plastic spoons, placed in a cooler on ice, and transported to the 

Pre-harvest Food Safety Laboratory at Kansas State University for processing within 36 h.   

 Culture-based Detection 

Approximately 2 g of feces were added to 18 mL of Escherichia coli broth (EC; Difco, 

ThermoFisher), vortexed, and incubated for 6 h at 37°C.  Post-enrichment, 

immunomagnetic separation (IMS) procedures were performed in a Kingfisher Flex 

Magnetic Particle Processor (Thermo Scientific, Waltham, MA).  An aliquot of 980 µL of 

enriched fecal suspension was added to 20 µL serogroup-specific IMS beads (Abraxis®, 

Warminister, PA), for each of the E. coli serogroups of interest (O26, O45, O103, O111, 

O121, O145, and O157); a total of seven IMS runs were completed for each sample tested.  

The IMS method consisted of a 30-minute binding step, three two-minute washes with 

1,000 µL of PBS Tween 20 and a one minute elution step using 100 µL PBS Tween 20.  

Following IMS, 50 µL of IMS bead suspension were spread-plated onto either Sorbitol 

MacConkey agar with cefixime and potassium tellurite (CT-SMAC) for O157, or Modified 

Possé (MP; Possé et al., 2008) agar for non-O157 beads.  The modification included 

reduction of novobiocin and potassium tellurite concentrations to 5.0 mg L-1 and 0.5 mg L-1, 

respectively.  After the 20 to 24 h incubation, six chromogenic colonies were chosen from 

each of the six MP plates and six non-sorbitol fermenting colonies were chosen from the 

CT-SMAC plate.  These colonies were streaked onto blood agar plates and incubated for 24 

h at 37°C. 
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 PCR Serogroup Confirmation and Virulence Gene Detection 

Putative O157 colonies grown on blood agar were tested for the O157 antigen by 

latex agglutination and, if positive, then tested for indole production.  Isolates positive by 

latex agglutination and indole assays were then confirmed by a multiplex PCR for detection 

of the six major genes (rfbEO157, fliCH7, eae, stx1, stx2, and ehxA) of E. coli O157 as outlined in 

Bai et al. (2010).   

Putative non-O157 colonies grown on blood agar were pooled and tested by a 

multiplex PCR targeting serogroup-specific genes (O26, O45, O103, O111, O121, and O145; 

Paddock et al., 2012).  If the colony pool tested positive for one of the six non-O157 

serogroups, then each colony was individually tested by a multiplex  PCR (Bai et al., 2012) 

targeting six non-O157 serogroups and three virulence genes (stx1, stx2, and eae).   

Samples were considered serogroup positive if the individual isolate tested positive 

for an O gene of interest by the multiplex PCR for non-O157 serogroups, or for the rfbEO157 

gene by the 6-plex PCR.  A sample was considered serogroup negative if colony pools tested 

negative for all O genes of interest by the 7-plex PCR; for serogroup O157, samples were 

considered negative if colonies tested negative to latex agglutination, indole production, or 

6-plex PCR assays.  Samples were considered STEC positive if a serogroup-positive (O157 or 

non-O157) isolate carried at least one Shiga toxin gene (stx1 and/or stx2), and the intimin 

(eae) gene.  Samples were classified as positive if at least one isolate tested positive to the 

respective serogroup and STEC definitions. 

 Statistical Analyses 

Crude cumulative pen-level prevalence estimates and 95% confidence intervals 

were computed for the serogroup case definitions for each season.  Prevalence at the pen-
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level was calculated as the number of positive samples per pen divided by the total number 

of samples tested per pen. 

Model-adjusted cumulative pen-level prevalence estimates and their 95% 

confidence intervals (CI) were estimated from model intercepts using generalized linear 

mixed models.  Monthly STEC prevalence estimates were also obtained by including the 

variable month (June, July, and August) as a fixed effect.  Models were run using Proc 

Glimmix (SAS 9.3, SAS Institute Inc., Cary, NC) with a binomial distribution, logit link, 

residual pseudo-likelihood estimation technique, Kendward-Roger degrees of freedom 

approximation, and a random effect of pens within weeks to account for the clustering 

effect of pens nested within sampling week.  Non-parametric permutation tests were used 

to compare the within-pen mean number of positive samples between seasons, using the 

exact option for hypothesis testing (Proc Npar1way command in SAS 9.3).  P-values less 

than 0.05 were deemed significant. 

 Results 

 Study Population 

Pens of healthy cattle closest to harvest, identified weekly by the feedlot manager, 

were sampled; consequently, study pens were sampled only once.  A total of 48 pens 

housing 17,511 cattle were sampled.  During summer months, 24 pens housing a total of 

6,473 steers were sampled.  Each pen sampled between June and August 2013 housed an 

average of 270 cattle (range=121 to 299 cattle, median=283 cattle).  In winter months, 24 

pens were sampled, housing a total of 11,038 cattle (22 pen of steers (n=10,036) and 2 

pens of heifers (n=1,002)).  In winter, each pen housed an average of 460 cattle (range=189 
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to 627 cattle, median=544 cattle).  A total of 1,152 pen-floor fecal samples were collected 

from 48 pens (576 samples from 24 pens in both summer and winter months). 

 Summer Prevalence 

Serogroup O103 was the most prevalent serogroup isolated from this cattle 

population.  In summer months, serogroup O103 was detected in 340 (59.0%) fecal 

samples; cumulative crude prevalence for serogroups O26, O45, O111, O121, O145, and 

O157 was 22.0, 16.5, 0.2, 2.1, 3.1, and 43.1%, respectively (Table 3.1).  All seven serogroups 

were identified during summer months; however, serogroup O111 was isolated only in a 

single sample.  Although non-O157 serogroups were detected during summer, non-O157 

isolates rarely harbored stx and eae genes in our study population; however, nearly all 

O157 isolates harbored stx and eae genes. 

 The most common STEC isolated in summer months was STEC O157 

(247/576, 42.9%): 248 samples tested positive for O157 and stx genes, only one O157 

isolate  lacked the eae gene (Table 3.1).  Shiga toxin-producing E. coli O157 samples 

predominately tested positive for stx2 (n=246, 42.7%) versus stx1 (n=95, 16.5%) genes; 

however, 93 samples (16.7%) harbored isolates that tested positive for both stx1 and stx2 

genes.  Shiga toxigenic E. coli O26, O103, and O145 were isolated in summer months; 

however, STEC O45, O111, and O121 were not detected during this period.  Crude 

cumulative prevalence of STEC O26, O103, and O145 was 1.2, 1.7, and 1.0%, respectively, in 

summer (Table 3.1).  In contrast to STEC O157, the Shiga toxin gene most commonly 

associated with non-O157 STEC was stx1 (n=20, 87%) while stx2 was present in only a few 

samples (n=3, 13%), and no isolates harbored both genes.  Serogroup and STEC model-

adjusted cumulative prevalence estimates are presented in Table 3.2. 
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Pen-level crude prevalence values varied greatly between pens of cattle; pen-level 

crude prevalence of serogroups O26, O45, O103, O111, O121, O145, and O157 ranged from 

0 to 95.8, 0 to 79.2, 16.7 to 91.7, 0 to 4.2, 0 to 12.5, 0 to 16.7, and 0 to 79.2%, respectively 

(Table 3.3).  Similarly, variability in pen-level prevalence was also observed for STEC 

shedding among pens during summer months; the crude pen-level prevalence of STEC O26, 

O103, O145, and O157 ranged from 0 to 8.3, 0 to 12.5, 0 to 12.5, and 0 to 79.2%, 

respectively (pen-level data not shown).   

Model-adjusted fecal prevalence of STEC O157 significantly differed (P < 0.01) 

between study months: June (32.3%; 95% CI = 25.7-39.7%), July (56.3%; 95% CI = 48.7-

63.5%), and August (40.1%; 95% CI = 33.0-47.6%).  Significant differences in STEC O157 

fecal prevalence were established between June and July (P < 0.01) and between July and 

August (P < 0.01); however, June and August were not significantly different.  Sampling 

month was not statistically significant for STEC O26, O103, and O145.  Monthly model-

adjusted prevalence estimates (and 95% CI) for STEC O26, O103, and O145 in June were 

3.1% (1.3-7.1%), 3.6% (1.7-7.8%), and 2.6% (1.0-6.4%), respectively; in July, monthly 

estimates for STEC O26, O103, and O145 were 0.5% (0.1-4.0%), 1.6% (0.5-5.1%), and 0.5% 

(0.1-4.0%), respectively.  In August, STEC O26, O103, and O145 were not detected.  The 

effect of month on fecal prevalence was not tested for STEC O45, O111, and O121 as these 

STEC were not detected in this group of samples during summer months.   

 Winter Prevalence 

Serogroup O103 was the most prevalent serogroup isolated from this cattle 

population in winter. Cumulative crude prevalence for serogroups O26, O45, O103, and 

O121 was 1.2, 1.9, 41.0, and 0.5%, respectively (Table 3.1).  Serogroups O111, O145, and 
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O157 were not isolated in this period.  Model-adjusted cumulative serogroup prevalence 

estimates for winter are presented in Table 3.2.  Crude prevalence estimates remained 

variable among pens; however, at lower proportions than observed in summer months 

(Table 3.4).  In winter, serogroup O26, O45, O103, and O121 shedding ranged from 0 to 

12.5, 0 to 12.5, 8.3 to 79.3, and 0 to 12.5%, respectively. Notably, serogroup O103 shedding 

was highly variable between study pens and was detected throughout all pens sampled 

during winter.   

Although serogroups (O26, O45, O103, and O121) were isolated during winter 

months, no virulence genes were detected in those isolates.   None of the samples collected 

during winter months tested positive for any of the seven STEC of interest.   

 Statistical Comparison between Summer and Winter Prevalence 

Significant seasonal differences (P < 0.05) were identified for pen-level prevalence 

of serogroups O26, O45, O103, O145, and O157.  Statistically significant differences (P < 

0.05) were also observed for pen-level fecal prevalence of STEC O103 and O157 between 

study seasons; however, no significant differences were observed for the STEC less 

commonly identified. 

 Discussion 

The prevalence of seven STEC serogroups (O26, O45, O103, O111, O121, O145, and 

O157) and their associated major virulence genes was determined in feces of commercial 

feedlot cattle prior to harvest for both summer and winter seasons.  Although a few studies 

have addressed the detection of non-O157 STEC in cattle feces, data regarding the 

frequency of non-O157 STEC serogroups in pre-harvest cattle in the US are still limited 
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(Cernicchiaro et al., 2013; Dargatz et al., 2013; Baltasar et al., 2014; Ekiri et al., 2014).  The 

prevalence of non-O157 STEC organisms obtained in our study was lower than what has 

been reported in previous studies (Barkocy-Gallagher et al., 2003; Cernicchiaro et al., 2013; 

Ekiri et al., 2014) but comparable to others (Cobbold et al., 2004). Different case 

definitions, study populations, and detection protocols may explain differences in 

prevalence estimates obtained across studies.   

Diagnostic methods employed for detection and isolation of serogroups and 

virulence genes influence prevalence estimates (Cernicchiaro et al., 2013).  Methods for 

culturing and confirming STEC O157 have been well-established; however, various non-

O157 diagnostic methods and their impact on detection specificity and sensitivity are still 

being explored.  The current lack of standardized and well-established detection methods 

for non-O157 STEC in cattle feces poses a challenge when comparing prevalence estimates 

across studies.  The use of IMS techniques has been shown to increase the sensitivity of 

detection of STEC O157 compared to direct plating culture methods (Chapman et al., 1994).  

Recently, the use of IMS in culture-based detection methods has been shown to increase 

the apparent prevalence of non-O157 serogroups detected in feces, when compared to 

direct PCR (Cernicchiaro et al., 2013).  Despite the recent development of increasingly 

sensitive molecular methodologies, subjecting samples to culture methods may still be 

needed to obtain isolates for further characterization and accurate linkage of O serogroup 

and virulence genes from bacterial isolates. 

Serogroup O103 was the predominant serogroup isolated from these cattle 

populations in both seasons.  In winter months, serogroup O103 remained prevalent 

throughout all study pens unlike other serogroups of interest.  We hypothesize that 
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serogroup O103 may have different microbial properties allowing the bacterium to endure 

harsher conditions and out-compete other microbiota, potentially allowing for longer 

survival in the cattle reservoir and subsequent environment.  In another United States 

study, using similar detection methods, serogroup O103 also was the most frequently 

isolated non-O157 serogroup among cattle (Ekiri et al., 2014).   

Previous research has demonstrated that non-O157 IMS bead specificity is variable 

and non-specific binding of beads occurs (Cernicchiaro et al., 2013).  This issue needs to be 

further evaluated as diagnostic sensitivity and specificity directly impact prevalence 

estimates.  Other potential reasons for the low or no detection of some serogroups and 

virulence genes in either summer or winter may be related to insufficient samples per pen 

or study design limitations.  Although repeated sampling from pens provides a perspective 

of how prevalence varies within pens close to harvest, the intermittent nature of fecal 

shedding can impact sample-level detection.  In the present study, different pens of cattle 

were tested each week, which provide useful data pertaining to the STEC prevalence in 

cattle at harvest.  However, point in time estimates may not be representative of the 

prevalence that exists in pens of cattle over time due to intermittent fecal shedding 

(Sargeant et al., 2000; Renter et al., 2002; Chase-Topping et al., 2008; Menrath et al., 2010).  

Furthermore, because we measured prevalence of STEC, we cannot separate factors related 

to new animals shedding bacteria (i.e., incidence) and those associated with duration of 

shedding.  Regardless, measures targeted at reducing STEC prevalence in pre-harvest cattle 

will be beneficial to potentially decrease microbial transmission to other pen-mates and 

the environment, as well as to reduce contamination of hides and subsequent transfer to 

carcass surfaces as those animals are harvested. 
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Seasonality of E. coli O157 has been well established in the bovine reservoir and in 

human illnesses (Barkocy-Gallagher et al., 2003; Rangel et al., 2005; Smith et al., 2005; 

Williams et al., 2010).  An increase in non-O157 STEC human illness outbreaks has been 

observed in the United States for the warmer months (Luna-Gierke et al., 2014); however, 

the seasonality of non-O157 STEC shedding in cattle has not yet been established.  The 

increased recognition of the importance of non-O157 STEC human infections, and the 

seasonality associated with human illness outbreaks, emphasizes the need for non-O157 

STEC data in the bovine reservoir, particularly prior to harvest.  In the present study, 

significant seasonal differences between summer and winter months were identified for 

serogroups O26, O45, O103, O145, and O157, as well as STEC O103 and O157.  Cobbold et 

al. reported that STEC were more prevalent in cattle feces in the fall than in winter 

(Cobbold et al., 2004).  Similarly, another study showed that cattle shed non-O157 STEC 

more frequently in spring and fall, than summer and winter (Barkocy-Gallagher et al., 

2003).  In our study, we did not detect non-O157 STEC in winter months.  Future research 

is needed to generate data on prevalence of non-O157 STEC in other seasons (i.e., fall and 

spring), as well as in other feedlot operations, geographic regions, and cattle types (e.g., 

dairy, pasture, culled cattle).   

In conclusion, our results indicate that non-O157 STEC in feedlot cattle were rarely 

detected in summer and were undetected in winter months.  The most commonly 

identified serogroups were O26, O103, and O157 during summer; and O26, O45, and O103 

in winter.  Conversely, the most common STEC detected in this cattle population in summer 

was STEC O157 followed by STEC O103, O26, and O145 in much lower frequency.  These 

findings contribute to filling the data gaps regarding prevalence of non-O157 STEC in cattle 
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prior to entering the food supply, in two seasons. These estimates will be used to populate 

quantitative microbial risk assessment models that are crucial to understanding the risk of 

human illnesses due to STEC that are attributed to cattle and subsequent beef products. 
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 Tables 

Table 3.1 Distribution of positive samples for Escherichia coli O serogroups and virulence genes isolated in summer and winter 

months from cattle feces 

 

Proportions were calculated over the total number of fecal samples tested in winter and summer (n=576), respectively. 
 

*No isolates with virulence genes were detected in winter months. 
 

  Summer Winter* 

 

 

  O gene  
O gene + 
stx1  

O gene + 
stx2  

O gene + 
stx1 and 
stx2  

O gene + 
stx1 
and/or 
stx2  

O gene + 
stx1 
and/or 
stx2 + eae 

 

O gene 

Serogroup  n (%)  n (%)  n (%)  n (%)  n (%)  n (%)  n (%) 
               

O26  127 (22.0)  7 (1.2)  0 (0.0)  0 (0.0)  7 (1.2)  7 (1.2)  7 (1.2) 

O45  95 (16.5)  0 (0.0)  0 (0.0)  0 (0.0)  0 (0.0)  0 (0.0)  11 (1.9) 

O103  340 (59.0)  9 (1.6)  1 (0.1)  0 (0.0)  10 (1.7)  10 (1.7)  236 (41.0) 

O111  1 (0.2)  0 (0.0)  0 (0.0)  0 (0.0)  0 (0.0)  0 (0.0)  0 (0.0) 

O121  12 (2.1)  0 (0.0)  0 (0.0)  0 (0.0)  0 (0.0)  0 (0.0)  3 (0.5) 

O145  18 (3.1)  4 (0.7)  2 (0.3)  0 (0.0)  6 (1.0)  6 (1.0)  0 (0.0) 

O157  248 (43.1)  95 (16.5)  246 (42.7)  93 (16.7)  248 (43.1)  247 (42.9)  0 (0.0) 
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Table 3.2 Model-adjusted cumulative prevalence estimates* of O serogroups and Shiga toxin-producing E. coli (STEC) for 

summer and winter months 

 

Denominator for summer and winter is 576 fecal samples. 
 
*Estimates and 95% confidence intervals from generalized linear mixed models using binomial distribution, logit link, and a 
random intercept of pens within week to estimate prevalence by season. 

 

 

 

 

 

 

 Serogroup prevalence, % (95% CI) 
 

STEC prevalence, % (95% CI) 

O gene  Summer 
 

Winter 
 

Summer 
 

Winter 

O26  17.8 (15.1, 20.4) 
 

0.9 (0.0, 4.1) 
 

1.0 (0.0, 4.2) 
 

0.0 

O45  14.6 (12.2, 17.0) 
 

1.5 (0.0, 4.5) 
 

0.0 
 

0.0 

O103  59.9 (57.5, 62.2) 
 

40.2 (37.9, 42.5) 
 

1.6 (0.0, 4.4) 
 

0.0 

O111  0.2 (0.0, 5.5) 
 

0.0 
 

0.0 
 

0.0 

O121  2.0 (0.0, 4.7) 
 

0.2 (0.0, 5.6) 
 

0.0 
 

0.0 

O145  2.7 (0.0, 5.4) 
 

0.0 
 

0.8 (0.0, 4.1) 
 

0.0 

O157  41.6 (39.2, 44.0) 
 

0.0 
 

41.4 (39.0, 43.8) 
 

0.0 
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Table 3.2 Crude pen-level and cumulative prevalence* of O serogroups by pen and sampling week during summer months 

(June to August 2013) 

*The number of positive samples divided by the total number of samples tested expressed as a percentage. The denominator 
(n=24) was the same for all pens.   

Pen Date No. of cattle O26 O45 O103 O111 O121 O145 O157 
   % (n) % (n) % (n) % (n) % (n) % (n) % (n) 

1 6/9/2013 284 25.0 (6) 16.7 (4) 45.8 (11) 0.0 (0) 0.0 (0) 4.2 (1) 50.0 (12) 
2 6/9/2013 278 95.8 (23) 12.5 (3) 54.2 (13) 0.0 (0) 0.0 (0) 16.7 (4) 33.3 (8) 
3 6/16/2013 281 25.0 (6) 12.5 (3) 41.7 (10) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 
4 6/16/2013 283 25.0 (6) 12.5 (3) 25.0 (6) 0.0 (0) 0.0 (0) 12.5 (3) 0.0 (0) 
5 6/23/2013 284 83.3 (20) 25.0 (6) 41.7 (10) 0.0 (0) 0.0 (0) 4.2 (1) 70.8 (17) 
6 6/23/2013 279 50.0 (12) 37.5 (9) 54.2 (13) 0.0 (0) 4.2 (1) 0.0 (0) 12.5 (3) 
7 6/30/2013 284 16.7 (4) 8.3 (2) 62.5 (15) 0.0 (0) 4.2 (1) 4.2 (1) 58.3 (14) 
8 6/30/2013 281 33.3 (8) 16.7 (4) 16.7 (4) 0.0 (0) 4.2 (1) 0.0 (0) 33.3 (8) 
9 7/7/2013 273 25.0 (6) 8.3 (2) 66.7 (16) 0.0 (0) 4.2 (1) 0.0 (0) 50.0 (12) 

10 7/7/2013 283 12.5 (3) 12.5 (3) 66.7 (16) 0.0 (0) 8.3 (2) 0.0 (0) 54.2 (13) 
11 7/14/2013 284 25.0 (6) 29.2 (7) 83.3 (20) 0.0 (0) 0.0 (0) 0.0 (0) 58.3 (14) 
12 7/14/2013 291 20.8 (5) 16.7 (4) 83.3 (20) 0.0 (0) 0.0 (0) 8.3 (2) 45.8 (11) 
13 7/21/2013 277 8.3 (2) 16.7(4) 83.3 (20) 0.0 (0) 0.0 (0) 0.0 (0) 58.3 (14) 
14 7/21/2013 298 12.5 (3) 4.2 (1) 70.8 (17) 0.0 (0) 0.0 (0) 0.0 (0) 29.2 (7) 
15 7/28/2013 292 4.2 (1) 4.2 (1) 50.0 (12) 0.0 (0) 0.0 (0) 12.5 (3) 75.0 (18) 
16 7/28/2013 123 0.0 (0) 12.5 (3) 41.7 (10) 0.0 (0) 4.2 (1) 4.2 (1) 79.2 (19) 
17 8/4/2013 299 20.8 (5) 79.2 (19) 91.7 (22) 0.0 (0) 12.5 (3) 0.0 (0) 33.3 (8) 
18 8/4/2013 299 0.0 (0) 0.0 (0) 70.8 (17) 0.0 (0) 0.0 (0) 0.0 (0) 54.2 (13) 
19 8/11/2013 279 4.2 (1) 4.2 (1) 62.5 (15) 4.2 (1) 0.0 (0) 0.0 (0) 37.5 (9) 
20 8/11/2013 282 4.2 (1) 20.8 (5) 45.8 (11) 0.0 (0) 4.2 (1) 0.0 (0) 45.8 (11) 
21 8/18/2013 294 4.2 (1) 20.8 (5) 66.7 (16) 0.0 (0) 0.0 (0) 4.2 (1) 41.7 (10) 
22 8/18/2013 284 16.7 (4) 4.2 (1) 87.5 (21) 0.0 (0) 0.0 (0) 0.0 (0) 29.2 (7) 
23 8/25/2013 240 8.3 (2) 16.7 (4) 66.7 (16) 0.0 (0) 0.0 (0) 4.2 (1) 33.3 (8) 
24 8/25/2013 121 8.3 (2) 4.2 (1) 37.5 (9) 0.0 (0) 4.2 (1) 0.0 (0) 50.0 (12) 

Pen prevalence range, % 0.0-95.8 0.0-79.2 16.7-91.7 0.0-4.2 0.0-12.5 0.0-16.7 0.0-79.2 
Crude cumulative prevalence, % 22.0 16.5 59.0 0.2 2.1 3.1 43.1 
95% confidence interval, % 18.7-25.7 13.6-19.8 54.9-63.1 0.0-1.0 1.1-3.6 1.9-4.9 39.0-47.2 
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Table 3.3 Crude pen-level and cumulative prevalence* of O serogroups by pen and sampling week during winter months 

(January to March 2014) 

 

 

Pen† Date No. of cattle O26 O45 O103 O121 
   % (n) % (n) % (n) % (n) 
25 1/6/2014 275 0.0 (0) 0.0 (0) 33.3 (8) 0.0 (0) 
26† 1/6/2014 461 0.0 (0) 0.0 (0) 20.8 (5) 0.0 (0) 
27 1/6/2014 280 0.0 (0) 0.0 (0) 25.0 (6) 0.0 (0) 
28 1/13/2014 189 0.0 (0) 0.0 (0) 41.7 (10) 0.0 (0) 
29 1/13/2014 565 0.0 (0) 0.0 (0) 58.3 (14) 0.0 (0) 
30 1/13/2014 553 0.0 (0) 4.2 (1) 58.3 (14) 12.5 (3) 
31 1/13/2014 623 0.0 (0) 4.2 (1) 75.0 (18) 0.0 (0) 
32 1/20/2014 289 4.2 (1) 0.0 (0) 25.0 (6) 0.0 (0) 
33 1/20/2014 560 0.0 (0) 0.0 (0) 54.2 (13) 0.0 (0) 
34 1/20/2014 557 0.0 (0) 12.5 (3) 54.2 (13) 0.0 (0) 
35† 1/27/2014 541 0.0 (0) 4.2 (1) 29.2 (7) 0.0 (0) 
36 1/27/2014 560 0.0 (0) 0.0 (0) 50.0 (12) 0.0 (0) 
37 2/3/2014 294 0.0 (0) 0.0 (0) 79.2 (19) 0.0 (0) 
38 2/3/2014 624 4.2 (1) 0.0 (0) 33.3 (8) 0.0 (0) 
39 2/10/2014 561 0.0 (0) 0.0 (0) 45.8 (11) 0.0 (0) 
40 2/10/2014 627 0.0 (0) 0.0 (0) 12.5 (3) 0.0 (0) 
41 2/17/2014 443 0.0 (0) 0.0 (0) 25.0 (6) 0.0 (0) 
42 2/17/2014 546 0.0 (0) 0.0 (0) 45.8 (11) 0.0 (0) 
43 2/24/2014 554 8.3 (2) 0.0 (0) 62.5 (15) 0.0 (0) 
44 2/24/2014 530 0.0 (0) 8.3 (2) 37.5 (9) 0.0 (0) 
45 3/3/2014 281 0.0 (0) 12.5 (3) 8.3 (2) 0.0 (0) 
46 3/3/2014 564 12.5 (3) 0.0 (0) 20.8 (5) 0.0 (0) 
47 3/10/2014 284 0.0 (0) 0.0 (0) 25.0 (6) 0.0 (0) 
48 3/10/2014 277 0.0 (0) 0.0 (0) 62.5 (15) 0.0 (0) 
Pen prevalence range, % 0.0-12.5 0.0-12.5 8.3-79.2 0.0-12.5 
Crude cumulative prevalence, %  1.2 1.9 41.0 0.5 
95% confidence interval, % 0.5-2.5 1.0-3.4 36.9-45.1 0.1-1.5 
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*The number of positive samples divided by the total number of samples tested expressed as a percentage. The denominator 
(n=24) was the same for all pens.  
 

†Indicates the sex of the pen is heifers, the remaining pens are comprised of steers  
 

Serogroups O111, O145, and O157 were not detected in winter months. 
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Chapter 4: Conclusion 

Shiga toxin-producing Escherichia coli are foodborne pathogens of public health 

importance. Although the USDA-FSIS has declared the STEC-7 as adulterants in raw, non-

intact beef products, there are many areas pertaining to the cattle reservoir and their 

environments that require additional research to understand the epidemiology of non-

O157 STEC. The review of literature (Chapter 1) relating to the epidemiology of Shiga 

toxigenic E. coli and the bovine reservoir revealed a few inconsistencies and data gaps that 

exist in the published literature to date, in addition to demonstrating the lack of existing 

data regarding non-O157 STEC in cattle. This thesis has addressed major data gaps 

necessary to assess the risk of these non-O157 STEC pathogens in the beef supply by 

evaluating the presence of these pathogens in the cattle reservoir.   

Firstly, a formal systematic review of the literature was conducted to identify all 

peer-reviewed literature regarding the six non-O157 serogroups (O26, O45, O103, O111, 

O121, and O145) and their associated virulence genes (stx1, stx2, and eae) in cattle. 

Following the initial retrieval of articles, the pre-set inclusion and exclusion criteria were 

expanded to include articles published worldwide, rather than articles published only in 

North America, as very few articles were retrieved from the United States (n = 7), Canada 

(n = 3), and Mexico (n = 0).  After articles were screened, and underwent the risk of bias 

assessment and critical evaluation, data were extracted. Meta-analyses were conducted for 

non-O157 fecal prevalence for three different outcomes worldwide and in North America.  

Random-effects meta-analyses of data indicated that worldwide non-O157 serogroup and 

virulence gene fecal prevalence significantly differed (P < 0.001) between geographic 

regions (e.g., Africa, Asia, Australia, Europe, North America, and South America). Non-O157 
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serogroup and virulence gene pooled prevalence estimates were highest for North 

America; further evaluation indicated that the United States was the country of highest 

non-O157 serogroup and virulence gene prevalence in North America. Meta-regression 

analyses of worldwide studies were conducted to assess factors (continent, time of harvest, 

cattle type, IMS, and specimen type) contributing to between-study heterogeneity of non-

O157 fecal prevalence estimates.  To our knowledge, this is the first meta-analysis 

regarding non-O157 serogroups and virulence genes in cattle.  This manuscript will greatly 

contribute to the limited body of knowledge regarding non-O157 STEC by evaluating the 

STEC burden in cattle by region and summarizing the prevalence along a major portion of 

the beef continuum (fecal-hide-carcass) prior to harvest.   

Major data gaps were identified for fecal, hide, and carcass prevalence and 

concentration data regarding non-O157 serogroups and virulence genes in pre- and peri-

harvest cattle; therefore, empirical data was obtained in a second study using a repeated 

cross-sectional study design. In my second study, we identified and assessed the frequency 

of the STEC-7 serogroups and virulence genes in feces of pre-harvest commercial feedlot 

cattle during summer and winter. This will be one of the first peer-reviewed studies to 

evaluate the seasonality of these specific non-O157 STEC serogroups and virulence genes 

in cattle in two seasons. In summer, all seven serogroups of interest were detected; 

however, most non-O157 isolates lacked the necessary virulence genes to cause human 

illness. Non-O157 STEC were detected in very low frequencies in cattle feces during 

summer months, especially compared to STEC O157. In winter months, serogroups of 

interest were detected but no STEC—of any serogroup of interest—were isolated from 

cattle feces. We observed seasonal differences in STEC shedding; STEC O103 and O157 
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shedding were significantly different between summer and winter. Potentially due to the 

low numbers of positive samples, significant seasonal differences were not observed for 

the less common STEC. The prevalence estimates obtained in this study will be used to 

populate quantitative microbial risk assessment models that are necessary to evaluate the 

risk of STEC human illnesses attributed to the cattle reservoir. Further research is needed 

to confirm these findings in other feedlots, regions, and production systems as this study 

included only 48 pens of cattle housed at a single feedlot in the central United States. 

However, these findings suggest that cattle commonly harbor and shed E. coli O157, yet 

cattle feces may not be a frequent source of non-O157 STEC.  

Additional research is needed to assess the frequency of STEC pathogens 

throughout the beef chain, especially in peri-harvest cattle, in order to contribute toward 

initiatives for reducing STEC human illnesses resulting from cattle and beef products. The 

work herein indicates that cattle feces harbor non-O157 STEC pathogens but at very low 

frequencies. Overall, this thesis contributes to the limited body of data, summarizes current 

peer-reviewed literature, and furthers the knowledge regarding the epidemiology of non-

O157 STEC in the bovine reservoir. 

 

 

 


