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Abstract 

Engineering majors and Mathematics Education majors are two groups that take the 

basic, core Mathematics classes.  Whereas Engineering majors go on to apply this mathematics 

to real world situations, Mathematics Education majors apply this mathematics to deeper, 

abstract mathematics.  Senior students from each group were interviewed about “function” and 

“accumulation” to examine any differences in learning between the two groups that may be tied 

to the use of mathematics in these different contexts.  Variation between individuals was found 

to be greater than variation between the two groups; however, several differences between the 

two groups were evident.  Among these were higher levels of conceptual understanding in 

Engineering majors as well as higher levels of confidence and willingness to try problems even 

when they did not necessarily know how to work them. 

 

  



  

 

WHAT CALCULUS DO STUDENTS LEARN AFTER CALCULUS? 

 

 

by 

 

 

TODD MOORE 

 

 

 

B.S., Kansas State University, 2006 

M.S., Kansas State University, 2009 

 

 

A DISSERTATION 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Mathematics 

College of Arts and Sciences 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2012 

 

 

 

Approved by: 

 

Major Professor 

Andrew Bennett 

  



  

Copyright 

TODD MOORE 

2012 

 

 

  



  

Abstract 

Engineering majors and Mathematics Education majors are two groups that take the 

basic, core Mathematics classes.  Whereas Engineering majors go on to apply this mathematics 

to real world situations, Mathematics Education majors apply this mathematics to deeper, 

abstract mathematics.  Senior students from each group were interviewed about “function” and 

“accumulation” to examine any differences in learning between the two groups that may be tied 

to the use of mathematics in these different contexts.  Variation between individuals was found 

to be greater than variation between the two groups; however, several differences between the 

two groups were evident.  Among these were higher levels of conceptual understanding in 

Engineering majors as well as higher levels of confidence and willingness to try problems even 

when they did not necessarily know how to work them. 

 



vi 

 

 

Table of Contents 

List of Figures ................................................................................................................................ ix 

List of Tables .................................................................................................................................. x 

Acknowledgements ........................................................................................................................ xi 

Dedication ..................................................................................................................................... xii 

Chapter 1 - Introduction .................................................................................................................. 1 

Overview of the Study ................................................................................................................ 1 

Research Questions ..................................................................................................................... 3 

Brief Description of the Methodology ........................................................................................ 4 

Limitations of the Study ............................................................................................................. 4 

Chapter 2 - Literature Review ......................................................................................................... 6 

Difficulties in Learning Function and Accumulation ................................................................. 6 

Functions ................................................................................................................................. 6 

Accumulation .......................................................................................................................... 8 

APOS Theory ............................................................................................................................ 10 

Theories of Transfer .................................................................................................................. 14 

Alternative Views of Transfer............................................................................................... 17 

Back Transfer ............................................................................................................................ 21 

Linguistics ............................................................................................................................. 21 

Other Research ...................................................................................................................... 22 

Research in Mathematics ...................................................................................................... 23 

Previous Longitudinal Study .................................................................................................... 24 

Summary ................................................................................................................................... 27 

Chapter 3 - Methodology .............................................................................................................. 28 

Purpose of the Study ................................................................................................................. 28 

Research Questions ................................................................................................................... 28 

Participants and Setting ............................................................................................................ 28 

Data Collection ......................................................................................................................... 29 

Longitudinal Study ................................................................................................................ 29 



vii 

 

Cross Sectional Study ........................................................................................................... 29 

Data Analysis ............................................................................................................................ 31 

1
st
 Pass – Rating on a Modified APOS Scale ....................................................................... 31 

2
nd

 Pass – Non-Negative Matrix Factorization ..................................................................... 32 

3
rd

 Pass – Coding .................................................................................................................. 33 

Reliability and Validity ............................................................................................................. 35 

Chapter 4 - Results ........................................................................................................................ 37 

Introduction ............................................................................................................................... 37 

1
st
 Pass – Qualitative ................................................................................................................. 37 

Action Level .......................................................................................................................... 37 

Action/Process Level ............................................................................................................ 42 

Process Level ........................................................................................................................ 47 

Process/Object Level ............................................................................................................ 51 

Object Level .......................................................................................................................... 55 

Total APOS Distribution ....................................................................................................... 59 

2
nd

 Pass – Quantitative .............................................................................................................. 60 

3
rd

 Pass – Qualitative ................................................................................................................ 60 

Chapter 5 - Conclusions ................................................................................................................ 64 

Restatement of the Problem ...................................................................................................... 64 

Summary of Research Methods ................................................................................................ 64 

Summary of Findings ................................................................................................................ 66 

APOS Ratings ....................................................................................................................... 66 

Confidence and Willingness ................................................................................................. 66 

Discussion of Results ................................................................................................................ 68 

Discussion of APOS Ratings ................................................................................................ 68 

Discussion of Confidence and Willingness .......................................................................... 70 

Anecdotal Observations ........................................................................................................ 70 

Engineering versus Mathematics Education ......................................................................... 75 

Limitations of the Study ........................................................................................................... 77 

Recommendations for Future Research .................................................................................... 79 

Summary ................................................................................................................................... 81 



viii 

 

References ..................................................................................................................................... 83 

Appendix A - Modified APOS Rubric.......................................................................................... 87 

Appendix B - Interview Protocol .................................................................................................. 89 

Appendix C - Sample Interview ................................................................................................... 93 

Appendix D - Interview Excerpt 1 .............................................................................................. 118 

Appendix E - Interview Excerpt 2 .............................................................................................. 126 

 

  



ix 

 

List of Figures 

Figure 2.1 APOS distribution of students in previous longitudinal study .................................... 24 

Figure 4.1 The two majors compared with Diff Eq students from the longitudinal study ........... 60 

Figure 4.2 Distribution of students in Confidence rating ............................................................. 62 

Figure 4.3 Distribution of students in Willingness rating ............................................................. 63 

Figure 5.1 Comparison of the two majors with Diff Eq students from longitudinal study .......... 66 

Figure 5.2 Distribution of students in the Confidence ratings ...................................................... 67 

Figure 5.3 Distribution of students in the Willingness ratings ..................................................... 68 

Figure B.1 Graph given to students for question (c) ..................................................................... 92 

 

  

file:///C:/Users/Todd/Desktop/Dissertation%202nd%20final.docx%23_Toc331008240
file:///C:/Users/Todd/Desktop/Dissertation%202nd%20final.docx%23_Toc331008241
file:///C:/Users/Todd/Desktop/Dissertation%202nd%20final.docx%23_Toc331008242
file:///C:/Users/Todd/Desktop/Dissertation%202nd%20final.docx%23_Toc331008243
file:///C:/Users/Todd/Desktop/Dissertation%202nd%20final.docx%23_Toc331008244
file:///C:/Users/Todd/Desktop/Dissertation%202nd%20final.docx%23_Toc331008245
file:///C:/Users/Todd/Desktop/Dissertation%202nd%20final.docx%23_Toc331008246


x 

 

List of Tables 

Table 4.1 APOS distribution of Engineering and Mathematics Education Majors ...................... 59 

Table 4.2 Distribution of students in Confidence rating ............................................................... 61 

Table 4.3 Distribution of students in Willingness rating .............................................................. 62 

Table 5.1 Distribution of the two majors in Confidence ratings ................................................... 67 

Table 5.2 Distribution of students in the Willingness ratings ....................................................... 67 

Table A.1 Rubric for rating conceptual understanding from previous longitudinal study ........... 87 

 

  



xi 

 

Acknowledgements 

I would like to thank Dr. David Allen, Dr. Todd Cochrane, Dr. Christopher Pinner, and 

Dr. Sanjay Rebello for giving me your time and help by serving on my committee and for 

making sure this dissertation makes sense.  I would also like to thank all the members of the 

Center for Quantitative Research, but particularly Dr. Carlos Castillo-Garsow and Dr. Hien 

Nguyen for your invaluable help and support. Obviously a lot of thanks go to my major 

professor, Dr. Andrew Bennett, who my mother refers to as my “savior” for the number of things 

he has done to save my academic career and make this dissertation happen.   

  



xii 

 

Dedication 

I would like to dedicate this dissertation to my father, Col. Hylan C. Moore, M.D., who, 

despite passing away over twenty years ago, continued to motivate me every day to get my 

doctorate and whose hard work made sure that I did not face the same obstacles he did in getting 

his, and to my mother, Mary Sue Moore, who continued to push me every day so that it actually 

happened and whose hard work made sure that I did not squander the opportunities I was given.



1 

 

 

Chapter 1 - Introduction 

 Overview of the Study 

Folklore tells us that we often do not learn concepts from a mathematics course until the 

next class. At least one study suggests that this “appears to be not quite accurate, rather several 

courses may be necessary" (Selden, Selden, Hauk, & Mason, 1999).  So, do students learn 

Calculus during the Calculus sequence?  Obviously, they must learn some; otherwise they would 

not be successful in moving through the sequence.  However, many studies, as well as every 

professor’s experience, show that Calculus students often have significant trouble learning the 

concepts involved in their classes (Selden, Mason, & Selden, 1989; White & Mitchelmore, 

1996).  Since some students presumably learn Calculus at some point, this raises the question: 

what Calculus do students learn after Calculus? 

This study aims to begin to answer that question.  More specifically, it aims to answer the 

question of how students’ level of understanding of “function” and “accumulation” (in terms of 

integration) change after the students have finished the Calculus sequence.  These are two of the 

most important concepts in Calculus, and indeed in mathematics.  The ability to understand 

“function” deeply is necessary for a strong understanding of mathematics (Sfard, 1991). 

Similarly, in order to understand integration, it is important that students have an understanding 

of the integral as accumulation (Thompson & Silverman, 2008). Despite these concepts’ 

importance and Calculus class’s stressing of them, teaching and learning of concepts like 

“function” and “accumulation” are still a problem (Tzur & Simon, 2004). 

Students’ conceptual problems with functions are well documented (Markovits, Eylon, & 

Bruckheimer, 1986; Vinner & Dreyfus, 1989; Even, 1993).  This includes problems with 

algebraic representations of functions (Clement, Lochhead, & Monk, 1981; Markovitz, Eylon, & 

Bruckheimer 1986), understanding functions from the definition (Vinner & Dreyfus 1989), and 

appealing to algebra to solve calculus problems even when the calculus concepts are known 

(Selden, Selden, Hauk, & Mason, 1999). These problems persist even as students advance 

through the Calculus sequence with the concept of “function” developing slowly throughout a 

student’s undergraduate career (Carlson 1998).  Students’ understanding increases over time, 

though, and the number of misconceptions decrease from Calculus I to Differential Equations 
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(Selden, Selden, Hauk, & Mason, 1999). However, even the best students with a fair amount of 

math still do not totally understand the concept of “function” (Breidenbach, Dubinsky, Hawks, & 

Nichols, 1992; Carlson 1998). 

These conceptual difficulties are common with accumulation as well. Unsurprisingly, 

students near the beginning of the Calculus sequence do not have a strong understanding of 

integration or accumulation (Selden, Mason, & Selden, 1989; Rasslan & Tall, 2002; Mahir, 

2006).   Difficulties persisted all the way up through Differential Equations (Selden, Selden, 

Hauk, & Mason, 1999; Bennett, Moore, & Nguyen, 2011).  Specifically, these problems included 

notions of infinity and limits (Tall, 1993; Thompson & Silverman, 2008; Maharaj, 2010), 

notation (Orton, 1980; Mundy 1984; Tall, 1993; Cui, Rebello, & Bennett, 2007), and Riemann 

sums and accumulation (Orton, 1983; Cui, Rebello, & Bennett, 2007; Thompson & Silverman, 

2008; Nguyen, 2011). Some of these problems persisted to the point where, in one study, 

engineers in the study “had almost completed their formal mathematical educations… leaving 

them limited opportunity in future mathematics courses to improve their non-routine problem 

solving abilities” (Selden, Selden, Hauk, & Mason, 1999). 

A full understanding of “function” and “accumulation” requires the ability to apply it in 

other fields and within different contexts in mathematics (Markovitz, Eylon, & Bruckheimer 

1986). Many of our Calculus students are taking Calculus to do just this.  Since many Calculus 

students are taking the courses to become engineers or mathematics teachers, this study will 

focus on senior-level Engineering majors and Mathematics Education majors.  Many 

Engineering majors have difficulties applying their mathematics understanding to their Physics 

and Engineering classes, however. "They tended to use oversimplified algebraic relationships to 

avoid using calculus because they do not understand the underlying assumptions of the 

relationships" (Cui, Rebello, & Bennett, 2005). Their difficulty using integrals in physics 

problems came mainly from their lack of understanding of what was being accumulated 

(Nguyen, 2011). And overall, many successful Engineering majors have less conceptual 

understanding of calculus concepts than we would hope (Selden, Selden, Hauk, & Mason, 1999).  

These problems are not limited to Engineering majors; Even (1993) and others have noted that 

many future teachers also have many misconceptions about functions 

Since Engineering majors and Mathematics Education majors eventually gain an 

understanding of these concepts and they do not seem to do it by the end of the Calculus 
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sequence, it is possible that they are gaining it as a result of backward transfer from their later 

classes in which they see the mathematics used in context.  Backward transfer would happen 

when a student applies old knowledge to a new context and this application strengthens their 

understanding of the original concept, i.e., understanding is transferring from the new situation 

backward to the old.  

There seem to be very few studies that research whether this backward transfer happens 

in the context of mathematics despite its possible importance in the way our students gain their 

expertise (Hohensee, 2011).  More generally, there are very few studies that even address the 

transfer of understanding in post-Calculus mathematics and physics courses (Karakök, 2009).  

This study will attempt to fill both of these holes.  There also appears to be some conflicting 

studies, with some finding poor understanding of mathematics teachers (Even, 1993) and some 

finding stronger performance (Vinner & Dreyfus 1989).  This study will aim to evaluate just 

what levels of understanding Mathematics Education and Engineering majors attain. 

Conflicting results of studies of mathematics students’ understanding are unsurprising 

given the range of understandings of students even in Differential Equations that was 

demonstrated in the previous longitudinal study that this study will build upon (Bennett, Moore, 

& Nguyen, 2011). That study showed that in Differential Equations, students range from the 

lowest levels of conceptual understanding up into the higher levels of understanding.  This study 

will build upon the longitudinal study by measuring the understanding of senior-level 

Mathematics Education and Engineering majors and compare them against the levels of 

understanding possessed by Differential Equations students. 

 Research Questions 

The goal of this study is to attempt to measure any amount of back transfer among 

Mathematics Education majors and Engineering majors from their upper level major courses 

back to Calculus that occurs between the time they finish the Calculus sequence and graduation.  

As such, there are two main questions:  

1. Does back transfer occur? 

2. If so, does the application of mathematics in different contexts or majors cause 

different levels of back transfer? 
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 Brief Description of the Methodology 

This study will use quantitative and qualitative methods to answer the research questions.  

To begin, Mathematics Education and Engineering majors will be selected on a volunteer basis 

to participate in an hour-long, one-on-one, conversation-style interview that will cover calculus 

based questions aimed at discovering students’ understanding of “function” and “accumulation”.  

The students will be rated on a modified APOS scale and the results will be compared against the 

levels of understanding of Differential Equations students as rated by the previous longitudinal 

study (Bennett, Moore, & Nguyen, 2011).  Any major change in the distribution will be taken as 

evidence of what happens to students’ understanding after they finish the Calculus sequence.  A 

decrease in understanding could indicate that students forget what they are not explicitly learning 

anymore; an increase should indicate back transfer.   

The differences between the movements of the Engineering majors versus the 

Mathematics Education majors will also be studied to determine if the different contexts the 

students used their calculus knowledge in led to different levels of back transfer. Roughly 

speaking, the Engineering majors apply their calculus knowledge to real-world situations, 

whereas the Mathematics Education majors apply their calculus knowledge to higher-level, 

abstract mathematics classes. 

The quantitative portion of this study will consist of a non-negative matrix factorization 

made from a vocabulary matrix.  This matrix will be made up of how many times each student 

said each word from the list of words used in the interviews.  The goal of the non-negative 

matrix factorization is to see if it can isolate groups of students based on common vocabularies.  

For example, if Engineering majors use a different vocabulary than Mathematics Education 

majors, or if students with strong conceptual understanding differ from those with weak 

understanding, then the matrix factorization should show that. 

 Limitations of the Study 

All studies have their limitations.  The limitations of this study fall into five categories: 

self-selection issues, demographic differences between the two groups, different sizes of the two 

groups, comparison with the previous longitudinal study, and the limited scope of the study. 

Since this study will be run on a volunteer basis, there is the always-present issue with 

who chooses to participate.  There are also the larger self-selection issues with who chooses to 
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become Engineering majors versus Mathematics Education majors. Perhaps naturally stronger 

students choose one major over the other. 

Related to self-selection problems are the demographic issues involved with the 

differences between the two majors.  Engineering tends to have a higher percentage of males 

versus females compared to Mathematics Education. While differences in the numbers of each 

gender interviewed will be attempted to be kept to a minimum, the fact that participants are 

chosen on a volunteer basis will complicate this. 

The third limitation of this study is the difference sizes of the groups. The university 

where this study will take place has a large Engineering program while the numbers of 

Mathematics Education majors are much smaller. 

The fourth limitation of this study is actually a limitation of the previous longitudinal 

study upon which this study draws.  The previous longitudinal study did not differentiate 

between majors; it lumped all students together in each level of understanding.  Therefore, the 

baseline that this study compares the two majors against is an imperfect baseline as it consists of 

both majors and is being used to compare against each major individually.  This, likely, will not 

cause that much trouble, since the students will not have had vastly different college experiences 

by the time they are in Differential Equations. 

The fifth limitation of this study is the limited scope that the researcher will be able to 

take on with this study.  The goal is to measure whether back transfer is happening and, if so, 

whether context affected the amount of back transfer.  Therefore this study aims to measure 

possibly different levels of understanding possessed by seniors compared to students in 

Differential Equations as well as compare Engineering seniors with Mathematics Education 

seniors.  The goal is not to explain how this back transfer occurs or to explain why different 

contexts might correspond to different levels of back transfer.  Answers to those questions would 

require much more extensive and directed research than will be possible in this study and would 

constitute a possible area of future research.   
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Chapter 2 - Literature Review 

The purpose of this study, in general, is to examine what happens to students' calculus 

knowledge after they have left the Calculus sequence.  More specifically, this research attempts 

to measure senior-level students' conceptual understanding of function and accumulation in 

terms of APOS theory.  This is done with the aim of seeing if the group as a whole has forgotten 

or retained their understanding, or if, on the other hand, using the mathematics in their higher-

level classes has actually transferred backwards to increase the students’ conceptual 

understanding. 

This chapter will give an overview of research relevant to this study.  This includes a 

review of the research indicating students’ difficulties with the concepts of function and 

accumulation. To explain the tool used to rate the students’ conceptual understanding, a review 

of APOS theory is provided along with some of its applications.  Finally, a sampling of some of 

the various theories of transfer is given, as well as what research has been done investigating 

backward transfer. 

 Difficulties in Learning Function and Accumulation 

“Function” and “accumulation” are two of the most important concepts in any Calculus 

class.  However, these are two concepts that students have a great deal of trouble learning (Tzur 

& Simon, 2004; Tall, 1993; White & Mitchelmore, 1996).  Even when students do learn these 

topics, they learn them procedural so that they can pass the test rather than learning them 

conceptually and deeply (Tall, 1993). 

 Functions 

There has been a significant amount of research on students’ understanding of function.  

Most have come to the conclusion that students do not understand functions in the way that 

mathematics professors would hope (Even, 1993; Markovits, Eylon, & Bruckheimer, 1986; 

Vinner & Dreyfus, 1989).  Carlson (1998) studied College Algebra students among others in a 

cross-sectional study and came to the conclusion that College Algebra students had a narrow 

view of functions that included the view that all functions should each be definable by a single, 

algebraic formula.  This would exclude most complicated functions, piecewise functions, many 

discontinuous functions, etc. 
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This adherence to algebraic formulae is troublesome because students have more 

problems gaining conceptual understanding when working with algebraic representations of 

functions and transferring from graphical representation to algebraic is even harder than the 

reverse (Markovitz, Eylon, & Bruckheimer 1986).  Clement found that “many students have 

difficulty expressing relationships algebraically” (Clement, Lochhead, & Monk, 1981). 

Students’ problems with functions are not limited to algebraic representations. Carlson 

(1998) studied, in part, students who had passed College Algebra and concluded that many of the 

students have a low level of conceptual understanding, possess a pointwise view of functions, 

and see the evaluation of functions simply as substitution and as a series of memorized 

procedures.  These problems extend to when teachers introduce functions by emphasizing the 

formal definition.  There is evidence that even after studying the formal definition of “function”, 

and even when students could give the formal definition of “function”, they still did not 

understand it and, further, that a reliance on emphasizing the formal definition may be to blame 

(Even, 1993; Vinner & Dreyfus, 1989). 

Conceptual problems in understanding “function” are not limited to those who have 

limited mathematical backgrounds. Clement found that "even after taking a semester or more of 

Calculus, many students have difficulty expressing relationships algebraically" (Clement, 

Lochhead, & Monk, 1981).  This aligns with Carlson’s (1998) findings that even the best College 

Algebra and second semester Calculus students have conceptual difficulty with many of the 

topics in their respective classes. She goes on to say that while second semester Calculus 

students have a stronger, more general view of functions they still encounter difficulties with 

covariation and the dynamic behavior of functions. 

Even students with stronger mathematics backgrounds do not understand “function” as 

strongly as professors would hope (Breidenbach, Dubinsky, Hawks, & Nichols, 1992). In fact, as 

students advance through their college careers, even the basic concept of “function” develops 

slowly (Carlson, 1998).  This extends to those that will teach mathematics in the future. Many 

future teachers still retain numerous misconceptions about functions including the views that 

functions are equations and that functions are "known", simply-defined relationships (Even 

1993). One might hope that these misconceptions disappear before the end of a students’ college 

career, however, in the same study, Even said that even secondary teachers do not necessarily 

have a “modern concept of function”.  This is not just a shortcoming of future teachers; many 
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successful engineering majors have lower conceptual understanding of calculus topics than 

professors would hope (Selden, Selden, Hauk, & Mason, 1999).  This is also not a shortcoming 

of non-mathematicians or undergraduates.  Carlson (1998) found that while graduate students 

had stronger covariational understanding of functions as well as a better handling of multiple 

representations, even the best students do not completely understand “function” to the extent that 

one would like. 

So why is conceptual understanding of “function” really that important if most of our 

students, including those who will become teachers of mathematics, do not fully understand 

function? "The ability of seeing a function or a number both as a process and an object is 

indispensible for a deep understanding of mathematics" (Sfard, 1991). Beyond learning 

mathematics for the sake of learning mathematics, a conceptual understanding of function 

requires, and is required for, the use in fields other than mathematics along with different 

contexts within mathematics (Markovitz, Eylon, & Bruckheimer, 1986).  In particular, many of 

our students are taking mathematics classes to apply them in the future to the context of Physics 

or Engineering.  However, students often have trouble interpreting their mathematical 

understanding in a physics context (Tuminaro, 2004).  This does not necessarily reflect that 

students do not understand the mathematics; even after students have demonstrated in a first 

course in Calculus that they know the concepts, many still cannot solve non-routine problems 

(Selden, Mason, & Selden, 1989). However, competency in procedural skill without conceptual 

understanding compounds problems when applying mathematics to Physics because it prevents 

students from bringing their procedural competency to bear. "They tended to use oversimplified 

algebraic relationships to avoid using calculus because they do not understand the underlying 

assumptions of the relationships" (Cui, Rebello, & Bennett, 2005).  So it is important that 

students have a conceptual understanding of functions if they hope to pursue a field that requires 

the use of functions in problems solving. 

 Accumulation 

Students’ conceptual difficulties are not limited to the topic of “function”; these show up 

in the topic of “accumulation” as well. Accumulation in this study is thought of in terms of 

integration, i.e. the accumulation of a measured quantity when using integration to solve 

problems. This is a crucial concept, since a student cannot fully understand integration without 
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the ability to view integration as accumulation (Thompson & Silverman, 2008).  This is 

compounded by students’ lack of understanding of function because in order to understand 

accumulation, students need a covariational view of function (Thompson & Silverman, 2008).   

Unsurprisingly, students’ conceptual problems with accumulation and integration start 

early.  Few beginning students have a conceptual understanding of integration (Rasslan & Tall, 

2002).  This is not limited to beginning students, however.  Students who have passed a first year 

in Calculus do not have a proper conceptual understanding of integration (Mahir, 2006), and 

many cannot solve non-routine problems even when they know the concepts involved (Selden, 

Mason, & Selden, 1989).  One might expect this from those with limited Calculus experience; 

however, while Differential Equations students showed progress over first year Calculus 

students, most were still unable to solve non-routine Calculus problems (Selden, Selden, Hauk, 

& Mason, 1999).  When confronted with these non-routine problems, students preferred to use 

algebra over calculus even when they knew how to do the calculus (Selden, Selden, Hauk, & 

Mason, 1999; Cui, Rebello, & Bennett, 2005).   

So, general problems working with and understanding accumulation are not limited to the 

first courses in college.  There are many specific problems students have with these concepts as 

well. One of these is that students have trouble with infinity and limits (Tall, 1993; Maharaj, 

2010; Orton, 1983; Thompson & Silverman, 2008).  Students have trouble with integral notation 

(Tall, 1993), evaluating integrals when the function is negative or the upper limit is less than the 

lower limit (Orton, 1980), and evaluating integrals when the function involves an absolute value 

(Mundy, 1984). Students also seem to have trouble understanding what each element means in 

an integral problem (Cui, Rebello, & Bennett, 2007). 

Nguyen (2011) studied students in an introductory, calculus-based engineering physics 

course to investigate their difficulties in applying integration in a physics context as well as what 

hints proved helpful in helping them solve the problems.  He found that students encountered 

significant problems in doing this, including failing to view an integral as a Riemann sum and, 

further, that students’ difficulties using integrals in physics largely originated from their lack of 

regard or their lack of understanding of what quantities were being accumulated. It was not that 

the students could not “do the math”; he said that students are usually “very fluent” while 

computing a mathematical problem but have little to no conceptual understanding of the ideas 

behind that computation. More specifically, many students could find the accumulation of charge 
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by setting up and carrying out an integral, but they did it without considering, conceptually, what 

was being accumulated. More generally, most students did not think about the integral as an 

accumulation at all when solving the problems.  Even more troubling, Nguyen found that 

students might not understand the concept that the integral of a function calculates the area under 

the curve of that function. 

Orton (1983) had some similar findings to Nguyen, saying that a majority of students, 

despite a procedural competency with Riemann sums, viewed the limit of a Riemann sum as an 

approximation to an integral instead of being equal to it.  Along with the importance of Riemann 

sums to integration (Orton 1983; Thompson & Silverman, 2008), these problems point to a larger 

problem with the concept of accumulation.  Thompson and Silverman (2008) took this a step 

further in saying the problem with “the idea of accumulation functions is that it is rarely taught 

with the intention that students actually understand it." 

Despite the possible truth of that last statement, these problems are not permanent 

roadblocks, however. As students move through the Calculus sequence, from Calculus to 

Differential Equations, the number of these Calculus misconceptions decreases (Selden, Selden, 

Hauk, & Mason, 1999).  However, Engineering majors in this study still exhibited worrisome 

abilities to solve non-routine problems and since they "had almost completed their formal 

mathematical educations”, this leaves them “limited opportunity in future mathematics courses to 

improve their non-routine problem solving abilities”. So, even many successful students exhibit 

conceptual difficulties all the way through their college careers. 

 APOS Theory 

After so much talk about what conceptual understanding the students possess on 

particular Calculus topics, one might ask how to measure conceptual understanding.  The 

conceptual framework chosen for this research is APOS Theory.  This was done because it was 

designed for just this type of conceptual research (Dubinsky & MacDonald, 2001; Weyer, 2010; 

Tall, 1999), APOS is used by numerous other studies that this study study can compare to (Tall, 

1999; Asiala, et al., 1996; Weyer, 2010; Maharaj, 2010; Kabael, 2011), and it was necessary to 

line up with the previous longitudinal study that this one builds on (Bennett, Moore, & Nguyen, 

2011). 
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APOS stands for Action-Process-Object-Schema for the levels of understanding that 

students move through as they move toward mastery of a subject.  APOS theory was proposed 

by Dubinsky and was based as an extension to the collegiate level of the last stage of the 

cognitive construction developed by Piaget for children up to about 16 to describe how actions 

become generalized into processes, reified into mental objects, and finally become placed in an 

overall schema (Dubinsky & MacDonald, 2001; Tall, 1999; Weyer, 2010).  APOS theory was 

designed not just as a model to measure the levels of students’ learning and conceptual 

understanding, but also as an attempt to understand “what an educational program can do to help 

in this learning" (Dubinsky & MacDonald, 2001). APOS theory is suited well as a framework for 

analyzing a wide array of mathematical learning pertaining specifically to more complex 

concepts (Tall, 1999; Weyer 2010). Tall (1999) discussed biological and neurological behaviors 

and concluded that there may be biological evidence that backs up the APOS approach, however 

also neurologic reasons to believe it may be imperfect when applied to some specific other fields. 

The first level of the APOS framework is the Action level. "An action is a transformation 

of objects perceived by the individual as essentially external and as requiring, either explicitly or 

from memory, step-by-step instructions on how to perform the operation" (Dubinsky & 

MacDonald, 2001).  Action does not require a deep level of thought and little to no 

understanding; if a student is at the Action level, they are just carrying out procedures.  

Specifically, if a student is unable to understand a function, or to understand that a situation 

involves a function, without a specific formula or equation, then that student is likely at Action 

(Asiala, et al., 1996).  At this level, the student views functions as an equation or formula to be 

evaluated (plug-and-chug) and any manipulation of the function is limited to manipulation of a 

graph or equation. 

"When an action is repeated and the individual reflects upon it, he or she can make an 

internal mental construction called a process which the individual can think of as performing the 

same kind of action, but no longer with the need of external stimuli" (Dubinsky & MacDonald, 

2001). Contrasted with the need for an external control at the Action level, at Process processes 

are internal and under one's control; therefore, students at Process can describe or reverse the 

steps without performing them (Asiala, et al., 1996).  When working with functions, evidence 

that a student is at Process include not needing domain and range to be restricted to numbers, not 

needing specific, defined functions to be able to imagine operations with functions (Breidenbach, 
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Dubinsky, Hawks & Nichols, 1992), viewing a function as transforming inputs to outputs rather 

than one input going to one output, and the ability to compose or invert functions (Asiala, et al., 

1996). 

"An object is constructed from a process when the individual becomes aware of the 

process as a totality and realizes that transformations can act on it" (Dubinsky & MacDonald, 

2001). A process becomes an object when it is viewed as a total thing that can be manipulated 

(Asiala, et al., 1996), and only when a student can think of the process as a fully-fledged object, 

can one say that the concept has been reified (Sfard, 1991).  For example, being able to think of a 

set of all positive functions requires an object view of function because one first has to be able to 

think of a process that only outputs positive values and then be able to think of those infinitely 

many different and not specifically defined processes as objects that can be collected into a set.  

Because so much upper level mathematics requires the manipulation of functions as objects, 

Object level understanding of “function” is important to be able to understand mathematics 

(Sfard, 1991).  However, the shift from process to object is difficult and not many teaching 

strategies have been successful in helping students make this transition (Asiala, et al., 1996). 

"A schema for a certain mathematical concept is an individual’s collection of actions, 

processes, objects, and other schemas which are linked by some general principles to form a 

framework in the individual’s mind that may be brought to bear upon a problem situation 

involving that concept" (Dubinsky & MacDonald, 2001). For example, functions and operations 

on them can be made into function spaces and applied to things like dual spaces, spaces of linear 

mappings, and function algebras (Asiala, et al., 1996). While the final goal is for students’ 

understanding to reach the level of Schema (Weyer, 2010), the levels aren't necessarily learned 

linearly in this order, but instead are more of a "partially ordered sequence" (Dubinsky & 

MacDonald, 2001; Weyer, 2010). Unlike the other three levels that have stronger definitions and 

plenty of supporting research, the idea of the Schema level has not been as strongly formulated 

(Asiala, et al., 1996). 

APOS theory is not without its limitations. Research into where students rate in terms of 

APOS theory can be difficult because APOS only measures to which level a student is capable of 

understanding a concept, it does not offer any information to which level a student will respond 

since a student will not always respond to their highest level of understanding (Dubinsky, 2000).  

"The fact that an individual possesses a certain mental structure does not mean that he or she will 
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necessarily apply it in a given situation" (Maharaj, 2010). One reason this happens is that, when 

solving a problem, students tend to fall back on earlier, more familiar mathematical techniques 

with which they are more comfortable (Selden, Selden, Hauk, & Mason, 1999). Another is that 

regardless of comfort level, a student “can have the knowledge, but not think of using it" 

(Selden, Selden, Hauk, & Mason, 1999).  In general, quantitative results in APOS will not be 

entirely reliable because of this inherent mobility of students through the levels as they work a 

problem, but qualitative results in APOS are time consuming, necessitating smaller sample size 

(Dubinsky, 2000). 

Quite a few researchers have looked at APOS in mathematics; however most have looked 

at the movement from Action to Process. Selden, et al. (1999) studied Differential Equations 

students and found that they have a tendency to fall back on lower-level techniques including 

relying more often on arithmetic and algebraic techniques rather than calculus ones.  This may 

have been less to do with a lack of understanding and more to do with students having the proper 

knowledge, but not thinking of using it (Selden, Selden, Hauk, & Mason, 1999). 

There appears to be less research on movement in the higher levels, specifically little 

research of the Schema stage. Weyer (2010) studies 22 undergraduate students in a Discrete 

Mathematics course; most started at Action with some at Process.  She said "some conclusions 

can be drawn from the findings of this study. The findings show that even after years in math 

classes, education is not getting people past the Process stage.”  She also observed that 

Mathematics majors are usually the ones likely to achieve Object and Schema stage.  

Kabael (2011) looked at Mathematics Education students’ understanding of single and 

two-variable functions in a two-variable calculus class.  That study found that students range all 

the way from Action up to Object level but found that there were probably none in Schema. 

Further than that, Sfard (1991) found that the Object level is difficult to reach and many do not 

do so. 

Dubinsky (2000) clarified Schema in his discussion of cosets: Schema "will be coherent 

in the sense that the individual will have some means (explicit or implicit), perhaps the formal 

definition, of determining, for any phenomenon encountered, what relationship it has to her or 

his conception of cosets." So in this way, Schema is what allows students to effectively evaluate 

new information and new situations and know how they fit into their current understanding of 

the concept. 
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 Theories of Transfer 

Much of the research on the transfer of knowledge between contexts began with 

Thorndike’s study of identical elements between problems (Thorndike & Woodworth, 1901; 

Thorndike, 1906).  He took a limited view on transfer, saying it occurs by applying knowledge 

from one problem to identical elements in another problem.  This is the view that became the 

traditional view of transfer.  Traditional transfer studies “privilege the perspective of the observer 

and rely on models of expert performance, accepting as evidence of transfer only specific 

correspondences defined a priori as being the “right” mappings” (Lobato, 2006). Gick and 

Holyoak (1980) described transfer, saying it compares situations the expert perceives to be 

analogous and discusses how students will discover these identical elements to solve the new 

problem. Unfortunately, this view led to the opinion that transfer does not happen in a broad way 

because traditional transfer is difficult for students (Bransford & Schwartz, 1999; Clement, 

Lochhead, & Monk, 1981). 

In order to have transfer, a student must be able to understand the concept in the first 

context (Bransford & Schwartz, 1999).  Nguyen (2011) found that student's problems working 

with integrals in physics problems came from their lack of understanding or their disregard for 

what was being accumulated. Transfer does not have to be limited to moving to a new field, it 

can involve transferring within a field; many students who have passed a first Calculus course 

cannot solve non-routine problems even when those problems involved known ideas (Selden, 

Mason, & Selden, 1989). Rebello, et al. (2007) looked at transfer from a structured context (an 

undergraduate Mathematics course) to an unstructured one (approximated by an undergraduate 

Physics course).  They reasoned that if students cannot transfer their mathematical understanding 

to a Physics class, they are unlikely to be able to transfer it to real-world situations. They found 

that “the main difficulty that students appear to have does not lie in their lack of understanding of 

mathematics per se, rather it lies in their inability to see how mathematics is appropriately 

applied to physics problems", i.e. lack of transfer in the traditional sense.  In fact, the common 

complaint among Physics and Engineering professors that they receive their students out of 

mathematics classes without sufficient mathematics preparation likely is due to the students’ 

inability to transfer their mathematics knowledge to a Physics context in the traditional view 

(Cui, 2006; Rebello, et al., 2007). 
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Cui (2006) studied students taking a second semester of an Engineering Physics course 

and found that Calculus students retained their mathematics knowledge well and solved calculus 

problems easily; however, they had difficulties applying their knowledge to physics problems 

despite having seen similar problems previously. Cui found that one of the problems was that 

students could not distinguish the important factors in a problem and so they resorted to novice-

level strategies to solve them.  For example, the students could not decide the bounds and 

variable of integration despite competency with integration in Calculus.  Tuminaro (2004) made 

a similar finding, saying a major cause for students’ failure in applying mathematical knowledge 

to physics problem solving was not the lack of the necessary knowledge but the inability to apply 

that knowledge in a physics context. 

In another study involving traditional transfer, students who had reviewed fractions using 

paper strip manipulatives did not draw on this experience the next day when comparing similar 

fraction problems (Tzur, 2004).  Tzur blamed this on students’ learning with these manipulatives 

as being participatory whereas answering the questions required an anticipatory strategy. But 

regardless the reason, the end result was another failure of students to transfer their knowledge in 

the traditional sense.  This is unsurprising since "transferring from analogous examples can be 

challenging even for sophisticated and motivated learners" (Gentner, Loewenstein, & Thompson, 

2004). 

Nguyen (2011) blamed this phenomenon in his study on an unbalance between 

conceptual and procedural knowledge leading to students’ to have difficulties in applying their 

mathematical knowledge to physics.  For example, many students could not recognize work as 

the integral of force despite having been taught that, and those that could do so did not 

necessarily have a conceptual understanding of what they were doing. 

Gick & Holyoak (1980) found that traditional transfer is not likely even if students 

remember previous example because they do not necessarily see the usefulness of the previous 

example. They presented students with the following Attack-Dispersion story: 

 

"A general wishes to capture a fortress located in the center of a country. There are many 

roads radiating outward from the fortress. All have been mined so that while small groups 

of men can pass over the roads safely, any large force will detonate the mines. A full-

scale direct attack is therefore impossible. The general’s solution is to divide his army 
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into small groups, send each group to the head of a different road, and have the groups 

converge simultaneously on the fortress.” 

 

They then presented the students with the following Radiation problem: 

 

"Suppose you are a doctor faced with a patient who has a malignant tumor in his 

stomach. It is impossible to operate on the patient, but unless the tumor is destroyed the 

patient will die. There is a kind of ray that can be used to destroy the tumor. If the rays 

reach the tumor all at once at a sufficiently high intensity, the tumor will be destroyed. 

Unfortunately, at this intensity the healthy tissue that the rays pass through on the way to 

the tumor will also be destroyed. At lower intensities the rays are harmless to healthy 

tissue, but they will not affect the tumor either. What type of procedure might be used to 

destroy the tumor with the rays, and at the same time avoid destroying the healthy 

tissue?" 

 

The solution to the Radiation problem is analogous to the Attack-Dispersion story: 

simultaneously fire several low-intensity rays at the tumor from many different directions. Doing 

this will prevent dangerous amounts of rays from passing through any healthy tissue leaving 

them unharmed, and still have the effect of concentrating the rays on the tumor in sufficient 

intensity to destroy the tumor. Students were presented with the Attack-Dispersion story and 

asked to solve the Radiation problem. Despite the nearly identically analogous situations, the 

study found that students still failed to transfer their knowledge without hints in order to be able 

to solve the problem. 

Selden, et al. (1999) also recorded a failure in traditional transfer in their study of 

Differential Equation students solving non-routine problems (Selden, Selden, Hauk, & Mason, 

1999). They found that Differential Equations students were still mostly unable to solve non-

routine calculus problems; they tended to use algebra over calculus when solving non-routine 

problems despite a sufficient understanding of calculus. However, they did show progress over 

first year calculus students. This last observation, along with the many studies failing to find 

traditional transfer, indicates that perhaps a new view of transfer is needed. 
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It would seem that the traditional definition of transfer would be the common sense 

definition: because a student has seen something before, they should be able to solve the same 

problem in a different context. That would seem to be what learning is all about; however, this 

view of transfer is hard to measure and appears to indicate that students do not transfer their 

knowledge. Traditional transfer does not seem to happen even though we have all experienced it 

in our own lives, so this must be a failure in the way we have defined transfer. We must have to 

define it in a different way, not least of all because backward transfer (the purpose of this study) 

does not make sense with the view of traditional transfer.  In traditional transfer, you learn 

something and then transfer it over to a new context by means of analogous elements.  Any 

effect of this new situation on the old one would represent new learning and would not take 

effect until one looked back at the old situation, in which case it would just be more transfer.  

Luckily, many researchers have come to the conclusion that the traditional view of transfer ought 

to be more broadly defined (Bransford & Schwartz, 1999; Lobato & Seibert, 2002; Lobato, 

2006; Rebello, et al., 2007; Hohensee, 2011). 

 Alternative Views of Transfer 

The traditional view of transfer is oriented from the view of an expert; this is the view 

that has dominated earlier research (Hohensee, 2011).  Part of the problem with the traditional 

view is that what experts designate as a surface feature can give students more difficulties than 

one might expect (Lobato & Seibert, 2002).  Lobato (2003) saw this problem and shifted from an 

“expert” point of view to an “actor’s” point of view.   

Actor oriented transfer (AOT) looks at learning and transfer more broadly (Lobato, 

2006).  Traditional transfer relies on students solving problems that experts have decided have 

similar structural forms but different surface features (Lobato, 2003, 2006). Instead of seeing if 

the students can view the situation in the way an expert sees it as similar, AOT looks at how a 

student views situations as similar (Lobato, 2003).  It considers any influence of prior 

experiences on students’ handling of new problems (Lobato, 2006).  An actor’s view of transfer 

gives another difference from traditional transfer; the traditional view only counts "correct" 

strategies as evidence of transfer, whereas in AOT even incorrect strategies can show evidence 

of earlier learning (Lobato, 2003). 
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Lobato and Seibert (2002) conducted a study of 8th – 10th graders where they examined 

slopes in terms of making ramps of certain heights. They performed two studies: one from a 

traditional view and another from the view of AOT. They failed to find transfer from a 

traditional point of view; students recalled the definition of slope but rejected it as irrelevant to 

the problem. The students viewed the similarities between the presented problems in a different 

way than the experts expected them to.  However, in terms of AOT, the students were more 

successful. The AOT study found substantial influence of previous learning on student's 

understanding of proportional reasoning and over several sessions the students greatly improved 

their proportional reasoning. 

In a similar paper, Lobato (2003) described her study where students learned to find 

slopes of staircases and then applied this to slopes of playground slides in an attempt to measure 

transfer.  From a traditional point of view, the students should have looked past the surface 

differences of staircases versus slides, noticed the underlying similarities, and been able to 

transfer their understanding to the new problem.  However, the student fared poorly from the 

traditional point of view; only 40% of the students showed evidence of transfer.  The students 

viewed the similarities and differences between the two problems differently than the experts 

did. From the point of view of AOT, the study revealed significant evidence of transfer, with 

every student showing some amount of transfer. 

Cui (2006) studied students in a second semester Engineering Physics course. The 

students had a sufficient mathematical skill and solved calculus problems easily, but had 

difficulties applying this knowledge to physics problems despite seeing similar problems 

previously. From a traditional point of view, this would represent a failure to transfer their 

mathematical skill. The students could not pick out the important features in the problem and, as 

a result, resorted to novice-level strategies to solve them.  For example, students could not decide 

on the bounds and variable of integration despite being able to do so in a mathematical context. 

However, a strong correlation between students’ calculus and physics performances on a physics 

exam indicates AOT despite the poor traditional transfer. 

Karakök (2009) conducted a study of junior year Physics students which he says is one of 

the few, or the only, study of transfer in a post-Calculus mathematics or physics course to that 

point.  Karakök looked at transfer of eigenvalues and eigenvectors to physics from the point of 
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view of AOT.  Again, traditional transfer was elusive with almost none of the participants 

exhibiting any, but once again, the students exhibited signs of AOT. 

Bransford and Schwartz (1999) were of the same view that evidence of transfer emerges 

when we adapt what we are looking for to the way students view problems.  They described the 

traditional point of view of transfer as relying on "sequestered problem solving" (SPS).  That is, 

after a student learns a concept, the traditional point of view then has students directly apply this 

knowledge to solve a new problem with no context, no discussion, and no repeated measurement 

beyond the first attempts to solve the problem. Bransford and Schwartz theorized that SPS and 

the related "direct application" theory of transfer was responsible for the belief that transfer does 

not happen.   

They, instead, take a more actor oriented approach and broaden transfer to include 

"preparation for future learning" (PFL), which is more akin to practicing how to learn and looks 

at transfer as what effects it has on how people learn new information. Rather than focus on how 

far off novices are from the answers experts expect, PFL focuses instead on how these people are 

more prepared than those without the previous experiences. Instead of measuring to what degree 

students can answer new problems, PFL focuses on "evidence for useful learning trajectories".  

They give the example of a recently graduated mathematics educator.  The educators do 

not enter the classroom for the first time as experts, but instead with the preparation to learn to be 

experts.  College has not taught them exactly the skills they will need to directly transfer to the 

classroom as much as it has taught them how to assess what skills they need and how to achieve 

them. They say transfer does not reveal itself easily in the form of spontaneously being able to 

solve new problems, but instead in how students use strategies to learn the correct answers and 

how they "critically evaluate new information".    

According to Bransford and Schwartz, PFL focuses on assumptions students make and 

the sophistication of their solution strategies. In this way, PFL looks for active conceptual change 

rather than the passive persistence of knowledge and behaviors that SPS does. This broader view 

is why PFL allows for the discovery of transfer that would be missed by a SPS view of transfer 

and so PFL makes evidence of transfer more visible. 

Singley & Anderson (1989) looked at transfer in the context of text editors.  Their 

research had similarities to PFL.  They asked how learning a text editor affected the learning of a 

second text editor. They found that the benefits of previous experience with the first text editor 
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did not reveal themselves immediately, i.e. that the study failed to find transfer from the 

traditional point of view.  However, the benefits of the experience were greater on the second 

day than the first.  The experience with the first text editor affected the way the students viewed 

the learning and what strategies they used, allowing them to learn the second editor more easily.  

This is evidence of transfer from the actor’s point of view as well as evidence of PFL. 

Another view of transfer from the view of the actor is the concept of Horizontal Transfer 

versus Vertical Transfer (Rebello, et al., 2007).  They define Horizontal Transfer as the ability to 

directly apply knowledge to a problem that is structured similarly to the way knowledge was 

learned, i.e., the ability to do the plug-and-chug problems at the end of the section.  This 

corresponds roughly to the view of transfer as SPS as well as the traditional, expert view of 

transfer. Horizontal Transfer often just relies on pattern matching. 

Vertical Transfer is defined as an ability to apply intuition obtained from learning to a 

non-structured problem to create a solution strategy. Rather than aligning a predetermined 

knowledge structure as in Horizontal Transfer, the student makes one up on the spot through 

repeated constructions and deconstructions of strategies and associations. Vertical Transfer 

involves choosing an appropriate representation from several available ones or making a new 

one.  Vertical Transfer is similar to PFL and AOT. 

So in terms of research, Vertical Transfer would likely be the more fruitful, since it seems 

to align with AOT and PFL.  However, for the same reason, this makes Vertical Transfer harder 

to test for than Horizontal Transfer since it requires more in depth investigation and 

measurement of longer term effects.  Horizontal Transfer is easier to test for because it only 

requires testing students with problems, such as the exercises at the end of the chapter in a 

textbook.  In the end, though, few book problems, but most real-world problems require Vertical 

Transfer rather than Horizontal Transfer (Rebello, et al., 2007). 

A similar, but possibly unknown to Rebello, et al., construction was one of Lateral and 

Vertical Transfer (Gagné, 1966). Lateral Transfer is transfer of knowledge spread broadly over 

situations at the same level of complexity, such as transfer between similar problems or between 

contexts. Gagné’s Vertical Transfer is the transfer of knowledge from lower-level to higher-level 

skills that are in a prerequisite relationship.  So Gagné’s Lateral and Vertical Transfer are similar 

to the Vertical and Horizontal Transfer of Rebello, et al., respectively. 
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Regardless of exactly which flavor of transfer is most correct or most convenient, for the 

purposes of this study, it is only important that transfer will be viewed from an actor’s 

perspective.  Hohensee (2011), who also conducted a study of backward transfer, adopted an 

actor’s point of view of transfer “because the primary interest was to investigate all changes in 

reasoning, not just changes that result in expert-like performance." 

 Back Transfer 

Anecdotally, many students have experienced the situation where they have successfully 

taken a multivariable Calculus course, but they did not really conceptually understand it until 

they took an Electromagnetism Physics course and saw the mathematics in context.  This would 

mean that transferring the knowledge to a new context actually strengthened the previous 

knowledge, i.e. from an AOT view, transfer happened backward.  This is what this paper will 

refer to as “back transfer” or “backward transfer”.   

Beyond anecdotal evidence, there is some logical reason to believe that this phenomenon 

happens. We know students eventually get to Schema since all experts were once students who 

did not start at Schema, and we also know that students do not reach this level by the end of the 

Calculus sequence (Carlson 1998; Kabael, 2011). Since many experts, including many 

Engineers, do not take further mathematics classes after the Calculus sequence and since they do 

not reach Schema in the Calculus series, they likely do it by back transfer driven by using the 

mathematics in the context of their field. 

Selden, et al. (Selden, Selden, Hauk, & Mason, 1999) presented a similar sentiment, 

saying, "Our three studies suggest the folklore that one only really learns a course's material in 

the next course appears to be not quite accurate, rather several courses may be necessary."  They 

also stated that Engineers in this study "had almost completed their formal mathematical 

educations… leaving them limited opportunity in future mathematics courses to improve their 

non-routine problem solving abilities”.  Since Engineers presumably learn to solve non-routine 

problems, it seems that they are gaining this mathematics competency after they have left the 

mathematics courses.  These observations seem to be evidence of back transfer in mathematics. 

 Linguistics 

Most of the previous research on back transfer has been conducted in the field of 

Linguistics (Hohensee, 2011).  This probably should not be too surprising given that the old 
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adage that learning a second language makes learning the third much easier indicates Linguistics 

is a fruitful field for transfer research.  Several studies have found evidence of back transfer 

(Tsimpli, Sorace, Heycock, & Filiaci, 2004; Camarata, Nelson, Gillum, & Camarata, 2009; Su, 

2001; Marton, 2006).  This includes both studies that found productive and unproductive back 

transfer (Tsimpli, Sorace, Heycock, & Filiaci, 2004), as well as studies that found forward and 

back transfer happening in the same students (Su, 2001). 

Camarata, et al. (Camarata, Nelson, Gillum, & Camarata, 2009) studied children with 

specific language impairments. The treatment group was given expressive language intervention 

with no auditory processing training activities and they found that this group made significantly 

greater gains in receptive language skill than did the control group. They concluded that this was 

evidence of productive backward transfer from expressive language skills to receptive language 

skills. 

Su (2001) compared bilingual Chinese speakers (whose second language was English) 

and bilingual English speakers (whose second language was Chinese) with monolingual Chinese 

and English controls. Su found that intermediate and advanced EFL (English as a Foreign 

Language) speakers (whose first language is Chinese) had different word order strategies when 

processing their first language (Chinese) than monolingual native Chinese speakers.  This 

indicates that bilingual speakers apply experience from their new language to process their old 

language, resulting in back transfer. 

Marton (2006) gives an example that resembles the findings of Su. He gives an example 

of a Cantonese speaker hearing a word for the first time who cannot determine the vocal aspects 

(sound and tone) of the word.  The speaker then hears a second word with the same sound but 

different tone and immediately knows the tone of the second word and that of the first. In this 

way, there is immediate forward and backward transfer as each word reinforces the other. 

 Other Research 

Gentner, Loewenstein, and Thompson (2004) conducted a study with professional 

management consultants. The consultants were split into two groups: a comparison group and a 

separate case group; both groups were given two analogous situations. The comparison group 

was given both situations and asked to explain the situations and explore the similarities between 

the two. The separate case group was given the two situations one at a time and after each were 
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asked to explain the situations. After these two situations were discussed, both groups were 

asked to recall an example from their experience that resembled the situations.  Despite both 

groups having similar amounts of experience, the comparison group was able to retrieve better 

and more appropriate experiences from their memory than was the separate case group.  They 

also ran a similar experiment where the separate case group was given the analogy between the 

situations, but the group that was given the comparison still did not fare as well as the 

comparison group. These results indicate that the comparison group is applying this new 

information to reinterpret their old experiences in light of the new comparison. In this way, 

having students compare two partially understood situations themselves facilitates backward 

transfer as well as forward transfer more effectively than when they are told the comparison. 

 Research in Mathematics 

Seemingly, the only major study of back transfer in Mathematics was conducted by 

Hohensee (2011). He defined backward transfer as the influence of new knowledge on prior 

knowledge by gaining and generalizing the new knowledge. Hohensee gave a pre-interview on 

linear functions, then instructed students on quadratic functions, and followed up with a post-

interview on linear functions.  His first iteration found unproductive effects of back transfer 

where instruction on quadratic functions actually decreased students' effectiveness evaluating 

linear functions.  While this is not the type of back transfer that educators hope will happen, it is 

still effective evidence that back transfer is happening. 

Hohensee then revised his instruction to try to correct the problems and attempt to use 

quadratic functions to deepen student understanding of linear functions. This time it was 

successful: after instruction on quadratic functions, students reasoned more productively about 

linear functions including proportional reasoning, drawing diagrams, and having meaningful 

explanations of division.  Students reasoned more productively with changes in quantity during 

post-interview with linear and quadratic functions despite not receiving any more instruction on 

linear functions. In particular, the average students and below average students benefitted the 

most in their understanding of linear functions just by studying quadratic functions.  Especially 

in light of the first, less than successful iteration, this shows not only that backward transfer 

occurs, but also the important effect of proper instruction on eliciting it. 
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 Previous Longitudinal Study 

This study aims to build upon a previous longitudinal study (Bennett, Moore, and 

Nguyen, 2011) that rated students’ understanding of “function” and “accumulation” on the 

APOS scale as they moved through the Calculus sequence.  That study began with a group of 

volunteers selected from Calculus I each of whom were brought in for an hour-long, semi-

structured conversation-style, one-on-one interviews that were designed to uncover the student’s 

conceptual understanding to allow for rating on a modified APOS scale.  The standard APOS 

scale was modified in order to refine it by adding the intermediate stages of Action/Process and 

Process/Object for students on the border of the respective APOS levels.  The study tracked the 

students as they moved through Calculus II, III, and Differential Equations and reinterviewed 

them once or twice in each class to rerate them on the modified APOS scale.  The following 

graph shows the results of the students’ ratings throughout the Calculus sequence: 

 

 

 

 

One can pull out many observations from the above graph.  We can see that in Calculus I, 

students only show up in the Action, Action/Process, and Process levels; there are none in 

Process/Object or Object.  This makes sense; one would expect Calculus I students to start off in 

the lower levels of conceptual understanding.  Once they gain more experience, we see some of 

Figure 2.1 APOS distribution of students in previous longitudinal study 
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the students in Calculus II begin to move into the Process/Object level; however, most of the 

Calculus II students are still in Process or below.  Others have noted the difficulties of Calculus 

students when it comes to conceptually understanding the mathematics (Clement, Lochhead, & 

Monk, 1981; White & Mitchelmore, 1996). 

There is not much conceptual improvement of the students as a whole between Calculus 

II and Calculus III.  As a result, there are a fair number of students who have still not even 

advanced into the Process stage.  This aligns somewhat with what Breidenbach, et al. 

(Breidenbach, Dubinsky, Hawks, & Nichols, 1992) found when they said that even students with 

a fair amount of mathematics do not understand the function concept.  However, this longitudinal 

study found that this cannot be said as a blanket statement; almost half of the students in 

Calculus III are at least at the Process level.  This indicates that many Calculus III students have 

at least a fair conceptual understanding of “function” and “accumulation”. 

Finally, in Differential Equations students begin to gain an Object level understanding.  

This is not unexpected because Differential Equations is the class in which students must heavily 

use functions as objects as inputs to equations and as solutions to problems. This study does 

seem, however, slightly at odds with some previous studies. Selden, et al. (Selden, Selden, Hauk, 

& Mason, 1999) concluded that Differential Equations students were still mostly unable to solve 

non-routine Calculus problems.  This would seem to indicate that they do not have a strong 

conceptual understanding, but over half of the Differential Equations students were measured at 

Process or above.  These two findings are not necessarily contradictions, though.  For one, 

almost half of the Differential Equations students are not even at Process.  Second, solving non-

routine Calculus problems may be sufficiently different enough that problems with transfer begin 

to become evident.  Selden, et al. did make the observation, though, that they showed progress 

over first year Calculus students, which is in agreement with the results of the longitudinal study. 

This study also seems to disagree with the statement made by Cui, Rebello, and Bennett 

(2005) when they said that Calculus students “tended to use oversimplified algebraic 

relationships to avoid using calculus because they do not understand the underlying 

assumptions”.  Many of the students in Differential Equations do have a strong conceptual 

understanding of the mathematics.  However, this is probably not as different as it appears.  

Their study was a small study looking to measure transfer from Calculus to Physics.  Almost half 

of Differential Equations students still do not have a strong understanding of mathematics and 
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we have already seen that transfer, in the traditional sense, is extremely hard to measure.  The 

only real difference was that the longitudinal study was sufficiently large enough and long 

enough to notice the subtleties and differences in the conceptual understanding of mathematics 

students.  

Students in Differential Equations are far from a homogenous group; they range from the 

lowest level of understanding, Action, all the way up to Object.  This variability makes 

statements about “average” Calculus students difficult. This general distribution of students in 

the Calculus sequence, including the lack of students at the Schema level, aligns with the 

findings of Kabael (2011) who found that students reach from Action up to Object but that there 

were probably none in Schema. 

Carlson (1998) did a cross-sectional study that had a similar purpose to this longitudinal 

study: to see what level students understanding is at in various stages of college. However, she 

did not use the framework of APOS theory.  Carlson studied three different groups: 30 post-

College Algebra students, 16 second-semester Calculus students, and 14 graduate students.  She 

concluded that many students just out of College Algebra have a narrow view of “function” 

where all functions should be definable by a single algebraic formula, they possess a pointwise 

view of functions, and they view evaluation of function as algebraic substitution and as a 

memorized procedure.  This would be the equivalent of saying that they are mainly at Action.  

The longitudinal study agrees that this is true of many of them, and is not true of all of them. 

Carlson found that second semester (Calculus II) students have a more general view of 

functions, but still have difficulties with covariation and dynamic representations. She said that 

even the best students in the first two groups have trouble with some concepts in their respective 

classes, but high performing second semester Calculus students viewed functions as processes.  

This is similar to saying that Calculus II students have deeper conceptual understanding than 

Calculus I students and the highest are around the Process level, but not all of them are yet at 

Process.  The longitudinal study agrees with this finding also.  

Carlson found that the concept of “function” develops slowly as students move through 

their undergraduate career and that even the best students do not totally understand “function”.  

By the time they become graduate students, however, they have stronger understanding of 

covariation and multiple representations. The first sentence aligns with the finding that the 

students, as a whole, in the longitudinal study slowly increase through the levels but do not reach 
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the level of Schema by the end of the Calculus sequence.  The second sentence essentially says 

that graduate students have likely ascended at least to the levels of Process and Object.  This is 

also supported by the longitudinal study that found that many students do get into the Object 

level by the end of Differential Equation. 

 Summary 

The problems students encounter with “function” and “accumulation” have been laid out 

in this chapter as well a description of APOS theory and studies of forward and backward 

transfer.  The previous longitudinal study, of which this will be an extension, was also described.  

This study will attempt to extend the longitudinal one by measuring, on the same modified 

APOS scale, where senior-level students are in their understanding of “function” and 

“accumulation”.  It will use this to attempt to measure any amount of back transfer from 

Engineering and Mathematics Education majors that might be observed. 

Since the traditional view of transfer is difficult to measure and seemingly limited in 

scope, and since backward transfer does not make sense under the traditional view, this research 

will adopt an actor’s point of view of transfer in line with AOT, PFL, or Vertical Transfer.  

However, exactly which specific view of transfer is not too important since evidence of back 

transfer will be inferred by any increase in students’ understanding of the Calculus concepts 

despite having no more Calculus instruction. 

Studying the understanding of senior-level Engineering and Mathematics Education 

majors is especially of interest in light of Even’s (1993) conclusion that many prospective 

teachers still have many conceptual problems with functions and that many secondary teachers 

do not have a “modern concept of a function”.  On the other hand, Vinner & Dreyfus (1989) 

found that the performance of junior high teachers was similar to mathematics majors.  About 

Engineers, Cui, Rebello, and Bennett (2005) and Selden, Selden, Hauk, & Mason (1999), among 

others, have documented their conceptual problems including misconceptions, tending to use 

algebra instead of calculus in calculus problems, and generally not having the levels of 

understanding that one would hope. 
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Chapter 3 - Methodology 

 Purpose of the Study 

This study aims to measure growth of students’ understanding of calculus concepts as a 

result of back transfer from classes taken after they have advanced beyond the Calculus 

sequence. Student interviews were used to assess conceptual understanding and the distribution 

of students among the levels was then compared against a previous longitudinal study to 

determine if back transfer was occurring.  Other qualitative methods as well as some quantitative 

methods were also used to analyze students’ understanding. 

 Research Questions 

The questions that this research will attempt to answer about student understanding and 

back transfer are the following: 

1. Does back transfer occur? 

2. If so, does the application of math in different contexts or majors cause different 

levels of back transfer? 

 Participants and Setting 

This study took place in a Midwestern university of about 24,000 undergraduate and 

graduate students located in a community of about 52,000 people.  The participants consisted of 

20 senior-level engineering majors and nine senior-level mathematics education majors. Of the 

nine Mathematics Education seniors interviewed, roughly half were male (5 out of 9) compared 

to the 20 Engineering seniors of which all 20 were male. Each group was selected from their 

classes in the Spring semester of 2011.  The engineering majors were recruited from ECE512: 

Linear Systems in the College of Engineering.  The mathematics education majors were recruited 

from MATH 570: History of Mathematics in the Mathematics Department. 

All participants cooperated voluntarily and signed the University’s Informed Consent 

Form after being told about the research and their role in it as well as having any question 

answered that they might have regarding the interview process.  Students were informed that 

their anonymity would be maintained through the use of pseudonyms. 
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 Data Collection  

 Longitudinal Study 

This study was developed from a previous longitudinal study that was conducted from 

Fall 2009 to Spring 2011.  The purpose of that study was to understand how students’ conceptual 

understanding grew within the Calculus sequence.  This was accomplished by interviewing 

students once or twice a semester to assess their conceptual understanding of certain calculus 

topics including function and accumulation in regards to integration. 

Initial recruiting started with students from Math 220: Analytical Geometry and Calculus 

I during Fall 2009.  These students participated in hour-long, one-on-one interviews each 

semester as they progressed through the Calculus sequence: from Math 220 to Math 240: 

Elementary Differential Equations.  The students’ conceptual understanding was rated each 

semester and the breakdown for each class was graphed (see Results).  This graph was used as 

the basis for the measure of conceptual growth for this study. 

 Cross Sectional Study 

This study is a cross sectional study of senior-level students in engineering and 

mathematics education students that compares these students with the results of the previous 

longitudinal study to determine if any back transfer occurred. 

The senior level students described in the Participants and Setting section were recruited 

for hour-long, one-on-one interviews.  The researcher visited the Spring 2011 ECE512: Linear 

Systems and MATH 570: History of Mathematics classes to recruit students for the interviews in 

exchange for 10 dollars.  Volunteers were asked to indicate to the researcher what times they 

would be available to be interviewed and then the students were each emailed to set up an 

interview with them based on these times.  

Each interview was conducted by the researcher and took place in a conference room in 

the mathematics building at the time agreed upon with the student.  Before the interview began, 

the student was informed of the purpose of the research as well as given an informed consent 

form to sign if they chose and asked for their permission to be recorded.  If permission was 

granted, a digital recording device was used throughout the interview to capture the audio for 

later analysis. 
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Interviews were conversation-style following a protocol (see Appendix B - Interview 

Protocol) with predetermined questions along with spontaneous, related follow-up questions 

determined by the course of the interview to get at understanding.  Questions were taken mostly 

from the level of Calculus I and II with two questions coming from Differential Equations.  The 

questions were chosen based on whether each would demonstrate a student’s understanding of 

various calculus concepts including function, differentiation, and integration. 

The following is an excerpt from one of the interviews that illustrates the conversational 

style of the interviews that starts with a protocol question and continues with spontaneous, 

unscripted questions to further reveal how the student understood the concept: 

Researcher: So, what is […] a function? 

[…] 

Interviewee: It's a formula using ...uh I think of a function as you've got like your what 

it's called and then like equal and then you've got your formula of the… 

the rest of the... 

Researcher: So a function is an equation then? 

Interviewee: Yeah, an equation. um... 

Researcher: So if we think about... um... So is any equation a function? 

Interviewee: Off the top of my head, I want to say yeah, but it seems like a trick 

question. I mean, I think there's got to be some… 

[…] 

Researcher: So, y equals x squared: that's a function, right? It's a parabola. 

Interviewee: Doesn't it have to be like differentiable at points. I don't know. Something. 

Maybe not. Or continuous. It has to be continuous doesn't it? Maybe not. 

Because you can have to sum of... yeah. So this would look like... 

Researcher: [Drawing a discontinuous function] So is that a function? 

Interviewee: Uh... yeah. I think it is. 

Researcher: Ok. So it doesn't have to be continuous? 

Interviewee: I think that's right. 
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Each thread of questioning continued in this way until the researcher was satisfied that 

the student’s level of understanding had been revealed.  At the end of the interview, students 

were given 10 dollars and had any questions they might have answered. 

The interview data was analyzed in three passes in order to discover trends in learning 

and understanding.  The first pass was qualitative: rating students based on the modified APOS 

rating.  The second pass was a quantitative attempt to classify different groups based on 

vocabularies.  This quantitative pass prompted a third pass that was a qualitative classification of 

students based on confidence and willingness to participate in answering questions. 

 Data Analysis 

After all interviews had been completed, each interview was transcribed personally by 

the researcher by listening to digital media files of the interview and typing with the aid of 

transcribing software.  The level of understanding of function and accumulation was assessed for 

each student based on a modified APOS scale. 

 1st
 Pass – Rating on a Modified APOS Scale 

All students were rated on a modified APOS scale.  This scale was created by modifying 

the standard APOS scale by adding the intermediate levels Action/Process and Process/Object 

between the standard Action and Process levels and the Process and Object levels respectively.  

A student falling in one of these two levels indicated that they could sometimes operate at the 

higher level but they could not operate fully at this level and still relied heavily on the lower 

level of understanding. This modification allowed for a finer scale that was more suited to 

semester by semester comparisons. 

A student was rated by the researcher by analyzing how they answered the series of 

questions in the interview and deciding to what level a student could think about a particular 

topic. A student would be rated at a particular level if the researcher felt that the student could 

think about a topic and operate within a problem at that level.  The rating was not an indication 

to which level a student would naturally operate when answering a question but rather an 

indication of the highest level a student could reasonably operate when answering a question (see 

Appendix A - Modified APOS Rubric). 

The overall rating for each student was assigned based on a composite of the student’s 

individual ratings on each question.  Once all students had been rated, the percent of engineering 
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majors and the percent of mathematics education majors at each level were graphed (see 

Results).  The distributions among the levels for each major was then compared against those for 

the Differential Equations students to observe any trends in the distribution that would indicate 

back transfer occurring after the Calculus sequence. 

 2nd
 Pass – Non-Negative Matrix Factorization 

Data mining techniques were next used with two goals in mind. First was the hope to 

develop an automated model for differentiating students based on conceptual understanding or 

any other significant distinction.  This could allow the researcher to rate students in an automated 

fashion, thus lowering the amount of time required to do so, and allowing for an expanded 

number of students to be studied. Non-negative matrix factorizations are a standard tool in 

developing such models. A second goal of the factorization was to use computer techniques to 

identify themes that might have been overlooked initially. 

To carry out the non-negative matrix factorization, the transcriptions were used to create 

a matrix where each entry was the total number of times each student said each word. So the 

sixth entry in the eighth row would be the number of times the eighth students said the sixth most 

commonly used word from the interviews. Different variations of this matrix can be created by 

including either all of the words spoken in the interviews by students or some subset of words. 

For example, the most commonly spoken word in the English language is “I”.  Therefore, this 

word will likely not add helpful information. 

There were 29 students and a collection of approximately 4,000 words. Different 

numbers of word were used in different runs depending on which common words were included. 

Then the matrix, V, which would be formed, would be a 29x4000 matrix.  The non-negative 

matrix factorization (NMF) creates two matrices, W and H, whose entries are non-negative and 

whose product, WH, approximates V. W and H were chosen to a local optimization in the 

Frobenius norm. Factorization was handled by the computer program, R, using the NMF package 

which implements the algorithms from Lee & Seung, 2001. 

The dimensions of the two matrices are chosen by the researcher. For example, the 

researcher can choose matrix H to be a 4x4000 matrix, thereby forcing W to be a 29x4 matrix.  

The idea behind the NMF is that matrix H can then by interpreted to have discovered four 

different vocabularies that students use and the relative frequency of each word in each 
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vocabulary.  Matrix W could then be interpreted to represent the relative amount of each 

vocabulary that each student used in hopes of discovering that students could be classified based 

on what vocabularies they used. This factorization can be run many times with different 

restrictions produce various NMFs. Some of the restrictions included using different dimensions 

(different numbers of vocabularies), and throwing out common or uncommon words. Each NMF 

is then reviewed by the researcher in attempt to discover different groups of students.  

Runs were chosen with 3, 4, and 5 vocabularies, and results were similar. Unfortunately, 

none of these factorizations was successful at grouping based on major or level of understanding.  

Some of the factorizations, however, did create groups based on words linked to confidence or 

willingness to participate in answering questions such as “don’t” and “know”, “understand”, etc.  

These groupings prompted coding the transcriptions based on each student’s confidence and 

willingness to participate. 

 3rd
 Pass – Coding 

Sentences, phrases or other segments of information in each interview were individually 

coded using a proprietary coding scheme.  Each code consists of a 5-tuple with the entries 

consisting of Topic, Level of Understanding, Current Representation or Action, Confidence, and 

Willingness to Participate. Topic was rated with a number from 1 to 5 to indicate what the 

general topic that was being discussed.  Level of Understanding was given a rating from 1 to 3 to 

indicate what level the student was working at with 1 being Action, 2 being Process, and 3 being 

Object.   

Since this was a measure of the level at which the student was currently working, the 

intermediate levels Action/Process and Process/Object were not given a number as they describe 

a level of understanding overall and do not lend themselves well to rating individual moments of 

work.  In other words, at a specific point in time, a student will be working at Action, Process, or 

Object, but cannot be working at Action/Process or Process/Object.  Overall, a student’s level of 

understanding may fall between Action and Process or Process and Object however, so these are 

overall ratings.  

The third entry, Current Representation, was coded with a single letter to indicate what 

specific representation of a concept the student was currently discussing: graph, equation, rate of 

change, etc.  Confidence and Willingness to Participate each were coded with a number from 1 
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to 3 where 1 indicated below average, 2 indicated average, and 3 was above average.  The 

following gives a description each entry: 

 

Entry # Entry   Description of Levels 

1  Topic   1:  Function 

     2:  Accumulation 

     3:  Rate of Change 

     4:  Student Not Contributing 

     5:  Miscellaneous Discussion 

 

2  Lev. of Und.  1:  Action 

     2:  Process 

     3:  Object 

 

3  Current Rep.  a:  Accumulation 

     c:  Rate of change 

     d:  Derivative 

e:  Equation 

f:  Formula 

g:  Graph 

i:  Integral 

o:  Operator/operation 

r:  Relationship 

t:  Tangent 

u:  Area under the curve 

 

4  Confidence  1:  The student was not confident in their work. 

2:  The student had average confidence in their     

work. 

     3:  The student was very confident in their work. 
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5  Will. to Part.  1:  The student was not forthcoming with answers. 

     2:  The student answered what was asked. 

3:  The student supplied information and progressed 

discussion on their own without much 

prompting. 

 

For example, one phrase might get coded 21u21.  This would indicate that the researcher 

and student were discussing or working with accumulation at an Action level specifically talking 

about integration as area under the curve.  The student was acting with average confidence but an 

unwillingness to participate in the discussion: short answers and not contributing new 

information, for example.  Each phrase or idea was coded in this way.  

These codes were then used by the researcher to rate each interview with an average level 

of confidence and willingness from 1 to 3 using half steps so that they would be more 

comparable to the rating of the student’s level of understanding on the modified APOS scale. 

The data was then represented in graphical form (see Results). 

 Reliability and Validity 

In the previous longitudinal study, in order to ensure reliability of the results, two 

colleagues independently rated the students and any differences in rating were discussed until all 

three raters were satisfied with a common rating. A rubric was not made that could strictly rate 

each student as each interview was uniquely guided by each student’s level of understanding and 

answers.  However, each rating was guided by the general rubric as well as the researcher’s years 

of experience with teaching and grading student understanding on exams and homework. This 

cross-sectional study utilizes the same rating system and therefore the reliability derives from 

that of the previous study. 

The purpose of this study is to see if there is any growth of student understanding of 

calculus concepts after the student leaves the Calculus sequence as well as to discover any 

differences in such growth between engineers and mathematics education majors. The levels of 

student understanding throughout the Calculus sequence were measured in the previous 

longitudinal study.  So, the levels of understanding of students as they leave the Calculus 

sequence are known. Any significant, measured growth beyond this must necessarily happen 
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after the Calculus sequence.  Likewise, any differences in understanding between the two 

different majors can be attributed to the inherent differences between the majors. 
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Chapter 4 - Results 

 Introduction 

The student interview data was analyzed in three passes in order to discover trends in 

learning and understanding.  The first pass was qualitative: rating students based on the modified 

APOS rating.  The second pass was a quantitative attempt to classify different groups based on 

vocabularies.  This quantitative pass prompted a third pass that was a qualitative classification of 

students based on confidence and willingness to participate in answering questions. 

 1st
 Pass – Qualitative 

Each student was rated on the modified APOS scale as Action, Action/Process, Process, 

Process/Object, or Object based on an overall, composite understanding of the concepts of 

function and accumulation.  Rather than reflecting an average of which level the student worked 

when solving problems, each rating represents the level at which the student could reasonably 

understand the material.  Since research has indicated that students do not reach the Schema level 

by this stage (Carlson 1998; Kabael, 2011), this level was left off of the modified APOS 

framework.  Indeed, none of the students interviewed were at the Schema stage. 

Excerpts from various interviews are presented in this section.  These excerpts are not 

intended to demonstrate all the information that was considered when rating each student.  They 

are presented to provide some examples of statements that might be helpful in rating students, 

especially statements or ideas that are not explicitly laid out in the rating rubric.  They also are 

intended to illustrate certain points of interest in the interviews. 

 Action Level 

Of the 20 Engineering Seniors, only one was rated as having an Action level 

understanding.  Two of the nine Education Seniors were given an Action rating.  All the students 

worked at an Action level at some point since that is usually the easiest way to solve a familiar 

problem.  When a student tries to find the derivative of a polynomial, for example, they do not 

need to think about tangent lines, rates of change, slopes, or derivative operators, they only need 

to think about the exponential and linearity rules of derivatives.  That is, they only need to 

remember the procedure of multiplying the coefficient by the power and then lowering the 

exponent by one.  The student would be working at the Action level regardless of whether they 
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have a higher understanding of the material because they question does not require a higher level 

of thinking.   

Therefore an Action level rating is demonstrated by a lack of working above action rather 

than any particular thing they say.  However, certain themes were more commonly associated 

with students working at an action level.  These included comments such as “that’s the way my 

teacher told me to do it”, “I am/am not a visual learner”, or more directly, “I’m bad at math”. 

The following is an excerpt from the eighth Mathematics Education student interview 

which was rated as Action and exhibits many of these themes: 

 

ED8: Ok, let's see... flower... I'm trying to remember.  

Int: What do you mean? 

ED8: Well, because we put the... ok. Because when you have like even or odd, then you 

can do the flowers.  

Int: Oh, ok. 

ED8: Is this a circle? I think it is. If I remember correctly. This is from Calc II.  

Int: Yeah. 

ED8: I hate parameterizing things. That was one of my least favorite things. I can't do 

it... I can't... I can't graph... I can't see things; I'm not a visual learner.  

ED8: Um... Yes, it would be. 

Int: Would be what? 

ED8: [mumbling] 

Int: Oh, you’re doing… 

ED8: Um... in for t, to be in... one's for it. I tutor every once in... I tutored Calc III last 

semester, so they used... these every once in a while, so I was trying to transform 

back into something that my mind actually, like... I did, um... When you tutor 

enough, it gets stuck in your head. Um...  

ED8: I don't actually remember. I think it's a circle, I have a feeling it's a circle. It's not 

a flower and that's about all I got for you. 

Int: So it’s either a circle or a flower? 

ED8: I don't know, I don't remember. Um, and then you have, like, the heart thing too. I 

just don't remember what shapes because they were ridiculous to me.  
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Int: How would we decide if that is a circle or a flower? 

ED8: Um... We were taught to plug in... you pick your values t you can plug in from 

both of those and then plot it on your x... coordinate system. 

 

The student exhibited many of the traits related to working at an Action level.  When first 

presented with the problem, she attempted to guess the shape based on experience matching the 

shapes with the equations rather than plugging in numbers or thinking about behavior of cosine 

and sine.  After attempting to solve the problem by calling on memorized facts, she tries to think 

about her tutoring experience saying “When you tutor enough, it gets stuck in your head,” 

indicating that she had learned the material through rote memorization. Later, she says, “I just 

don't remember what shapes because they were ridiculous to me.” 

Another common theme is that she says she hates parameterization and says, “I can't see 

things, I'm not a visual learner.” This indicates she did not have a deep understanding of the 

concepts in question; she cannot “see” what is going on when graphing a function.  When finally 

pushed enough, she says “We were taught to plug in... you pick your values t you can plug in 

from both of those and then plot it on your x... coordinate system.” 

The same student exhibited similar methods when answering Question C (see CHAPTER 

1 -  Chapter 1 -Appendix B - Interview Protocol) about finding area under a curve.  This student 

rated at an Action level of accumulation.  The following is an excerpt from the student interview: 

 

Int: Can we figure out where to put that line “c” to maximize the total amount of 

shaded area? 

ED8: You should be able to, yeah.  

Int: Alright. How? 

ED8: I don't know. That’s a good question.  

 Well, because... that line is just... is just an equation. Um... Are you already at a 

maximum point?  

Just put a variable number in for it… You can change it back into an equation 

because that line is just... an equation.  

I don't remember what it is, I've seen it before and I've had to learn it for a test, 

but I... can't recall it at all.  
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You could do that and like plug in different inputs and outputs to see what you get 

for your total shaded region. Like a guess and check method, that's all I can come 

up with right now.  

Int: Ok. So you want to reverse engineer the equation for the line? 

ED8: Um, we can.  

Int: Once we have the equation for it, you have to then take the… 

ED8: …different… oh... Uh, maximum shaded under the curve would be the integral.  

 Um... we put that… right into that...  

 I think you’d have to reverse engineer the equation to take that... Sorry I... keep 

going into my monologue and thinking about stuff.  

Int: That’s fine. 

ED8: The math stuff you're asking about is… 

Int: So, if we have the equation, you’d plug in… you’d put in different points and see 

what the different shaded areas were? 

ED8: mm hmm... so you see like the maximum amount.  

Int: So how do you know what the shaded areas are? How do you find the shaded 

areas? 

ED8: How do I find the shaded areas?  

Int: You said put in different points and find the shaded areas and see which one is the 

biggest… 

ED8: In this equation... See this is why I don't think you should... if you're going to be a 

math teacher you shouldn't go over um... [mumbles] for math because then you 

forget things that you've done before. Um...  

You could also just simplistically move the height up and down and then count all 

your... all the squares that build it... the... concrete way of doing it, um...  

Int: Ok, so estimate the area that gets the most squares? 

ED8: And guesstimate, yeah.  

Int: So you move “c” around, then you’d estimate the little squares and you see which 

one estimates the most little squares? 

ED8: Yeah, that's all there is of it.  
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Um... I'm sure I cut off the, like, the top part. or does it just continue on forever and ever 

and ever... oh, ok. I’m just going to make sure... 

Int: Ok. So, earlier you used a… Well, let me ask this… You want to move that line 

around… 

ED8: But there's other possible way of doing it, right? But... like guess and check way, 

which most... people would... first go to if they didn't know how to change it. And 

then you could change it into the equation.  

And then there's like... totally forgot, but there is a way to figure out... Um... it's... 

the boundaries of it and it just switches at this point.  

I don't remember what they're called. But there's something you can do with both 

of those, I think. You could figure out with an equation, also. You need different 

outputs, then. Like different numbers and then you get the different outputs and 

then you'd have your maximum. 

 

The student’s first reaction to solving the problem was to try to come up with the 

equation for the line.  This was coded as the student working at an Action level.  It is not enough 

by itself to rate the student as having an Action level understanding, but it is enforced by further 

discussion.  The student continued by saying, “I don't remember what it is, I've seen it before and 

I've had to learn it for a test, but I... can't recall it at all,’’ indicating that the student was just 

trying to recall memorized procedures rather than thinking deeply about the concepts involved in 

the problem. 

She then decides that she can move the line to different locations and count the number of 

“squares” that build it: “the concrete way of doing it”.  This gets at the basic idea behind solving 

the problem, but she is still doing it in a procedural way.  This “guess and check” method is the 

discrete version of the correct method; however, it can only hope to estimate the answer.  More 

importantly, it helps to rate the student as only having an Action level understanding of 

integration.  Even after stumbling on the correct method, she is still doing it by plugging in 

inputs one at a time rather than viewing integration dynamically and moving the line around, 

continuously evaluating the change of area. 
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 Action/Process Level 

Two Engineering majors and one Mathematics Education major were rated in the 

intermediate Action/Process level.  These students showed some signs that they could understand 

function and accumulation as being processes, but they had not yet achieved the level of Process.  

These students might exhibit some amounts of understanding of the concepts as processes, but 

trying to work with a Process view pushes their understanding too far, and so they primarily fall 

back to an Action level understanding to answer questions. 

The following is an excerpt from the first Mathematics Education student interview 

illustrating some examples of why this student was rated as Action/Process.  This excerpt begins 

after the student was asked the first part of Question B about graphing the parametric equations. 

 

ED1: Um... cosine... that's, that's, uh... like that... then it goes from zero to two pi, so... 

That's one complete... revolution. So that would be... x of t. And then y of t would 

just be the sine. Which... would be until it makes one revolution, so x one...  

Ok, then a period... one period over two pi.  

Int: Ok, so you graphed x versus t and you graphed y versus t.  What if I wanted to 

graph x versus y, so x and y are on the same graph. 

ED1: On the same graph... um... Um... Maybe you could substitute this equation in for t 

here.  

Or is that not such a good idea? 

Int: So you’re going to substitute y in for t? 

ED1: Right. I’m not going to get any graphs of them... that would give you... but...  

Int: Cosine of sine of t; do you know what that looks like? 

ED1: So, yeah, that's probably...  

Int: So what happens if I plug in 0 in for t?  What x and y do I get? 

ED1: mm... one, zero. So you could plot out points? So that would be...  

 

[Student plots points and decides the graph is the unit circle.] 

 

ED1: So it would be a circle. I guess if we kept plotting points... so it would be... three 

pi over... two... Yeah, it would be a circle.  
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Int: So would it be the whole circle?  Would it go around once or would go around 

twice or whatever? 

ED1: It would... uh, between... two pi... yeah it would just go around once.  

 

Here the student began with some evidence that he was thinking about functions as 

dynamic processes when he graphed the sine and cosine graphs and indicated that they each 

made one full revolution as t ran between 0 and 2 pi.  This could show some indication of the 

student viewing functions dynamically, at least with respect to trigonometric functions. 

This alone is not enough to classify the student in a particular level.  As further evidence, 

the student was later asked for a second time what a function is.  The following is the excerpt 

from this discussion. 

 

Int: So if “function” is different than “graph” and it is different than “equation”, what 

is it? 

ED1: A function is just... I don't know, I'd... I'd still put it as like the process of putting 

in inputs and getting different outputs out.  

Int: So it’s this process of changing things? 

ED1: Right.  

Int: So, can we put functions into functions if it is just this abstract way of changing 

things? 

ED1: No. Um, because you have to have a concrete equation to put into another 

equation. So a function is an equation.  

Int: So a function is an equation? 

ED1: Yeah.  

Int: Didn’t you decide that the process of taking a derivative was a function? 

ED1: Sure, why not. Um... Yeah. But... I mean, the derivative... I get it; it's a process of 

what you can do to something.  

Int: And you said a function is a process? 

ED1: Ok. Yeah.  

Int: So in that sense, a derivative is a function? 

ED1: Yeah.  
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Int: But you also said a function is this tangible thing that you can do something with 

and so that made you say it was an equation again. 

ED1: Yeah, I guess this isn't... It can be an equation but doesn't necessarily have to be. 

But you could have a... I mean, you could have a function of just, like, a plot of 

points. Like if you have your x and your y and whatever it is... I mean, that could 

be a function. And that's not an equation. But you could put it into an equation.  

Int: So it seems like you’re saying that there’s two different kinds of function.  There 

are the ones that are equations and then there are the processes. So can you put the 

second kind into other functions?  Like can I take the process of taking a 

derivative into a function? 

ED1: Yeah. Like can you... can you put a derivative into... Yeah, you could put a 

process onto a function. But you couldn't, like, substitute in derivative for x. 

Int: So there are some functions that I can put in other functions and some functions I 

can’t put in other functions? 

ED1: Yeah. 

 

Here, the student began to describe a function as the process of taking inputs to outputs, 

indicating that the student had some understanding of functions as processes.  When pushed 

further on the topic of composing functions, he decided that functions are the same as equations, 

because one needs an equation to put into another equation.  This indicates that the student may 

not be comfortable thinking about functions as processes and it further demonstrates that the 

student is not thinking about functions as objects beyond having to rely on equation 

representations.  This is strong evidence that the student should not be rated in the 

Process/Object or Object levels.  

When given the example of the derivative operator taking inputs to outputs in the form of 

taking differentiable functions to their derivatives, the student again changed his mind about 

what functions are to allow derivatives to be functions.  This both demonstrates that the student 

has some ability to view functions as being processes independent of equations as well as 

showing that the student may be wrestling with this view and not yet ready to abandon an Action 

view of functions. 
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Finally, the student tries to rectify these two competing views by saying that there are two 

different types of functions: those that are equations that can be put into other functions, and 

those that are processes independent of equations.  This bolsters the view that the student is 

operating in the intermediate level between Action and Process. 

This same student also exhibited some of these same difficulties when discussing 

accumulation in Question C.  The following is the same student’s discussion after being asked to 

maximize the shaded area in Question C. 

 

ED1: The line c? To maximize the shaded area? Well, we'd put it at the top.  

Int: So at the top will maximize the shaded area? 

ED1: Um... well the shaded area is beneath the function and beneath c... and the shaded 

area is above the function and above c. But we want the greatest area, which... I 

mean, it bends this way so the greatest is obviously going to be below the 

function. So we want c as high as we can. 

Int: So if we put it up here, we’ll gain this, but we’ll lose this because it will no longer 

be under the function. 

ED1: Oh. Well, maybe we should maybe put it at the uh, the turning point. The... from 

where it starts... Uh, what would it be? The second derivative or something like 

that.  

Int: What about the second derivative? 

ED1: Um... That's the... what was it called? The... inflection point. Yeah, so... Right. 

Int: So where is an inflection point? 

ED1: Um, where the tangent gets to... starts... going negative, I guess. So where... the 

tangent... 

Int: Do we have negative tangent lines here? 

ED1: No, these tangent points are always positive. Or zero up here. 

Int: So you don’t want to put it all the way at the top anymore? 

ED1: We... Um, this area is obviously, I mean, looks greater than this area. So if we 

scoot it up to the top we would lose that and gain that which is not what we want 

to do.  
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Int: So you’re saying that if we put it all the way up, we get more area than if we put it 

all the way down.  

ED1: Right.  

Int: So somewhere in here, there’s a maximum. 

ED1: Right. Um... So, the maximum would be... uh... this distance from here... from the 

graph to this axis equals this distance.  

Int: Ok, how did you decide that? 

ED1: Um... Picked a number, I guess. It would be... Just from looking at the graph, 

basically. Um, you can see that um... the two distances equal each other. That's 

the widest point, I guess. The... the widest point for the bottom of the shaded 

region to the top of the shaded region. Like the... the point where... they can both 

be equal to each other.  

Int: Ok, so why would we want them both to be equal to each other? How would we 

know that maximizes the area? 

ED1: Um... I guess, basically, by looking at it. I'm not sure why it's maximum. It just... 

is. Um... Yeah. I don't really know how to... describe that process, I guess. It's...  

Int: Well, tell me what you were thinking. 

ED1: Well... You... I mean, I'm just... decided before that you want some of this and 

some of that. So... You're going to have to find the greatest area of this added to 

the greatest area of that. And... It's kind of like when you... have a rectangle... and 

the greatest area of it is going to be, like, the... the... Well, if you have a given 

area... and then that rectangle... and the greatest area is going to be when... one 

side and the other side are closest to each other.  

Int: So when it comes out to be a square? 

ED1: Right. That's the same premise as saying that it'd be this side and... well...  

Int: So you tried to make it like a square? 

ED1: Right, I mean, you want to maximize it by... Yeah, making it... as close to a 

square as possible, basically. 

 

The student started out operating at an Action level.  For example, he stated that the line 

should be put at the inflection point of the graph to maximize the amount of shaded area and that 
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this was the point where the tangent line stated to go negative.  The student may have been 

repeating procedures he had learned to find maxima – i.e. looking for when the tangent line went 

from positive to negative and using second derivatives to check for extrema.  Using rote 

procedures without understanding is a defining feature of Action level work. 

It was clear that the student did not understand the procedures that he was trying to use 

since, his description was incorrect and, more importantly, there are no inflection points or 

negative derivatives in the graph.  He clearly was not using a Process understanding to reason 

through the problem. 

After being pushed in the right direction, the student was able to come up with the correct 

answer: that the line should be place so that the graph intersects it at the half-way point.  That he 

was able to come up with the answer without being led to it may indicate that he could visualize 

the line moving and changing the area.  When compared to some of the other things that this 

student said in other discussions reinforces that this student was beginning to visualize the 

Process view of accumulation.  However, the difficulty he had in trying to describe how he got 

the answer is indicative of not yet being able to fully understand the Process level view. 

 

 Process Level 

Seven of the Engineering majors but only one of the Mathematics Education majors was 

rated at the Process level.  Students working at the Process level with functions can view 

functions dynamically as something that transforms a set of inputs into the set of outputs.  They 

can comfortably understand covariation and are able to visualize changes in the outputs based on 

changes in the inputs. 

Aside from these standard features, another common, but not universal, feature was 

students who understand functions at a Process level, but because of the way the material was 

originally presented to them or whatever other reason, when asked about functions that take 

other functions as inputs and outputs, they resist calling these “functions” and prefer to call them 

“operators” or “transformations”.  As long as they can understand these concepts at a Process 

level, the different vocabulary does not affect their rating since it only manifests as a difference 

in vocabulary and is not conceptually incorrect. 
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The following is an excerpt from the 17th Engineering major’s interview illustrating a 

typical student distinguishing between “functions” and “transformations”.  This student was 

rated as process due to the things said in the following as well as other parts of the interview. 

 

Int: What if we think about the process of taking a derivative?  We take f to f’.  Is the 

process of taking a derivative a function? 

EN17: Um... I would say no. Because, um... You could say maybe y equals... d/dx that's 

f, but then that would be... but if you're saying y is a function of, um... you know, 

x and f is a function of x. You could say that. But, um... just the process of taking 

a derivate is... I think of it as more of a... um... transformation... than anything 

else.  

Int: So what’s the difference? 

EN17: Um... Well, when you... when you take a derivative of something, you're um... 

you're altering it or transforming it. Um... So for example, if you just take... x and 

you take three times x, that's not necessarily a function, it's just... uh, an operation. 

Um... you know, on x.  

Int: So a function takes a number and assigns to it a number and a transformation 

takes something and changes it into something else? 

EN17: Right.  

Int: So if a transformation can change one function into another function, can I 

transform a transformation? 

EN17: Yeah, sure. 

Int: So a transformation can take a transformation and change it? 

EN17: Um... The result of a transformation is something you can do something with, but 

the... I mean that's probably not... correct terminology, but... Um... uh... I'd say it's 

uh, more... process... than anything else, I mean... You can uh... take the 

transformation of something and uh... I don't know.  

Int: Can we add two transformations together, for example? 

EN17: Um... I think it... makes more sense to say that you can add the results of two 

transformations together. 
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The student starts by resisting d/dx as a function because a function relates two variables, 

whereas d/dx as written did not indicate what the independent variable was.  He follows this by 

saying derivative is a transformation because it alters functions and relates this to the process of 

multiplying by 3, which he calls an operation.  So here he is distinguishing between functions as 

a formally written equation that takes numbers as inputs and outputs with operations that alter an 

input.  This distinction was common and when rating these types of students, this kind of answer 

was taken as evidence that the student had a Process level understanding. 

When asked if one can add two transformations, he responds that it "makes more sense to 

say that you can add the results of two transformations" indicating that he is viewing these 

particular functions no deeper than a Process view. Were he viewing the functions in an Object 

view, he should have been comfortable adding two operations as objects themselves instead of 

adding the outputs as objects. 

A Process view of accumulation should manifest itself by the ability to visualize the 

dynamic change in area as the parameters change rather than having to plug in different 

parameters one at a time and comparing the resulting areas.  The following is an excerpt from the 

first Engineering interview that demonstrates this ability while discussing Question C. 

 

EN1: You could like start zeroing in on it that way, maybe, if you got close and you 

could move the other direction if you started to get, you know, started to get 

bigger or something. 

Int: So you're thinking about moving the line and seeing what's happening to the area? 

EN1: Yeah. 

Int: What happens if I move this, um, line up just a little bit? What happens to the, uh, 

shaded area? 

EN1: The shaded area will get... it looks like it's bigger because this section here is, is 

uh, wider than this side here. 

Int: Ok. 

EN1: So this, this area here is going to be increasing. The area under the curve is going 

to be increasing faster than this will be decreasing. Basically. 

Int: So you thought about this little bit of area that I just increased by. 

EN1: mm hmm. 
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Int: And you've said I've gained that but I've lost this. 

EN1: Yeah. 

Int: So, I gained more than I lost, so the integral went up? 

EN1: Yeah. 

Int: Will it keep moving up if I move it all the way up?  Will it be maximized up here? 

EN1: Um... Not entirely, there a point... I think there's going to be a point right about... 

right around there where you're going to be losing more... uh... 

Int: Ok, so you're thinking about moving this up now. 

EN1: Where this is basically half way... 

Int: Ok, so you want this to be halfway across so, whatever this line is, so that it's 

halfway across. How did you decide it's halfway? 

EN1: Well... I guess that it's not exactly a straight line, though, so that's not right. 

Int: You said that the function is not a straight line? 

EN1: Right, yeah, well I'm saying it's not a, uh... it curves, it's not a... 

Int: It's not linear. 

EN1: Yeah, it's not linear. 

Int: Right, so um, where would this go then? How does that affect that? Because why 

did you say it was... why did you originally say it was halfway? 

EN1: Well, I was... I originally said it was halfway because it's just width-wise you'd 

be... So the amount I would have just added... If your chunks going up are small 

enough, it's, it's going to be, uh... It's going to be just strictly based on... how, uh... 

wide each chunk is. 

Int: Alright, so I've added this much, but I've lost this much? 

EN1: Yeah, you’re adding the same amount as you’re losing at the maximum. 

 

To solve this problem, the student thought about moving the line and said that, if the area 

started to get bigger, you would have to move the line the other direction.  This indicates that he 

may have been thinking about the covariation of the area and the position of the line.  This was 

reinforced when he was asked what happens to the area if the line is moved up a little. He 

compared the length of the line left of the graph with the length to the right because moving up 

increases the area to the left and decreases the area to the right.  He also talked about the rates the 
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area was increasing on the left versus the rate it was decreasing on the right.  This implies that he 

was not taking individual locations and comparing the areas, but was rather thinking about 

moving the line and changing the area continuously. 

When asked that, since the area increases as you move the line up, whether the area 

would be maxed by moving the line all the way up, he responded that there was a point where 

you start to lose faster than you gain and that this point should be when the function intersects 

the midpoint of the line "c".  This, again, reinforces the Process rating this student was given. 

 

 Process/Object Level 

Four Engineering seniors and three Mathematics Education seniors were rated as being at 

the Process/Object level for function and accumulation.  These students are in the transition from 

the Process level of understanding to the higher Object level but cannot yet comfortably or 

sufficiently operate at Object enough to be rated as such.  These students can sometimes view 

functions as objects themselves that can be manipulated and that have certain properties, but 

when pushed too far, they cannot delve deeper into this understanding. 

The following is the 5th Mathematics Education senior’s interview in which she was 

rated as Process/Object.  This student showed some signs of being able to understand functions 

at the Object level, but still had troubles and mostly was able only to demonstrate a Process level 

understanding of functions. 

 

Int: What is a function? 

ED5: Uh... As far as a formal answer goes... I couldn't uh... I couldn't give you other... 

much other than... it's a relationship between two... two um... variables, where you 

input one... you put... you have an input for one variable and that gives you the 

output for another.  

Int: Alright, how do you think about “function”? 

ED5: Um... Whenever I think about a function, I usually think about, like, the... the one 

to one test... when you're looking at the graph... So, if you have... it's a function if, 

for every x value, you have one y value.  
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Int: So when you say the “one to one test”, do you mean that it has to pass the 

Horizontal Line Test? 

ED5: Uh... vertical.  

Int: Ok, so you mean one x doesn’t go to two different y’s? 

ED5: Yeah, exactly.  

Int: Do those inputs and outputs have to be numbers? 

ED5: Yeah. I guess, I mean... then just doing that, I would think they would, but I 

couldn't tell you formally.  

Int: So if a function is a process of relating inputs to outputs, I can think of the process 

of taking the derivative as relating f to f’.  So is the process of taking a derivative 

a function? 

ED5: Is the process of taking a derivative... a function? Uh... it appears to me, the way 

it's drawn up, it looks like a function, yes.  

Int: So the process of taking the derivative is a function? 

ED5: It would probably be a... Yeah. Yes, I would say it is.  

Int: So what would be its domain and its range? 

ED5: The domain and range of the function or the domain and the range... of this? 

Um... Let's see... the domain would be... Let's see... every... let's see... I'm trying 

to think what domain and range... and then relate it to this.  

Int: So what do domain and range usually mean? 

ED5: Uh... The domain is every... let's see... every value that you can get... I believe... 

and the range is every value that you can... input. Maybe.  

Int: You have the idea right, but you flipped them. 

ED5: Did I flip them around? Ok. The input... I would say that the domain would be... 

your function and the output would be your... the uh... derivative of the function.  

Int: Just this function? 

ED5: A bunch of different functions. It just... yeah, it can be any function that you... 

wanted to input there and then you could find the derivative which would be your 

range. 
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This student started out by trying to give the "formal answer".  This is kind of answer was 

observed at all levels of understanding where the student sees a disconnect between how they 

operationally understand a concept and how they think the instructor/interviewer wants them to 

understand the concept.  The student then gave an answer somewhere between the Action and 

Process levels calling it a relationship between inputs and outputs but then indicating that she 

thinks about a function as a graph that passes the Vertical Line Test. Later, the student was 

comfortable saying that the process of taking a derivative was a function because it took f to f'. 

This usually indicates at least a Process view of function because the student is comfortable with 

functions as processes that relate inputs to outputs independent of whether they involve plugging 

inputs into equations. 

After being reminded what "domain" and "range" mean, the student was easily able to 

find the domain and range of the derivative as a function, which may indicate that the student is 

beginning to view functions as objects at least as far as they are something that can be inputs and 

outputs of a function that does something to them. 

The interviewer then asked if the domain was "just this function" in order to see if the 

student was just applying the procedures of blindly plugging in inputs at an Action level, but the 

student was easily able to see that it would be "a bunch of different functions".  This indicates 

that the student is starting to view functions as objects that can be manipulated like numbers. 

However, overall, other questions in the interview indicated the student was still mostly 

operating at a Process level of understanding. 

Accumulation is a subtler concept to try to evaluate directly at the Object level since one 

does not normally manipulate it in the same way one would a function.  So the Object level will 

be rated more indirectly for accumulation.  It is indicated by how a student handles multiple 

representations of accumulation and integration, how comfortably they answer conceptually 

harder questions and if they seem to view accumulation as more deeply than the single process of 

covariation between area and integration parameters.  As a result, it is more difficult to illustrate 

this level for accumulation with an excerpt; the whole interview needs to be taken into account.   

Students rated as Process/Object are in between these two levels, operating primarily at 

the lower level while showing some sign of understanding at the deeper level.  The following 

excerpt is from the interview of the second Engineering major interview, which was rated as 

Process/Object.  This excerpt starts well into the discussion about Question C. 
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Int: So what does that tell us about the area? 

EN2: Um... Well... Over here it's steeper. As you move up... the... amount of area that 

you're... adding is... going... or what you're losing is normally decreasing, but 

it's... uh... decreasing at a... slower rate.  

Int: So you’re thinking about moving this line, “c”, around and seeing what happens 

to the area? 

EN2: Yeah.  

Int: And you started at the bottom and moved it up and said that, because your 

derivatives were big, you’re adding a lot of area, but losing just a tiny amount 

over because you’d be adding this much and be losing this much? 

EN2: Yeah, you’re adding more area than you're losing... I'm not quite sure. Yeah, I 

think that's right because you're... Yeah. Because you're... yeah, because you're 

adding more area and then you shade to the point where you're losing it again. So 

that'd be some... point in the middle... where... Yeah, because it will be... adding 

more and you get a point where you'd start losing it again.  

Int: Can you tell me where that point would be? 

EN2: When the rate of change is zero... the... we gain as much as you lose. So... it 

would have to be like a maximum.  

Int: Alright, where does that happen? 

EN2: Um... Right at the point where both side... or the... where c and this were... like 

one half, one half. Like when the... the midpoint of the line.  

Int: So that’s where we reach a maximum? 

EN2: Yeah. Um... If you take a... very small piece across, then it's going to have the 

same dimensions.  

Int: So what does have to do with “integral”? 

EN2: Um... Well... the integral is just adding up a bunch of... infinitely small pieces. 

 

The student starts off by talking about continuously moving the line "c" and comparing 

the different rates at which the area change.  This implies that the student is at least working at a 

Process level.  As further evidence, he explains that when rate of change is 0, this means that it 
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gains as much as it loses, so it must be at a maximum and that this happens at the midpoint.  So 

this student seems to have at least a Process level understanding.  

To explain why this would happen, he switches representations and describes the 

situation in terms more akin to Riemann sums by talking about “adding up a bunch of infinitely 

small pieces”.  This ability to switch between representations indicates that the student is 

beginning to view accumulation as one idea that manifests itself in multiple ways. When pushed 

further, however, he was not adept at this enough to be rated as Object. 

 

 Object Level 

Six Engineering major seniors and two Mathematics Education seniors were rated as 

having achieved Object level understanding. When discussing functions, these students can view 

the concept of “function” inherently as an object itself that can be manipulated, put into other 

functions, and has different properties and multiple representations that are just different views 

on a single whole. 

The following is an excerpt from the sixth Engineering major’s interview in which the 

student was rated at an Object level of understanding of function. In this excerpt, the student 

exhibits some use of multiple representations as well as the ability to view functions as objects.  

He also displayed the common theme of distinguishing between “function” and “operator”. 

 

Int: What is a function? 

EN6: Ok, it's like a mapping between some domain and some range.  

Int: Ok, what do you mean by “a mapping”? 

EN6: I mean whenever you're given an input, you associate, in whatever way you want, 

some output.  

Int: So it’s some sort of association between inputs and outputs.  Is everything that 

associates inputs and outputs a function? 

EN6: Uh... well... Um... I would say yes.  

Int: Do these inputs and outputs have to be numbers? 

EN6: No. Anything you want. 

Int: Can you give me an example of an equation that doesn’t use numbers? 
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EN6: Well, if you're talking about equations, then... you'd have to use numbers.  

Int: Oh, sorry, I meant can you give me an example of a function that doesn’t use 

numbers? 

EN6: Um... Sure, I mean, if you don't... if you don't force me to use equations, then I 

can make a function that maps like the erasers in the room to the markers in the 

room. Uh, take the erasers and if it's uh... you know has some area then it can turn 

into a black marker. Something like that. And if it has a different area it turns into 

a red marker.  

Int: So if I assign each function to its derivative… is the act of taking the derivative a 

function? 

EN6: Uh, no it's an operator.  

Int: Ok, what’s the difference? 

EN6: I... an operator is something that you apply to functions.  

Int: Ok, so the only difference between functions and operators is that operators apply 

to functions? 

EN6: Sure, like when you apply a function to... you apply functions to values and get 

out single values and you apply an operator to a function to get out another 

function.  

Int: But didn’t you just say I could have a function applying to erasers to give me 

markers? 

EN6: Sure, like, but you apply an operator to the group... like... you know, so you apply 

the function to... a single eraser to get out another single thing. But an operator 

takes entire functions.  

Int: Ok, but if my inputs and outputs can be anything can’t I input functions into 

functions? 

EN6: Um... well, I mean, ok, well no, because that's just a way of defining it, right? So 

I'm going to mean, like, if it's available to use as a function, then it can't be an 

input to a function. Well, you can have functions of functions; too, it doesn't 

matter really.  

Int: Ok, so a function can take a function to another function? 

EN6: Well, uh, sure. 
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The student seems very comfortable with functions as processes as well as the difference 

between function and equation, to the point of catching the interviewer on the mistake of saying 

"equation" instead of "function".  He also easily came up with a function that takes inputs and 

outputs that were not numbers.  These all indicate that the student has at least a strong Process 

level understanding of functions. 

Despite this understanding, he still made the distinction between “operators” which apply 

to functions and “functions” which can apply to seemingly anything else. This might indicate 

that he does not view functions as objects that can be put into functions, but is could also merely 

be a result of the way that the Calculus sequence teaches about derivative "operators" and makes 

a distinction in the terms.  The latter possibility is reinforced when the student is pushed on this 

incongruity; he quickly says that this is "just a way of defining it" and makes a distinction of 

vocabulary.  Overall, his description of “operators” is consistent with rating him as having an 

Object level understanding of functions. 

The same student displayed the same level of understanding when discussing Question C.  

As stated earlier, accumulation is more subtle to rate, resting mostly on indirect effects, like 

multiple representations and comfort with harder concepts.  In the following excerpt, the student 

exhibits these traits, so because of this, and other parts of the interview, he was rated at Object. 

 

Int: Can we figure out where to put line “c” to maximize the shaded area? 

EN6: To maximize the shaded area... Um... and this is also... a line that restricts… 

Int: Yeah, it’s restricted on the sides and top. 

EN6: Well I can write some equations and figure it out, probably, but it looks like you... 

Um... Let's see. um... Maybe um... put it right... where it intersect the half-way 

point right here. It's right there. 

Int: Ok, how did you decide that? 

EN6: Um, I'm just thinking about how, if you take the line and move it up just a little 

bit, it's going to be favorable to move it up as long as you're adding more area 

here than you are in there. So you just got to put it, yeah, right on the middle.  

Int: Ok, if you knew what the equation of this line was, how would you do it? 
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EN6: Um, you could write... I'm just going to use our area, so you can write an integral. 

So you write an expression for this area as a function of c... and that as a function 

of c. And it's simple enough that you can just take the derivative with respect to c 

and set it equal to zero.  

Int: Ok, so you take the integral and then you take the derivative.  How does that 

relate with what you did? 

EN6: Um, when you do that, you're talking about the rate of change of an integral. 

Which says, if I vary my parameter, c, how much is my integral changing. And I 

was already talking about how if you move it up, as long as you're increasing 

more area here than there, then it's going to be favorable. So have... like positive 

derivative, but then right when you get here, if you move it down a little bit, in 

some sense, like, you're going to be increasing... that way and the other way. The 

signs work out somehow.  

Int: Ok, you’re changing your integral, so you’re watching the rate of change of your 

integral and then you decided that when it stops increasing, you’d be at a 

maximum? 

EN6: Or a minimum. Yeah.  

Int: So when you did it without equations, were you taking the derivative of an 

integral? 

EN6: Uh, I... I suppose, yeah. I mean there's different ways to think about it. So... Well, 

I mean, call it what you want... I mean I was looking at the area. And areas are 

integrals, so I was looking at integrals. And then I was moving the parameter to 

see how it changed. So I was looking at the change of an area. So, yeah, so I was 

looking at the derivative of an integral.  

 

First, the student indicates that you could find the equation for the line and do the 

problem at an Action level, but then he immediately arrives at the correct answer.  He explains 

his conclusion in terms that indicate he is at least viewing accumulation as a process. 

When asked how he would solve the problem using the equation for the line, he 

immediately relates the method he used with an integral which yields a function of “c”.  He 

stated that he would then take the derivative of this function with respect to “c” to find when the 
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derivative was zero, therefore indicating an extremum.  When asked to explain how this was the 

same as his previous answer, he talked about watching how much his integral is changing and 

how an increase relates to a positive derivative.  This use of multiple representations of 

accumulation, as well as the ease with which he switched from graphical accumulation to 

derivatives of integrals, indicate that he is viewing accumulation more deeply than a student with 

a Process level understanding.   

This Object rating is reinforced by his comfort with taking the derivative of the integral 

and seeing that this was the rate of change of the integral and therefore the accumulation.  Many 

students were only able to discover it was the derivative of an integral when explicitly led there, 

and then their reaction was usually that the Fundamental Theorem of Calculus implied that the 

derivative of the integral was the original function. 

 Total APOS Distribution 

The following table and graph show the total number of students in each of the five levels 

of the modified APOS scale.  

 

Table 4.1 APOS distribution of Engineering and Mathematics Education Majors 

  A  A/P  P  P/O  O 

Engineers 1  2  7  4  6 

Math Ed 2  1  1  3  2 
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 2nd
 Pass – Quantitative 

As stated in the Methodology section, a matrix was formed using the word frequency for 

each student and then several non-negative matrix factorizations were run with different 

parameters.  None of these factorizations yielded any significant results with regard to grouping 

students based on major or level of understanding. 

The only factorizations that were even marginally successful at grouping in a discernible 

way grouped based on words linked to confidence or willingness to participate in the 

conversation.  These words included such words as “don’t” and “know”, “understand”, etc.  

These groupings prompted another qualitative pass that consisted of coding the transcriptions 

based on each student’s confidence and willingness to participate. 

 3rd
 Pass – Qualitative 

Each sentence or group of sentences in each interview was rated using the coding scheme 

describe in the Methodology.   This led to each student being rated overall for Confidence and 

Willingness out of five levels: 1, 1.5, 2, 2.5, and 3 where 1 represented the lowest level of 

confidence and willingness to participate in the discussion, 2 represents average confidence or 

willingness and 3 represents the highest levels, with the two intermediate levels put in to refine 

Figure 4.1 The two majors compared with Diff Eq students from the longitudinal study 
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the scale and make it match up better with the five level modified APOS scale used to measure 

understanding. 

Unlike in the 1st pass, interview excerpts do not easily demonstrate why a particular 

student was rated at a particular level for Confidence or Willingness.  In rating these, it was not 

as important what the student said, it was more important how the student said what they said or 

how they responded over the whole interview. Therefore, short excerpts are not presented here, 

as they would be unhelpful at best. However, two longer excerpts are presented in the 

Appendices: Appendix D - Interview Excerpt 1, Appendix E - Interview Excerpt 2.  Both 

excerpts are the full text of the conversations of Questions A and B of the protocol.  The first 

excerpt is from the fourth Engineering major to be interviewed; he was rated as having an Object 

level understanding, with a Confidence and Willingness of 3 each.  The second excerpt is from 

the twentieth Engineering major; he was rated as having a Process level understanding with a 1.5 

for both of the Confidence and Willingness ratings.  

Confidence still proves difficult, but not impossible, to pick out of the text, since the way 

things were said has been lost in transcribing it; however, Willingness is more discernible from 

the text.  In the first excerpt, it is clear that the fourth Engineering student needs very little 

prompting to discuss what he is thinking, with him often offering monologues of his thoughts for 

extended periods of time.  He seemed eager to discuss the topics at hand and therefore was rated 

at the highest level of Willingness. In the second excerpt, the twentieth Engineering student 

engages in an average amount of discussion with the researcher, with both contributing about 

equally to the conversation.  However, as the interview passes, the student contributes less and 

less, often resorting to one sentence or even one word responses with the researching carrying 

most of the discussion.  For this reason, the student was rated as having a 1.5 Willingness, i.e., a 

bit below average. 

The total for each major in each of the levels of Confidence are shown in the next table 

followed by a graph of the same.  The percent of students from that major in each level is in 

parentheses after the number in the table.  

 

Table 4.2 Distribution of students in Confidence rating 

  1  1.5  2  2.5  3 

Engineers 2 (10%) 6 (30%) 4 (20%) 5 (25%) 3 (15%) 
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Math Ed 3 (33.3%) 3 (33.3%) 2 (22.2%) 1 (11.1%) 0 (0%) 

 

 

 

 

As shown in the table and the graph, both groups were spread across most of the levels.  

However, no Mathematics Education students were rated as having level 3 confidence, whereas 

some Engineers were.  The average Confidence rating of the Mathematics Education students 

was 1.56, and the average rating of the Engineering students was 2.03. 

The total for each major in each of the levels of Willingness to Participate are shown in 

the next table followed by a graph of the same.  The percent of students from that major in each 

level is in parentheses after the number in the table. 

 

Table 4.3 Distribution of students in Willingness rating 

  1  1.5  2  2.5  3 

Engineers 1 (5%)  1 (5%)  7 (35%) 7 (35% ) 4 (20%) 

Math Ed 0 (0%)  0 (0%)  6 (66.7%) 3 (33.3%) 0 (0%) 

 

Figure 4.2 Distribution of students in Confidence rating 
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The table and graph show that the Engineering majors as a group exhibit more variability 

in their willingness to participate in the discussion than do the Mathematics Education majors.  

In fact, all Mathematics Education majors were rated as being either level 2 or 2.5, whereas 

Engineering majors can be found in all five levels.  Overall, the average level of Willingness of 

the two groups did not differ much, with both averaging slightly over 2.  The average of the 

Mathematics Education majors was 2.2 and the average level of Willingness of the Engineering 

majors was 2.3. 

 

 

 

  

Figure 4.3 Distribution of students in Willingness rating 
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Chapter 5 - Conclusions 

 Restatement of the Problem 

The overall aim of this study was to gain some sense of what happens to students’ 

conceptual understanding of Calculus after they finish the Calculus sequence.  There are three 

possibilities that can happen to a student’s conceptual understanding as time separates them from 

when they first learned that concept.  The first possibility is that conceptual understanding 

decreases over time, i.e., they forget.  The second is that conceptual understanding does not 

change after they finish learning the concept in class, i.e., they have learned what they are going 

to learn.  The last possibility is that the student’s conceptual understanding of Calculus increases 

even after they have finished the Calculus sequence. 

This last possibility indicates that learning was facilitated by events that took place after 

the student left the original class.  This is referred to as back transfer: using a learned concept in 

a later context strengthens that previous knowledge.  This study aims to measure whether this 

back transfer occurs and, if so, whether the application of math into different contexts causes 

different levels of back transfer. 

Individual student interviews with senior Mathematics Education and Engineering majors 

were conducted and rated on a modified APOS scale to assess levels of conceptual understanding 

of “function” and “accumulation”.  These levels were then compared with a previous 

longitudinal study that tracked the growth of conceptual understanding of students as they 

progressed through the Calculus sequence.  By comparing the levels of understanding of the 

senior students with the levels of understanding of the previous students at the end of the 

Calculus sequence, it can be determined how the students’ understanding changed after they 

finished the Calculus sequence. 

 Summary of Research Methods 

Twenty Engineering seniors and eleven Mathematics Education seniors were interviewed 

individually in hour-long, one-on-one sessions in semi-directed, conversation-style interviews to 

assess each student’s conceptual understanding of certain Calculus topics.  These levels of 

understanding were then compared against similar ratings of students who were just at the end of 
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the Calculus sequence to compare how understanding changed over time after leaving the 

sequence.   

Along with these ratings, a vocabulary matrix was made that consisted of how many 

times each student said each word from a word bank consisting of every different word said 

during the interviews.  From this, non-negative matrix factorizations were created with varying 

parameter in an attempt to classify different groups of students based on different vocabularies.  

These matrix factorizations prompted the researcher to code each phrase from each student 

interview for relevant attributes.  These attributes were the following: topic being discussed, 

level of understanding that the student is currently working with, specific representations or 

actions being discussed, confidence being demonstrated by the student, and the willingness of 

the student to participate in the current discussion. 

These two majors were chosen for the interviews because they both take the Calculus 

sequence, Calculus I through Differential Equations.  The Mathematics Education majors then go 

on to apply this knowledge to higher level, abstract mathematics classes while taking little to no 

mathematical science classes.  Engineering majors, on the other hand, apply this knowledge to 

higher level mathematical science classes while taking little to no higher level, abstract 

mathematics classes. 

Once interviewed, each student was rated on a modified APOS scale.  Along with the 

standard APOS levels of Action, Process, Object, and Schema, the researcher added the 

intermediate levels of Action/Process and Process/Object between those respective levels.  This 

modification is important in two ways: first, it was designed for the previous longitudinal study 

and so it was designed to be a finer scale that could more adequately measure changes in 

understanding between semesters, and second, it allows for more stable classification for those 

students who are on the boundary between Action and Process or Process and Object.  For 

students on the border, a small change in classification could shift them from an Action rating to 

a Process rating.  The modified scale dampens these shifts. 

Each student was also given an overall rating for Confidence and Willingness to 

Participate.  These ratings were given to reflect an average for the “confidence” and 

“willingness” ratings in the coded transcripts.  In order for these ratings to conform to the 

modified APOS scale, the system that coded students with a 1, 2, or 3 was modified to admit the 
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intermediate levels of 1.5 and 2.5.  This allows for a finer rating system as well as makes it more 

comparable to the ratings of conceptual understanding. 

 Summary of Findings 

 APOS Ratings 

Of the 20 Engineering seniors, one (5%) was rated at Action, two (10%) were rated at 

Action/Process, seven (35%) were rated at Process, four (20%) were rated at Process/Object, and 

six (30%) were rated at Object.  Of the nine Mathematics Education majors, two (22.2%) were 

rated as Action, one (11.1%) was rated as Action/Process, one (11.1%) was rated as Process, 

three (33.3%) were rated as Process/Object, and two (22.2%) were rated as Object.  In the 

previous longitudinal study, 25% were rated at Action, 12.5% at Action/Process, 25% at Process, 

12.5% at Process/Object, and 25% were rated at Object.  These results are summarized in the 

following graph. 

 

 

 

 Confidence and Willingness 

Overall, the 20 Engineering seniors averaged 2.03 Confidence while the nine 

Mathematics Education seniors averaged 1.56 Confidence.  So the Engineering majors were 

Figure 5.1 Comparison of the two majors with Diff Eq students from longitudinal study 
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moderately confident on average whereas the Mathematics Education majors were a little below 

average confidence as a group. Both groups fared a little better than average in their levels of 

Willingness.  The Engineering majors averaged a 2.3 rating for Willingness and the Mathematics 

Education majors averaged a 2.17 rating.  The following two tables and two graphs summarize 

the findings for Confidence and Willingness. 

 

Table 5.1 Distribution of the two majors in Confidence ratings 

  1  1.5  2  2.5  3 

Engineers 2 (10%) 6 (30%) 4 (20%) 5 (25%) 3 (15%) 

Math Ed 3 (33.3%) 3 (33.3%) 2 (22.2%) 1 (11.1%) 0 (0%) 

 

 

 

 

Table 5.2 Distribution of students in the Willingness ratings 

  1  1.5  2  2.5  3 

Engineers 1 (5%)  1 (5%)  7 (35%) 7 (35% ) 4 (20%) 

Math Ed 0 (0%)  0 (0%)  6 (66.7%) 3 (33.3%) 0 (0%) 

 

Figure 5.2 Distribution of students in the Confidence ratings 
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 Discussion of Results 

 Discussion of APOS Ratings 

As can easily be seen in the results, the differences among each major are larger than 

those between the majors.  Both majors had students rating in each of the five modified APOS 

levels from Action to Object.  Both majors also mostly ranged over each of the five levels of 

Confidence, as well, except that no Mathematics Education seniors rated as a 3 in Confidence.   

Most of the Willingness levels, however, saw only Engineering majors, with the Mathematics 

Education majors only falling in the 2 and 2.5 levels. 

When comparing the APOS ratings of the seniors with those of the students in 

Differential Equations, it seems that the Engineers as a group have moved to the right, toward the 

Object side of the scale.  While the percent in the Object level has increased from 25% to 30%, 

the percent in Process or above has increased from 62.5% to 85%.  All three levels Process or 

above saw an increase in the percent of students at that level.  This seems to indicate that senior 

Engineering majors have a deeper conceptual understanding of the Calculus topics of “function” 

and “accumulation” despite having not taken more mathematics classes after Differential 

Equations.  This would indicate that back transfer is taking place. 

Figure 5.3 Distribution of students in the Willingness ratings 
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It is not as clear whether the group of Mathematics Education majors exhibited a similar 

movement.  There seems to be a general upward movement except at the upper end, but overall it 

is not as obvious as with the Engineering majors. While the lower levels of understanding saw 

decreases among the Mathematics Education majors, so did most of the upper levels.  The only 

level that saw an increase was the Process/Object level.  Most of the levels did not change much 

when compared to the levels of the Differential Equation students, which may not represent any 

significant change when considering the numbers involved.  Action, Action/Process and Object 

decreased by less than 3%, so most of the movement would have been students moving from 

Process to Process/Object.  Overall, the Engineering seniors understand the concepts more 

deeply and exhibit more movement up the APOS ratings than do the Mathematics Education 

seniors. 

Somewhat surprisingly, there are still students from both majors that have not advanced 

beyond the lower two levels of understanding.  33.3% of Mathematics Education seniors are still 

in the Action and Action/Process levels while 15% of Engineering seniors are in those two 

levels.  This shows that there is still a significant portion of seniors who do not truly understand 

the basic Calculus topics that they are using in their majors and presumably in their careers in the 

future.  The eighth Mathematics Education student, who was rated at Action, illustrates this 

when asked about maximizing the shaded area in Question C, “I don't remember what it is, I've 

seen it before and I've had to learn it for a test, but I can't recall it at all.” 

These students must be finding success in their mathematics and mathematical science 

classes since, to get to be seniors in either major, the student must have gotten better than passing 

grades in many such classes in the past.  These students are likely “learning” the mathematics by 

rote memorization without achieving a real understanding of the concepts involved, but they are 

finding success at this method in as much as they are achieving their degree. 

Not only are they passing through college using rote memorization without a strong 

conceptual understanding, they may not even realize that there are deeper concepts involved, i.e. 

that rote memorization is not the only way to learn math.  This is again illustrated by the eighth 

Mathematics Education senior when answering Question C: 
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ED8: In this equation... See this is why I don't think you should... if you're going to be a 

math teacher you shouldn't go over um... struggling for math because then you 

forget things that you've done before. 

 

This student is expressing the frustration that her cognitive load has surpassed her ability 

to memorize that many facts and procedures.  It seems that her view on learning mathematics is 

the common one among students that is memorizing what procedures and formulae to use and 

when to use them.  This is the same students who, when asked to draw the graph of the 

parametric equations in Question B, drew the unit circle and explained that she knew that this 

was the graph because “that is what the teacher told me it was”.   

This student has not progressed beyond the Action level of understanding and this is 

probably at least partially because either she does not think she can understand these concepts 

more deeply and therefore must use rote memorization or because she does not realize there is 

more to understand more deeply about these concepts and therefore rote memorization is the 

only thing there is. 

 Discussion of Confidence and Willingness 

The Confidence and Willingness ratings differed between the two groups by more than 

the APOS ratings did.  Engineering majors, as a group, rated just above average confidence at 

2.03 out of 3.  Mathematics Education majors, as a group, rated well below average confidence 

at 1.56 out of 3.  So, overall, Engineering majors are more confident on average when discussing 

mathematics problems than are the Mathematics Education majors despite both groups having 

higher conceptual understanding than the average student in Differential Equations. 

While the averages of the Willingness rating did not differ very much between the two 

groups (2.3 versus 2.17 out of 3), the Mathematics Education majors varied far less in their 

Willingness than did the Engineering majors.  The Engineering majors were spread across all 5 

ratings while the Mathematics Education majors were only rated at the 2 and 2.5 levels. This 

may reflect different training or different philosophy and culture between the two majors. 

 Anecdotal Observations 

The researcher made several observations that were not specifically measured for or that 

originate from subgroups of students that are too small to make proper scientific conclusions.  
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These results must be considered as anecdotal observations; however the observations often have 

interesting implications for future research or shed light on certain groups of students. 

One repeated observation is that specific groups seem to be more likely to have a deeper 

conceptual understanding of the topics.  One of these groups was returning students.  There were 

only one or two of these students interviewed in this study, but these students conformed to the 

researcher’s prior anecdotal experience.  There are a number of reasons that these students might 

have deeper conceptual understanding.  These students have gone out into the real world and had 

many experiences that the average college student has not had yet.  These experiences could 

offer a new context in which to apply their mathematical knowledge, and thus offer a different 

context from which back transfer can happen.  Another possibility is that these experiences occur 

before they learn the concepts the first time and therefore could represent preparation for future 

learning (forward transfer).  A third possibility could simply be that they are more likely than the 

average student to be paying for their education and are therefore more serious about gaining a 

deeper understanding than the other students are. 

Another group that appears stronger on average was computer programmers.  No students 

were asked specifically if they were computer programmers; however, there were at least four 

Engineering seniors who identified themselves as computer programmers.  These students 

seemed particularly strong, averaging just above Process/Object (one Process, one 

Process/Object, and two Object).  At least one third of Engineering seniors who rated at Object 

identified themselves as computer programmers.  These students related functions to methods or 

subroutines in programming languages.  The following is an excerpt illustrating an occasion of 

this: 

 

Int: Is this, the act of taking a derivative, is that a function?  

EN8: I have no idea.  

Int: Do you think of that as a function?  

EN8: I think of it more as almost like an operator.  

Int: Ok, so what's an operator?  

EN8: Um... It just tells you to do something with whatever follows it. I don't know. I 

think of more in programming language where d/dx... if you say... usually I write 
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that out d/dx and then in the parentheses after that I'll put the function I want to 

do... I guess I think of it more as the function is the argument of the...  

Int: So it's like a command that you're doing?  

EN8: Yeah, it's like a command, but at the same time I guess they call those functions 

in programming sometimes too, so... 

 

This type of comparison was common among the computer programmers where they 

would compare the derivative or similar function to the methods used in programming 

languages.  This could be a clear example of context-assisted back transfer.  They have learned 

about “function” in the Calculus sequence, but by seeing the same concept used in the context of 

programming languages, the student gains a deeper understanding of the abstract concept.  It is 

somewhat telling that the student related back to a context that they were more comfortable and 

more interested in rather than relating back to the mathematical context in which they learned the 

concept originally. 

Also illustrated in the above excerpt is another very common pattern among many of the 

students interviewed including Engineering seniors as well as Mathematics Education seniors.  

Many in both groups, including most of the Object level students, wanted to make a distinction 

between “functions” which take numbers to numbers and “operators” or “transformations” which 

take functions to functions or transform one function into another function.  They often make this 

distinction even when they understand that the two ideas are essentially the same thing.  The 

following is another example of a student making a distinction between these two ideas: 

 

Int: What if we think about the process of taking a derivative?  We take f to f’.  Is the 

process of taking a derivative a function? 

EN17: Um... I would say no. Because, um... You could say maybe y equals... d/dx that's 

f, but then that would be... but if you're saying y is a function of, um... you know, 

x and f is a function of x. You could say that. But, um... just the process of taking 

a derivate is... I think of it as more of a... um... transformation... than anything 

else.  

Int: So what’s the difference? 
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EN17: Um... Well, when you... when you take a derivative of something, you're um... 

you're altering it or transforming it. Um... So for example, if you just take... x and 

you take three times x, that's not necessarily a function, it's just... uh, an operation. 

Um... you know, on x.  

Int: So a function takes a number and assigns to it a number and a transformation 

takes something and changes it into something else? 

EN17: Right.  

 

The following is an example of the same behavior but where the student refers to 

“operators” instead of “transformations”: 

 

Int: So if I assign each function to its derivative… is the act of taking the derivative a 

function? 

EN6: Uh, no it's an operator.  

Int: Ok, what’s the difference? 

EN6: I... an operator is something that you apply to functions.  

Int: Ok, so the only difference between functions and operators is that operators apply 

to functions? 

EN6: Sure, like when you apply a function to... you apply functions to values and get 

out single values and you apply an operator to a function to get out another 

function.  

Int: But didn’t you just say I could have a function applying to erasers to give me 

markers? 

EN6: Sure, like, but you apply an operator to the group... like... you know, so you apply 

the function to... a single eraser to get out another single thing. But an operator 

takes entire functions.  

 

In the first case and third case (EN6 and EN8), the students were rated as having an 

Object level understanding of the concepts and in the second example (EN17), the student was 

rated as having a Process level understanding.  So even when the students have a strong 

conceptual understanding of “function”, they still are more comfortable making the superfluous 
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distinction between “functions” and “operators” even when they recognize that these are two 

words for essentially the same idea.  This probably has to do with the fact that much of the 

treatment of functions of functions, such as differentiation, happens in Differential Equations 

where it is referred to as the “differentiation operator” or “derivative operator” and when they 

learn the similar concepts of “transformations” such as the Laplace Transform.   

The students have learned that this is how the mathematicians refer to functions that take 

functions to functions and so they must be different concepts somehow even if they recognize 

that they are conceptually the same. This is a recurring theme that shows up in all levels of 

students.  Students often believe that mathematicians want an overly formal way of saying things 

just right even when they run counter to intuition.  The following excerpt is from an Object level 

student illustrating this:  

 

Int: Is the process of taking a derivative a function? 

EN15: I wouldn't say yes if it was on a math test, but in a broader sense of the word 

function, I would say yes. Like I wouldn't say it's like a function the same way 

that f of x is a function. Like if you asked me that when I was taking Calc I, then I 

would say no. If you asked me that in an intellectual conversation over the dinner 

table, I would say that.  

Int: So you’d say maybe it’s not technically a function, but you view it as a function? 

EN15: Um... Kind of, yeah.  

Int: Alright, why? 

EN15: Well, because I think of the word function as something that does something. 

Like, you do something to x to get y. Um... So, that kind of... You would define 

that mathematically as an operation. But um... I kind of think of it as a function in 

terms of um... linguistics.  

Int: So as far as this goes, a function is something that turns something into something 

else? 

EN15: mm... I guess. Sure.  

Int: Ok, so because this changes f into f’, it’s a function? 

EN15: Yeah. Yes. I always think of it as like the... like I said, that's not the... the 

definition that you... I would give in a math class because I know that's not what 
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they want to hear. I like to get... give the right answers on math tests. Yeah, like if 

you change f, you get... different f primes. So, I mean, I would... I would say that 

it's an operation on a math test. But... it relates f to f prime. 

 

This same belief that there is a formal, “correct” answer to a question when it is asked by 

a mathematician and an intuitive answer when actually thinking about the problem was also 

illustrated by the following student who was rated as Process/Object: 

 

Int: What is a function? 

ED5: Uh... As far as a formal answer goes... I couldn't uh... I couldn't give you other... 

much other than... it's a relationship between two... two um... variables, where you 

input one... you put... you have an input for one variable and that gives you the 

output for another. 

 

Since this student was rated as Process/Object, he obviously had a rather deep 

understanding of function; however, when asked by a mathematician what a function is, instead 

of giving an answer that drew upon his understanding and experiences, he tried to give “a formal 

answer” and indicated that he did not really understand very well.  This belief that the teacher is 

looking for a particular, “correct” answer must be a strong one as both of the previous examples 

of students exhibiting this behavior (EN15 and ED5) were rated as having a 2.5 out of 3 

Confidence rating as well as ED5 achieving a Process/Object rating and EN15 an Object rating.  

These students are confident that they either know the concepts or confident that they can reason 

through it if they do not know it, and they actually have a relatively deep understanding of the 

concepts, and yet they still believe that the teacher is looking for a different answer than they as 

the students are. 

 Engineering versus Mathematics Education 

Other than that an Engineering context effects more back transfer than does Mathematics 

Education, there are a number of possibilities that could explain why the Engineering seniors 

seem stronger than the Mathematics Education seniors in terms of conceptual understanding, 

Confidence, Willingness. One possibility is that self-selection is affecting it.  Perhaps those who 
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are interested in Engineering begin at a higher level of understanding or with an stronger ability 

to increase their understanding.  In this case, the differences in amounts of back transfer between 

the two groups do not necessarily indicate that Mathematics Education admits less back transfer; 

the Mathematics Education seniors could have the same amounts of back transfer or even greater 

and still end with less understanding if they started out far behind the Engineers to begin with. 

Along the same line, perhaps Engineering is a harder major and weeds out the poor 

students, thereby increasing the percent of good students remaining.  These two possibilities are 

either not likely or do not have a strong influence on the final outcome as evinced by the 

significant percent of Engineering seniors who have not progressed past the Action and 

Action/Process levels.  About fifteen percent of those senior-level Engineers interviewed are still 

at these two lower levels of understanding.  These students clearly did not start out with a higher 

level of understanding as they are still at the lowest levels of understanding.  They also were 

clearly not weeded out of the major since they are nearly all the way through the program.  So if 

Engineering is trying to weed out students who do not understand the mathematical concepts 

very deeply, they are not doing a very good job of it. As a matter of fact, along these lines, in 

Talking About Leaving, Seymour and Hewitt (1997) studied 335 SME (Science, Mathematics, 

and Engineering) majors from a variety of four-year institutions by using interviews and focus 

groups. They found that students switching out of SME majors did not differ significantly from 

those who did not switch in terms of “performance, attitude, or behavior”. Switching majors was 

more likely caused in the students by whether or not they developed coping strategies, luck, and 

satisfaction with their instruction and major. 

Another possibility is that the historically different cultures of the two majors affect the 

understanding of the students in them.  The two majors have developed historically in very 

different ways and even today have very different demographics and gender composition.  One 

difference between the two is that Engineering tends to be competitive and individual whereas 

Mathematics Education tends to be more community oriented.  It is possible that this difference 

in competition causes the differences between the students when looking at these few metrics of 

conceptual understanding, Confidence and Willingness.  This difference between individuality 

and community could possibly explain why the Mathematics Education students are much more 

uniform when measured in Willingness to Participate when compared to the Engineers who 

range across all five levels.   
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The gender differences between the two majors (Engineering is dominated by men while 

Mathematics Education has a larger portion of women) may also play a role.  Many studies have 

been conducted on the personality differences between the two genders.  Among many other 

results, they have found that men tend to be more assertive and aggressive, as well as less 

anxious (Feingold, 1994). Men also tend to perform more effectively in competitive 

environments (Gneezy, Niederle, & Rustichini, 2003), and have higher confidence even when 

answering questions they do not necessarily know the answers to (Lundeberg, Fox, & Puncoshar, 

1994).  These differences in self-efficacy may lead to lower performances as a self-fulfilling 

prophecy (Feingold, 1994).  Given the gender differences between the two majors, this might 

explain some of the differences in the levels of understanding, Confidence, and Willingness. 

One possibility that could further support the existence of back transfer is simply that 

Engineering majors tend to see many more differential equations than Mathematics Education 

majors do.  Mathematics Education majors take higher level mathematics classes, but these do 

not usually involve differential equations.  Engineering majors, on the other hand, take 

mathematical science classes which often involve differential equations.  One can see in Figure 

2.1 that no students are rated in the Object level of understanding until Differential Equations.  

That class is the first place that heavily stresses functions as objects in terms of using functions 

as inputs, getting functions and families of functions as answers, and using processes such as 

differentiation and Laplace transforms in the way one uses functions.  It could be that differential 

equations are a particularly effective tool for understanding functions and so the group that uses 

them more will exhibit a deeper understanding. 

 Limitations of the Study 

All studies have their limitations and this one is no different.  The limitations of this 

study fall into five categories: 

 Self-selection issues. 

 Demographic differences between the two groups. 

 Different sizes of the two groups. 

 Comparison with the previous longitudinal study. 

 Limited scope of the study. 
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Since this study was run on a volunteer basis, there is the always-present issue with who 

chooses to participate.  There is no real way to correct for this without making the study a 

mandatory part of a class from each major. However, in this study, the number of participants 

from each group represents roughly half of each class from which each major was recruited. So 

while the study was strictly voluntary, the numbers represent a large cross section of the class.   

There are self-selection issues not just with who volunteered to participate in the study, 

but also the larger self-selection issues with who chooses to become Engineering majors versus 

Mathematics Education majors.  This was discussed above in the Engineering versus 

Mathematics Education section.  This is an issue that would be impossible to adjust for since the 

researcher clearly has no control over who decides to become an Engineering major. 

Related to self-selection problems are the demographic issues involved both with this 

study as well as the differences between the two majors.  Again, this was discussed above in the 

Engineering versus Mathematics Education section, but along with those issues, there are the 

demographic issues specific to this study.  Of the nine Mathematics Education seniors 

interviewed, roughly half were male (5 out of 9) compared to the 20 Engineering seniors of 

which all 20 were male.  This is, of course, related to the historically different gender structure of 

the two majors where Engineering is still an overwhelmingly male major, but since Engineering 

is not one hundred percent male, it would have made for a stronger study to have female 

Engineering volunteers participate in the study.  In the end, however, this likely does not affect 

the results in a significant way. 

The third limitation of this study was that only nine Mathematics Education seniors were 

evaluated in the study compared to the 20 Engineering seniors that participated.  The university 

where this study took place has a strong Engineering program while the numbers of Mathematics 

Education majors are much smaller.  This is why there is a discrepancy in the numbers of 

students interviewed in the two majors; it has only to do with the total number of students 

available to draw from in each major.  As the main goal of this study was to measure back 

transfer, the small numbers of Mathematics Education seniors does not hinder this task since 

there was still a small amount of back transfer measured with the Mathematics Education majors 

and a larger amount of back transfer measured with the Engineering majors.  The second goal of 

this study was to measure differences between the two majors.  This goal is likely also not 

hindered by the smaller numbers as the findings were sufficiently different between the two 



79 

 

groups that they would not have been greatly swayed by the addition of a few more students.  

This is especially likely when considering the students who would volunteer for this type of 

interview would likely be those with higher levels of understanding, confidence, and willingness 

to participate, each of which the Mathematics Education majors measured lower in than the 

Engineering majors. 

The fourth limitation of this study is actually a limitation of the previous longitudinal 

study upon which this study draws.  The previous longitudinal study did not differentiate 

between majors; it lumped all students together in each level of understanding.  Therefore, the 

baseline that this study compares the two majors against is an imperfect baseline as it consists of 

both majors and is being used to compare against each major individually.  Given the distribution 

of majors at the university in which this study took place, most of the students in Differential 

Equations would be Engineering majors.  In light of the differences in ratings between the two 

majors found in this study, this limitation would appear to unfairly handicap the Mathematics 

Education majors given that their baseline would consist mostly of Engineering majors.  

Therefore, it is possible that the amount of back transfer actually present among the Mathematics 

Education majors was greater than was measured; however the goal was to measure whether 

back transfer was occurring and that appears to be the case regardless and, regardless of the 

baseline, there is still a large measured difference between the two groups of seniors. 

The fifth limitation of this study is the limited scope that the researcher was able to take 

on with this study.  The goal was to measure whether back transfer was happening and, if so, 

whether context affected the amount of back transfer.  Therefore this study aimed to measure a 

different level of understanding possessed by seniors compared to students in Differential 

Equations as well as compare Engineering seniors with Mathematics Education seniors.  The 

goal was not to explain how this back transfer occurred or to explain why different contexts 

correspond to different levels of back transfer.  Answers to those questions would require much 

more extensive and directed research now that the existence of context-dependent back transfer 

has been established and would constitute a possible area of future research. 

 Recommendations for Future Research 

This research provides a launching point for future research in many different directions.  

The most obvious question that should be researched in the future is “what causes the difference 
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between the two majors in terms of Confidence and Willingness and what about the different 

contexts causes different levels of back transfer?”  Since we want our students to have a deeper 

understanding of the concepts and back transfer can offer a pathway in achieving this, it is 

important to know more thoroughly how and why back transfer occurs. 

More to the point, a question for future research would be “can we increase the likelihood 

of back transfer?”  Even if we do not discover exactly how and why back transfer occurs, we can 

still achieve the benefits if we discover how to increase back transfer.  For example, since 

Engineering majors seem to benefit from more back transfer than do Mathematics Education 

majors, perhaps it would be beneficial for Mathematics Education majors to have more 

experience applying the mathematical concepts in the context of real world, scientific situations.  

Perhaps having them take more mathematical science classes would increase the depth of 

understanding exhibited by seniors.  Similarly, in regards to the anecdotal observation that 

computer programmers seem to have a deeper understanding of function, perhaps all majors 

would benefit from taking more computer science classes so they can become more comfortable 

seeing functions in that context.  Or since differential equations seem to be an important 

contributor to a deeper mathematical understanding of “function”, then future research could be 

aimed at having students see more differential equations contexts and measuring the effect on 

understanding. 

Since Engineering seniors rated higher in all three categories, conceptual understanding, 

Confidence, and Willingness, how are these ideas correlated?  Do confidence and willingness 

facilitate ability?  Does ability increase confidence and willingness?  Were Engineering majors 

more confident and willing to participate because they had higher levels of understanding, did 

they have higher levels of understanding because they believed more that they could understand, 

or is does it just have something to do with the difference between Engineering majors and 

Mathematics Education majors?  It would be instructive to further explore this relationship since 

we would be provided another method of facilitating learning if, by raising confidence and 

willingness, we could push conceptual understanding. 

Future studies could also be done that attempt to negate the limitations of this study. For 

example, simply repeating the study would enlarge the sample and lessen the potential effects of 

the demographic differences as well as the population size issues. The previous longitudinal 

study was limited by not differentiating between majors. This could be rectified by a study that 
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interviews a group of students in Differential Equations, and then interviews them again in a 

couple of years when they are seniors.  This would have the advantage of measuring back 

transfer in individual students and not just in the group overall. 

 Summary 

The goal of this research was to measure if back transfer was occurring and, if so, to 

measure the effect of applying the mathematics in different contexts has on this back transfer.  

Engineering seniors and Mathematics Education seniors were interviewed in one-on-one, hour-

long, conversation-style interviews.  Each student was then rated on their conceptual 

understanding of “function” and “accumulation” on a modified APOS scale, their confidence in 

their ability to answer mathematical questions, and their willingness to participate in the 

discussion of mathematical topics they may or may not understand.  The overall distribution of 

each major on the modified APOS scale was compared against students in Differential Equations 

from a previous longitudinal study used as a baseline to see if seniors had higher levels of 

understanding of Calculus concepts despite not having taken any more Calculus.  The levels of 

understanding of the two majors were compared to see if the two different contexts resulted in 

different amounts of back transfer.  

The first result of this study was that it does appear that back transfer is occurring. 

Seniors in both majors exhibited deeper levels of understanding on average of “function” and 

“accumulation” than students who were just finishing the Calculus sequence.  Since the 

conceptual understanding of Calculus concepts increased in both groups even without taking 

more Calculus seems to imply that applying this knowledge in context of later major-related 

classes deepens the understanding of these concepts. 

It also appears that the context in which the mathematical knowledge is applies affects 

the amount of back transfer occurring.  Engineering majors seemed to experience more back 

transfer than did Mathematics Education majors.  This is possibly indicates that real-world 

contexts of mathematical science classes allow for deeper understanding than do abstract, higher-

level mathematics classes, or it may indicate that differential equations, specifically, facilitate 

back transfer effectively.  As further evidence that different contexts lead to different amounts of 

back transfer, the Anecdotal Observations section above indicates that computer programmers 
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may have a deeper understanding of “function” because they have seen it and relate it in terms of 

programming languages, though this would take more research to verify.  
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Appendix A - Modified APOS Rubric 

Table A.1 Rubric for rating conceptual understanding from previous longitudinal study 

Level Description Function Example Accumulation Example 

Action Students can “do the 

math” to arrive at an 

answer, but their only 

strategy is to follow 

algorithms they have 

been taught without any 

vision of what lies ahead, 

what the steps mean, or 

why we do those steps.  

If the student does not 

know how to do a 

problem they will run 

through their catalog of 

procedures until either 

they find one that works 

or they give up.  

Functions, integrals, etc. 

are static formulae that 

are evaluated by means 

of an algorithm. 

A function is an 

equation or a graph that 

passes the Vertical Line 

Test.  Functions are 

static; they are analyzed 

by putting numbers into 

the equation or looking 

at points on the graph.  

The inverse of a 

function is a different 

function.  Different 

representations are 

different things. 

An integral is understood by 

taking an antiderivative and then 

plugging in a number.  An 

integral is “area under the curve” 

but this is only understood as 

something the teacher said they 

were supposed to memorize and 

probably cannot be applied to 

evaluating integrals.  The student 

cannot dynamically visualize 

how an integral changes as x 

changes; if they do not have an 

explicit way to obtain the 

equation of the integral, they can 

only plug in different x’s to 

analyze it.  Given the graph of a 

hemisphere, students will try to 

obtain the equation and then 

integrate using antiderivatives. 

Action/P

rocess 

Students still follow 

prescribed steps but they 

show some 

understanding and 

adaptability.  They can 

recognize mistakes and 

contradictions, but they 

may not be able to 

explain them or figure 

out what went wrong.  

Alternatively they may 

skip back and forth 

between Action and 

Process. 

A function passes the 

Vertical Line Test, but 

this does not have to be 

a graph.  The VLT can 

also be applied to tables 

and equations.  The 

inverse is related to the 

original function by 

switching x’s and y’s.  

The student can begin to 

see how varying the x’s 

will affect the y’s.  They 

can begin to relate 

representations. 

Integrals can vaguely be 

estimated from a graph of the 

original function, but the student 

will likely resort to pointwise 

calculations to figure out a rough 

sketch.  The students will 

recognize that the integral can be 

gotten from moving the x’s and 

visualizing how the area under 

the curve changes, but they will 

have a lot of trouble actually 

doing so.  

Process The student can reason 

through a problem, 

recognize the reason for 

steps, connect different 

representations, etc.  The 

object in question, 

though, is still an 

A function is a separate 

notion from an equation 

or graph.  Functions take 

an input to at most one 

output; the inverse 

undoes this process.  

Inputs and outputs do 

The student can visualize an 

integral from the graph of a 

function by varying the x’s and 

seeing how the area accumulates 

under the graph.  Given a 

hemisphere the student will 

recognize that it will be easier to 
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intangible process rather 

than an object with 

properties that exhibit 

themselves as that 

process. 

not have to be numbers.  

Graphs and equations 

depict outcomes of a 

process. 

evaluate the integral as a fraction 

of a circle, unless this strategy 

will be difficult - such as when 

the integral does not come out as 

a nice fraction of the circle – in 

which case they will switch to a 

formulaic approach.  An integral 

is not a function until it is 

evaluated. 

Process/

Object 

Students begin to be able 

to talk about the concept 

in question as a thing and 

not just as an abstract 

process. 

They can talk about 

functions as objects but 

they may still have 

trouble manipulating 

them as such. 

Integrals are functions even 

when still written in integral 

notation (i.e. before the 

antiderivative is found). 

Object The concept is now 

something that they can 

manipulate.  The 

processes and 

representations are 

properties that the object 

has. 

Functions are objects 

that can be manipulated 

just like numbers or 

variables.  A function 

can take other functions 

as inputs and outputs.  

Graphs and equations 

are representations of a 

single entity. 

An integral is an object; it does 

not have to be evaluated to be a 

function.  Actions and processes 

can be performed on integrals 

(addition, etc.). 
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Appendix B - Interview Protocol 

Senior Interview Protocol S11 

1.  Prepare for the interview at least 5 minutes before the scheduled time. Unlock the conference 

room and leave the door open. Set out the IC Recorder, two copies of the Informed Consent 

form and a pad of paper for students to write or draw on as needed when they answer the 

questions. 

 

2.  When the student arrives, introduce yourself and welcome the student by name. Close the 

door to the conference room. Ask for permission to record the interview. If permission is 

granted, start the recorder. 

 

3.  Explain the purpose of the interview: 

We are interviewing students to better understand what students are learning about math. This 

is prompted by a desire to better prepare students for later courses. I will ask you some 

questions about your knowledge of functions and integrals so we can better understand what 

and how students have learned from math courses. Some of these questions have right and 

wrong answers while other questions may not have a particular right answer, but are intended 

just to give an idea of how you think about the material. This interview should take 

approximately an hour. Your participation is completely voluntary and your grade will not be 

affected by your decision to participate or not. You will receive $10 for your time for 

participating in this interview and you may also benefit by improvements in instruction in 

mathematics and by having a chance to go over some mathematical ideas with an instructor. 

In the event we include any of your comments in any discussion or publication, your privacy 

will be maintained by the use of a pseudonym. We have two copies of an Informed Consent 

Form for you to sign; one for our records and one for you to keep. 

 

4.  Have them read and sign the form. If they decline to sign the form, thank them for their time 

and terminate the interview. Otherwise sign and date the form as witness and then proceed to 

the questions below. 

 

5.  Mathematical questions. The purpose is to get a sense of what level of understanding of 

functions and accumulations (integrals) that different students are at. If a student gets stuck 

answering a question, you may offer a hint if appropriate to get them unstuck. Don’t let the 

interview stretch over an hour. If students make mistakes, please correct them either at the 

end of the problem or at the end of the interview as appropriate. 



90 

 

Protocol 
(a) Questions about function. 

 What is a function? 

 Is differentiation a function? 

 What is its domain? Range? 

 Is ∫       

 
      a function? of what? Domain? Range? What does it look like? 

 Is the Laplace transform a function? of what? Domain? Range? 

(b)  

 Graph x(t) = cos t, y(t) = sin t, 0 ≤ t ≤ 2π. 

 Graph x(t) = cos 2t, y(t) = sin 2t, 0 ≤ t ≤ π. 

 Are these the same functions? 

(c) Give the student the graph with the quarter circle 

 At what height does the line have to be placed in order to maximize the shaded area? 

(d)  

 What is math? 

 What is the role of theorems in math? 

 What is the role of logic/deductive reasoning in math? 

 What is the role of math in physics? 

(e)  

 Given that ag = 32ft/s/s, how fast is a stone falling 1 second after being dropped? 

 After 2, 3, 4 sec? 

 Which models the situation: v = 32t or t = 
 

  
v 

 Are these the same function? 

(f) A car starts out moving 10mph, but it continuously slows down by 1mph every hour. So after 

1 hour, it is only going 9mph, and so on. 

 How long does it take for the car to go 5 miles? 

 What is the farthest the car travels? 

(g) A car starts out moving 10mph, but it continuously slows down by 1mph for every mile it has 

traveled. So after 1 mile, it is only going 9mph, and so on. 

 What is the farthest the car travels? 

 How long does it take for the car to go 5 miles? 

 What is the farthest the car travels? 
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End of the Interview 

 

(a)  Other comments. Are there any other comments or questions you would like to make about 

any aspect of the course? (Ask follow-up questions or provide answers (if you know the 

answers) as appropriate. You may tell the student you will refer questions to Prof. Bennett 

and he will get back to them if you don’t feel you can adequately address a question (say 

about why we are doing labs in the course)) 

 

 Final Questions 

  i. How many more semesters until graduation? 

  ii. What math classes have you taken? 

  iii. What math-related science classes have you taken? 

 

(b) Thank the student for participating. Gently correct any errors they made that haven’t been 

addressed already. Let them know they are always welcome to email any additional 

comments or suggestions about the course. 

 

(c) Stop the recorder. Have the student fill out a receipt form with their 

 Name 

 Home Address 

 WID Number 

 Date 

 Signature 

 

 Once you have the completed receipt, give the student $10 and thank them again. Place the 

white copy of the completed receipt in the money envelope and leave the yellow copy in the 

receipt book.  

 

(d) As soon as you have time (since sometimes there are two interviews back to back), please 

write up notes on the interview, transfer the recording to the computer system and erase the 

session from the IC Recorder. 

 

(e) Write the name of the student/interviewee on each piece of scratch paper used and file the 

paper with his/her consent form. 
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Figure B.1 Graph given to students for question (c) 
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Appendix C - Sample Interview 

The following is the full text from the interview with the first Engineering major.  This 

student was rated at Process with a Confidence of 1.5 and a Willingness of 2. 

 

Question A: 

Researcher:  So, first question is... um... what is a function? 

Student:  A function uh.. do you want me to tell you what the definition is? or write the 

definition 

Researcher:  um... you can just tell me, yeah, what, what the definition of a function is, or how 

you think about a function. 

Student:  Yeah, it's been a while since I've had any technical or.. I guess.. uh.. what the school's 

definition is.. uh.. 

Researcher:  So, what is your definition of a function? 

Student:  It should be... a... a function... uh... 

Researcher:  make you think way back 

Student:  yeah Describing colors to a blind person. It's a formula using ...uh I think of a function 

as you've got like your what it's called and then like equal and then you've got your 

formula of the rest of the... 

Researcher:  So a function is an equation then? 

Student:  Yeah, an equation. um... 

Researcher:  So If we think about... um... So is any equation a function? 

Student:  Off the top of my head, I want to say yeah, but it seems like a trick question. I mean, I 

think there's got to be some 

Researcher:  Mathematicians like to ask trick questions. 

Student:  Yeah. 

Researcher:  So, y equals x squared: that's a function, right? It's a parabola. 

Student:  Doesn't it have to be like differentiable at points. I don't know, something. Maybe not. 

Or continuous. It has to be continuous doesn't it? Maybe not. Because you can have to 

sum of... yeah. So this would look like... 

Researcher:  So is that a function? 
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Student:  Uh... yeah. I think it is. 

Researcher:  Ok. So it doesn't have to be continuous? 

Student:  I think that's right. 

Researcher:  Ok. What about... 

Student:  Well, but that is defined for all points, so... I think it's about right. I don't... 

Researcher:  Alright. 

Student:  It has been so long; I never thought about this. 

Researcher:  And you probably never really thought about it like this? 

Student:  No. 

Researcher:  But I just want to figure out... because you use functions all the time. I want to 

figure out what you really think about all of them. I don't really care about what the 

mathematicians say a function is. Is this a function? 

Student:  I remember there is something and I can't remember like (inaudible) but it had to only 

have one value of y for every, uh... 

Researcher:  Ok, so every x there can only one value of y. So this one has two so it can't be a 

function. 

Student:  Right. 

Researcher:  So it is the same thing as saying it has to pass the Vertical Line Test. I don't know if 

you remember that, but... But, yeah, every x has to have at most one y. Alright, so, So a 

function, then, is an equation where every x goes to at most one y. Um... or no x goes to 

two or more y's or whatever you want to say. So, um, If I take the derivative of a function 

you know, I get f prime. 

Student:  Yeah. 

Researcher:  My f... goes to f prime when I take my derivative. So it only goes one derivative. 

There's only one derivative. So is differentiation - just the act of doing a derivative - the 

d/dx - is that a function? 

Student:  Uh... I don't know. I'd almost say it's an operation. 

Researcher:  Ok. 

Student:  I've come to think of it more as like multiplying or adding two numbers together. It's 

like something you perform over... on a function. 

Researcher:  Ok, so what's the difference? 
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Student:  Uh... I guess you perform the differentiation on a function and not like a... um... a 

number. 

Researcher:  Ok, so the function you're thinking of is an equation that takes x's to y's and it can't 

take it to more than one y. And these are numbers I'm plugging in? 

Student:  So what's the question? 

Researcher:  Is the act of taking the derivative a function? 

Student:  I'm not sure. 

Researcher:  That's fine, I mean.. I'm not looking for... 

Student:  Yeah. 

Researcher:  necessarily a mathematical answer to this. I just want to know do you think about 

that as a function? 

Student:  Yeah, I think of it more as an operation or something. 

Researcher:  Ok, and that's different than a function, right? 

Student:  No... you have operators in functions. 

Researcher:  Ok, so there's like addition in functions but that's 

Student:  Yeah. 

Researcher:  Ok, so that could be part of the function? Maybe. Alright, so what about... um... 

Student:  I guess if it's part of a function, it could be a function. So, 

Researcher:  Say we have a differential equation. Is this a function? So, it's an equation. 

Student:  Yeah... But you have a y prime on... I would say no because you have a y prime on 

both sides, you'd have to... 

Researcher:  So it matters what... um... how the equation is written? 

Student:  I think so. You're like defining itself or something. 

Researcher:  So, Is this a function? 

Student:  Yeah. 

Researcher:  Why? What's the difference? 

Student:  Well, I can easily say that's y equals x squared. 

Researcher:  Ok, so you can rewrite this one as a function, so 

Student:  Yeah. 

Researcher:  Ok. So... 

Student:  If I'm not so sure on it, I could do some math. 
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Researcher:  Right. We don't have to do math. Ok, so you a function then is something like this, 

so I plug in an x and I get at most one y. Do these have, do I have to plug in a number to 

this? 

Student:  Uh... Usually you plug in a value for x and find your y. 

Researcher:  Ok, but do those x and y's have to be numbers? 

Student:  Well, no you could have uh.. um.. I guess you, yeah you could call them variables, 

pretty much, they'd just be something that would be 

Researcher:  But can I put anything in here? Could I even... Could I put a function in there? 

Student:  Yeah, I think so. 

Researcher:  So when I was putting functions into this, you wanted to call it an operator. Is this 

an operator now... or an operation, or whatever? 

Student:  I mean I guess, I guess you could call it a function. 

Researcher:  Is this still a function? 

Student:  Yeah. 

Researcher:  Ok. So what's the difference between that and that? 

Student:  Uh... There really nothing, I guess. 

Researcher:  So this could be a function? 

Student:  Yeah. 

Researcher:  Ok, so the only difference then is... um... 

Student:  It's just notation or something. 

Researcher:  Yeah, ok. So, you're alright with this being a function? 

Student:  Yeah. 

Researcher:  Well, if it's a function what are its domain and its range? It must have one if it's a 

function. 

Student:  Hmm. The domain and range are... I forgot about those. 

Researcher:  So domain is what you plug into the function, range is what you get out. 

Student:  Right, ok. It's... hm... Uh... 

Researcher:  So, if it is a function, then it has to have a domain and range, right? So either it's not 

a function or it has a domain and range. 

Student:  I can't think of any domain and range for it. 

Researcher:  Well, so what's the domain of this function? 
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Student:  It would be x. 

Researcher:  So the domain is everything we plug in for x, right, so we can plug in all real 

numbers in this case. We can think about that as the parabola. So it's what we can plug in 

here and get an answer out. What can we plug into here and get an answer out? 

Student:  I mean... You can... I guess you can plug in any real numbers... 

Researcher:  Ok, so you can take the derivative of any real numbers, then? 

Student:  Yeah. 

Researcher:  So I can plug functions in right? So any differentiable function I can plug in and 

take the derivative of right? 

Student:  Mm Hmm. 

Researcher:  So would that make the functions the domain? 

Student:  Yeah. I think so. 

Researcher:  So I plug in function and I get functions back out? So I can plug function... so I can 

plug functions into functions and functions back out? 

Student:  Yeah. 

Researcher:  So is the Laplace transform a function? Remember you did that... You take the 

function and transform into some other function. So is L, the Laplace transform, is that a 

function? 

Student:  I think so. Uh... Well I think it works the same way that taking the derivative would. 

Researcher:  Ok. 

Student:  I mean, we're... I'm not sure.  

 

Question B: 

Researcher:  Let's... uh... do something different, then. Is, um, so I'm going to make you 

remember some old stuff again. So Here we have a set of um a parametric set of 

equations. Um, so x of t is running... is cosine of t and y is sine of t and then t is running 

between zero and two pi. Can you graph that? Ok and how do you know that? 

Student:  Um.. I don't know, it's just... Your x is the... uh, x and y. Y starts at zero, x starts at one 

and it's just the unit circle. 

Researcher:  Ok. So what if I... 

Student:  ..circle though... 
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Researcher:  Yeah, you're right. So what if I do Um... This. Now it's cosine of two t and sine of 

two t. But t is running between zero and pi now. 

Student:  It's uh... It's still going to be the uh.. full circle 

Researcher:  ok Why what's the difference? 

Student:  Um.. A... what's the word, it's like compression or expansion, I think but you're still 

going effectively from zero to two pi because you've still got your two in there. 

Researcher:  Ok So it will still make it all the way around once. 

Student:  Yeah. 

Researcher:  Ok. So, I got the exact same graph for those two. Um... Are they the same function? 

Student:  No. 

Researcher:  Why not? 

Student:  Well, because one is cosine of t, the other one is cosine of two t. I don't know if they 

have a different, uh.. range. 

Researcher:  Well, they have a different domain. 

Student:  Or domain, yeah. 

Researcher:  Ok. So, because one goes between zero and two pi and one goes between zero and 

pi, so different... even thought they give me the exact same graph, because they have a 

different domain, they're different functions? 

Student:  Yeah. 

Researcher:  Ok. So, so, a function is different than a graph then? Right? Or are they the same 

thing? 

Student:  The graph's just a visible.. visual representation of a function. 

Researcher:  But two different functions can have the same graph? 

Student:  Right. 

Researcher:  Ok, can two different functions have the same equation? 

Student:  Can two, ok, yeah. uhhh... hmmm... Yeah, no, I tend to use function and equation 

interchangeably, but it's.. uh... not the same thing. These are definitely different equations. 

But, the... if the graph is a function, then they both yield that same function, I guess. What 

was the question again? Is a... 

Researcher:  Well... uh.. well.. Is, so... Can two different functions have the same graph? 

Student:  I think so. 
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Researcher:  So these two things have the same graph; are they two different functions? 

Student:  I don't know, they're different equations. 

Researcher:  Are function and equation the same thing? Let's say I have um... f(x) equals three 

But what if I think of this same function, but instead I change it to r of theta instead of f of 

x. All I've done is change the name, but let's consider this in polar coordinates, then. 

Student:  mm hmm. 

Researcher:  What does that look like? So this one's in Cartesian and this one's in polar. 

Student:  Well, isn't it in... f of x equals... 

Researcher:  So r of theta... r of theta equals three. 

Student:  Yeah. 

Researcher:  So, in polar coordinates, that's just a circle of radius three, right? Because my theta 

can be anything and my radius is always three. 

Student:  mm hmm. 

Researcher:  So these are the same equations, though, I just changed the names. I could have just 

as easily written this as f of x. I considered it in polar coordinates instead Cartesian 

coordinates. So they're effectively the same equation. In fact, I could have done the same 

thing with any equation. So I can write f of x equals x and r of theta equals r... or that 

might be theta... theta. So all I've done is change the x to a theta and the f to an r, so it's the 

same equation, but I think about this one in Cartesian coordinates, it's a line, and if I think 

about this one in... um... polar coordinates, there's this, what, spiral. 

Student:  Yeah. 

Researcher:  Those are the same equations, I've just changed the names. 

Student:  You've also changed the... the... 

Researcher:  coordinate system. 

Student:  coordinate system. 

Researcher:  Ok. So, so is the coordinate system part of the equation? 

Student:  I think it's going to determine 

Researcher:  It'll determine what it will look like. 

Student:  Yeah. 

Researcher:  But it's effectively the same equation that's giving me two different functions, right? 

It's just because I'm considering it in two different um... backgrounds, basically. 
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Student:  Yeah. 

Researcher:  Ok, here I have two different functions - or at least that's what we decided earlier; 

that these are two different functions - um... give me the same graph. So function is not the 

same as a graph and a function is not the same thing as an equation, because two different 

equations gave me the same... or, two different equations... the same equation gave me 

two different functions the same graph can give me two different functions. um... and I 

can come up with multiple equations for any function. So function and graph and function 

and equation must be different concepts, right? So what's the difference? What is a 

function if it's not one of these things I've used? 

Student:  It... Something you have an input for and you get an output. I don't... 

Researcher:  Ok. So it's just something that all we can say about it is we put an input in and we 

get an output. We're still restricting, right, to the... uh... one input can't go to two different 

outputs. 

Student:  Right. 

Researcher:  So, this is something we can put an input into and get an output. 

Student:  mm hmm. 

Researcher:  And it only gives us one output. So that's a function? 

Student:  Yeah. 

Researcher:  And... that's a function? 

Student:  I think so. I'm fuzzy on Laplace transforms. 

Researcher:  um... So, so is a function... So a function is just this abstract concept then... of being 

able to plug something into something and getting something out? It's a way of relating an 

input to an output? 

Student:  Yeah. 

Researcher:  So if it's just this abstract concept, how are we putting it into differentiation? Can 

we do differentiation on an abstract concept? 

Student:  Uh... I don't know. 

Researcher:  Ok. So, you're right an equation is an abstract concept where we relate an input to 

an output where one input goes to at most one output. 

Student:  mm hmm. 
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Researcher:  But because we've made this relationship, this relationship in itself can have umm... 

properties. Like, derivatives. So... I know it's torture, but... You've never had to think 

about that stuff really before? 

Student:  Not for a long time. 

Researcher:  Usually when we taught you that stuff we didn't ask you questions like that. 

Student:  Yeah. 

 

Question C: 

Researcher:  Um... So here I have a graph. 

Student:  mm hmm. 

Researcher:  Um... I don't know anything about this, um, I just know that this is my graph here. 

and I'm bounded by this box and if I put this line at height c, I'm look at the shaded region 

below it and the shaded region above it... so above this graph and below the line. So, it's 

bounded by the box and bounded this line down here. Um... So... If that's all I know about 

this, Can I decide where to put this line... what height, c, to put this line to, um, minimize 

the shaded area? Or, maximize the shaded area. Is there a way to do that? 

Student:  Um... We could probably write a computer program, or... 

Researcher:  Alright, what would that computer program do? 

Student:  It'd basically be, I mean, it would be calculating the function... um... 

Researcher:  Oh ok, so you'd figure out the points and stuff and you'd... 

Student:  Yeah. 

Researcher:  Reverse engineer the function and then what would you do with function? Once you 

had the equation for the function. 

Student:  You would do, uh, yeah you could, let's see... To minimize the area, we're talking about 

an integral. And for under the graph is easy enough; you'd just take the integral of the 

function. Now for the area above that line, if we're just talking about the boxed-in region 

you could manipulate that function so... I don't... The integral is area under the curve... 

so... I guess you could, uh... Subtract that area from that height. 

Researcher:  Ok, so you'd basically just be taking the integral of this minus the function. 

Student:  Yeah. 
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Researcher:  Ok, and so if we just took the integral of this function, though, we would grab all 

this extra piece. 

Student:  mm hmm. 

Researcher:  So we'd have to take the integral of the function up to this point and take the 

integral of that function, right?. 

Student:  Yeah. 

Researcher:  Ok. So, you would just set up this integral where you'd have to do a couple of things 

to get it right, but then you could just take an integral and evaluate it. So, that would 

require knowing what the function is, but also knowing what all of these bound are. 

Student:  Yeah. 

Researcher:  Can we do it without any of that knowledge? Or is that just asking too much? 

Student:  Um... Well, you could. I mean... It would not be easy or necessarily very accurate. 

Researcher:  Ok. 

Student:  So this... 

Researcher:  How are you thinking about it? Like estimates? 

Student:  Yeah, you could like measure it or estimate it. 

Researcher:  How would you estimate it? 

Student:  Um... hmm... 

Researcher:  So how would you estimate the integral? 

Student:  Well... I mean... or... I don't know. 

Researcher:  Well, so one way we could estimate it is we could just start taking chunks off. 

Student:  Yeah. 

Researcher:  So if we started doing rectangles... we could figure out the size of the rectangles 

easily enough, right? If we knew... 

Student:  mm hmm. 

Researcher:  If we could just measure them. So we have these little rectangles; we'll be a little bit 

off because it's just an estimate using all these little chunks, but... So if we have these 

rectangles, and we go all the way up to here... We could do the same thing here. Alright, 

so we could get our estimate that way. Would we just have to put the line at different 

places and hopefully hit the one that happens to be the smallest? 
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Student:  You could do it that way, but... you could... You could like start zeroing in on it that 

way, maybe, if you got close and you could move the other direction if you started to get, 

you know, started to get bigger or something. 

Researcher:  So you're thinking about moving the line and seeing what's happening to the area? 

Student:  Yeah. 

Researcher:  Ok. So how would you move the line? Would you just start moving one of the 

directions and see if it went up or down? 

Student:  Well, I don't know, if you're talking about having the smallest, uh, shaded area on there 

um... You're going to going to want the, um, line c to be down here because under that... 

Researcher:  So, if I put it all the way at the bottom, it will be the smallest? Yeah, because I'll 

only have just this bit... this bit. 

Student:  Yeah, I think I'm going to go yeah. It looks like it. I think at the bottom will be the 

smallest. 

Researcher:  What happens if I move this, um, line up just a little bit? What happens to the, uh, 

shaded area? 

Student:  The shaded area will get... it looks like it's bigger because this section here is, is uh, 

wider than this side here. 

Researcher:  Ok. 

Student:  So this, this area here is going to be increasing. The area under the curve is going to be 

increasing faster than this will be decreasing. Basically. 

Researcher:  So you thought about this little bit of area that I just increased by. 

Student:  mm hmm. 

Researcher:  And you've said I've gained that but I've lost this. 

Student:  Yeah. 

Researcher:  So, I gained more than I lost, so the integral went up? 

Student:  Yeah. 

Researcher:  Ok. Um... Let me just change the question slightly. What if I wanted to maximize... 

this area? So we just saw that it went up as I moved it up. 

Student:  mm hmm. 

Researcher:  Will it keep moving up if I move it all the way up. So you say it's minimized down 

here. Will it be maximized up here? 
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Student:  Um... Not entirely, there a point... I think there's going to be a point right about... right 

around there where you're going to be losing more... uh... 

Researcher:  Ok, so you're thinking about moving this up now. 

Student:  Where this is basically half way... 

Researcher:  Ok, so you want this to be halfway across so, whatever this line is, so that it's 

halfway across. How did you decide it's halfway? 

Student:  Well... I guess that it's not exactly a straight line, though, so that's not right. 

Researcher:  You said that the function is not a straight line? 

Student:  Right, yeah, well I'm saying it's not a, uh... it curves, it's not a... 

Researcher:  It's not linear. 

Student:  Yeah, it's not linear. 

Researcher:  Right, so um, where would this go then? How does that affect that? Because why 

did you say it was... why did you originally say it was halfway? 

Student:  Well, I was... I originally said it was halfway because it's just width-wise you'd be... So 

the amount I would have just added... If your chunks going up are small enough, it's, it's 

going to be, uh... It's going to be just strictly based on... how, uh... wide each chunk is. 

Researcher:  Alright, so I've added this much, but I've lost this much. And so, when... you 

wanted to say when I'm adding the same amount as I'm losing I'm at my maximum. 

Student:  Yeah. 

Researcher:  Ok, and you're thinking about just the lengths and because the widths are the same... 

I just moved my line up... that it only matters about the lengths. And so you said that when 

the lengths are equal... 

Student:  Right, if your chunks are small enough... 

Researcher:  Ok. So, you're right, that's where it would be. Um... and no matter what the graph is 

that's just where it would be because of that exact reasoning. Um... What does that have to 

do with an integral? So you wanted to find it with an integral originally. If we had the 

equation, we would have done it with an integral. 

Student:  Yeah. 

Researcher:  In fact you even wanted to make a computer program to find the function and 

reverse engineer it. 

Student:  Yeah. 
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Researcher:  What does this have to do with the integral? 

Student:  Uh... Well I think of the integral as the area under the curve a lot of the times. 

Researcher:  Well, we're talking about area under the curve. So, even when we were just moving 

this up a little bit, we were talking about the area under the curve. We were talking about, 

it moved up a little bit. 

Student:  Yeah. 

Researcher:  So, how does that correspond to the integral? If we were to write it out in 

mathematical symbols, what did we just do? What were we just looking at? 

Student:  The... The integral is you take the... the limit as the size of your chunks approaches 

zero. I think. 

Researcher:  Is your integral? 

Student:  Is your integral, yeah. 

Researcher:  So you're thinking about... we were talking about these estimates and so as your 

estimates get finer and finer, um... you're going toward your integral? 

Student:  Yeah. 

Researcher:  So when we move this up, we would be moving it up by a smaller and smaller 

amount and so it would be closer and closer to moving our integral. 

Student:  mm hmm. 

Researcher:  Um... So what does that correspond to: moving that up by an infinitely small 

amount? I mean we've changed our integral; no we're looking at a different integral. 

Student:  mm hmm. 

Researcher:  But it's like an infinitely small amount that we just moved it up, so how would that 

correspond? What are we looking at? 

Student:  Um... I'm not sure what you're asking... 

Researcher:  Well, so we're moving c up and we're watching the integral change. 

Student:  Yeah. 

Researcher:  So how did you decide... how would we decide mathematically... if we had this... If 

we knew what the function was and could take the integral, how could we decide where to 

put c? 

Student:  When... I guess we're talking about the rate of change of the integral, or something. 

Researcher:  Ok, why? 
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Student:  Because we want to know when the rate of change is basically zero. 

Researcher:  So we were watching the integral increase. 

Student:  mm hmm. 

Researcher:  And we want to know when it's zero because then it will start going back down and 

we know we're at a maximum? 

Student:  Yeah. 

Researcher:  So how would we find the rate of change of an integral? 

Student:  Take the derivative of it... 

Researcher:  Yeah, so, what we were doing... So what we were doing, then, we were looking at... 

We, you moved this up a little bit and you said this area increases by this much and we 

lose this much. 

Student:  mm hmm. 

Researcher:  Is that just looking at the derivative of an integral? 

Student:  Um... I think so. 

Researcher:  Ok. 

Student:  Yeah. 

Researcher:  So... Ok. You're right. 

Student:  Because you'd pretty much looking at where that function is... the rate of change is like 

a 45 degree angle where x basically, I think... or, I mean... 

Researcher:  Yeah, I mean, right. 

Student:  Because below this point it's going be... 

Researcher:  It will be increasing. 

Student:  And then after that point, it's going to be tapering off. 

Researcher:  So, yeah, so what we were doing was move it up by a little bit and that gave us an 

estimate for how much did our integral change which was just our estimate for the rate of 

change of our integral and so if we made that smaller and smaller... Well, actually we were 

looking at the rate of change... Are we looking at how much did the estimate of our area 

change. And so as we made those smaller, the estimate of our area went to the integral and 

that amount of change went to the derivative. So we were looking for when the 

derivative... was zero. Right. Ok. Good. So, Is that normally the way you think about it? 

Student:  Not exactly. 
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Researcher:  Yeah, derivatives of integrals.  

 

Question D: 

So, um... Next question is maybe actually a little harder to answer. What is math? 

Student:  Um. It has to do with the... the first thing that comes to mind is the manipulation of 

numbers. 

Researcher:  Ok. 

Student:  Um... but that's not... it may be a little over simplifying, I suppose. 

Researcher:  Ok. So what else might it be if it's not just manipulation of numbers? 

Student:  It deals with functions, I mean, you can do math on things that aren't numbers, really. 

You can assign uh, values, you know, for letters and stuff... um... I mean, you do get 

constant, sort of, you can treat it as a constant. It's still, I guess it will still be sort of a 

pseudo number. 

Researcher:  Right. Was this math that we did? Just the idea of trying to figure out... without 

equations or anything, where this thing would be maximized? 

Student:  Yeah. 

Researcher:  Alright, so even though that has nothing to do with numbers or equations, or... all 

we have is this shape and some shaded area. 

Student:  Well, but we were trying to figure out the amount which is quantitative. 

Researcher:  Ok. Um... 

Student:  Whether or not you can actually assign a number to it, I suppose... 

Researcher:  Yeah, and we can't assign a number to this because we don't know... I mean, can 

make this any size I want and any number I wanted. So what I'm doing is I'm just looking 

at this shaded area is... just takes up more space than this shaded area. 

Student:  mm hmm. 

Researcher:  And I'm looking at when does it take up the most space and I'm not using equations. 

We're not using numbers... Is that still math? Or is that something else? 

Student:  I'd say it's math. 

Researcher:  Ok. So math doesn't have to have numbers or equations at all? So what is not math? 

Student:  Well I'd say there you're still comparing... um... you're comparing the value, I guess, of 

something of one thing to another thing. 
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Researcher:  Ok so we could assign value to it and so... 

Student:  Yeah. 

Researcher:  Ok. Um... What is... what is the role of theorems in math? 

Student:  Theorems? Theorems are... 

Researcher:  Yeah, Fundamental Theorem of Calculus and we have Pythagorean Theorem. 

Student:  I forget... See I think theorem and I think of theory and theories are things that aren't 

necessarily proven, but is that the same with theorems? I can't... They're sort of pre-

established um... pretty much I want to say proof, I guess, but it's something that 

somebody's come up with before. That someone was sort of proven. 

Researcher:  So it's some idea or fact or something that somebody's come up with and that we 

use to do something with? Um... So... What do you mean they're sort of proven. 

Student:  I... I don't know, I want it to be absolutely... 

Researcher:  You mean like in physics where we, um... so how do we prove something in 

physics? Or Engineering, for that matter. 

Student:  Um... You usually use... uh... we usually use math to go in and find out the equations 

for something. And um.. make sure everything adds up or, you know, calculates out. 

Researcher:  So, um... but how can we find the equations in physics? How are the equations 

found originally in physics? Like, you know, force equals mass times acceleration, and all 

this... 

Student:  Well there's testing. 

Researcher:  Ok. 

Student:  Taking tests and recording the data. 

Researcher:  Alright. So in physics, we basically try something a bunch of times and see if it 

works and if it works then we call it a theory and say that's what's going to always happen. 

Is that what we do in math? Do we just try triangles a bunch of times and come up with 

the Pythagorean Theorem? 

Student:  I'm going to say yeah, but there's also... there's other ways, I suppose, of... 

Researcher:  Would you call this a theorem? That putting this where these two lines are equal, or 

so where it hits it in the middle is always going to maximize the area? ...or maximize the 

area of this graph? 

Student:  Yeah. 
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Researcher:  Is that... would that be a theorem? 

Student:  Yeah. 

Researcher:  So it's something that we've come up with that we could potentially do somewhere? 

Um... Did we just try a bunch of... how did we come up with... how did we decide this was 

true? I mean, we didn't try a bunch of examples, we only had the one example. Do we 

know this is true? Is this going to work for every shape or is there some shape out there 

that this won't work for? 

Student:  It would be at another... I mean if it's Yeah, if it's not, like, that shape right here. 

Researcher:  So, if it's a different shape, then it will be... well it will be a different, but will it be... 

But, if we say it's going to be halfway between these two lines... um... then it's going to be 

true or is that going to depend on the shape? 

Student:  As long as it... um... as long as it doesn't do something weird like loop back around or 

something and as long as it's a function. 

Researcher:  Ok. So as long as this is a function, it will always be the case where this hits the 

function right in the middle of the box? For every single function? I mean, we've only 

looked at one; how do we know it works for everything? 

Student:  Because it would be, um... You know it's the same thing as this. That when it hits 

halfway, then the other half is going to be... um... 

Researcher:  Yeah, so we'll be gaining as much as we're losing. 

Student:  mm hmm. 

Researcher:  Ok. So, we only tried this for one function. In fact, we don't even know what this 

function is. 

Student:  It looks like a unit circle. 

Researcher:  It is, but we don't know that. um... So, um... I mean, it could be an upside down 

parabola or something. 

Student:  Yeah. 

Researcher:  But uh... And we didn't even calculate anything for this. But we still know if it's 

true? 

Student:  I want to say yes, but I... from experience in... I mean I have good experience with 

other functions in math and working on other things. Because, I mean, to prove it you 

would want to try it on as many functions as possible. 
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Researcher:  Will you ever find one that this doesn't work for? 

Student:  I guess if it's still a function... I'm going to go with that why it's called a theorem, 

because there might be some function that it doesn't work for. 

Researcher:  So, let's say there's some different shape. It will... if it doesn't work on it, then it will 

have to be the case that we move it up a little bit and the amount is the amount we change, 

but that's not the maximum. That we've either increased it or... or, no, we've increased it 

by doing that. By making the amount we gain as much... the same amount as much as we 

lose when we total this up. 

Student:  mm hmm. 

Researcher:  Can that happen? We lose the same amount we gain, but the whole thing goes up? 

The total goes up? 

Student:  Well, if you're losing the same amount you're gaining then the total shouldn't be 

changing. 

Researcher:  And that's all we did: found a place that we were losing the same amount as we 

were gaining. 

Student:  Right. 

Researcher:  Yeah. So, there won't ever be a function that that's not true for. Because the logic 

says that if that happens, then you must be at a maximum. Or at least a local maximum. 

Student:  mm hmm. 

Researcher:  So... The key here was we didn't try a bunch of... functions to find out if it was true; 

we only tried one function. But we used logic on it. 

Student:  mm hmm. 

Researcher:  To decide that had to be the case. And in fact, that's going to be the case for every 

single function we try. 

Student:  mm hmm. 

Researcher:  Because it will be the same logic. We never actually used the shape of this function 

when we were deciding this. 

Student:  Yeah. 

Researcher:  We only used the logic of how functions behave. So we do know this is true for 

every single function. Without even having to try it on any other functions. 

Student:  Because we determined that independent of the... 
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Researcher:  Independent of the function, exactly. So... Um... So in that case at least, theorems 

were something that we, um... know are true then? Or at least we know this one is. 

Student:  I think so, yeah. 

Researcher:  But in Physics, it's not necessarily the case? We just try it a bunch of times and that 

seems to be the case? 

Student:  Well... Yeah, I think, because we don't necessarily... there's some things in Physics that 

we're still learning about. 

Researcher:  Right, and stuff gets overturned. Einstein came in and said Newton was wrong and 

all that. 

Student:  Yeah. And there's some stuff I've seen lately of people saying Einstein was wrong and 

stuff. 

Researcher:  Yeah. Um... Alright, so... Is... so we really just used logic here; we didn't calculate 

anything. Is logic math? What's the role of logic in math? 

Student:  Yeah. I would say that logic is math. Um... Or math is logic, I suppose. Yeah, because 

um... logic is... argumentative, I guess. Right? I mean you're saying that... 

Researcher:  Yeah. Math people like to argue. 

Student:  Yeah. But I mean like this... um... I haven't ever taken an actual logic course, but... but, 

um... I mean that's what... you talk about computer logic, you talk about... I'm a computer 

engineer, so we talk about math. 

Researcher:  Right. 

Student:  I mean you're talking about those AND's and OR's and NAND's and those are all... 

that's all math basically... or logic that... 

Researcher:  Right. 

Student:  IF and NOT and... 

Researcher:  Yeah. So... alright... So... um... What's the role of math in physics? 

Student:  I don't know. It's kind of... um... I guess you're actually... I mean measuring what 

happens... assigning... assigning values... 

Researcher:  Ok, so there's definitely some calculations going on. 

Student:  Yeah. 

Researcher:  The number... so you said what's happening to the numbers in the functions. 

Student:  Yeah. 
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Researcher:  Is the logic they use in Physics math? 

Student:  I want to say yeah, I think so. 

Researcher:  So Physics is just applied math? 

Student:  Yeah. 

Researcher:  Ok. 

Student:  That's kind of how I've always thought of it. 

Researcher:  Makes us we like to claim all... 

Student:  Yeah. 

Researcher:  All the different... 

Student:  Music’s math, there's a lot of... everything. 

Researcher:  That's true. Um...  

 

Question E: 

Researcher:  Ok, so let's um... move onto a word problem. Um... So... If... if we have a car starts 

out at some point and it is moving at, um... it starts out moving at ten miles an hour 

Student:  mm hmm. 

Researcher:  and, um... it continuously slows down continuously, um... by one mile an hour 

every hour. So after one hour, it's going nine miles an hour. After two hours, eight miles. 

Student:  mm hmm. 

Researcher:  So... and it's doing it continuously. How long does it take for the car to go five 

miles? 

Student:  Um... approximately thirty minutes. 

Researcher:  Ok, how did you come up with that? 

Student:  Well, it's going ten miles an hour for... I mean, you're talking continuously, right? So 

it's not like a step, like piecewise, right? So it's not like when it hits... when it hits one hour 

it, it goes down to nine miles an hour. You're talking a continuous decrease? Um... It's... 

it's not exactly... 

Researcher:  So if it was a step function, though, it would be exactly. 

Student:  It would be exactly thirty minutes. 

Researcher:  Ok, so, but if it's continuous, how do we do it? 

Student:  If it's continuous, you could, uh... write the equation for, uh... What is it, uh... 
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Researcher:  So we need a distance to... 

Student:  Yeah, your distance is... I guess you set d equals, uh... what is it? Speed times... 

Researcher:  Rate times time. 

Student:  Rate times time. And your... 

Researcher:  or velocity times time or whatever want... 

Student:  Your velocity is changing. 

Researcher:  Ok. 

Student:  Your... 

Researcher:  So what's our velocity equal to? 

Student:  And your velocity equals... c. And time... Ok, so time... At ten hours your velocity will 

be zero. So it's going to be... ten t minus ten. I think. So, ten t minus ten. 

Researcher:  Ok, so how did you come up with that? 

Student:  No, wait, I'm sorry. I'm doing this wrong. Uh... 

Researcher:  So if time is zero, what should that be? 

Student:  Uh, time... yeah, if time is zero... if time is zero, we should have... ten. 

Researcher:  mm hmm. 

Student:  And it's decreasing... minus... uh... Is it minus t? 

Researcher:  Because t is measured in hours? 

Student:  Yeah, if you're doing time in hours. 

Researcher:  Ok, so if after one, it would be ten minus one. After half an hour, it would be ten 

minus a half. 

Student:  Yeah. 

Researcher:  Ok, so velocity is equal to this. 

Student:  Yeah. 

Researcher:  So what's my distance? 

Student:  Um... Just plug that in there... for... so you have ten t minus t squared. So... Um... That's 

not true. That's not true. Dang it. 

Researcher:  So this equation is when we have a constant velocity. 

Student:  Yeah. 

Researcher:  So... Um... So how do we normally go from velocity to distance? 

Student:  Take the integral. 
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Researcher:  So how do we take the integral? 

Student:  You get that. Well... Right? No, over two, right? 

Researcher:  Yeah, exactly. Right, so yeah. Ten t minus t squared over two. So... What is the 

farthest the car travels? 

Student:  Um... It would be... Well, the car stops at ten hours. 

Researcher:  Ok. 

Student:  So... One hundred minus a hundred over two... fifty... So, fifty... miles. 

Researcher:  Ok. Good. So... Um...  

 

Question F: 

Researcher:  Let me just change the question slightly. Um... So suppose we start again going ten 

miles an hour... and we're slowing down continuously again... by one mile an hour... 

every... but instead of hour, we do it every mile. So it's pretty much the same thing except 

for... instead of slowing down by one mile an hour every hour, we do it by every mile. 

Student:  Yeah. 

Researcher:  What is the farthest the car travels? 

Student:  Ten miles... 

Researcher:  Ok. So it slows down by every... every mile it slows down one mile an hour, so at 

ten miles it's stopped. 

Student:  Yeah. 

Researcher:  Ok. How long does it take to do that? 

Student:  Infinity? 

Researcher:  So why is that? 

Student:  I don't know, just off the top of my head. Does it ever, uh... 

Researcher:  So it goes ten miles but it takes infinitely long to do it? 

Student:  Well in theory. There is a point where the car is actually not going to be able to move 

that slow. 

Researcher:  Sure. But... why did you come with that it takes infinitely long to do? Why did you 

jump to that so quick? 

Student:  Um... I don't know. Because it's going to, uh... Because as the car approaches that, it's 

going to keep getting slower and slower and slower. So... it would never... 
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Researcher:  So when it's going to be one... 

Student:  Yeah. 

Researcher:  So it will never actually get there. Ok. How long does it take for the car to go five 

miles? What happens? 

Student:  Um... Uh... I don't know, I could write something out. You want me to... 

Researcher:  Sure. 

Student:  Um... Shoot. So distance is... Velocity times time. That's still the same. 

Researcher:  Well... What did we decide for velocity? Because that was when it was constant, 

right? 

Student:  Yeah. That was when it was constant. 

Researcher:  So we had to take the integral of velocity. 

Student:  Yeah. 

Researcher:  So distance equals the integral of velocity. 

Student:  Ok. 

Researcher:  We'll just make the time so the integral will be v dt. So what's our velocity? 

Student:  Velocity is... Well velocity changes based on our distance. 

Researcher:  mm hmm. So if we were out at this, what would we come up with? 

Student:  Uh... it equals... ten, I guess, minus... your... distance. 

Researcher:  So ten minus d. 

Student:  Yeah. 

Researcher:  Ok. How do we solve that? Because our velocity depends on distance and distance 

depends on velocity. 

Student:  Yeah, I know. That's the problem. I'm not sure. 

Researcher:  Ok. So... What if I said that if we look at this, this tells us... that... 

Student:  mm hmm. Oh, yeah, right, so... Um... D prime equals v, we also have v equals ten 

minus d. So I mean it just turns into a differential equation, right? 

Researcher:  mm hmm. 

Student:  Where you'd... set d prime equal to... ten minus d. 

Researcher:  mm hmm. 
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Student:  Or you could... put the terms together or something. So we get d prime plus t... I forget, 

do you move the ten on the left or the right or... Is it minus ten.. equal zero. So that would 

give you... that would give you homogenous or whatever. 

Researcher:  Or I think the ten would go on this side. Then you could do it, um... Well, I guess 

you could do it homogenous... 

Student:  Yeah. 

Researcher:  Um, you could do linear, you could do homogenous, um, you could do separable. 

Or not separable, but exact, so um... 

Student:  then you could do diff eq. 

Researcher:  Yeah. And then... so if you end up coming... so if you did that, you'd end up coming 

up, if I remember correctly, d is equal to, uh... ten e to the... negative ten t. I think. So at 

zero, you'd be going ten. At uh... infinity, you'd be going... That's not right. 

Student:  At infinity... 

Researcher:  Oh, yeah, at infinity, this would go to zero and then you'd be going zero. No, wait, 

that's still not right. 

Student:  One over e to the ten t. At infinity it's going to be one over a really, really, really large 

number, right? 

Researcher:  That should be, um... Yeah. 

Student:  So it would be ten thousand... very, very small fraction, which would... 

Researcher:  This should be actually one minus this. I think. Is that right? Ok. 

Student:  Because at zero, you're at... Or ten minus that. Ten minus ten... Right because it's your 

distance. 

Researcher:  Yeah, because it's not my velocity, it's my distance. So, yeah, ten minus... This is 

what it ends up coming out to be, not this. It doesn't matter that much. 

Student:  Yeah. 

Researcher:  This is what your answer would be. And so... And that's why at, um... and then we 

can just solve it for five equals that and solve minus that. And that's why it takes infinitely 

long to, um... That's another way of looking at it. It takes infinitely long to make this thing 

drop off of there and get to ten. 

Student:  Yeah. 

Researcher:  So notice how I changed one word and it became a much harder equation. 
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Student:  Yeah. 

Researcher:  Ok. So. I think we're out of time. So... so... Um... I think I'm going to stop torturing 

you. So... um... 

Student:  It's helped me a bunch... 

  



118 

 

Appendix D - Interview Excerpt 1 

The following is an excerpt from the interview of the fourth Engineering major consisting 

of Question A and Question B from the protocol.  This student was rated as having an Object 

level understanding, and a 3 on both Confidence and Willingness. 

 

Question A: 

Researcher:  Ok. So... let's start. So the first question is one you might not have thought about too 

much... um... what is a function? 

Student:  Um... let's see... A function... I think a function is usually an equation or something 

expressed in a... in terms of two variables, uh, in order to depict a line... graph or maybe a 

matrix. The way a function has to be defined in the programming sense is an algorithm to 

take care of... take care of a certain process. Something like that so I guess you can think 

of two different ways... 

Researcher:  Ok. Are those two different... so is that... two different definitions of functions are... 

Student:  I mean it's, it's essentially... they're... they're essentially related, I mean... you have an 

equation... and then it's also an algorithm in a sense. 

Researcher:  Ok. 

Student:  That, that, you know, gives you a certain output based on... certain inputs. So... I guess 

I got more of a programming sense of that. 

Researcher:  Ok. Um... So... Does a function have to have an equation? 

Student:  It doesn't have to. Um, it can make use of... um... other... other processes or... other... 

algorithms, not necessarily equation based. Um... 

Researcher:  Ok. So... Um... So a function... is, is something that you do, then? 

Student:  Right, it's... I, I view function as something that... that um... that's used to obtain, obtain 

a desired result. 

Researcher:  Ok. 

Student:  It, it takes an input and gives you a certain output. 

Researcher:  Alright. Okay. Um... Do those inputs and outputs have to be numbers? 

Student:  No. They don't. Um, they could be complex, I guess, complex values. Um... they could 

be... they can be... I guess... you can... uh, it's programming because it could be arrays. I 
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guess those are numbers. But... Uh, there are also objects, um... but I guess there is a lot of 

programming applications for inputs not being specific numbers because you could have 

file formats into the functions, so... I guess... I'm guaranteeing you know something about 

programming, so... 

Researcher:  Right. 

Student:  So... 

Researcher:  Ok. So... in... in... So you're thinking of a function as you can take things... um... 

like objects and then do something with them? 

Student:  Right. 

Researcher:  Ok. So... If I think about it that way then I can take f as a thing and take the 

derivative and it gives me back the derivative of the function. So I take some function and 

send it to its derivative. 

Student:  mm hmm. 

Researcher:  So... Is this, the process of taking a derivative, is that a function? 

Student:  mm... let's see... I feel like it can be. Because you could program something to calculate 

a derivative and therefore defining it as a function that... gives you a derivative. I mean it's 

not associated with, you know... function f. But... 

Researcher:  Right. 

Student:  Um, I believe... and in a programming sense it can... it can be defined as a function. 

But, in a mathematical sense, I'm not sure if that's the correct way to define it. 

Researcher:  But you want to define it as a function because takes some input and does 

something to it and gives an output? 

Student:  Right. 

Researcher:  Ok. And so, so functions, then, can... can... have functions as inputs? 

Student:  Um... Yes, I guess that's... that's what I set myself up for there. Yeah. 

Researcher:  Ok. So... um... Let me ask a different thing. Um... Is that a function? The integral 

from zero... 

Student:  Yes. 

Researcher:  to one point three... 

Student:  Yes. 

Researcher:  Ok what is that a function of? 
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Student:  Uh... it's a function of the equation x to the fourth and... evaluated... 

Researcher:  Well, so what are my inputs and where are my outputs? 

Student:  Uh, you're inputting this equation, uh... of this function... of the polynomial function. 

And the output is... its integral evaluated at the points. 

Researcher:  Ok. So I'm integrating that as a function? Ok. 

Student:  So I feel like I'm getting further and further away from the proper definition of 

function, but... 

Researcher:  Well, I mean, it... it all depends on... I'm just asking what... what do you think of a... 

Student:  I, I, it... I may have a misconception because you can define function in certain 

programming languages and maybe that's... maybe that's not the right term for it in a 

mathematical sense because functions in math are... more of... you know, associated with 

numbers, polynomials, or certain... certain... equations, I guess. So... 

Researcher:  Well then at least in a computer programming sense, you want to say integral is a 

function? 

Student:  You can... yes, you can create... 

Researcher:  It takes some input to something... you get some output. 

Student:  uh huh. 

 

Question B: 

Researcher:  Ok. Um… Let's say I have this... um... set of parametric equations. So x is... x of t is 

equal to cosine of t, y of t is equal to sine of t... 

Student:  mm hmm. 

Researcher:  and t is running between zero and two pi. 

Student:  mm hmm. 

Researcher:  Can you graph that? 

Student:  Um... Let's see... I guess it would be... x t versus y t... t prime... mm... cosine... So I... I 

can graph each individual function, obviously, but... um... I mean, the two together... I feel 

like I'm forgetting something... as far as x of t, y of t. Um... I guess my initial thought 

would be... since it's x of t versus y of t, I would be graphing cosine of t, uh, on the x axis 

and sine t on the y. But... I feel like that's not the... quite right. 

Researcher:  Ok, so what if we just take some points? So what happens when t is zero? 
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Student:  When t is zero we've got cosine is equal to one, sine's zero. 

Researcher:  mm hmm. So we get the point one, zero, right? 

Student:  Yeah. So you get one zero there and then... One zero... Yeah. 

Researcher:  would be... over here. 

Student:  Right, right, right. Right, right. One zero. And um... And then we're going to do... then 

that's... it's evaluated... um... and pi over two... Ok. pi over two, so we got... I guess... I 

want to make... I want to make this pi over two... So x... That's probably not right... Ok... 

Oh, ok. No, that's right. This is t. And... Cosine pi over two is radical two over two is 

cosine of pi... or sine pi over two... So I guess we can... So that's radical... and then pi is... 

Researcher:  Ok, so, so what do you get? You... 

Student:  Uh, I'm just evaluating for different values of t. 

Researcher:  So you have... t across the bottom. What's this axis here? 

Student:  Um... 

Researcher:  Are you doing x and y on the same axis? Is that what you're doing? 

Student:  Yeah, I guess that's what I'm doing. 

Researcher:  Ok. Um... So... Um... When we do parametric equations, we do it... so we plug in... 

so if we just plug in zero for these, we get x of zero is one, like you said, and y of zero is 

zero. So we get the point one, zero... 

Student:  Ok. 

Researcher:  when t is zero. When t is pi over two, we get x of pi over two is zero, and um... y of 

pi over two is one. 

Student:  Oh, got you. Right. 

Researcher:  So we get x is zero and y is one, so we get the point zero, one. 

Student:  mm hmm. 

Researcher:  And so... when t is, um, pi, then we do x of pi is is, you know, over there and then... 

Student:  Ok. 

Researcher:  And so what do we get for our graph? 

Student:  It's a circle. 

Researcher:  Yeah, ok. So we get a circle. How many times does it go around? 

Student:  It just goes around once. 

Researcher:  Ok. 
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Student:  Zero to two pi. 

Researcher:  Alright. 

Student:  I knew that. 

Researcher:  Um... alright... so... what if I change that slightly and go x of t is equal to cosine of 

two t and y of t is equal to sine of two t. But now t is running between zero and pi. What's 

the graph of that look like? 

Student:  Same thing... So, it's the same thing. Yeah. 

Researcher:  It's a circle going around once? 

Student:  Yeah. So it's... Yeah. You go twice as fast around it. That's the problem. 

Researcher:  Ok. So it's the same circle... 

Student:  mm hmm. 

Researcher:  um... so... 

Student:  If it's from zero to two pi, it would be twice, so... 

Researcher:  Ok, so since we're going from zero to pi, it's... it's once around the circle. So we get 

the exact same graph, right? 

Student:  Right. 

Researcher:  Are those the same functions? 

Student:  No. 

Researcher:  So two different graphs can have... or two different functions can have the same 

graph? 

Student:  mm hmm. This is a different interval, so yes. 

Researcher:  Um... So... Um, so the outputs are the same, though... Right? 

Student:  Right. 

Researcher:  So, two different functions can give the exact same outputs? 

Student:  Sure. 

Researcher:  Ok. Um... so if two different functions can have the same... graph, can two different 

functions have the same equation? 

Student:  Uh... that's not necessarily true. I mean, there's more than one way to find... um... there 

can be more than one way to find certain... certain lines... certain graphs. 

Researcher:  So we can give more than one equation to a function? Like y equals x squared or y 

minus x squared equals zero. 
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Student:  Right. 

Researcher:  So what if I look at... um... so if I write f of x is equal to x. That's just a line, right? 

Student:  mm hmm. 

Researcher:  But if I just change the names of those to r of theta is equal to theta... then I get like 

a spiral. 

Student:  mm hmm. 

Researcher:  Because I'm thinking of the one in Cartesian and thinking of the other in polar 

coordinates. 

Student:  Yes. 

Researcher:  But they're basically the same equation, I've just changed the names. 

Student:  Right. 

Researcher:  So are those the same functions? 

Student:  No because they have different parameters. And one's in polar and one's in Cartesian. 

Researcher:  Ok, I mean I could have called this one f of... If I really wanted to, I could call that f 

of x is equal to x. And if I consider it in, in, um... polar, then it's a spiral. 

Student:  Right. 

Researcher:  So I mean, in some sense that's two different functions having the same equation. 

Student:  Yes. It's just how you define the parameters. 

Researcher:  Ok. 

Student:  So if you're in... 

Researcher:  So if... if a function is not an equation and it's not a graph, what is it? 

Student:  Um... It depends on how... A function is, I guess, how you can define it. 

Researcher:  Ok. 

Student:  How you define the certain... certain... I guess... variables, or... Function can mean, I 

guess... however you define the certain... it's not an equation, but... um... I'm going to use 

equation for lack of better word. Um... based on certain parameter, so, I mean, you could 

define your very own function... Um... and... create an output on the parameters you want. 

So it's very flexible in that sense, I suppose. 

Researcher:  So you said earlier, that a function was something that took inputs to outputs... or it 

did something to inputs to get outputs. 

Student:  mm hmm. 
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Researcher:  Um... So... 

Student:  In a programming sense. 

Researcher:  Right. Um... And so... here we had... similar inputs, but they were different. 

Student:  mm hmm. 

Researcher:  We'll get the exact same outputs, but we got them in a different way. So that was a 

different function. So the inputs... doing something to the inputs to make outputs... even if 

that makes the same outputs, you decided that they were doing two different things, so 

they're different functions. Um... Here we're doing the same thing, we're sending the thing 

to itself. So here we were sending... whatever we put in there we get out there. 

Student:  mm hmm. 

Researcher:  But it's kind of a different background. And so we got different outputs. Um... So... 

Um... What was my question? So... Well, so a function's not the same thing as a graph. It's 

not the same thing as an equation. It is this abstract... so you're saying it's this abstract... 

Student:  I guess. 

Researcher:  um, action that we're doing to inputs? 

Student:  Yeah, generalized idea, or... process that we want... 

Researcher:  So if it's this generalized process... how can we treat it like a thing when we're 

taking like the derivative of it. Can we take the derivative of an abstract process? 

Student:  No, because we know the function to be defined as whatever their equation is. A 

certain polynomial... we know the parameters of an equation. 

Researcher:  Do we need an equation to take the derivative of it? 

Student:  Not necessarily... I guess the only thing I've seen the derivative of is an equation. So... 

Researcher:  So what is a derivative? What does it mean? 

Student:  It... it means the uh... um... it's the uh... it, like, gives you the points of inflection... um... 

as far as, like, let's say you have a... um... like if you... it will give the slope of every point 

along the line. 

Researcher:  Ok. 

Student:  I guess... that's right. 

Researcher:  Well that works if we have a, um, a graph. Because this tells the slope along that 

graph, right? But, um... if we can take derivatives of functions and functions are things 

that aren't the same as graph, they're just these abstract... ways of changing inputs to 
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outputs, how do we take the derivative of it? What's the derivative of it mean, then, in that 

sense? 

Student:  Well, I mean, I guess we'd only take derivatives of functions that are defined as 

equations. 

Researcher:  Ok. 

Student:  I don't see it as a... abstract object. 

Researcher:  Why would we want to know the slope of a graph? 

Student:  You can use it, uh, in a... in a Physics application. You can use it to, uh... if you got an 

equation that finds certain position, you can find velocity and acceleration by various 

derivatives. 

Researcher:  Ok. 

Student:  And graph them, then. 

Researcher:  So, so... So basically, then, a velo... a... derivative of position will give us velocity; 

derivative of velocity will give us acceleration. So derivative is just measuring rate of 

change... 

Student:  Right. 

Researcher:  of something. So we can... I mean, if our function is this abstract way of relating 

things... then we can measure how that changes, right? 

Student:  Right. 

Researcher:  Even without an equation. Because if it's relating two things, we can see how that 

relationship changes as we change the things that we're relating. And we can measure... or 

we can talk about how fast it changes... what the rate of change is. 

Student:  Right and used it... obvious in... in... in... applications beyond Physics because a lot of 

thing have patterns and equations of functions are associated can... can define a lot of 

things. And with all of them, you can measure the rate of change by taking derivative of 

such things. 

Researcher:  So do we need an equation to take a derivative? 

Student:  Um... 

Researcher:  If it's just the rate of something that's changing? 

Student:  I guess... I guess maybe not, but I wouldn't know how.  
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Appendix E - Interview Excerpt 2 

The following is an excerpt from the interview of the twentieth Engineering major 

consisting of Question A and Question B from the protocol.  This student was rated as having a 

Process level understanding, and a 1.5 on both Confidence and Willingness. 

 

Question A: 

Researcher: Alright, so my first question is what is a function? 

Student:  A function? 

Researcher:  mm hmm. 

Student:  It's uh... a mathematic... mathematic representation of... uh... of behaviors in the plane. 

Researcher:  Ok, so it's modeling something? 

Student:  Yeah. 

Researcher:  Ok. Um... So... Let me ask you this, then. So if I have... so if I think about the 

process of taking a derivative, I take f and it tells me f prime, so it's, it's... telling me... it's 

modeling... a behavior here, it's modeling how the derivative is, um, compares to f. So... is 

the process of taking a derivative a function? 

Student:  Um, what was your question about this one? Is it... 

Researcher:  Is the process of taking a derivative a function? So it's modeling how the derivative 

of the function relates to the original function. Whatever function I put in there. 

Student:  Yeah. 

Researcher:  Why? 

Student:  Why? 

Researcher:  mm hmm. So the process of taking a derivative is a function? 

Student:  If you take the derivative function... then, you'd have... you have found out like... the... 

you are looking at the model on the paper of the function itself. Like... what... what does it 

cover and what's the area of it and... uh, the... when it's continuous... So I think it's like... 

the process for that function. 

Researcher:  So it's a process for that one? 

Student:  Yeah. 

Researcher:  So then taking the derivative is, is, um... is a process, you're saying? 
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Student:  Yeah. 

Researcher:  Ok. Is it a process and not a function? Or is it a process and a function? I mean, is 

that process a function, or is it just a process? 

Student:  It's a process for the... for the function. 

Researcher:  Ok, so it's a process that we do to a function? 

Student:  Yeah. 

Researcher:  Ok. Um... Ok. So... Let me ask you something else.  Suppose I have the integral 

from zero to one point three of x to the fourth plus k dx. Is this a function? 

Student:  This is a function? 

Researcher:  So the x to the fourth plus k is a function? 

Student:  Yes. 

Researcher:  Ok, so is the whole thing a function? 

Student:  No, it's a process. 

Researcher:  Ok. Alright, so... And if I evaluate this, though, I get y equals uh one point three to 

the fifth... over five plus one point three k minus zero. 

Student:  Then it will become a function. 

Researcher:  Now it's a function? 

Student:  Yes. 

Researcher:  So, here it's not a function, it's a process. But here it's a function? 

Student:  Yeah. 

Researcher:  Ok, so so we have to do the process... 

Student:  To have the function. 

Researcher:  to have the function. So, um... What about, um, the Laplace transformation.  So we 

have the Laplace transformation, remember it takes some function in t to a complex 

function of s. So is the Laplace transform... is the Laplace transformation a function? 

Student:  I think it's still a process. 

Researcher:  Ok. 

Student:  Because you have like... looking at the function, we would... units and uh... uh different 

domains... as we look at it from... Yeah. 

Researcher:  We change f to g... 

Student:  Yeah. 
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Question B: 

Researcher:  Ok. Um... So, suppose I have a series of parametric equations. x of t is equal to 

cosine of t. y of t is equal to sine of t. And t goes between zero and two pi. What's the 

graph of that look like? 

Student:  Cosine of t and sine of t for... from zero to two pi.. 

Researcher:  mm hmm. Ok. 

Student:  So, this one is... 

Researcher:  Cosine. 

Student:  cosine. The other one is sine. 

Researcher:  Alright, so you graphed them... alright, so you graphed your cosine... your y versus 

t... and your x versus t here and the graph of y versus t here. 

Student:  Yeah. 

Researcher:  Ok. Um... What if I want them graphed on an x, y axis, though? So... X and y axes... 

What if I want them graphed like that? 

Student:  x and y axis? 

Researcher:  mm hmm. Instead of x and t and... instead of the axes being t and... I have my axes 

are x and y. 

Student:  x and y... It will... still the same isn't it? 

Researcher:  Well, so, for example, if we have t equals zero... x of zero is cosine of zero, which 

is one... and y of zero is sine of zero, which is zero. So if t equals zero, we get the point 

one, zero. 

Student:  Yeah. 

Researcher:  So, if t is zero we would graph the point one, zero... and then if t is... um... pi over 

two, we would get the point zero, one. So I'd get... 

Student:  Oh, yeah. 

Researcher:  I want the graph of those points and not... 

Student:  Oh, ok. Like... So both... and... cosine would be my x and the sine would be my y then? 

cosine would be one... so it would be... minus one, then one... That's what... would be... 

hmm... so y... so it would be zero one... y of t... so it would be... be... be... so... 
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Researcher:  So then you go... once you hit the point zero, one... you then go to negative one, 

zero. 

Student:  Oh, yeah. So you have minus one... so you get minus one... cosine of zero... sine is 

negative one... so... 

Researcher:  So your third point should have been negative one, zero. 

Student:  Yeah. mm hmm. and then this will be zero for two pi... So it give me the... the unit 

circle. That... 

Researcher:  Ok, how do you know that? 

Student:  Because it keeps going. 

Researcher:  Ok. 

Student:  Like, from zero to one or... from zero to like minus one... 

Researcher:  Alright. So what if I instead change this slightly. And instead I have x of t is equal 

to cosine of two t and y of t is equal to sine of two t where t runs between zero and pi? 

Student:  It's going to be the same graph, but, like shifted toward the... the y t graph... 

Researcher:  Ok. 

Student:  So it would be shifted, since we are multiplying t. 

Researcher:  Alright. So what about my... x, y graph? 

Student:  mm... should it goes to... to... zero to one... It... it's making... expand the circle like 

shrinking... 

Researcher:  Ok, so we're still going to get the circle? 

Student:  Yes. 

Researcher:  Ok. So what if we put in points.  What do we get when cosine... when... t is zero? 

Student:  Should get one. 

Researcher:  Ok, so we still get one, zero. 

Student:  Oh... We will still get the same circle. 

Researcher:  Ok. Yeah, it does... um... shrink, but it does it along the circle instead of outwards. 

Student:  Yes. 

Researcher:  So we just go around the circle twice as fast. Ok, so we got the exact same graph for 

both right? 

Student:  Yes. 

Researcher:  Ok. Are those the same functions? 
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Student:  mm... No. You mean this one and this would be different? cosine t, sine t... No, it's 

different... different functions. 

Researcher:  Ok, so two different functions can give us the exact same graph? 

Student:  Yeah. 

Researcher:  Um... So... What's the difference between graph and function then? If they're not the 

same thing... 

Student:  Uh, the graph is... a... the output of the function. 

Researcher:  Ok. 

Student:  So it finds... it's... it's... it's like... find the outputs for to find two different functions 

equal. 

Researcher:  Ok, so we get the same output for the two different functions... 

Student:  Yeah. 

Researcher:  So why are they different functions? 

Student:  Because you cannot say cosine t equals cosine two t. 

Researcher:  Ok so... 

Student:  They're different. 

Researcher:  So we got the same outputs, but we got them in a different way? 

Student:  Yeah. 

Researcher:  And so those are different functions? Um... Can... is... so we decided, then that 

graph and function aren't the same thing, that graph is just the... it's just drawing the 

function's outputs. Are graph and equations... are function and equation the same thing? 

Student:  Function and equation? mm... No. 

Researcher:  Ok what's the difference? 

Student:  Um... Well, they... like... The way I'm thinking of it is like the function is... you can... 

you can change it to whatever you want: multiply it, divide. And the equation should be 

constant and like... as a... I don't understand what you mean by function... equation. Is it 

like formula stuff? 

Researcher:  Well, like, um... I mean, we have, for example we can think of y equals x squared 

and we know that gives us a parabola. So we know the graph of this function and we know 

the equation for this function. So, is the equation the same thing as the function? 

Student:  Yes. Because, yeah. 
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Researcher:  Ok. 

Student:  I always think they're the same thing because... 

Researcher:  Can we... is um... Can we have a function that doesn't have an equation? 

Student:  A function doesn't have equation? No. 

Researcher:  Um... So suppose, I looked at um... just f of x is equal to x. So you get a line 

through zero, zero. Um... but if I wanted, I could look at that in polar coordinates... so 

normally we'd call that r of theta equals... theta, but it doesn't matter what I call it, so I'll 

just call it f of x equals x. If I look at in polar coordinates, I get... a spiral. Are those the 

same function? 

Student:  mm... Yes. 

Researcher:  Ok. So... We already said that two different functions can give us the same graph, 

now you're saying that one function can give me two different graphs? 

Student:  Yeah. 

Researcher:  Ok. So why is that the same function? 

Student:  Because... it's... it's up to the... the way you are looking for... at the function. 

Researcher:  Ok. So because it's in different coordinate... 

Student:  Yeah. 

Researcher:  we get different graphs? So why did you decide that was the same function, though? 

Student:  Because if... if you look at the equation you can set them equal... equal. 

Researcher:  Ok, so the equations are the same so they're the same function? Ok.  


