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Abstract 

In this research, soil consolidation is explored in a comprehensive analytical and experimental 

study. 

 The pore pressure development and dissipation for clay at its liquid limit under one-dimensional 

compression was investigated using the mid-plane pore pressure measurements.  

  In general, the Terzaghi’s theory of consolidation predicted the pore pressure dissipation and the 

percent consolidation accurately as long as the sample was in a normally loaded state. For a 

preconsolidated state however, the results obtained by Terzaghi theory are doubtful. Coefficient of 

consolidation vc for smaller pressures varied during consolidation, and although the soil was in a fully 

saturated state for relatively high pressure increments, the pore pressure developed was less than the 

applied pressure. Then, the effect of different pressure increment ratios on one dimensional 

consolidation tests has been studied. The secondary compression effects have been founded to increase 

as the pressure increment ratio is reduced. 

  Consolidation of a clay layer delimited between sheets with small permeability was also 

investigated in this study. The consolidation theory of compressible soils usually assumes drainage-free 

boundaries. This change in boundary conditions at the drainage surface necessitates the use of an 

approximate technique for solution of the governing partial differential equation. In this study, the 

solution was obtained by using the Galerkin Method and compared with the “free drainage” case. As 

expected, the consolidation in the case of restricted drainage proceeds at a much lower rate.   

 The compression consolidation behavior of trampled clays in a semi- saturated state was also 

analyzed in this research program. It is generally known that the type and energy of compaction bring 

about deviations in the soil structure and hence, in its engineering properties. Therefore, in the 

experimental phase of this study, soils were prepared by different trampling efforts and also by different 

compaction methods.  

 Finally, a reasonably realistic theory of soil consolidation has been proposed and the 

effect of variable permeability and compressibility on the consolidation behavior was 

investigated followed by a mathematical treatment of the behavior. Subsequently, laboratory 

consolidation tests with mid-plane pore pressure measurements were conducted on different 

kinds of clay. 
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Preface 

This study includes a comprehensive study on soil consolidation and is presented in the 

following episodes: 

In the first chapter, the pore pressure development and dissipation under conditions of 

one dimensional compression in the oedometer for clay prepared at its liquid limit is 

investigated, making use of the mid-plane pore pressures measured during compression. In 

general, the following points have been observed a) Terzaghi’s theory of consolidation predicts 

accurately the pore pressure dissipation and the percent consolidation as long as the sample is in 

a normally loaded state. For a preconsolidated state however, the results obtained by Terzaghi 

theory may be doubtful. b) Coefficient of consolidation vc for smaller pressures is observed to 

vary during consolidation. c) It has been observed that although the soil is in a fully saturated 

state for relatively high pressure increments, the pore pressure developed is less than the applied 

pressure. 

In the second chapter, an experimental program is carried out to investigate the effect of 

the pressure increment ratio on the shape of compression time curves and secondary 

compression characteristics. Therefore, one dimensional consolidation tests on remodeled soft 

clay using different pressure increment ratios of one or less, with load increment duration of one 

week, are performed. Five different methods are used to evaluate the coefficient of consolidation 

vc which yielded reasonably close values. The secondary compression effects have been found 

to increase as the pressure increment ratio is reduced. The vc values and the end of primary void 

ratio effective stress relationship appear to be independent of the pressure increment ratio. 

In the third chapter, consolidation of a clay layer delimited between sheets with small 

permeability is investigated. The consolidation theory of compressible soils usually assumes 

that at the boundaries the drainage is free. That is, the surrounding layers are pervious. When 

free drainage is thus inhabited, the boundary conditions at the drainage surface changes 

necessitating the use of an approximate technique of solution of the governing partial 

differential equation. In this chapter, the solution is obtained by using the Galerkin Method. 

The solution obtained is compared with the “free drainage” case and consolidation is drawn 
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therefrom. As expected, the consolidation in the case of restricted drainage proceeds at a much 

lower rate.   

In the fourth chapter, investigation has been undertaken in order to analyze the 

compression consolidation behavior of trampled clays in a semi- saturated state. Furthermore, it 

is known that the type and energy of compaction bring about deviations in the soil structure and 

hence, in its engineering properties. Therefore, in the experimental phase of the study, soils are 

prepared by different trampling efforts and also by different compaction methods.  

In the fifth chapter, the effect of variable permeability and compressibility on the 

consolidation behavior is investigated. For this objective, a mathematical treatment of the 

behavior is presented. Subsequently, laboratory consolidations tests with mid plane pore pressure 

measurements are conducted on soft, remolded, preconcolidated and undistributed samples of 

Tabriz clay. The test results, when compared with the theoretical findings, indicate that most of 

inherent discrepancies may be explained via the use of the theory developed in this study. 
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CHAPTER 1 - One Dimensional Consolidation with Special 

Reference to Pore Water Pressures  

1.1 Introduction and Purpose of this chapter 

 

The Soil consolidation under tall and heavy structures and development of new highway 

systems necessitates detailed study of soil behavior under stress. To study the rate and amount of 

settlement of structures founded on clay soil is a very important aspect of soil mechanics. This 

settlement results from the interaction of variety phenomena.  

 

a) Shear strain that develop simultaneously with change in load (immediate or initial 

settlement). 

b) Time dependent shear strain (creep). 

c) Time dependent volume changes that occur during dissipation of excess pore pressure 

(consolidation). 

d) Time dependent volume changes after excess pore pressures are essentially dissipated 

(secondary compression). 

 

In this chapter, the one dimensional consolidation theory proposed by Terzaghi will be 

studied as far as its applicability to a highly plastic soil at its liquid limit, representing the 

normally consolidated case. Mid-plane pressure measurements will be made use of in this 

investigation. Mainly, this chapter is to be carried out to serve the following purposes. 

 

a) To investigate the inducement and subsequent dissipation of pore water pressure for one 

dimensional compression realized in the oedometer, by means of mid plane pore pressure 

measurements, and hence to check the applicability of Terzaghi’s theory of consolidation 

to the oedometer testing conditions. 

b) To check the applicability of the common empirical methods used to evaluate the time 

rate of compression of oedometer samples (i.e. Casagrande Logarithmic fitting method 

and Taylor square root fitting method).  
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1.2 The Organization of this chapter work 

 

So far various studies on consolidation relevant with pore pressure measurement have 

been carried out. In many of such studies striking departure from Terzaghi theory of 

consolidation has been observed, particularly for pressure increment ratios other than one and 

for pressures greater than the preconsolidated pressure. In this chapter in order to fulfill the 

preliminary assumptions of Terzaghi consolidation theory, that is complete saturation, and a 

normally loaded soil, the grey clay used has been prepared at its liquid limit. An oedometer of 

larger size than conventional consolidometers has been used in order to eliminate side friction 

and arching effect. Single drainage at the top was provided and mid plane pore pressure were 

measured by means of an automatic pore pressure device. In this chapter the general theory of 

conventional consolidation has been given and also it includes an account of the tests performed 

and the results obtained therefrom and then the last section of this chapter is devoted to 

discussion and conclusion. 

1.3 The Mechanism of One Dimensional Consolidation 

 

A soil may be considered to be a skeleton of solid grains enclosing voids which may be 

filled with gas, with liquid or with combination of gas and liquid. If a sample of soil is placed 

under sustained stress so that its volume is decreased in a drained manner, there are these 

possible factors to which this decrease might be attributed.   

a) A compression of solid matter. 

b) A compression of water and air within the voids. 

c) An escape of water and air from the voids. 

Under the loads usually encountered in soil masses, the solid matter and the pore water, 

being relatively incompressible do not undergo appreciable volume change. For this reason, it is 

sufficiently accurate to consider the decease in volume of mass, if it is completely saturated, as 

due entirely to an escape of water from the voids. Sedimentary clay deposits are usually 

saturated. 
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Compressibility of soil mass depends on the rigidity of the soil skeleton. The rigidity in 

turn, is dependent on the structural arrangement of particles, and in fine grained soils on degree 

to which adjacent particles are bonded together. 

A honeycombed structure or in general any structure with high porosity, is more 

compressible than a dense structure. A soil composed predominantly of flat grains is more 

compressible than the one containing mostly spherical grains. A soil in remolded state may be 

much more compressible that the same soil in undisturbed state. 

 When the pressure on a soil is increased equally in all direction the volume decreases. If 

the pressure is later decreased to its previous value some expansion will take place, but the 

volume rebound will not be any means so great as the proceeding compression. In other words, 

soils show some elastic tendency but they are elastic to a small degree. 

 As the compression occurs, the pore water is drained according to Darcy’s law, (Taylor 

1948). The gradual process which involves, simultaneously, a slow escape of water and a 

gradual compression and which will be shown later to involve also a gradual pressure 

adjustment is called consolidation. 

The consolidation of clay under a load does not take place instantaneously; clays are so 

impervious that the water is almost trapped into the pores. When an increment of load is applied 

the pore water can not escape immediately. Since clay particles tend to approach one another 

and pressure develops in the pore water which is called the excess pore pressure. The hydraulic 

gradients set up the due to this excess pressure cause the fluid to drain from the soil. As 

drainage continuous, the excess pressures dissipate and since the externally applied total 

pressure is constant pressure is gradually transferred to the soil skeleton. The part of stress 

carried by soil skeleton is called effective stress. Soil skeleton then deforms under the increase 

in effective stresses. This is called consolidation. 

The rate of settlement is rapid at first and then decreases to a small fairly constant value. 

Due to a decrease in excess pore pressure on the one hand during consolidation and due to the 

decrease impermeability on the other hand. In Terzaghi’s theory, the decrease in permeability 

during consolidation is not taken into account. However, later on Barden (1965) has shown that 

this phenomenon is important. The progress of consolidation can be observed by measuring 

decrease of excess pore water pressure which is the main object of this chapter. This decrease 
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occurs at different rates in different parts of the sample. It occurs more rapidly at the place 

where drainage is facilitated. 

  It is well known characteristics of clay considerable time is required for the occurrence 

of the compression caused by a given increment of load. 

This large time lag can be attributed to two phenomena. First is due to time required for 

the escape of pore water, this is called hydrodynamic lag. It is due basically to permeability 

which controls the flow of the pore water. Second factor is complex one and is called plastic 

lag. It is only partially understood and it is due to plastic action in adsorbed water near grain to 

grain contacts or points of nearest approach to contact. Terzaghi theory neglects such secondary 

effects as the plastic lag. 

1.4 Terzaghi’s Consolidation Theory 

 

The compression of soil is classified into two stages.  

a) Primary consolidation which is due to the dissipation of excess pore pressures. In this stage 

it is assumed that no plastic lag exists and all the time lag is due to a low value of the 

coefficient of permeability. 

b) Secondary compression which occurs subsequent to the primary. The causes of this is 

rather complex. 

Terzaghi (1948) developed a theory in which it leads to functions that may be 

recognized as analogous to those expressing the flow of heat. 

The assumptions which he used in this theory are: 

1. Homogeneous soil 

2. Complete saturation 

3. Negligible compressibility of soil grain and water 

4. Action of infinitesimal masses no different from that of larger, representative masses. 

5. One dimensional flow. 

6. One dimensional compression. 

7. Validity of Darcy’s law. 

8. Constant values for certain soil properties which actually vary somewhat with pressure. 
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9. The greatly idealized pressure void ratio relation ship 
dp

de
av = constant. 

10. No plastic time lags during primary compression. 

 

The fundamental expression for flow in saturated soil masses representing the time rate 

of change of volume is 0..2

2

2

2

2

2

=








∂
∂+

∂
∂+

∂
∂

dzdydx
z

h
k

y

h
k

x

h
k zyx . This expression is dependent 

only on assumptions one to four inclusive and seven. For one dimensional flow, which is 

assumption six, the absence of gradient in thex , and y  directions eliminates the first two terms 

of the parenthesis. The permeability zk may, from this point on, be designated simply by ,k  

giving  

dzdydx
z

h
k ..

2

2

∂
∂

                                                                                                                           (1.1) 

The volume of element is dzdydx .. , the pore volume is ,
1

..
e

e
dzdydx

+
and since all 

changes in volume must be changes in pore volume, a second expression for the time rate of 

change of volume may be written 








+∂
∂

e

e
dzdydx

t 1
.. . Since 

e

dzdydx

+1
..

 is the constant volume of 

solids, the above expression may be written 
t

e

e

dzdydx

∂
∂×

+1
..

equating this expression to expression 

(1.1) and canceling dzdydx .. gives: 

t

e

ez

h
k

∂
∂×

+
=

∂
∂

1
1

2

2

 

only heads due to hydrostatic excess pressure will tend to cause flow in the case under 

consideration. Thus, h  in the above equation may be replaced by 
w

u
γ , giving 

t

e

ez

uk

w ∂
∂×

+
=

∂
∂

1
1

2

2

γ
                                                                                                                 (1.2) 

 

The hydrostatic excess pressure u is not necessarily the only pressure in the water. In addition 

static water pressure of unrestricted magnitudes may exist, but they play no part in 
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consolidation because they do not tend to cause flow. Total pressure is uppT +=  if we 

differentiate this expression 

dupddpT +=  

Since Tp is constant ,0=Tdp  then dupd −=                                                                          (1.3) 

and coefficient of compressibility va which is the slope of straight line curve of pressure versus 

void ratio is negative 

pd

de
av −=                                                                                                                                 (1.4) 

Substitution of equation (1.3) into equation (1.4) gives following expression of assumption 

nine 

duade v=                                                                                                                                 (1.5) 

Substitution of this relationship in equation (1.2) gives 

( )
t

u

z

u

a

ek

wv ∂
∂=

∂
∂×+

2

21
γ

                                                                                                                 (1.6) 

The group of terms in the bracket may be written 

( )
v

wv

c
a

ek =+
γ

1
                                                                                                                            (1.7) 

The soil property designated by vc  is called the coefficient of consolidation. Its insertion in the 

equation (1.6) gives  

t

u

z

u
cv ∂

∂=
∂
∂

2

2

                                                                                                                            (1.8) 

which is partial differential equation of consolidation. In the consolidation theory the  z  

coordinate distance is measured downward from the surface of the clay sample. The thickness 

of the sample is designated by ,2H the distance H thus being the length of the longest drainage 

path. 

A dimensionless time factor is defined as  

2H

tc
T v=  
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Dimensionless pressure variable W is defined as 
iu

u
W = where iu is initial excess pore 

pressure, and dimensionless variable Z , 
H

z
Z = , z is measured from the surface of the 

compressing layer, and substituting in equation (1.8). 

2

2

Z

W

T

W

∂
∂=

∂
∂

                                                                                                                   (1.9) 

is obtained. 

The solution of equation (1.9) for relatively simple oedometer conditions is given by 

( )
( )

( )∑
∞

=








 +−
+

+
=

0

4
12

. 12
2

sin
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14
22

m
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TZ Zme
m

W
π

π

π

                                                     (1.10) 

Then, the average value of W is given by 

( )

dZW

dZTZW

W

i∫

∫
= 1

0

1

0

,

                                                                                                         (1.11) 

So that ( )
( )

∑
∞

=








 +−

+
=

0

4
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18

m
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e
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W
π

π
                                                                 (1.12) 

For mid plane pore pressure 0.1=Z in (1.10) so that 
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∑
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=
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+
=
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4
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m e
m

W
π

π
                                                                               (1.13) 

 

and defining the percent consolidation U  as 

 

( )
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The degree of mid plane pore pressure dissipation may then be given by  
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( )
( )

∑
∞

=








 +−
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0

4
12 22
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m e
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π

π
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Figure 1. 1: Mid-Plane dissipation versus time factor (1) and average percent consolidation 

versus time factor (2) 

 

This expression represents a mathematical series with solutions obtained by successive 

values of the integer m  from zero to infinity the term ( )12 +m  does not depend on any physical 

characteristics of clay but it is introduced to facilitate the solution. 

Since equations (1.14) and (1.15) simply show the relation between U vs T  and D vs 

T it is possible and more convenient to represent them by a curve. Therefore, instead of solving 

the equation whenever a time factor value is required the value may be read directly from the 

curve. 

These are shown in Fig 1.1. It is also convenient to know for the section from 0=U  to 

60=U  percent, the curve is very closely approximated by the parabola 

2

4
UT

π=                                                                                                                      (1.16) 
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1.5 Criticism of Terzaghi Theory under the Light of Past Research 

 

Leonards and Ramiah (1959) noted the striking changes in the shape of compression 

time curves as the load increment ratio was reduced, and also values of  vc  calculated from 

conventional curve fitting procedures were as the load increment ratio was reduced. 

Pore pressure measurement made by Leonnards G. A. and Altschaeffl A. G. (1964) 

during the consolidation test demonstrated that: 

1. The ratio of initial excess pore pressure 0u  to the increment of applied pressure σ∆ is 

essentially one for all conditions of loading provided air does not come out of solution as a 

result of sampling or rebounding in oedometer. 

2. The rate of pore pressure dissipation is reliably predicted by the Terzaghi theory when 

the load increment ratio is sufficiently large, and essentially the same value of vc  is obtained 

from the compression time curve as from the pore pressure dissipation curve. 

3. For the curves which result from small load increment that straddles the 

preconsolidation pressure, cp , the rate of pore pressure dissipation. (Measured pore pressures 

generally dissipate more rapidly than those predicted from the Terzaghi model). 

  Consequently, it is no longer meaningful to calculate vc  from the compression time 

curve using curve fitting procedures based on the Terzaghi model. 

 Crawford (1964) suggested that laboratory consolidation test be conducted at a steady 

rate of compression, sufficiently slow to prevent development of significant pore pressures. 

He concluded that there is substantial field evidence that the prediction of consolidation 

settlement from laboratory tests is not always satisfactory. Much of the difficulty in predicting 

consolidation settlement from laboratory tests may be due to great differences between rates of 

compression in the laboratory and in the field. 

 It is shown that in order to create hydrodynamic effect the laboratory rate may be as 

much as several million time as fast as the field rate. 

Pore pressure measurements show that the maximum pressure developed in the 

specimen is 80% of the applied load and that, this pressure dissipates as a direct function of 

deflection. 
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Primary consolidation by direct measurement is found to be completed a little earlier 

than suggested by usual empirical methods. 

Taylor (1948) in some tests observed time patterns of overall sample compression and 

pore pressure at the bottom of the sample which do not agree with those predicted by usual 

consolidation theory and hence attempted to develop a theory for taking into account the effects 

of interparticle bonding and structural viscosity. 

Leonards and Girault (1961) measured pore pressure at the base of fixed ring 

consolidometer with the aid of the null meter in the low pressures range a mercury manometer 

was used to measure the pressure. They made comparison of theoretical and experimental pore 

pressure dissipation vs time.   

Some values of coefficient of consolidation have been computed for different pressures 

for different methods. 

 

Table 1. 1 

               vc         42
10sec

−×cm  2cm
kgσ  

σ
σ∆

 

I II III 

0.2 2.0 12.5 12.9 15.6 

1.1 3.0 1.46 0.93 1.41 

5.3 0.15 0.13 9.14 0.67 

 

Col I. Values calculated from dial reading time curves using Casagrande log time 

method. 

Col II. Values calculated from the pore pressure curves at 5.0=∆σ
u  

Col III. Values calculated from the pore pressure curves at a time corresponding to 50t  

on the dial reading time curve. 

They stated that anomalous behavior using small load increment ratios can not be 

attributed to side friction as suggested by Taylor. 

It is also dear that the values of vc calculated from any particular test procedure can be 

greatly in error when applied in situ conditions where the load increment ratios varies with depth. 
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Finally the rate of pore pressure dissipation can be predicted reliably from Terzaghi 

theory only if comparatively large load increment ratios are applied. If the load increment ratio is 

smaller than the critical value Terzaghi theory can not predict even approximately the rate of 

excess pore pressure dissipation. 

L. Barden and P.L Berry (1965) made a series of consolidation tests on normally 

consolidated clays and they stated that in tests with thin sample and small pressure increment 

ratio; 1,3.0 pp σ
σ∆H  the effect of structural viscosity is extremely marked and causes a 

complete departure from theoretical Terzaghi behavior. The shape of settlement time plot departs 

from the characteristic Terzaghi shape, because of large secondary compression, and the pore 

water pressure dissipation curves also departs from the characteristic Terzaghi shape. For thicker 

sample 5.2=H in. and  1=∆
σ

σ  behavior closely resembles the theoretical Terzaghi shape, 

including negligible secondary compression. 

They mainly dealt with the study of effects of varying permeability and nonlinear void 

ratio effective stress relation on the consolidation process. 

It was seen that for various type of clays dissipation of pore pressure are different. The 

small variation in permeability under 1=∆
σ

σ  meant that the Terzaghi theory was not 

considerable in error. 

For thin samples and small pressure increment ratios the effect of structural viscosity 

dominates the consolidation process and obscures the effects of other important factors such as 

varying permeability etc. 

Test on the thicker sample with 1≥∆
σ

σ  minimize the effects of structural viscosity and 

suggests that these effects may be negligible at the field scale and that undue preoccupation with 

test on small laboratory samples may be misleading. 

The proposed nonlinear theory incorporating a permeability varying as ( )ubkk f += 1  

gives also very close agreement with experimental results. 

For tests in which the variation of permeability is small, curve fitting based on Terzaghi 

theory is found to be suitable method of extrapolating laboratory results, even permitting the 

prediction of pore pressure behavior from settlement observation. 
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At the field scale, where structural viscosity is minimized. The simple linear Terzaghi 

theory may therefore be generally applicable to the majority of clays exhibiting no unusual 

properties. 

Robinson (2000) prepared an interesting technical note that concerns the use of pore 

water pressure measurements to estimate the coefficient of consolidation. 

Singh (2008) developed diagnostic curve methods for simultaneously identifying 

consolidation coefficient, final settlement, and ratio of top and bottom excess pore-water 

pressures from observed settlements, in the case of linear excess pore-water pressure. Simple 

equations has been proposed for estimating consolidation coefficient and final settlement.  

 

1.6. Experimental Procedure 

1.6.1 Soil Used 

The soil used in the study is Tabriz grey Clay whose properties have been reported by 

Khak Kavan Soli test laboratory. Samples taken at different depths from different locations 

show that the clay has well defined consistency limits. In general, the natural water content and 

plastic limit vary within 20 and 35 percent, and the liquid limit between 55 and 75 percent. The 

unit weight of the clay ranges between 1.75 and 1.95 3m
t   , and the specific gravity of particles 

is between 2.6 and 2.7. The shrinkage limit varies between 15 and 20 percent. 

The results of laboratory consolidation tests indicate that the coefficient of volume 

compressibility, vm , does not change considerably with depth. 

The consistencies limits of the soil are used in this study are as shown in Table 1.2. 

 

                     Table 1. 2: The soil consistency limits that used in testes 

 

LL  PL  SL 
sG  

75 36 13 2.70 
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1.6.2 Details of apparatus 

 

a) Oedometer: 

 

Oedometer used, is made of steel with inside diameter of 102.6 mm and height of 25.4 

mm. Details of the oedometer is shown in Fig. 1.2. At the bottom a porous stone was housed in 

order to measure mid plane pore pressures. The porous stone at the top of the sample is for 

drainage of water as the consolidation proceedings. 

Application of the vertical stress was provided by a steel sphere which was placed on the 

steel circular plate. One dimensional vertical drainage was provided by porous stone and a top 

drain valve.  

Settlements were followed by a dial gage placed on the plate where oedometer was put. 

The mid plane pore pressure was measured at a ceramic disc placed in the center of the 

base, using  pore pressure apparatus which was de-aired  and periodically checked by the parts 

of the oedometer are shown in Fig. 1.2. 

 

 

Figure 1. 2: The parts of the oedometer that used for test 

 

              −1P Steel ring 

−2P Steel base for soil to be placed 

−3P Steel plate 

−4P Copper valve for connecting nylon tube 
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−5P Porous stone 

−6P Porous stone 

−7P Drainage valve 

 To minimize effects of side friction, the side walls were smeared with Vazeline grease. 

To understand the magnitude of side friction L. Barden and P. L. Berry (1965) made some 

series of tests. Under lower pressure (0 psi 30 psi), there was no arching at the transducers. 

Under high pressure (60 psi- to 140 psi) immediate readings of total stress were approximately 

3% lower because of the side arching effect, but as pore pressure dissipated and stress became 

effective this arching was destroyed. The central transducers indicated that side friction had no 

effect in the area pore pressure was measured. 

 The reading at the edge showed that the reduction in stress caused by side friction was 

less than 3% even at the worst location. Thus it can be accepted that the average reduction in 

total stress across the base of the sample will be less than 2% and anomalous pore pressure 

behavior can not therefore be attributed side friction effects. 

 
b) Pore pressure device: 

 

For measuring pore water pressure, Model No. 350 Mark II Leonardo Farnell automatic 

pore water pressure measurement apparatus was used. The equipment automatically measures 

the pore water pressure requiring almost no flow of pore fluid from the sample. 

The layout of the apparatus is shown in Fig. 1.3. The pressure change is sensed by the 

monitoring unit which consists of a Perspex block attached by a pipe to the oedometer.  

Within the perspex block is a mercury “U” tube and a pair of platinum contacts. The 

monitoring unit is connected via an oil filled tube to the control unit, which houses the pressure 

gauge together with the control mechanism.  

Any increase in pore pressure causes the mercury within the “U” tube of the monitoring 

unit to move and establish contact with platinum wire on the high side of the “U” tube. This 

electrical contact is used to operate a relay in the control unit, which switches on a heater 

connected in an oil circuit. 
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Figure 1. 3: The layout of the apparatus 

 

The oil expansion restores the mercury in the “U” tube to its original position and at the 

same time the pressure change is indicated on the gauge. When the expanding oil restores the 

mercury to its original position the heater is switched off. Since the heater is maintained above 

ambient temperature it now cools and contracts. It will be seen therefore that mercury maintains 

a constant position in “U” tube by alternate expansion and contraction of the oil. 
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1.6.3 Time Lags in Pore Pressure Measurement 

 

In these test results it is seen that there was a certain time elapsed for the pore pressure 

to reach its peak value. These time lags in measurement of pore pressure were also researched 

by Whitman, Richardson and Healy (1961). They stated the factors affecting measured pore 

pressures as,  

a) Excessive flexibility in the measuring system. Such flexibility has two effects. 

 

1. It alters the overall compressibility of the pore phase and changes the distribution of 

total stress between mineral skeleton and pore phase. 

 

2. It leads to a time lag in the response of the measuring system. 

 

b)  Mineral skeleton of low compressibility interparticle bonding, structural viscosity 

and very tight packing of particles are possible reasons why stiffness of the mineral skeleton 

might approach that water. 

 

The time required for any level of pressure to be reached in measuring chamber is a 

function of the permeability of porous stone of the bottom of oedometer and coefficient of 

compressibility vm . 

If BU∆ is less than σ∆  the problem is to decide whether the cause is real (stiff mineral 

skeleton) or extraneous (flexibility in measuring system). 

In order to make this decision there is need for a clear picture of the effect of measuring 

system flexibility. 

Where σ∆  applied pressure 

BU∆  pore pressure measured 

AU∆ pore pressure assumed to be in reality 

BU

U

A

B

+
=

∆
∆

1
1

 

vAHm
GB =  
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=vm  Coefficient of compressibility lb
in2

  

=G Flexibility of measuring system (3in per 2in
lb ) 

=H Thickness of sample ( )in  

=A Area of oedometer 

Suppose that for some reasons the minerals skeleton is quit stiff. For example if vm  is 

about 5 times the compressibility of water then =
∆

∆
σ

AU
0.83 using values of ,A H and 

,G B becomes 0.5 and =
∆
∆

A

B

U

U
0.67 which means recorded pressure is much less than the actual 

pressure. 

Pore pressures during drained compression (consolidation) 

The theoretical determination of a curve such as that shown in Fig 1.4 involves the 

solution of the one dimensional consolidation. 

 

                

                                    Figure 1. 4: One dimensional consolidation 

                           

Equation 
t

u

z

u
cv ∂

∂=
∂
∂

2

2

 with the following boundary condition at the base of the sample 

∫ ∂
∂×=∆

t

w
B dt

z

uAK

G
U

0
2

21
γ

 

An approximate solution of this equation was obtained using the ten lump electric 

analogues. Solutions obtained in this manner are plotted in dimensionless form. 
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Fig 1.5 which shows 
0A

B
U

U
∆

∆ as a function of the average consolidation ratios for the 

sample as a whole, where 
0AU∆  denotes the initial value of AU∆ . These solutions are based on 

the assumption that vm is the same for consolidation and rebound. 

 

 

 Figure 1. 5: Diagram of 
0A

B
U

U
∆

∆ respect to average degree of consolidation 

The assumption is reasonable in the case of over consolidated soils, and the error 

resulting from this assumption tends to decrease calculated response time of the measuring 

system in normally consolidated soils. Therefore, if these curves are used in design of a 

measuring system a conservative indication of its performance will be obtained. During 

undrained compression, the time-log did not affect the peak value of BU∆  only the time required 

to achieve this peak value. Now, however, the time-lag in the measuring system is important, for 

AU∆  in time variant.  The effect of the lag is revealed in Table 1.3. 
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Table 1. 3: Effect of the lag 

Max  
A

B
U

U
∆

∆  B  

 
     Undrained       Drained 

0.001 1 0.99 

0.01 0.99 0.98 

0.05 0.95 0.88 

0.10 0.91 0.78 

 

Thus, of B  is much greater than 01.0 , the peak measured BU∆ in a drained compression 

test may be much less than the actual initial AU∆ . In such test therefore, the presence of modest 

amount of air in the measuring system may be disastrous. 

Fig.1.6 shows comparison of various measured value with Terzaghi theory. 

                             

Figure 1. 6: Comparison of various measured value with Terzaghi Theory 

 

The flexibility of the system used in this thesis, is 21 GGG += where 

=1G Flexibility of nylon tube 

=2G Flexibility of pore device 

From Bishop and Henkel (1962) values of 1G and 2G are given as: 
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2

36
1 105.0

in
lb

inG −×=  

2

36
2 107.3

in
lb

inG −×=  

 

1.6.4 Preparation of Sample and Testing Procedure 

 

The oedometer and plastic pipe were filled with water and checked that there was no air 

bubbles. Then ends of the pipes were closed and only very thin film of water remained on the 

deaired ceramic porous stone in order to prevent from entering the porous stone. After that the 

soil clay was prepared at its liquid limit in the form of slurry and placed into the oedometer by 

means of a spoon and at each thin layer of soil the oedometer was shocked to provide escape of 

air bubbles. When the oedometer was full the excess part of the soil was trimmed off. The 

important measurement has been the rate of settlement and rate of dissipation of mid plane pore 

pressures. In order to minimize the effect of structural viscosity it was desirable. To test with a 

pressure increment ratio of one and with a relatively thick sample. 

Loads were applied in steps, each load doubling the previous value.  1=∆
σ

σ , and each 

load was allowed to stand until essentially most of the base pore pressure measured had 

dissipated.Load increments were 25.00− , 50.025.0 − , 0.15.0 − , 0.20.1 − , 0.40.2 − , and 

20.80.4
cm

kg− . 

After these six increments have been completed, the final load of 20.8
cm

kg on the 

sample was reduced to 20.2
cm

kg and the sample was allowed to rebound for two days during 

which time water was provided from drainage valve for the sample to swell. 

Then reloading from 0.2 to 20.4
cm

kg and from 0.4  to 20.8
cm

kg were applied and at 

each stress increment same procedure of loading and measurement of compression and excess 

pore pressure was made. 
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1.7 Experimental Results and Their Interpretation 

 

Table 1.4 shows that the coefficient of consolidation vc , computed for each stress 

increments by square root fitting, log fitting and from dissipation tests are more or less equal to 

each other indicating that prediction of consolidation by Terzaghi theory gives satisfactory 

results for the soil tested. The values of vc  showing discrepancies for certain stress increments by 

the log fitting method are due to the back of some points in the curves. More points could not be 

obtained due to the fact that consolidation takes a long time for completion and the pore pressure 

device had to be cleaned therefore, to be able to finish the tests in the shortest possible time each 

load was allowed to stand only for a limited period (approximately 24 hours). 

 

Table 1. 4: The coefficient of consolidation vc  computed for each stress increments by 

different methods 

 

Square root 

Fitting method 

Log fitting method From dissipation tests Pressure 

2cm
kg  

(min)
90t  

 

vc  

sec
2cm  

(min)
50t  vc  

sec
2cm  

(min)
50t

 

vc  

sec
2cm  

(min)
90t

 

vc  

sec
2cm  

Void Ratio 

25.00−  27.12  4105.5 −×  36 4107.5 −×  28  4102.6 −×  20.14
 

4105.5 −×  41.15.2 −  

50.025.0 −  23.16  41032.3 −×
 

62 41028.3 −×
 

28  4102.6 −×  25.15
 

41032.4 −×
 

31.141.1 −  

0.150.0 −  22.16  41040.3 −×
 

69 41095.2 −×
 

27.7  41075.6 −×
 

24.16
 

4100.4 −×  17`.131.1 −  

0.20.1 −  27.16  41016.3 −×
 

68 41000.3 −×
 

210  4100.4 −×  24.18
 

41091.1 −×
 

945.017.1 −  

0.40.2 −  23.23  41063.1 −×  98 41008.2 −×
 

23.15
 

41070.1 −×
 

22.25
 

41003.1 −×
 

772.0945.0 −
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0.80.4 −  20.29
 

41005.1 −×  170 41020.1 −×  23.18
 

41019.1 −×
 

25.28
 

41080.0 −×
 

59.0772.0 −  

Reloading 

00.42 −  

24.19  41035.2 −×
 

25 41020.8 −×
 

23.13
 

41070.2 −×
 

219  41081.1 −×
 

63.065.0 −  

Reloading 

0.80.4 −  

24.22
 

41075.1 −×  87 41035.2 −×
 

213  41035.2 −×
 

221  41048.1 −×
 

587.063.0 −  

 

According to Terzaghi, for fully saturated clays( )1=Sr , at time 0=t , applied stress is 

equal to excess pore pressure. But tests show that it is not true for high stress increments. For the 

first three stress increments 25.00− , 50.025.0 − , 0.15.0 −  2cm
kg ratio of pore pressure to 

applied stress is equal to one, that is ,1=
∆
∆=

σ
U

C but for higher stress increments it was observed 

that this ratio C started to decrease. For reloading case very small valves of C  was obtained, for 

the stress increment of  0.40.2 −  2cm
kg , 25.0=C and for the increment of  0.80.4 −  2cm

kg , 

C  was equal to 0.41. This is illustrated in Fig. 1.7 and Table 1.5. 

 

Table 1. 5 

Stress Void 

Ratio 

Coefficient of 

Compressibility 

Initial 

Void 

Ratio 

Coefficient of 

volume 

Compressibility 

Water 

Content σ∆
∆U

 
vMHA

G

..
 

2cm
kgσ∆  e∆  

kg
cme

av

2

σ∆
∆=  0e  

01 e

a
m v

v +
=  

w  C  B  

0-0.25 1.00 4.00 2.50 1.140 0.93 1.00 6101.4 −×  

0.25-0.50 0.20 0.80 1.50 0.320 0.56 1.00 51048.1 −×  

0.50-1.00 0.14 0.28 1.30 0.121 0.48 1.00 51090.3 −×  

1.00-2.00 0.22 0.22 1.16 0.102 0.43 0.98 51065.4 −×  

2.00-4.00 0.20 0.10 0.94 0.051 0.35 0.87 51040.9 −×  

4.00-8.00 0.14 0.035 0.74 0.020 0.27 0.82 41035.2 −×  

Reload 0.03 0.015 0.66 0.009 0.24 0.25 3102.5 −×  
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2.00-4.00 

4.00-8.00 0.04 0.01 0.63 0.006 0.23 0.41 31048.1 −×  

 

Figure 1. 7: Pore water pressure versus total stress 

 

Fig. 1.8  shows the ratio 
σ∆

∆= U
C versus water content, it is seen that as the consolidation 

is progressed, around the plastic limit C starts to decrease and somewhere between the shrinkage 

limit and the plastic limit a very sudden drop of C occurs. 
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Figure 1. 8:  Ratio of 
σ∆

∆= U
C  versus water content 

Also, as the coefficient of volume compressibility vm decreases C again decreases as 

indicated in Fig.1.9. 

 

Figure 1. 9: Ratio of 
σ∆

∆= U
C  versus coefficient of volume compressibility vm  
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From these observations it seems possible that, as the water content decreases the soil 

sample starts to become stiff and the soil skeleton attains a more rigid state so that some of the 

applied stress may be taken by the soil skeleton. On the other hand Whitman and Healty (1961) 

state that the flexibility of the pore pressure measuring system may cause such an apparent 

reduced reading of the of the actual pore pressure. 

The controversial point may be analyzed in the following way. 

At each stress increment it was observed that a certain time clasped for the pore pressure 

to reach its peak value. 

As it was discussed before the reduction in the measured peak pore pressure can not be 

attributed to the flexibility of the apparatus. This following from the fact that for each stress 

increment as computed in table 1.5 values of B is so small that reference to fig.1.5 indicates at 

once that the measured value of peak pore pressures showed be almost equal to the applied 

pressure. But the observations show that the ratio of peak pressure to applied pressure is 80-85% 

instead of 99-100%. 

Furthermore, reference to the same figure indicates that some time lag is expected and 

this is observed in the tests performed. Calculations based on the vc values obtained indicate that 

no dissipation of base pore pressure can occur within the interval of this time lag. 

The pore pressure device initially was directly connected to the triaxial test chamber and 

within an increase of chamber pressure up to 216
cm

kg  there was no time closed expect for 

several seconds and also the measured pore pressure was observed to be equal to the applied 

stress. This may be taken as evidence that the pore pressure apparatus itself is inflexible with the 

usual filling methods used in this study. 

Therefore it may be concluded that the observation of developed pore pressure not being 

equal to applied pressure is due to rigid mineral skeleton which develops at the water content 

approximately near the plastic limit. (Fig. 1.8) 

As Crawford (1964) reports the dissipation v.s compression curves are observed to be 

straight lines (Fig.1.10  and Fig. 1.11). This means that the coefficient of compression va may be 

taken as a constant during the consolidation process. 
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                Figure 1. 10 
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Figure 1. 11 
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Another interesting observation is that the calculated coefficient of consolidation vc , 

corresponding to each percent of pore pressure dissipation as computed by means of fig.1.12 

seemed to decrease for lower stress increments. For higher stress increments vc seems to be 

constant as indicated in fig. 1.12 Terzaghi in his theory assumes vc  to be constant, however at 

lower stress increments do not hold. 

 

Figure 1. 12 

It is known that, the coefficient of consolidation is given by the equation 
( )

wv
v a

ke
c

γ
+= 1

and 

here specific gravity of water wγ , and void ratio e are constant and as indicated above 

coefficient of compressibility va is also constant during consolidation process. Then the only 

variable which remains is the permeability. So that the variation of coefficient of consolidation 

vc  during consolidation process can be attributed to the variation in permeability. 

L. Barden and P.L Berry (1965) reports that for saturated, normally consolidated clays, 

permeability is a complex function of the void ratio and of soil structure and hence decrease 

during the consolidation process. 
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The amount of variation is of the order of 20 =
fk

k or 30 =
fk

k  for most clays but can be 

as high as 500 =
fk

k for certain highly compressible clays. 

The most commonly accepted variation is the linear void ratio logarithm of permeability 

relation. 

Fig.1.13. shows percent compression versus percent consolidation. Excluding reloading 

and the first stress increment at which part of the very liquid sample was inevitably squeezed out 

of the oedometer it is seen that they fall on a line inclined as an angle of 045  means that at 

identical times, percent consolidation is approximately equal to percent compression. 

 

Figure 1. 13 

 

Percent consolidations computed from vc  for 90% dissipation cU and for each percent 

dissipation vU  were plotted on Figs 1.14-1.21. In addition, percent settlement 
100δ
δ tS =  where 
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100δ  was computed as 100% compression from Fig 1.10 and Fig 1.11 by means of extrapolating 

the dissipation v.s. compression curves and the mid plane pore pressure dissipation D  were 

platted on these figures.  

       

 

Figure 1. 14 

 

Figure 1. 15 
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Figure 1. 16 

 

Figure 1. 17 
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Figure 1. 18 

 

Figure 1. 19 
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Figure 1. 20 

 

Figure 1. 21 
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          An analysis of these curves show that the values of percent consolidation vU computed 

from vc  for each percent dissipation are more close to actual settlement values S than the values 

of consolidation computed from vc  for 90% dissipation cU . 

For reloading cases these relations can not be seen. This indicates that percent 

consolidation and percent compression are entirely distinct entities for the preconsolidated soil. 

Thus, for such a case, the applicability of the Terzaghi theory seems doubtful. Fig 1.22 shows 

void ratio versus pressure and Fig 1.23 shows void ratio v.s log pressure. Also, an example of 

Casagrande log fitting and Taylor square root fitting methods to determine 100% and 90% 

consolidation respectively are illustrated on Fig 1.24 and Fig 1.25. 

 

Figure 1. 22: void ratio versus pressure  
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Figure 1. 23: shows void ratio v.s log pressure 

 

Figure 1. 24 
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Figure 1. 25 

1.8 Conclusion 

 

1. Terzaghi theory is observed to hold true in estimating the rate of compression in the 

oedometer of the clay used, as long as the soil is not preconsolidated. 

2. For tests in which the variation of coefficient of consolidation, consequently the 

coefficient of permeability is small, the usual curve fitting methods are found to be suitable for 

the interpretation of laboratory test results, even permitting the prediction of pore pressure 

behavior from observations of compression. 

3. The ratio of measured peak pore pressure to applied pressure decresases as the 

coefficient of compressibility decreases, most probably due to an increase in the rigidity of the 

soil skeleton 

4. Percent of total compression seems to be equal to percent consolidation for each 

identical time as long as the clay is normally loaded. 
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5. If the clay is preconsolidated the pore pressure dissipation and percent compression of 

the sample seem to be distinct entities. Therefore, for such soils the applicability of Terzaghi’s 

theory may be doubtful, although it may be used as an indication. 

6. For lower stress increments, the coefficients of consolidation vc  computed for each 

percent mid plane pore pressure dissipation decreases as going from 10% to 90% dissipation. 

This shows that the value of permeability changes during consolidation, leading to a deviation 

from the conventional theory of consolidation. 
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CHAPTER 2 - One Dimensional Consolidation for Different 

Pressure Increment Ratios 

2.1 Introduction and Purpose of this chapter 

 

In this research, one dimensional consolidation tests on remodeled soft clay using 

different pressure increment ratios of one or less, with load increment duration of one week, 

were performed. Five different methods were used to evaluate the coefficient of consolidation 

vC which yielded reasonably close values. The secondary compression effects have been found 

to increase as the pressure increment ratio is reduced. The vC values and the end of primary void 

ratio effective stress relationship appear to be independent of the pressure increment ratio.  

The influence of the pressure increment ratio 





∆

0σ
σ on the results obtained from one-

dimensional consolidation tests have been studied by a number of researchers including 

Newland and Allely (1960), Leonards and Girault (1961), Wahls (1962), Madhav and Sridharan 

(1963), and Lun and Parkin (1985). The results indicate that the rate of excess pore pressure 

distribution can not be reliably predicted from the Terzaghi theory if the load increment ratio is 

small. The compression versus the logarithm of time curves lose their characteristics shapes 

with an inflection point for 





∆

0σ
σ  less than about  3

1  with the result that the Casagrande 

time fitting method becomes inapplicable. The time required for the development of the linear 

secondary compression part of the compression log time curves and 100t have been stated to 

increase with decreasing 





∆

0σ
σ . The relative importance of primary and secondary effects 

and secondary compression characteristics has also been shown to be included by the pressure 

increment ratio. While there is agreement on the increased secondary effects if pressure 

increment ratio is reduced Newland et al (1960) the effect on the rate of secondary compression 

has been expressed in various ways and some results are controversial.   
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      Newland and Allely (1960), and Wahls (1962) noted that the slop of the secondary 

compression line (plotted in terms of void ratio change versus the logarithm of time) is 

independent of the pressure increment ratio. While Lun and Parkin (1985) results are essentially 

in agreement with the above, Madhav and Sridharan find the rate of secondary compression 

(defined as the void ratio change per logarithmic cycle of time per unit pressure increment) to 

increase with decreasing pressure increment ratio. It is also stated that the duration of previous 

increment affects secondary compression when the pressure increment ratio is small. Leonards 

and Girault (1961) plotted the rate of secondary compression as compression per cycle on the 

log time scale  sR , per unit pressure increment, per unit height of sample versus the pressure at 

the end of the increment HRs .σ∆ vs σ  and found large rates of secondary compression 

associate with small pressure increment ratios. 

The void ratio change at the completion of primary consolidation is considered to be 

contributed by the compressibility of the soil structure with effective stress and the 

compressibility with time (secondary compression during the time required for primary 

consolidation). It is suggested that for any soft clay a unique of primary (EOP) void ratio 

effective stress relationship exists independent of the duration of primary consolidation which is 

related to the thickness of the consolidating layer and the pressure increment ratio. 

       Hence, in this study, an experimental program was carried out to investigate the 

effect of the pressure increment ratio on the shape of compression time curves and secondary 

compression characteristics. Five different curve fitting methods were used to determine 

coefficient of consolidation for comparison and to check their applicability when the pressure 

increment ratio is small. 

2.2 Experimental Study Procedure 

 

The results of three consolidation tests with 





∆

0σ
σ  of 1.0, 0.6 and 0.25 carried out on 

identical remolded samples of clay are presented. The samples were prepared by the slurry 

consolidation method and the maximum consolidation pressure applied was 25.0
cm

kg . The 

liquid and plastic limits of the clay used were 98% and 23% respectively and the percentage of 
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clay size ( )mµ2p was %63 . The specific gravity of solid particles was 2.79 and the soil was 

classified as CH . The predominant clay mineral was illite. A floating ring type large diameter 

oedometer (diameter =112.7 mm and height= 19 mm) was used in performing tests. The sides 

of the oedometer were greased in an effort to minimize the effect of side friction. The applied 

pressures were maintained on the sample for a period of one week to ensure virtually the 

completion of the secondary consolidation under the previous increment of load which is 

considered to be important when the pressure increment ratio is small. The average room 

temperature during the tests was C022  and during load increment duration (1 week) the 

temperature variation was only a few degrees.  

2.3 Experimental Results and Discussion 

 

Coefficient of consolidation vC values given in Table 2.1 to Table 2.3 were calculated by 

the inflection point method, the improved rectangular hyperbola method and the negative 

tangent method in addition to the commonly used square root of time and the logarithm of time 

fitting methods. All these methods, however, were developed for the conventional oedometer 

test procedures in which the pressure increment ratio is 1.0. The experimental results of 

Leonards and Girault (1961), Wahls (1962) and the present study show that the compression 

against the logarithm of time curves lose their characteristics shapes for small pressure 

increment ratios. Fig. 1 illustrates typical curves obtained for =∆
0σ

σ 1.0, 0.6, and 0.25 for 

comparable pressure ranges. To eliminate the possibility of scale effects, the curve 

corresponding to =∆
0σ

σ 0.25 was replotted to a larger scale which showed the absence of an 

inflection point even more clearly. The compression square roots of time plots have also been 

found to deteriorate and the initial experimental points, which should normally lie on a straight 

line, show a larger dispersion at smaller pressure increment ratios. As a result, it has not been 

possible to apply the logarithm of time and the inflection point methods, and the best fitting 

straight line was used in the square root of time method for =∆
0σ

σ 0.25. Tables 2.1 to Table 

2.3 give vC  values for =∆
0σ

σ 1.0, 0.6 and 0.25 respectively for pressure ranges greater than 
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the pressure applied in sample preparation stage. The results indicate agreement between 

various methods and no definite trend of dependency of vC or 100t values on pressure increment 

ratio. 

 Table 2. 1: Coefficient of Consolidation values =∆
0σ

σ 1.0 

Coefficient of consolidation 






yr
mCv

2
 

Pressure 

 

2cm
kg

 

Root time 

method 

Log time 

method 

Inflection 

point method 

Negative 

tangent method 

Improved rectangular 

hyperbola method 

0.5-1.0 0.38 0.21 0.35 0.22 0.37 

1.0-2.0 0.39 0.14 0.33 0.19 0.26 

2.0-4.0 0.11 0.09 0.21 0.14 0.15 

4.0-8.0 0.09 0.08 0.20 0.12 0.14 

8.0-16.0 0.13 0.07 0.18 0.10 0.14 

                       

Table 2. 2: Coefficient of Consolidation values =∆
0σ

σ 0.60 

Coefficient of consolidation 






yr
mCv

2
 

Pressure 

 

2cm
kg

 

Root time 

method 

Log time 

method 

Inflection 

point method 

Negative 

tangent 

method 

Improved 

rectangular 

hyperbola method 

0.64-1.02 0.28 0.11 0.12 0.25 0.28 

1.02-1.64 0.11 0.08 0.09 0.15 0.15 

1.64-2.62 0.12 0.07 0.07 0.16 0.14 

2.62-4.19 0.09 0.06 0.07 0.15 0.14 

4.19-6.71 0.09 0.06 0.07 0.14 0.16 

6.71-10.74 0.07 0.06 0.06 0.11 0.12 

10.74-17.18 0.08 0.06 0.06 0.06 0.11 
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Pore pressure measurements were not available to evaluate vC  values or to assess the 

end of primary consolidation. So, a simple check was carried out to examine the conformity of 

the experimental compression curve with a theoretical curve calculated from the Terzaghi 

theory by employing the vC  values obtained using the square root method for two pressure 

ranges for tests with 0.1
0

=∆
σ

σ  and .25.0
0

=∆
σ

σ The experimental and calculated points 

deviate a small amount after about 90% consolidation; the measured compressions being 

approximately 5% larger than the calculated ones for both the pressure increment ratios. 

 

Table 2. 3: Coefficient of Consolidation values =∆
0σ

σ 0.25 

Coefficient of consolidation 






yr
mCv

2
 

Pressure 

 

2cm
kg

 

Root time 

method 

Negative 

tangent 

method 

Improved rectangular 

hyperbola method 

0.61-0.76 0.40 0.29 0.38 

0.76-0.95 0.55 0.52 0.35 

0.95-1.19 0.32 0.25 0.29 

1.19-1.49 0.39 0.24 0.28 

1.49-1.86 0.46 0.23 0.29 

1.86-2.33 0.23 0.32 0.19 

2.33-2.91 0.28 0.23 0.21 

2.91-3.64 0.16 0.19 0.22 

3.64-4.55 0.25 0.17 0.19 

4.55-5.68 0.21 0.11 0.19 

5.68-7.11 0.11 0.13 0.14 

7.11-8.88 0.10 0.09 0.15 

8.88-11.1 0.18 0.14 0.15 

11.1-13.88 0.10 0.11 0.14 

13.88-17.35 0.13 0.15 0.13 
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Wahls (1962) developed a consolidation equation and proposed a procedure to obtain 

theoretical consolidation curves that closely approximate experimental curves and to determine 

EOP void ratio. Although not specifically stated or used by Wahls (1962), in the present study 

the author’s method was used to determine100t and vC . Although the procedure due to Wahls 

predicts the form of experimental consolidation curves for 0.1
0

≤∆
σ

σ , the vC  values obtained 

become increasingly smaller than the ones determined by the other methods as 
0σ

σ∆  is 

reduced. The influence of the pressure increment ratio on secondary compression was also 

examined. Although the compression dial readings versus logarithm of time plots indicate a 

fairly unique final independent of the pressure increment ratio (Fig 2.1) in agreement with Lun 

and Parkin [19], the coefficient of secondary compression αC  defined as the vertical strain per 

logarithmic cycle of time increases as the pressure increment ratio is reduced.  

 

 

Figure 2. 1: Comparison of dial reading versus logt curves 
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This is illustrated in Fig 2.2 where the average αC value is plotted against
0σ

σ∆ . The 

plots of the secondary compression per cycle on the log time scale sR , per unit pressure 

increment, per unit average height for the particular pressure increment versus the final effective 

stress are also given in Fig.3. As observed, H
Rs

.σ∆ decreases as the pressure increases, and at 

a given pressure, increase as the pressure increment ratio is reduced, in conformity with the 

findings of Leonards and Girault (1961). 

 

Figure 2. 2: Variation of αC  with σ
σ∆  

An opportunity was taken to check the concept of uniqueness of the EOP void effective stress 

relationship for any soft clay which is also independent of the pressure increment ratio. Fig.2.4 

presents EOP void ratio effective stress curves for tests with   0.1
0

=∆
σ

σ    and   25.0
0

=∆
σ

σ  

where the EOP void ratios were calculated from dial readings corresponding to 100t as 

found from the square root time fitting method. The close agreement exhibited in this figure and 

the results of other tests support the proposed concept. 
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Figure 2. 3: Variation of H
Rs

.σ∆ with pressure at different pressure increment ratios. 

 
Figure 2. 4: EOP Void Ratio Effective Stress Relationshi 
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2.4 Conclusions 

 

For a small pressure increment ratios ( 25.0
0

=∆
σ

σ in the present study) the form of 

experimental consolidation curves do not permit the logarithm of time and the inflection point 

methods of time fitting to be applied. A comparison of the square root of time, logarithm of 

time, inflection point, negative tangent and improved rectangular hyperbola time fitting 

methods indicated in general a close agreement between the vC values obtained. The pressure 

increment ratio does not appear to influence vC  values in a consistent way. The secondary 

compression effects increase as 
0σ

σ∆  is reduced. The end of primary (EOP) void ratio 

effective stress relationship seems to be independent of the pressure increment ratio. 
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CHAPTER 3 - Clay Layer Consolidation Delimited Between Sheets 

with Small Permeability  

3.1 Introduction and Purpose of this chapter 

 

The problem of consolidation of clayey soils is an attractive one for the soils engineers 

and scientists mainly due to the fact that the solution of this particular problem provides the 

answers to the question of the rate and amount of settlement of engineering structures. 

The classical theory of consolidation due to Terzaghi (1934) is the most widely used one 

mainly because of its simplicity. This theory is very well-known to the soil scientists and its 

presentation is given in almost any textbook on soil mechanics (Taylor (1948), Lambe (1969), 

and Ccott (1963)). The consolidation theory of compressible soils usually assumes that at the 

boundaries the drainage is free. That is, the surrounding layers are pervious.  

The fundamental assumptions of the Terzaghi theory have been criticized by many 

researchers and a number of modifications have been proposed during the last two decades 

(Barden (1965), Berry (1964), Taylor (1942)).  

Another interesting point inherent in obtaining solutions by means of this theory is the 

boundary conditions prevailing for a certain problem in question. Terzaghi and Frochlich (1936) 

give a number of closed form solutions for different boundary conditions which are applicable to 

various field problems. 

As far as the boundary conditions are concerned, almost all of them represent the 

consolidation clay soil with its pore water discharging into pervious boundaries. Therefore, in 

such cases, the boundary conditions are relatively simple, and closed form solutions are readily 

obtainable.  

Kang-He et al. (1999) studied one dimensional consolidation of two-layered soil with 

partially drained boundaries.  In their paper, a fully explicit analytical solution was presented for 

one-dimensional consolidation of two-layered soils with partially drained boundaries. Lee et al. 

(2005) studied one-dimensional consolidation of layered systems. They found a general 

analytical solution, which is more explicit than other solutions. Wang et al. (2004) investigated 

soil consolidation by vertical drains with double porosity model.  
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In this study, due to the case studied, the boundary conditions are not as simple, 

necessitating the use of an approximate solution. The case presented is a clay layer of relatively 

large thickness sandwiched between two thin layers of soil whose compressibility and 

permeability is much lower than the layer in between. Therefore, discharge during consolidation 

of the pore water of the sandwiched layer into the neighboring top and bottom layers is not 

“free” as in most usual cases, but restricted.  

In summary, this chapter the case in which the boundary layers have a low permeability 

is studied. When free drainage is thus inhibited, the boundary conditions at the drainage surface 

changes necessitating the use of an approximate technique of solution of the governing partial 

differential equation. Therefore, the solution is obtained by using the Galerkin Method. The 

solution obtained is compared with the “free drainage” case and conclusions are drawn 

thereform. As expected, the consolidation in the case of restricted drainage proceeds at a much 

lower rate.  

 

3.2 Assumptions  

 

The assumptions made for the solution of this problem are as follows: 

 

a) The consolidation layer is soft, saturated, normally loaded clay. 

 

b) All the main and subsidiary assumptions made in the classical theory of consolidation 

are assumed to be applicable to the consolidating layer. 

 

c) The thickness of the consolidating layer is very large in comparison to the top and 

bottom layers. 

 

d) The compressibility and the permeability of the consolidating layer are much greater 

than that of the top and bottom layers. 
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e) In view of assumptions c and d given above, the contribution of the top and bottom 

layers to consolidation is considered negligible and these layers are regarded as semi-pervious 

membranes hindering the expulsion of pore water from the consolidating layer. 

 

3.3 Mathematical Treatment of the Process 

 

In this treatment reference is made to Fig. 3.1. The symmetric nature of the problem with 

respect to the centre line enables its treatment in the half space bounded by the center line and 

defined by the space variable zwhere z  measured is positive downwards. 

 

Figue 3. 1: Configuration of the problem 

 

Under the imposed total stressσ , an initial excess pore pressure of magnitude 

σ=0u develops in the saturated, soft clay. The hydraulic gradient then set up due to this excess 

pore water pressure initiates flow of pore water towards the top and bottom boundaries I-I and 

II-II respectively, and the excess pore pressure dissipates as a function of time t  and depth z . 

That is ( ).,tzuu =  

The flow occurs according to Darcy’s law. 

z

uk
V

w
z ∂

∂×−=
γ

                                                                                                              (3.1) 
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where zV is the flow velocity in zdirection, k is the permeability of the soft clay. On the other 

hand, time rate of dissipation of excess pore water pressure 








∂
∂

t

u
at a point in the consolidation 

layer is proportional to the divergence of velocity (Terzaghi (1934), Taylor (1948), Lame 

(1969), and Ccott (1964)) that is  

t

u

e

a

z

v vz

∂
∂×

+
−=

∂
∂

01
                                                                                                                    (3.2) 

Combination of eq. (3.1) and eq. (3.2) yields 

( ) t

u

ek

a

z

u wv

∂
∂×

+
=

∂
∂

0
2

2

1
γ

                                                                                                                  (3.3) 

Eq. (3. 3) is the famous equation of consolidation proposed by Terzaghi where va the 

compressibility coefficient is and 0e is the initial void ratio of the soft clay respectively. 

It is possible to render equation (3.3) dimensionless by employing dimensionless pore 

pressure, space variable and time as follows: 

,
ou

u
w =   ,

H

z
Z = ( )

,
1

2
0 t

aH

ke
T

wvγ
+=                                                                                   (3.4) 

 

where H is half thickness of the soft clay and T is called the time factor. Thereby, the 

dimensionless form of equation (3.3) is 

              
T

w

Z

w

∂
∂=

∂
∂

2

2

                                                                                                       (3.5) 

The water expelled from the consolidation layer is transferred across the boundaries I-I 

and II-II to the adjoining layers according to 

            ( ) ( )tuhtV
w

,0.
1

,0 ×=
γ

                                                                                       (3.6)   

Where h  may be termed the specific permeability of the semi pervious membranes where hhas 

the dimensions of 








time

1
. It should be noted that if the specific permeability is multiplied by 

length, it yields the usual conception of permeability with dimensions .








time

length
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On the other hand, the same transference law may be stated for the lower neighborhood 

of the boundary: 

( )
0

,0
=










∂
∂×=

zw z

uk
tV

γ
                                                                                                   (3.7) 

The combination of (3.6) and (3.7) then yields one boundary condition which express 

the “hindrance” to flow at the boundaries i.e.: 

( )
0

,0.
=








∂
∂×=

zz

u
ktuh                                                                                                     (3.8) 

At this stage, h  may be expressed in terms of the drainage length H and the 

permeability k of the consolidation layer in the following form: 

Hhmk ..=                                                                                                                      (3.9) 

where m  is obviously a positive number greater than unity, and specifies the magnitude 

of h in relation to the permeability of the soft clay. 

The boundary condition (3.6) may be expressed in the dimensionless form through the 

first expression of eq.(3.4) and when combined with equation (3.9) yields: 

 

;0=
∂
∂−

z

w
w    0fT                                                                                                     (3.10) 

           The other boundary conditions are 

( )
( ) 0,1

0.10,

=
=

Tw

zw

z

    
0

,10

fT

z ≤≤
    

0fT
                                                                               (3.11) 

Equations (3.5) with the boundary conditions (3.10) and (3.11) describe the process of 

consolidation. 

3.4. Solution of the Equation 

Although the boundary conditions are homogeneous, a closed form solution of equation 

(3.5) is not readily available, because of the nature of the boundary condition (3.10). Therefore, 

an approximate method is employed, which will be described subsequently. 

The function ( )TZw , will be approximated by selecting a trail solution of the form 

( ) ( ) ( )∑
=

=
n

i
ii ZTaTZw

1

., ϕ                                                                                               (3.12) 
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for ndiscrete variables ( )Tai , where the ( )Ziϕ  are known functions. The boundary 

conditions at 0=Z and 1=Z is homogenous, therefore if the ( )Ziϕ satisfy the following 

conditions: 

    
0

0

=

=−

dZ

d
dZ

d

i

i
i

ϕ

ϕϕ
 at     

1

0

=

=

Z

Z

                                                                                         (3.13) 

then it would be possible to make ( )TZw , comply with the boundary conditions with no 

restriction. A simple family of polynomials can be selected to satisfy condition (3.13), i.e. 

1
1

1

+
−+=

+

i

Z
Z

i

iϕ                                                                                                            (3.14) 

A trial equation (3.12) constructed with polynomial (3.14) would satisfy the boundary 

conditions, but it would not satisfy the initial condition, or the governing equation. 

Therefore, some kind mathematical approximation is required to satisfy these conditions. 

In this chapter Galerkin’s weighted residual method is used to fix the unknown ( )Tiα so that the 

initial condition and the governing equation are approximately satisfied. The points of the 

Galerkin method is given in almost all text books on numerical methods (Hildebrand (1956), 

Hartree (1962), and Salvadori (1952)) . In the analysis, equation (3.12) is limited two terms. By 

virtue of the initial condition of (3.11) ( ) 0.10, =Zw forming the initial residual yields: 

  ( ) ( )[ ] ( ) ( )0
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−+−=αα                                    (3.15) 

Through the application of Galerkin’s criteria, a pair of constant ( )01a and ( )02a  can be 

obtained for which the residual expression (3.15) would be the least. 

Now for, 0pT  using the governing equation (3.5), it is possible to obtain the equation 

residual 

( ) ( )[ ] 2
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3
1

3
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ZZTaTaR +
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−+=                                  (3.16) 

Applying the Galerkin criteria to this residual, a pair of differential equations for the 

( )Ta1 and ( )Ta2  is obtained. They are considered as the propagation equations for the ( )Tai . 

Then the approximate solution is obtained by solving these equation subjects to the initial 
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conditions obtained from the initial residual given by expression (3.15). The Galerkin criteria is 

applied to the equation residual by setting 

( )[ ] ( )∫ =
1

0

21 0,),( dZZZTaTaR iϕ  ,....2,1=i                                                                     (3.17) 

And it yields  
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As governing equations for the 1a and 2a  

If the Galerkin criterion is also applied to the initial residual (3.15) by setting 

( )[ ] ( )∫ =
1

0

21 0,0),( dZZZaTaR iϕ    ,....2,1=i                                                                   (3.19) 

It yields 
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For the initial value of 1a and .2a  

The solution to eq. (3.18) which satisfies the conditions given by expression (3.20) is 

found to be: 

TT

TT

eea

eea
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2
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                                                                                         (3.21) 

The corresponding approximate solution for ( )TZw , with these values is then: 

( ) .
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The approximation to the initial consolidation ( ) 0.10, =Zw of eq.(3.22) is shown in Fig. 

3.2. 
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Figue 3. 2: Fit of Initial Condition by the solution 

 

To obtain the percent consolidation, the usual definition is used, which is given by the 

expression 

( )

( )∫

∫
−= 1

0

1

0

0,

,

1

dzZw

dzTZw

U                                                                                                       (3.23) 

Substitution of equation (3.22) in equation (3.23) yields 

21 12
17

3
4

1 aaU −−=                                                                                                        (3.24) 

The percent consolidation U thus obtained is plotted against time factor T in Fig. 3.3. For 

purpose of comparison the Terzaghi solution with two way free drainage is also included in the 

same figure. 
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Figue 3. 3: Equation (3.24) compared with Terzaghi case 

 

3.5 Discussion and Conclusions  

 

Consolidation of a soft, saturated clay soil delimited by sheets of soil with a low 

permeability is treated by means of employing an approximate procedure for the solution of the 

governing partial differential equation. Reference to Fig. 3.1 would illustrate the limitation 

brought forward by the approximate procedure as far as the compliance with the initial 

condition is concerned. The nature of this approximation indicates that the accuracy of the 

method used is within tolerable limits as far as this condition is concerned. 

Fig. 3.3 represents the very large deviations brought about by the low permeability 

layers from the free drainage case in which expulsion of pore water is not inhibited by any 

means. As it is expected, the consolidation in the former case proceeds at a much slower rate. 

Particularly expansive and very plastic soils may “wash” into the coarser layers which are 

presumed to provide free drainage as in the Terzaghi theory, and this phenomenon may lead to 

semi-pervious membranes as assumed in this study. It is the author’s opinion that the judgment 

should be left to the practicing engineer as far as the estimation of field rates of consolidation is 

concerned. However, the present study brings to light another aspect of the consolidation 

process which should be taken into consideration in situations where the free drainage is 

inhibited. 
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CHAPTER 4 - One Dimensional Consolidation Behavior of 

Trampled Clays in a Semi-Saturated State 

4.1 Introduction and Purpose of this chapter 

The extensive use of earth in engineering construction justifies research in order to 

understand the engineering properties of compacted soils. In general, earthen structures are 

constructed by compaction at or around the optimum water content. When compacted at 

optimum, the soil is in a semi saturated state; therefore, the conventional Terzaghi theory may 

not readily be applicable to such a case. 

   The present investigation has been undertaken in order to analyze the compression 

consolidation behavior of soils compacted at optimal conditions. Furthermore, it is known that 

the type and energy of compaction bring about deviations in the soil structure and hence, in its 

engineering properties. Therefore, in the experimental phase of the study, soils are prepared by 

different trampling efforts and also by different compaction methods. 

 

4.2 Theoretical Discussion  

 

Unsaturated soil usually consists of soil solids, water and air. In order to be able to make 

a mathematical analysis of deformation of such a soil under externally applied loads, it is 

necessary to determine first the state of distribution of air and water in soil voids. A survey of the 

accumulation of knowledge on the physical and engineering properties of soils shows that for 

soils with a relatively high degree of saturation (above 80%) the air is in the form of occluded 

bubbles. For a soil compacted at optimum therefore, the air is assumed to be in the form of 

occluded bubbles. Starting with atmospheric pressure in such bubbles, it is evident that the pore 

water would initially be in a state of tension (Lambe 1961). 

If a load is applied to such a soil, the skeleton and the pore fluid share this load. On the 

other hand, under its share of the external pressure, the pore air compresses according to Boyle’s 

law and goes into solution in the surrounding water according to Henry’s law. This process takes 

a very short time in the laboratory and is called the “Instantaneous Compression”. The amount of 
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compression of air bubbles should be equal to the amount of compression of the soil skeleton. 

Instantaneous compression is assumed to occur essentially in an undrained manner. 

If the load increment applied is large enough to cause a positive excess pore pressure in 

the soil, the process of “consolidation” starts subsequent to the process of compression. The 

“consolidation” process, like Terzaghi’s assertion is mainly governed by the pore pressure 

dissipation characteristics. In a partially saturated soil, it is to be expected that the part of air 

which dissolves in water according to Henry’s law during the “Instantaneous Compression” will 

come out of the solution as the excess pore pressure dissipates. These expanding bubbles may 

become trapped by the soil skeleton and hinder flow. Such a process combined with a decrease 

in void ratio throughout consolidation will obviously cause a variation in the permeability 

(Barden 1965).  

 Thus, it becomes clear that the concept of a constant permeability as asserted in 

Terzaghi’s theory of consolidation may not be justifiable for the present case (Taylor (1941)). 

Therefore, in the mathematical treatment of the process of consolidation, the average 

permeability has been assumed to vary as a function of time. 

In the mathematical phase of the investigation, to calculate the amount of instantaneous 

compression, an expression has been derived making use of Boyle’s law of compression of air 

and Henry’s law of solubility, assuming undrained compression. 

This expression is given in the form: 

wws ueCe ∆=∆ 0                                                                                                               (4.1) 

where 

=∆ se Amount of instantaneous compression 

=wC Compressibility of the pore fluid 

=∆ wu Excess pore pressure developed 

And the pore compressibility wC is given by the expression: 
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where 

=0e Initial void ratio 

=
0au  Initial pore air pressure 
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=
0ae Initial pore air volume 

=h Henry’s coefficient of solubility 

=we Pore water volume 

On one hand, equations (4.1) and (4.2) enable one to calculate the amount of 

instantaneous compression if measurements of the excess pore pressure developed are made and 

on the other of the value of the excess pore water pressure if the amount of instantaneous 

compression has been measured. 

The mathematical treatment for the following process of consolidation has been made 

assuming an average permeability( )tk , which varies with time during consolidation. The 

effective stress principle is applied in its simplest form, and secondary effects are neglected. 

The continuity equation for the case can be written as: 

( ) ( )eS
tez

u
tk

z i

w .
1 ∂

∂×
+

=








∂
∂

∂
∂ γ

                                                                                       (4.3) 

when eS,  are the degree of saturation and void respectively, zand t are the space and 

time variables and u is the pore pressure. Rewriting (4.3) yields: 
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In equation (4.4): 
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where wC is the pore fluid compressibility and ,
du

de
av = coefficient of compressibility. 

Substituting (4.5) and (4.6) in (4.4), the equation governing the consolidation process is 

obtained. 
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Pore compressibility wC may also be taken as a function of time. Now, to reduce (4.7) to 

a dimensionless form, the following substitutions can be made:  ;
iu

u
W =      

H

z
Z =  where 
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=iu Initial excess pore pressure 

=H Sample thickness 

Furthermore, a coefficient of consolidation ( )tCv dependent on time may be defined such 

that: 

( ) ( )
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                                                                                             (4.8) 

It is obvious that for a fully saturated soil ( )0.1;0 == SCw with a constant coefficient of 

permeability (4.8) becomes: 
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And (4.7) becomes: 
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Which are the coefficient of consolidation and the partial differential equation 

respectively as given in Terzaghi (1923). 

Moreover definition of a time factors BT such that: 
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Will render (4.7) to read: 
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with the usual boundary conditions 

( ) 0.10, =zW   with 0fT  

( ) 0,0 =TW    0.10 pp Z  

( ) 0,1 =TWz  

This last equation is identical in form to the usual diffusion equation proposed by 

Terzaghi and its solution may easily be obtained in the form of Fourier series. The solution to 

this equation has been reported in many textbooks on soil mechanics. 

Now equation (4.11) is written in the form: 

 



 60 

( )
2H
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where 
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                                                                                                             (4.14) 

Defining a function for the variation of the coefficient of consolidation with time. For the 

Terzaghi theory of consolidation 
0vv CC = the coefficient of consolidation is constant, therefore 

(4.14) will read 

( ) ( )∫=
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0

                                                                                                             (4.15) 

This implies that if experimentally determined values of ( )tR are plotted versus t the 

resulting curves will be in the form of straight lines going through the origin with a slop equal to 

0vC . 

For ( )tR being a function other than such straight lines, the implication would be that 

deviations from the Terzaghi theory occur. The behaviors of compacted soils which are to be 

discussed presently indicate such deviations. 

Another deviation from the Terzaghi case of consolidation arises in the manner of 

computation of percent consolidation of a soil sample. In the Terzaghi case the percent 

consolidation U is given by: 

100%
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×=
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S
U t                                                                                                            (4.16) 

Whereas in case of a compacted soil the equation in modified to make allowance for the 

instantaneous compression 

100%
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×−=
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U it                                                                                                       (4.17) 

where 

=tS Compression at any time after the start of test 

=100S Total compression at end of test 

=iS Instantaneous compression 
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4.3 Experiments  

 

In order to verify the foregoing ideas, tests have been performed on samples of Tabriz 

Red Clay [4] compacted at the optimum water content of the standard proctor energy and one 

half proctor have been made also on samples which are statically compacted to the optimal of 

conditions cited above. The tests involve the measurement of mid plane pore water pressure by 

means of an automatic pore pressure measuring device. For the purpose of testing, a special 

oedometer has been devised and the porous stone allowing for pore pressure measurement has 

been chosen to be of a special type. (Air entry value=240 psi). The oedometer was designed so as 

to reduce frictional effects to a minimum.  

The time response characteristics of the pore pressure device have been checked by 

various means and have proven to be satisfactory for the purpose. Load increments have been 

applied using a Karol- Warner type of consolidometer using air to create the necessary pressure, 

it has been found that this is advantageous in applying the loads instantly. The values of 

compression were recorded very frequently at the beginning of the test so that the value of 

instantaneous compression could be obtained. Fig 4.1 gives a typical example for the use of test 

results to evaluate the magnitude of instantaneous compression. For the subsequent consolidation 

process to locate 100% consolidation following Crawford (1964); compression was plotted 

versus mid plane pore pressure dissipation and the extrapolation of the straight line portion was 

made use of to determine the desired value. 

 

Figure 4. 1: : Evaluation of instantaneous comparison, sample prepared by 15 blow proctor 
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Fig 4.2 is typical of the procedure. The values representing the end of consolidation have 

been compared by those which could be obtained by usual empirical procedures. Although 

reasonably close agreement has been obtained for the logarithmic fitting method, no relationship 

could be established with the Taylor square root fitting method. The values of instantaneous 

compression assessed by test results have been compared to those obtained via equations (4.1) 

and (4.2) and the deviations for various tests have been found to be within 0% to 20%. This 

implies that the equation proposed together with the assumption inherent in their derivation is 

reasonably correct. Pore pressure dissipation tests have been used in conjunction with the 

solution of equation (4.12) to obtain the forms of the function ( )tR defined by equation (4.14) 

versus time. These forms have also been compared to the form given by equation (4.15) 

(Terzaghi case) which can be easily obtained by evaluating a 
0vC depending on a specific 

percentage of consolidation (e.g. 90%). 

 

Figure 4. 2: Pore pressure dissipation vs comparison standard proctor sample 

 

          Fig 4.3 is a typical curve of such a comparison. As is apparent in this typical curve, most 

of the tests indicated that Terzaghi case may be well applicable up to about 60% consolidation 

and from there on, it overestimates the rate of pore pressure dissipation largely due to the 

assumption of a constant coefficient of consolidation. 
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Figure 4. 3: Time factor vs. time (standard proctor sample) 

 

The actual percentages of consolidation as observed from the dial readings have also 

been compared to the values that have been obtained from pore pressure dissipation observations 

used in conjunction with the solution of equation (4.12). The agreement is usually found to be 

close and tolerable within the limits of the experimental accuracy involved. Fig 4.4 is given as a 

typical curve to illustrate such a comparison. 
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Figure 4. 4: Percent consolidation vs time 15 blow proctor sample 

 

A common and very interesting observation made through the tests is that initially the 

pore water is in a state of tension whose magnitude increase as the compactive effort is increased 

and/or as a static compaction procedure is applied in preference to the usual dynamic proctor 

compaction method for the same density and water contact. Furthermore, it has been observed 

that unless the applied pressure is sufficiently large to cause the development of a positive excess 

pore water pressure, no hydrodynamic consolidation process can start, that is, compression 

consists of the instantaneous one only, followed by creep effects. For statically compacted 

samples having a relatively high initial negative pore water pressure, the inducement of positive 

excess pore pressures may require several successive pressure increments to be applied. Fig 4.5 

illustrates this point of view with respect to the statically compacted samples. 
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Figure 4. 5 : Pore pressure development statically compacted samples 

 

4.4 Conclusions   

 

The conclusions reached as a result of the investigation may be summarized as follows: 

1. The total process of consolidation consists of an instantaneous compression which 

takes place in a very short time, and of a subsequent process of consolidation. 

2. The observed amounts of instantaneous compression are found to be compatible with 

equations (4.1) and (4.2). This means that the basic assumptions of air being in an occluded form 

and initial air pressure being initially atmospheric are not far from the truth. 

 

3. The comparison of test results obtained with samples prepared by different compaction 

methods reveals that the instantaneous compression amount is greater for statically compacted 

samples than those dynamically compacted. 
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4. For a given method of compaction, the magnitude of instantaneous compression is 

larger for the smaller compactive effort. 

5. In general, the ratio of instantaneous compression to total compression decreases as at 

the compactive effort decrease. 

6. Pore pressure dissipation tests indicate that the estimates of the rates of compression 

based on pore pressure measurements are quite close to reality with the exception of very high 

initial pressure applications, where part of the total stress thrown into the soil skeleton 

presumably accelerates the secondary effects. 

7. The use of a constant coefficient of consolidation seems to be justifiable only where 

rough work other than research is involved and that is applicability is possible only within up to 

60% consolidation. 

To assess such a constant coefficient of consolidation, the empirical logarithmic fitting 

procedure may be employed. However, the difficulty of this curve fitting procedure lies in the 

long duration of testing required to reach the end of consolidation. Whenever possible, 

dissipation tests should be performed in preference to such empirical method. 
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CHAPTER 5 - A Realistic Theory of Soils Consolidation 

5.1 Introduction and Purpose of this chapter 

 

Consolidation is a process by which soils decrease in volume. It occurs when stress is 

applied to a soil that causes the soil particles to pack together more tightly, therefore reducing its 

bulk volume. When this occurs in a soil that is saturated with water, water will be squeezed out 

of the soil. In the Classical Method, the magnitude of consolidation usually is predicted by a 

theory developed by Karl von Terzaghi but Laboratory observations of the consolidation 

behavior exhibit discrepancies between the theory and the results. These discrepancies are 

usually attributed to the secondary effects that occur during primary consolidation. On the other 

hand, Terzaghi’s theory presupposes the constancy of permeability and compressibility of the 

soil. In this study, the effect of variable permeability and compressibility on the consolidation 

behavior is investigated. For this objective, a mathematical treatment of the behavior is 

presented. Subsequently, laboratory consolidations tests with mid plane pore pressure 

measurements are conducted on soft, remolded, preconcolidated and undistributed samples of 

Tabriz clay. The test results, when compared with the theoretical findings, indicate that most of 

inherent discrepancies may be explained via the use of the theory developed in this study.  

The theory of consolidation proposed by Terzaghi (1923) is a very useful tool for the 

determination of settlement rates and amounts. Since the proposal of this theory, various 

researchers have investigated its validity and applicability. These subsequent studies have led to 

the development of various procedures for estimating settlements. Seed (1965) discusses such 

various methods and procedures. The experience obtained through the years after the proposal of 

the Terzagi theory indicate that for one dimensional consolidation in particular, it gives results of 

acceptable accuracy in many field cases. 

However, laboratory tests on various types of clay indicate that, although the 

hydrodynamic approach presented by the theory can not be disputed on the whole, there seem to 

be discrepancies between the theoretical predications and observations of the consolidation 

behavior.  

During the stage of primary consolidation, these apparent discrepancies are largely 

attributed to secondary (creep) effects and attempts have been made either to modify the 
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assumptions implicit in Terzaghi’s theory to agree more closely with observed behavior (Barden 

(1965) and Schiffman (1964)) or to propose rheologic models which would better suit the 

observed behavior (Wahls (1962) and Lo (1961)). 

 In this study, the main point of argument is that, although the existence of secondary 

effects may not be ignored, most of the discrepancies between the predictions based on Terzagi’s 

theory and observed behavior during laboratory testing may be accounted for by modifying two 

assumption of constant permeability and the assumption of constant compressibility. 

In order to carry the discussion further, a qualitative outline of the Terzaghi theory with 

its assumptions is accounted for in the following section. 

The classical prediction procedure of the rate and amount of consolidation via Terzaghi’s 

theory (1924) includes following assumption (Lambe (1960)): 

 

1. The soil is homogenous (uniform in composition throughout). 

2. The soil is fully saturated (zero air voids due to water content being so high). 

3. The solid particles and water are incompressible. 

4. Compression and flow are one-dimensional (vertical axis being the one of interest). 

5. Strains in the soil are relatively small. 

6. Darcy's Law is valid for all hydraulic gradients. 

7. The coefficient of permeability and the coefficient of volume compressibility remain 

constant throughout the process. 

8. There is a unique relationship, independent of time, between the void ratio and 

effective stress. 

If pore pressure dissipation measurements are also made during consolidation testing; it is 

possible to estimate the rate of settlement by making use of the dissipation time data. The usual 

consolidation coefficients calculated by two different procedures usually yield similar results for 

soft soils (Crawford (1964)). 

The conventional Terzaghi theory (1924) proposed for fully saturated soils contains two 

assumptions which may be criticized from the view point of soil behavior. That is; the 

supposition of a constant compressibility coefficient 
v

a  and a constant permeability coefficient 

k . It should be evident that as the consolidation proceeds, (effective stress increase) the soil 

attains a more compact structure which should inevitably result in a decrease in its overall 
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compressibility. Evidence of this behavior has been obtained through several studies (Leonards 

et al. 1964). In addition, it has definitely been established that the permeability is a function of 

void ratio. It is obvious that the void ratio of a soil sample decreases during consolidation; 

therefore it is natural to expect a decreasing permeability coefficient during the process. In fact, 

other researches give experimental as well as theoretical evidence towards the recognition of a 

variable permeability (Barden (1965), Schiffman (1958), and Schmid (1957)).   

The propose of this study is to incorporate these variables in a mathematical treatment of 

the problem and to demonstrate by proper testing that the inclusion of these two variable factors 

may in fact account for most of the deviations that repeatedly occur between the predictions 

based on the Terzaghi theory and the test results (Lo (1961), Crawford (1964), Leonards (1964)). 

It should be noted that a similar problem has been treated by Barden and Berry (1965) 

with a different mathematical approach which results in a non linear partial differential equation 

whose solution is obtained by a finite difference approach employing a suitable computer 

program, since a closed form solution can not be obtained and also recently Lekha  et al. (2003) 

studied consolidation of clays for variable permeability and compressibility. In their paper, an 

analytical closed form solution is obtained for vertical consolidation considering the variation in 

the compressibility and permeability. In addition, Geng et al (2006) studied non-linear 

consolidation of soil with variable compressibility and permeability under cyclic loadings. In 

their paper, a simple semi-analytical method has been developed to solve the one-dimensional 

non-linear consolidation problems by considering the changes of compressibility and 

permeability of the soil layer, subjected to complicated time-dependent cyclic loadings at the 

ground surface. 

The line of treatment herein, on the other hand, arrives at the description of the 

consolidation process by a linear partial differential equation whose closed form solution is 

obtainable via the theory of linear partial differential equation. 

5.2 Mathematical Development   

 

In the mathematical treatment of the problem, the first problem is to decide on the nature 

of a functional relationship between permeability, compressibility and the main variables 

governing the process of consolidation. The equation is the manner in which these parameters 
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are to be included into the mathematical model of the consolidation process, while retaining the 

other assumptions inherent in the classical Terzaghi theory. 

Since the dependency of these parameters on void ratio is evident, the most reasonable 

approach would be to express them as functions of void ratio, or, since ratio is a function of pore 

water pressure, as functions of pore water pressures. Thus 

( )ukk =  and  ( )uaa vv =                                                                                                           (5.1) 

Eq. (5.1) suggests that the properties are functions of both time and space. That is  

 

( )tzkk ,=  and  ( )tuaa vv ,=                                                                                                        (5.2) 

At this stage, a postulate must be made as to the variation of the permeability and 

compressibility defined by eq. (5.2). 

To illustrate the foundations of this postulate, reference is made to Fig. 1a. Prior to 

loading, the values of permeability and compressibility are constant with depth and may be 

denoted as 0k  and  0a , respectively. As soon as the load is applied, consolidation starts and after 

an infinitesimal time, the excess pore water pressure on the drainage surface 0=z  become zero. 

Via eq. (5.2) this means that both permeability and compressibility reach their final values and 

remain constant thereafter at the surface. On the other hand, the values of these properties at any 

depth vary with time as consolidation proceeds. 

Therefore, at mid plane Hz =  via eq. (5.2), the permeability and compressibility are 

given respectively by  

( )tHkkm ,=  and                                                                                                                       (5.3) 

( )tHaa vm ,=  

          It is possible to describe the variation of these properties with space between drainage 

surface 0=z  and the mid plane Hz = and to define the time dependent functions indicated in 

eq. (5.3). The variation of these properties with depth may be described by various mathematical 

functions (Birand (1972)). On the other hand, it is possible to define the “space averages” of 

permeability and of compressibility as follows: 
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     At this stage, the variation of k and a with time during the consolidation process needs to be 

defined. 

It seems feasible to define these relationships as functions of decay, i.e. 

 

 t
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In the expressions above ik  

In the expressions above ik and ia are the initial values of k and a , fk and fa are their 

final values, respectively, after a suitably long time ft during which the primary consolidation is 

assumed to be almost complete. It is also possible to define the space variation of k  and va  with 

suitable functions of depth and carry on with the mathematical treatment by substituting these 

relationships in eqs. (5.4) (Birand (1972)). 

Herein, it is assumed that the time ft is long enough so that, although its value may be 

accepted as a finite value mathematically, the excess pore water pressure may be considered to 

be dissipated at the end of this period for all practical purposes. The final expression governing 

the dissipation of excess pore pressures by the former approach (Birand (1972)) and by the 

analysis given herein are found to be substantially the same although the former one may be 

considered more “exact” by the mathematician. However to the benefit of this exactness, it 

entails the use of cumbersome mathematical formulations and some necessary simplifying 
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assumptions derived from possible behavior of soils during the consolidation process to facilitate 

the analysis.  

   Reference to Fig 5.1b. shows the variation of compressibility via effective stress (or 

with time for all practical purposes) and represents a general curve usually obtained through 

consolidation dissipation tests. 

 

 

                                                       (a) 

 

 

 

 

 

 

 

 

                                                                (b) 

 

Figure 5. 1: (a) Variation of pore water pressure, permeability and compressibility and (b) 

Variation of Compressibility during consolidation 
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 Eqs. (5.5) mean that both a and k vary with time as a function of decay and reach their 

final values at the end of consolidation. 

Once the mathematical formulation of permeability k and a (eq 5.5) are made, it remains 

to write down the continuity equation of consolidation in the usual manner and substituting these 

mathematical formulations therein, to obtain the governing equation of consolidation. 

 The continuity expression is written as follows: 
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On the other hand, the effective stress law gives: 

 

u−= σσ                                                                                                                        (5.8) 

 

where =σ effective stress, =σ  total stress, =u pore pressure. 

The compressibility is defined as 
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and substituting eq.(5.9) in eq. (5.7), one obtains: 
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In eq (5.10) k is independent of space, therefore this equation can be written in the 

following form: 
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Substituting the values of a and k  from eq (5.5) into this expression; the governing 

partial differential equation is obtained: 
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It is possible to express this equation in a dimensionless form by specifying the variables 

W and Z  

0u

u
W =   ,    

H

z
Z =                                                                                                       (5.13) 

where =0u initial pore pressure, =H characteristic thickness and a time factor T such 

that 
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Also specifying a constant ,A  
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the usual coefficient of consolidation, eq.(5.12) becomes: 
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It is obvious that depending on the relative values of α and β  (signifying the effects of 

permeability and compressibility respectively) Amay assume both positive and negative values, 

therefore, eq. (5.17) needs to be solved for both positive and negative possible values of A . It is 

of further interest to note that in the case of constant permeability and compressibility during the 

process, or if the rate of change of both parameters is the same, A becomes equal to zero and the 

process is governed by the partial differential equation arrived at by Terzaghi (1924).  
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The solution of eq (5.17), subject to the usual oedemeter boundary conditions, is obtained 

as: 
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where ε  is the naperian base of the logarithm and n  is an integer. 

Similarly, consolidation is defined by the expression: 
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and the expression for mid plane pore pressure is given by the expression: 
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Eqs. (5.20) and (5.21) are plotted for various positive and negative values of the 

parameter Aas illustrated in Fig 5.2 and Fig 5.3, respectively. 

As in the case of the classical theory of consolidation, these curves constitute the bases of 

the evaluation of rates of settlement via the theory developed in this paper. The use of these 

curves may often involve a trial and error procedure with regard to the appropriate selection of 

the value of A  
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Figure 5. 2: Percent consolidation 

 
Figure 5. 3: Mid-Plane pore pressure dissipation 



 77 

5.3 Experimental Investigation 

 

The soil used in the study is the Tabriz grey Clay. The properties of these clays are 

related in general. 

The particular soil used showed the following index properties: 

%68=LL %23=PL  %45=PI %12=SL  with a Casagrande classification of CH  

 

It was intended to study the consolidation of the soil behavior in three distinct conditions 

these being: 

 

a) Soil sample denoted by 1−S : 

Soil in a remolded state at a soft consistency. Duely for this state the first soil sample was 

prepared at a consistency equaling a water content equal to %10−LL   

b) Soil sample denoted by 2−S : 

Soil initially in a soft consistency, however, in a preconsolidated state. For this purpose 

the soil sample in (a) was consolidated up to a certain effective stress, rebound, and then tested to 

observe its behavior. Thus, the soil was tested in a laboratory induced preconsolidated state. 

c) Soil sample denoted by 3−S : 

Soil in its natural state, being soaked prior to testing without allowing any change in 

volume.  

This procedure may also be called the soak swell prevented type of test which is used for 

expansive Tabriz Clay. 

Equipment and testing procedure: 

The equipment consists of a consolidometer in which base pore pressure could be 

measured by means of an automatic non flow type of pore pressure apparatus. The layout of the 

equipment is schematically illustrated in Fig 5.4. 
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Figure 5. 4: Pore Pressure Device, Oedometer 
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Details and the time response characteristics of the pore pressure device have been 

investigated in earlier research and found to be satisfactory for the purpose of consolidation 

testing (Birand 1969). 

Sample 1−S is loaded under the following increments, the compression and pore 

pressure development dissipation being measured for 24 hours under each increment (in 2cm
kg ): 

0.00-0.25; 0.50; 1.0; 2.0; 4.0; and 8.0. 

The pore pressure measurement line is then closed and the sample unloaded to 

2.00 2cm
kg . This load is kept on the sample for 24 hours. Thus, the new loading stage is made 

on sample 2−S  which is preconsolidated to 20.8
cm

kg . This loading stage consisted of 

reloading sample 2−S  thus prepared in two increments, namely: 2.0-4.0; 4.0-8.0 2cm
kg . For 

these two increments the compression and pore pressure data are observed as in sample 1−S . 

The sample in its original void ratio, (sample 3−S ) is flooded without allowing any volume 

change for 24 hours. Then, it is loaded in the following increments: 1.0; 2.0; 4.0; 8.0 2cm
kg . 

During loading, the necessary data is obtained as in the previous cases. It should be noted at this 

stage that the pressure increment ratio used throughout testing is 1.00 to minimize the secondary 

time effects. 

On the other hand, another important factor affecting consolidation behavior is the 

preconsolidation pressure (Taylor (1948) and Lewis (1950). In this investigation, it is hoped to 

throw some light on to this controversial point by means of the behavior of test sample 2−S , at 

least for the soil investigated.  

 

5.4 Presentation of Results  

 

In presenting the results, the very first step would be the determination of the amount of 

primary consolidation. Where pore pressure measurements are made, it is better to use the 

criterion of zero excess pore empirical procedures of curve fitting. Therefore, as was proposed by 

Crawford (1964), for each increment, compression amounts were plotted versus the pore 
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pressure dissipation and the straight line portion of the curve (which is straight up to about 70% 

consolidation as predicted by means of the mid plane pore pressure data) was extrapolated to 

zero pore pressures to determine the amount of compression during primary consolidation. This 

amount is designated as .100d  Therefore, if compression of the sample at any time is rd , the 

percent consolidation U at that time is found by the expression, 

 

100%
100

×=
d

d
U t                                                                                                            (5.22) 

  

Using this expression, the percent consolidation values are calculated for each increment 

and plotted against time in the lower portion in Fig 5.5 to 5.16 inclusive. They are shown by the 

solid lines marked “experimental”. 

Subsequently, using the time values corresponding to 50% consolidation on these curves, 

the coefficient of consolidation of consolidation vC is obtained via eq (5.16) for the Terzaghi 

case (Fig 5.2, 0=A ) and thus, these curves are fitted through 50% consolidation by the Terzaghi 

predictions. These predictions are shown in the figures by the dotted lines marked “Terzaghi” 

 

The method proposed herein was then applied as follows:  

 

By inspection a suitable Avalue is chosen and using the time value corresponding to 

50% consolidation once again, a new consolidation coefficient corresponding to this Avalue is 

found. Then the fitting procedure related above is carried out using the theoretically developed 

curves for the chosen Avalue in Fig 5.2. This trial procedure was repeated until a good 

agreement between the “experimental” and “predicted” curves was obtained. The curves that fit 

the actual behavior in the best manner are also shown on the same on the same figure as above. 

The same fitting procedure for the appropriate Avalue found as above is applied to the observed 

pore pressure dissipation values for comparison, this time making use of the theoretically 

developed curves in Fig 5.3. The results of these comparisons are presented in the top portions of 

Figs 5.5 to 16 inclusive, solid lines again representing the experimental observations, and the 

other corresponding to the fitting made via the relevant A  value. 
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5.5 Discussion of Results  

 

An analysis of the curves obtained by the procedures related in the previous section may 

be related as follows: 

In general, it is obvious that for the soil investigated in various states, the Terzaghi theory 

seems to be still a very powerful tool in predicting the rates of settlement. However, except for 

the three pressure increments of sample 1−S , whose behavior is presented by Figs 5.6, 5.7, 5.8 

and for the last pressure increment of sample 3−S  presented by Fig 5.16, there exist 

discrepancies between the actual the actual consolidation behavior and its Terzaghi predictions. 

These deviations, which are largely attributed to “secondary effects”, are seen to be correctable 

by means of the theory forwarded in this study. This fact very strongly supports the idea that 

these deviations mostly result from varying compressibility and permeability during 

consolidation, which is the starting point of the theoretical development in this investigation. The 

cases exemplified by Figs 5.6, 5.7, 5.8 and 5.16, closely agree with Terzaghi behavior 0=A . 

The actual pore pressure dissipation behavior, where fitted either by the Terzaghi theory 0=A  

or the theory proposed herein (=A appropriate value) seems to be very closely predictable. This 

shows once again the predominate character of the hydrodynamic process during consolidation 

rather than the secondary effects.  

It is worth nothing that the parameter A is always positive. Eq (5.15) indicates that in this 

case, the rate of decrease of permeability is the predominant factor rather than the rate of 

decrease of compressibility, for the soils tested. It is also interesting to note that for the 

preconsolidated sample 2−S this generalized theory is applicable for determining the rates of 

compression, since the applicability of the Terzaghi theory (rather the hydrodynamic philosophy 

behind it) has been questioned for preconsolidated soils.  

Reviewing the behavior of the sample of soft consistency (sample 1−S  ) it is seen that 

deviations from Terzaghi theory occur when the first load increment is applied (Fig 5.5) and 

again when  increments of large magnitude are applied ( Figs 5.9, 5.10, 5.11).  This may be due 

to the fact that in both cases the soil sample is presumably subjected to larger alteration in its 

structure and its engineering properties during consolidation. In fact, both compressibility and 
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permeability should be considered as functions of the magnitude of applied pressure as well as 

an intrinisic property of the soil depending on its void ratio, structure, degree of saturation, etc. 

Therefore, it would not be wrong to presume that a soil sample loaded in increments up to a 

certain pressure would follow a different pressure deformation curve than if the ultimate pressure 

had been applied all in one step. 

In this investigation, note should be made of the fact that that the usual empirical curve 

fitting methods such as the square root fitting method or the logarithmic fitting method are not 

employed, mainly due to the fact that the measurement of pore pressure is believed to be a better 

substitute. In view of the present study on the other hand, a criticism of these methods may be 

made. Fig 5.17 shows the average consolidation plotted against the square root of the time factor, 

for the Terzaghi case and for values of 00.1+=A and 00.1−=A it is obvious that the application 

of the square root fitting method to any soil behavior in any other manner than that of Terzaghi 

0=A  would give vastly incorrect results both as to the time of completion of primary 

consolidation and to the value of the coefficient of consolidation vC . 

Fig 5.18 shows the same curves plotted against the logarithm of time. It seems from these 

figures that although deviations are apparent, the errors introduced by using the “logarithm of 

time” fitting method would be smaller. For 00.1+=A this method is seen to yield about 90% 

primary consolidation instead of 100%. For larger positive 00.1+=A  values, the errors become 

much larger. This observation may in fact account at least partly for the discrepancies that occur 

between the settlement rates predicted in the laboratory by these empirical rules and those 

actually taking place in the field.  

5.6 Conclusions 

 

As a result of the present study the following conclusions may be reached: 

1) The Terzagi theory, in predicting the settlement rates is a very valuable tool. 

2) The observed departures from this theory seem to be mostly due to the variation in the 

compressibility and the permeability of the soil. For the specific soil tested, permeability seems 

to be the predominant factor. 

3) Using the theoretical treatment forwarded in this study, it is possible to eliminate 

largely the discrepancies and predict the rates of settlement more accurately. 
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4) As far as the soil used in this study, it is shown that the proposed theory may also 

account for its apparent departures from the Terzaghi behavior in a preconsolidated state as well. 

5) The empirical curve fitting procedures should be applied with caution. Although the 

logarithmic fitting procedure seems to be more reliable, for important civil engineering estimates 

of rate of settlement and for research, pore pressure dissipation tests seem to be the best 

procedure. 
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Figure 5. 5 : Dissipation Consolidation versus Time 
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Figure 5. 6: Dissipation Consolidation versus Time 
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Figure 5. 7: Dissipation Consolidation versus Time 
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Figure 5. 8: Dissipation Consolidation versus Time 
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Figure 5. 9: Dissipation Consolidation versus Time 
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Figure 5. 10: Dissipation Consolidation versus Time 
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Figure 5. 11: Dissipation Consolidation versus Time 
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Figure 5. 12: Dissipation Consolidation versus Time 
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Figure 5. 13: Dissipation Consolidation versus Time 
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Figure 5. 14: Dissipation Consolidation versus Time 
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Figure 5. 15: Dissipation Consolidation versus Time 
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Figure 5. 16: Dissipation Consolidation versus Time 
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Figure 5. 17: Consolidation (%) versus (Square root scale) 
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Figure 5. 18: Consolidation versus Logarithm of Time Factor 
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Notations 

v
a  Coefficient of compressibility  

v
c  Coefficient of consolidation  

e Void ratio 

0
e  Initial void ratio 

( )f  Function of  

0
k  Initial coefficient of permeability  

f
k  Final coefficient of permeability 

n  Porosity  

p  Stress 

p∆  Stress increment 

t  Time 

u  Excess over hydrostatic pressure 

V  Velocity 

zyx
V

.,
Directions velocity in zyx ,,  

w  Water content 

L
w  Water content at liquid limit  

zDistance 

A  Area 

C  Parameter of 
σ∆

∆U
 

D  Dissipation of mid-plane pore pressure 

s
G  Specific gravity 

H  Thickness of layer 

P  Load 

S  Settlement 

T  Dimensionless time factor 

U  Degree of consolidation 
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v
V  Volume of voids 

S
V  Volume of Solids 

w
V Volume of water 

s
W Weight of solids 

w
W  Weight of water 

s
γ  Unite weight of solids 

w
γ Unite weight of water 

σ  Total stress 

σ Effective stress in soil 

σ∆ Stress increment 

( )Ta
i

 Trial solution (Time function) 

k  Permeability 

h  Specific permeability 

RFunction residual 

0
u Initial pore pressure 

u  Pore pressure 

W Pore pressure (Dimensionless) 

Z  Space parameter (Dimensionless) 

( )Z
i

ϕ Trial solution (Depth function) 
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