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INTRODUCE

The main purpose of this thesis was to identify parameters in manage-

ment models and to apply system technique to simulate and optimize en-

vironmental systems. This thesis consisted of two parts with each part

devoted to one of the above two fields.

In the identification of parameters, the coefficients in advertising

models were estimated. One coefficient was estimated from an advertising

model. Then two and three coefficients were estimated from another adver-

tising model which was a more practical model of the former. These coef-

ficients were estimated from the generated data of the models. There was

one set of generated data for one coefficient estimation and another set of

generated data for two and three coefficients estimation. In each case the

original generated sets of data were first used; then random noise was im-

posed on the generated data. Two methods, Quasilinearization, and numerical

integration and search were used to identify these parameters.

In the simulation and optimization of environmental conditions, the work

was based mainly on Fanger's comfort equation. The comfort equation was

carefully studied. Simulation was done to obtain the feasible region of the

comfort equation. The system was then optimized using the comfort equation

as one of the constraints. In addition, velocity and relative humidity con-

straints were used. Simplex search technique was used for the optimization

calculations

.



PART I: PARAMETER IDENTIFICATION

INTRODUCTION

In all branches of contemporary science the challenges were description

and prediction. Observing certain phenomena it was desired to describe

what had happened and the subsequent behaviour. Upon examining a physical

system and performing various kinds of qualitative and quantitative experi-

ments, a series of data were obtained from which arose a set of desired

state variables which could be represented by a vector h(x) . To describe

the system and its output it would be required to choose a model or a

function constituting the vector h(x) , which must yield a solution that

fits the observed facts, qualitatively or quantitatively, to within an

experimental error or within an accuracy sufficient for the purpose. This

was the inverse problem - given a set of data, it was required to find the

equations that yielded these values.

The differential equations served as a connection between a simple

physical law and a frequently complex relation of several variables. In

those processes where continuous changes in the values of the variables oc-

curred a differential equation represented the correct relation between the

local values of the variables and their rate of change. The relation

between the dependent and independent variables was continuous.

The origin and development of differential equations had always been

closely associated with applications. The law of nature in many fields of

science were formulated in terms of differential equations. The same type

of differential equation often described unrelated physical phenomena.

Thus, differential equation served as a unifying thread connecting the .



various parts of science. In this connection, the application of differ-

ential equations were found in every field of science and engineering. To

name a few they were used to describe chemical reactions, electrical circuit,

mechanical vibrations and planetary motions. In Industrial Engineering they

were used to describe the effect of advertising on sales and profits; the

inventory, production and replacement problems.

However, in engineering applications, after a function, or a model

had been set up in the form of differential equations it was often necessary

to estimate the parameters or coefficients. Generally the parameters could

not be measured directly. The only measurable variables were, usually the

dependent variables of the differential equations. Unfortunately, in most

cases the differential equations could not be solved analytically. Thus, it

was desirable to determine the parameters from the output of a system.

The identification of parameters in dynamic systems represented by

differential equations had been under extensive investigation in fields such

as Chemical Engineering and Control Engineering, but to the knowledge of the

author little work had been done in Industrial Engineering. The purpose of

this work was to use the recently developed techniques to identify parameters

in a management model in Industrial Engineering.

The parameter estimation was treated as a multi-point boundary-value

problem in this work. Two methods, quasilinearization, and numerical inte-

gration and search were used to identify the parameters.

The computation times shown at the end of each of the table were ap-

proximations only. It could be seen that in some cases less time was

registered even though more evaluation were made in the search. This was

due to the fact that less printouts were made.



STATEMENT Of PROBLEM

Parameter identification was a combination of experimental work with

mathematical analysis. A model consisting of systems of equations was

formed to describe a system. Experiments were carried out to obtain a

series of data. From the data the coefficients of the equations were ob-

tained by mathematical techniques. This work concerned mainly with the

mathematical aspects and is restricted to models which can be represented

by ordinary differential equations. The data were generated mathematically.

There were three types of problems in parameter estimation: the esti-

mation of constant parameters, time varying parameters, and finally the

general concept of differential approximation.

Based on the initial knowledge of the process, the identification

problem could be interpreted in two ways [17].

Identification: The process was considered as a "black box" where

only the inputs and outputs were known.

Parameter estimation: The performance equations of a system were known

but the parameters of those equations were unknown.

The first interpretation gave a very general viewpoint and many theories

could be developed to give the stimpulated inputs and outputs to a certain

desired accuracy. The second was more realistic and more practical. For

illustrative purposes, an advertising model was considered [23],

dK(t) = cK(t) NKjtl
dt

where



K(t) number of informed participants at time t.

K(0) = number of informed participants in the group at time 0.

c = contact coefficient; the number of contacts made by one in-
formed person per unit time, and

N = tot^l number of participants in the group at time t.

In the ohove advertising model, c was an unknown quantity and was to be

determined experimentally by measuring the informed participants, K, at

various times t. In other words, by using the following measured or experi-

mental values

K
(exP }

(t
s

) = b
s

S - 1, 2, . . . , *v

with m, > 1 and < t < t- t it was desired to determine the unknown parameter
1 — — s — f r

c. The quantities b were known values and were obtained by measuring K

experimentally at various times t . The number of the experimental values,

m, , must be greater than or equal to the number of unknown constant parameters.

The superscript (exp) indicated K to be experimental values.

LITERATURE SURVEY

The techniques employed to identify constant parameters from experi-

mental data could be summarized by the following six methods [10]:

1. Analytic (exact or approximate) integration of the set of differential

equations, and subsequent application of iterative nonlinear least-squares

regression techniques.

Kittrell et. al . [14] reviewed a method which allowed data points to be

chosen in such a fashion that precise estimates of the parameters in non-

linear reaction rate models could be obtained. This method allowed each

future data point to be selected such that the confidence region of the



estimated parameters was smaller with it than with any other possible data

point within the region of experimentation. This procedure was applied

to Hongen-Watson models with hypothetical experimental data. It was found

that for the same number of data points, the parameters in the model could

be estimated eighteen times more precisely by using this suggested experi-

mental data than by another commonly used design. It was found that the

positions of the data points in the well-designed experiments were more

sensitive to the functional form of the model than to the current estimates

of the magnitudes of the parameter values.

The specific model used was:

K K
A

k
b pA ?b

(1+K
A "A

+ K
B Pb

)2

The hypothetical data points utilized in this example were constructed by

-4 -1
using K = 4.94 x 10 g-mole/(g - catalyst) (min) , K = 14.64 atm and

K = 19.00 atm as the time parameter value in the above equation.

2a. Differentiation of the empirical data directly and subsequent ap-

plication of linear least-squares regression technique:

The design of kinetic experiments had been considered as a problem in

selecting the best time intervals for measuring the composition of the

reacting mixture in Chemical Engineering. Lindsay [18] made a study on the

best time intervals so that the rate constants in a chemical reaction could

be best estimated. He transformed the time variable to a dimensionless

variable, 9. This transformation led to a time schedule for making compo-

sition measurements which resulted in a reasonably close approach to equal

changes in composition with successive integral changes in 9 throughout the



entire ti I age of the expci . This minimized the number of measure-

ments required for evaluating a rate constant to a desired level of ac-

curacy and permitted facile calculation of the instantaneous reaction rate

by methods of numerical differentiation. This method could be applied to

almost any reaction regardless of whether or not the form of the rate

equation was known in advance.

2b. Linear regression to fit the empirical data, differentiation of empir-

ical regression equation, followed by linear regression to estimate the

coefficients.

3a. Numerical integration of the set of differential equations using

empirical data directly, followed by iterative nonlinear least-squares:

Ball and Groenweghe [1] made a study on the determination of best-fit

rate constants in chemical kinetics. The following example of second-

order kinetics were considered:

k
i

C + C
2 t C

l
+ C

l

k
2

C
l
+ C

3 t
C
2
+ C

2

k
3

C
2
+C4l C

3
+C

3

k
4

c
o
+ S t C

l
+ C

2

k
5

C
l
+ C

4 J
C
2
+ C

3

C + C
U ^ C

l
+ C

3



N M
The problem was to find k n , .... k, such that S = Y 5"

( c -- " C.)16
n^O j4 1J 1J

has a minimum value where C. . indicated measured concentration of component

C. at time t.. Initial concentrations, c.„, assumed to be exact (based on
1 j i0'

weighting of reactouts) and C. . indicated concentration of component i at

time t. computed from kinetic model. The problem separated into two major

parts: the computation of the c.. values and the methods used to minimize

S. The first was solved by numerically integrating the appropriate dif-

ferential equations with Fehlberg's predictor-corrector type [8], The

second part of the problem was solved by a method proposed by Marquardt [19]

who combined the best features of the Gauss-Newton and the steepest descent

methods. The Gauss-Newton method was characterized by rapid (second order)

convergence when sufficiently close to the final solution points. The

steepest descent method functioned no matter how far away the starting point

was from the solution. However, it converged very slowly when the solution

was near. Thus, the proper combination of these two methods would allow

fast convergence regardless of the starting point.

Cull and Brenner [6] applied nonlinear regression to kinetics of

Hexane Isomerization. First, the differential equations were solved

numerically using the assumed values of the rate constants to obtain cal-

culated values of isomer concentrations to compare with the experimental

data. An initial "sum of the squares" was then obtained by squaring the

deviations between the calculated and experimental values and summing them.

The object of this regression was to obtain the rate constants that minimized

the sum of squares

.

The next step was to find the rate constant that would decrease the sum

of squares. This was done by changing each rate constant by a small amount



and evaluating the effects of these changes on the sum of squares. This

was carried out through a process of numerical differentiation in which

equations were expanded in a Taylor's series, retaining only the linear

terms. This produced a new system of equations (one for each data point)

winch were linear and were described as "correction factors." Linear re-

gression method was then used to determine statistically the best values

of these correction factors. From these correction factors, new values of

rate constants were calculated, which would be used as the new initial values,

The entire process was repeated until the best values of rate constant that

minimized the sum of squares was obtained.

Kimmelblau et . al. [10] made a study on the determination of kinetic

rate coefficients for complex reactions by user-oriented iterative methods.

The differential equations representing the reaction system was nonlinear

in the dependent variable but the coefficients were linear. Direct inte-

gration of the model for a sequence of time steps permitted the model coef-

ficients to be estimated by minimizing the sum of the squares of the weighted

deviations. Three weighting schemes were compared. The model used could be

abbreviated as:

dC N
1 "

I B, R. , (j = 1, 2, ..., M)
dt

k^ k j,k

C = dependent variables

B kinetic coefficients presumed constant

R = represented any desired function of C and t

If each of the above equation was integrated with respect to time from t„ to

t , the following equation arose
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N
t

.

1

(t ) - c (t ) = I B / R dt
3 ° k=l

k
tn

J '
k

j = 1, 2, ...,

. = 1, 2, ..., P

M

where

P = number of time intervals between the times at which the con-

centrations were measured.

which could be abbreviated as

N

Y. = C. - cn = I B, X...
ig ig 0g ^ k ijk

where B. were linear coefficients to be determined,
k

The criteria used to estimate the B. *s was to minimize the sum of the
k

squares of the weighted deviations.

DN . . = (Y . .
- Y . . ) W . .

1J ij 1J ij

Y.. = measured experimental values of the dependent variables.

Y.. = predicted values of the dependent variables.

W. . = weighting factor associated with each deviation

Weights used were:

A. W. . = 1. Equal weight was given to each D.

.

B. W. .
= Each absolute deviation was converted into a relative

ig | deviation.

C. W. .
=

L=l
L2 - ^ I Vi=l
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Each weight was related to the variance of Y...
ij

Simulation studies and tests with actual data indicated that the pro-

posed technique was effective.

3b. Linear regression to fit the empirical data, followed by numerical

integration of the set of differential equations.

A. Trial and error search using analog computers to match the empirical

data. [13]

5. Method of differential corrections.

Howl and and Naillancourt [11] studies a generalized curve-fitting

procedure by the differential corrections method. The procedures were re-

produced below:

It was supposed that the system

Y - <J>(y, 7, t, o
fc

) 1 < k <_ m (1)

of n ordinary differential equations, together with the initial conditions

y (t) = 8, y (x) = y define the column-vector y(t, a, 8, y) °f functions

which depend upon the parameters a, , 8 . , y . (1 <^ k _< m, 1 <_ j £ n) . It
* J J

was supposed also that values of some solution of (1) , corresponding to un-

known values of the parameters, were tabulated at given points t.. , t , t_,

. .
.

, t , where p > 2n + m. From these given data the differential cor-

rections were used to determine the parameters.

This method could be used to determine chemical constants as well as

force constants in aerodynamic derivatives in mechanical problems.
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6. Quasilinearization

Lee [16] formulated the estimation problem as a two-point or multi-

point boundary-value problem. The classical least squares was used. To

illustrate the approach, the Peclet group and the reaction rate group in

a tubular reactor with axial mixing were obtained. Parameters P and R

were identified in the following system of equations by Quasilinearization

dx
dT

= y

^J = Py + PRX
2

dt

The exact parameters were P = 6 and R = 2. Two sets of initial ap-

proximations of parameters were used: 1,1 and 5,5. Ten numerical values

were used as experimental data. Both sets converged at the eighth iteration.

Bellman et. al. [2] used the Quasilinearization and the sum of squares

of the deviations to identify a. and a) . in the following system.
l l ° J

R
f(t) = T a. Cos oj. t

1=1

In the approach it was considered that the N-dimensional vector X(t) was a

solution of the differential equation X = f (X, a), X(0) = c, where the

system parameter vector a and the initial state vector c were unspecified.

At certain times the system was "observed" which resulted in the approximate

conditions (B . , X(t.)) ^ b . , i = 1, 2, ..., M _> N . It was desired to

determine the vectors a and c so that the sum of the squares of the deviations

M
9

s =
i {(6,, x(t.)) - b.r

i=l
1 x x
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was minimized. In another word, the problem was to determine the initial

conditions c and a so as to minimize S. This problem was solved by the

quasi] i noarization approach

.

Bellman et. al. [3] also applied Quasilinearization to the estimation

of chemical rate constants using raw kinetic data, obtained by Bodenstein

and Lindner [5] , on some gas phase reactions of nitrogen and oxygen.

The descriptive differential equation after various normalizations had

the form

-r- = k (a-x) (b-x) - kx
at

a - 126.2

b = 91.9

where k and k were the rate constants to be estimated on the basis of the

experimental data.

The solution converged after the fourth iteration using less than 30

seconds on an IBM 7044. The initial and final estimates of the parameters

were kn = 1 x 10" 6
; k. = 1 x 10~ 4 and k. = .4577 x 10~ 5

and k, = .2797 x 10
_3

4 4

_2
with .210 x 10 " as the sum of the squares used. Bodenstein and Lindner [5],

using a combination of chemical theory and the experimental observation

-5 -3 -2
estimated that k = .53 x 10 and k = .41 x 10 with .555 x 10 as the sum

of the squares of deviations.

Bellman et. a. [4] applied Quasilinearization to system identification

and prediction. In the illustration the Van Der Pol's equation [22, 9]

shown below was solved



lit

X = y

U - -A(X
2

- 1) y - X (1)

where X was a scalar and A was an unknown constant. Three experimental

data were obtained.

X(4) - -1.80843

X(6) = -1.63385 (2)

X(8) = -1.40456

It was desired to determine the unknown values of A and both x and y for

i = 4.

The system of equations became

X = y

y = -A(X
2

- 1) y - x (3)

A =

and two sets of initial approximations were used:

X(4) = -1.80843

y(4) = 0.08

A(4) = 7.0

and

X(4) = -1.80843

y(4) = 0.1000

A(4) = 5.0000
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With first set of initial approximations the solution converged at the

end of the fourth Iteration, while the second set converged at the end of

the sixth iteration.

A trial was made with the initial estimate of the system parameter

20. It^ resulted in an overflow.

Donnelly and Quon [7] made a study on the computation of "best fit"

parameters in non-linear mechanistic rate equations using Quasilinearization

and data perturbation. The complete set of differential equations under

study was

dx.

dT"
= !jQLj.£.tO J - 1. .... n

da
-— =0 was of order q x 1
dt - - M

Initial conditions

X. (0) unspecified for j = 1, ..., n

a(0) unknown

x^ = state vector for j th experiment

a. = vector of system parameters

The procedure was to guess an initial trial vector a_(0) . With this the

above equation was integrated to obtain X.., , the value of the i state

variable at t., , for all points at which observed data X. ', the measured
jk' r ljk

value of the i state variable at t., , were available. If the initial trial

vector a(0) resulted in a set of X... "close enough" to X... , then— ljk ljk.
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Quasilinearization technique would converge. If not then the original

problem was modified by perturbing the data as follows:

L<J> - X<?> + a(X„ w - X<?>

<_ a <_ 1.0

The perturbed data thus fall between the observed and predicted data.

The choice of a = 1.0 gave rise to the original algorithm.

Method 1 might work successfully for small sets of simple equations

but was not practical for realistic models. Method 2 used linear regres-

sion analysis, but the differentiation of empirical data increased the

existing inherent errors in the experimental data and in practice Method

2 was not satisfactory. Method 4 was tedious and did not lead to clear

cut measures of "best fit".

Two methods were proposed in this work—Quasilinearization and numerical

integration and pattern search. These two methods fell in the third method.

The former was similar to Bellman [3] and Lee [17]

.

ONE PARAMETER IDENTIFICATION

A constant parameter in a simple advertising model was identified here.

Two methods, quasilinearization and numerical integration and pattern search

were used to identify the parameter. The experimental data was generated

by actually solving the model numerically. Later, the effect of noise in

the data was studied with the same technique.
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A._ The Model

The model for one parameter estimation was formulated below [23]:

Consider a group of people only certain member possessed a particular

piece of information. The total number of persons in the group under con-

sideration remained constant and that diffusion of information occurred

through advertising. The number of "contacts" made by an advertisement

in an arbitrary unit of time was given by a contact coefficient; this coef-

ficient was a fixed number which was assumed to be the same for all members

of the group. In a contact, the contacter received the information if he

did not have it yet. If he already had it, the contact was wasted so far

as increasing the number of people who had the information was concerned.

Let K(0) ; K_ = number of informed participants in the group at time 0.

N = total number of participants in the group.

c = contact coefficient; the number of contact made by one informed

person per unit time, and

K(t) = number of informed participants at time t.

Then

K(t)
= proportion of informed persons in the group at time t.

K(t)
1 - = proportion of "uninformed" persons in the group at time t.

cK(t)dt = contacts made during a time interval dt.

The increase in the total number of informed during. a short interval of

time dt was obtained by multiplying the number of contacts by the persons

who did not posses the information, since only contact with uninformed group

members led to an increase in informed members [23].
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dK(t) = cK(t)dt (1 - ^-)

which resulted in the differential equation:

eg- - cK (t)
N

(1)

The parameter to be identified from generated data without and with

noise was the contact coefficient c which was defined as the number of

contacts made by one informed person per unit time.

For a particular article and means of communication the above model

described the rate of change of informed persons at any time t. In the

model the number persons, N, and the number of informed persons, K(t) , at

any time t could be obtained by research or by conducting a survey'. K(t)

would be the measured data and from which parameter c could be estimated.

It was desirable to estimate c because it reflected the effectiveness of

the means of communication. In another way, by controlling c a desired

K(t) could be obtained. In this way parameter c would dictate the means

of communication to be used for a desired number of informed persons.

B. Deterministic Model Without Noise

B-l. Experimental data generation

The experimental data was generated by actually solving equation (1)

with Rurge-Kutta-Gill numerical integration.

The following constants and step size were used which gave a 1% error

by numerical integration.

K(0) = 100 informed persons at time .

N = 1000 persons in the group
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c = 2 persons / unit time

t(0) - initial time

t
f

= 5 final time

At = .05 integration step size

K(T) 999 informed persons at final time T.

The relationship between time t and informed persons K(t) was shown

in Table 1.

B-2. Quasilinearization

In this section the contact coefficient, c, in equation (1) was

identified by Quasilinearization and the least square criterion. The

model was reproduced as below

^-cK(t) 1 _ KCO
I

N
J

(2a)

It was convenient to consider the unknown parameter c as a dependent vari-

able and as a function of the independent variable t. In addition to

equation (2a) the constant unknown parameter could be represented by the

following differential equation [4]

77 = ° < 2b >
at

The initial condition was K(0) = 100 (3)

Since the experimental data was more than one the classical least squares

criterion was used. The object was to determine the parameter c so that

the sum of the squares of the deviations as shown below was minimized.
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Tablei. GENERATED DATA WITHOUT NOISE FOR ONE PARAMETER IDENTIFICATION

TIME
INFORMED
PERSONS

TIME
INFORMED
PERSONS

TIME
INFORMED
PERSONS

TIME
INFORMED
PERSONS

0.00 100.00 0.05 109.37 0.10 119.49 0.15 130.42
0.20 142.19 0.25 154.83 0.30 168.37 0.35 182.84
0.40 193.26 0.45 214.63 0.50 231.97 0.55 250.26
0.60 269.49 0.65 289.62 0.70 310.62 0.75 332.42
0.80 354.98 0.85 378.19 0.90 401.97 0.95 426.23
1.00 450.85 1.05 475.71 1.10 500.69 1.15 525.66
1.20 550.51 1.25 575.11 1.30 599.35 1.35 623.10
1.40 646.28 1.45 668.79 1.50 690.56 1.55 711.51
1.60 731.59 1.65 750.77 1.70 769.01 1.75 786.29
1.80 802.61 1.85 817.97 1.90 832.39 1.95 845.89
2.00 858.48 2.05 870.20 2.10 881.08 2.15 891.16
2.20 900.49 2.25 909.10 2.30 917.03 2.35 924.33
2.40 931.03 2.45 937.18 2.50 942.82 2.55 947.98
2.60 952.69 2.65 957.00 2.70 960.93 2.75 964.52
2.80 967.79 2.85 970.76 2.90 973.47 2.95 975.93
3.00 978.17 3.05 980.21 3.10 982.06 3.15 983.74
3.20 985.26 3.25 986.64 3.30 987.90 3.35 989.04
3.40 990.07 3.45 991.01 3.50 991.85 3.55 992.62
3.60 993.32 3.65 993.95 3.70 994.52 3.75 995.04
3.80 995.51 3.85 995.94 3.90 996.32 3.95 996.67
4.00 996.99 4.05 997.27 4.10 997.53 4.15 997.76
4.20 997.98 4.25 998.17 4.30 998.34 4.35 998.50
4.40 998.64 4.45 998.77 4.50 998.89 4.55 998.99
4.60 999.09 4.65 999.17 4.70 999.25 4.75 999.32
4.80 999.39 4.85 999.44 4.90 999.50 4.95 999.54
5.00 999.59
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m.

Q- I x(t
s

} - b
s

(A)

where the minimization was over the parameter c and x(t c ) was obtained

by solving equation (2)

.

The system (2) and (3) formed a multi-point boundary-value problem.

B-2a. Computational Procedure

The parameter estimation problem could now be approached by the

quasilinearization technique.

Since the right hand side of equation (2) was nonlinear and the

boundary condition was the initial type, the Runge-Kutta-Gill numerical

integration could be applied directly. The recurrence relation for. the

system of equations was obtained from equation (10) in Appendix I, Part I

dK
n+l

(t >

dt
= c k

n n
1 - n

N
+ ««frV c

n

2c K
n n

+ (c
iH-l-

c
n> n N

and

(5a)

dt
= (5b)

Here the subscript n denoted the nth iteration. In equations (5) K and

c ., were considered as unknown functions of t: K and c were considered
n+1 n n

as known functions of t obtained from the (n-l)st iterative solution. The

above equations became two simultaneous first order linear differential

equations. Since the system of equations (5) was linear, it could be solved
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by the use of the principle of superposition [16] . With one initial con-

dition (3) given, only one set of homogeneous solution was needed for the

two equations in (5). Thus, the general solution of equation (5) were:

K ,.(t) = K ,.(t) + A
n

._ K, _ u1 (t)
n+1 P>n+1 l,n+l hi, n+1

(6a)

c ,,(t) = c ,.(t) + A, - c, . L1 (t)
n+1 P,n+1 l,n+l hi, n+1

(6b)

where subscript p indicated particular solutions and h, denoted the first

set of homogeneous solutions. A, , was an integration constant to be

determined from the simplex search technique. Equation (6) could be written

in matrix form:

K
n+l

(t) - K
p(n+l)

(t > +Kh(„+l)
(t) Vl

The state vector K ,,(t) and the particular solution vector K . ,, N (t)
n+1 p(,n+l;

were defined as:

(7)

w> -

K
n+l

(t)

C
„+l

(t '

'
K
p(n+l)

(t) *

K
p,n+1^

c ..(t)
P. n+1

(8)

The homogeneous solution matrix was defined as

Wi> (t) "

K
hl,n+l

(t >

C
hl,r,+l

(t)

The particular and homogeneous solutions were chosen in such a way that they

satisfied the given initial condition, Equation (3) . The set of particular
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solutions could be obtained by integrating equation (5) with the following

initial values.

K ,.(0) = 100, c ,.(0) =
p,n+l P> n+1

(9)

The homogeneous forms of equation (5) were obtained by setting K and

c to zero

.

n

dt n+1

r 2c K
n n

C
n " N

+ c
n+1

(K )

K -
n

n N
(10a)

dC
n+l

(t)

dt
= (10b)

The homogeneous solutions could be obtained by integrating equation (10)

with the following initial values

Wi(0) = °

*tLMm = X

(11)

The initial values, equations (9) and (11) were chosen in such a way that

at t = the first equation of (6) satisfied condition (4) . At t = the

following relation could be obtained from the second equation of (6) and

the initial values (9) and (11):

C
n+1

(0) = A
l,n+1

(12a)

Since c
,

, was a constant function it was evident that relationship (12a)
n+1
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was true not only for t = but also for <_ t <^ t f
. Therefore,

C
n+l

(t) = A
l,n+1

(12b)

Both the particular and homogeneous solutions were obtained by Runge-Kutta-

Gill numerical integration method and the initial values (9) and (11)

.

Therefore, all the terms on the right hand side of Equation (6) were con-

sidered as known except A n ....r
1 , n+1

To solve for A, the least square functional was used.

2m.

n+1
- I

s=l
K
n+l

(t)
CD " K(t)

ED
(13a)

where m. was the number of data points, the CD subscript indicated computed

data and the ED subscript indicated generated data.

Substituting equation (6a) into equation (13a)

,

2m.

n+1

1

- 1
s=l

K
p,n+l

(t) + A. .n+Al,n+l
(t) " K(t)

ED
(13b)

The only unknown quantity on the right hand side of equation (13b) was the

integration constant, A.., which was determined by the simplex search tech-

nique [Appendix II, Part I]. The objective was to search for the value of

A.., so that the objective function (13b) was minimized. Once the integration

constant was known, the general solution of equation (5) could be obtained

from equation (6). With K ,
.. and c in known, now an improved set of values

n+1 n+1

could be obtained by making n = n+1 in equation (5) . The iterative procedure

could be continued until the solution converged to the exact parameter with

a certain specified accuracy.
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2b. NUMERICAL RESULTS

The numerical values used were

At = .05 t - 5.0 m - 101

The first approximation of K(t) was kept constant at 500. Three dif-

ferent initial approximations cn of the parameter c were 6, 10 and 20. It

was found that the solution in all three cases converged to the exact value

of c which was 2. The influence of the initial approximations, c„, upon

the convergence rate of the constant parameter is shown in Table 2. The

convergence rate for the initial approximation of 20 is shown in Figure 1.

A computer flow chart for quasilinearization method is shown in Figure 15.

B-3. Numerical Integration and Pattern Search

In this section the constant parameter, c, in equation (1) was identi-

fied by the combination of numerical integration and pattern search technique,

Any numerical integration scheme and search technique could be used. In

this work the Runge-Kutta-Gill computer subroutine [12] and the simplex

search technique developed by Nelder and Mead [19] were used, [Appendix II,

Part I] . The model was as shown below

*f> - cK(t) (l - M2) (1.)

with initial condition

K(0) = 100 (15)

The classical least squares criterion, shown below, was used as the

objective function in the search technique.
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Table 2. CONVERGENCE RATE OF ONE PARAMETER, QUASILINEARIZATION:
WITHOUT NOISE

ITERATION c(t
k) C(t

fc
) c(t

k)

6 10 20

1 .9813 .9813 .9813
2 1.7086 1.7086 1.7086
3 1.9710 1.9710 1.9710
4 1.9975 1.9975 1.9975
5 1.9982 1.9982 1.9982
6 1.9982 1.9982 1.9982

TIME IN MINUTES 1.23 1.23 1.23
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m
1

S - Q - I
S=l

K
n
(t)

CD " K(t)
ED

(16)

where n denoted the nth evaluation. Each evaluation gave rise to one ob-

jective function value.

The objective was to find c so that the square of the difference between

the solutions of equation (14) and the experimental data was minimized.

B-3a. Computational Procedure

The problem was composed of equations (14) , (15) and (16) . With the

initial condition of equation (15) and with the first initial approximation

of c p, in the search technique equation (14) was solved by Runge-Kutta-

Gill numerical integration. The solutions of equation (14) were substituted

into equation (16) to obtain the first value of the objective function, S .

The process was repeated with a second and third approximations of c p ?

and p_ in the search technique to obtain the second and third values of

the objective function, S„ and S„. With p, , p_ and p., a simplex was formed

and their respective objective function values were compared. At each

simplex p, , the point with the highest object function, value, was replaced

by a new point which would be the new approximation of c in equation (14)

.

The whole process was restarted until the parameter c which minimized

equation (16) was found. In this case the c found was the exact value of

the parameter c. In looking for the new approximation c at each simplex

the operations used were reflection, contraction and expansion. (Appendix II,

Part I). The new point, p , obtained by reflection was
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*

P = 2P " Ph (17a)

where p was the distance from p, to the mid-point of the line formed by the

other two points.

**
The new point, p , obtained by contraction was

** i i _

P
=

2 Ph
+

2 p (17b)

**
The new point, p , obtained by expansion was

p = 2p - p (17c)

B-3b. NUMERICAL RESULTS

The numerical values used were

At = .05 t = 5 nu = 101

Three different first approximations of c were 6, 10 and 20. It was

found that the solution in those cases converged to the exact value of c

which was 2. The influence of the first approximations of c upon the con-

vergence rate of the constant parameter is shown in Table 3.' The convergence

rate for the first approximation of 20 is shown in Figure 2. A computer

flow chart is shown in Figure 16.

The execution times shown at the end of Table 2 and Table 3 could not

be used to conclude that the numerical integration and search method was

faster than Quasilinearization. It should be pointed out that within each

iteration, search technique was used to solve for the integration constant

(Appendix IV, Part I). The time taken to search for the solution of the
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Table 3. CONVERGENCE RATE OF ONE PARAMETER, SEARCH AND NUMERICAL
INTEGRATION WITHOUT NOISE

EVALUATIONS c(t
k) c(t

k) c(t
k)

10
20
30

6.0000
2.0000
2.0000

10.0000
3.0000
2.0000
2.0000

20.0000
5.0000
2.0000
2.0000

TIME IN MINUTES .556 .835 .835
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integration constant depended very much on the contour of the objective

function. Between the first and the sixth iterations the following evalu-

ations were used to solve for the integration constant—55, 201, 50, 35, 29

and 35 giving a total of 405 evaluations. In addition to these evaluations,

at each iteration the particular and homogeneous solutions had to be solved

yet. Therefore, the time taken for Quasilinearization was more than ten

times for the numerical integration and search. If the integration constant

were solved by determinant the execution time could be greatly reduced.

Based on the fact that it took more than ten times the time to solve for

the integration constant in Quasilinearization than for the numerical

integration and search method to obtain final solution, it would not be too

much of an assumption to say that the former method was ten times faster

than the latter.

C. DETERMINISTIC MODEL WITH NOISE

C-l. Experimental data generation

In this section the same parameter c in equation (1) was identified.

However, noise was imposed on the experimental data. A normal distribution

with a standard deviation of three and a mean of zero of random numbers

were generated from an IBM subroutine program [12] . These random numbers

were then added to the experimental data without noise as in the following

equation

K(t)™ = K<t>„«« + 10 x R(t) (18)wn won

where the subscript wn indicated with noise, won indicated without noise

and R(t) , random numbers. The random numbers generated are shown in

Table 4 and the experimental data with noise obtained are shown in Table 5.
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Table b. RANDOM IltfffiERS

NO. RANDOM NOS. NO. RANDOM NOS. NO. RANDOM NOS. NO. RANDOM NOS.

1 -4.87 2 2.06 3 -3.45 4 3.18
5 -0.25 6 6.20 7 -0.73 8 5.42

9 -2.26 10 1.11 11 -1.38 12 4.59
13 -1.42 14 1.08 15 -4.49 16 2.11

17 -3.97 18 2.41 19 -4.86 20 2.38
21 -2.27 22 0.86 23 -3.94 24 2.70
25 -3.44 26 0.08 27 -5.15 28 0.43
29 -2.54 30 2.58 31 -3.46 32 3.20
33 -5.62 34 4.54 35 -1.80 36 0.88
37 -2.87 38 3.46 39 -1.05 40 2.48

41 -4.28 42 3.99 43 -1.97 44 1.27

45 -3.38 46 2.66 47 -5.69 48 2.74
49 -2.79 50 1.25 51 -2.23 52 3.84

53 -2.16 54 2.69 55 -1.61 56 2.94

57 -3.29 58 1.96 59 -4.90 60
.

2.14

61 -3.93 62 5.35 63 -0.20 64 2.37
65 -3.71 66 2.88 67 -4.13 68 0.88
69 -1.44 70 1.97 71 -3.58 72 0.79

73 -2.75 74 2.28 75 -2.07 76 1.99

77 -3.43 78 2.13 79 -3.44 80 3.48
81 -3.00 82 2.52 83 -3.37 84 1.62
85 -4.69 86 3.85 87 -2.32 88 1.85
89 -1.43 90 3.80 91 -3.00 92 0.09
93 -1.89 94 1.87 95 -0.57 96 2.28

97 -1.20 98 3.65 99 -3.60 100 1.22

101 -2.64
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Table 5. GENERATED DATA WITH NOISE FOR ONE PARAMETER

TIME
INFORMED
PERSONS

TIME
INFORMED
PERSONS

TIME
INFORMED
PERSONS

TIME
INFORMED
PERSONS

0.00 51.30 0.05 130.01 0.10 85.03 0.15 162.23
0.20 139.68 0.25 216.85 0.30 161.07 0.35 237.08
0.40 175.62 0.45 225.68 0.50 218.16 0.55 296.21
0.60 255.28 0.65 300.40 0.70 265.74 0.75 353.49
0.80 315.24 0.85 402.26 0.90 353.33 0.95 450.04
1.00 428.12 1.05 484.27 1.10 461.30 1.15 552.62
1.20 516.10 1.25 574.29 1.30 547.80 1.35 627.43
1.40 620.92 1.45 694.63 1.50 655.93 1.55 743.51
1.60 675.35 1.65 796.13 1.70 751.04 1.75 795.11
1.80 773.88 1.85 852.56 1.90 821.89 1.95 870.72
2.00 815.69 2.05 910.07 2.10 861.36 2.15 903.82
2.20 866.70 2.25 935.70 2.30 860.17 2.35 951.69
2.40 903.12 2.45 949.71 2.50 920.52 2.55 986.39
2.60 931.05 2.65 983.94 2.70 944.84 2.75 993.93
2.80 934.93 2.85 990.41 2.90 924.46 2.95 997.32
3.00 938.87 3.05 1033.73 3.10 980.01 3.15 1007.39
3.20 948.16 3.25 1015.48 3.30 946.55 3.35 997.87
3.40 975.71 3.45 1010.75 3.50 956.02 3.55 1000.48
3.60 965.83 3.65 1016.76 3.70 973.86 3.75 1014.95
3.80 961.24 3.85 1017.19 3.90 961.89 3.95 1031.48
4.00 966.97 4.05 1022.51 4.10 963.82 4.15 1014.01
4.20 951.09 4.25 1036.63 4.30 975.14 4.35 1017.00
4.40 984.30 4.45 1036.78 4.50 968.90 4.55 998.10
4.60 980.16 4.65 1017.87 4.70 1004.99 4.75 1022.17
4.80 987.36 4.85 1035.94 4.90 963.52 4.95 1011.74
5.00 973.15
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The noise on the average was about 3.44% of the data without noise. The

noise on the first data point was 48.7% and that on the last data point

was 2.64%.

C-2. Quasi linearization

The computation procedure was the same as that in section in B-2 except

that in equation (13b), K(t) used was the experimental data with noise.
fill

Numerical results

The same numerical values and initial approximations of K(t) and the

parameter c were used. Three different initial approximations of c, namely,

6, 10 and 20, the solutions all converged to 1.9783 which was slightly per-

turbed from the exact parameter of 2 when the generated data without noise

was used. 1.9783 was about 3% off from 2. The influence of the initial

approximations, cn upon the convergence rate of the constant parameter is

shown in Table 6 and the convergence rate for the initial approximation

of 20 is shown in Figure 3.

C-3. Numerical integration and Pattern Search

The computational procedure was the same as that in Section except

that in equation (16), K(t) used was the generated data with noise.

Numerical results

The same numerical values and initial approximations of K(t) and the

parameter c as that for the data without noise were used. In the three

different initial approximations of c namely 6, 10 and 20 the solutions

all converged to 22, the exact parameter for the generated data without

noise. The convergence rate of the parameter c for the three initial ap-

proximations of 6, 10 and 20 were shown in Table 7 and the convergence
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Table 6. CONVERGENCE RATE OF ONE PARAMETER, QUASILINEARIZATION WITH NOISE

ITERATION c(t
k) c(t

k) c(t
k )

6 10 20
1 .9783 .9783 .9783
2 1.6979 1.6979 1.6979
3 1.9545 1.9545 1.9545
4 1.9780 1.9780 1.9780
5 1.9784 1.9784 1.9784
6 1.9783 1.9783 1.9783
7 1.9783 1.9783 1.9783

TIME IN MINUES 1.2100 1.2100 1.2100
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Table 7. CONVERGENCE RATE OF ONE PARAMETER, SEARCH AND NUMERICAL
INTERGRATION WITH NOISE

EVALUATIONS c(t
k) c ( tk) c(t

k)

10
20
30

6.0000
2.0000
2.0000

10.0000
3.0000

' 2.0000
2.0000

20.0&00
5.0000
2.0000
2.0000

-TIME IN MINUTES 0.532 0.7980 0.7980

it*>
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rate for an initial approximation of 20 is shown in Figure 4.

Again the times shown at the end of Tables 6 and 7 could not be used

as the bases for concluding which method was faster. The same reasing under

numerical results in section B-36 of one parameter identification could be

applied here. For the seven iterations in Quasilinearization it took al-

together 245 evaluations to solve for the integration constants which was

about eight times more evaluations for the numerical integration and search

method to obtain the final solution.

D. DISCUSSION

Both methods, Quasilinearization and numerical integration and pattern

search were successful in identifying one parameter. In the former method

the noise had some effect on the solution obtained which was slightly

deviated from 2, the exact parameter. However, the initial approximations

of c did not have any effect either on the rate of convergence or on the

final converged value. In the latter method the noise did not have any

effect either on the rate of convergence or on the final converged rate.

However, the initial approximations of c had an effect on the rate of con-

vergence. In both method it took just a little bit longer to converge

when there was noise in the data.

In Quasilinearization provision was incorporated in the program to

terminate the computation at the end of tenth iterations. It termination

before ten it was due to an error of too large values for the computer to

handle so the machine terminated the computation itself. If less than ten

iteration results were presented in a table it was because either the

solution converged before tenth iteration or the computer terminated the

computation. In either case explanation was given to that effect. If

more than ten iterations were shown the program was specially arranged for
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a specific purpose.

In the numerical integration and search method the maximum number

of evations was limited to two hundred which gave a very accurate result.

If less than two two hundred evaluations were presented it meant that

the solution was obtained before 200th evaluation.

TWO PARAMETER IDENTIFICATION

As had been shown that both of the methods were successful in

identifying the parameter. However, the model used was not very realistic.

In this section the model was extended to make it more practical and two

parameters were, identified. The same two methods were used. Again the

data used was first without noise and then with noise.

A. The Model

The model [23] used here was an extended one of one parameter. The

total number of members in the group was no longer considered as constant

but growing with time. At the same time when the total number was growing

some of the informed members were removed from the group. The differential

equation now became

^ cK(t) I . W>
v8t

- YK(t) (19)

where

N„ = number of members in the group at t =

g rate at which new members were added to the group

Y rate at which members were removed from the group
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c = contact coefficient

cK(t) = number of contacts made in the time interval dt

Kt
e = growth factor

N_e = number of members at time t.

yK(t) = informed persons removed from the group in time dt

dK(t) . , .. . . . , ,
:— = increase in the number of informed persons
dt

In addition to parameter c, parameter y was also identified, y was

the rate at which the informed persons were removed from the group. This

parameter differed from group to group and also from location to location.

It had an indirect effect on the means and frequency of advertising which

was dictated by the contact coefficient c as mentioned earlier under one

parameter identification. For a certain desired number of informed persons

in the group the contact coefficient was directly proportional to the

removal coefficient.

B. Deterministic Model Without Noise

B-l. Experimental Data Generation

The experimental data was generated by actually solving equation (19)

with Runge-Kutta-Gill Numerical integration technique

The following constants and step size were used

K(0) = 50 informed persons at t =

N„ = 100 members in the group at t =
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Table 8. GENERATED DATA WITHOUT NOISE FOR TWO AND THREE PARAMETERS

TIME
INF0RMED

time
INFORMED INFORMED INFORMEDimb

PERSONS
lLm"

PERSONS
L™'

PERSONS
^^

PERSONS

0.000 50.00 0.025 51.24 0.050 52.45 0.075 53.64
0.100 54.80 0.125 55.94 0.150 57.06 0.175 58.16
0.200 59.23 0.225 60.29 0.250 61.32 0.275 62.34
0.300 63.35 0.325 64.34 0.350 65.31 0.375 66.27
0.400 67.22 0.425 68.17 0.450 69.10 0.475 70.02
0.500 70.94 0.525 71.85 0.550 72.76 0.575 73.66
0.600 74.55 0.625 75.45 0.650 76.34 0.675 77.24

0.700 78.33 0.725 79.02 0.750 79.92 0.775 80.81
0.800 81.71 0.825 82.61 0.850 83.51 0.875 84.42

0.900 85.33 0.925 86.25 0.950 87.17 0.975 88.09

1.000 89.02 1.025 89.96 1.050 90.90 1.075 91.85
1.100 92.80 1.125 93.77 1.150 94.74 1.175 95.72
1.200 96.71 1.225 97.70 1.250 98.70 1.275 99.71
1.300 100.73 1.325 101.76 1.350 102.80 1.375 103.85
1.400 104.90 1.425 105.97 1.450 107.05 1.475 108.13

1.500 109.23 1.525 110.33 1.550 111.45 1.575 112.58
1.600 313.72 1.625 114.87 1.650 116.03 1.675 117.20

1.700 118.38 1.725 119.57 1.750 120.78 1.775 122.00
1.800 123.23 1.825 124.47 1.850 125.72 1.875 126.99

1.900 128.27 1.925 129.56 1.950 130.86 1.975 132.18
2.000 133.51 2.025 134.85 2.050 136.21 2.075 137.58
2.100 3.38.97 2.125 140.36 2.150 141.78 2.175 143.20

2.200 144.64 2.225 146.10 2.250 147.57 2.275 149.05

2.300 150.55 2.325 152.06 2.350 153.59 2.375 155.14

2.400 156.69 2.425 158.27 2.450 159.86 2.475 161.47

2.500 163.09
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The least square criteria shown below was used to determine the

parameters c and y so that the sum of the squares of the deviations

was minimized.

m,

Q- I
S=l

X<V - b
s

(21)

Systems (19) and (20) were treated as a multipoint boundary-value

problem.

B-2a. Computational Procedure

The parameter identification problem by Quasilinearization was

composed of equation (19) , (20) and (21)

.

The recurrence relation for the system of equations (19) could be

obtained from equation (10) in Appendix I, Part I:

dK
n+l

(t)
,

'

JZ = c K
dt n n

K

1 -

Vgt
- y K

n n

+ »nfl-V c
n

2c K
n n

N e
gt

+ (c
n+l " C

n>
K -
n

( n)

N e
gt

+ (^n+l " ^n } ^"V (22a)
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g - .A

Y = 2 persons removed per unit time

c = 6 persons contacted per unit time

t(0) = initial time.

t
f

= 2.5 final time

At = .025 integration step size

The relationship between time t and the informed person K(t) was

shown in Table 8.

B-2. Quasilinearization

The two constant parameters c and y were identified by Quasilineari-

zation and the least square criterion. The model was shown again as below

^ - cK(t) 1 . K(t)

v8t
- YK(t) (19a)

Again the two unknown parameters c and y were treated as dependent vari-

ables and as functions of the independent variable t. In addition to

equation (19a) the two constant unknown parameters could be represented

by the following differential equations [16]:

~ = (19b)
at

£ - (19c)

The initial condition for equation (19a) was

K(0) - 50 (20)
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dC
n+1

(t)
-J^L1 = o (22b)

dt

dYn+l
(t)

*£ = (22c)

where the subscript n represented the nth iteration.

In equations (22) K
, n , c ,, and y ,i were considered as unknownn n+1 n+1 n-f 1

functions of t and K , c and y were considered as know functions of t
n n n

obtained from the (n-l)st iterative solution. The above three equations

became three simultaneous first order linear differential equations. The

general solutions for the above three equations were obtained by super-

position principle [16] . With one initial condition (20) given, only two

sets of homogeneous solutions were needed for the three equation in (22)

.

Thus, the general solutions of equation (22) were:

2

K,
1
(t)=K ..(t) + I A. ,. K, . ..(t) (23a)

n+1 P,n+1 .£- 3, n+1 nj ,n+l

2

c ,,(t) - c .- (t) + I A. ,- c, . .- (t)
n+1 p,n+l f^- j ,n+l hj ,n+l

(23b)

n+l
(t) = 7p,n+l

(t) + l
±

A
j ,n+l ^h3 ,n+l

(t) (23c)

Subscript p indicated particular solutions and h, and h
?
denoted the

first and second sets of homogeneous solutions respectively. A.. ,. and

A„ _ were integration constants to be determined from simplex search

technique. Equation (23) could be written in matrix form:.
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K (t) = K
nf-J i Cufl)

(t) + hi^l^ AM (24)

where K ,,(t) and K , ,,v(t) were defined as
n+1 p(n+l)

K
n+ l

(t) = C
n+ l

(t)

Vi (t)

K
p(n+l)

(t) =

K ^,<t>
f,n+l

C
p,n+1

Yp,n+1

(t)

(t)

(25)

The homogeneous matrix was defined as

^(n+l)
(t) -

K
hl,n+l

(t) hl 9MM
Chl

'
n+l(t) C

h2,n+l
(t)

Yhl,n+l
(t) Yh2,n+l

(t)

(26)

and A . represented the integration constant vector with components

A. , n and A_ . , . The particular and homogeneous solutions were chosen
i , n+1 I ,n+l

so that they satisfied the given initial condition, Equation (20). The

set of particular solutions could be obtained by integrating equation (22)

with the following initial values.

K
p,n+ 1

(0) " 50
-

c
p,„+ l

(0
> * "• Vn+ 1

(0) =
° (2?)

The homogeneous forms of equation (22) were:
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dVl (t)

K
dt " n+1

2c K
n n

+ c
n+1

(K )
K ^V

V^

+ w-v> (28a)

dc
n+l

(t)

dt
= (28b)

dt
= o (28c)

The homogeneous solutions could be obtained by integrating equation (28)

with the following initial values.

^(n+l)
(t) = 1

1

(29)

The initial values (27) and (29) were chosen so that at t = equation

(23) satisfied Equation (20). At t = the following two relationships

could be obtained from equations (23b) , (23c) , and the initial values of

(27) and (29).

W°> = A
l,n+1>W 0) = A

2,n+1
(30)

Since c
, n and y ,i were constant functions, it was evident that relation-

n+1 n+1

ships Equation (30) was true for <_ t <_ t . Therefore,
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C
n+l

(t) = A
l,n+1» Y n+l

(t) " A
2 ,n+1

Both the particular and homogeneous solutions were considered as known

because they were obtained by RKGS method with the initial values of (27)

and (29) . Therefore, in the right hand side of equation (23) only the

integration constants A. . and A~ were unknov/n and they were

determined by the simplex search technique.

The least square criterion

s=l

K ,.(t) + A. .- K, . ,.(t)
p,n+l l,n+l hl,n+l

(31)

2

+A
2,n+ l

K
h2,n+l

(t) " K(t)
ED

became the objective function in the search. Once the integration constants

became known, the general solution of equation (22) could be obtained from

equation (23) . With K , c , and y known an improved set of values

could be obtained by making n = n+1 in equation (22). The iteration was

continued until the solution converged to the exact parameter with a

certain desired accuracy.

B-2b. NUMERICAL RESULTS

The numerical values used were

At = .025 t = 2.5 n^ = 101

The first approximation of K(t) was kept constant at .80 for the

first iteration. The exact parameter values of c(t ) = 6 and Y( t t,)
= 2
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were used as the initial approximations. The solution did not converge at

the end of ten iterations. The values of the parameters for each of the

ten iterations are shown in Table 9A and the curve fitting is shown in

Figure 5.

A few attempts were made to help the solution to converge.

1. The first approximation of K(t) was kept constant at 60 throughout

the first iteration. The results are shown in Table 9B . At fourth

iteration the numerical solution of the model approached infinity.

2. The first approximation of K(t) was then kept constant at 150

throughout the first iteration. The results are shown in Table 9C.

At third iteration the numerical solution of the model approached

infinity.

3. In the search for the solution of c and y at each iteration by

the simplex technique the following constraints were imposed on

the parameters

1 < c(t
K

) < 10.5

.5 < y(t
K

) < 4

The two parameters seemed to oscillate and at the fifth iteration

while solving for the integration constants by the search technique

the program was stopped because in subroutine Scheck (Appendix IV,

Part I) the sum of the square of the difference between the ob-

jective function and the mean of the three objective functions

in a simplex approached infinity. Results up to fourth iteration

are shown in Table 9D.
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Table 9A. CONVERGENCE RATE OF TWO PARAMETERS, QUASILINEARIZATION
WITHOUT1 NOISE

ITERATIONS c(t
k) Y<y

-

6.0000 2.0000
1 -1.5654 A. 1859
2 -1.8967 2.9106
3 3.0752 -5.1375
4 3.6031 -2.8323
5 A. 1605 -2.7274
6 A. 2205 -2.7249
7 A. 2331 -2.7317
8 A. 2347 -2.7354
9 A. 2331 -2.7358

10 A. 2325 -2.7356

Time 5.10 minutes
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4. On examination of Figure 5. It; was noticed that at each iteration

the solution approached the actual solution, yet it was not

stable. To stabilize the solution, perturbation was used. The

first formula used was as shown below

K(l)
n

- K(0)
n+1

+ a(b
s

- K(0) )

K(l) = K for the next iteration
n n

K(0) . = the solution obtained at present iteration

a = perturbation factor which could be from to 1.

The results are shown in Table 9E where the value of alpha used

was .2. The solution seemed to converge to 4.25 for c and -2.76

for y •

5. The above formula was used again but alpha was set to .05. The

results are shown in Table 9F. The number of iterations were

extended to 20 instead of 10. The solution converged to 4.24

for c and -2.74 for y.

6. Trials 4 and 5 seemed to have stabilized the solution which con-

verged to 4.24 for c and -2.74 for y. To improve the solution

constraints was imposed on the parameters.

The same constraints used in trial 3 was used here. The

results are shown in Table 9G. The solution again seemed to

oscillate once the constraints were imposed.

7. The next attempt was to use a different perturbation as shown below
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K(l) = K(0) + ct(K(0) - K(0))
n n n+1 n

K(l) = K for the next iteration
n n

K(0) - = solution of present iteration

K(0) = K of present iteration
n n

< a < 1

Two values of alpha used were .1 and .4. The results are

shown in Tables 9H and 91. The solutions for a = .1 were unstable

and oscillated at the end of ten iterations. To study the effect

of a, the value was increased to .4 and iterations extended to 18.

It was observed that by increasing a it became stable faster. The

solution for the latter case seemed to converge to 4.23 for c and

-2.73 for y« In all the above seven attempts the exact parameters

were used as the first approximations.

B-3. Numerical Integration and Pattern Search

The same two parameters c and y of equation (19a) were identified by

numerical integration and pattern search. In this work the Runge-Kutta-

Gill [12] computer subroutine and the simplex search technique [20] were

used. The methods were discussed in the Appendia II and III, Part I.

The model was reproduced below.

dt

with, initial condition

dK(t)
-cK(t) (l- K(t)

'

v8tJ
- YK(t) (32)
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Table 9B. CONVERGENCE RATE OF TWO PARAMETERS, QUASILINEARIZATION

WITHOUT NOISE

K(O) = 60

ITERATIONS c(t
k) r(tk)

1

2

3

6.0000
-10.9673
-28.7610
-28.8992

2.0000
28.7084
30.2639
30.4466

Time = 2.42 minutes

•



Table 9C. CONVERGENCE RATE OF TWO PARAMETERS, QUASILINEARIZATION

WITHOUT NOISE

K(O) = 150
*

ITERATIONS c(t
k) Y(tk)

1
2

6.0000
-20.7555
-56.0861

2.0000
55.3068
57.6009

56

Time =1.70 minutes
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Table 9D. CONVERGENCE RATE OF TWO PARAMETERS WITH CONSTRAINTS, QUASI-

LINEARIZATION WITHOUT NOISE

CONSTRAINTS: 1 < C(t ) < 10.5

.5 < Y(tk) < 4

ITERATIONS c(t
k) Y(t

k)

1

2

3

4

6.0000
1.0000
1.9583
1.0000
1.9044

2.0000
0.5001
2.0357
0.5000
2.0465

Time =r 3.01 minutes
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Table 9E. CONVERGENCE RATE OF TWO PARAMETERS WITH PERTURBATION,
QUASILINEARIZATION WITHOUT NOISE

K(1)
n ^ K(0)

n+1
+ ° (b

s
" K(°W

a = .2

ITERATIONS c(t
k) Y(tk)

6.0000 2.0000
1 -1.5654 4.1859
2 -1.8967 2.9106
3 3.2470 -5.4378
4 3.6264 -2.8859
5 4.1730 -2.7550
6 4.2479 -2.7527
7 4.2559 -2.7568
8 4.2580 -2.7598
9 4.2571 -2.7603

10 4.2563 -2.7601

Time = 5.65 minutes



59

Table 9F. CONVERGENCE RATE OF TWO PARAMETERS WITH PERTURBATION,
QUASILINEARIZATION WITHOUT NOISE

K(1)
n

= K(0)^l + « (b
s

" K(°W
a = .05

ITERATIONS c(t
k) Y(tk)

6.000 2.0000
1 -1.5652 4.1854
2 -1.8966 2.9108
3 3.1133 -5.2039
4 3.6084 -2.8445
5 4.1629 -2.7335
6 4.2296 -2.7329
7 4.2410 -2.7397
8 4.2440 -2.7443
9 4.2409 -2.7442

10 . 4.2391 -2.7430
11 4.2392 -2.7426
12 4.2394 -2.7426
13 4.2405 -2.7432
14 4.2403 -2.7434
15 4.2391 -2.7427
16 4.2395 -2.7427
17 4.2425 -2.7446
18 4.2397 -2.7436
19 4.2383 -2.7423
20 4.2410 -2.7435

TIME- IN MINUTES =•- 9.09



Table 9G. CONVERGENCE RATE OF TWO PARAMETERS WITH PERTURBATION,
QUASILINEARIZATION WITHOUT NOISE

K(1)
n " K(0)

n+1
+ a (b

s
" K(°W

a - .1

CONSTRAINTS: 1 < C(t,) < 10.5

60

.5 < Y(t
k
) < 4

ITERATIONS c (V y(t
k)

6.0000 2.0000
1 1.0000 0.5001
2 1.9515 2.0527

3 1.0000 0.5000
4 1.8971 2.0516
5 1.0001 0.5009
6 1.8973 2.0587
7 1.0000 0.5000
8 1.8973 2.0513
9 1.0000 0.5000

10 . 1.8970 2.0514

Time 5.45 minutes



Table 9H. CONVERGENCE RATE OF TOO PARAMETERS WITH PERTURBATION,
• QUASILINEARIZATION WITHOUT NOISE

K(l) = K(0) + a(K(0) - K(0)
n )n n n+1 n

a - .1

6l

ITERATIONS C(V r(t
k)

6.0000 2.0000
1 -1.5654 4.1859
2 -1.8967 2.9106

3 -2.4465 4.5489
4 -3.4206 4.9496
5 -4.9771 6.9203
6 -7.4502 9.3544
7 -4.6S02 5.5692
8 5.4370 -7.0235

9 2.9927 -2.5073
10 4.8869 -3.0169

TIME =6.35 MINUTES
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Table 91 . CONVERGENCE RATE OF TWO PARAMETERS WITH PERTURBATION,
QUASILINEARIZATION WITHOUT' NOISE

K(l) = K(0) + a (K(0). - K(0))
n n n-rl n

a - .4

ITERATIONS ccv r<v
6.0000 2.0000

1 -1.5652 4.1854
2 -1.8966 2.9108

3 -3.5131 6.4285
4 7.7529 -9.7123

5 3.2430 -2.8448

6 4.7092 -3.0745

7 4.3930 -2.9622
8 4.3114 -2.8702
9 4.2706 -2.8107

10 4.2515 -2.7764
11 4.2423 -2.7575
12 4.2374 -2.7472
13 • 4.2322 -2.7399
14 4.2340 -2.7382
15 4.2332 -2.7370
16 4.2342 -2.7371
17 4.2345 -2.7374
18 4.2340 -2.7372

Time = 10.16 minutes
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K(0) 50 (33)

The classical least squares criterion, shown below, was used as the

objective function in the search technique

m
l

S - Q - I
S=l

K (t).n - K(t)__
n CD ED (34)

The objective was to find c and y so that the sum of the square of

deviations between the solution of equation (32) and the generated data

was minimized.

B-3a . Computation Procedure

The problem was composed of equations (32) , (33) and (34) . With the

initial condition of equation (33) and vith the first initial approximation

of c and y (two dimensional search) — p, in the search technique (Appendix

II, Part I) — equation (32) was solved by Runge-Kutta-Gill numerical inte-

gration (Appendix III, Part I). The solutions of equation (32) were sub-

stituted into equation (34) to obtain the first value of the objective

function S, . This process was repeated with a second and third approxi-

mations of c and Y ~ Po and p„ in the search technique — to obtain the

second and third values of the objective function, S_ and S~. With p.

,

p_ and p„ a simplex was formed and their respective objective function

values were compared. At each simplex p , the point with the highest ob-

jective function values, was replaced by a new point which would be the

new approximation of c and y in equation (32) . In looking for the new

points Equations (17a) through (c) under one parameter identification were

used. The whole process was repeated until the solution converged to c and

Y-
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B-3b. NUMERICAL RESULTS

The numerical values used were

At = .025 t = 2.5 m, - 101

Two different sets of initial approximations of c and y were used,

namely 1; .2 and 12; 5. They were chosen arbitrarily. It was found that

the solution in two cases converged to the exact values 6 and 2 of the

parameters c and y. The influence of the first approximations of c and

Y upon the convergence rate of the constant parameters is shown in Table

10 and the convergence rate for the first approximation of C = 1, y_ = .2

and cn = 12; Yn = 5 shown in Figures 6 and 7, respectively.

C. Deterministic model with noise

C-l. Experimental data generation

The same parameters c and y of the model (19a) were identified.

However, noise was imposed on the generated data in the same manner as

in section c-l under the one parameter and as shown below in Equation

(34a). The generated data with noise are shown in Table 11. The noise

on the average was about 2.55% of the data without noise. The noise

imposed on the first and last generated data was about 9.74% and 1.62%

respectively.

K(t) = K(t) + R(t)wn won

C-2. Quasilinearization

Computational Procedure

The computational procedure was the same as in Section B-2 of the
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Table 10. CONVERGENCE RATE OF TWO PARAMETERS, SEARCH AND NUMERICAL
INTEGRATION WITHOUT NOISE

EVALUATIONS c(t
k) Y(tk) c(t

k) Y(t
k )

1 1.0000 0.2000 12.0000 5.0000
10 1.7000 0.2000 12.7000 4.7000
20 1.9690 0.3485 12.5845 4.6525
30 3.5762 1.0271 11.9553 4.4190
40 5.9092 1.9677 5.1582 1.6561
50 6.0797 2.0335 5.7832 1.9132
60 5.9754 1.9899 6.0830 2.0330
70 5.9957 1.9982 6.0179 2.0072
80 5.9995 1.9998 6.0024 2.0010
90 5.9998 1.9999 6.0005 2.0002

100 5.9999 1.9999 5.9999 1.9999

TIME IN MINUTES 3.5 3.5
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Table 11 .GENERATED DATA WITH NOISE FOR WO AND THREE PARAMETERS

TIME
INF0RMED

TIME
INK)RMED

TIME
INF0RMED

TIME
INF0RHED

ilfm
PERSONS

A ^
PERSONS

iim*

PERSONS
LLmJ

PERSON S

0.000 45.13 0.025 53.30 0.050 49.00 0.075 56.82
0.100 54.55 0.125 62.14 0.150 56.33 0.175 63.58
0.200 56.97 0.225 61.39 0.250 59.94 0.275 66.94
0.300 61.93 0.325 65.41 0.350 60.82 0.375 68.38
0.400 63.25 0.425 70.57 0.450 64.23 0.475 72.40
0.500 68.67 0.525 72.71 0.550 68.82 0.575 76.35
0.600 71.11 0.625 75.37 0.650 71.19 0.675 77.67
0.700 75.59 0.725 81.61 0.750 76.45 0.775 84.01
0.800 76.09 0.825 87.15 0.850 81.72 0.875 85.30
0.900 82.46 0.925 89.70 0.950 86.12 0.975 90.57
1.000 84.74 1.025 93.95 1.050 88.93 1.075 93.12
1.100 89.43 1.125 96.43 1.150 89.06 1.175 98.46
1.200 93.92 1.225 98.95 1.250 96.47 1.275 103.56
1.300 98.57 1.325 104.46 1.350 101.19 1.375 106.79
1.400 101.62 1.425 107.93 1.450 102.15 1.475 110.27
1.500 105.30 1.525 115.69 1.550 111.25 1.575 114.94
1.600 110.01 1.625 117.75 1.650 111.89 1.675 118.08.
1.700 116.94 1.725 121.55 1.750 117.20 1.775 122.78
1.800 120.48 1.825 126.75 1.850 123.66 1.875 128.98
1.900 124.84 1.925 131.69 1.950 127.42 1.975 135.66
2.000 130.51 2.025 137.38 2.050 132.84 2.075 139.21
2.100 134.28 2.125 144.21 2.150 139.46 2.175 145.05
2.200 143.21 2.225 149.90 2.250 144.57 2.275 148.96
2.300 148.66 2.325 153.94 2.350 154.16 2.375 157.42
2.400 155.49 2.425 161.92 2.450 156.26 2.475 162.69
2.500 160.45
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parameter identification except that in equation (31), K(t) used was
ED

the generated data with noise.

Numerical Results

The numerical values used were

At = .025 t
f

= 2.5 n^ = 101

The first approximation of K(t) was kept constant at 80 for the

first iteration. The exact values for parameters c and y — 6 and 2 were

used as the initial approximations. The solution converged to 3.95 for

c and - 2.44 for y. The results are shown in Table 12A and the curve

fitting in Figure 8. Three attempts were made to improve the values of

the parameters.

1. Constraints were first imposed on the parameters when solving for

the integration constants by simplex technique at each iteration.

The constraints used were

4 < c(t
K

) < 10

1 < Y(t
K

) < 5

However, the program was terminated by the computer during the first

iteration because in the Subroutine Scheck (Appendix IV, Part I) the sum

of the square of the deviations of the objective functions from the mean

objective function in a simplex became too large for the computer to handle

2. Perturbation was used to stabilize the solution. The formula

used was as follow

K(1)
n

K(0)
n+ 1

+ a(b
S

" K(°W
a - .1
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Table 12A. CONVERGENCE RATE OF TWO PARAMETERS, QUASILINEARIZATION
WITH NOISE

ITERATIONS c(t
k) ycv

6.0000 2.0000
1 -1.5090 4.0426
2 -1.7664 2.7677
3 2.9674 -5.1125
4 3.3260 -2.6158
5 3.8574 -2.4569
6 3.9404 -2.4422
7 3.9586 -2.4465
8 3.9614 -2.4500
9 3.9542 -2.4474

10 3.9577 -2.4483

Time = 6.74 minutes
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The results are shown in Table 12B. The solution seemed to

converge, to 3.97 for c and -2.47 for y.

3. In order to find the effect of a, a was increased from .1 to .4.

The results are given in Table 12c. It was observed that the

parameters oscillated.

C-3. Numerical Integration and Pattern Search

The computational procedure was the same as that in Section B-3

under the two parameters identification except in equation (34) , where

K(t) used was the generated data with noise.

Numerical results

The same numerical values and initial approximations for K(t) , c and

Y for the data without noise were used. Two different sets of initial ap-

proximations for c and y were used namely 1; .2 and 12; 5. The solution

conveyed to 6.2155; 2.0790 and 6.2183; 2.0802 respectively. In both cases

the final convergence was about 3.5% off the exact parameters of 6 and 2

compared to a noise level of about 2.5%. The convergence rates for the

initial approximations 1;.2 and 12;5 are shown in Table 13 and the con-

vergence rate are shown in Figures 9. and 10 respectively.

D. Discussion

Quasilinearization did not seem to work in this particular model.

From the extensive investigations in the two parameters identification

the author was led to believe that in some cases Quasilinearization com-

pletely changed the response surface retaining only the same tanpent at

the same point. In Table 9A the results indicated that the solution
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Table 12B. CONVERGENCE RATE OF TWO PARAMETERS WITH PERTURBATION,
QUASILINEARIZATION WITH NOISE

K(l)
n

- K(0) + a (b - K(0) )

a = .1

ITERATIONS c<v Y(t
k)

6.0000 2.0000
1 -1.5090 4.0426
2 -1.7664 2.7677
3 3.0404 -5.2446
4 3.3495 -2.6488
5 3.8818 -2.4844
6 3.9664 -2.4693
7 3.9852 -2.4740
8 3.9856 -2.4762
9 3.9836 -2.4760 .

10 3.9795 -2.4735

Time = 6.62 minutes
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Table 12C. CONVERGENCE RATE OF TWO PARAMETERS WITH PERTURBATION
QUASILINEARIZATION WITH NOISE

^n - K(0)
n+1

+ " (b
s

" K(°W
a = .4

ITERATIONS c(t
k) Y(t

fc
)

6.0000 2.0000
1 -1.0053 2.7646
2 -0.4926 1.1872
3 1.9459 -15.0373
4 1.0414 - 0.9641
5 7.2014 - 2.2042
6 3.2252 - 1.8781
7 15.5206 - 7.9953
8 24.2528 -20.4222
9 56.8703 -53.0906

10 -15.9852 15.5956

Time = 6.49 minutes
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Table 13. CONVERGENCE RATE OF TWO PARAMETERS, SEARCH AND NUMERICAL
INTEGRATION WITH NOISE

EVALUATIONS c(t
k) Y(t

k) c(t*> Y(t
k)

1.0000 0.2000 12.0000 5.0000
10 1.7000 0.2000 12.7000 4.7000
20 1.9690 0.3485 12.7000 4.7000
30 4.2518 1.3009 11.5646 4.2237
40 6.0854 2.0246 5.8442 1.9195
50 6.1654 2.0588 6.2421 2.0925
60 6.1977 2.0718 6.1995 2.0723

70 6.2153 2.0790 6.2127 2.0779
80 6.2145 2.0786 6.2176 2.0799
90 6.2154 2.0789 6.2185 2.0803

100 6.2155 2.0790 6.2183 2.0802
110 6.2155 2.0790 6.2183 2.0802

TIME IN MINUTES 3.3 3.3
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converged to a different point. The minimum point was no longer at pa-

rameters 6 and 2 nor in the vicinity between 1 and 10.5 for c and between

.5 and 4 for y as the constraints used in Table 9D where the results showed

oscillation. When the data was perturbed in two different ways to obtain

stability the solution converged to 4.25 and -2.76 again for parameters

c and y« This substantiated earlier prediction that a minimum did exist

at this point and not at 6 and 2. This was further substantiated by the

results of the two parameters with noise in the generated data where the

parameters converged to 3.95 and -2.44 for c and y s which were only

slightly different from the two parameters without noise. Furthermore,

the constraints used for the case with noise was more limited than that

for the case without the noise. In the former case the computation was

terminated before the end of the first iteration.

Numerical integration and search worked out well in this instance.

However, a word of caution should be added here. The convergence depended

very much on the individual model and the initial approximations of the

parameters used. If there were many local minima then the choice of

initial approximations was very important and vice versa. From Table 13

it was observed that the rate of convergence was very slow when approaching

the minimum.

The above observations were based on the results obtained here. It

might not be true in all cases. Further studies should be done if con-

clusive results were desired.
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THREE PARAMETERS IDENTIFICATION

The growth rate, g, was also an important parameter. It indirectly

affected the removal rate and the contact coefficient. Thus, it indirectly

affected the means and frequency of the advertisements. Therefore, in

addition to the two parameters of c and y> a third parameter g, the growth

rate was identified. The same two methods were used. Again the data used

was first without noise and then contaminated with noise.

A. The Model

The model used here was the same as for two parameter identification

and was reproduced below for ease of reference.

*gl-.iM i _ *<*)!

N e
gt

J

- YK(t)

The same constants and step size were used.

B. Deterministic Model Without Noise

B-l. Experimental data generation.

The same data as for two parameter identification were used here and

the relationship between K(t) and t was shown in Table 8.

B-2. Quasi linearization

The three constant parameters c, y and g were identified by

Quasi linearization and the least square criterion. The model was shown

below.

^± = cK(t)[l - -^ ] - YK(t) (35a)

V
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Again the three unknown parameters c, y an^ g were treated as dependent

variables and as functions of the independent variable t. In addition to

equation (35a) the three constant unknown parameters could be represented

by the following differential equations [l6]

^=0 (35b)

^-0 (35c)
dt

^4r-=° (35d)
dt

The initial condition for equation (35a) was

K(0) = 50 (36)

The least square criterion shown below was used to determine the

parameters c, y and g so that the sum of squares of the deviations was

minimized

m
l

Q = I [x(t
s

) - b
s

]

2
(3T)

s=l

Systems (35) and (36) were. treated as a multi-point boundary-value

problem.

B-2a. Computational Procedure

The parameter identification problem by Quasilinearization was composed

of equations (35), (36) and (37).

The recurrence relation for the system of equations was
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dKXt)_ _= c K (1 - "—
) K

n n g t' ' n ndt
Nn

n

Oe

2c K
(r - K ) [c -

n " - Y ]n+1 n n g t ' n

Oe

(K )

2

+ (c _ - c ) [K - £-r-]
n+1 n n g t

»«
n

Oe

(Y +1
" Y ) (-K )

n+1 n n

C
n
(K

n
)2

+
(Vl - *J I" -^f- I (38a)

d C
n+ l

(t)

d Vi (t>

dt
=

° (38c)

d g_,(t)
= (38d)

dt

where (n+l) was unknown functions of t and n was known functions of t

obtained from the (n-l)st iterative solution.

With the superposition principle the general solutions for equations

{hh) were:

3

J

K x =K (t) + f A, .. K. . .,(t) (39a)
n+1 p,n+l .£. J ,n+l TiJ ,n+l
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c
„+l

(t) = C
p,n+l

(t> +

J|1
A
J,,*l

CW ,»*l<
t) (39b)

*~i (t,
"*p,n+ l

(t)+ ^.n*!^.,*! 1 *'
'n+1'

(39c)

<W (t) =g
p,n+l

(t)+ X A
j ,n+l ^hj ,n+l

(t) (39d)

Subscript p denoted particular solutions and h , h and h., first,

second and third set of homogeneous solutions respectively; A, .. , A

and A_ . , were integration constants
3,n+1

In matrix form, equation (39) became

K _(t) = K
, ^,,(t) + K , ,>(t)A ,n+1 p(n+l) h(n+l) n+1

(HO)

K
n+l

(t)

Vi (t)

vi(t)

K
p(n+l)

(t >

K
p,n+l

(t)

C
p,n+l

(t)

YP,n+l
(t)

gp,n+l
(t)

CD

Vn+l) (t) =

"hi.„!<*>

c
hl,n+l

(t)

\l,n+l
(t)

*h2.n+1
(t)

C
h2,n+l

(t)

Yh2,n+l
(t)

"So.n+1
(t)

C
h3,n+l

(t)

Yh3,n+l
(t)

^l,n+l
(t)

«h2,n+l
(t)

^3,n+l(t)

(U2)

A - represents the integration constant vector with components A -

,

2,n+1 3,n+1

The set of particular solutions vere obtained by integrating equation

(38) with the following initial values:



83

p,n+l

p,n+l

50

(»»3)

The homogeneous forms of equation (38) were:

dK „(t) 2c K

- YJn+r (c
n

'

N
Oe

+ (
°n+l

)(K
n

'
Ft n+1 n

Oe

c (K )

2

(Itlta)

dVl (t)

dt
= (I* lib)

dVi (t)

dt
= (hkc)

dVl (t)

dt
= (UUd)

The homogeneous solutions were obtained by integrating equation (UU) with

the following initial values:

>Wi> <0)
1010

1

(U5)

Equations (1*3) and (U5) were chosen so that at t=0 Equation (39a) satisfied
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Equation (36). At t=0 the following relationships were obtained

Vl (0) =
\,n+l

(U6a >

W°)=A
2,n+ l

(U6b)

&n+l 3,n+l

Since they were constants, the relationship in Equation (^6) was true for

< t < t . Therefore,

Vl(tl = A
l,n+ 1

'^

W> = A
3,n+1

(1,Tc)

The particular and homogeneous solutions were considered known. Therefore,

in the right hand side of equation (39) only the integration constants

were unknown. To solve for them the least square functional was used.

Vl= I (K
n+l

(t
»cD " K(tW 2

(1,8a >

s=l

Substituting equation (39a) into (U8a)

Vl " L
[K
P.H+ I

(t) + l A
J,n+ l hi,**lM - «*W <^>

S— J. J""-*-

where K(t) was the generated data which were known and shown in Table 8.

The only unknown in ( U8b) were A, , , A„ , and A„ , which wereJ l,n+l' 2,n+l -3,n+l

determined by the Simplex search technique where equation (U8b) became the

objective function (Appendix II, Part I). Once the integration constants

were known the general solution of equation (38) was obtained from equation
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(39). With K , c , t y . , and g known an improved set of valuesn+i n+l n+l n+l

was obtained by making n = n+l in equation (38). The iterative procedure

was continued until the solution converged to the exact parameter with a

certain desired accuracy.

B-2b. Numerical Results

The numerical values used were

At = .025 t = 2.5 n^ = 101

The first approximation of K(t) was kept constant at 80 throughout the

first iteration. Exact parameters of c, y and g, namely, 6, 2, and ,h were

eimployed as the first approximations. The results are shown in Table l^A

and the curve fitting in Figure 11. The solution seemed to converge to

-0.98, -9.3 1* and 11.20 for parameters c, y and g respectively. Constraints

and perturbations were used again to improve the final values of the

parameters

.

1. The following constraints were used:

k < c(t ) < 10

1 < Y(t
K

) < 5

< g(t
K

) < 1

At the end of the fourth iteration parameter c and y seemed to coverge

to U.19 and 1.00 respectively. However, the values for parameter g was

still increasing. Before the end of the fifth iteration the numerical

integration of the model became infinity and the computation was stopped.

Results are given in Table lUB.

2. The following perturbation was used:
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Table lUA. CONVERGENCE RATE OF THREE PARAMETERS, QUASILINEARIZATION
WITHOUT NOISE

ITERATIONS C(t
k Y(t

k) g(V
6.0000 2.0000 0.4000

1 -19.6564 25.4714 •8.3152

2 -32.7599 26.5629 8.5849
3 - 1.8109 - 9.5871 11.1713
4 - 0.8725 - 9.4137 11.1494
5 - 0.9004 - 9.3912 11.1671
6 - 0.9274 - 9.3761 11.1769
7 - 0.9521 - 9.3622 11.1848
8 - 0.9778 - 9.3482 11.1933
9 - 0.9812 - 9.3512 11.2010

10 - 0.9935 - 9.3457 11.2056

Time = 7.25 minutes
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K(l) = K(0) + a(K(0) ._ - K(0) )
n n n+1 n

a = .2

The results are shown in Table lUc. It would seem that parameters c,

Y and g converged to -10. 0*+, -5.88 and 15.11 at the end of the tenth iteration,

The results of perturbation were quite different from that without pertur-

bation.

B-3. Numerical Integration and Pattern Search

The same parameters c, y» and g of equation (35a) were identified by-

numerical integration and pattern search. Equation (35a) was reproduced

below

^M=cK(t) f1
K(t) '

Oe

- yK(t) (U9)

with initial condition

K(0) = 50 (50)

The classical least square criterion, shown below, was used again as

the objective function in the search technique

S " * " l
±
K„ (t)

cD " K(t
'ED

1

'
(51)

The objective was to find c, y and g so that the sum of squares of

the deviations between the solution of equation (U9) and the generated

data was minimized.

B-3a. Computational Procedure

The problem was composed of equation (U9), (50) and (51). The



Table lUB. CONVERGENCE RATE FOR THREE PARAMETERS WITH CONSTRAINTS,
QUASILINEARIZATION WITHOUT NOISE

89

CONSTRAINT'S 4 < C(t, ) < 10
k

1 < Y(t
k) < 5

< g(t
k
) < 1

ITERATIONS c(t
k ) Y(tk ) g(t

k)

6.0000 2.0000 0.4000
1 4.1999 1.0000 0.1133
2 4.1999 1.0000 0.1533
3 4.1999 1.0000 0.1933
4 4.1999 1.0000 0.2333

Time = 2.40 minutes
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Table lUC. CONVERGENCE RATE OF THREE PARAMETERS WITH PERTURBATION,
QUASILINEARIZATION WITHOUT NOISE

K(l) = K(0) + a (K(0) - K(0) )n n n+I , n

a = .2

ITERATIONS c(t
k) Y(t

k) 8(tk)

6.0000 2.0000 0.40000
1 -19.6564 25.4714 8.3152
2 -32.7600 26.5629 8.5849
3 - 6.8746 - 7.0354 13.9944
4 - 7.0285 - 7.0838 14.0290
5 - 7.0651 - 7.0601 14.0401
6 -11.2684 - 5.0684 15.3690
7 -11.7293 - 5.0951 15.3645
8 -10.0475 - 5.9762 15.0887
9 -10.0079 - 5.8898 15.1058

10 -10.0428 - 5.8838 15.1198

Time = 6.51 minutes
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computational procedure was the same as for two parameters except that

here it was a three dimensional search — p's had three coordinates (c,

Y and g) instead of two in the case of two dimensional search (Appendix

II, Part I).

B-3b. Numerical Results

The numerical values used were

At = .025 t
f

= 2.5 m
1

= 101

Only one set of initial approximations for c, y and g were used namely 11,

4 and .6. It was chosen arbitrarily. It was found that the solution con-

verged to the exact parameters of 6 , 2 and 4. The convergence rate of the

constant parameters is shown in Table 15 and the convergence rate is shown

in Figure 12.

C. Deterministic Model with Noise.

The same parameters c, y and g of equation (35a) were identified.

However, noise was imposed on the data. The same two methods were used.

C-l. Experimental data generation

The same data with noise for two parameters identification were

used here and they are shown in Table 11.

C-2. Quasilinearization computational procedure was the same as in section

B-2 of three parameters identification except that in equation (48b), K(t)

used was the generated data with noise.

Numerical Results

The numerical values used were the same as without noise. The results

are given in Table 16A and the curve fitting in Figure 13. The integration
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Table 15. CONVERGENCE RATE OF THREE PARAMETERS, SEARCH AND NUMERICAL
INTEGRATION WITHOUT NOISE

EVALUATIONS c(tk) Y(tk)
8(t

k
)

11.0000 4.0000 0.6000
10 11.0000 6.0000 0.6000
20 12.2431 5.0206 0.4705
30 13.0117 4.4395 0.3626
40 12.4279 4.8615 0.4277
50 12.5076 4.8056 0.4121
60 12.5198 4.7707 0.4108
70 12.5051 4.7792 0.4127
80 12.4898 4.7760 0.4126
90 12.4582 4.7557 0.4122

100 12.2043 4.6587 0.4127
110 10.8767 4.1097 0.4127
120 7.1399 2.5183 0.4095
130 7.7101 2.7531 0.4090
140 7.2238 2.5201 0.4030
150 6.3461 2.1519 0.4019
160 6.0320 2.0129 0.4002
170 5.9307 1.9701 0.3996
180 6.0219 2.0095 0.4001
190 6.0098 2.0043 0.4000
200 5.9963 1.9984 0.4000
205 6.000 1.9999 0.3999

TIME IN MINUTES: 6.90
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constants oscillated and the computation was terminated after the sixth

iteration, because the numerical integration of the model became infinity

in the seventh iteration. Constraints and perturbation were used again

to improve the solution.

1. The following constraints were used:

4 < c(t
K

) < 10

1 < Y(tK) < 5

< g(t
K

) < 1

Parameters c and y seemed to converge to 4.1999 and 1.0000 respectively

at the end of the fourth iteration but the value for parameter g was still

increasing. However, in the fifth iteration the numerical integration of

the model became infinity and the computation was terminated. Results are

given in Table 16B.

2. The perturbation used was as below

K(l) = K(0) + a(K(0) - K(0))
n n n+1 n

a = .5

The results are shown in Table 16c. At the end of ten iterations the

solution seemed to be more stable than before but the results still did not

give much of a sign of convergence.

C-3. Numerical Integration and Pattern Search

Computational Procedure

The computational procedure was the same as in section B-3 of three

parameters identification except in equation (51), KCt)^ used was the
ED

generated data with noise.



95

170 —

*=u^ I 50
v:

c->

CO -,
? i?.o

O
CO
q:

so

o: ro

o
Ll.

C :

c
V

t -.

C=9

50 '

4th IT.

2nd IT

3rd ITERATION

30
o- 0.5 1.0 1.5 2.0

I
'

1

! I

2.5

FIGURE 13. C0::v^ MCE R I FOR THREE PARAMETE
V/ITH NOISE, BY QUASILlNEARIZATlON.



96

Table 16A. CONVERGENCE RATE OF THREE PARAMETERS, QUASILINEARIZATION
WITH NOISE

ITERATIONS c(t
k) T(tk) g(t

k>

6.0000 2.0000 0.4000
1 0.8652 -1.2595 0.0279
2 2.3725 -1.5420 0.6657
3 0.7351 -0.9984 0.7127
4 3.4211 -1.5696 0.7296
5 0.2537 -0.7641 0.6517
6 2.7040 0.7291 -3.6554

TIME IN MINUTES: 5.63
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Table l6B. CONVERGENCE RATE OF THREE PARAMETERS WITH CONSTRAINTS,
QUASILINEARIZATION WITH NOISE

CONSTRAINTS: 4 < C(t. ) < 10
k

1 < YUk) < 5

< g(t
k
) < 1

ITERATIONS c(t
k) Y(t

fc
) gUk>

6.0000 2.0000 0.4000
1 4.1999 1.0000 0.1133
2 4.1999 1.0000 0.1533
3 4.1999 1.0000 0.1933
4 4.1999 1.0000 0.2333

TIME IN MINUTES =2.46
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Table l6C.CONVERGENCE RATE OF THREE PARAMETERS WITH PERTURBATION,
QUASILINEARIZATION WITH NOISE

K(l) - K(0) n + a (K(0) - K(0))

a = .5

ITERATIONS c(t
k) rCV 8(t

k)

6.0000 2.0000 0.4000
1 0.8652 -1.2595 0.0279
2 2.3725 -1.5420 0.6657
3 1.7071 -1.4902 0.7039
4 1.7582 -1.4579 0.7207
5 1.7187 -1.4408 0.7387
6 1.6804 -1.4225 0.7592
7 1.6421 -1.4040 0.7808
8 1.6052 -1.3859 0.8032
9 2.1420 -1.5719 0.7289

10 1.0768 -1.1953 0.7567

TIME IN MINUTES =6.57
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Numerical Results.

The same numerical values and the initial approximations for K(t)

,

c, y and g for the data without noise were used. Only one set of initial

approximations was used namely, 11, 4, .6. The solution converged to

12,4851, 4.8090 and 0.4145. It was found that when c(t„) shot to 13.0117
K.

at the 30th evaluation (Table 13) the solution converged to another minimum

point. Constraints were then imposed on c as follows

1 < c < 12

The solution now converged to 6.4877, 2.2326 and 0.4045. However, it took

70 more evaluations (approximately 2 minutes) to converge. The rates of

convergence with and without constraints are shown in Table 17 and the

convergence rate with constraint is shown in Figure 14.

D. Discussion

Conclusion cannot be drawn here from Quasilinearization than that for

the two parameters case. The results shown in Table 16A, B and C did not

even indicate any sign of convergence. It was very unstable due to the

complexity of the problem.

In the numerical integration and search the effect of local minimum

was seen here in the case with noise. When c went over 12, the solution

converged to a different point namely, 12.4851, 4.8090 and 0.4145. However,

when constraint was imposed in c (between 1 and 12) the solution converged

to 6.4877, 2.2326 and 0.4045 slightly perturbed from that of without noise.
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Table IT. CONVERGENCE RATE OF THREE PARAMETERS
INTEGRATION WITH NOISE

SEARCH AND NUMERICAL

WITH CONSTRAINT 1 < C(t
k

) < 12 WITHOUT' CONSTRAINT

EVALUATIONS c(t
k ) Y(tk ) g(t

k > c(t
k) Y(t

k) g(V
11.0000 6.0000 0.6000 11.0000 6.0000 0.6000

10 11.0000 6.0000 0.6000 11.0000 6.0000 0.6000
20 11.2979 3.8481 0.3930 12.2431 5.0206 0.4705
30 10.9437 4.3643 0.4293 13.0117 4.4395 0.3626
40 11.0414 4.2199 0.4187 12.4279 4.8615 0.4277
50 11.0240 4.1670 0.4121 12.4993 4.8006 0.4105
60 11.0350 4.1810 0.4129 12.5011 4.7904 0.4122
70 11.0361 4.1870 0.4130 12.4920 4.8030 0.4140
80 11.0335 4.1836 0.4130 12.4875 4.8070 0.4142
90 11.0308 4.1840 0.4131 12.4863 4.8082 0.4143

100 11.0121 4.1746 0.4129 12.4858 4.8086 0.4144
110 10.8549 4.1017 0.4124 12.4850 4.8091 0.4145
120 10.1745 3.7956 0.4105 12.4851 4.8090 0.4145
130 9.0874 3.3225 0.4078 12.4851 4.8090 0.4145
140 7.0253 2.4500 0.4038
150 6.4330 2.2025 0.4032
160 6.1423 2.0817 0.4028
170 6.3272 2.1596 0.4033
180 6.4813 2.2295 0.4045
190 6.4870 2.2318 0.4044
200 6.4877 2.2326 0.4045

TIME IN MINUTES 7.03 4.55
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Appendix I

Quasilinearization

Given a nonlinear first order differential equation [15, 17]

dx

dt
= g(x,t) (1)

with boundary condition

x(0) = a (2)

Function g(x,t) is nonlinear. Equation (1) could be solved by Runge-

Kutta-Gill method since it is a first order ordinary differential equation.

The function, g(x,t), could be linearized around x = y as follows,

g(x,t) = g(y,t) + (x-y)
9g(x,t)

3x
(3)

x=y

which is the Taylor Series with second and higher order terras omitted.

x and y are functions of independent variable t. Equation (1) and (3)

are combined.

dx
fi:

= g(y,t) + (x-y)g (y,t) (A)

where g (y,t) represents the partial differentiation of the function g(y,t)

with respect to y and is equal to

3g(x,t)
3x

x=y
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y is considered as a known function of t and x as the unknown and

so equation (4) is a linear differential equation with variable coef-

ficients. The boundary condition for equation (A) is given by equation (2).

A recurrence relation could now be constructed. An initial approxi-

mation for y(t) is chosen which is named x„(t) . The first approximation for

y(t) is substituted into equation (4) and this first order linear differential

equation with boundary condition of x(0) = a is solved for x(t) by the step

by step integration of Rung-Kutta-Gill method. This newly determined

function is called x, (t) . x, (t). x, (t) is then used as y(t) in equation

(A) and an improved x(t) is obtained. This new improved function is called

x (t) , which is substituted into equation (A) for y(t) and an improved x~(t)

is obtained. The procedure is continued until the desired accuracy is ob-

tained. The recurrence relation could be written as

— = g(x
Q
(t),t) + (x-^t) - X

Q
(t))

g (x (t),t), (5)
x

dx (t)

-^ = g(x
1
(t),t) + (x

2
(t) -

X;L (t))

gv
(x,(t),t), (6)

X
l

dx
N
(t)

dl
= 8 (x

N-l
(t) '° + (x

N
(t) " X

N-1
U))

\_^-l^^ (7)
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The boundary condition given by equation (2) is used in equation (5)

through (7).

This convergence rate of the quasilinearization technique is quad-

ratic in the sense that each iteration approximately doubles the number

of digits of accuracy.

Now the following set of n simultaneous first-order nonlinear ordinary

differential equations is considered [15, 17]

dx,
j

dt
= gi

(x-
L
,x

2
, ..., x

n
,t), i = 1, 2, ..., n (9)

with appropriate boundary conditions. The vector form of equation (9) could

be linearized around point y_ = (y-,»y 9 ,yo, •••, y ) as follows

dx

dF
= &&, « + I<X> (x-y_)

, (10)

where x, and g_ are in vector form and represent the vectors (x, ,x~, ..., x )

and (g-,,g
?

, ..., g ) respectively. The Jacobi matrix, J^(y_) , is defined by

iti)

3gj agj 9g
x

3y
x 3y

2
'

'

8 y

9g
2

3§ 2

3
*n 8g

n

n

3g.

3y
x

3y
2

3yn

3g
n

3y
x 3y

2
' 3y,

3g

in which -— represent the partial differentiation of g.(y-i,y 9 > ..., y )

with respect to y.. In matrix form, equation (10) could be written as
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dx
?

dt

dx
n

dt

=

g
2
(yr y

2
,.-.,y

njt
)

gn
(yr y 2

,...,y
n)t

)

3g.

(xry i
} 3^

3g.

+ (x2">r

2
) 5£

+...+ (x -y )

3g.

n J n 3y

Sg
n

3g
n

3g
n

(x,-y ) + (x -y ) + ...+ (x -y )
1 1 3y

n
2 ; 2 3y n ^n 3y

(ID

The recurrence relation for the system of equations, equation (11), in

general, could be written in the same form as equation (5) through (7).

dt '
8 i^

X
l,N-l'

X
2,N-1' •"' X

n,N-l,t ;

+ (x

3g-

- x
1,N 1,N-1' 3x

1)N_ 1

+ . . . (12)

+ (x - X
3g-

n,N n,N-l 3x
n,N-l

i = 1, 2, . .
.

, n,

N = 0, 1, 2, ...

Here the first subscript, i, denotes the subscript of the dependent

variables x, ,x , ..., x , and the second subscript, N, denotes the Nth

iteration. In equation (12) x. is considered as an unknown function
1 ,IN

and x_, .. , as a known function of t obtained from the (N-l)st iterative
i,N-l

solution. Thus, equation (10) or (12) would always be linear.
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1. Integration constant

2. Initial end final time

3. Step size

r:
Solve Equations (5)

and (10) by RKGS

Solve Equation ( 13)

for A by simple

search technique

Solve for K n + j

in

Equation ( 6 )

FIGURE 15. COMPUTER FLOW CHART OF
QUAS1LINEARIZAT10N METHOD
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INPUT:

( I ) Initial condition

( 2 ) Initial and final time

( 3 ) Step size

( <• ) Integration constant (F
(
)

I NO

Solve Equation 14 by the

RKGS method.

G
Compute S: for Rj from
Equation (IS), i=l,2, 3

I

Compare S, , S
2
and -5

3 J

Replace P with P*or P*'*by

( I ) Reflection

( 2 ) Expansion

( 3 ) Contraction

FIGURE 16. COMPUTE FLOW CHART FOE NUMERICAL
XTIOiN AND SEARCH,
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Appendix II

Simplex Search Technique

The Simplex search technique used in this work was developed by Nelder

and Mead [20] . This method depends on the comparison of function values

at the (n+1) vertices of a general simplex, followed by the replacement of

the vertex with the highest value by another point.

The following notations were used

P =
n

n point in n-dimensional space defining the
current "simplex"

S = the function value at P
n n

h suffix such that S, was maximum value of S (h for
"high")

a = suffix such that S = minimum value of S (£ for "low")

P = centroid of the points with i ^ h

P.P. = distance between P. to P

.

1 J i 3

A two dimensional problem is used to illustrate this method. Minimize

objective function = S = f.(x,y)

Figure 17. Simplex search technique diagram
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Step I Starting with any three arbitrary points to form a simplex:

P. ,P_ and P_. Their respective objective function are evaluated

as S, , S„ and S„ and compared. It is supposed that S values in

the decending order are S, = S , S„, S„ = S . The minimum value

of the objective function is along the line P.P and opposite

V p
i "V-

Step II The new point to replace P, is along P, P and in the opposite end

of P, . This new point is obtained by reflection and denoted by

P .

P = (1 + a)P - aPL (1)
n

where a is a positive constant, the reflection coefficient and

P P = aPLP (2)
n

* *
If S lied between S, and S„ then P, was replaced by P

h I h

and the search was started again with the new simplex.

Step III If S < S , that is if reflection has produced a new minimum then

* **
P is expanded to P by the relation

P** = yP* + (l-y)P (3)

the expansion coefficient

**_
P P

,M
P P

and is greater than unity.

** **
If S < S„, P, is replaced by P and Step I is repeated.

I* h * J

** **
But if S > S , the expansion fails and P is discarded. P is
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then replaced by P only and Step I is repeated.

Step IV If on reflecting P to P it is found that S > S for all

i ^ h, i.e. that replacing P by P leaves S the maximum. A

*
new P, is defined which could be either the old P, or P ,

n n

whichever has the lower S value and forms

P = 6P
h
+ (1-3)P . (5)

The contraction coefficient 3 lies between and 1 and

**_
P P

PP
(6)

**
P then replaces P, and Step I is restarted. If

** *
S > min (S, ;S ), i.e. the contracted point is worse than

*
the worse of P, and P , it is a failed contraction. In this

a

case all P.'s are placed by (P. + P )/2 and the process is

restarted.

A failed expansion could be taken as overshooting the valley

**
so that P is well upon the opposite side. A failed contraction

occurs when the valley is curved and one point of the simplex is

much farther from the valley bottom than the others. Contraction

might then cause the reflected point to move away from the valley

bottom instead of towards it. Further contractions would be

useless. These actions contract the simplex towards the lowest

point and would eventually bring all the points into the valley,

a, (3 and y determines the volume of simplex to be changed.

The criterion chosen to stop the process is to compare the

"standard error" of the objective function in the form
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_ o

/{£(S - S) /n} with a desired value. If it falls below the desired value

the process is stopped.

If there are constraints on the parameters then any parameter violating

the constraint is given a large objective function value and contraction is

then followed to bring the parameter inside the constraints.

Nelder and Mead found that the best values for a ,3 and y were 1, 1/2

and 2

.

A computer flow chart of Simplex search technique is shown in Figure

18.
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Calculote initial P and S
i i

Determine h, calculate p,

Compute P = (l+a) P~aP
h

Calculate S*

Pis S*<S
2

?1 L^xPiTs^sTTTIh ?

YES

Calculate S**
MM

YESLJ^Ts^s'. NO

T
YES

NO

L_
I

is S*< S£

*-n
FORM p = >Sp

h
+ Cl-jS) p

Calculate S**
Replace P

h
by P

- Iiwun i * ——. r Ji -i i "J

is S**> S h ? YES
VAU>~^*om . .fc. ». «y»^-i*« mi mjj muf

i

r
f P*

I

Replace P
h
by P**"

I

Replace ali P s

YES-

FIGURE IS. COMPUTER FLOW CHART OF SIMPLEX
SEARCH TECHNIQUE.
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Appendix III

Runge-Kutta-Gill Method (RKGS)

In solving the differential equations in this work the IBM subroutine,

Runge-Kutta-Gill numerical integration method (RKGS) was used [12, 21].

The purpose of the Runge-Kutta-Gill method is to obtain an approx-

imate solution of a system of first order ordinary differential equations

with given initial values. It is a fourth-order integration procedure

which is stable and self-starting — only the functional values at a

previous point are required to obtain the functional values ahead. For

this reason it is easy to change the step size h at any step in the cal-

culations. Control of accuracy and adjustment of the step size h is done

by comparing the results due to double and single step size 2h and h.

Given the system of first-order ordinary differential equations:

dy-L

y i
=

dx~
= f

i(
x >yr y

2 '
•••• yn

}

dy
2

y 2
=

dx~
= f

2
(x

> y l' y 2' ••" V

dy
n

yn
=

dx"
= f

n
(x

' y l' y 2'
"••» yn

}

and the initial values:

y l
(x }

= y l,0' y
2

(V = y 2,0' ••"W = yn,0

and using the following vector notations:
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y(x) =

yx
(x)

y 2
(x)

yn
(x)

, F(x,y) =

f^x.y)
'1.0

f
2
(x,y) y2,0

•
'
y0~

•

f
n
(x,y) yn,0

where y, F and yn are column vectors, the given problem appears as

follow:

yf =
ibh F <x»y>> y (x )

= yo

Thus, starting at x- with y(x«) = yn and vector Q~ = 0, the resulting

vector y, = y(xn+h) is computed by the following formulae:

K
x

= h • F(x ,y ); yx
= yQ

+ j
(K

1 " 2V ;

Qa
- Q + 3

2
(K

1
" 2V "K

K
2

= h • F(x
Q
+ |, yi ); y

2
= Yl + (1 - i)(K

2
- Qx);

Q
2

=
Q-l

+ 3 (1- ^(K.-Q,) - (1 -
2

> K
2

K
3

= h F(x
Q
+ |, y 2 ); y

3
= y

2
+ (1 + |) (K

3
- Q

2
> ;

Q
3

= Q
2
+ 3 (1 +

2
)(K

3
- Q

2
) - (1 +

2
)K

3
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K
4

= h • F(x
Q

+ h, y
3
); Y A

= V
3
+ ^ (K

A
" 2V ;

Q
A

- Q
3
+ 3

6
(K

4
" 2V 2

K
4

where K
][

, K
2>

K
3

, K^
, y , y , y , y^ , Q , Q , Q , Q^ are all column vectors

with n components. If the procedure is carried out with infinite pre-

cision (no rounding errors), vector Q, defined above would be zero. In

practice this is not true, and Q, represents approximately three times

the round off error in y, accumulated during one step. To compensate for

this accumulated roundoff, Q, is used as Qn for the next step. Also

(x. + h) and y, serve as x_ and y« respectively at the next step.

For initial control of accuracy, an approximation for y(xn + 2h) called

(2)
y ' (x + 2h) was computed using the step size 2h, and then an approximation

called y " (x_ + 2h) , using two times the step size h. From these two ap-

proximations, a test value 6 for accuracy is generated in the following

way:

1
n

=
15 I a

i
'

i=l

(1) (2)

where the coefficients a. are error weights specified in the input of the

procedure.

Test value 6 is an approximate measure for the local truncation error

at point x_ + 2h. If 6 is greater than a given tolerance e_, increment h

is halved and the procedure starts again at the point xn . If 6 is less

than e , the results y (xn
+ h) and y (x

n
+ 2h) are assumed to be cor-

rect. They are then handed, together with x + h and x + 2h and the

derivatives at these points — the values of F x
Q
+ h, y

(1)
(x + h)
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and F

subroutine.

x
Q
+ 2h, y

(1)
(x + 2h) respectivel — to a user-supplied output

If 6 is less than e, = e^/50, the next step is carried out with the

doubled increment. However, care is taken in the procedure that the in-

crement never becomes greater than the increment h specified as an input

parameter, and further that all points x + j • h (where j 1, 2, ...)

which are situated between the lower and upper bound of the integration

interval are included in the output. Finally, the increment of the last

step of the procedure is chosen in such a way that the upper bound of the

integration interval is reached exactly.

This control of accuracy was applied only in the generation of the

experimental data for one and two parameters. The experimental data

for three parameters were the same as for two parameters. This control

of accuracy was not used when solving the differential equations both in

the Quasilinearization and Simplex pattern search technique methods.
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Summary of the Computational Procedure of RKGS

a. Input

1. Lower and upper bound of the initial increment of the independent

variable, upper bound c of the local truncation error.

2. Initial values of the dependent variables and weights for the

local truncation errors in each component of the dependent variables

3. The number of differential equations in the system.

k. As external subroutine subprograms, the computation of the right-

hand side of the system of differential equations; for flexibility

in output, an output subroutine.

5. An auxiliary storage array named AUX with 8 rows and n columns.

b. Order of the calculation

1. j is set equal to 1

2. i is set equal to 0.

3. y!. is computed

y
iJ

=K
iJ

= hf
i
(y0J-l> yl,j-l>

••" yn,j-l )

= hf. , ,

k. Step (3) is repeated for i = 1, 2, ..., n

5. i is set to again

6. y. . and q. , are computed.

*lj - Ti.j-1
+ VKU "

*J ^.M J

Q., = Q. . , + 3[a,(K, , - b, Q, , .)] - c.K
ij
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where

a
x

= 1/2 b = 2 e
1

= 1/2

a
2

= 1 - /E72 b
2

= 1 c
2

= 1 - Kl2

a
3

= 1 + ST/2 b
3

= 1 c
3

= 1 + /I72

a^ = 1/6 b
u

= 2 c
u

= 1/2

Initially, Q (x ) = for all i; therefore, in advancing the

solution,

Q
iO

(x
t

}
= QiU

(Vl ) t = 1, 2, ...

To eliminate bias, Q and Q., should be rounded in opposite

directions, one rounded up and the other rounded down. Of fundamental

importance in controlling the growth of round-off errors is that K.
J-

J

and Q be obtained to the same order of accuracy, with errors of the
* J

order of h times the error in y. ..

7. Step (6) is repeated for i = 1, 2, ..., n.

8. Steps (2) - (7) is repeated for J = 2, 3 and h.

c . Output

yiu
=

yi
(x + h)

"

To advance the solution, step (l) - (8) are repeated, letting the

current y., be the initial values y. n
for the next step.

A computer flow chart for Runge-Kutta-Gill method is shown on

Figure 19-
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EEB

FIGURE 12. C(
r\ER FLOW FOR RUNGE-KUTTAr

GILL f ID.
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APdcNOIX IV. COMPUTER PROGRAM FOR THREE PARAMETERS

W-IThOUT NOISE 3Y QUASI LINEARIZATION

1

2

3

4

5

6

7

101
102
lo3
104
105
106

11

12

XTERv
IMEN*
IMENc
IMENc
IMENc
IMENc
ommon
ORMAt
CRMAt
CRMAt
ORMAt
ORMAt
ORMAT
ORMAt
ORMAt
ORMAt
ORMAt
ORMAt
ORMAt
ORMAt
EAD(
EAD(
EAD(
EAD(
EAD(
EAD(
EAD(
EAD(
EAO(
EAD(
EAD(
EAD(
Y=l
A = 6 • «

K = 2.^
K = C • h

J=l
X=l
RITE(
RITE(
RITE(
= 1

M=l
= 1

DIM=r
= 1

( 1 )=D

(2 )=n

t3)=o
F(NDt

•M_ F

ION
ION
ION
ION
ION
AA

»

[//.
( /,1
( 16X
(F16
(4E1
(4F1
(7t2
( 10 I

(9E8
( /16
(6E1
t2uX
t/,2
6)

»6)

,6)

,6)

»6J
»6)

»6J

»lul
»102
tl02
,4)

,104

UTP»CRDER»CNTRCD»SCHECK»SUBNAM»RANDU
( 3 ) » Y ( 4 } , DER Y ( 4 ) 9 AUX ( 6 »4

)

C2

)

»PART( 102 ) »HOMOl ( 102 ) »HCMC2< 102 ) »H0M03( 102
H5) »PHOY2(5) »PHOY3( 5) »PH0Y4(5)
C2 ) »'..( 50 5)

Xt27>28) »S(3C) >DCVX(27*3C)
K»IX »MM»L»N»Vj »AP»PART »nOM01 >3i, HOMO 2 »H0M03
11H ITERATION ,13)
H flKE»18Xtl5H- SUBJECT MATTER)
.6»14X»E18.9,8X>E18.9)

CT tO

PRMT
BS( 1

PHOY
AP(1
DLTV
AK. »6

4 X f

9X,3
,F12
.8)

6.8)
6.8)
7X,5
5)

.4)
H EVALUATION NO =15/)
3.6)
,E18.9»5
9X,2HKA»
(PRMT( I

)

EGUNO»VA

H PART,16X,6H hOV01»17X,6M H0M02)

X , E 1 8 . 9 , 5 X , E 1 a . V )

20X»3H KB»21X»3m Ki

1=1,3)
RIA

(PhO
(PhO
(PHO
(PhO
)NDI
)ERR
) ( (D

(u5(
) (D

P.
Yl
Y2
Y3
Y4
M

»

OR
LT
I )

CV

(

:''••

(M

(

M

(

M

NO
»S

vx
I

X(

) »M=1,4)
) >M=1,4)
) »M=1 ,4)

) »M=1 »4)

PTtNDIMPl >MAXNC»METHCD
UPLIM
( I » J ) » 1 = 1 »NDIM J t J=l »NDI MP 1

)

=1 »1C1 J

'

I ,1) ,1 = 1 »NDIM)

3 * 1 6

)

3»K5) A A, An
3.1 ) JJ

iun;

hOYl (M)

H0Y2(M)
HOY 3 ('-')

M-2) 16, 16,15



15
16

17

28

29

31

32

1C7
33

11!
35

37

38

. 30
40

Y (4

CAL
MM=
M=M
IF (

IF(

I X=
N=l
DC
P A R

N=N
CCN
N=l
DC
HCM

I = pri Y4 ( iM J

L PKGS(PRMT»YtDERY»FCT»CUTP»NDl >AUX)
• *1

+ 1

M-cQUNC) 12*12*17
IX_!~ ) 2 8 , 2 3 , 45
IX+1
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3 CCN
N = 2

29 1 =

I ( t )
=

+ 1

TIvUE
v.2

SG 1
=

CI ( I )

+ 1

TImUE
03
31 1

=DC
HCN"C
N = N

CCN
IF(

1 . 1 C

1

W ( N )

l»101
= .•. ( N )

1 * 1 C 1

N = 3

DC
HCM
N=N
CCN
NDI
WRI
WRI
WRI
WR I

CAL
WRI
WRI
W R I

WRI
AA =

AK =

IF(

BK =

XX =

WRI
IF(

36 DC
AP(
WRI
XX =

CCN
GC
DC
AP(
'.•; R I

XX =

CCN
Ir'Rl

+ 1

TI^E
NDT ;

-'-

04
lv.7 I

C3( I )

+ 1

TI»-UE
N" = \/AR

TE(3,
TE(3,
TE(3,
TE(3,
L rXC
TE( 3,

TE(3,
TE(3,
TE(3,
DO/X{
DCvX {

NDTM-
DO'X(
c .«

TE{3,
NDTM-
37 1

=

I )=PA
TE(^,
XX + PR
TK'E
TC A..

39 1 =

2) 33,33,32

=1.101
= W ( N )

IA .

1 L 1 ) ND I M * NCPT tNDIMPl f MAXNC »METHCD
1C4) ERRCR.SUPLI

M

1C4J (DCVX( I ,1 ) , 1=1 »NDIM)
1C4) ( (DLTVX( I »Ji » 1 = 1 »NDIM) »J=l,NDIMPl

)

riZ\ ( ND I M»METHCD»MAXNC » ERRCk , SUPL I M , DL TVX »DCVX»S »KK
U4)S(NDIM+2 ) » IDCVX1 I tN0IW+2) »I=1»NDIM)
1C4M (DCVX( I ,J) . I = 1»NDIM) , J=l >NCPT)
K4) (S( I ) * I = 1»NCPT )

K3KC
1»NDIM+21
2»NDIM+2J
2)' 35*35,111
3»NDIM+2J

2)'

2) 35,36.38
1,1.1
RT ( I >+AA*rlCMCl ( I >+AK*riCMC2 ( I J

3 ) XX,AP( I )

A T ( 3 )

1,1 1

[ )=PART( I )+/ : v Cl ( I ) +A<*HC'!C2 ( I >+BK*HCMC3( I )

TEf 3,

XX + PR
TImUE
TF( 3, 1 -6)

3 ) X X , A P ( I )

-1 T ( 3 )
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41

42
4 4

45

AA=CC*AA
AK=CP*AK
IFINDtiV-2 ) 42t42»41
B'<=CQ*BK
WRITE ( 3» 1-5 )

GO TO 44
WRITE( 3,105)
JJ=JJ+1
GO TO 11

A A ,AK »BK

AA»AK

IY=IY+1
IF( I Y-3 ) 46,46*43

46 OCVX( i 9 1 ) =.65
GO TO d

43 STOP
END
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9

10

11

12

13
14

15
17

16

SUBROUTINE RKGS ( PR.MT » Y »DERY FCT »CUTP ,ND I M . AUX )

DIMENSION Y(1),DERY(1),A(4),B(4)»C(4) »PRMT( 1) »AUX(6»1 )

DIMENSION AP(102) tW( 505)
COMMON AA,AK,BK,IX»MM,L,N,W,AP,PART,HOM01»BS,HOM02»HOM03
X=PRMt( 1

)

XEND=pRMT(2)
H=PRMT( 3)

A(l)=.5
A(2) = . 2928932
A(3)=i .707107
A(4)=. 1666667
B(l )=?.

B(2)=l-
B(3)=i.
B<4)=2«
C(l)=.5
C(2)=. 2928932
C(3)=i. 707107
C(4)=.5
DO 3 T=1»NDIM
AUX(3,I )=0.
AUX(6,I )=0.0
CALL FCT(X,Y,DERY)
CALL 0UTP(X.Y,DERY)
J = l

AJ=A(J)
BJ=B( J)

CJ=C(j)
DO 11 I=1.NDIM
Rl=H*nERY(I)
R2=AJ»(R1-BJ*AUX(6»I )

)

Yd )=Y( I )+R2
R2=R2+R2+R2
AUX(6,I )=AUX(6»I )+R2-CJ*Rl
IF(J-4) 12.15.15
J = J + 1

IF(J-3) 13.14,13
X=X+.5*H
CALL FCT(X.Y.DERY)
GO TO 10

DO 17 I=1.NDIM
AUX(6,I )=AUX(3.I )

CALL ~UTP(X.Y.DERY)
IF(X-xEND) 9.16,16
RETURN
END
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SUBROUTINE FCT ( X , Y ,DERY

)

DIMENSION PRMT( 1 ) *Y( 1 ) ,DERY( 1

)

DIMENSION AP( 102) »W( 505)
COMMON AA,AK»BK»IX»MM,L»N»W*AP,PART,HOM01»BS,HOM02»HOM03
IF(MM-l) 1»1,2

1 E=1.0
GO TO 3

2 E=0.0
3 ANO=loO.
EXPTM=EXP(-BK*X)
TERM1=( (AA*AP(L) )*( 1 .- ( AP ( I ) / ( ANO*EXP ( BK*X ) ) ) )-AK*AP(L) )*E
TERM2r(Y(l)-E*AP(L) )*(AA-( (2.*AA*AP(L) ) / ( ANO*EXP ( BK*X ) ) ) )-AK
TERM4=(Y( 3)-AK)*(-AP(L)

)

TERM3=(Y(2 ) -E*AA ) *( AP ( L)-( AP ( L) *AP ( L) / ( ANO*EXP ( BK*X ) ) )

)

TERM5=(Y(4)-BK)*( (-AA*AP ( L) *AP ( L) ) * ( -X ) *EXPTM/ANO

)

/DERY(i)=TERMl+TERM2+TERM3+TERM4+TERM5
l DERY(2)=0.0
DERY(^)=0.0
DERY(4)=0.0
RETURN
END
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701

702
704

SUBROUTINE OUTP ( X , Y , DERY

)

DIMENSION PRMT( 1) »Y( 1 ) ,DERY( 1

)

DIMENSION AP(102) »W< 505)
C OMMOn A A , AK , BK , I X , MM , L , N , W » AP , PAR T , HOMO 1 , BS , H0M02 » H0M03
IF(IX-l) 701,701,701
W(N)=Y( 1

)

N = N + 1

IF(X-,0249) 704,702,702
L = L + 1

RETURN
END
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SUBROUTINE GKCHEN (ND I M, METHOD ,MAXNO»ERROR ,SUPL I M , DLTVX , DCVX ,5 ,KK

)

DIMENSION DLTVX ( 27 , 28) ,C(28 ) ,DCVX( 2 7,30) ,S( 30) ,CNTROX( 27)
DIMENSION AP( 102) »W( 505)
COMMON AA,AK,BK,IX,MM,L,N,W»AP,PART,H0M01»BS,H0M02,H0M03

110 FCRMAj</19H THIS IS NEW METHOD/)
111 F0RMAT(/16H THIS IS SIMPLEX/)
112 F0RMAT(/12H THIS IS BOX/)
113 F0RMAT(/16H ****WARNING****/

)

114 FORMAT* 50H INADEQUATE GIVEN MAX. NO FOR FUNCTION EVALUATION,)
115 FCRMATU7H INCREASING THE MAXNO OR CHANGING THE STEP SIZE/)

GO TO (116,117,118) , METHOD
116 JMCHEN=1

KCHEN=1
ALPH0=1.0
BETA=o-5
C0EFF=1.2
GAMMA=2.0
WRITE(3,110)
GO TO 1

117 JMCHEm=1
KCHEN=2
ALPH0=1.0
BETA=n.5
GAMMA=2.0 * _ .

WRITE(3»111)
GO TO 1

118 JMCHEN=NDIM
ALPH0=1.3
BETA=o-5
WRITE(3,112)

1 J = l

KK=1
CALL *UBNAM(NDIM,J»SUPLIM,S»DCVX,KK)
K=NDIm+JMCHEN
KLT1=<-1
DO 3 J = 2.K
DO 2 I=ltNDIM

2 DCVX( l»J)=DCVX( I ,1)+DLTVX( I , J-l

)

CALL SUBNAM(NDIM,J,SUPLIM,S,DCVX,KK)
3 CONTINUE
4 M = K

ALPHA=ALPHO
CALL CRDER(M,NDIM,S»DCVX)
DO 5 I=1,KLT1

5 C(I )=!•
CALL CNTR0D(NDIM,KLT1,C,CNTR0X,DCVX)

6 DO 7 I=1,NDIM
7 DCVX(

I

»K+1)=CNTR0X( I J+ALPHA* ( CNTROX ( I )-DCVX( I ,K) )

J = K+1
CALL sUBNAM(NDIM,J,SUPLIM,S,DCVX,KK)
IF(KK-MAXN0)8,8,36

8 GO TO (9,9,23) , METHOD
9 IF(S(<+1)-S( 1) ) 10,10,23

10 DO 11 I=1,NDIM
11 DCVX( T »K+2 )=CNTROX( I )+GAMMA* ( DCVX ( I ,K + 1 )-CNTROX( I )

)

J = K + 2
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13
14

15

16
17

18

19

20

23
24
25

26

29
30

32

33

34

35

36

37
38

CALL ^UBN AM (NDIM.J.SUPLIM.S.DCVX.KK)
IF(KK-MAXNC) 12.12.36
GO TO ( 16. 13 ) .KCHEN
IF(S(<+2)-S( 1) ) 14.14,21
S(K)=c(K+2 )

DC 15 L=1.NDIM
DCVX(l.K) ^DCVX(L.K+2)
GC TC 35

131

IF(

S(K
DC
DCV
M = K

CAL
CAL
IF<
CVA
DC
C( I

CVA
CAL
ALP

S(K+2)-S(K+l> )17.17.21
)=c(K+2 )

18 L=1.NDIM
X((_»K) =DCVX(L»K+2 )

L ORDER (M

L sCHECK<
SUM-ERRCR
LUF=2*NDI
20 1=1. KL
)=CVALUE
LU^=2*NDI
L rNTRCD(
HArALPHC*

NDIM.S.DCVX)
K.SUM.NDIM.S)
J37.37.19
M-l
Tl

M-2
NDIM.KLT1.C.CNTRCX.DCVX)
CCEFF

GC TC 6

21 S(K
DC

22 DCV
GC
IF(
IF(
S(K
DC
DCV

27 DC
28 DCV

J = K

CAL
IF(
IF(
S(K
DC

31 DCV
GC
DC
DC
DCV
CAL
CCN
IF(
CAL
IF(
WRI
WRI
WRI
GC
DC
C( I

CAL
DC

39 DCV

)=MK+1 )

22 L=1.ND
X(l»K)=DC
TC 35
S(k+D-S(
S(<+l)-S(
)=S<K+1 )

26 1 = 1. ND
X( l.K)=DC
28 I=1.ND
X( ! .K+l ) =

+ 1

L <UBNAM(
KK-MAXNC)
S(x+1)-S(
)=S<K+1 )

31 1=1, ND
X( I ,K)=DC
TC 35
34 J = 2 .K
33 I=1»ND
X(

I

» J) = (D

L «:UBNAM(
TImUE
KK-MAXNC)
L <CHEC<(
SUm-ERRCR
TE(3,113)
TE(3.114)
TE(3,115)
TC 40
38 1=1, KL

L rNTRCD(
39 1 = 1, ND
X( r »K+1 )

=

IM
VX(L,K+1 )

)

K-l ) 121.21. 24
K) )25. 25.27

IM
VXU.K+1)
IM
CNTRCX( I )+BETA*(DCVX(

I

»K)-CNTRCX( I ) )

NDIM.J.SUPLIM.S.DCVX.KK)
29.29.36
K) )30,30,32

IM
VX( I .K+l

)

IM
CVX(

I

»1)+DCVX( I .J) )/2.
NDIM.J.SUPLIM.S.DCVX.KK)

35.35.36
K.SUM.NDIM.S)
)37,37,4

Tl

NDIM.KLT1.C.CNTRCX.DCVX)
IM
CNTRCX( I )



J = K+1
CALL sUBNAM(NDIM»J»SUPLIM.S»DCVXiKK) 132

40 RETURN
END
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20

10

11
12
13

14
15

UBNAM(NDIM,J,SUP|_IM,S»DCVX,KK)
3- ) , DC VX (2 7,30 ) »X(27) »XCPT(27) »HCMC2( 102)
( 102) »W( 5 05) .PARK 102) .HCM01 ( 102 ) » BS ( 102 ) »HCMC3(102)
i B.< » I X » MM , L »N , W , AP , PAR T » HCMC 1 .BS, HCMC2 HCMC3
HE OPTIMUM FUNCTION VALUE IS El 3. 6)

6)

16
17

SUBROUTINE S
DIMENSION S(

DIMENSION AP
COMMON AA,A.<
F0RMAT<31H T

FORMAT (6E1 3.

FORMAT ( 10 14)

IF(J-i )4»4»5
KCCNTrlO
ERR=10.
GO TO 6

MC"ltK+l
DO 7 I=1»NDIM
X( I )=nCVX( I , J)

CONTINUE
Tl=0.p
DO 20 1=1,101
T2=X( i )*H0M01( I

)

T3=X<2)*HOM02( I

)

T4*X<3)*HCMC3< I

)

T1 = T1+(PART( I )+T2+T3+T4-BS( I ) ) **2
T = T1

S(J)=T
IF(J-i) 9,9»11
DC 10 I=1.NDIM
XOPT( I )=X( I

)

CONTINUE
SOPT=T
IF( J-l )17, 17,12
IF(S(i )-S( J) ) 12,9,9
IF(KK-KCCNT) 14,13,13
WRITE(3,1)S0PT
WRITE (3, 2) (XOPT( I ) , I=1,NDIM)
WRITE(3,3)KK
KCCNT=KCCNT+10
IF(S(J)-ERR) 15,15,17
WRITE(3,1)S0PT
WRITE (3,2) (XCPTf I ) , I = 1,NDIM)
WRITE(3,3)KK
ERR=ERR*0.1
GO TO 17
S(JJ=<;UPLIM
RETURN
END

•*
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SUBROUTINE ORDER (

M

»NDI M »S» DCVX

)

DIMENSION 5(30) ,DCVX(27.30)
DIMENSION AP( 102) »W( 505)
COMMON AA»AK»6K»IX>MM»LtN*W»AP»PARTfHCMCl»BS»HCMC2»HCM!
K=M
KLT1=K-1
DO 5 I=1.KLT1
M =M-1
DO 4 J=1.M
IFCS(M+D-S( J) )2»2»A

2 A=S(M+1

)

S(M+1)=S( J)

S(J)=A
DO 3 L=1»NDIM
B=DCVx<L»M+l)
DCVX(L»M+1)=DCVX(L>J)
DCVX(L»J)=B

3 CONTINUE
4 CONTINUE
5 CONTINUE

RETURN
END
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SUBRC
DIMEN
DIMEN
CCMMC
CSUM =

DC 1

CSUM=
DC 3

AXIS =

DC 2

CNTRC
AXIS =

CCNTI
CNTRC
CCNTI
RETUR
END

UT IN
<;ICN

^ICN
N AA

1 = 1

CSUM
1=1

0-
J=l

x< I)

rNTR
mUE
x( I)

MUE
N

E CNTRCD(NDIM»KLT1»C»CNTRCX»DCVX)
C(28

)

»CNTRCX(27) »DCVX(27»30)
AP( 102) »W( 505)
,AK»BK»IX»MM»L»N*W»AP»PART,HCMC1»BS,HCMC2»HCMC3

• K.LT1

+ C( I )

• NDIM

.KLT1
=AXIS+C( J)*DCVX( I »J)
CX( I )

= CNTRCX( I )/CSUM
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SUBROUTINE SCHECK (K»SUM»NDIM»S)
DIMENSION S(30)
DIMENSION APQ02) >W(505)
COMMON AA,AK,BK»IX»MM,L»N»W»AP*PART,H0M01,BS,H0M02*H0M03
SAVG=ff
DO 1 L=1»K
SAVG=c(L)+SAVG
AK = K
5AVG=$AVG/AK
SUM=0,
DO 2 L=1»K
SUM=SuM+(S(L)-SAVG)**2
ANDIM=NDIM
SUM=SUM **0.5/ANDlM
RETURN
END
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APPEND I y V. CC'-'.PUTER PROGRAM f*CR TnXcE PARAMETERS WITH

PERTURBATION WITHOUT NCi^E oY QUASILINEARIZATIOi

1

2

3

4

5

6

7

10]
1C2
IC3
104
1C5
1.6

11

12

EXTER*'
DIMENc
DIMENc
DIMENc
D I ."Eric

DIMENc
Common
F CR
FORMAT
FORMAT
FORMAT
FORM/ l

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
READ(
READ(
READ(
READ(
READ(
READ(
READ(
READl
READ(
READl
READ(
READ(
ALPhA=
IY = 1

AA=6.^
A<=2.~

AP( 1 )=

JJ=1
I X= 1

WRI TE(

WRITEt
KRITE(
M=l

*1

.
-

L = l

L

ON
r\t .

wi <•

/> » •

ON
ON
AA
//

/ ,

16

Fl
4E
4F

/ *

1C

9E
/l
6E
20
/

b)

FCT
PR
PS
PH
AP
DL
»AK
.4-
19X
X,F
5.8
16.
16.

27X
15)
3.4
6H
13.

(P

,0U
MT (

( 1C
0Y1
( LC

TVX
,bK
X, 1

»5H
12.
)

8)

8)

,5H

)

EV
6)

IS

,2

RiA

TP»OROER»CNTRCDtSCMtC<*SUbNAM
3 ) * Y { 4 ) , DER Y ( 4 ) , AUX (6,4) , AAP ( 1 C 2 )

2 ) »PART ( 102 ) »M0"01 ( 102 ) »HCM02( 102 ) .H0M03 ( 102 )

(5 ) »PHCY2(5 ) ,PH0Y3( 5) , PH0Y4(5)
2) »W< 505 J ,?ERT( 102)
t 27*28) »S(30) »DCVX(27»30)
f IX »MM»L»Nffc »AP»PAi*T >hO.'« 01 ,dS,H0.v 2 , hO>"0 3

1H ITERATION ,13)
TIME»18X»15H SUBJECT MATTER)
4,SX,H2.2,6x,F12.2,6X,F12.2)

PART»16X»6H HCVCl»17X,6n H0M02

J

:LUATICN MO =15/

J

.9,5X,E1S.9,5X,E13.9)
HKA»2CX»3H <B»21X»3H Kd )

T( I ) »I=1 ,3)

OtVARIA
CO»OPiOG
( PriOYl (M) ,M=1 ,4)

(PriOY2(,- ) »M=1»4]
(PriOY3(M) ,,v = i ,4)

( PH0Y4 (M) , M=l ,4)

1 ) ND I
•••

» NOP T , I ;D I yP 1 » MAXNO i METHOD
2 ) ERROR tSUPLlM
2 ) ( (DLTVX( I ,J) ,1=1 »NDIM) ,J=1 tNOIMPl )

(oS( I ) ,1 = 1 ,1C1)
4)- (DCVX ( I ,1 ) , 1 = 1 »NDIMJ

6) EQUN
6)

6)

6)

6)

6)

10

10
10

4)

10

2

3,16)
3,1-5) AA,A<,5<
3,1) J J

OUUO
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15
16

17
28

29

30

31

32

107
33

111
35

36
5C

.37

Y ( 1 ) =PH
Y(2 >=dH
Y (3 )=Dh
if(ndt;-;

Y (4) =Dn
CALL On
MM=KM+1
M=M+1
IFhM-rG:
IF( IX-1
I X= I X + l

N=l
DC 29 I

PARK T )

H-K+l
CCNTImU
N=1U2
DC 3w I

HCMClf

I

N=N+1

.

CCNTImU
N = 203
DC 31 I

HCf-'C2f I

N=N+1'
CCNTImU
I F ( i\ D T

;•'

.N-3C;4

DC lc>7

hC.v.C3 ( I

N=N+1
CCNT I Ml)

NDIM=\/A
WRITE (3

WRITE f

3

WRITE (3
WRITE (3
CALL r,K

WRITE (3
WRITE (3

WRITE (3
WRITE (3
AA = DC\/X

AK = DC\/X

IFLMDt.v,

8K = DC\/X

XX=o.a
WRITE (3

IF(NDT>;
IF( JJ-1
DC 37 I

AP(

I

)=P

WRITE (3
XX=XX+P
CCNTImUI
GC TC 4

C Y 1 ( M )

CY2 (M)
CY3C-:)
-2) 16.16.15
CY4(,'i)

GS( PRMT .Y.UERY.FCT iCUTP »NDIM»AUX

J

) 2i

12.12. 17
,28',45

=1»1C1
=W(N)

=l»lul
) = W ( N )

=1,101
) = W ( N )

-2) 33.33.32

I=l»lUl
)=W(N)

E ,

RIA
.1.1 >NDIM
.K4JERRC
»K4) (DCV
,104 J ( (DL
CHEN1 NDIM
. K4)S(ND
»1~4) ( (DC
.1-4) (S(

I

rlU3)KK,
( l»NDIM+2)
(2,NDIK+21
-2) 35,35,111

, NCPT , ND I" ' P 1 , MAXNC >METHCD
RtSUPLlN'
x( r ,i ) ,i = i »ndim)
TVX( I ,J) ,I=l,NDr-') »J=1»NDIMP1 )

».
,-'.ETHCD,MAXNC»ERRCR»£UPLIix''*DLTVX»DCVX»S»ICKJ

I
.'• + 2 ) » ( DCVX ( I , ,\D I M + 2 ) , I = 1 ,.ND I M )

VX ( I , J ) , I = 1

,

no I M ) , j = 1 , NCP T

)

) , I = 1».\CPT)

,2)
-3) 36,36,38
) 5C»50»38
= 1,K1
ART ( I ) +AA*HCMC1 ( I ) + A;<*HC:;C2 ( I J+ok*hCWC3( I )

,3) XX,BS( I ) »AP( I

)

K -l T ( 3 )
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38 DC 39
P( I

( I )

RT (

I I )

ITE
= XX
MTI39

40

41

42
44

45

43

AA
AP
PE
AP
'aR

AX
cc
WR
AA
AK
IF
Bi/ _ ^^

WRITE
GC TO

ITE

= CP
(ND

aR
JJ
GC
IY

IF

ST
EK

ITE
= JJ
TC

= IY

( IY

CP
D

1=1*1-1
I

- " P ( I )

! ( I )+AA*HCMCl ( I > + AK«riC.XC2 ( I )+&&*HCtfC3( I )

I
) sALPHA*

(

API I ) -AAP( I ) )

"

P(

I

) *PERT( I )

(
3.3 ) XXtBSC I ) »AP( I

)

,PERT ( I

)

+PRMTO )

(3,16)

*AK
rM-2) 42,42,^1

(3,1.5) AA , AK t BK
4 4

(3,1-5) AA»AK
+ 1

i 1

+ 1

-3) 43,43,43
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SUBROUTINE RKGS ( PRMT » Y ,DERY »FCT »OUTP , ND I M , AUX

)

DIMENSION Y( 1) »DERY(1 ),A(4)»B(4),C<4) ,PRMT( 1) »AUX(6*1 )

DIMENSION AP( 102 ) *W(505)
COMMON AAtAK»BK»lX»MM»L»N»W»AP»PART»HCMCl»BS»HCM02»HCM03
X =PRMTd)
XEND=pRMT(2)
H=PRMj(3)
A(l)=.5
A(2)=. 2928932
A(3)=l«707107
A<4)=,1666667
B(l)=?.
B(2)=i.
B ( 3 ) = 1 .

B(4)=?.
C<1)=.5
C<2)=. 2928932
C(3)=i-707107
C(4)=.5
DO 3 l=l»NDIM
AUX(3,I)=0.

3 AUX(6,I ) = 0«0
CALL FCT(X»Y,DERY)
CALL oUTP(X»Y»DERY)

9 J = l

10 AJ=A(j)
• BJ=B(J)
CJ=C(j)
DO 11 I=1»NDIM
Rl = H*oERY( I )

R2=AJ*(R1-BJ*AUX(6»I )

)

Y(I)=yU)+R2
R2=R2+R2+R2

11 AUX(6,I )=AUX(6»I )+R2-CJ*Rl
1FU-4) 12.15.15

12 J=J+1
IF ( J-? ) 13.14,13

13 X=X+.?*H
14 CALL FCT(X.Y.DERY)

GO TO 10

15 DO 17 I=1,NDIM
17 AUX(6,I )=AUX(3»I )

CALL OUTP(X.Y.DERY)
IF(X-xEND) 9.16,16

16 RETURN
END
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SUBROUTINE FCT( X Y ,DERY

)

DIMENSION PRMT ( 1 ) »Y( 1 ) ,DERY( 1

)

HtMCMr T ^M ADM HT \ .M/ Cnt \DIMENSION AP(102) »W( 505)
COMMON AA,AK»BK» I X »MM»L »N» W » AP »PART »H0M01 »BS , H0MC2 » H0M03
I F ( MM- 1 ) 1,1,2IF(MM-1 )

1 E=1.0
GO TO 3

2 E=0.0
3 ANO=ln0.

EXPTM=EXP(-BK*X)
TERM1=
TERM2=
TERM3=
TERM4=
TERM5=
DERY(l
DERY(2
DERY(3
DERY(4
RETURN
END

(AA*AP(L) )*( l.-(AP(L)*EXPTM/ANO) )-AK*AP(L) )*E
Y( 1 )-E*AP(L) )*( AA-( (2.*AA*AP(L)*EXPTM)/AN0) )-AK
Y(2 )-E*AA)*(AP(L_)-(AP(L)*AP(L)*EXPTM/ANO) )

Y( 3)-AK)*(-AP(L) )

Y(4)-BK)*( (-AA*AP(L)*AP(L) ) * ( -X ) *EXPTM/AN0

)

=TERM1+TERM2+TERM3+TERM4+TERM5
=0.0
= 0.0
=0.0
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700

SUBROUTINE CUTP ( X , Y , DERY

)

'DIMENSION PRMT(l) »Y( 1) ,DERY(1

)

DIMENSION AP( 102) »W( 505)
COMMON AA, AK

»

BK» IX ,MM»L »N, W » AP

,

PART, HOMO 1 ,BS ,H0M02 , H0M03
IF(IX-I) 700,700,701
W(N)=Y( 1

)

N = N+1
GO TO 704

701 W(N)=Y(D
N = N+1
IF(X- # 0249)

702 L = L + 1

704 RETURN
END

704,702,702

<»
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SUBROUTINE GKCHEN(NDIM.METHCD»MAXNO»ERRCR.SUPLIM.DLTVX,DCVX,S,K
DIMENSION DLTVX(27»28),C(28), DC VX (27.30), S(30) .CNTRCXC27)
DIMENSION AP( 102) tW( 505)
COMMON AA , AK . BK . I X , MM , L » N » V! » AP , PA RT , HOMO 1 , BS , HCMC2 » HOM03

110 FCRMAT(/19H THIS IS NEW METHOD/)
111 FCRMAT</16H THIS IS SIMPLEX/)
112 FCRMAj</12H THIS IS BOX/)
113 FORMAT </16H ****WARN I NG****/

)

114 FORMA- ( 50H INADEQUATE GIVEN MAX. NO FOR FUNCTION EVALUATION*)
115 F0RMAt(47H INCREASING THE MAXNO OR CHANGING THE STEP SIZE/)

GO TO (116.117,118) .METHOD
116 JMCHEN=1

KCHENsl
ALPHO=1.0
BETA^o.5
CCEFF=1.2
GAMMA=2.0
WRITE(3.110)
GO TO 1

117 JMCHEM^l
ICCHEN^2
ALPHO=1.0
BETA=n.5
GAMMA=2.0
WRITE(3.111)
GO TO 1

118 JMCHEw=NDIM
ALPHO=1.3
BETA=o-5
WRITE{3.112)

1 J = l

KK = 1

CALL <UBNAM(NDIM»J»SUPLIM»S.DCVX,KK)
K=NDIw+JMCHEN
KLT1=<-1
DO 3 J=2.K
DO 2 I=1.NDIM

2 DCVXtT»J)=DCVX( I.1)+DLTVX( I »J-1)
CALL sUBNAMtNDIM.J.SUPLIM.S.DCVX.OC)

3 CONTINUE
4 M = K
ALPHA=ALPHO
CALL ORDER(M.NDIM.S.DCVX)
DO 5 I=1.KLT1

5 CU ) = i .

CALL CNTROD(NDIM.KLTI.C.CNTROX.DCVX)
6 DO 7 I=1.NDIM
7 DCVXC I »K+1 )=CNTR0X( I ) +ALPHA* ( CNTROX ( I )-DCVX( I »K)

)

J = K + 1

CALL SUBNAM(NDIM.J.SUPLIM»S»DCVX,ICK)
IF(KX-MAXNO) 8,8.36

8 GO TO (9.9.23) .METHOD
9 IF(S(<+1)-S( 1) )10, 10. 23

10 DO 11 I=1»NDIM
•11 DCVX( I »K + 2 )=CNTRCX( I J+GAMMA* ( DCVX ( I ,K + 1 )-CNTRCX( I ) )

J = K + 2



CALL sUBNAM(NDIM»JtSUPLIM»5»DCVX»KK) 144
IF(KK-MAXNC) 12,12,36

12 GO TO (16,13) »KCHEN
13 IF(S(K+2)-S(l))14,14»21
14 S(K)=s(K+2 )

DC 15 L=1,NDIM
15 DCVX(L»K)=DCVX(L»K+2)

GC TO 35

16 IF(S(k+2)-S(K+1) ) 17,17,21
17 S(K)=MK+2)

DC 18 L=1,NDIM
18 DCVX(L'K) =DCVX(L,K+2)

M = K
CALL CRDER(M,NDIM»S»DCVX)
CALL <;CHECK(K,SUM,NDIM,S)
IF(SUM-ERRCR) 37,37,19

19 CVALUE=2*NDIM-1
DC 20 I=1,KLT1
C(I)=CVALUE

20 CVALUE=2*NDIM-2
CALL cNTRCD(NDIM,KLTl,C,CNTRCX,DCVX)
ALPHA=ALPHC*CCEFF
GC TC 6

21 S(K)=S<K+1

)

DC 22 L=1,NDIM
22 DCVX(L»K)=DCVX(L»K+1)

GC TC 35 .

23 IF(S(<+1)-S{K-1) )21>21,24
24 IF(S(<+1)-S(K) )25»25»27
2 5 S(K)=$(K+1 )

DC 26 I=1,NDIM
26 DCVX( I»K)=DCVX( I,K+1)
27 DC 28 I=1,NDIM
2 8 DCVX( I ,K+1 )=CNTRCX( I ) +BETA* ( DCVX ( I,K)-CNTRCX( I)

)

J =K+1
CALL 5UBNAM(NDIM,J,SUPLIM,S,DCVX,KK)
IF(KK-MAXNC)29,29,36

29 IF(SC<+1)-S(K) )30»30t32
3 S<K)=S<K+1 )

DC 31 I=1,NDIM
31 DCVX( I»K)=DCVX( I,K+1

)

GC TC 35

32 DC 34 J = 2,K
DC 33 I=1,NDIM

3 3 DCVX( I ,J)=(DCVX( I ,1)+DCVX( I ,J) )/2.
CALL SUBNAM(NDIM,J,SUPLIM,S,DCVX,K.<)

34 CCNTImUE
IF(KK-MAXNC)35,35»36

35 CALL <;CHECK(K,SUM,NDIM,S)
IF(SUm-ERRCR) 37,37,4

36 WRITE(3,113)
WRITE(3,114)
WRITE (3, 11 5)

GC TC 40
37 DC 38 I=1,KLT1
38 C(I )=i.

CALL CNTRCD(NDIM,KLT1,C,CNTRCX,DCVX)
DC 39 I=1,NDIM

39 DCVXt I ,K + 1 )=CNTRCX( I

)



40

J = K + 1

CALL sUBNAM(NDIM»J»SUPLIM»S»DCVX»KK)
RETURN
END

145

/
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SUBROUTINE SUBNAM ( ND IM, J »SUPL

I

M»S » DCVX,KK

)

DIMENSION AP( 102) »W( 505) »PART (102) »H0M01( 102) »BS( 102) »H0M03(10
DIMENSION 5(30) ,DCVX(2 7,30) ,X(27) ,X0PT(27) ,HOM02(102)
COMMON AA,AK,BK,lX,MM,L>N,W,AP,PART,HOMOl,BS,H0MO2,H0,VO3

1 FORMAtOIH THE OPTIMUM FUNCTION VALUE IS E13.6)
2 FORMAt(6E13.6)
3 FCRMAT<10I4)

IF(J-l )4,4,5
4 KCONT=10

ERR = 1o
GO TO 6

5 KK=KK+1
6 DO 7 I=1,NDIM

X(I )=DCVX( I, J)

7 CONTINUE
Tl=0.o
DO 20 1=1,101
T2=X(l )*HOM01( I

)

T3_=X(?)*HOM02( I )

T4=X<3)*HOM03( I

)

2 T1=T1+(PART( I )+T2+T3+T4-BS( I ) )**2

T=T1
S(J)=T
IF(J-D 9,9,11

9 DO 10 I=1,NDIM
XOPT( I )=X( I)

10 CONTINUE
SOPT=T
IF(J-i)17»17»12

11 IF(S(D-S( J) )12»9,9
12 IF(KK-KCONT) 14,13*13
13 WRITE(3,1)S0PT

WRITE (3, 2) (XOPT( I

)

,I=1,NDIM)
WRITE(3,3)KK
KC0NT=KC0NT+10

14 IFtS(j)-ERR) 15,15,17
15 WRITE(3,1)S0PT

WRITE(3,2) (XOPT( I ),I=1,NDIM)
WRITE<3»3)KK
ERR=ERR*0.1
GC TO 17

16 S(J)=sUPLIM
17 RETURN

END
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SUBROUTINE ORDER (

M

»ND 1M ,S»DCVX )

DIMENSION S(3^) ,DCVX(27»30)
DIMENSION AP( 102) >W( 505)
COMMON AA,AK,8K, I X »MM L »N W » AP , PART ,HOMOl ,BS , HOM02 » HOM03
K=M
KLT1=<-1
DO 5 I=1»KLT1
M = M-1
DO 4 J=1.M
IF(S.(M+D-S( J) )2»2»4

2 A=S(M+1 )

S(M+1)=S( J)

S(J)=A
DO 3 L=1»NDIM
B = DCVX<L»M+1 )

DCVX(|_»M+1 )=DCVX(L»J)
DCVX(l»J)=B

3 CONTINUE
4 CONTINUE
5 CONTINUE
RETURN
END
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SUBROUTINE CNTROD

(

NDIM»KLT1 »C »CNTROX»DCVX

)

D I MENS I ON C(28) ,CNTRCX(27) »DCVX(27»30)
DIMENSION API 102) »W(505)
COMMON AA,AK»BK»IX»MM,L»N»W»AP»PART,HOM01»BS,HOM02»HOM03
CSUM=o»
DO 1 I = 1»,KLT1
CSUM=cSUM+C( I

)

DO 3 I=1»NDIM
AXIS=n.
DO 2 J=1,KLT1
CNTROxt

I

>=AXIS+C< J)*DCVX(I ,J)
AXIS=CNTR0X( I

)

CONTINUE
CNTROx< I )=CNTROX( I )/CSUM
CONTINUE
RETURN
END
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SUBROUTINE SCHECK (

K

tSUM.NDIM»S >

DIMENSION S(30)
DIMENSION AP(102) »W( 505)
COMMON AA,AK»BK» IX »MM ,L »N. W» AP »PART »HCMC1 »BS » H0M02 » H0M03
SAVG=o«
DO 1 L«ltK
SAVG = <;(L)+SAVG
AK = K

SAVG = «;AVG/AK
SUM=0.
DO 2 L=1,K
SUM = SllM+ ( S ( L) -SAVG ) **2
ANDIM=NDIM
SUM=SuM **0.5/ANDlM
RETURN
END
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APPENDIX VI. COMPUTER PROGRAM FOR THREE PARAMETERS *'ITHOUT

NOISE tiY NUMERICAL INTEGRATION AND SEARCH

EXTERNAL ORDER » CNT ROD »SCHECK»SUdNAN
DIMEMc ION BS(lOl) »W(202 )

DIMENSION WW (202

)

DI'MENcICN DLTVX (27, 28 ) ,5(30) ,DCVX( 27*30 )

COMMON BS» WW
2 FORMAT (/,19X»5H TIMEtl8X»15H SUBJECT MATTER)
3 FORMAt(16X»F12»6»14X»E18.9»4X»E18.9)
4 FORMAT (F 16. 5 )

111 FORMAt(1GI5J
102 FCRMAt(9E8.3)
103 FORMAT (/16H EVALUATION NO =15/)
104 FORMAT (6E 13.6)
1C5 FORMAT (7E10. 4)

XX=C.a
DLXX=.o25
READ( i »101 )NDIK»NCPT'»NDIMP1 itfAXNC »METHOD
READ d, 105) ERROR»SUPLIM
READ( i »1C2 )

(

(DLTVX ( I ,J )

,

1=1 *NDIM) ,J=1 ,NDIMP1

)

READ( i »4) (8S( I ) , 1 = 1 ,101)
IY=1

22 READ(i»lC5) (DCVX( I , 1 ) , 1 = 1 ,i\DIM)

WRI TE( 3 , U 1 ) NPIM»NOPT»NDIMPl»MAXNO»METHOD
WRITE(3»1L4)ERR0R»SUPLIM
WRITE (3, 1-4) (DCVXI I , 1 ) , I =1 ,ND I M

)

WRITE (3, 1.4) ( (DLTVX ( I , J ) , I = 1 ,ND I M ) ,J = 1,NDIMP1

)

CALL r,KCHEN ( NO I M ,,- ETnOD ,MAXi\0 , ERROR , SOPL I M , DLTVX , CC'JX , S ,« )

WRITEf 3,1(4 )S(MD I M + 2) , (DCVX( I .NDIM+2) ,1=1 »NDIM)
WRITE (3,104) ( (DCVX( I ,J) ,I = l,i\DIM) ,J=1 ,N0PT)
WRITE.f 3,104) (S( I ) , I=l,NOPT )

WR I TE( 3»l<-3 )«
WRITE (3,2)
DO 5C 1=1,101
WRITE (3,3 ) XX»WW( I 1 »BS C I

)

XX=XX+DLXX
5C CONTINUE

IY=1Y+1
IFCIY-1) 43,43,43

43. STOP
END
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SUBROUTINE GKCHEN ( ND I M .METHOD »MAXNO» ERROR ,SUPL I M.DLTVX, DCVX, S,KK
DIMENSION WW(202)
DIMENSION BS(lOl)
DIMENSION DLTVX127.28) ,C(28) » DCVX (27, 30) ,5(30) »CNTROX(27)
COMMON BStWW

110 FORMAT (/19H THIS IS NEW METHOD/)
111 F0RMA-r(/16H THIS IS SIMPLEX/)
112 F0RMAt(/12H THIS IS BOX/)
113 F0RMATI/16H ****WARN I NG****/

)

114 FORMAT* 50H INADEQUATE GIVEN MAX. NO FOR FUNCTION EVALUATION,)
115 FCRMAT<47H INCREASING THE MAXNO OR CHANGING THE STEP SIZE/)

GO TO (116.117, 118) , METHOD
116 JMCHEN=1

KCHEN=1
ALPH0=1.0
BETA=o«5
C0EFF=1.2
GAMMA=2.0
WRITE(3,110)
GO TO 1

117 JMCHEN=1
K.CHEN=2
ALPHO=1.0
BETA=o-5
GAMMA=2.0
WRITE(3tlll)
GO TO 1

118 JMCHEN=NDIM
ALPH0=1.3
BETA=o*5
WRITE(3,112)

1 J = l

K.K = 1

CALL SUBNAM(NDIM,J,SUPLIM,S»DCVX,KK)
K = NDlM-»-JMCHEN
ICLT1=K-1
DO 3 J = 2.K
DO 2 I=1»NDIM

2 DCVXt I»J)=DCVX( I»1)+DLTVX( I ,J-1)
CALL SUBNAM(NDIM,J»SUPLIM»S,DCVX,KM

3 CONTINUE
4 M=K
ALPHA=ALPHC
CALL CRDER(M»NDIM,S»DCVX)
DO 5 I=1»KLT1

5 C(I)=i.
CALL cNTROD(NDlM,KLTl.CtCNTROX,DCVX)

6 DO 7 I=1,NDIM
7 DCVXt I ,K+1 1=CNTR0X( I )+ALPHA* ( CNTROX ( I

) -DCVX ( I»K) )

J = K + 1

CALL SUBNAM(NDIM»J»SUPLIM,S»DCVX,K£)
IF(KK-MAXNO)8,8,3S

8 GO TO <9,9»23) , METHOD
9 IF(S(k*1)-S( 1) )10»10.23

10 DO 11 1=1 »NDIM
11 DCVX( I ,K + 2 )=CNTROX( I J+GAMMA* ( DCVX ( I ,K + 1 )-CNTROX( I )

)
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CALL SUBNAM(NDIM»J»SUPLIM»S»DCVX»KK)
IF(KK-MAXNC) 12,12,36

12 GC TO (16, 13) ,KCHEN
13 IF(S(k+2)-S( 1) )14>14.21
14 S(K)=s(K+2

)

DC 15 L=1,NDIM
15 DCVX(L»<)=DCVX(L»K+2J

GC TC 35
16 IF(S(<+2)-S(K+l) ) 17,17,21
17 S(K)=s<K+2 )

DC 18 L=1,NDIM
18 DCVX(L»K)=DCVX(L,K+2)

M = K

CALL CRDER(M,NDIM,S,DCVX)
CALL sCHECK(K»SUM»NDIM»S)
IF(SUM-ERRCR)37t37»19

19 CVALUE=2*NDIM-1
DC 20 I=1,KLT1
C(I)=cVALUE

20 CVALUE=2*NDIM-2
CALL CNTRCD(NDIM»KLT1,C»CNTRCX,DCVX)
ALPHA=ALPHC*CCEFF
GC TC 6

21 S(K)=s(K+l

)

DC 22 L=1,NDIM
'22 DCVX(L»K)=DCVX(L,K+1)

GC TC 35
23 IF(S(«+l J-S(K-1 J )21,21,24
24 IF(S(«+1)-S(K) )25,25,27
25 S(K)=s(K+l

)

DC 26 I=ltNDIM
26 DCVX( l»K)=DCVX( I,K+1)
27 DC 28 I=1,NDIM
2 8 DCVX( ltK+1 )=CNTRCX( I ) +BETA* ( DCVX

(

I»K)-CNTRCX( I

)

\

J =K+1
CALL sUBNAM(NDIM,J,SUPLIM»S,DCVX,KK)
IF(KK-MAXNC)29,29,36

29 IF(S(<+1)-S(K) )30»30,32
30 S(K)=s(K+l)

DC 31 I=1,NDIM
31 DCVX( i»K)=DCVX( I»K+1)

GC TC 35
32 DC 34 J=2,K

DC 33 I=1,NDIM
3 3 DCVXt I»J)=(DCVX( I , 1)+DCVX( I ,J) )/2.

CALL <;UBNAM(NDIM,J,SUPLIM,S»DCVX,KK)
34 CONTINUE

IF(KK-MAXNC)35, 35,36
35 CALL SCHECK(K,SUM,NDIM,SJ

IF(SUm-ERRCR)37,37»4
36 WRITE(3tll3)

WRITE(3»114)
WRITE(3»115)
GC TC 40

37 M = K

CALL CRDER(M,NDIM,S,DCVX)
DC 38 I=1,KLT1

38 C( I )=!•



CALL CNTRCD(NDIM»KLT 1 »C *CNTRCX ,DCVX

)

DC 39 I=1,NDIM
39 DCVX( I »K+1 )=CNTRCX( I

)

J=K + 1

CALL SUBNAM(ND1M»J»SUPLIM»S»DCVX»K<)
40 RETURN

END
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SUBROUTINE SUBNAM (ND I M, J »SUPl_ I M »S » DCVX,KK

)

DIMENcICN S(30) »DCVX( 2 7,30) »X(27) ,XOPT(27)
DIMENSION BS(lOl)
DIMENSION Y( 1) ,DERY( 1),AU)>B(4)>CU) ,PRMT(4) »AUX(6,6)
DIMENSION W(202)
DIMENSION WWC202)
COMMON BS»WW

1 FCRMAtOIH THE OPTIMUM FUNCTION VALUE IS E13.6)
2 FORMAT <6E13«6

J

3 FCRMATC10I4J
107 F0RMATOF16.4)

IF( J-i)4,4,5
4 KC0NT=10

ERR=lo-
GO TO 6

5 KK=KK+1
6 DO 7 I=1»NDIM

X( I )=dCVX( I »J)

7 CONTINUE
IF(X(i).GT.12. ) GO TO 16
xxx=o # o

DLXXX=.025
Y(l)=50»
SUMl=o-0
N = l

PRMTtl )=0.0
PRMT(?)=2«499
PRMT(q)=.025
Z=PRMt(1)
XEND=pRMT(2)
H=PRMt(3)
A(l)=.5
A(2)=. 2928932
A(3)=i» 707107
A(4)=.1666667
B(l)=?.
B(2)=l-
B(3)=i*
B(4)=2.
C(l)= # 5

C(2)=. 2928932
C(3)=l. 707107
C(4)= # 5

DO 20 I=1.NDIM
AUX(3,I ) = 0.

20 AUX(6 t I )=0.0
ANO=loO«
DATA1=X( 1)*Y( 1

)

DATA2=Q.-(Y( 1)/(AN0*EXP(X(3)*Z) ) ) )

DATA3=X(2)*Y( 1)

DERY(i )=DATA1*DATA2-DATA3
GO TO 21

22 M=l
23 AM=A(m)

BM=B(m)
CM=C(m)



24

25

27
28

26
29

33
21

31
32
34

35

9

10

18

11
12

101
13

50

14
15

NDIM=i
DC 24
Rl=H*o
R2=AM*
Y( I )=y
R2=R2+
AUX(6,
IFIM-4
M*M+1
IF(M-3
Z=Z+.5
DATA1=
0ATA2=
DATA3=
DERY(]
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1=1 ,ND
ERY( I )

(Rl-BM
(

I

)+R2
R2 + R2
I )=AUX
) 25.2

[M

*AUX(6» I )

)

(6.1 >+R2-CM*Rl
6.26

) 27»28»27
*H
X( 1 )*Y
( l.-(

Y

X( 2) *Y
)=DATA

(1)
(

1

)/<ANC*EXP(X(3)*Z ) ) ) )

(1 )

1*DATA2-DATA3
GC TO 23
DC 29 I=1.NDIM
AUX(6,I )=AUX( 3»I )

GC TC 21
IF(Z-xEND) 22»34»34
W(N)=Y<1 )

N = N+1
IF(N-2) 31.31.32

16
102

GC TC
GC TC
1 = 1

DC 35
SUM1 =

T=SUM
S(J) =

NDIM =

IFIJ-
DC 10
XCPTt
CCNTI
DC 18
WW( I )

SCPT =

IF(J-
IF(S(
IF(KK
IF(KK
WRITE
WRITE
WRITE
DC 50
WRITE
XXX = X

CCNTI
KCCNT
IF(5(
WRITE
WRITE
WRITE
ERR = E

GC TC
S( J) =

WRITE
WRITE

22
33

1=1,10
<;UM1+(W

1

T

3

1 )9.9.1
1=1, ND

I )=X( I )

nue
1=1,10

rW( I )

T

1) 102,
1 )-S( J)
-5) 102
-KCCNT)
(3,1 )SC
(3,3 )KK
(3,2) (X

1=1,10
(3,107)
XX+DLXX
NUE
= KCCNT+
J)-ERR)
(3,1 )SC
(3,2 ) (X

(3,3)KK
pR*0. 1

17
^UPLIM
(3,1 ) S
(3,2) (

( I )-BS( I ) )*(W( I )-BS( I ) )

1

IM

102,12
) 12,9.9
102,101
14,13,13

PT

CPT( I ) »I=1,NDIM)
1

XXX, WW ( I

)

X

10
15,15,17
PT
CPT( I ) ,1=1 tNDIM)

CPT
XCPT( I )

»

1=1 tNDIM)



XXX=0 # 156
DC 19 1 = 1 10 1

WRITE(3»107) XXX»WW(I)
XXX=XXX+DLXXX

19 CONTINUE
WRITE(3»3) KK

17 RETURN
END
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SUBROUTINE ORDER (

M

»NDI M.S, DC VX

)

DIMENSION S(30) ,DCVX(27t30)
DIMENSION BS(lOl)
DIMENSION WW1202)
COMMON BSfWW
K = M
KLT1=^-1
DO 5 I=1»KLT1
M =M-1
DO 4 J=1,M
IF(S(M+1)-S( J) )2»2»4
A=S(M+1 )

S(M+1)=S( J

)

S(J)=A
DO 3 L=1,NDIM
B = DCVX(L»M+1 )

DCVX(l*M+1 )=DCVX(L»J)
DCVX(l»J) =B
CONTINUE
CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE CNTROD (ND IM.KLT 1 »C »CNTRCX , DCVX

)

DIMENSION C(28 ) ,CNTROX(27) tDCVX( 27.30)
DIMENSION BS(lOl)
DIMENSION WW(202)
COMMON BS»WW
CSUM=o.
DO 1 I=1»KLT1
CSUM=cSUM+C( I

)

DO 3 I=1,NDIM
AXIS=0»
DO 2 J=1*KLT1
CNTROx< I)=AXIS+C(J)*DCVX< I ,J)

AXIS=cNTROX( I

)

CONTINUE
CNTR0X( 1)=CN7R0X( I )/CSUM
CONTINUE
RETURN
END
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SUBROUTINE SCHECK I K .SUM ,ND IM ,S

)

DIMENSION S(30J
DIMENSION BS(lOl)
DIMENSION WWC202)
COMMON BS,WW
SAVG=o.
DO 1 L=1,K
SAVG=s<L)+SAVG
AK = K

SAVG = <;AVG/AK
SUM=0 #

DO 2 L=1,K
SUM=SUM+<S(L)-SAVG)**2
ANDIM=NDIM
SUM*SUM **0.5/ANDIM
RETURN
END

*\
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PART II. SIMULATION AND OPTIMIZATION OF ENVIRONMENT SYSTEMS

INTRODUCTION

A basic problem in the study of life support systems is to establish

conditions under which human beings feel thermally comfortable. Since the

condition for thermal comfort is influenced by various factors in a complex

manner it has been very difficult, if not at all possible, to bring all the

factors involved together to study their effects on each other. Fanger [1]

has made an attempt to bring many of the factors together and established

a fairly general equation for thermal comfort.

The first purpose of this part of the work was to illustrate how the

systems techniques could be used to analyze life support system. The

second purpose was to study the behavior of Fanger' s comfort equation by

simulating the feasible region of the comfort equation. The third purpose

was to minimize the energy requirement of a typical life support system

under the constraint of the comfort equation.

STATEMENT OF PROBLEM

The existing conditions inside and outside a life support system is

important for comfortable existence in the system. A study was made of the

interaction between these conditions.

Supposed that an equilibrium condition is maintained inside an en-

closed area shown in Figure 1. If the outside conditions are different

from that of the inside, the incoming air would disturb the equilibrium

condition inside. It can happen in four ways:

(1) If outside temperature and relative humidity are higher than those

of the inside, the incoming air will give up its heat in the room.
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(2) If the outside temperature and relative humidity are lower than those

of the inside, the incoming air will absorb heat from the room.

(3) If the outside temperature is higher than the inside temperature but

the relative humidity is lox^er than that of the inside, then the incoming

air will either give up or absorb heat in the room depending on the

specific instance.

(4) If the outside temperature is lower than that of the inside but the

relative humidity is higher than that of the inside, then the incoming

air will either give up or absorb heat in the room depending on the specific

instance.

In this work only the first situation was considered. Specifically it

was considered that the outside conditions are more hazardous than that of

the inside and the incoming air bring in heat in three different forms:

(1) Sensible heat (or dry heat) is brought about due to the dif-

ference between the outside and the inside temperature. This re-

lationship is shown below.

5
1

= f
l
(T

2
" V <«

S, = sensible heat in Kcal/hour

T_ = outside temperature in C

t = inside temperature in C

(2) Latent heat (or wet heat) is brought about by the difference

between the outside and the inside partial pressure of water vapour.

This relationship is shown below.

5
2

- £
2
(P

2
- P

a) (2)

S„ = latent heat in Kcal./hour



163

P
?

= outside partial pressure of water vapour in mm Hg

P = inside partial pressure of water vapour in mm Hg

.

3

(3) Frictional heat which is brought about by the friction in the

air duct.

S
3

= f
3
(V(v)) (3)

S~ = frictional heat in Kcal./hour

V = air velocity in the duct in meter/sec.

v = air velocity in the room, meter/sec.

Therefore, the total heat brought in is

5 = 5^82 + 53 (4)

S = total heat brought in by the incoming air which
caused the disturbance of the comfort condition
inside.

For a given level of activity and an outside condition of T», P_, the

problem was to find the best combination of the room temperature t
,

partial pressure of water vapour in the room, p and the room air velocity,
B

v, in meters/second so that the total energy brought in by the incoming

air is minimized.

Three different outside conditions and four different levels of activ-

ities for males were studied.

In this study the equilibrium condition was defined by Fanger's comfort

equation and so, before any optimization was carried out, the equation was

thoroughly investigated.
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LITERATURE SURVEY

Thermal comfort depends on a number of factors. According to

Rholes (personal communication) these factors can be classified into three

main categories: (1) Reciprocative Factors which include activity, clothing,

exposure and social. (2) Organismic Factors which include age, diet,

rhythmicity. (3) Physical Factors which include sound, light, area-volume,

radiation, inspired gas, atmospheric pressure, force field, air movement,

and temperature-relative humidity (RH)

.

Numerous studies on the above factors were made and usually at most

two parameters were studied at a time. The method was to vary the two

parameters under investigation while keeping all other parameters constant.

The effect of environmental conditions was very extensively investi-

gated. Several typical studies are discussed below:

Inouye, in 1953, [6] studied the effects of environments with widely

different relative humidities on the partition of heat loss of uniformly

and lightly clad men and on their subjective sensations of thermal comfort.

The environments were selected to slowly cool the skin without inducing

visible sweat or apparent shivering during a period of three hours. He

concluded that non-fasting men, lightly clad in uniform suits, showed

greater heat loss by evaporation in environments maintained at 80 F, 76 F,

or 72 F with a 30 percent RH than with an 80 percent RH. The effects at-

tributed to relative humidity appeared more readily at the higher environ-

mental temperatures.

The subjects reported that the environments maintained at 76 F or

72 F with a 30 percent RH felt thermally the same as one with an 80 percent

RH. At the time of entrance into the environment having similar temperatures,
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they felt warmer in one with an 80 percent than in one with the 30 percent

RH. When the limits of thermal comfort were set between the sensations

of very slightly warmer and very slightly cooler, the resting, lightly

clad men were thermally comfortable for a period of three hours in en-

vironments having temperatures 76 F to 72 F and with 30 to 80 percent RH.

Winslow in 1939 [21] carried out a study of the nude body's physio-

logical reactions and sensations of pleasantness under varying atmospheric

conditions. It was an attempt to analyze the influence upon physiological

reactions and human comfort of widely varying conditions of air temperature,

wall temperature, air movement, and humidity. The fundamental thermo-

dynamic process was described by the equation

M+S = E + R+C

M = rate of metabolism

S = rate of storage (cooling or heating of body tissues)

E = rate of evaporative heat loss

R = rate of radiative heat loss or gain

C = rate of convective heat loss or gain.

His results showed: (1) metabolism for a given subject remained ap-

proximately constant within the range of operative temperature employed,

64 to 100 F—operative temperature was the temperature which represented

the net physical effect of a given combination of air and wall temperatures.

(2) At a critical operative temperature of 88 to 90 F the heat produced by

metabolism (roughly 100 kilogram-calories per hour for subject one was

balanced by the heat loss due to evaporation and to radiation plus con-

vection-these two major components accounting for about 50 kilogram-
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calories each. Storage was zero; that is, the body tissues showed no

change in temperature. (3) As one proceeded to higher operative temper-

atures, the heat received from the environment due to radiation plus con-

vection increased progressively but was exactly balanced by a similarly

progressive increase in evaporative heat loss, so that no positive storage

(warming of the body) took place. At an operative temperature of 106 F

the body was gaining 106 kilogram-calories from the combined influence of

walls and air, and this heat gain plus the metabolic heat produced was

balanced by a heat loss of 200 kilogram-calories due to evaporation.

(4) Below the critical temperature of 86 F the phenomena were wholly dif-

ferent. Evaporative heat loss here changed but slightly, falling from 40

to 20 kilogram-calories per hour as the operative temperature decreased

as a result chiefly of the purely physical factor of decreasing vapour

pressure difference between skin and air. In this zone of body cooling,

heat loss due to combined influence of radiation plus convection increased

progressively. Since this progressively increasing heat loss was not

balanced, there was a parallel increase in negative storage (cooling of

the body tissues)

.

Hardy in 1938 (3) measured quantitatively the total heat loss and the

proportions due to radiation and convection from men exposed to various

atmospheric conditions in the temperature range of 71.6 F to 95 F. Radi-

ation accounted for about 70% of the total loss at 71.6 F and at 78.8 F,

but this percentage fell rapidly to zero as skin and air temperatures ap-

proached each other. Vaporization dissipated 18% to 30% of the heat at

the lower air temperatures but accounted for about 100% at 95 F. Convection

remained fairly uniform at about 15% until the air temperature rose above
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89.6 F. Convection was significantly increased by slight movements of

the body or the air.

The basal metabolism of both naked subjects was level throughout the

range of air temperatures from 71.6 F to 95 F.

Nevins in 1966 (16) re-evaluated the conditions for thermal comfort

as affected by dry bulb temperature and relative humidity. Seven-Point

votes were taken. Nine dry bulb temperatures were: 66, 68, 70, 72, 74,

76, 78, 80, and 82°F at each of eight relative humidity: 15, 25, 35, 45,

55, 65, 75, and 85%. The following were his results: (1) There was a

strong linear effect of temperature and a smaller, but yet substantial,

linear effect of relative humidity. (2) An interaction effect between

temperature and humidity was statistically significant at the 5% proba-

bility level.

The effect of air movement was investigated by Winslow (20) in 1938

and by Koch (7) in 1960.

Winslow in 1938 (20) investigated the influence of air movement upon

heat losses from the clothed human body. It was concluded that two sorts

of air movement were involved—the primary movement produced by the

exterior forces at work in the experimental booth itself (due to normal

air convection, with or without local fans) and modifications of such

movement produced by the inductive influence of the warm body of the sub-

ject, or by the interference of the body of the subject with the currents

set up by exterior forces. When two subjects were subjected to cool en-

vironments for periods of 200 minutes, in this experiment the rectal temper-

ature dropped about a quarter of a degree; skin temperature of the trunk

about 32.9 F; of the head, 50 F; of the lower extremities, 35.6 F; and of

the upper extremities, 37.4 F. He also found that low initial air movements
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were increased by induced air currents due to the warmth of the body.

High initial air movements were reduced by the physical obstruction of

the body.

Koch (7) in 1960 studied the sensation responses to temperature and

humidity under still air conditions in the comfort range. He employed

twenty-one subjects who were asked to report their impressions on a number

of scales which included thermal sensation, sensation of humidity, sensible

perspiration, pleasantness, air motion and sensation of warmth or coolness

from surrounding surfaces. Each of these scales was arbitrary. A seven-

point scale was used for thermal sensations. His results showed that the

line of optimum comfort for both winter and summer was approximately

straight and ranged from 77.6 F at 30% relative humidity to 76.5 F at 85%

relative humidity. It was only slightly dependent on humidity.

Some studies attempted to establish a comfort zone and two of such

studies were discussed below.

Houghten (5) in 1923 employed 130 people to determine the comfort zone.

The results pointed to the fact that 64.5 degree Effective Temperature was

the comfort line. Effective Temperature was a scale of temperature made

up of combinations of temperature and humidity; it was an indication of

the relative feeling of warmth. At 58.5 effective temperature, all subjects

in the test agreed that the condition was too cold which became the lower

boundary. The upper boundary was at 72.5 E. T. There was a rapid rise

in comfort from 58.5 to 64.5 E. T. followed by a comparatively gradual

fall beyond 64.5 indicating that humans were more sensitive to lower than

high temperature. It was also found that if subjects dwelt in the same

temperature over prolonged periods of time, they became acclimatized to

the condition.
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McNall (15), in 1967, determined the thermally neutral temperature

and zone for men and women with activity levels resulting in metabolic

rates of approximately 600, 800 and 1,000 Btu/hour for the average male

subject. Activities and occupations included in 600 Btu/hour were:

sitting, moderate arm and leg movements, driving car in traffic, house-

maid, typewriting rapidly, ironing, and washing floors; that for 800

British Thermal Unit-Hour (Btu/hour) were: sitting, heavy arm and leg

movements standing, moderate work at machine or bench, shoemaker, and

walking (3 mph) ; that for 1000 Btu/hour were: walking about, with moderate

lifting or pushing, carpenter, metal-worker, and industrial painter. Seven

points were used in the voting of thermal sensation. (Thermal comfort was

defined as that condition of mind which expressed satisfaction with the

thermal environment; comfort zone or zone of thermal neutrality was the

environmental condition where the body is able to maintain a balance between

heat production and heat loss without significant changes in any of the

readily measurable indices of thermal comfort; thermally neutral temperature

was the temperature desired most frequently by the subjects for thermal

comfort within a zone of thermal neutrality)

.

The results indicated that for metabolic rates of 600, 800, and 1000

Btu/hour, the thermally neutral temperatures were 72, 66 and 60 F respectively,

Men and women preferred similar thermally neutral temperatures; however,

the "comfort zone" for men at each metabolic rate included a wider range

of temperatures than were included in the women's "comfort zone". Relative

humidities of 25, 45 and 65 had little effect upon men and women's "thermal

comfort" at the 600 and 800 Btu/hour (approximately) metabolic rates, but

the relative humidity did affect the thermal comfort region for women at
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the 1000 Btu/hour (approximately) metabolic rate.

The effect of clothing on the physiological reactions of the human

body to varying environmental temperatures was investigated by Gagge (2)

in 1938. He found that the gross physiological responses of the clothed

body when compared with the nude were broadly identical, and that the skin

temperature was the prime factor controlling sensations of thermal pleasant-

ness in both, the hot and cold zone and for both clothed and not clothed

bodies

.

In 1939 Herrington (4) studied more than just two parameters that

influenced thermal comfort at the same time. He brought most of the pa-

rameters into an equation for the calculation of the heat exchange of the

clothed human body as follows:

M+S-E = k(T n -T)+k(T n -T)— v cl w c cl a

M = metabolism in kg-cal/hour,

S = net change in total heat content of the body mass expressed in
kg-cal/M^ /hour

,

E = evaporative loss computed as .58x times the evaporative weight
loss in grams/hour,

k = constant of radiation exchange per C difference between the
average surface temperature of the body and that of the enclosing
walls,

T . average temperature in C of the exposed skin and clothing surfaces
of the body system,

T = average temperature of the wall surfaces,

T - Average temperature of the ambient air surrounding the body,
3

k = constant of convection exchange per C difference between T and
C m

or
s

T
a.

Substituting values for k and k into the above equation,
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T
3
+ (273 + T )

3

M + S - E = .75 x (4 x 4.92 x 10 ) x -= - —

—

+ 1.0 /v (T . - T )
cl a

v = velocity of air movement in cm/sec.

He found a limit of physiological tolerance for heat and cold stress.

From previous studies he concluded that a rectal temperature of 25 C (77 F)

was near the lower limit of average tolerance and the upper limit of toler-

ance was between 42.2°C (107.96°F) and 43.5°C (110. 3°F).

Fanger (1) in 1967 extended Herrington's study and established a comfort

equation, which was thoroughly studied in the simulation part of this work

and was later used as a constraint in the optimization of energy.

THE COMFORT EQUATION

Since the comfort equation were used extensively in this work, this

equation is reviewed briefly in the following. More detailed discussion

can be found in the original reference [1],

The sensation of thermal comfort is closely related to the mean skin

temperature and sweat secretation. For each activity level there are certain

values of the mean skin temperature and sweat secretion which result in

thermal comfort for an individual person. Fanger [1] showed that, under

thermal comfort conditions, the mean skin temperature and rate of sweat

secretion are related to the activity levels by the following equations.

t = 35.7 - 0.032 -^- (1 - n) (5)

S = A^CO.42) [-£- (1 - n) - 50] (6)

DU

where
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t = average mean skin temperature under comfort conditions, C.
s

S = average rate of sweat secretion under comfort conditions, kcal/hr

2
A = Dubois body surface area, m

M = metabolic rate, kcal/hr

n = external mechanical efficiency, dimensionless.

The metabolic rate per unit body surface area indicates the activity

level of a person. For college-age males, the metabolic rates per unit

body surface area at the following four different activity levels are [1]

2
(a) sedentary: M/A~ = 52 kcal/m hr

2
(b) low activity level: M/A^ = 83 kcal/m hr

2
(c) medium activity level: M/A^ = 111 kcal/m hr

2
(d) high activity level: M/A^ = 132 kcal/m hr.

If no external work is performed by the subjects, the metabolic rate

is equal to the internal heat production rate. However, when the external

work is performed, a part of the energy is consumed by this work which has

been assumed to have an efficiency n.

Equations (5) and (6) represent the basic conditions for thermal

comfort. [1] . Given an activity level, the comfort values for t and S

can be obtained by solving simultaneously these two equations. However,

to maintain steady state comfort conditions, the heat production rate inside

the body must be equal to the heat dissipation or consumption rate which is

usually controlled by the environmental conditions. Thus the comfort

equation can be obtained by using heat balance and the basic equations,

Equations (5) and (6). Under steady state conditions, the heat balance of

the body is
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internal heat
production in

the human body

heat loss by
evaporation
from the skin

heat loss by
respiration

heat loss by
conduction
through clothing

heat loss by

radiation at

the outer sur-
face of the clothing

Heat loss by
convection at

the outer surface
of the clothing

(7)

Fanger [1] performed this heat balance calculations and obtained the

following equation which must be satisfied for thermal comfort.

JL (1 - n ) - 0.35 [43 - 0.061 ~- (1 - n) - P

J

V ^u a

- 0.42 [-—- (1 - n) - 50] - 0.0023 ~- (44 - P )

M
- 0.0014 ~- (34 - t )

35.7 - 0.032 M/A^ (1 - n) - t
cfc

0.18 I
cl

4.8 x 10
8

f , f __ [(t . + 273)
A

- (t + 273)
A

]
cl ef f c2, mrt

+ f „ h (t „ - t ) , kcal/m h
cl c cl a

' (8)
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where

P = partial pressure of water vapor in ambient air, mm of Hg
a

o
t = air temperature, C
a

t = outer temperature of clothed body, C

I „ = dimensionless overall heat transfer resistance from skin to

the outer surface of the clothed body

f = ratio of the surface area of the clothed body to the nude body

f
f

- = ratio of the effective radiation area of the clothed body to

the surface area of the clothed body

t = mean radiant temperature, C
mrt r

h = convective heat transfer coefficient, kcal/m hr C.
c '

The products, A^ f „ f _. and A^ f . . represents the effective heatr Du c£ eff Du c£

transfer area of the clothed body for radiation and convection respectively

For free and forced convections, the values of h had been found to be [1]
c

h = 2.05 (t . - t )

0,25
kcal/m

2
hr °C (free convection) (9)

c ex. a

and

I/O O

h = 10.4 v kcal/m h C (forced convection) (10)
c

respectively, where

v = relative air velocity <2.6 m/sec.

It should be noted that Equations (9) and (10) are in agreement with

the commonly used formulas for free and forced convections respectively [13]

For a motionless person, the relative air velocity is equal to the
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actual air velocity. The mean radiant temperature, in relation to a given

person placed at a given point with a given body position and a given

clothing, is defined as that uniform temperature of a black enclosure,

which gives the same heat loss by radiation from the person as in the

actual enclosure under study.

Equation (8) actually containes two separate equations. The first

equality relation of Equation (8) can be solved for the outer surface

temperature of the clothed body, t , giving rise to the following expres-
Cm

sion.

t , - 35.7 + -^- [0.0196341 „ + n (0.10835 I . + 0.032)]
ci A_ cJl cl

- (.0634141 )P - (0.00021
n )td a ex. a

- i-«"u
ct . o

c
(11)

For simplicity, let

0.019634 I „ + (0.10835 I . + 0.032) = a (12)
ex. ex.

Equating the left hand side of the first equality sign in Equation

(8) to the right hand side of the second equality sign of the same equation

and using Equations (11) and (12) , we obtain

(1-n) - 15.05 + 0.0213 -^- (1-n) + 0.35 P
a%u ^u

- 0.42 -^- (1-n) + 21 - 0.1012 -^- + 0.0023 P -0.0476 -^~

*Du *Du
a ^u

+ 0.0014t
a
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4.8 x 10
8

f „ f e - [(a -~- - 0.063414 I P - 0.0002 I t
c£ erf A_ da cl a

-1.0711 . + 308. 7)
4

- (t + 273)
4

]
cl mrt

+ f . h (35.7 - a -^- - 0.063414 Pd c AjXi

- (1 + 0.00021 n )t - 1.0711 „), kcal/m
2
h (13)

cic a ex.

The following assumptions were made by Fanger [1] in arriving at the

above final form of the heat balance equation.

(1) The mean skin temperature, t , and the internal body temperature

are important parameters for thermal comfort. The mean skin temperature

layes between 27 C and 37 C

27°C < t < 37°C
s

(2) The heat of vaporization of water at 35 C is equal to 575 kcal/kg.

Fanger [1] used the following conditions in his experiments,

(1) For each activity level the temperature of air, t , was maintained
8

equal to the mean radiant temperature

t = t -•
a mrt

(2) The relative humidity was maintained at 45%.

(3) The external mechanical efficiency of the body, r\ , was maintained

at zero, i.e.

n = 0.

In the present study it was assumed that the convective heat loss was

by forced convection only. This implied that the value of convective heat
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transfer coefficient, h , was given by equation (10).

Since there was a transition zone between free and forced convection,

the lower limit of the applicability of Equation (1) was not clearly defined,

However, it was found in practical calculations that the lower limit of

Equation (10) was approximately 0.1 m/s [1]. This approximation was adopted

in this work. Thus the value of v was restricted to the range

0.1 < v < 2.6 (1A)

Taking the above experimental conditions and the assumptions into con-

sideration, the comfort equation, Equation (13) became

0.4525 -7^- + 0.3523 P + 0.0014 t + 5.95

= 4.8 x 10"8 f . f ..[(-0.63141 „P - 0.00021 . t
cl eff L

cl a c£ a

+ 308.7 + 0.0196341 . -^- - 1.0711 „)
4

- (t + 273)
4

]
cl K. cl a

+ 10. 4f . AT [-0.063414 P - (1 + .00021 ,)t
cl a cl a

+ 35.7 + 0.0196341 . -^- - 1.0711 J, kcal/m
2
h (15)

This comfort equation contained the following variables.

M
cl cl 'A_ eff * a a

However, in most practical situations in life support systems, only the

thermal environmental variables P , t , and v are controlled, and so
a a

other variables, namely, M/A^ , I , f , and f
ff

were considered as

parameters in the present study.
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SIMULATION OF COMFORT EQUATION [12]

The values for the parameters, M/A^ , I f , and f __, were

furnished by the Institute of Environmental Research, Kansas State University

and are tabulated in Table 1. Four types of activities for males were

M
considered. There were total four sets of parameter values for

I
c£'

f
c£'

f
eff

V
M

With the assumption that , I „ , f . , and f -_ are constants forL d ci eff

each type of activity, the comfort equation can be written as

A + CP + Dt + 5.95 = E[(-FP - Gt + W)
4

- (t + 273)
4

]a a a a a

+ X ^ (- YP - Zt + U) (16)
a a

where

M
A = 0.4525

C = 0.3523

D = 0.0014

E = 4.8 x 10"8 f „ f „
cJl eff

F = 0.063414 I .ci

G = 0.0002 I .

W = 308.7 + 0.0196341 „
~- - 1.0711 .cl A^ c£

X = 10.4 f n

Y = 0.063414

Z = 1 + 0.00021
„cl
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U = 35.7 + 0.0196341 . -^- - 1.0711
nci A^ c£

It can be seen from Table I that parameters I . and f „ are the same

for all types of activities and f ff changes only for sedentary levels.

Thus,

F = .0380484

G = 0.00012

X = 11.44

Z = 1.00012

The values of A, E, W, and U are different for different types of activities.

Examination of Equation (16) reveals that it depended on the fourth

powers of t and P , but only depended on the square root of v. Thus, the
3. Si

best way to simulate this equation was to assume values for t and P , and
3 3.

then calculated v from Equation (16) . Thus

v =

4 4
A + CP + Dt + 5.95 + E[(-FP - Gt + W) - (t + 273) ]

a a a a a

X(-YP - Zt + U)
a a

DATA 1 - DATA 2

DATA 3
(17)

Equation (17) was simulated on an IBM 360/50 computer. The computer

flow diagram is shown in Figure 23. Some typical computational results are

shown in Figures 2 through 5 where four typical metabolic rates listed in

Table 1 were used.

The peculiar behavior of these figures can be attributed to the character-

istics of Equation (17). Mathematically, Equation (17) has two limits. The

lower limit was zero, which occurs when the numerator is equal to zero, and

the upper limit is infinite, which occurs when the denominator is equal to
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Table 1. Values of Different Parameters

184

type of M/A^ I m f m f _,
'
+ ;„*+„ i5u cl d effactivity . . , 2i_J kcal/nrhr

male sedentary 52 .6 1.1 .65

low 83 .6 1.1 .75

medium 111 .6 1.1 .75

high 132 .6 1.1 .75
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zero. These two limits are shown clearly in Figures 2 through 5. Ob-

viously, the comfort equation is feasible only in the region represented

by the segment BC (see Figure 2). The feasible regions for P = 1 mm Hg,

under various different activity levels, are listed in Table 2.

The segments AB and DE are unreasonable regions. The segment AB is

infeasible because forced convection has been assumed in establishing

Equation (17) and thus the relative velocity of air must be larger than

0.1 m/sec. It should be emphasized that the comfort equation is also ap-

plicable for free convection, provided that Equation (9) is used. However,

for free convection the relative velocity of air, v, does not appear in

the comfort equation.

It is of practical interest to obtain the upper and lower mathematical

limits of Equation (17). At the upper limit, where v * °°, we have

X(-YP - Zt + U) = (18)
a a

At the lower limit, where v = 0, we have

A + CP + Dt + 5.95 + E[(-FP - Gt + W)
4

- (t + 273)
A

] = (19)
a a a a a

By solving Equations (18) and (19) , the mathematical upper and lower limits

were obtained respectively. The results are shown in Figures 6 and 9.

Equation (18) could be solved easily. However, Equation (19) is a

fourth order equation in P and t and could not be solved easily. There-n a a

fore, the Newton-Raphson method was employed to solve Equation (19) numeri-

cally. The method was described in Appendix I and the computer flow diagram

for this procedure is shown in Figure 22.



Table 2. Feasible Range of t , P = 1 mm Hg
a a

186

M/A_
uu

kcal/m2hr

52

83

111

132

feasible_ range of temperature , C

31.6 < t < 3U.2— a —

30.6 < t < 3U.1— a —

29. ^ < t < 39-9— a —

28 < t < 33.6— a —
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The physical limits imposed on the comfort equation are given by

Equation (14). With these physical limits of v = 0.1 and v = 2.6, Equation

(17) could again be solved for P as a function of t by the Newton-

Raphson method.

Results of these calculations were also shown in Figures 6 and 9.

Since Equation (19) is a fourth-order equation, four values of P

were obtained for each value of t . It is worth examining all four roots
B

for feasibility. Equation (19) can be rewritten as

A
f (P , t ) = A + CP + Dt + 5.95 + E[(-FP - Gt + W)

a a a a a a

- (t + 273)
4

] (20)
a

With t = 20 C, values of the function f had been calculated as a function
a

of P . However, it was found that all roots except one are not within

the following range of P .

B

< P < 60 mm Hg— a —

In fact, no root had been found to exist even within the range of

-60 <_ P <^ 0, which was obviously physically impossible. Thus, Equation

(19) only has one feasible root as shown in Figures 6 and 9. The 60 mm

HG for the upper limit of P was chosen arbitrarily. As can be seen from

Figures 6 through 9 P = 60 mm Hg is not physically feasible.
B

Optimization of Comfort Condition:

In this work the energy which must be removed to attain comfort con-

dition in a life support system within an enclosed system was minimized.

Other topics of interest such as minimizing the cost of the system, the

weight of the equipment required to attain comfort conditions or the
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Figure .6 . Feasible region of the comfort equation

.
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.
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Figure 8 • Feasible region of the comfort equation,

->
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maximization of the stability of the system can not be successfully in-

vestigated without thoroughly understanding the energy requirements of

the system.

The optimization of comfort condition was based on the model shown

in Figure 1. The enclosed volume was 3x4x5 meters [18]. The cross-

sectional area perpendicular to the direction of the air flow was 3x4

meters. The length and diameter of the duct was 20 meters and .458 meter

respectively. It was so designed that only one person was working inside

and 283 liters per minute (10 cu. ft. per min.) of fresh air were required.

Three outside conditions were considered: 50 C, 40 C, and 30 C with

relative humidity (RH) equal to 100% in all cases. These values were chosen

arbitrarily. Extreme conditions were considered to ensure a more hazardous

outside conditions so that the incoming air would only give up heat. The

air in the enclosure was assumed to be incompressible and completely mixed.

In the Statement of the Problem it was mentioned that the energy

brought in by the incoming air could be classified as (1) the sensible

heat of air and its vapour content; (2) the latent heat of the water vapour

and (3) the frictional heat. Each of the three forms of energy would be

analyzed separately before they were combined to form the objective

function.

VI-A. PRELIMINARY CALCULATIONS

Three general terms—saturated vapour pressure, specific volume of

air and mass rate of air flow were studied first before computing for the

energies

.
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1. Computation of saturated vapour pressure

Saturated vapour pressure was needed in the computation of energy.

Therefore, it was desirable to formulate an empirical equation which

could be used to obtain the saturated vapour pressure at any given temper-

ature.

A few values of saturated vapour pressure for the corresponding temper-

atures are tabulated below [17] and their relationships are plotted in

Figure 10.

ijoo

l-5oo

l0$ ps ,™
|0 1-300

l-iofe •

oo333 •00337 •00341 •00345

RTK C°K)
-i

O035O

Fig. 10. Relationship of temperature, K, and saturated vapour pressure,

mm Hg .

Since log, n PS is linearly related to the temperature, their relation-

ship can be expressed as follows

log PS = a + b(RTK) (21)
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TABLE 3. RELATIONSHIP OF TEMPERATURE AND SATURATED VAPOUR PRESSURE

TEMPERATURE SATURATED VAPi

(t°c)
PRESSURE (PS

15 12.788

20 17.535

25 23.75.6

30 31.821*

35 U2.175

jjuu.. ~ ^ Dai unairijj

PRESSURE) (LOG

v.Rruun

PS)
273+t°C

(RTK)

1.1060 .003^7

1.21+UO .003^15

1.3755 .003355

1.5030 .00333

1.6250 .00325
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Equation (21) describes the linear relationship between RTK and l°g in PS.

To solve for a and b any two points on the straight line could be used.

In this instance the two points used were: RTK = 00847, log
10

PS ~ 1.1060

(t = 15° C) and RTK = .00333, log
1Q

PS = 31.824 (t = 30°C)

.

The above values were substituted into equation (21) to obtain the

following two equations.

log 12.788 = a + b(. 00347) (23)

log
10

31.824 = a + b(. 00333) (23)

Equation (23) was subtracted from equation (22) giving rise to

log
1Q

12.788 - log
1Q

31.828 = b(00347 - .00333)

losioioi = b( - 00014)

Converting log
lf)

to log , the following equation was obtained

•

ln

if^fl
= b (- 0001A > ln 10

In 12.788 - ln 31.828
(.00014) In 10

= -2303.81

Substituting b into equation (22), a was given as follows

a = log
1Q

12.788 - (-2303.81) ( .00347)

= 9.11

Substituting the values of a and b into equation (21), log
Q
PS was obtained
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log PS - 9.11 - 2303.81(RTK)

Converting log, n to log , the following equation was obtained

In PS = 20.98 - 5307.02 (RTK) (24)

It was found that in the temperature range of 8 C < t < 36 C Equation

(24) gives the saturated vapour pressure at any temperature. The

relative humidity (RH) at a specific temperature is equal to the partial

pressure of water vapour (Pa) at that temperature divided by the saturated

vapour pressure at the same temperature. This relationship is expressed

as follows:

RH =
|J

(24a)

2. Computation of specific volume of air.

The specific volume of air was computed as a function of temperature,

K and vapour partial pressure. This specific volume of air was needed

in the computation of mass rate of air flow which was in turn required

in the computation of energy. From Dalton's law:

v _ R(Tk)

sp P

V = specific volume of dry air in liter/gm.

R = constant

Tk = temperature in °K (273 + t°C)

P = pressure of dry air in mm Hg

and
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P = (760-P ) mm Hg

P = Vapour Partial Pressure at t C

(62.361) (Tk) . . , ,__.
V
sp

=
(760-P

v
)(29)

llter/^ (25)

where 29 was the molecular weight in grams per gm-mole of air.

3. Computation of mass rate of air flow

Mass rate of air flow was formulated as a function of the volumetric

flow rate and the specific volume of air as shown below.

M - =9- (26)

sp

M = mass rate of air flow in gm/hr

Q = volumetric flow of air in liter /hr.

Thus, the mass rate of incoming air is

600 ^x 28.32 ^f^„ hr cuft , /0 ..
M„ = gm. per hr. (26)

V
liter

sp gram

V could be obtained from equation (25).

4. Computation of sensible heat.

Sensible heat or dry heat is due to the difference between the outside

and inside temperatures. Two components are involved in the sensible heat--

the air and its water vapour content. The increase in the sensible heat

in an enclosed area is due to the difference in temperature between the



198

outside air and its water vapour content, and the inside air and its water

vapour content. This relationship is expressed as follow

(T
2

" "a
Sensible heat (SS,) = M

2
x CS x — Kcal./hr.

CS„ = specific heat of outside air and water content
in cal/gm C

T
9

= outside air temperature in C

o
t = room air temperature in C

The sensible heat brought in by the incoming air is a function of the in-

coming air's mass rate, specific heat of the air and its water content and

the difference between the temperature of outside air and 'room air.

For ordinary air temperature the specific heats of dry air and water

vapour can be taken as 0.238 and 0.46 cal/gm C respectively. Thus, the

specific heat of air is given as below

CS
2

= 0.238 + 0.46 W cal/gm°C

where

W_ = outside molal (absolute) humidity in gm . of water/gm.
of air

Humidity is defined as the number of pounds of water in one pound of

dry air. Thus, in a mixture of dry air and water vapour if the total

pressure is fixed, then the humidity is a function of the partial pressure

of water vapour. If the partial pressure of the water vapour is designated

as Pa, then the molal ratio of water vapour to dry air at one atmosphere is

Pa/(1-Pa). Since the molecular weights of dry air and water are 29gms./gm

and 18 gms./gm-mole respectively, the humidity (W) became
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18P
W =

29 (

"

l - P )
gm

*
of water 8m -

of air
a

The humidity of outside air is

where

18 p o e *
y a2 gm. of water
2

" 29(760 - P
a2

) gm. of air
(27a)

P _ = outside vapour partial pressure in mrattg

Similarly, the humidity in the room is

18 P

u = § gm. of water
1 29 (760 - P ) gm. of air

K }

a

From equation (27a) the specific heat of outside air and water content is

18 P

CS
2

- 0.238 + 0.46 [

* 2

_ p
] -^ (27c)

a2 gm. C

and equation (27) become

f
18 P

2 1
T
2
_t

Sensible heat (SS.) = M- x ^0.238 + 0.46 [ nQ/ -,, n p
—r]\ x

Kcal

2 l
«•*'« "•"» l 29(760 - P )

J

/ 1000
az '

5. Computation of latent heat

Latent heat is also called wet heat and it is due to the difference

in water vapour between the outside and inside air. The increase in the

latent heat in the room brought in by the incoming air is due to the



200

difference in humidity between the outside and inside air. This relation-

ship is expressed as follow:

Latent heat (SSJ = M
2
x(W

2
- Wj x -~1 Kcal. per hr. (28)

M«, W_, W could be obtained from equations (26), (27a) and (27b) respectively,

6. Computation of friction heat.

As incoming air comes in through the air duct frictional heat is pro-

duced which is the third form of undesirable heat due to incoming air and

is to be removed. This friction heat is defined by Fanning friction factor

expressed as follows in terms of the duct diameter, fluid density, fluid

velocity, and the pressure gradient equivalent to the frictional resistance

per unit length of duct.

-dP g dw

f = _ ?
° (30)

2V dx

Solving the above equation for the pressure gradient yields

= ~2f V
2
dx

Pd g dw (31)
c

where

dp, = pressure gradient in lb per sq. ft.

f = friction factor, dimensionless

density of air in lb per cu. ft.

V = velocity of air in the duct in ft per sec,

dx = length of the air duct in ft.
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dw = diameter of the duct in ft.

g = Newton's conversion factor, 32.2 ft-lb mass per

2
(lb . force) (sec )

The above units were in ft-lb system. A conversion factor of

-4
3.2405 x 10 converts ft-lb to Kcal. which conformes with the units in

sinesible heat and latent heat.

The velocities in the air duct and in the room were assumed to be

uniform, and so their relationship is shown as below:

Ay = A v
d r

A v

A
d

A = cross-sectional area of the room in perpendicular to

the direction of the air flow

A, = cross-sectional area of the duct
a

v = air velocity in the room

The velocity in the room was about 1% of that in the air duct and so its

contribution to the frictional loss was discarded. Since the main interest

in this work was the application of the system analysis and optimization

techniques the present design of the system was not in detail. For the

same purpose the frictional losses due to fittings and values, expansion

and contraction were not considered.

The density of air varies slightly with the temperature. For our

purpose the average of the densities between C and 50 Cat one atmosphere

was used — .0721 lb. per cu. ft.



202

The appropriate friction factor f to be used depends on the typed

of flow defined by the Reynolds number. The Reynolds number is expressed

in terms of the diameter of the duct, the velocity, density and viscosity

of the fluid in the duct as follows

N = Reynolds number, dimensionless

D = diameter of the duct

V = velocity of the fluid in the duct

p = density of the fluid in the duct

u = viscosity of the fluid in the duct.

If N < 2000, the flow is laminar and the f to be used was [17]

f = —^ (33)
N
Re

If N„ > 2000, the flow is turbulent and the f to be used was [17]
Re

f = .0014 +
0ml

ll (34)

Re

The frictional energy due to the frictional resistance is the energy per

unit time required to overcome this resistance. This energy can be expressed

in terms of the pressure gradient and the volumetric flow and being in ft. -lb,

per hour was converted to Kcal. per hour to conform with that of sensible

heat and latent heat by using a conversion factor. This relationship is

shown below;
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SS
3

= pQ x 3.2405 x 10~ 4 Kcal/hr. (35)

Q = volumetric flow rate in cu. ft. per hour

Assumptions used in the computation of friction loss are:

(1) Air was incompressible and the air in the enclosed area was completely

mixed;

(2) The density of air was taken as .0721 lb. per cu. ft.; at one atm.

between C

(3) The air in the duct was under constant pressure and temperature.

(A) The velocity of air in the duct was uniform.

(5) The friction loss of air flow in the room was considered negligible.

(6) The effects of the roughness of the duct and of heat transfer on

friction factor was considered negligible.

The objective function which is the total energy is given below

Minimize SS = SS + SS + SS

(T
2

- t ) --.
= M. x CS„ x —1Ann + M„ x (W. - W.) x

"

2 2 1000 2 2 V 1000

+ P JQ x 3.2405 x 10" 4 Kcal./hr. (36)
a

VI-B. Summary of Equations:

The comfort condition was defined by Fanger's comfort equation and

was used as one constraint in optimization. For any combination of the

inside room temperature, t , the partial pressure of water vapour in the
3

roon, P , and the room air velocity, v, Fanger's comfort equation must

be satisfied. It is shown below:



V =
A + CP + Dt + 5.95 + E[(-FP - Gt + W) - (t + 273) ]

a a a a a

x(-YP - Zt + U)
a a
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(17)

where all the quantities are constants except t , P and v. Thus, for a
3. 3

given level of activity, Fanger's comfort equation is a function of t ,3

P and v only. This relationship can be generally expressed as below.
8

Comfort = f. (t , P , v) (17a)
4 a a -

The other constraints were:

.lm/sec. < v < 2.6 m./sec. (14)

0% < BR < 100% (14a)

The problem was to minimize the following objective function

SS = SSj^ + SS + SS

(T
2

- t )

= M x CS x —, ... + M„ (W„ - WJ-
2 2 1000 2

v
2 l'lOOO

+ P.Q x 3.2405 x 10"4 Kcal./hr. (37)
a

Subject to the constraints of Equations (17) and (14), for a given

outside condition, T„ and P _, the objective function is a function of t ,
2 a2 J a

P and v only. Thus, Equation (37) can be written as
3

SS - £
5

(t
a>

P
a>

v)

On examining Equation (17) it was observed that among the three vari-

ables of t , P and v only two of them - t and P are independent, v is
3. 3. 3 3
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a function of t and P . Thus, a series of combinations of t and P
a a a a

were tried. At each combination the velocity and RH constraints were

checked. If the constraints were satisfied, then the corresponding ob-

jective function was computed. Three objective function values were com-

pared at a time. The highest objective function value was then replaced

by a new objective function corresponding to a new combination of t and
8

P . The Simplex search technique was used for this optimization. This

technique was described in detail in Appendix II, Part I.

IV-C. The computational procedure was summarized as follows:

1. T and P were chosen arbitrarily. With t the saturated vapour pres-
3 3 3

sure (P ) in the enclosed area was obtained from Equation (24) . RH

was then computed from Equation (24a) and checked with the'RH constraint

of equation (14a).

2. If RH constraint was satisfied, the same t and P values were substi-
a a

tuted into Equation (17) to compute for v which was then checked with

the velocity constraint of equation (14)

.

3. If the velocity constraint was satisfied, then the Simplex pattern

search technique (Appendix II, Part I) was applied here. The initial

values of t and P became the coordinates of the first point p, and
a a 1

the same t , P and the corresponding v values were substituted into
3 3

equation (37) to obtain the objective function S. corresponding to p .

4. Similarly, points p„ and p„ and their corresponding objective functions

of S„ and S_ were obtained.

5. S. , S_ and S„ were compared and the point with the highest value in

the objective function was replaced by a new point which was obtained

by one of the following three operations: Reflection, expansion and

contraction.
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6. Every new point obtained was checked with the velocity and relative

humidity constraints. If the constraints were satisfied, the Simplex

search technique was then applied. This process was repeated until

the minimum point was reached.

7. The results are shown in Table 3 and in Figures 11 through 19. The

computer flow diagram for optimization is shown in Figure 20.

VI -D. Numerical Results:

Three starting points of P. (t = 33, P = 10), P
9
(t = 36.3, P =10)

J. 3 3 l. 3. 3

and P~(t = 33, P = 13) were used to initiate optimization calculation
j a a

for the first case in which the first outside condition of 50 C and 100%

2
RH and sedentary activity (52 Kcal./m h.). P. and P„ were within the

feasible region of the comfort equation (Figure 6) . P- was outside the

region. However, by contraction P„ was brought within the feasible region

and the search began. P_ and P„ were chosen in such a manner that the t
£ w 3

increment in P„ was about 10% of t in P. and the P increment in P~ was
2 a 1 a 3

about 30% of P in P.. . The time required to obtain the solution depended

very much on the increment chosen and usually it was from 10% to 30%. It

took 130 evolutions to arrive at the optimum point.

2
For the next activity (83 Kcal./m hr) and the rest of the activities

at those outside conditions the search always started with the same initial

points: P, (t = 33 , P = 10), P
9

(t = 36.3, P = 10) and P.(t = 33,
-L 3 3 Z 3 3 -5 3.

P = 13) . The respective number of evaluations and time required for each

activity at three outside conditions are shown in Table 5.

Provision was incorporated in the program to terminate the computation

at 200th evaluation if the accuracy (.000001) specified was not yet met.

However, on examination it was found that those solutions obtained by
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Table 5« Evaluations and time required for each activity at three out-

side conditions

Temperature, T
(°c)

2

50

UO

30

Activity
(Kcal/m2hr)

52

83

111

132

52

83

111

132

52

83

111

132

Evaluations

130

200

1.1*9

200

190

200

170

181+

200

200

200

200

Time , minutes

.20

.31

.23

.31

.29

.31

.26

.28

.36

.36

.36

.36
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terminating the computations at 200th evaluation had an error of .00001

which was considered satisfactory. Therefore the evaluations were not

extended beyond 200.

Table 4- summarizes the optimum values for the three variables t ,

a

P and v for three different outside conditions and four levels of
a

activities inside. The three optimum values for the three forms of heat,

dry, wet and friction, at each activity level are given. The optimum

velocity was 0.1 meter per second, the lower end of the constraints, for

all three conditions and four activities while the room air temperature

t and the partial pressure of water vapour P varied for different activ-
a a.

ities at three outside conditions. On referring to the feasible regions

of the comfort equation Figures 6 through 9 it can be seen easily that the

optimum point was the intersection of the velocity line (.1) and the

optimum relative humidity for that particular activity. Hence, if the

lower limit of the velocity constraint were lowered, the optimum t and
B

P would decrease in the same fashion. Due to the narrow velocity margin
B

(.22 miles/hr vs 5.18 miles/hr) there was not much difference in the room

air temperature for the four activities. The optimum values shown in Table

3 are plotted in Figures 11 through 19.

VII. DISCUSSION

The feasible region of Fanger's comfort equation are shown by the

crossed lines in Figures 6 through 9. This region is within the following

boundary

0.1 < v < 2.6 (14)

0% < RH < 100% (14a)
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where RH represented the relative humidity which is related to P and t .

a a

Again, it should be pointed out that Fanger's equation can also be used

for v < 0.1. However, in this region free convection must be assumed and

thus v will not appear in the comfort equation. The existence of the upper

limit on v arises from the fact that too much draft creates uncomfortable

conditions.

It should be noted that Equation (15) is a comfort equation. Under

certain extreme circumstances such as in a submarine or in a spacecraft,

the comfort conditions could be sacrificed for a short duration and only

a survival condition might be required. In this case the feasible range

of the control or independent variables t , P , and v could be enlarged
3. 3.

considerably. The survival equation could be established and studied in

essentially the same manner as the comfort equation. Furthermore, the

feasible ranges of the independent variables in the comfort equation also

could be enlarged under certain conditions. For example, Konz (8) showed

that, with a cooling headdress, the ranges of independent variables for

the comfort condition could be considerably enlarged.

The comfort equation, Equation (13) can be improved in various ways.

It should be pointed out that the basic equations for comfort were Equations

(5) and (6) . Equation (13) was a heat balance equation based on heat transfer

data and Equations (5) and (6). Not only the ranges of the parameters used

in Equation (13) can be improved, heat transfer data could also be improved.

By modifying Equations (5) and (6) or by incorporating the heat ac-

cumulation term into Equation (8) or (13) , dynamic comfort equations could

be obtained. Such dynamic equations might be verified experimentally. The

dynamic behavior of a life support system, especially in a space craft' or
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submarine, is a very important factor, which must be considered in its

design and operation. For example, if there were a sudden disturbance

(step input) in the environmental temperature, what would be the quickest

(optimum) way to bring this temperature back to the normal survival temper-

ature under the restrictions of the available equipment. Any variables

other than temperature such as humidity, pressure, and undesirable chemical

species in the enclosure could also be studied in essentially the same way.

Since a set of differential equations is used to represent a dynamic

model, establishment of the dynamic model can be very complicated. Recently,

Lee (10, 11), based on the work of Bellman, developed efficient techniques

for the estimation of parameters or coefficients in nonlinear differential

equations from noisy experimental data. These techniques were developed

using quasilinearization and invariant imbedding.

For 50 C and 40 C with 100% RH outside conditions humidity was the

major contribution to the total heat accounting for about 72% of the total

heat. Next came the temperature which accounted for about 14% and the

frictional heat for about 12%. However, at 30 C outside condition the

frictional heat was the major contribution accounting for about 57% of the

total heat; next came the latent heat accounting for about 32% while sensi-

ble heat accounting for about 9%. For all three outside conditions the

sensible heat and the latent heat increased with the level of activity.

The increase was more distinguished at 30 C outside condition. To the con-

trary frictional heat decreased with increase in the level of activity

especially at 30 C outside condition. These relationships are shown in

Table 6.
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TABLE 6. Relationship of the three forms of heat with respect to the
total heat

Outside Temp. Activity Sensible Heat Latent Heat Frictional Total Head

M/A^ Kcal./hr. Kcal./hr. Kcal./hr. Kcal./hr.T
2
°C

50

U0

30

52

83

111

132

52

83

111

132

52

83

111

132

13.1055

13.55%

13.75%

lU - 1058

ll+.95%

15.3055

15.80%

16. 00$

6.21%

8.89£

ii. toff

12. 80$

78.Uo%

78.1*0%

T8.oo%

78.00%

66.60%

66.90%

67.10%

67.20%

22.90%

31.50%

38.90%

1+2.90%

8.70% 100%

8.55% 100%

8.31% 100%

8.20% 100%

18.50% 100%

17.60% 100%

16.75% 100%

16.00% 100%

70.90% 100%

59.60% 100%

U9.50% 100%

UU.00% 100%



222

For the purpose of discussion a few other points in the feasible

2
region of comfort equation of low activity (52 Kcal./m iir. in Fig. 6 beside

the optimum point were taken to compute the total energy. The results are

shown in Table 7. It can be seen that point was the true optimum. On

perusal of equation (27) and (28) it can be seen that the higher the room

temperature t and the partial pressure of the water vapour in the room p
3- 3

the lower are the sensible and latent heats. This leads to the fact that

the optimum point should be on the upper velocity constraint — 2. 6m. /sec.

However, on perusal of equation (35) it can be seen that the frictional

heat is a function of V . From an increase of .lm/sec. to 2. 6m. /sec. of

the room air velocity gives an increase of 7.28 m./sec. to 189 .38m. /sec.

3 3
for the air velocity in the duct whose cubes are 386 m /sec and 6780000

3 3
m /sec respectively. This in turn gives a tremendous increase in the

frictional heat. From this relationship it can be seen that velocity is

a major factor in this optimization problem.
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TABLE 7. ENERGY AT SIX DIFFERENT POINTS IN THE FEASIBLE REGION OF
COMFORT EQUATION FOR SEDENTARY ACTIVITY

POINT ROOM AIR
VELOCITY
m/sec.

DUCT AIR
VELOCITY
m. /sec.

SENSIBLE
HEAT
Kcal./hr.

LATENT HEAT
Kcal/hr.

FRICTIONAL
HEAT
Kcal./hr.

TOTAL
HEAT
Kcal./hr

1 .10 7.28 95.6 571 63.87 730

.

Uf

2 2.60 189.38 83.77 5*1.68 1*82286 U82912

3 .10 7.28 89.17 692.18 63.87 8U5.22

h 2.60 189.38 78.36 668.28 U82286 U83033

5 .10 7.28 82.87 820.22 63.87 966.96

6 2.60 189.38 70.93 820.22 U82286 U83177
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Appendix I

Newton-Raphson Method

Two methods were used in the simulation and optimization of environ-

mental systems. Newton-Raphson method was used to solve the fourth order

comfort equation in the simulation part while Simplex Search Technique

was used in the optimization part. The latter was explained under

"Appendix II", Part One of this work. So only Newton-Raphson method was

discussed below [9]:

A Taylor series expansion around x led to

f(x> =0= f(x
(0)

) + (x-x
(0)

)f'(x
(0)

)

+
(x-xW )

2

f
„
(x

( 0)) + _
a.

= f(x
(0)

)
- £

(1»f (l
(0 ») t ^f(« (0V...

a.

with e = x - x. If the initial extimate x was a good one, the

square of the error term could be neglected. Thus,

f(x
(0)

) - S
(0)

f'(x
(0)

) -

(0) . l(x
(

_°2i

f(x (0)
)

It was supposed that the next improved estimate was made up as

,<» - x<°» - e
<°>

and also
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(1) .. (0) f(x
(0)

)

'f(x (0)
)

Repeating the process with x and e yielded in the same way

(1) f(x (1)
)

f(x (1)
)

and

x
(2) . X (D . e

(D

(2) . <1) f(x(1) )

In addition, x = x - e - e which was a better estimate than

x . In general terms (Newton's algorithm)

:

X(Y+D . X (Y) . £
(Y)

e (Y) = f(x (Y)
)

f'(x (Y)
)

x (Y+l) __ x (Y) . fix^)
Y , ,l, 2, ...

(y) (y)The term - f(x )/f'(x ) might be considered as an error term in

the Newton iteration process. This error term will be minimized by a

large value of f ' (x) , thus implying that, if f(x) had a strong vertical

trajectory at or close to x = x, convergence would be quite fast. In

contrast, if f(x) was nearly horizontal at x = x, convergence would be
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extremely slow. In the limiting case where f(x) was actually horizontal

to the x axis at x = x (a maximum or minimum in the function) , convergence

would never occur.

The geometric significance of the Newton iteration (for real roots)

was shown below

i(xM ),x

Fig. 21. Schematic diagram of Newton iteration pattern

(y) - (y) (y)
With the estimate x for x the point f(x ), x was immediately

defined on the f(x) versus x curve. If a straight line was drawn tangent

to the f(x) curve at this point, the intersection on the x axis defined a

new point x . Thus
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r (x (Y>) = J <*
(y)

>

x
(i) m x (Y ) _ f(x (Y)

)

f(x (Y)
)

Comparison with Newton's algorithm showed that x = x . Thus Newton

method consisted in drawing successive tangents to f(x) curve.
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READ A,C,D,

E.F.G.W.U.X,

PUNCH to , \ Y^s

fj ,
and v

Figure 22 . Computer flow diagram for the Newton-

Raphson method .
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AppendixH Nevton-F.&phson Method

1 FORMAT ( I3.3F15.4)
40 FORMAT(2F5.1 )

A= (3 89.*. 4523*10. 75)/(20. 22*3. 97)

C=.3523
D=.00l4
E =4. 8*. 00 0,00 001*1. 1*.65
F=. 0380484
G=.0002

. W=308.05 74+.0117804*(389.*10.75)/(20.22*3.97)
U=35.05 74«-.0117804*(389.*10.75)/(2u.22*3.97)
Ys. 063414
Z*l. 00012
X=11.44
K =

70 READ 40,T,P
JC*K+1

10 DATAl*A+C*P+D*T+5.95
DATA2-E*{ (-F*P-G*T+W)**4-{ T+273. )**4)
DATA3=2.6*( { X* t-Y*P-Z*T+U) )**2)
01=(DATA1-DATA2)*(0ATA1-DATA2 )-DATA3
R-DATA1-DATA2
B*(-F*P-G*T + W,)**3
02*= (2. )*R*{C+4«*E*F*8)+5.2*X*Y*{-Y*P-2*T+U)*X
DELTA=-(01/02)
S1=ABS<01)
IF(S1-.01)20,20,30

30 P=P+DELTA
. GO TO 10

20 TYPE l.KtP.T.Ql
IF(K-5)70,50.50

50 STOP
END
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0001 60 FORMATI3F10.0)
0002 A=<389.*.4 52 3*10.75>/<20.22*3.97)
0003 C=.3523
000A D=.0014
0005 6=4. 8*. 00000001*1. I*. 65
0006 F=. 0380484
0007 G=.C0012
0008 W=30e.0S74 4-.0li78 04*(389.*10.75)/<20.22*3.97)
0009 Z= 1-00012
0010 U= 3S.0574*. 01 l7804*<389.*10.75)/(20. 22*3.97)
001 1 X=l 1.44
0012 Y=. 063414
00 13 P=l.
0014 90 T=0.
0015 20 DATAl=A+C*P+D*T+5.95
00 16 DATA2 = E*{ (-F*P-G*T*W)**4.-(T*273.)**4.)
0017 DATA3=X*(-Y*P-Z*T+U)
0010 V=(0ATAl-DATA2)*(DATAl-0ATA2)/(DATA3*DATA3>
0019 WRtT£(3»60)P.T.V
0020 IFCT-40. >10,50,50
0021 10 T=T«-.5 / '

.

0022 CO TO 20 " '

0023 50 IF(P-60.)80.70.70
0024 80 P=P*l. _

J
0025 GO TO 90

"

0026 70 STOP
0027 ENO
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Read A.CjDjE.F,

G.W.X.Y.Z.U

I
Pn S

I

]

to *

,<

DATA I
- DATA2

)'

I

NO

yes rr 3P1 o.new o.old

Figure 2 3 . Computer flow diagram for simulation
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APPEmOIX IV. COMPUTER PROGRAM FCK OPTIMIZATION

DIMENc
COMMON

1C1 FORMAT
102 FORMAT
10 3 FORMAT
104 FORMAT

T2=50.
IX=1
IY=1
READ(
READ(
READ(

2u0 REAO(
WRITE
WRITE
WRITE
WRITE

3^0 CALL
WRITE
WRITE
WRITE
WRITE
IF( IX-

20 1 I X = I X +

GO TO
2u5 IF( IY-
206 IY=IY+

T2=T2-
IX=1

2C7 STOP
GC TO 2oO
END

I CM DLTVX(27, 2b), S(30)» DC VX (27, 3u)
IX, T2

I Iu 1 5

1

(7EK.4)
(/16h cVALUATIGN NO =15/)
(6E13.6)

»101)N
»lo2)E
»1G2) (

il02 ) (

3tlwl]
3tl04J
3, K4)
3,1^4)
KCHEiNK
3,1,4)
3 t 104

j

3tlc41
3,1.3)
4 ) 201
1

2 ^o

3) 2-7
1

10.

DIM, NOP T tNDIMPl »MAXNC»METHOD
RRCR»SUPLIM
(DLTVX( I ,J) ,1=1 »NOIM) *J=1 »NDIMP1]
DCVX( 1,1), I=1»NDIM)
NDIMjNCPT tNDIMPl »MAXNC tritTHOD
ERROR>SUPLIM
( LCVX( I , 1 )

,

1=1 >NDIM)
I (DLTVXC I* J) tI>ltNDIM) »J=l»NpIMPl)
NDIMtMETHCDtMAXNC»ERRCR»bUPLIM»DLTVX»DCVX»S»KICJ
S(N0IM+2Jf (DCVX( I >NDIM+2) » I =1 »NDIM)
( (DCVX( I ,J ) , 1 = 1 ,MDIM) ,J=1 ,,NOPT )

(S( I )

,

I=1,NGPT )

KK
»205»205

,2u7,2u7
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110
111
112
113
114
115

116

117

118

8

9
10
11

INE G

ON DL

IX, 12
/19H
/16H
/12H
/16H

50H
47H I

116*1
1

5

• 2

.0

,110)

KCHEN ( NO I M » METHOD »MAX.\U , ERROR » SUP L I M ,DL TVX , DCVX ,S ,KK.

)

TVX(27»28) »C(28)»DCVX(27t3G) ?S(30)»CNTR0X(27)

THIS IS NEW METHOD/

)

THIS IS SIMPLEX/ )

THIS IS BOX/)
* * *

»

\fi ARN I NG** * * / )

INADEQUATE GIVEN MAX. NO FOR FUNCTION EVALUATION,)
^CREASING THE MAXNC OR CHANGING THE STEP SIZE/)
17,118 ) , METHOD

SU8RCUT
DIMENsI
COMMON
FORMAT

(

FORMAT

(

FORMAT

(

FORMAT

(

FORMAT

(

FORMAT

(

GO TO (

JMCHEN 3

K.CHEN=1
ALPhO=l
dETA=o.
C0EFF=1
GAMMA=2
WRITE (3

GO TO 1

JMCHEm=1
KCHEN=2
ALPH0=1.0
BETA=o.5
GAMMA =2.0
WRITE(3,111)
GO TO 1

J MC M E fv
= ND I M

ALPH0=1.3
bETA=o.5
WRITE(3,112)
J = l

KK=1
CALL CU3NAM ( ND I M , J , SUPL I M » S » DCVX , ,<K )

K=NDIm+JMCHEN
KLT1=v-1
DO 3 J=2,K
DO 2 I=1,NDIM
DCVX(

I

,J)=DCVX( I ,1 )+DLTVX( I ,J-1

)

CALL cUSNAM ( ND I M , J , SuPL I M , S , DC VX , K.K

)

CONTINUE
M = K

alpha=alpho
call ~rder(m,ndim,s»dcvx)
DO 5 I=1,KLT1
C ( I ) =i .

CALL rNTROD(NDIM,KLTl ,C ,CNTROX , DCVX

)

DO 7 I=1,NDIM
DCVX( r ,K+1

)

=CNTROX( I ) +ALPHA* ( CNTROX ( I )-DCVX( I ,K) )

J = K + 1

CALL ^UBNAM ( ND I M , J , SUPL IM , S , DCVX , K.& )

IFCnK-MAXNO) 8,8,36
GO TO (9,9,23) , METHOD
IF (S( v + 1

) -S( 1) ) 10,10,23
DO 11 I=1,NDIM
DCVX( I ,K + 2 )=CNTROX( I ) +GAMMA* ( DCVX ( I ,.< + l ) -CNTROX ( I ) )

J = K + 2

CALL cU3N AM ( ND I M , J , SUPL I M , S » DCVX , Ki< )



12
13
14

15

16

17

18

19

20

21

IF (KKUMAXNC) 12 » 12*36
GC TC ( 16, 13) »KCHEN
IF(5U+2)-S(l))14»14,21
b (<)=c(K+2 )

DC 15 l = i ,i\oi;-;

DCVX (l jK) = DCVX

(

L*< + 2

)

GC TC 35
[F(S(«+2)-S(K+l )) 17,17,21
S (K)=c(;< + 2 )

DC 18 L=ltNDIM
DCVX (i ,<) = DCVX (L»K+2

)

M = K
CALL rRDER ( M »i\DI M * S * DCVX )

CALL cCriECM <»SUM»NDIM»S

J

IF(SUm-ERRCR) 37,37,19
CVALUF S2*N0IM-1
DC 2u I=1,<LT1
C( I )=CVALUE
CVALUP=2»N0IM-2
CALL rNTRCD(NDIr»,<LTl,C,CNTRCX,DCVX)
ALPHA=ALPHC*CCEFF
GC TC 6
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S (K )=c(K+l )

DC 2 2 L=1»N0IM
22 DCVX(( ,K) =DCVX(L*K+1 )

GC TC 35
23 IF(S(v+l)-S( K-l ) )21,21 ,24
24 IFCS(ic + ll-SC KJ >25»25,27
2 5 S(K)=c(,<+l )

DC 2 6 I=1»N0IM
26 DCVX( t ,K) =DCVX( I ,.< + l )

2 7 DC 2 8 [=1»NDIM
2 8 DCVX( r ,<+l )=CNTRCX( I ) +BETA* ( DCVX ( I >K)-CNTRCX( I ) )

J = K+1
CALL cU3MA':(NDIM*J»SUPLI.v »S»DCVX,(<<)
IF(KK-MAXi\C) 29,29,36

29 IF(S(r + l )-S( <) )3C30,32
30 S(K)=${IC+1 )

DC 31 I = l,i\DIN',

31 DCVX(

!

»K)=DCVX( I »<+l)
GC TC 35

32 DC 34 J=2,<
DC 33 1 = 1».\DIM

33 DCVX( T »J) = (DCVXI I , 1 ) +DCVX( I ,J ) ) /2.
. CALL cU5.NAv(,\3IM,J,SUPLIiv »S»DCVX,Ki<;)

34 CCNTIwUE
IF(KK-.VAXNC) 35,35*36

35 CALL cCHECK(K»SUM»NDIMtS)
IF(SU--ERRCR) 37,37,4

3 6 WRITE(3,113)
WRITt't 3* 114 )

WRITE(3»115)
GC TC 4c

37 DC 36 1-1 »KLT1
38 C ( I

) = l

.

CALL rNTRCD(NDIMtlCLTl *C ,CNTRCX ,DCVX )

DC 39
%
I=1»N0IK

39 DCVX( | *<+l ) =CNTRCX( I )

J K+

]



CALL cUDNAM(,NDIM»J»SLPLIM»S.DCVXiKK)
40 RETURm

END

238
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SUbRCl iT i NE SUbNAM ( NO I M , J , SO'PL I M » S * i^CVX , r^K )

DIMENSION S( 3^ ) ,DCVX (27»30 > »X (27) »X0PTC27)
COMMON IX, T

2

1 FCRMAtOIH THE OPTIMUM FUNCTION VALUE IS E13.6)
2 FCRMAt(6E13.6J
3 FCRMAt( 1014)

104 FORMAT (6E 13. 6)

999 FORMAT C9F 16. 2 J

IFCJ-1 )4,4 ,5

4 KC0NT=lu
ERR=lo.
GO TO 6

5 ^K = <,<+1

6 DO 7 I = 1,,\DIM
X( I )=nCVX( I ,J)

7 CONTINUE
GO TO (20,21,22,23) , IX

20 ADUM=*2-
E = 4. 8*. CCu 0001*1.1*. 65
GO TO 40

21 ADUM=p3.
E = 4. 8*. 00000001*1. 1*. 75
GO TO 4u

22 ADUM=i 11.
GO TO 40

2 3 ADUM=i32.
40 TK2=273.+T2

R=62.^61
SP1=EyP (2 0.9 8- (5307. 02/(273. +X(1))))
RH=10a.*x( 2) /SP1
IFtRh.LE.C. ) GO TO 16
IF(RH.GT.10G. ) GO TO 16
A=.45?5*ADUM
C=.35?3
U=35.7 + »^19634*.6*ADUM-1.0 71*.6
W=308.7+.Ol"9634*.6*A0UM-1.071*.6
G=.00nl2
F=. 038^^84
D=.COt 4

= 1 1 . i, 4 .

Y=. 16^414
. Z«1.0a012
DATA1=A+C*X( 2)+D*X( 1J+5.95
DATA2=E*( ( (-F*X(2)-G*Xtl)+W)**4)-( ( X ( 1 ) +273 • ) **4 )

)

DATA3=0<( -Y*X( 2 »-Z*X ( 1 )+U)
V=( (D^TA1-DATA2 )/OATA3)**2
WRITE(3,lo4) V

IF(V.|_cl) GO TO 16
IF(V.r-T.2.6) GO TO 16
SP2=EvP(2o. 9 6- (5307.0 2/(273. +T2))>
PA2=So2
Wl=(lP.*X(2))/(29.<(760.-X(2)))
W2= ( lo.*PA2 ) /( 2 9. *( 76C .-PA 2 ) )

VSP2«P*TK2/(26*8*( 76u.-PA2 )

)

XM2«lA.*60,*28.32/VSP2
CSl=.?33+.46^
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120
150

10

11
12
13

14
15

16
17

CS2 =

SEN =

XLAT
VIT =

CVIT
RE=.
IF(R
FR = 1

GO T

FR = .

PRS =

VCLF
HF = P

WRIT
WRIT
WRIT
T = SE
S(J)
IF( J

DC 1

XCPT
CCNT
SCPT
IF(J
IF(S
IF(K
WRIT
WRIT
WRIT
KCCN
IF(S
WR I T

WRIT
WRIT
ERR =

GO T

S(J)
RETU
END

•?3d+ •

Xm2*CS
=XM2*

(

( 1 2 . * V
= \/!T*3

4*8*1.
E-2000
6. /RE
C 150
Co 14+.
2.*FR*
=^.141
Rc-VCL
E(3,99
E(3,99
E(3,99
N+XLAT
= T

-1)9,9
1 = 1,

( T )=X(
ImUE
= T

-i )17,
( 1 )-S(
K-KXCN
E(3,l )

E(3,2)
E(3,3)
T=KCCN
(J)-ER
E(3,l )

E(3,2)
E(3,3)
ERR*0.
C 17

=?UPLI
Rn-

4 6 * vi 2

2*(T2-X( 1 ) )/100u.
W2-W1 )*5 75./1000.
)/ (3. 1416*. 229*. 229

)

.27

293*VIT*10./< .018

)

. ) 110*120,120

125*(RE**(-.32) )

•0 721*(CVIT**2)*2J./(32.2*.458)
6-x-( ( .229*3.271**2 )*CVIT
F*3600.*3.2405*( 10.** (-4)

]

9) W1.»W2»CS1»CS2»VIT>CVIT
9) RE,FR,PRS,VCLF,HF
9) SEN, XLAT, RH»T2»ADUM
+ HF

,11
NDIM
I )

2U0

17,
J) )

T) 1

SOP
(XC

KK
T+l
R) 1

SOP
(XC
KK
1

l

v
.

12
12,9,9
4,13*13
T

PT( I )

»

1=1, NDIM)

5,15,17
T

PT(I)»I=1,NDIM)



2Ul

SUBROhT INE ORDER (••.».\UIMiS»DCVX)

DIMENSION S( 3u ) ,DCVX [27t3J]
COMMON lx»T2
K«M
ICLTls«f-l
DO 5 I=1»KLT1
m=n:-i

DO 4 J=1»M
IF(S(w+l) -S( J) )2»2 ,4
a = s(n;+1)

S(f-:+i) =st J)

S( J)=A
DO 3 L«1»NDIM
fa=DCVx(L»M+l

)

DCVX(l >M+1 )=DCVX(L,J)
DCVXd »JJ =E
CONTINUE
CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE CMTRCD ( i\D I M ,KLT 1 »C »CNTRCX » DCVX
DIMENSION C(28),CNTRCX(27) »DCVX(27»30 J

COMMON' IX,T2
CSUM=o.
DC 1 I=1»KLT1
CSUM=rSUM+C( I

)

DC 3 I=1»NDIM
AXlS=n.
DC 2 J=1,KLT1
CNTRCx(

I

)=AXIS + C( J)*DCVX( I »J)

AXlS=fNTRCX( I

)

CONTINUE
CNTRCx( I ) =CNTRCX ( I ) /CSUM
CONTINUE
RETURm
END
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SUBRCnT INE SCHECK(KtSUM»NOIMtS)
DIKENsICN S(3o)
CCMMCn IX, T

2

SAVG=^.
02 1 L=l»<

1 SAVG=^ (L) +SaVu
AK = £
SAVG=cAVG/A^
SUM=u.
DC 2 L=l»,<

2 SUM=SnM+(S(L)-SAVG)**2
ANDIMsNDIM
SUM=SuM »»C.5/ANDIM
RETURN
EKD



2kk

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude and appreciation

to the following persons: Dr. E. Stanley Lee, major professor, for his

kind advice, consideration and guidance and for being understanding and

patient; Dr. L. T. Fan and Dr. C. L. Hwang for their constructive criticism

and valuable suggestions; Mr. C. K. Chen for the use of his program and to

Mrs. Marie Jirak for her excellent typing.



IDENTIFICATION AND OPTIMIZATION OF MANAGEMENT

AND ENVIRONMENTAL SYSTEMS

by

THOMAS WINGYUI CHOA

B.S.E.E. University of the Philippines

Quezon City, Philippines, 1963

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1969



ABSTRACT

The object of this thesis was twofold: the identification of parameters

in a management system and the optimization of an environmental system.

On the identification of parameters, the parameters in advertising

models were recovered from (l) data without noise and (2) data with noise.

Two methods, quasilinearization, and numerical integration and search

were used to identify one, two and three parameters. The parameters were

the contact coefficient c, the removal rate y and the growth rate g. For

quasilinearization only one parameter c was recovered. For two parameters

the solution converge to different points while for three parameters the

solution diverged. The numerical integration and search method recovered

all the three parameters. However, in the last case of three parameters

with noise in the generated data constraint had to he used before the

parameters were recovered.

In the optimization of an environmental system, simulation was first

performed based on Fanger's comfort equation. The parameters studied

were temperature, partial pressure of water vapor and the velocity of air

flow. From the simulation study the comfort zone was defined. This com-

fort zone was then used as the constraints in the optimization of the

system. Simplex pattern search technique was used to search for the best

combination of room temperature, partial pressure of water vapor and the

room air velocity so that the total amount of energy removed was minimized.

For all three outside conditions of 50° C, U0° C and 30° C with 100£

relative humidity the optimum room air velocity was .1 meter per second

which was the lower velocity constraint. The optimum temperature was

between the range of 28.83 C to 26. k6 C; and the optimum partial pressure



of water vapor was 29.87 mm Hg and 20.68 mm Hg depending on the activity

level of the subject. For the same activity at different outside con-

ditions the optimum temperature and optimum partial pressure of water

vapor varied very slightly because of the lower velocity and the upper

relative humidity constraints which did not permit further search.


