
AN INTERACTION FRAMEWORK FOR MULTIAGENT

SYSTEMS

by

MATTHEW JAMES MILLER

B.S., University of Nebraska at Kearney, 2003

M.S., Kansas State University, 2007

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2012

Abstract

A multiagent system is a system that is composed of multiple autonomous agents. Au-

tonomous agents are given the right and the responsibility to make decisions based on their

perceptions and goals. Agents are also constrained by their capabilities, the environment

and the system with which they reside. An agent within the system may need to coordinate

with another agent in the system. This coordination may allow the agent to give updates

from sensor readings, communicate updated map information or allow the agent to work on

a cooperative task such as lifting an object.

To coordinate agents must be able to communicate with one another. To communicate

agents must have a communication medium. The medium is the conduit through which

the information flows. Additionally there must be a set of rules to govern which agent

talks at what time. This set of rules is called a communication protocol. To effectively

and efficiently communicate all agents participating in the communication must be using

compatible protocols.

Robotic agents can be placed in diverse environment and there are multiple avenues for

communication failure. Current multiagent systems use fixed communication protocols to

allow agents to interact with one another. Using fixed protocols in an error prone environ-

ment can lead to a high rate of system failure.

To address these issues, I propose that a formal framework for interaction be defined.

The framework should allow agents to choose new interaction protocols when the current

protocol they are using fails. A formal framework allows automated tools to reason over the

possible choices of interaction protocols. The tools can enumerate the protocols that will

allow the agent to achieve its desired goal.

AN INTERACTION FRAMEWORK FOR MULTIAGENT

SYSTEMS

by

MATTHEW JAMES MILLER

B.S., University of Nebraska at Kearney, 2003

M.S., Kansas State University, 2007

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2012

Approved by:

Dr. Scott DeLoach

Department of Computing and
Information Sciences

Copyright

Matthew James Miller

2012

Abstract

A multiagent system is a system that is composed of multiple autonomous agents. Au-

tonomous agents are given the right and the responsibility to make decisions based on their

perceptions and goals. Agents are also constrained by their capabilities, the environment

and the system with which they reside. An agent within the system may need to coordinate

with another agent in the system. This coordination may allow the agent to give updates

from sensor readings, communicate updated map information or allow the agent to work on

a cooperative task such as lifting an object.

To coordinate agents must be able to communicate with one another. To communicate

agents must have a communication medium. The medium is the conduit through which

the information flows. Additionally there must be a set of rules to govern which agent

talks at what time. This set of rules is called a communication protocol. To effectively

and efficiently communicate all agents participating in the communication must be using

compatible protocols.

Robotic agents can be placed in diverse environment and there are multiple avenues for

communication failure. Current multiagent systems use fixed communication protocols to

allow agents to interact with one another. Using fixed protocols in an error prone environ-

ment can lead to a high rate of system failure.

To address these issues, I propose that a formal framework for interaction be defined.

The framework should allow agents to choose new interaction protocols when the current

protocol they are using fails. A formal framework allows automated tools to reason over the

possible choices of interaction protocols. The tools can enumerate the protocols that will

allow the agent to achieve its desired goal.

Table of Contents

Table of Contents vi

List of Figures x

List of Tables xi

List of Restrictions xii

List of Definitions xiv

List of Relations xv

Dedication xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 5
1.3 Research Approach . 6
1.4 Scope . 7
1.5 Thesis Organization . 7

2 Background 9
2.1 Knowledge . 10
2.2 Interaction . 11
2.3 Computer Program Verification . 13

2.3.1 Unit Testing . 14
2.3.2 Model Checking . 15

2.4 Protocols . 15
2.4.1 Verifying Protocols . 16
2.4.2 Protocol Layering . 17
2.4.3 Protocol Composition . 18

2.5 Models at Runtime . 18
2.6 Requirements Elicitation . 21

2.6.1 KAOS . 21
2.6.2 The i∗ Framework . 22

2.7 Multiagent Systems . 22
2.7.1 Multiagent Methodologies . 23

2.8 Linear Temporal Logic (LTL) . 25

vi

2.9 Logic Programming . 26
2.10 SAT Solvers and Zchaff . 27
2.11 Background Summary . 27

3 Framework for Interacting Agents (FIA) Definition 28
3.1 Model Overview . 28

3.1.1 Agents . 30
3.1.2 Goals . 31
3.1.3 Actions . 32
3.1.4 Atomic Actions . 34
3.1.5 Interactions . 35
3.1.6 Interaction Role . 37
3.1.7 Protocols . 39
3.1.8 Protocol Role . 41

3.2 Bindings . 44
3.3 MultiAgent Interaction Model (MAIM) Assumptions 47
3.4 LTL Logic Conversion . 48

3.4.1 Preconditions . 49
3.4.2 Postcondition . 50

3.5 Interaction Model Summary . 52

4 FIA Algorithms 53
4.1 Introduction . 53
4.2 AutoBinding System Overview . 55

4.2.1 Example System Details . 56
4.3 Automatic binding generation . 59

4.3.1 Binding Algorithm . 59
4.3.2 Binding Functions . 64

4.4 Provability vs. Viability . 67
4.4.1 Proof Mode . 67
4.4.2 Viable Mode . 67
4.4.3 Differences . 68

4.5 Binding Goals, Interactions and Protocols 69
4.6 Substitutions and Proofs . 70
4.7 Conclusion . 74

5 FIA Demonstration 76
5.1 Methodology . 76

5.1.1 Methodology Requirements . 76
5.1.2 Physical Demonstration System . 77
5.1.3 Physical Demonstration Results . 79

5.2 Simulated Demonstration System . 83
5.2.1 Simulation Algorithm . 84

vii

5.2.2 Simulated System . 85
5.2.3 Negotiation Failure . 87
5.2.4 Simulating Systems without the Interaction Framework 89
5.2.5 Simulating Results using FIA . 91

5.3 Demonstration Conclusion . 92

6 Related Work 93
6.1 Models at Runtime . 93

6.1.1 Static Models . 94
6.1.2 Self-Adaptive Models . 94
6.1.3 Goal Models at Runtime . 95

6.2 Protocol Reasoning Methods . 96
6.2.1 Commitments In Multiagent Systems 96
6.2.2 Sharing State and Intent within Multiagent Systems 98

6.3 Multiagent System Protocols from Specification 100
6.4 Multiagent Systems Languages . 101
6.5 Verifying Agent Behavior . 102
6.6 Fault Tolerant Systems . 104

6.6.1 Fault-Tolerant Protocols . 105
6.6.2 Fault-Tolerance Framework . 106
6.6.3 Hermes . 106

6.7 ADL and Meta models . 107
6.7.1 Architecture Description Languages 107
6.7.2 Meta-models . 108

6.8 Summary . 110

7 Conclusion 111
7.1 Current State of Interactions in Multiagent Systems 111
7.2 The Formal Interaction Framework . 112
7.3 Future work enabled by FIA . 115
7.4 FIA Limitations . 117

Bibliography 118

A Additional Interaction Model Definitions 133
A.1 Interaction Model and Definitions . 133
A.2 Agent Relations . 136
A.3 Interaction Role Relation & Restrictions . 137
A.4 Protocol Role Relations & Restrictions . 138
A.5 Variable Definitions . 140
A.6 Restrictions . 140
A.7 Consistency . 143

viii

B Additional Functions 146
B.1 LTL Example XSB Code . 146

C Binding Formal Definitions 148
C.1 Variables and Expressions . 148
C.2 Variable Convenience Functions . 150
C.3 Binding formal definition . 152

C.3.1 Forming Bindings . 152
C.4 Action Bindings . 153

C.4.1 Action Input Bindings . 153
C.4.2 Goal Output Bindings . 156
C.4.3 Goal-Action Bindings . 157

C.5 Interaction Role Bindings . 158
C.5.1 InteractionRole Input Bindings . 158
C.5.2 Goal-Interaction Role Output Bindings 159
C.5.3 Goal-Interaction Role Bindings . 160

C.6 Interaction Protocol Bindings . 161
C.6.1 Interaction Protocol Input Bindings 161
C.6.2 Protocol Interaction Output Bindings 161

C.7 Binding Proofs . 162
C.7.1 Binding shorthand notation . 166

D Results 167
D.1 Auction Example Verification . 167

ix

List of Figures

2.1 Operational Semantics of Goal Models Abstract Architecture 20

3.1 Interaction Model (MAIM) high level view 29
3.2 Worker Agent Specification . 30
3.3 Example Agent and Goal Specification . 32
3.4 Example Agent,Goal & Action Specification 34
3.5 Example Agent,Goal Action & Interaction Specification 36
3.6 Example Agent,Goal, Interaction & Interaction Role Specification 38
3.7 GPS Move Protocol & Protocol Role Specification 40
3.8 Full Example Specification . 42
3.9 Required Action/Interaction Level Bindings 46
3.10 Required Role Level Bindings . 46

4.1 Binding Types . 55
4.2 Auction High-level Example . 57
4.3 Auction Example Specification . 60
4.4 Required Goal-Interaction Bindings . 61
4.5 Required Interaction-Protocol Bindings . 61

5.1 Demonstration Configuration . 77
5.2 Android Screen Shot . 79
5.3 Physical Demonstration Configuration Interaction Model 80
5.4 Simulation Setup . 85
5.5 No Framework Simulation Results . 89
5.6 Framework Simulation Results . 91

6.1 Event Calculus Model99 . 96

A.1 Consistent Example . 144

C.1 Move Specification with Types . 149

[]

x

List of Tables

List of Figures ix

3.1 LTL operators . 49
3.2 LTL Precondition Derivation . 50
3.3 Postcondition LTL conversion Table . 50

4.1 Input Mapping . 62
4.2 Combination Example . 63
4.3 Valid Input Bindings . 63
4.4 Valid Output Bindings . 64
4.5 Seller Agent Variables . 64
4.6 Sell Item Goal Variables . 66
4.7 Goal-Knowledge-Interaction Input Function 71
4.8 Interaction-Protocol Input Function . 71
4.9 Substitution Table . 73

5.1 Interaction Success without Capability Failure 86
5.2 Valid Tuples For PC Agent when Tablet Camera fails 87
5.3 Valid Tuples For Mobile Agent 1 when Tablet Camera fails 87
5.4 Partial Success Situation . 90

C.1 Example Expression . 162
C.2 Example Binding . 162
C.3 Example Expression Input Binding Substitution 165
C.4 Example Expression Input and Output Binding Substitution 165

[]

xi

List of Restrictions

1 Restriction (Protocol implies Protocol Roles) 48
2 Restriction (Interaction precondition implies Interaction Role precondition) . 48
3 Restriction (Interaction postcondition implies Interaction Role postcondition) 48

4 Restriction (Type Uniqueness) . 134
5 Restriction (Variable Types) . 135
6 Restriction (One Agent Per Goal) . 137
7 Restriction (Role Played By Single Agent) 137
8 Restriction (Non-empty Interaction Role Composition) 137
9 Restriction (Interaction Role Range min ≤ max) 138
10 Restriction (Interaction Role Composition Uniqueness) 138
11 Restriction (Non-empty Protocol Role Composition) 138
12 Restriction (Protocol Role Range min ≤ max) 139
13 Restriction (Protocol Role Composition Uniqueness) 139
14 Restriction (Action achieves Goal) . 141
15 Restriction (Interaction Role Composition Parameters) 141
16 Restriction (Protocol Role Composition Parameters) 142
17 Restriction (Protocol and Protocol Role Imply Interaction and Interaction

Role) . 142
18 Restriction (Implements implies valid binding) 142
19 Restriction (Protocol Role for each Interaction Role) 143
20 Restriction (Interaction Role for each Protocol Role) 143
21 Restriction (Binding Type) . 152
22 Restriction (Binding Partial Function) . 152
23 Restriction (A-K is Binding) . 153
24 Restriction (K-G is Binding) . 154
25 Restriction (A-K-G is a Binding) . 155
26 Restriction (A-K Composition) . 155
27 Restriction (G-K is Binding) . 156
28 Restriction (K-A is Binding) . 156
29 Restriction (G-A is Binding) . 157
30 Restriction (Goal Action Composition) . 157
31 Restriction (IR-K is Binding) . 158
32 Restriction (K-G is Binding) . 159
33 Restriction (IR-K-G is Binding) . 159
34 Restriction (IR-K-G Composition) . 159
35 Restriction (G-K is Binding) . 159

xii

36 Restriction (K-IR is Binding) . 160
37 Restriction (G-IR is Binding) . 160
38 Restriction (G-IR Composition) . 160
39 Restriction (P-I is Binding) . 161
40 Restriction (I-P is Binding) . 162
41 Restriction (Input Binding) . 163
42 Restriction (Output Binding) . 163

xiii

List of Definitions

1 Thesis . 5

1 Definition (Agent Attributes) . 30
2 Definition (Goal Attributes) . 31
3 Definition (Action Attributes) . 33
4 Definition (Interaction Role Attributes) . 37
5 Definition (Protocol Attributes) . 39
6 Definition (Protocol Role Attributes) . 43

7 Definition (Entity Definition) . 53
8 Definition (Interaction Tuple) . 54
9 Definition (Variable Pair) . 54
10 Definition (Binding Relation) . 54
11 Definition (Partial Interaction Tuple) . 62
12 Definition (Interaction-Protocol Tuple) . 70
13 Definition (Type System) . 133
14 Definition (Type Attribute) . 133
15 Definition (Variable) . 134
16 Definition (Variable Attributes) . 134
17 Definition (Specification Language) . 135
18 Definition (Specification Language Symbols) 136
19 Definition (Expression) . 136
20 Definition (Variables Fuction) . 150
21 Definition (Fresh Variables) . 164
22 Definition (Input Substitution) . 164
23 Definition (Output Substitution) . 164
24 Definition (Directed Binding) . 166
25 Definition (Binding Set with Expression) . 166

xiv

List of Relations

1 Relation (Action Goal) . 34
2 Relation (Agent Action) . 34
3 Relation (Interaction Role Composition) . 37
4 Relation (Protocol implements Interaction) 41
5 Relation (Protocol Role Composition) . 43

6 Relation (Type Variable) . 135
7 Relation (Agent Knowledge) . 136
8 Relation (Agent Goal) . 137
9 Relation (Interaction Role Range) . 138
10 Relation (Protocol Role Range) . 139
11 Relation (Protocol Role implements Interaction Role) 140
12 Relation (Free Variable) . 150
13 Relation (Binding Definition) . 152
14 Relation (A-K Relation) . 153
15 Relation (K-G Relation) . 154
16 Relation (A-K-G Relation) . 155
17 Relation (G-K) . 156
18 Relation (K-A) . 156
19 Relation (G-A) . 157
20 Relation (Goal Action Agent Bindings Tuple) 158
21 Relation (IR-K) . 158
22 Relation (K-G) . 159
23 Relation (IR-K-G) . 159
24 Relation (G-K) . 159
25 Relation (K-IR) . 160
26 Relation (G-IR) . 160
27 Relation (Goal Interaction Role Bindings) 160
28 Relation (P-I) . 161
29 Relation (I-P) . 161

xv

Dedication

I dedicate this thesis to my family and friends, especially my wife Beth. Thanks also

to my children Addie and Keagan. They enjoyed my drafts for the scratch paper they

produced. I would like to thank my mother and father for raising me right. They put up

with my long quest to become a teacher. I would also like to thank John and Laura Homer.

They have been the best of friends.

xvi

Chapter 1

Introduction

This chapter introduces the reader to the current state-of-the-art in multiagent systems and

it shows that the lack of a formal model for interactions is a shortfall of current multiagent

system methodologies. The chapter describes the creation of Framework for Interacting

Agents (FIA) and the MultiAgent Interaction Model (MAIM) used in FIA. Multiagent

systems designed using FIA will be more flexible and robust in the advent of failure. FIA

allows agents to dynamically select interactions and protocols that satisfy the agent’s goals.

1.1 Motivation

H
umans have been interacting with one another for millennia, through wall paintings,

smoke signals, oral communication and the written word. Only recently have humans

been able to communicate across vast distances quickly by using telegraphs, telephones, and

computer networks. Formal definition of communication protocols100 and procedures have

come into existence only in the last two centuries. Many of the advances in telecommuni-

cation and computer science have revolved around transferring and processing information

within closed systems such as telephone or computer networks104. This focus on closed

systems has led to information silos, where it is difficult for the information to migrate from

one silo to another103. In the past decade computer system design has shifted from closed

systems to more open and interconnected systems.

Multiagent systems are one approach to developing such interconnected systems. The

1

multiagent systems paradigm has evolved significantly in the past decade. Multiagent sys-

tems began as a distributed connected system, designed as a simple extension of a computer

thread. The definition of multiagent systems has expanded to include the autonomy121, mo-

bility and physicality of agents19. Multiagent systems are being used in a variety of applica-

tions. Multiagent systems are being used for temperature control59, remote surveillance95

and cinematic animation1 as well as many other applications. The first multiagent systems

were developed using ad-hoc approaches with no framework support. Early designers fo-

cused on developing working systems and therefore maintenance and software reuse were not

considered. As computer science and multiagent systems have evolved, software designers

have moved from ad-hoc to formal design processes and the automated generation of imple-

mentations from formal designs. This evolution is evident in the proliferation of multiagent

system frameworks such as KAOS39, GAIA124, O-MASE52, Tropos27 and Prometheus86.

Designers elicit both formal and informal requirements for the system. These requirements

are then used to create models and eventually an implementation of the system.

Most multiagent methodologies use the concepts of agents, goals, roles and capabilities.

Agents have the ability to sense and affect their environment, and communicate with other

agents within the system123. Agents can be autonomous or semi-autonomous and they can

react to changes in their environment. Goals describe desired states of agents or desired

states of the system123. Goals allow an agent to interact with its environment in a proactive

manner. For example, an agent may have a goal to minimize battery use at night. Some

models allow the multiagent system to define avoidance goals. Avoidance goals are states

that the agents and the system attempt to avoid, for example ensuring that an atomic bomb

does not leave a secured facility. Agents may have to perform a series of actions to ensure

that an avoidance goal is always satisfied.

Roles define the rights and obligations of an agent playing the role52. Roles are an

abstraction that allow system designers to compartmentalize aspects of a system. The role

abstraction allows designers to reason about the system at a higher level, where the details

2

of the role are not relevant. Roles within multiagent systems are parallel to roles in the

real world. For example, a person may play the role of father, student and coworker. The

rights for each respective role include the right to raise their child as they see fit, the right to

private academic records and the right to get paid for work performed. Responsibilities may

include responsibility for a child’s actions, doing one’s own work, and acting in an ethical

manner. Within a multiagent system it is possible for an agent to play multiple roles, such

as a searcher role and a relay role. The agent playing the searcher role may be responsible

for searching an area. The role may give the agent the right to be in the search area. The

relay role may make the agent responsible for relaying messages that the agent receives.

Capabilities capture the real world abilities possessed by agents121. Capabilities are gen-

erally realized through sensors and actuators. Sensors allow an agent to observe aspects of

the environment. Actuators allow an agent to modify the environment. Example capabilities

include motors, pneumatics, radars, Radio Frequency transceivers, GPS’s, accelerometers,

gyroscopes and many more. Capabilities may also include processing capabilities such as a

graphics processor or the ability to reason.

The multiagent paradigm allows and encourages the use of decentralized information125.

Information may not be consistent across the system due to bandwidth, logistical and in-

frastructure restrictions. For example, agents may have a map of the environment and each

agent may update the map with new information. If that map is not centrally managed,

each agent can have a different version of the map, which is based on their own perceptions.

In addition to information fragmentation, many multiagent systems are designed to work

with heterogeneous agents, where the capabilities of the agents differ. Some agents may be

desktop computers connected to a wired network, while others may be battery powered,

running a minimal operating system connected to a wireless network. Multiagent systems

should incorporate the unique abilities of each of these agents in a robust and flexible

manner. The introduction of mobile agents allows multiagent systems to run in a variety

of environments. Due to these variable environmental conditions, multiagent systems may

3

be more prone to failure than other computer systems. For example, an agent running in a

desert on a wireless network connected to a battery has multiple avenues of failure. Thus

multiagent systems should be designed to operate in failure prone environments126.

A failure-prone environment can make the process of designing communication proto-

cols more difficult. Multiagent Systems typically define communication protocols in a formal

manner. However, these systems often do not allow protocols to be chosen dynamically at

runtime. Current state-of-the-art multiagent systems predefine agent interactions and proto-

cols. For example, the Prometheus methodology defines interactions in terms of Interaction

Diagrams (AUML Sequence Diagrams)86. Their sequence diagrams are designed for specific

scenarios of the system. This type of design will fail when the system encounters an un-

expected scenario. Likewise, the GAIA methodology defines protocols and an Interaction

Model that leverages those protocols. Protocols are defined as an “institutionalized pattern

of interaction” that can be reused within the system124. GAIA also defines a Service Model

that leverages the protocols. These services are predefined for each agent in the system and

they based on the roles that the agent is able to play.

The following quote from Marin et al. accurately states a major shortfall in current

multiagent systems.

“A priori, the main motivation for multi-agent systems lies in the distributed

nature of information, resources and action. It seems also intuitive that one of

the fundamental issues of distributed computer systems is the possibility of host or

network failures. However, it is to be noticed that most of the current distributed

multi-agent platforms and applications do not yet address, in a systematic way,

this possibility of failures75.”

In the Prometheus methodology the scenario diagrams handle failures. A designer has to

define every failure scenario that an agent is likely to encounter. The GAIA methodology

defines that the service model must include adaptive services. Neither of the above method-

ologies provides an explicit mechanism to deal with an interaction failure in a robust manner.

4

The lack of a mechanism in the methodology implies that the designers will (1) create a

rigid interaction model using the methodology or (2) they will provide their own ad-hoc

failure mechanism. Neither of these options provides a truly flexible mechanism for dealing

with failure. Additionally, having predetermined protocols and interactions goes against a

central tenet of distributed Multiagent systems: the ability to adapt to failure63,66. Multi-

agent systems need an explicit mechanism that provides the ability to adapt to failure75.

This mechanism can be implemented by designing a formal framework and providing logic

through a formal reasoning process. The formality allows researchers to prove the soundness

of the results. The framework should define multiagent interactions by formally defining

the relations between the agents, interactions, and protocols.

1.2 Thesis Statement

Thesis 1

Using a formal interaction framework to design and implement multiagent systems can

result in systems that have the ability to adapt in the event of communication and

capability failures.

A formal interaction framework should provide the following: (I) Formal Model, (II) De-

sign Tools such as Methods, Techniques and Analysis and (III) Runtime Support. Providing

these three items should yield a framework that allows agents to adapt to failures.

A formal interaction framework must first and foremost provide a formal interaction

model along with the semantics of the interaction model. Designers can model multiagent

systems using the interaction model. The interaction model should have well understood

semantics, such that a multiagent system designer can create multiagent systems.

A formal interaction framework should support design analysis. The analysis should

yield results that accurately represent the behavior of the multiagent system. The analysis

should also be automated to avoid translation errors. The designer should be able to use the

results of the analysis to determine if the interactions within the multiagent system work

5

correctly.

The final requirement for a formal interaction framework is that it should be explicitly

incorporated into the multiagent system at runtime. Runtime incorporation eliminates the

need for a separate compilation step to convert the model into actual software. In addition

runtime incorporation eliminates the need for a separate algorithm for adapting to failure.

When a failure occurs, the agent simply leverages the same tools used in the design analysis

to enumerate the interactions that satisfy the agent’s requirements.

An interaction framework that provides formal models, design analysis, and runtime

support should yield a multiagent system that can adapt to failure. Creating an interaction

framework that meets these requirements would be a major benefit to the multiagent system

community, as it would create more flexible and robust multiagent systems.

1.3 Research Approach

The following research tasks were executed to create a formal interaction framework that

provides multiagent systems with the ability to adapt to failures.

I Formally define the components of MAIM

II Define how the components of MAIM interact with one another.

III Define reasoning for FIA that can predict system behavior.

IV Demonstrate that systems designed with FIA can adapt to communication and capa-

bility failures.

Task I requires that each entity within MAIM be intuitively and formally defined. MAIM

includes the basic multiagent systems concepts of Agents and Goals as well as Interactions

and Protocols.

Task II defines how the model entities interact with one another. Specifically the required

relationships must be defined in a formal manner. The formal definition allows MAIM to

be reasoned over by a human or an automated system.

6

Task III defines the algorithms that FIA uses to reason about a MAIM model. The

algorithms should be usable at design time in order to aid designers in the creation of

model. Feedback allows the designer to find design flaws earlier in the design process, which

can help reduce the cost of those errors.

Finally, in Task IV, a real world application has been designed and implemented using

FIA. This application shows that a system that uses FIA is more flexible and robust than

a system designed without the framework.

1.4 Scope

Selecting the optimal protocol is orthogonal to this proposal. An optimal protocol selection

model would give the agents the ability to leverage other properties of the protocols. These

properties include bandwidth, power usage and latency. The optimal protocol model would

allow the system to be optimal in one or more of these facets. These choices are similar to

those in the saying “ Fast, Good, Cheap; pick any two”. FIA assumes that agents can use

their autonomy to choose the optimal protocol when they have a choice.

This thesis also does not address tool support for FIA. Tool support helps designer

when they are defining interactions and protocol specifications. agentTool is a tool that

provides a graphical interface for designing multiagent systems. agentTool uses the O-

MaSE Methodology and the GMoDS goal model. Integration with agentTool would aid

system designers in creating interaction models. Tool support would be a future research

endeavor.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 provides background information that will

help the reader understand some of the specific terminology used in multiagent systems,

protocols, interactions and model checking. It also provides an overview of some of the

popular multiagent system frameworks that have been created. Chapter 3 defines FIA.

7

Many of the low level details of FIA are provided in Appendix A. Chapter 4 defines the

FIA reasoning algorithms. These algorithms can be used to verify that a system can meet

its specifications. Additionally, the actual agents can use the algorithms to find interactions

that will achieve their goals. Chapter 5 integrates FIA into a multiagent system. This

system is able to adapt to failures and it is more robust than a system designed without

the framework. Chapter 6 provides the reader with a cross-section of work that is related to

FIA and Interactions within multiagent systems. Chapter 7 gives a summary of this thesis

and it highlights research endeavors enabled by this thesis.

8

Chapter 2

Background

This chapter provides the reader with a background on a broad range of topics related to

this thesis. Section 2.1 surveys some of the current philosophical views that are held about

knowledge. Knowledge, information and data can be transferred via interaction, which is

explored in Section 2.2. Section 2.3 gives the reader an overview of a few software design

techniques used to ensure that software works as specified. The advantages and disadvan-

tages of each technique are given. Protocols are the conduit though which interaction takes

place, and a brief overview of Protocols and Protocol design is provided in Section 2.4.

A formal model that can be used at both design time and runtime is a powerful concept.

Section 2.5 enumerates some formal multiagent system models that can be used during

both processes. Section 2.6 shows how software designers capture requirements and how a

system can be implemented from those requirements Section 2.7 provides background on

current Multiagent System methodologies. A Framework designed for Multiagent Systems

requires an understanding of the concepts of agents, goals, roles and capabilities. The last

two sections give the reader an overview of some of the tools used in FIA. Section 2.9 gives

background in to logic-based programming and the XSB programming language. Finally,

Section 2.10 gives a brief background on SAT solvers.

9

2.1 Knowledge

A
debate has been going on since the Greeks first introduced logical reasoning. Some

of the major questions have been “What is knowledge?” and “How is knowledge

different than information?”15 The quote below exemplifies one view of their difference.

A commonly held view with sundry minor variants is that data is raw numbers

and facts, information is processed data, and knowledge is authenticated infor-

mation.15

This view is intuitive in that knowledge arises from information which in turn arises from

raw data. An opposing philosophical view is that humans innately have knowledge. This

view also states that knowledge must exist before data and information can be created.

Humans use their knowledge to hypothesize about information that they believe should

exist. Humans try and collect data that either proves or disproves their hypothesis110. The

collected data can then be reformulated into new information and new knowledge.

In addition to the ambiguity concerning knowledge, there is also ambiguity as to the def-

inition of information and knowledge. Some researchers believe that there are two different

types of knowledge, explicit and tacit 83. Explicit knowledge is knowledge that can be stored

in a regular form, using a defined structure that is bound by a set of rules. Tacit knowledge

is knowledge that is specific to a person or group of people that cannot be disseminated

easily; however, tacit knowledge is believed to be the key to innovative and competitive

companies.

Contrary to the belief that explicit knowledge exists, there is Stenmark103 who argues

that knowledge can only exist inside the human mind. He believes that the only thing an

information system can process is information. Stenmark does acknowledge that knowledge

and information are intertwined, such that one cannot exist without the other.

FIA addresses the fact that agents can have knowledge, but it does not attempt to address

these philosophical questions about how knowledge can be created or derived within an

10

agent. Instead those philosophical questions should be addressed within the scope of agent

autonomy.

2.2 Interaction

Knowledge, information and data are shared by humans through a process called commu-

nication. Linguists define several key components that are required for communication to

take place. There must be (1) a sender that sends a message, (2) a receiver that receives

a message, (3) a message channel through which the message is sent, (4) a message format

that defines the arrangement of the message and (5) a context in which the message ap-

pears. If these elements are present then the sender can perform a communicative act with

the receiver61. A communicative act is an action that transfers information from the sender

to the receiver.

Broadcasting is one of the oldest forms of communication. An example of a simple

broadcast system is a radio station and receiver. The radio station broadcasts the signal to

a wide area. The station sends out a signal to a general area, but the system is ignorant

of where the radio receivers are located. A reactive system is a system where the receiver

can perform an action to react to a message that was sent. However, the receiver does

not directly communicate through a specific protocol back to the transmitter. Broadcast

radio can be used to create a reactive system. This is the case for Weather Alerts that

are broadcast by radio stations through the Emergency Alert System47. Radio stations can

broadcast that a tornado is heading toward a specific community. The community does not

directly respond back to the radio station, but relays the information to its citizens to take

cover from the storm.

Interaction is a sequence of communicative acts where each party understands the mean-

ing of each communicative act. A communicative act occurs within a communication

medium. A communication medium is the “conduit” through which a message can be

transmitted. A variety of communication mediums exist, including electromagnetic radia-

11

tion (radio), mechanical waves (audio) and electrical signals (coaxial cable, ethernet). Each

medium has specific advantages and disadvantages. For example, most humans have the

ability to create and detect sound waves, thus humans can communicate in this manner

rather naturally. Sound does not travel easily across vast distances and thus radio commu-

nication is better for telecommunication.

In an interaction, the understanding and the meaning of communicative acts are based

on the context of the communicative act. A pair of cars pulling up to a stop sign is an

example of an interaction. Each driver assumes that the other driver knows the rules of the

road. By making this assumption, each driver knows what each of them should do. For

example, if both cars pull up to a stop sign at the same time, the driver to the right has

the right of way. However if a situation arises where the rules of the road are ambiguous,

then the drivers may have use hand signals to interact with one another. Each action (hand

signal) carries an implied meaning to the participants. An interaction can allow different

protocols to be used to achieve the same result. For example when a human is having

a conversation with another human, the protocol for conversation can be Voice Over IP

(VOIP), email, instant message, facebook8 or twitter13. Each of these protocols uses the

Internet as the communication medium. The interaction may be the same, but the protocol

can vary. Each of the above protocols has different rules that determine how the protocol

works. For example, in email the delay between messages may be days or weeks, but in

vocal communication the delay is usually measured in seconds. It is considered rude to reply

to a question weeks later when talking to a person face to face.

When communication theorists first started formulating the definition of interactions,

there were several competing models. There are three classical models: Fayol, Weber and

Taylor. Fayol’s model is summarized by the following quote.

“An effective organization is highly structured, and each individual knows

where he or she fits. Clear structures facilitate the function of organization and

clear rules deal with these structures”81.

12

This theory describes the functions of an organization, but leaves out some of the human

elements, such as interpersonal communication. This theory gives us the rigid structure

required by most organizations and protocol systems.

Weber defined bureaucracy and the ideal theory of how a bureaucracy should work118.

Bureaucracies provide a set of rules that govern the decisions of an organization, which is

quite different from the arbitrary authoritarian style that preceded bureaucracies. This the-

ory describes bureaucratic hierarchies that only allow information to flow through approved

channels. The decisions the bureaucracy makes must be centralized at the top levels of the

hierarchy for the bureaucracy to correctly operate.

Taylor’s theory involves the scientific study of organizations107. Taylor’s theory states

that each job in an organization has a “one best way”, which can be observed by scientific

study of that job. It also states that each worker in an organization has a job that suits

them best. The best workers should be put in their best suited job to increase the efficiency

of the organization and the efficiency of the individual worker. The final element of the

theory is that management and workers should have a strict division of labor. The organi-

zation’s management should perform the scientific study and management operations while

the workers focus on the hard labor.

These three models treat humans as machines and try to reason about them as such.

These theories lead to the common practices of division of labor, strict protocols between

different levels in an organization, and the practice of striving to make humans more efficient

at their jobs. This thesis is based on these classical models.

2.3 Computer Program Verification

Interactions allow humans to communicate knowledge, information and data among one

another. Humans have also developed computer systems to create, derive and store infor-

mation and data. Computer science is the study of how to create computer systems in an

efficient, fast and economical manner. Creating computer programs that are correct is a

13

difficult task (anyone running a computer can attest to this fact). Thus computer scientists

and practitioners have developed methods to aid them in creating correct computer systems.

Two such methods are unit testing and model checking.

2.3.1 Unit Testing

Unit testing is a method of verifying that a computer system works as specified31. Most

programs have several functions. Unit tests verify that each component produces the correct

output when given a specific input. For example if the component has a square function,

then giving the function the input of 4 should return the result of 16. Unit tests can then

be run each time the component is modified to ensure that the output of the component

is still correct. If the test fails, then either the programmer has made an error in the

test or in the modified component. Unit tests give component designers confidence that

a component works correctly, but they do not prove that a component is correct. If the

designer forgets about a specific case, then the unit test may pass, but the component may

return an incorrect result. For example, a programmer may forget to write a test that checks

for null. If the component is called with the value of null, the component may crash. There

are several tools that programmers can use to create unit tests for their component. The

first, and simplest, is ad-hoc unit testing. A programmer writes a program that tests each

function and ensures that the function returns the correct result. The second method is to

use a framework that is made for unit tests. There are many frameworks available, including

JUnit, NUnit3 and many others. JUnit10 is a testing framework that allows designers to

specify testing methods. Designers can also specify properties that must hold for methods

that are being tested. For example, a programmer may use the assertTrue() method to

specify that something in their code must be true when tested. When the programmer

chooses to run the unit tests, the JUnit testing framework automatically verifies the validity

of each test case.

14

2.3.2 Model Checking

As software has proliferated in the past decade, the need to verify that the software works

correctly has become of greater importance. There are many examples where software

did not work properly including the Therac-2518, The Chinook Helicopter Disaster6 , and

Toyota Prius braking system12. Software designers are beginning to move from a testing

paradigm to a verification paradigm. Model checking is a process that takes a model of a

system and verifies that it satisfies a specification for that model. There are a wide variety of

model checkers that have been developed including SPIN22, Bogor96, and Java Pathfinder9

to name a few. If a model can be verified by a model checker, the results are more conclusive

than if the model is only verified via unit testing. A unit test will check a program with a

small number of inputs, whereas a model checker can check a model of the program with

all possible inputs. When a model checker verifies a model the designer is assured that the

model meets its specification. Unfortunately, the cost of running a program with all possible

inputs can be quite high. Model checkers are limited by the size of the input and by the

time allotted to verify the model. As the size of input increases, the time required to check

the model increases exponentially78. This exponential time increase makes model checking

infeasible for some models. Thus a programmer must decide whether model checking is

required or if unit testing is sufficient.

2.4 Protocols

Communication requires that both the sender and the receiver adhere to a shared protocol.

Protocols have been around since Claude Chappe28 created the optical telegraph in 1792.

Over time protocols have been applied to radio broadcast, television broadcast, telephone

networks and computer based network systems. In each of these systems, the protocol starts

as a fixed set of rules that tend to evolve over time. For example in the telegraph the “stop

bit”5 came to be used to end a sentence2, since the “stop bit” was cheaper to send than a

period. Telegraph readers learned to interpret the sentences correctly. Telephone systems

15

started as a system to send voice over the telephone network. Modems106 made use of the

telephone network and provided network connectivity for computer systems. In these two

cases, humans have adapted the original protocol in order to meet different needs. This

adaptation shows that while protocols are designed to be rigid, they can be adapted to meet

the needs of the system.

Humans have an innate ability to learn and adjust to changes in their environment.

However, this task is more difficult for computers to perform. There are several cases where

using protocols in the wrong context led to undesired outcomes. One of the most famous

examples was the Enigma machine used by the Nazi’s in World War II. The encryption

protocol was designed to be secure if the keys were not reused. However, the operators

of the Enigma machine became lazy and reused the keys, thus decreasing the security of

the encryption protocol87. If a protocol is modified, then the properties of the redesigned

protocol must be verified for correctness.

2.4.1 Verifying Protocols

Protocol design has evolved into a process that involves at least three steps. The first step

is to specify what the protocol should do. The second step is to model the protocol at a

high level, abstracting some of the details. The specifications given in the first step are used

to create formal properties that must hold for the model. The third step is to implement

the protocol given the specification and the model.

The protocol model can involve many states in many different processes. The full com-

plexity of a typical protocol model is quite high, and thus the protocol model must be

verified through a proof technique. The preferred verification technique is model checking.

A model checker has the ability to run a protocol through every possible state to verify that

the protocol operates as desired. The first, and most widely used, protocol model checker

was SPIN22. SPIN was developed at Bell Labs for verifying the correctness of telecommu-

nications protocols. SPIN has been used to check flood control systems62, call processing

16

systems58 and satellite software57. Models and properties are specified in the PROMELA102

modeling language and then properties of the model are verified by SPIN.

2.4.2 Protocol Layering

The most widely used protocol in the world is the Transmission Control Protocol/Internet

Protocol (TCP/IP)90. The TCP/IP stack is used to send data reliably from one computer

to another computer. The Internet Protocol (IP) is used to route data across a network,

regardless of the underling physical hardware. The Transmission Protocol (TCP) divides

the data into segments that are delivered by the IP, which in turn transmits the data across

the network. TCP handles transmission errors and retransmits data that is lost, dropped or

corrupted. TCP/IP is the underlying protocol on which the Internet is based, and services

such as HyperText Transfer Protocol (HTTP), File Transfer Protocol (FTP) and Secure

Shell (SSH) all run on top of TCP/IP. The TCP/IP protocol is hierarchically decomposed

to allow for modular design. The standardized Open Systems Interconnection (OSI) model94

defines a seven layer protocol stack. Each layer has the responsibility of providing services to

the layer above it by using the services of the layer below it. This decomposition allows the

designers at each layer to assume that the underlying layers work correctly. For example,

the Layer 2 provides point-to-point reliable communication. Examples of layer 2 protocols

include IEEE 802.11 Wireless and IEEE 802.3 Ethernet. The Layer 2 relies upon Layer 1

(physical) to convert electrical signals into bits. The Layer 2 is used by Layer 3 (TCP/IP)

to provide communication between different networks. The layered approach has proven to

be a good approach to designing network protocols.

The Horus model112 provides a layering mechanism for protocol designers. The designers

create a set of micro-protocols that can be arranged like Lego blocks in order to create a

macro-protocol that is tailored to the requirements of the application. These requirements

may include encryption, acknowledgment, or reliable transport. The protocols designed by

such systems can be more efficient than monolithically-designed protocols.

17

2.4.3 Protocol Composition

Protocol layering and protocol composition are slightly different concepts. In protocol lay-

ering, protocols are arranged in a stack, whereas in protocol composition, protocols are

connected in a graph like structure. The OSI model allows a protocol to make use of a

single lower level protocol. Protocol composition allows protocols to make use of many

other protocols29. For example, an encryption protocol may require a random number to

be sent in a message. If a random number protocol exists, the encryption protocol could

use it to acquire a random number. The random number protocol may be initiated with a

completely different entity, and thus the protocols are not arranged in layers as prescribed

by OSI.

Protocol composition has a major benefit in that by composing protocols, the designers

can leverage the properties of the protocols used in the composition. Properties might in-

clude Quality of Service (QOS), reliable delivery and shared session keys26. By leveraging

these properties the designer can create meta-protocols tailor made for a specific applica-

tion. There are several frameworks that provide programmers with the ability to create

these meta-protocols including Appia80, Horus112 and Maestro26. Protocol composition is

a key component of designing large systems. Each of these protocol composition frame-

works provides different benefits and drawbacks and application designers must choose the

framework that best meets their needs. For example, a highly flexible system may require

more configuration and it may have a performance penalty. An application that requires an

efficient protocol may not be able to use a flexible framework like Appia, but could use a

simpler framework like Horus.

2.5 Models at Runtime

As software has become more complex, there has been a push to develop systems that

leverage formal models at both design time and runtime. Using models at runtime is such a

prevalent topic that there are conferences dedicated to it11. In addition to being prevalent

18

in research, many software processes and architectures are based on this principle, including

Rational Unified Process (RUP)65, Domain Specific Modeling (DSM)50, and UML’s Model

Driven Architecture (MDA)79. Systems using these designs typically take a model of the

system and generate an implementation of the system directly from those high level models.

This provides a direct correlation between the model and the implementation.

The above systems generate software that adheres to the model semantics. A major

question that arises is “What happens when the requirements of the system change at

runtime?” For a system designed with one of the above architectures, the system must be

recompiled and redeployed. Runtime models excel when the requirements of the system

change at runtime. The systems behavior can be modified by changing the model of the

system. These changes can be done without having to recompile the entire system. One

example of such a system is the Goal Model for Dynamic Systems (GMoDS). GMoDS is a

dynamic goal model for computer systems44. The system is specified by a goal specification

tree. There is a goal at the top, which is the overall goal of the system. The top level

specification goal is decomposed into smaller child goals. To achieve a parent goal one of

two things must happen, either (I) all the children must be achieved or (II) one of the

children must be achieved. The former is an AND goal and the latter is an OR goal. Thus

the goal tree is known as an AND/OR goal specification tree. GMoDS also provides a tree

at runtime called an instance tree. This tree is created based on the specification tree. A

GMoDS based system dynamically adds and removes instances of the specification goals to

the instance tree at runtime. An example that illustrates the dynamic nature of the goal

model is a search and rescue system. The search and rescue divides a particular area into a

number of subareas that must be searched. As victims are located, new instance goals are

created for the rescue of each victim. In addition to dynamic goal creation, the goal model

defines a partial ordering on how agents can achieve goals. This ordering allows designers to

specify that particular goals must be accomplished before other goals can be attempted. In

the search and rescue example, the agents may wait until all the victims are located before

19

attempting to rescue any of the victims.

Winikoff et al.113 abstractly defines what multiagent system goals are and how they

can be used. Morandini et al.82 extends the abstract goal model architecture to define

semantics for an AND/OR decomposed goal tree. This model requires that leaf goals have

a set of steps that an agent can directly follow (a plan). These plans can be executed by

the agents to achieve those leaf goals.. A leaf goal is a goal that is not decomposed, and

thus it has no children. The leaf goals are one of three types. Perform goals are goals that

do not specify a particular state. Achieve goals are goals that do specify an achievement

state. Maintenance goals attempt to maintain a particular state of the environment. Their

abstract architecture defines the semantics of the high level parent goals (shown in Figure

2.1) as well as the semantics of the leaf goals. Their architecture defines that non-leaf goals

are in one of the following states {suspended (S), active-deliberate (AD), active-undefined

(AU), active-success (AS), active-failure (AF)}. The semantics of their abstract architecture

provides a mechanism for goals to change state. These formal semantics allow the system

to dynamically adapt to changes in the environment.Mirko Morandini, Loris Penserini, Anna Perini • Operational Semantics of Goal Models in Adaptive Agents

133

Figure 2: Possible states and transitions in the abstract architecture for non-leaf goals in goal models.

γi ∈ Γ 〈B, adopt(G, γi)〉 → B′ B′ |= success(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AS, Γ \ {γi})〉
[OR:subg-succeed]

In these four rules we introduced the function adopt(G, g)
to define adoption of a subgoal, that is, adding the (sub)goal
g to the goal base G, in order to start its achievement pro-
cess. Eventually, this will result in a new belief B′. The next
transition rule defines how to satisfy the main precondition
of the former four rules, the transition from 〈B, adopt(G, γ)〉
to B′, that is, adopting the subgoal γi in order to start its
achievement process, and waiting until γi is dropped:

adopt(G, γi) → G ∪ {γi} 〈B, G ∪ {γi}〉 → 〈B′, G〉
〈B, adopt(G, γi)〉 → 〈B′, G〉

where the function disp(G, γi) returns G ∪ {γi}. The new
belief B′ is the result of the application of transitions for
the satisfaction of the goal γi, that concludes with some
transition rule that drops γi from G.

Subgoals that are themselves decomposed to non-leaf
goals, will follow the semantics defined in this work. When
they are dropped (applying [DropSuccess] or [DropFailure],
defined later in this section) the agent’s belief base is always
updated with success(g) or failed(g), where g denotes an
unique identifier of a goal instance. In the case that the sub-
goals are leaf goals, they will be instantiated for example ac-
cording to Riemsdijk’s semantics [15]. We require that also
these goals annotate their success or failure in the agent’s
belief base.

Now we define what happens if a goal is still in the state
AD, but its subgoal list Γ is empty. The following rules
define that a goal, if it is AND-decomposed and still in AD
(thus, no subgoal failed), passes to the provisional success
state AS. Conversely, an OR-decomposed goal fails if none
of its subgoals succeeded:

¬∃〈c,Fail〉 ∈ C.(B |= c)

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AS, ∅)〉
[AND:subg-succeed]

¬∃〈c,Succeed〉 ∈ C.(B |= c)

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AF, ∅)〉 [OR:subg-fail]

4.2.3 Success and failure triggered by conditions
The following rules define the possibility to transit to the

states AS and AF depending on conditions related to the
actions Succeed and Fail.

Satisfied success and failure conditions lead from AU to
the states AS and AF , respectively. In the case that both
conditions are true, failure conditions have precedence.

Moreover, two of these rules also consider transitions from
AS to AF and vice-versa, respectively, limited to the case
that Γ (= ∅. The transition AF → AS will be triggered only
if a subgoal of an AND-decomposed achieve-goal fails, but
its achievement condition holds. Conversely, the transition
AS → AF is used if in an OR-decomposed goal a subgoal
succeeds, but the condition associated to the action Fail is
true. In these two rules, X ∈ {AU, AS}.

Γ (= ∅
¬∃〈d,Fail〉 ∈ C.(B |= d) 〈c,Succeed〉 ∈ C B |= c

〈B, g(C, E,X, Γ)〉 → 〈B, g(C, E, AS, Γ)〉
[cond-succeedC]

Γ (= ∅ 〈c,Fail〉 ∈ C B |= c

〈B, g(C, E,X, Γ)〉 → 〈B, g(C, E, AF, Γ)〉 [cond-failC]

¬∃〈d,Fail〉 ∈ C.(B |= d) 〈c,Succeed〉 ∈ E B |= c

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AS, ∅)〉
[cond-succeedE]

〈c,Fail〉 ∈ E B |= c

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AF, ∅)〉 [cond-failE]

4.2.4 Goal dropping triggered by conditions
The following transition rules define when to drop a goal

from the goal base G. When dropping a goal from the state
AS, the fact success(g) is added to the agent’s belief. Drop-
ping it from AF , failed(g) is added.

Γ (= ∅
g(C, E, AS, Γ) ∈ G 〈c,DropSuccess〉 ∈ C B |= c

〈B, G〉 → 〈B ∪ success(g), G \ {g(C, E, AS, Γ)}〉
[drop-successC]

g(C, E, AS, ∅) ∈ G 〈c,DropSuccess〉 ∈ E B |= c

〈B, G〉 → 〈B ∪ success(g), G \ {g(C, E, AS, ∅)}〉
[drop-successE]

Γ (= ∅
g(C, E, AF, Γ) ∈ G 〈c,DropFailure〉 ∈ C B |= c

〈B, G〉 → 〈B ∪ failed(g), G \ {g(C, E, AF, Γ)}〉
[drop-failureC]

Figure 2.1: Operational Semantics of Goal Models Abstract Architecture

The Organization Model for Adaptive Computational Systems (OMACS) is a model

designed to provide organizational support for multiagent systems42. This model defines

that an Organization consists of Agents, Capabilities, Roles and Goals. In addition to these

entities it also defines relations among the entities. For example the possesses relation defines

20

which capabilities an agent possesses. The Organizational model provides an Organizational

Achievement Function (oaf) that quantifies how well an Organization achieves its goals. The

OMACS model can be used at runtime to allow a system to adapt to failures in an agent.

An example of an agent failure occurs when an agent loses a capability. If that agent was

assigned to achieve a goal that is required by the system then the system cannot achieve its

goal. An OMACS based system must then try and find a new set of assignments of agents

to goals that will allow the system to achieve the goal of the system.

Models that are used at runtime are a new trend in computing that provide a direct

relationship between the specification of a system and the implementation of that system.

Any new framework should provide such a formal model and an automated mechanism to

either generate a system or provide a runtime model.

2.6 Requirements Elicitation

The first step in designing a system is gathering or eliciting requirements from the organiza-

tion requesting a new system. There are several tools, namely KOAS and i∗, that specialize

in eliciting requirements for multiagent systems.

2.6.1 KAOS

The KAOS methodology is a goal-driven requirements elicitation environment39. KAOS

provides a goal model that is AND/OR decomposed and it was one of the first methodolo-

gies to incorporate the AND/OR decomposition of a goal model. This decomposition allows

a developer to iteratively refine the goal model. KAOS allows the specification of goals to

include temporal and first order logic specifications. KAOS also included a graphical user

interface (named GRAIL) to aid designers. The major pitfall of KAOS is the lack of a rela-

tionship between the specification of the system and its implementation. As seen in Section

2.5 integrating the specification into implementation has been considered a key feature in

large systems. The GRAILS environment provides the ability to create specifications that

21

can be read by external tools. These external tools (they used a tool named DOORS39)

allow the designer to reference the specification when implementing the system. The de-

signer must take care to ensure that changes to the KAOS model are synchronized with the

implementation of the system, otherwise the implementation will not accurately reflect the

specification of the system.

2.6.2 The i∗ Framework

The i∗ modeling framework is intended for the early requirements phase of design127. Agents

within the i∗ framework have the ability to rely on other agents for services. This reliance

is modeled by the Strategic Dependency model. The dependency model allows the system

designer to elaborate Resource, Task and Goal dependencies that an agent may have with

other agents in the system. A notable contribution to multiagent systems was the introduc-

tion of a softgoal. Softgoals are goals for which there is no specific task that can accomplish

that goal. For example, a soft goal can be quality, efficiency or redundancy. Softgoals are

most often qualitative and thus are hard to directly implement. In addition to the Strategic

Dependency Model, i∗ includes a Strategic Rational Model. This model allows a system

designer to specify and view the rationale that an agent would use when making decisions

on how to achieve a goal. The i∗ framework intentionally allows the requirements to be

specified in an informal manner and thus the properties cannot be systematically verified.

2.7 Multiagent Systems

The current state of computer programming is focused on allowing programmers to quickly

create correct, maintainable and flexible programs. This shift is evident in the rapid adoption

of programming languages that include runtime compilers and automatic memory manage-

ment (Java, C#, Python, etc). The shift in the focus of programming has led computer

scientists to create new methods, models and tools for creating computer systems. A pro-

gramming paradigm is a collection of these methods and models to solve a particular type

22

of problem. A modern paradigm that has emerged is that of multiagent systems119. Multi-

agent systems are a relatively recent concept in the computing world (early 90’s). The first

multiagent systems were purely software based and started out as a collection of desktop ma-

chines connected to a wired network. Current multiagent systems have expanded to include

agents that are battery powered and communicate via wireless protocols. Additionally, they

can include a wide variety of sensors and actuators27,97.

The multiagent system paradigm defines what an agent is and it provides a method to

connect agents. Robotic multiagent systems tend to be deployed in environments where the

likelihood of failure is higher than in normal computing environments114. This increased

likelihood of failure has lead to multiagent system frameworks being developed that allow

agents to adapt to failure and self organize42.

2.7.1 Multiagent Methodologies

There are a variety of multiagent methodologies that are available for use in system design.

Some of these methodologies include GAIA124, Tropos27, Prometheus86, and O-MaSE41.

Each one of these methodologies provides a design time model that allows the designer to

specify desired behavior and/or restrict undesired behavior.

The GAIA Methodology

The Gaia methodology is “intended to allow an analyst to go systematically from a statement

of requirements to a design that is sufficiently detailed that it can be implemented directly” 124.

Thus Gaia requires an additional tool or framework that can take the design documents

and create the software that implements those design documents. Gaia produces a static

organization structure that does not work well for large numbers of agents. Gaia also has

no systematic process for detecting or dealing with agent failure. At the top level Gaia,

decomposes the system in terms of a Role Model. Agents in the system play roles and those

roles may require interacting with other agents. The Interaction Model for Gaia defines how

the agents interact with one another. The Interaction Model is a high level design artifact.

23

Any changes to the Interaction Model should lead to changes in the models at the lower

levels of the design. The integration of these changes may not be a trivial task, as other

tools are required to create an implementation of the system.

Tropos

Tropos is multiagent system methodology that is formed around the Belief,Desire and In-

tention (BDI) software model27. The BDI psychological model attempts to emulate the

human mental model115. The BDI software architecture adapts this mental model for de-

signing agent based systems93. Tropos uses the i∗ modeling framework for the requirement

elicitation phase. Tropos has a formal meta-model and uses UML for diagram creation.

Tropos includes a metamodel that includes Actors, Goals, Plans, Resources, Dependencies,

Capabilities and Beliefs. Tropos leverages the concept of AND/OR decomposition from

KOAS and the notion of softgoals from i∗. Tropos uses plan diagrams at execution and

AUML (Agent UML) sequence diagrams to model communication. Tropos typically uses

the JACK30 platform for development, but the model allows any suitable platform to be

used to create a system implementation.

Prometheus

The Prometheus Methodology is designed to be a practical methodology. The methodology

allows designers to include a variety of materials such as UML sequence diagrams, interaction

diagrams and use case diagrams. Interactions are “derived from use case scenarios using a

fairly mechanical process” 86. The major benefit of Prometheus is ease of use and the ability

to reuse design documents. However, its ease of use and design reuse are also its biggest

detriment. Prometheus lacks standardization and formalization, thus creating a cohesive

system model can be daunting.

24

O-MaSE

The Organization-based MultiAgent System Engineering (O-MaSE)41 methodology was cre-

ated to design multiagent systems that are organization-based. O-MaSE reinvents the origi-

nal MaSE methodology43 for organization-based multiagent systems. O-MaSE incorporates

an organizational model (specifically OMACS) that allows a multiagent system to adapt to

failures by reorganizing at runtime. agentTool III43 is a tool that can be used to design mul-

tiagent systems using the O-MaSE methodology. agentTool III allows a designer to specify

the entities within the system (Agents, Roles, Goals, Capabilities) and the relationships

among those entities (which agent has what goals) by using a graphical interface. O-MaSE

can produce an OMACS compliant system, which allows it to adapt at runtime to changes

in the capabilities of agents.

Multiagent Methodology Summary

These methodologies provide two major improvements over the ad-hoc design. The first

major benefit is that these methodologies allow designers to think at an abstract level.

This abstraction allows designers to reason about a particular component without being

overwhelmed by the low level details. Decomposition also allows design teams to work on

separate parts of the system simultaneously. The second major benefit is the ability to reuse

components. Each methodology allows designers to reuse the design of an agent, goal or

protocol. Software reuse can be a critical tool in a designers arsenal.

2.8 Linear Temporal Logic (LTL)

Linear Temporal Logic is a temporal based logic that allows a designer to specify properties

about the current state or a future state60. LTL’s temporal operators specify at what

points in time the properties should hold. Some of the operators include Global (2),

Eventually (3), Release (R) and Until (U). An example LTL property for a printer can be

specified by the following: 2(busy(Printer) ∨ free(Printer)). This property specifies that

25

the printer is either busy or free. Another property could be that the printer is eventually

free 3(free(Printer). The Until operator can be used to specify that the printer is busy

until it is free busy(Printer) U free(Printer).

In 1977 Amir Pnueli89 proposed that LTL could be used to verify properties of pro-

grams. Since then, LTL has been used in the specification of properties of for a variety of

modeling systems. Some examples include SPIN22, PROMELA102, Maude46, and WSAT51.

System designers can use LTL to specify invariants, safety properties or liveness properties.

Invariants are properties that always hold. An example invariant is the global property

2(busy(Printer) ∨ free(Printer)). Safety properties are used to specify that something

bad never happens. Ensuring that deadlock never occurs is an example of a safety prop-

erty. Deadlock occurs when the system reaches a state where it cannot proceed, and it

typically occurs when processes are waiting for shared resources. An example deadlock

would be (¬busy(Printer) ∧ ¬free(Printer)). The deadlock avoidance property would be

2(¬(¬busy(Printer)∧¬free(Printer))). Liveness properties are properties that state that

something good eventually happens. An example liveness property is 3(free(Printer)).

This states that the printer is eventually free. LTL’s expressive power has lead to it’s

widespread use in system modeling.

2.9 Logic Programming

Logic programming started in the 1970’s. One of the first logic programming languages

created was Prolog34. In a logic programming language, the designer defines a group of

relations. A user can then query a logical program about the relations that have been

defined. Logic programming has been used in artificial intelligence16 as well as a variety

of other fields including security verification14, natural language processing55 and theorem

proving105. Prolog programs consist of terms. Some of the terms are called facts, which

are assumed to be true. Additionally, there are rules that allow Prolog to make inferences

based on rules and facts. For example a prolog program may have the following facts:

26

1. mammal(dolphin), 2. fish(nemo), and 3. mammal(clifford) . A programmer can query

Prolog to find the mammals by issuing mammal(X). As a result, Prolog would list the values

for X, which would yield X={dolphin, clifford}. A rule for the example could be animal(X)

:- fish(X), which says that all fish are animals. Thus a user issuing the following query

animal(X) would receive the result X = {nemo}.

The programming language XSB4 is a version of Prolog that includes tabled resolution.

Tabled resolution allows a program to compute an answer to a query and then store the

query answer pair in a table. Then, when that query is issued again, the program can look

up the value instead of recomputing that value. Tabled resolution increases the speed of an

XSB program. XSB is open source and it was originally created at Stony Brook University.

XSB is used in Section 3.4 for the derivation of facts from LTL logic.

2.10 SAT Solvers and Zchaff

A SAT solver is a program that can check whether or not a Boolean formula has a set

of assignments to the Boolean variables such that the formula is equivalent to True. For

example solving the Boolean formula for A ∨ B a value of True for A or B would yield a

satisfying solution. However, the formula A ∧ ¬A does not have any solution. SAT solving

in general is a very difficult problem to solve (NP-Complete in the worst case). There are,

however, SAT solvers that can solve certain problems in a reasonable amount of time. One

such solver is the Zchaff91 SAT solver.

2.11 Background Summary

This chapter has provided a brief overview of model checking, computer protocols, multia-

gent systems, logic programming, interactions and the study of knowledge. Each of these

concepts are used in the definition of FIA, MAIM and the FIA reasoning algorithms defined

in the next two chapters.

27

Chapter 3

FIA Definition

T
his chapter gives a formal definition for the MultiAgent Interaction Model (MAIM)

and the Framework for Interacting Agents (FIA). MAIM defines each entity involved

in FIA and the relations between those entities. MAIM also defines restrictions upon those

entities and those restrictions define which configurations of the system are valid. The valid

configurations can be reasoned over by FIA such that system behavior can be predicted.

3.1 Model Overview

FIA consists of three intertwined structures.

I Interaction Model (MAIM)

II Type System

III Binding System

Figure 3.1 gives a high level overview of MAIM. The central element of MAIM is the Agent.

An Agent has a set of Goals that it is trying to achieve. Each Agent also has a set of Actions

that it can perform in order to achieve those Goals. An Action can be one of two types, it

can either be an Atomic Action or an Interaction. Interactions are composed of Interaction

Roles. An Interaction Role is a set of responsibilities given to an agent while participating

in an Interaction. Interactions are implemented by Protocols. A Protocol is composed of

28

Protocol Roles. Protocol Roles implement the responsibilities required by the Interaction

Roles.

name
inputs
state
outputs

Goal

Atomic Action

achieves

Interaction

has/belongsto1 *

**

performs *

*

name
inputs
properties
outputs

Protocol

name
knowledge

Agent

implements

name
inputs
outputs
precondition
postcondition

Interaction Role

2..*

1 2...*

1 *
name
inputs
properties
outputs

Protocol Role

*

plays1

*

implements
*

*

name
inputs
outputs
precondition
postcondition

 Action

*
1

*

1

Figure 3.1: Interaction Model (MAIM) high level view

FIA also defines a Type System that consists of Types, Variables, a Specification Lan-

guage and Expressions. The Type System provides a formal base for proving behavioral

properties. The entities are specified using expressions that contain Variables. Each en-

tity uses variables and expressions in a different manner. A Goal utilizes variables to state

properties about the desired state that an Agent should strive to achieve. In an Action, the

variables (inputs) are used to modify the behavior. The precondition specifies the Action’s

requirements and postcondition describe the effects of the Action. The formal definition of

these concepts is located in Appendix A.

The binding system provides a mechanism that describes how information flows through

MAIM. The binding system utilizes the Type System to define a formal channel through

29

which this information can flow. A Specification Language has been developed for specifying

formal properties within FIA. This language is fully defined in Appendix A.

The next few sections define each of the various entities and how they are related.

Definitions of the formal relations and the attributes of each entity will also be specified.

Example entities are given to clarify the definitions and formalizations.

3.1.1 Agents

Agents are the central component in a multiagent system. “An agent is a computer system

that is capable of independent action on behalf of its user or owner.”121 This description

of an Agent provides a basic notion of an agent. MAIM provides the relations (as shown

in Figure 3.1) between the agent and other entities within the model. Definition 1 states

that an Agent has a name and some knowledge. The name allows agents within the system

to identify each other. An Agent’s Knowledge allows it to make decisions on current and

future actions. The Knowledge also allows an Agent to select appropriate Interactions.

Definition 1 (Agent Attributes)

name String
knowledge Set(Variable)

An example Agent is shown in Figure 3.2. The Agent’s name is “WorkerAgent”. WorkerA-

gent has two pieces of knowledge. The first piece of knowledge is the Agent’s location. The

second piece is the current time.

name:WorkerAgent
knowledge:

location=39.122833, -96.713652

time = 12:00

Agent

Figure 3.2: Worker Agent Specification

The Agent’s Knowledge is a dynamic set of information that changes over time, de-

pending on the Agent’s reasoning model. Thus the Agent is allowed to save, update, or

30

purge information at will. In the WorkerAgent example the current time would be a piece

of Knowledge that would be updated periodically (once a minute or every second). The

details of the knowledge relation are not key to understanding an agent, and the formal

definition of knowledge is located in Appendix A.2.

3.1.2 Goals

A Goal is the desired state of an agent within the environment. Agents start with a set

of beliefs about their environment. Agents can use sensors and percepts to monitor and

modify their environment. An Agent’s state is the set of internal beliefs that an Agent has

about their environment, but these beliefs may not correctly represent the environment. A

Goal is a state (of the environment or the agent itself) that the Agent wishes to realize or

achieve. The Agent may need to perform an Action or participate in an Interaction in order

to achieve its Goals. Definition 2 enumerates the attributes that belong to a Goal. A Goal’s

state is described by a Specification Language expression (Definition 19). A Goal can have

inputs that parameterize the Goal state. A Goal’s inputs will affect how the Actions, Roles

and Protocols are played. The inputs are a set of Variables that default to being read only.

The outputs are a set of Variables whose value may be overwritten by the outcome of an

action. If a variable is both an input and an output then the variable is read-write. Once a

goal is achieved, any variables in that goal can be added to the agents knowledge.

Definition 2 (Goal Attributes)

name String
inputs Set(Variable)
outputs Set(Variable)
state Expression

Figure 3.3 extends Figure 3.2 by adding a goal to WorkerAgent. This goal’s name is

“move” and it has three parameters. The first input is the location, the second input is the

duration, and the third input is the start time. The Goal specifies that the agent is to be at

the location at a specific time (starttime + duration). The Goal has two outputs, the first

31

is the finish time and the second is the finish location.

name:WorkerAgent
knowledge:

location=39.122833, -96.713652

time = 12:00

Agent

name:move
inputs

location:39.122833, -96.613652
duration: 15min
starttime = 12:00

state
finishlocation = location ⋀

starttime + duration > finishtime

outputs
finishtime
finishlocation

Goal

has/belongsto

Figure 3.3: Example Agent and Goal Specification

Figure 3.1 shows the has relation between Agents and Goals. The inverse of this relation

is a function, such that each Goal belongsto a single Agent. The has relation is defined in

Appendix A.2 and is used in the Restrictions (Section A.6). In the example shown in Figure

3.3 the has relation is as follows.

has = {(WorkerAgent,Move)}

Thus, the belongsto function is define for one value, Move, such that belongsTo(Move) =

WorkerAgent

Function 1 (Goal → Agent)

belongsto : Goal→ Agent

3.1.3 Actions

An Action is performed by an agent in order to achieve a goal. Actions allow an agent to

sense or affect their environment, which is a key tenet in multiagent systems. An Action

is either something an Agent performs by itself or in the context of a group of Agents (an

32

interaction).

The attributes for an action are listed in Definition 3. An Action’s precondition and

postcondition formally specify what the Action requires and what it does. The precondition

is an expression that must be true for the Action to function properly. The postcondition is

an expression that must hold immediately after the Action has finished, if the precondition

was initially true. The inputs allow the Action to be parameterized. The values acquired by

the outputs depend on the result of the Action performed by an Agent. The postcondition

specifies additional properties that must hold for the outputs. The example in Figure 3.4

shows the specification of an Action.

Definition 3 (Action Attributes)

name String
inputs Set(Variable)
outputs Set(Variable)
precondition Expression
postcondition Expression

Figure 3.4 extends Figure 3.3 by adding an Action. The action’s name is “Atomic Move”.

The Atomic Move action has six inputs and two outputs. The precondition of Atomic Move

ensures that the current location is the start location and that the current location is not

the finish location. The values of the outputs time and finishlocation are restricted by the

properties given in the postcondition. The postcondition states that the current location is

the same as the finish location and that the start time plus the allocated duration is more

than the current time.

Figure 3.1 shows a relationship between Actions and Goals and between Agents and Ac-

tions. The Action-Goal relation is the achieves relation (Relation 1). The achieves relation

defines which goals an action is capable of achieving. The performs relation (Relation 2)

defines the allowable Actions that an Agent can perform. The allowable Actions are based

on either the physical capabilities of the Agent or a set of organizational restrictions. MAIM

does not define how this relation is created, only that the relation exists.

33

name:WorkerAgent
knowledge:

location=39.122833, -96.713652

time = 12:00

Agent

name:move
inputs

location:39.122833, -96.613652
duration: 15min
starttime = 12:00

state
finishlocation = location ⋀

starttime + duration > finishtime

outputs
finishtime
finishlocation

Goal

has/belongsto

name:Atomic Move
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

precondition
currentlocation = startlocation ⋀

currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time
currentlocation

Atomic Action

performs

achieves

Figure 3.4: Example Agent,Goal & Action Specification

The achieves relation is a derived relation. The derivation uses formal proof techniques

to prove that an Action will or may achieve a Goal. Chapter 4 defines the proof technique

used to create this relation. The proof technique has two modes: proof mode and viable

mode. In the proof mode the derivation proves that the Action will achieve the Goal. In

the viable mode the Action may achieve the Goal. These modes are described in detail in

Section 4.4.

Relation 1 (Action Goal)

achieves ⊆ Goal× Action

Relation 2 (Agent Action)

performs ⊆ Agent× Action

3.1.4 Atomic Actions

An Atomic Action is an action performed by a single agent while achieving a goal. Atomic

Actions are typically the low level actions used by the agents to sense and manipulate

their environment. Atomic Actions do not require agent coordination. Example capabilities

34

include GPS, camera, radio, locomotion and a gripper. For each of these capabilities there

could be an Atomic Action. The GPS Atomic Action could define a precondition (must

be able to see the sky) for using the GPS and it could define a postcondition (Location

returned with a 3 meter accuracy). Figure 3.4 gives a concrete example of an Atomic

Action. The Atomic Move action allows an Agent to move through its environment by

using a GPS and its motion capabilities. The Atomic Move shows that an Atomic Action

can merge multiple low level capabilities into a single Atomic Action. For this example,

the performs relation now includes the Atomic Move action for the Worker Agent and the

achieves relation includes the move goal and the Atomic Move action.

performs = {(WorkerAgent,Atomic Move)}

achieves = {(move,Atomic Move)}

3.1.5 Interactions

Clearly the definition of an Atomic Action is necessary but it is not a comprehensive defini-

tion. Multiagent systems require coordination and communication for a variety of reasons.

For example, coordination allows a group of agents to work on tasks that are too large for

one agent. Additionally, there are times where an agent does not have all of the required

capabilities to achieve a specific task. Multiagent systems are inherently prone to failure

and agents need to communicate and redistribute work when a failure occurs.

Interactions are one of the key entities within MAIM and FIA. The Oxford Dictionary

defines an interaction as a “reciprocal action or influence”77. The meaning for an Interaction

in MAIM emerges from this definition. An Interaction is an action that requires more

than one participant and where each action has an effect on multiple entities within the

Interaction. This definition broadly states that an Interaction requires more than one agent.

An Interaction also requires that each action within the Interaction affects the current and

future behavior of multiple agents.

Interactions are instances of Actions and, like Atomic Actions, they inherit all the at-

35

name:WorkerAgent
knowledge:

location=39.122833, -96.713652

time = 12:00

Agent

name:move
inputs

location:39.122833, -96.613652
duration: 15min
starttime = 12:00

state
currentlocation = location ^
starttime + duration > currenttime

outputs
currenttime
currentlocation

Goal

has/belongsto

name:Interactive Move
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

precondition
currentlocation = startlocation ^
currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time
finishlocation

Interaction

performs

achieves

name:Atomic Move
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

precondition
currentlocation = startlocation ^
currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time
finishlocation

Atomic Action

achieves

Figure 3.5: Example Agent,Goal Action & Interaction Specification

tributes of Actions. The major difference is that Interactions require that conditions hold

for all agents in that interaction, whereas in Atomic Actions these conditions are required

to internally hold for each agent. The internal states of agents within the system may differ

due to the different beliefs that each agent holds. Figure 3.5 adds an Interaction to the

example system. The Interactive Move has the same specification as the Atomic Move, but

the Interactive Move requires multiple Agents and a Protocol to implement the Interaction.

An agent participating in an Interaction must be able to achieve at least one Goal. The

precondition and postcondition of the Interaction must provide the supporting evidence that

the achievement of the Goal is possible. The precondition and postcondition are used in the

creation of a proof that is used to prove that the Goal achievement is possible. The updated

relations for the example in Figure 3.5 are shown below.

performs = {(WorkerAgent,Atomic Move), (WorkerAgent, Interactive Move)}

achieves = {(move,Atomic Move), (move, Interactive Move)}

36

3.1.6 Interaction Role

“A role is a set of expectations that govern how people holding a given position should

behave109.” The definition for an Interaction Role is based on this interpersonal definition.

An Interaction Role is the set of rights and obligations used in an Interaction. Interaction

Roles are an abstract role within an Interaction that an Agent will perform. They are

realized by Protocol Roles (Section 3.1.8), which define behaviors that fulfill the required

obligations of the Interaction Role. Interaction Roles abstract some of the details present

in the Protocol Roles which allows Interaction Roles to be more flexible and less dependent

on the Protocol or the Agent that implements them. The Interaction Role Attributes are

shown in Definition 4. The Interaction Role has read-only inputs. Given the inputs, if the

precondition of the Interaction Role is met, then the postcondition holds when the role is

finished. The outputs are a set of variables whose values are produced by the Interaction

Role.

Definition 4 (Interaction Role Attributes)

name String
inputs Set(Variable)
precondition Expression
postcondition Expression
outputs Set(Variable)

Figure 3.1 shows a compositional relationship between the Interaction and the Interaction

Roles. This relationship is formalized by the InteractionRoleComposition relation shown in

Relation 3. The composition relation restricts the implement relation between Interactions

and Protocols, thus it restricts which Protocols can be used to realize an Interaction.

Relation 3 (Interaction Role Composition)

InteractionRoleComposition ⊆ Interaction× Interaction Role

Figure 3.6 adds two Interaction Roles to the Interactive Move Interaction. The Interac-

tive Mover Role is the Interaction Role played by the agent that is moving. The Interaction

Location Role is the role that is played by an Agent that is able to determine the location of

37

another Agent. A topographical survey crew is a real world example of a system with two

similar such roles35. In a surveying crew, one person stands at a known location and uses

a theodolite to measure the location of the level staff. The level staff is held by a person

moving within the environment. In the example shown in Figure 3.6 an Agent can be a

mover agent if they can communicate with the Agent playing the Interactive Location Role.

The Agent playing the Interaction Mover Role can move to a location without having the

ability to determine its location using its built in sensors.

name:WorkerAgent
knowledge:

location=39.122833, -96.713652

time = 12:00

Agent

name:move
inputs

location:39.122833, -96.613652
duration: 15min
starttime = 12:00

state
currentlocation = location ^
starttime + duration > currenttime

outputs
currenttime
currentlocation

Goal

has/belongsto

name:Interactive Move
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

precondition
currentlocation = startlocation ^
currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time
finishlocation

Interaction

performs

achieves

name:Interactive Mover Role
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

precondition
currentlocation = startlocation ^
currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time
finishlocation

Interaction Role
name:Interactive Location Role
inputs

agentname
currentlocation
desiredlocation

precondition
currentlocation != desiredlocation

postcondition
currentlocation = desiredlocation

outputs
desiredlocation

Interaction Role

1

1 1-2

Figure 3.6: Example Agent,Goal, Interaction & Interaction Role Specification

There are several additional relations and restrictions that are placed on Interaction

Roles, as listed in Appendix A.3. These restrictions include the cardinality rules for Interac-

tion Role composition and a uniqueness property for the composition. The Role composition

rules ensure that each Interaction is composed of two or more Interaction Roles, and that

each Interaction Role is part of one Interaction. The cardinality of the composition allows

the designer to specify the minimum and the maximum number of occurrences of each role.

38

The example in 3.6 shows that there can be 1-2 instances of the Interactive Location Role

in the Interactive Move Interaction: 2 instances of the Interactive Location Role allow the

agent playing the Interactive Mover Role to gather data from two different sources.

3.1.7 Protocols

Protocols have long been used in computer science to transfer information from one point

to another. A protocol is a set of rules governing the exchange or transmission of data

electronically between devices77. Protocols allow information to flow between the agents in

the system and they define the rules that govern information flow. The Protocol definition is

similar to the definition of an Interaction, in that two or more Protocol Roles are composed

to define a Protocol. Given the inputs, a protocol guarantees that the properties will hold

during the protocol. These protocol properties are specified in Linear Temporal Logic (LTL)

so their truth value depends on the point in time which they are checked. Some properties

hold when the protocol starts, some hold during the execution of the protocol, and some

hold when the protocol is finished. The outputs are the set of Variables whose values are a

product of the completion of the protocol. As with Interactions, the outputs can overwrite

the values of the inputs. Figure 3.7 shows the specification of an example movement protocol.

This protocol allows two agents to coordinate such that an agent that does not have a GPS

can move to a location specified by GPS coordinates. The properties of the protocol specify

that the agent either arrives at the location in the allocated time or the protocol has failed.

Definition 5 (Protocol Attributes)

name String
inputparameters Set(Variable)
properties Set(Expression)
outputs Set(Variable)

The definition of a Protocol in MAIM allows the model to leverage the current state

of the art techniques in Protocol design. The model can take any protocol specified in

LTL and reason about the protocol within the context of the model. The ability to reason

39

name:GPS Move Protocol
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time
fail = false

properties
(currentlocation = startlocation ⋀

fail = false ⋀

currentlocation != finishlocation)
U
((currentlocation = finishlocation ⋀

starttime + duration > time)
⋁

(fail = true))

outputs
time
finishlocation

Protocol

name:NON-GPS Mover Role
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

properties
(currentlocation = startlocation ⋀

currentlocation != finishlocation)
U
((currentlocation = finishlocation ⋀

starttime + duration > time)
⋁

(fail = true))

outputs
time
finishlocation

Protocol Role

name:GPS Location Role
inputs

agentname
currentlocation

properties
sentlocation = agentname.currentlocaion

outputs
none

Protocol Role

1
1

1

1

Figure 3.7: GPS Move Protocol & Protocol Role Specification

about protocols allows the agents to use predefined protocols in FIA and MAIM. Designers

must use a tools such as Spin22 to verify that a model ensures the properties that it states.

Designers could also use JPF17 to prove that the actual code meets the specification given.

Figure 3.1 shows a relation between Interactions and Protocols. The Relation 4 defines

that a Protocol implements an Interaction. The implements relation shows which protocols

have the ability to do the work required by an Interaction. There are two properties that

are required for a Protocol to implement an Interaction.

I. Properties of Protocol hold initially given only the inputs specified in the Interaction

precondition.

II. The Interaction postcondition can be proven to be true given the properties that are

true at the completion of the Protocol.

The above two properties ensure that the Interaction can be implemented by the Pro-

tocol. The implements relation is formally defined in Relation 4. If both Property I and

Property II hold then a protocol may implement an Interaction. There are additional restric-

tions that apply to Interaction Roles and Protocol Roles that also hold. These additional

properties are described in the next section.

40

Relation 4 (Protocol implements Interaction)

implements ⊆ Interaction× Protocol

Figure 3.8 shows that GPS Move Protocol implements the Interactive Move Interaction.

The implements relation for the example is as follows.

implements = {(GPSMoveProtocol, InteractiveMove)}

Property I verifies that the precondition is valid. In the example system Property I

requires that we show that the following property holds.

Example 1

currentlocation = startlocation ∧ currentlocation 6= finishlocation

implies

currentlocation = startlocation ∧ fail = false ∧ currentlocation 6= finishlocation

The above property only holds if fail = false is true when the Protocol starts. Figure

3.8 shows that the initial value for fail is false, and thus the property holds. In the Example

system, Property II is as follows.

Example 2

((currentlocation = finishlocation∧ starttime+ duration > time)∨ (fail = true))

implies

((currentlocation = finishlocation ∧ starttime+ duration > time))

It should be clear that the above property is not true. The condition fail = true allows

the implication to not hold. Chapter 4 defines a formal model that provides a more flexible

proof technique which shows that there is a situation where the property can hold. Figure

3.1 shows the implements relation between a Protocol and an Interaction.

3.1.8 Protocol Role

Protocol Roles are a key element of the standard protocol definition in Computer Science.

A Protocol Role is a set of behaviors, rights and obligations involved in participating in a

41

name:WorkerAgent
knowledge:

location=39.122833, -96.713652

time = 12:00

Agent

name:Move
inputs

location:39.122833, -96.613652
duration: 15min
starttime = 12:00

state
finishlocation = location ⋀

starttime + duration > finishtime

outputs
finishtime
finishlocation

Goal

has/belongsto

name:Interactive Move
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

precondition
currentlocation = startlocation ⋀

currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time
finishlocation

Interaction

performs

achieves

name:Interactive Mover Role
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

precondition
currentlocation = startlocation ^
currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time
finishlocation

Interaction Role
name:Interactive Location Role
inputs

agentname
currentlocation
finishlocation

precondition
currentlocation != finishlocation

postcondition
currentlocation = finishlocation

outputs
none

Interaction Role

1

1

1 1-2

name:GPS Move Protocol
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time
fail = false

properties
(currentlocation = startlocation ⋀

fail = false ⋀

currentlocation != finishlocation)
U
((currentlocation = finishlocation ⋀

starttime + duration > time)
⋁

(fail = true))

outputs
time
finishlocation

Protocol
name:NON-GPS Mover Role
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

properties
(currentlocation = startlocation ⋀

currentlocation != finishlocation)
U
((currentlocation = finishlocation ⋀

starttime + duration > time)
⋁

(fail = true))

outputs
time
finishlocation

Protocol Role
name:GPS Location Role
inputs

agentname
currentlocation

properties
♢ (☐(currentlocation = finishlocation))

outputs
none

Protocol Role

11

1

1

implements

implements

implements

Figure 3.8: Full Example Specification
42

protocol. This Protocol Role is also based on the interpersonal definition109 (just as the

Interaction Role) . A Protocol Role defines the actions and responses for a particular agent

within a Protocol. The Protocol Role attributes mirror the attributes that are defined for the

Protocol. However, the properties are defined for the Protocol Role may be more restrictive

than the Protocol properties. This allows the Protocol Role to be more specific than the

Protocol. More restrictive roles for end points are common in actual protocol definitions.

For example the TCP/IP protocol specifies that clients make a connection to a ip address

and port. The server has the additional constraint that no other ip address can have a

connection on that same port. This property is so common that the Promela language102

and Spin model checker22 have primitives for defining properties for both a protocol level

property and a protocol role (process) level property.

Definition 6 (Protocol Role Attributes)

name String
inputs Set(Variable)
properties Set(Expression)
outputs Set(Variable)

A Protocol is composed of two or more Protocol Roles. Figure 3.1 shows the relation between

each Protocol and the Protocol Roles, which is defined in Relation 5. This relation must be

defined by the Protocol designer and the properties should be verified by a model checker.

Relation 5 (Protocol Role Composition)

ProtocolRoleComposition ⊆ Protocol× Protocol Role

Figure 3.8 shows two Protocol Roles for the GPS Move Protocol. The first role is the

NON-GPS Mover role. This role specifies the properties for the agent that is doing the actual

moving. The GPS Location Role defines the protocol for the agent that is calculating and

sending the location of the moving agent. It should be clear that the properties for the GPS

Location Role are different than the properties for the protocol as a whole.

43

Protocol Roles implement Interaction Roles. This relation is defined in Relation 11 in

Appendix A.4. The implements relation for the example in Figure 5 is as follows.

implements = { (NON-GPS Mover Role, Interactive Mover Role),(GPL Location Role,Interactive Location Role)}

The Protocol/Interaction implements relation requires two properties to hold. The Pro-

tocol Role/Interaction Role implements relation also requires two properties to hold.

I Properties of Protocol Role hold initially given only the inputs specified in the Interac-

tion Role precondition.

II The Interaction Role postcondition can be proven to be true given the properties of the

Protocol Role which are true at the completion of the Protocol Role.

The Protocol/Interaction implements relation gains additional constraints with the ad-

dition of Protocol Roles. If a Protocol implements an Interaction, then there must be a

mapping of each Protocol Role to an Interaction Role and for each Interaction Role there

must an implementing Protocol Role. This ensures that there is a match between roles

defined in the Protocol and the roles defined in the Interaction.

In Figure 3.8 each of the Interaction Roles has a implementing Protocol Role. The

Interactive Mover Role is implemented by the NON-GPS Mover Role. The Interactive

Location Role is implemented by the GPS Location Role.

Appendix A.4 includes the above restrictions on the implements relation. The Appendix

also includes the cardinality rules for Protocol Role composition and a uniqueness property

for the composition.

3.2 Bindings

MAIM defines the entities required for FIA. The model is defined such that the information

resides within the Agent and the Goal. If the Agent chooses to perform an Action then

the Agent must transfer information into the Action. The information resides in Variables

44

located in the Agents Knowledge and the Agents Goals. In the example in Figure 3.8 the

Worker Agent has a Variable named location which has the same semantics as the Move

goal’s currentlocation Variable.

Up to this point many multiagent systems have provided models that are similar to

MAIM. System designers have two options in regards to moving information from the

Agent’s Knowledge to the inputs of an Action. A designer can either hard code how the

information flows or there can exist a mechanism, within the model, that can automatically

move the information correctly.

FIA uses the latter of the two options. FIA defines a mechanism that allows information

to flow from the Agent to the Interactions and Protocols. This mechanism, called a binding,

provides a way to relate the Variables within the Agent’s Knowledge and Goals to the

variables within the Actions, Interactions and Protocols. This section provides the intuitive

definition of bindings. The formal definition of bindings is located in Appendix C. FIA

defines three general types of bindings.

I. Action Level

II. Interaction Level

III. Role Level

The Action Level binding (Type I) is a binding between the Agent and an Action (Left

hand side of Figure 3.9). This binding is useful only for Atomic Actions. The Interaction

Level binding (Type II) is a binding between a Goal, an Agent, an Interaction and a Protocol

(Figure 3.9). The Role Level binding (Type III) is the Role level binding (Figure 3.10). The

role level binding is a binding between a Goal, an Agent, an Interaction Role and a Protocol

Role. This type of binding determines which roles an agent is allowed to play within the

Interaction and the Protocol.

An Agent that has the Action Level bindings can execute an Atomic Action. If the

Agent has both the Interaction Level and the Role Level bindings it can participate in an

45

Goal

Agent

Interaction

stateinputs

knowledge

input output

pre post

Protocol

input

pre
properties

post
properties

Goal

Agent

Interaction

stateinputs

knowledge

input output

pre post

Protocol

input

pre
properties

post
properties

Figure 3.9: Required Action/Interaction Level Bindings

Goal

Agent

Interaction Role

stateinputs

knowledge

input output

pre post

Protocol Role

input

pre
properties

post
properties

Goal

Agent

Interaction Role

stateinputs

knowledge

input output

pre post

Protocol Role

input

pre
properties

post
properties

Figure 3.10: Required Role Level Bindings

46

Interaction using a Protocol. An Agent participating in an Interaction must play at least

one of the Interaction Roles that the Interaction is composed of. For each of the Interaction

Roles that the agent is playing, the agent must play the corresponding Protocol Roles that

implement those Interaction Roles.

An example input binding may help clarify how bindings work. The Interaction Inter-

active Move in the Move Example (Figure 3.8) includes several inputs. The value for the

input currentlocation may come from the WorkerAgent’s Knowledge of location and the in-

put finishLocation may get its value from the Move Goal’s input location. A binding creates

an inter-entity mapping from inputs to values. This mapping provides the Action with the

required inputs.

An example output binding for the Goal Move may give the output finishtime the value

that is stored in the Interactive Move’s time output. Additionally the Move’s finisihLoca-

tion may receive its value from the Interactive Move’s finishLocation output. This binding

provides the Agent with the required information to check that the Goal has been achieved.

3.3 MAIM Assumptions

MAIM requires that the designer has done three things (I) modeled the Protocol, (II) speci-

fied Protocol and Protocol Role properties, and (III) verified that the model possesses those

properties. This verification provides the MAIM with a ground truth on which other prop-

erties can be derived. The model defines Restriction 1 which requires that the protocol

properties imply the conjunction of all the protocol roles that implement that protocol.

This restriction ensures that a proof can be made with the Protocols properties. If the

properties of the Protocol do not imply the properties of the Protocol Roles, then it is

be possible to construct two proofs that are inconsistent with one another. The ability

to construct inconsistent proofs leads to undesirable behavior and thus it is disallowed.

47

Restriction 1 (Protocol implies Protocol Roles)

∀p Protocol |(p.properties =⇒ (∀pr : Protocol Role |(p, pr) ∈ implements∧
pr.properties))

In addition to the Protocol restriction, there are two restrictions defined for Interactions

and Interaction Roles. Restriction 2 ensures that the Interaction precondition implies the

conjunction of the Interaction Role preconditions. Restriction 3 ensures the Interaction

postcondition implies the conjunction of all the Interaction Role postconditions.

Restriction 2 (Interaction precondition implies Interaction Role precondition)

∀i Interaction |(i.precondition =⇒ ∀ir : Interaction Role |(i, ir) ∈ implements
∧

ir.precondition)

Restriction 3 (Interaction postcondition implies Interaction Role postcondition)

∀i Interaction |(i.postcondition =⇒ ∀ir : Interaction Role |(i, ir) ∈ implements
∧

ir.postcondition)

The above restrictions ensure that inconsistent proofs cannot be made using the Proto-

cols and Interactions. The next section defines how the protocol properties can be converted

into pre and post conditions.

3.4 LTL Logic Conversion

Linear Temporal Logic (LTL) is logic that allows a designer to specify properties that

are based on both relative and absolute time constraints. The logic supports properties

that either always hold or hold for a period in time. Protocols are defined using LTL

logical operators. The protocol properties can be verified for a model using a model checker

like Spin22. FIA’s algorithms reason about Protocols and Protocol Roles using non-LTL

properties. For a precondition check, the LTL properties are converted to properties that

hold initially. As these properties hold initially they are analogous to a precondition in

an Interaction or Interaction Role. When creating a Goal satisfaction proof, the Protocol

properties are converted to properties that must hold when the protocol completes. This is

analogous to the postcondition in the Interaction or Interaction Role.

There are five basic LTL operators that are defined in the Specification Language. These

48

operators are listed in Table 3.1. Given these canonical definitions, FIA must show that the

Global Gφ 2φ Property φ always holds.
Next N φ ◦φ Property φ holds in the next state.
Finally F φ 3φ Property φ holds at some point
Until ψ U φ ψUφ Property ψ holds up to the point where φ holds
Release ψ R φ ψRφ Property φ holds up to the point where ψ becomes true

Table 3.1: LTL operators

preconditions of the Interaction do not conflict with the initial state of the Protocol. The

definition of the LTL rules assumes that extraneous LTL operators have been removed or

simplified. This makes the LTL rules simpler to describe. The actual implementation does

not assume simplification and thus it simplifies the expressions as it is processing them.

3.4.1 Preconditions

The conversion algorithm derives, from the input properties, a set of properties that hold

initially. The implementation leverages the logical foundations of the Prolog programming

language. Prolog can derive new rules based on previous facts and derived facts. Table 3.2

lists the conversion rules that are defined in Prolog. Line 1 shows the Global operator. A

property that is globally true for the Protocol must be true when the Protocol starts. Line

2 defines the Next operator. This operator states that property φ will be true in the next

state and not the current state and thus we do not add any additional properties. Line 3

defines Finally operator. This operator defines that eventually property φ will be true. This

does apply to the current state and thus no additional properties are added. Line 4 is the

Until operator. This operator specifies that ψ has to hold at least until φ holds. By the

definition ψ must hold to start, and that φ may eventually be true. The algorithm derives

that ψ holds initially. The algorithm excludes φ as it adds no additional properties. The

final operator, Release is on Line 5. This operator specifies that φ must hold until and up

to the point at which ψ holds. By definition φ must hold initially and thus the algorithm

adds φ to the result. After the algorithm processes the above rules, the result is a list of

49

1 Gφ =⇒ φ
2 Nφ =⇒ true
3 Fφ =⇒ true
4 ψUφ =⇒ ψ
5 ψRφ =⇒ φ

Table 3.2: LTL Precondition Derivation

properties that initially hold for the Protocol. The Interaction precondition is combined

with these properties to create a single conjunctive condition. This single condition is run

through a SAT solver to ensure that there are no conflicts.

3.4.2 Postcondition

The postcondition conversion algorithm converts the LTL properties into properties that

must hold when the Protocol has finished. The Protocol properties are used to create the

proof that the Interactions postcondition holds when the Protocol finishes. The Proto-

1 Gφ =⇒ φ
2 Nφ =⇒ true
3 Fφ =⇒ true
4 ψUφ =⇒ true
5 ψRφ =⇒ true
6 (β = Gγ), Fβ =⇒ γ
7 (β = Gγ), βRα =⇒ γ ∨ α
8 (β = Gγ), αUβ =⇒ γ ∨ α
9 ¬Fα, αRβ =⇒ β
10 ¬Fβ, αUβ =⇒ α
11 (β = Gγ),F¬α, αUβ =⇒ γ
12 (α = Gγ),F¬β, αRβ =⇒ γ

Table 3.3: Postcondition LTL conversion Table

col postcondition derivation includes rules that require many facts. Prolog and XSB are

specifically tailored for this kind of logical reasoning, which is why they were chosen as the

language for implementation. The right most column of the table defines the new facts that

are derived. If the value in the rightmost column is true, then no additional facts are added.

50

Line 1 defines the rule for the global operator. If something is globally true, it is added

to the current set of postcondition facts.

The next operator (Line 2) does not supply any additional information, thus true is

added to the postcondition facts.

Line 3 defines the rule for the finally operator. At first glance, it appears that φ should

be included in the postcondition, but the semantics of the finally operator states that φ will

eventually become true. This implies that it could become false at some point. Additional

information is required in order to derive a postcondition property out of the finally operator.

Line 4 and 5 define the rules for the until operator and the release operator. Each of these

operators works like the finally operator in that no additional facts can be derived without

additional information.

Line 6 defines the first multi-fact based rule. This rule combines a finally and a global.

If we know that eventually β is true, and β is a global property Gγ, then γ must hold in

the final state.

Line 7 defines a compound rule that leverages the release property. Given a release βRα

and it is the fact that β is a global Gγ then either α or γ is true in the postcondition. Thus

either α is always true or β becomes true and remains true for the rest of the protocol.

This rule adds a pair of disjunctive clauses, which may not be helpful most of the time

as it weakens the premise and thus weakens the conclusions that can be derived. There

are circumstances that can leverage this additional information, such as ¬α. A stronger

postcondition may be derived, thus the disjunction is included.

Line 8 defines a compound rule for the until operator. Given the property αUβ and the

property β is a global property (Gγ), then either α or γ is true in the postcondition. This

rule is similar to rule 7.

Line 9 defines another compound release rule. Given a release αRβ property and the

fact that α will never be true (¬Fα) then the algorithm can derive that β is be true in the

postcondition. In this case the definition of release states that if α is never true, then β

51

must remain true forever.

Line 10 defines a similar rule to the above rule. This rule applies the negation to the

until operator instead of the release operator. Given the until property αUβ and given the

fact thatβ never becomes true then α will hold forever and when the Protocol completes.

Line 11 defines another compound rule for the until operator. Given the until property

αUβ. If α is eventually false then β will eventually be true. If β is in the form of a global

property (Gγ), then γ must be true in the postcondition.

Line 12 defines a similar property to the property on Line 11 but it utilizes the release

operator. Given the property αRβ and the property that eventually β is not true and α is in

the form of a global property Gγ, then it is the case that γ will be true in the postcondition.

After the Protocol postcondition is derived (using the rules above) the Protocol post-

condition and the Interaction postcondition are run through a SAT solver.

The XSB prolog code that implements these properties is listed in Appendix B.1. The

code listed is for both the precondition and the postcondition derivations.

3.5 Interaction Model Summary

This chapter has laid the groundwork for FIA. The entities that comprise MAIM as well as

the relationships between these entities have been defined. Agents, Goals, Atomic Actions,

Interactions, Interaction Roles, Protocols and Protocol Roles are the formally defined en-

tities. Additionally, the inter-entity relationships, such as the relationship between Agents

and Interactions, are defined in the Model. This formal model for Interactions allows reason-

ing tools and algorithms to reason about the behavior of such a system. The LTL conversion

rules define how the FIA algorithms can convert the LTL protocol properties into precon-

ditions and postconditions. The next chapter provides such reasoning algorithms.

52

Chapter 4

FIA Algorithms

This chapter defines the algorithms used by FIA to reason about a system designed with

MAIM. Section 4.2 defines bindings and how they are formed. Section 4.3 defines the

algorithms that reason over MAIM. Section 4.4 defines the two different modes that the

algorithms can use and Section 4.6 defines how the algorithms create and check the proofs

that use the bindings defined in FIA.

4.1 Introduction

A
s presented in Chapter 3, MAIM defines the entities within a multiagent system.

These entities are Agents, Goals, Atomic Actions, Interactions, Interaction Roles,

Protocols and Protocol Roles. In order to define a set of algorithms to reason over MAIM, a

few formal definitions are given. Definition 7 formally defines that all of the main elements

of MAIM are entities that can be reasoned over.

Definition 7 (Entity Definition)

Entity = set(Agent) ∪ set(Goal) ∪ set(Atomic Action) ∪ set(Interaction) ∪ set(Interaction

Role) ∪ set(Protocol) ∪ set(Protocol Role)

Interactive multiagent systems require communication between agents. In addition to

requiring agent communication, a system constructed using FIA requires that information

flows between Entities. Definition 8 defines a tuple that includes each of the model entities.

53

This tuple is defined to facilitate the understanding of algorithms and illustrate how the

algorithms in the MAIM can reason about the system behavior.

Definition 8 (Interaction Tuple)

<Goal,Agent,Interaction,Interaction Role,Protocol,Protocol Role>

MAIM (Section 3.2) defined a binding as a formal relation between Variables within

entities. Each entity in MAIM has a formal specification that contains Variables used for

input and output. Thus, by definition, every Variable has an implicit context within an

Entity. The implicit context is formalized in the tuple definition defined below.

Definition 9 (Variable Pair)

<Entity e, Variable v> | v ∈ variables(e)

The VariablePair relation has a validity restriction that ensures that context of the

Variable is correct. In valid VariablePair, the Entity e must have a Variable v. Appendix

C.2 defines the variables function used below.

Two variables that are boundmake up a tuple of VariablePair’s(<VariablePair,VariablePair>).

A binding, as shown in Definition 10, is formally defined as a set of bound Variables.

Definition 10 (Binding Relation)

bound = <VariablePair a,VariablePair b>

binding = set(bound)

The specification for each entity is different and thus where a variable is defined will

vary. For example, in the Interaction Role Variables exist in the precondition and the

postcondition, but in the Goal the Variables exist in the state. The location of the variables

is defined in Appendix C.2. A high level overview of the binding model is shown in Figure

4.1. Each major entity in MAIM is shown and the binding functions are represented by the

arrows. The bindings that are used for input are arrows pointing down (red), and the output

bindings are shown by the arrows pointing up (blue). The direction of the arrows shows the

information flow. The information can flow from the Goal and the Agents’ Knowledge into

the Interaction and Protocol. The output of the Protocol flows into the Interaction, which

54

then flows back to the Agent’s Knowledge and the Agent’s goal.

Goal

Agent

Interaction

stateinputs

knowledge

input output

pre post

Protocol

input

pre
properties

post
properties

Goal

Agent

Interaction Role

stateinputs

knowledge

input output

pre post

Protocol Role

input

pre
properties

post
properties

Goal

Agent

Atomic Action

stateinputs

knowledge

input output

pre post

Type I Type II Type III

Figure 4.1: Binding Types

4.2 AutoBinding System Overview

The Autobinding System provides two distinct modes (Section 4.4). The first mode is proof

mode. In proof mode the system can accept an Interaction Tuple as input and return true

iff the goal will be satisfied. The second mode is the viable mode. In this mode the system

will accept an Interaction Tuple as input and return true if the goal may be satisfied.

An example system has been designed to show how the binding system works. The

example system is a multiagent system where there are Agents that need to buy and sell

items. The example system uses an auction for the exchange of items. There are two

popular auction types that are used to auction items. The first type (and most familiar) is

the English Auction. In an English Auction, the seller starts with a low price and as Agents

bid, the price increases until there is only one bidder left. The advantage of an English

Auction, is that the item being sold should sell for the maximum price. The disadvantage

55

to the English Auction is that there is no limit on the number of bids that may be placed.

The second type is the Dutch Auction. Dutch auctions are so named, as they are used in

the Netherlands to auction tulips. In a Dutch auction the price starts at the maximum price

the seller desires and the price keeps being lowered until someone bids, or the minimum is

reached. The advantage of a Dutch auction is that the time for the auction can be determined

beforehand, as the maximum number of rounds can be calculated. The disadvantage of the

Dutch auction is that a maximum price is predetermined.

4.2.1 Example System Details

A high level overview of the example is shown in Figure 4.2. There are two agents, one

Agent (Seller Agent) that has a Goal to sell an item (Sell Item Goal), and a second Agent

(Buyer Agent) has a goal to buy an item (Buy Item Goal). For the sake of readability the

item details have been omitted (such as name, type etc). This will make the model more

readable and that does not affect the outcome of the algorithm. There is one Interaction

(Sell Interaction) that should satisfy both of the agent’s goals. The Sell Interaction has

two Interaction Roles (Buyer Interaction Role and Seller Interaction Role) that implement

the Interaction. There are also two protocols (Dutch and English Auction) that implement

the Sell Item Interaction. The Dutch Auction has two roles, the seller role (Dutch Auction

Seller Role), and the buyer role (Dutch Auction Buyer Role). The English Auction also

has two similar roles, a seller role (English Auction Seller Role) and a buyer role (English

Auction Buyer Role).

The specification for the entire example system is shown in Figure 4.3. Each entity’s

specification is shown in detail. The details of each specification are described below.

The Seller Agent has one goal, the Sell Item Goal. The Sell Item Goal has one input

named min. An input is a parameter to a goal that specializes the goal in order to accom-

modate the needs of the agent. The min is the minimum price the Seller Agent is willing to

accept. The goal states that the price is greater than or equal to the minimum and there is

56

Seller
Agent

Buyer Agent

Sell Interaction

Buyer
Interaction

Role

Buy Item
Goal

Sell Item
Goal

Seller
Interacition

Role

English Auction

English Auction
Buyer Role

English Auction
Seller Role

Interaction Roles

Protocol Roles

Dutch Auction

Dutch Auction
Buyer Role

Dutch Auction
Seller Role

Protocol Roles

achieves
achieves

implements

implementsimplements

implements

Figure 4.2: Auction High-level Example

57

a winner.

The Buyer Agent also has one goal, which is the Buy Item Goal. The Buy Item Goal

has one input named max. The max is the maximum price that the Buyer Agent is willing

to pay for the item. The desired state of the Buy Item Goal is that the price is less than or

equal to the max and this agent is the winner.

The Sell Interaction has two Interaction Roles, the Seller Interaction Role and the Buyer

Interaction Role. The Sell Interaction has two inputs, min and max. These inputs are the

minimum and maximum that an item can be sold for. The precondition for the Interaction

states that min is less than or equal to max. If the precondition is true, then the postcon-

dition states that at the price is less than or equal to the max, the price is greater than or

equal to the min, the Winner is the current agent, and the Winner is not null. The Sell

Interaction has two outputs: price and Winner. The postcondition describes the possible

values for price and Winner, thus the possible values are restricted. The Sell Interaction is a

aggregation of the roles it provides, and thus the information in the Sell Interaction applies

to both the seller and the buyer. So, when the interaction states that the Winner is the

current agent, that is applicable for the Buyer Agent, but it provides no helpful information

to the Seller Agent.

The Seller Interaction Role requires one input, min. The min is the minimum that the

Agent playing that role is willing to sell the item for. There is no precondition for this Role.

The postcondition states that the price is greater than or equal to the min and there is a

winner. The outputs for this Role are the price and the Winner. The min is not listed as

an output as the min should not change during the course of playing the role.

The Buyer Interaction Role also requires one input, max. The max is the maximum that

the buyer is willing to buy an item for. There is no precondition for this interaction role.

The postcondition states that the price is less than or equal to max and the winner is this

participant. The outputs for this Role are the price and the Winner.

The Dutch Auction Protocol has two inputs, min and max. Again the min is the min-

58

imum price, and the max is the maximum price. There are three properties of the Dutch

Auction Protocol. The first property states that eventually the price is less than or equal

to max and this is the winner, or someone is the winner or the item is not sold. The second

property states that eventually either the price is greater than min and there is a winner,

or the item is not sold. The last property states that there is at most one bid.

The Dutch Auction Seller Role has one input, min. There are two properties that this

role contains. The first property states that eventually either the price is less than or equal

to the min and there is a winner, or the item was not sold. The second property states that

there is at most one bid.

The Dutch Auction Buyer Role also has one input, max. This role also has two properties.

The first property states that eventually either the price is less than or equal to the max

and this agent is the winner, or there is some other winner, or the item was not sold. The

second property states that there is at most one bid.

The English Auction has a very similar form to the Dutch Auction, except that the

property of There is at most one bid becomes There can be many bids.

4.3 Automatic binding generation

By definition the Variables in MAIM have types. The types allow the algorithm to match

Variables in one context to Variables in another context. The definition of VariablePairs

encapsulates the implicit context of each Variable. The Type System definition ensures

consistency across the domain of MAIM. In the Auction example System, the Sell Item

Goal has a PRICE type and Sell Item Interaction has a PRICE type. The semantics of

those two types are guaranteed to be the same by MAIM.

4.3.1 Binding Algorithm

Figure 4.1 shows the three types of bindings that can be created (Type I, Type II and Type

III). The full definition of each of these types is described in full detail in Appendix C.

59

Seller Agent

Knowledge max = infinity
 increment = 5

Buyer Agent

Knowledge min = 0

Sell Item Goal
Inputs min = 100

State (price≥min) ⋀ ¬(Winner = null)

Buy Item Goal
Inputs max = 200

State (price≤max) ⋀ (Winner = "this")

Sell Interaction

Inputs {min, max}

Precondition (min ≤ max)

Postcondition price ≤ max ⋀ price ≥ min ⋀ Winner = this ⋀ ¬(Winner = null)

Outputs {price,Winner}

Seller Interaction Role

Inputs {min}
Precondition ()

Postcondition (price ≥ min) ⋀ ¬(Winner = null)

Outputs {price, Winner}

Buyer Interaction Role

Inputs {max}
Precondition ()

Postcondition price ≤ max ⋀ Winner = this

Outputs {price, Winner}

Dutch Auction Protocol

Inputs {min, max}

Properties 1.♢ (☐ ((price ≤ max ⋀ Winner = this) ⋁ ¬(Winner = null) ⋁ (NotSold = true))

 2.♢ (☐((price ≥ min) ⋀ ¬(Winner = null) ⋁ (NotSold = true)))

 3. bids = 0 U bids = 1

Dutch Auction Buyer Role

Inputs {max}

Properties 1.♢ (☐ ((price ≤ max ⋀ Winner = this) ⋁ ¬(Winner = null) ⋁ (NotSold = true))

2. bids = 0 U bids = 1

Dutch Auction Seller Role

Inputs {min}

Properties 1.♢ (☐((price ≥ min ⋀ ¬Winner = null) ⋁ NotSold = true)))

 2. bids = 0 U bids = 1

English Auction Protocol

Inputs {min, max}

Properties 1.♢ (☐ ((price ≤ max ⋀ Winner = this) ⋁ ¬(Winner = null) ⋁ (NotSold = true))

 2.♢ (☐((price ≥ min) ⋀ ¬(Winner = null) ⋁ (NotSold = true)))

 3. bids = 0 U bids ≥ 1

English Auction Buyer Role

Inputs {max}

Properties1.♢ (☐ ((price ≤ max ⋀ Winner = this) ⋁ ¬(Winner = null) ⋁ (NotSold = true))

2. bids = 0 U bids ≥ 1

English Auction Seller Role

Inputs {min}

Properties 1.♢ (☐((price ≥ min) ⋀ ¬(Winner = null) ⋁ (NotSold = true)))

 2. bids = 0 U bids ≥ 1

Figure 4.3: Auction Example Specification

60

Each of these binding can be created in 2 phases. In the first phase the input bindings

are created. The input bindings are indicated by the downward red arrows. The second

phase creates the output bindings. These bindings are indicated by the upward blue arrows.

The Type II and Type III bindings can be further broken down into 2 stages. Figures 4.4

and 4.5 show those two additional stages. These stages separate the computation of the

Agent-Goal-Interaction binding from the computation of the Interaction-Protocol binding.

The Agent-Goal-Interaction bindings are computed using Algorithm 1. The Interaction-

Protocol bindings are computed using Algorithm 8.

Goal

Agent

Interaction

stateinputs

knowledge

input output

pre post

Protocol

input

pre
properties

post
properties

Figure 4.4: Required Goal-Interaction Bind-
ings

Goal

Agent

Interaction

stateinputs

knowledge

input output

pre post

Protocol

input

pre
properties

post
properties

Figure 4.5: Required Interaction-Protocol
Bindings

The first stage defined above does not include Protocols and Protocol Roles, thus the

Partial Interaction Tuple excludes the Protocol and Protocol Role entities. Each Partial

Interaction Tuple describes a group of entities such that if the Agent can participate in

the Interaction by using the Interaction Role, then the Agent may or will (see Section 4.4)

achieve its Goal. The Agent-Goal-Interaction Algorithm (Algorithm 1) takes an Agent as

an argument and returns the set of possible Partial Interaction Tuples (Definition 11).

61

Table 4.1: Input Mapping
SellInteraction.min → {Seller Agent.max,Seller Item Goal.min}
SellInteraction.max → {Seller Agent.max,Seller Item Goal.min}

Definition 11 (Partial Interaction Tuple)

<goal,agent,interaction,interaction role>

Algorithm 1 takes an Agent a as an argument. The Seller Agent is used for example

purposes. For each of the goals the algorithm computes the possible Partial Interaction

Tuples. On Line 3 the algorithm iterates through the set of goals that the Agent possesses.

The Seller Agent has a single goal, Sell Item Goal. Line 4 declares the set of valid input

bindings. On Line 5 the algorithm iterates through all of the Interactions that the Agent

possesses. The Seller Agent only has one interaction, the Sell Interaction, thus this is the

Interaction used for the rest of the example. Line 6 calls the input binding function. This

function is listed in Algorithm 2 and it returns a mapping of inputs to possible values (a

set of VariablePairs). These values can originate either in the Agent’s knowledge or in

the Agent’s Goal. The map contains an entry for each of the inputs in the Interaction.

The Sell Interaction has two inputs, thus the map would have those two inputs as keys in

the map (min and max). The values in the map are sets of VariablePairs. Each of these

VariablePairs is from either the Agent’s knowledge or the Agent’s Goal. In the Auction

example the variable min in the Sell Item Goal and the variable max in the agent have the

same type (Integer) as the Sell Item Interactions’ required inputs (min and max). Thus the

map for this example would contain the entries listed in Table 4.1.

The Algorithm iterates through all the possible combinations of input bindings (Line 7)

that can be generated from the Input Mapping. The set of combinations that are generated

for the above example input mapping can be seen in Table 4.2. Each combination is a

binding that must be checked by the algorithm.

Line 8 verifies that the Interaction precondition is valid. If the precondition for the

Interaction is valid then the algorithm iterates through the Interaction Roles for that In-

62

Table 4.2: Combination Example
1.{<SellInteraction.min, Seller Agent.max>, <SellInteraction.max, Seller Agent.max >}
2.{<SellInteraction.min, Seller Agent.max>, <SellInteraction.max, Seller Item Goal.min>}
3.{<SellInteraction.min, Seller Agent.min>, <SellInteraction.max, Seller Agent.max >}
4.{<SellInteraction.min, Seller Agent.min>, <SellInteraction.max, Seller Item Goal.min>}

Table 4.3: Valid Input Bindings
1.{(<SellInteraction.min, Seller Agent.max>, <SellInteraction.max, Seller Agent.max >), Sell Interaction, Seller Interaction Role}
2.{(<SellInteraction.min, Seller Agent.max>, <SellInteraction.max, Seller Item Goal.min>), Sell Interaction, Seller Interaction Role}
3.{(<SellInteraction.min, Seller Agent.min>, <SellInteraction.max, Seller Agent.max >), Sell Interaction, Seller Interaction Role}
4.{(<SellInteraction.min, Seller Agent.min>, <SellInteraction.max, Seller Item Goal.min>), Sell Interaction, Seller Interaction Role}
5.{(<SellInteraction.min, Seller Agent.max>, <SellInteraction.max, Seller Agent.max >), Sell Interaction, Buyer Interaction Role}
6.{(<SellInteraction.min, Seller Agent.max>, <SellInteraction.max, Seller Item Goal.min>), Sell Interaction, Buyer Interaction Role}
7.{(<SellInteraction.min, Seller Agent.min>, <SellInteraction.max, Seller Agent.max >), Sell Interaction, Buyer Interaction Role}
8.{(<SellInteraction.min, Seller Agent.min>, <SellInteraction.max, Seller Item Goal.min>), Sell Interaction, Buyer Interaction Role}

teraction. Line 10 verifies the precondition of the interaction role given the input binding.

If the precondition is valid then the triple (InputBinding, Interaction, InteractionRole) is

added to the current set of valid binding triples. The validBindings variable stores the set

of triples where the inputBinding is valid for both the Interaction and the Interaction Role.

In the auction example, the precondition for the Interaction (Sell Item Interaction) is valid

and the precondition for each of the Interaction Roles (Seller Interaction Role and Buyer

Interaction Role) is valid. The algorithm iterates through each combination of bindings

producing the eight tuples shown in Table 4.3.

The second half of the algorithm generates the output bindings for the Interaction-Goal

bindings, shown on the right hand side of Figure 4.4. On Line 18 the algorithm iterates

through the valid input bindings triples (Defined in Table 4.3). On Line 22 the output

binding function is called. This function is defined in Algorithm 3. The result of this

function call is the list of bindings shown in the Table 4.4. There are two variables in the

Goal that are not listed as inputs: Price and Winner. Variables that are not listed as inputs

default to being available for binding in the output. Each of these variables is mapped by the

getOutputBindings function. The map returned is similar in structure to the input bindings

(Line 6). The type for the Price in the Sell Item Goal only has one possible mapping to an

output of the Sell Interaction (Price). This is the same case for the Winner Variable in the

Sell Item Goal.

63

Table 4.4: Valid Output Bindings
1. Sell Item Goal.price 7→ {SellInteraction.price }
2. Sell Item Goal.Winner 7→ { SellInteraction.Winner}

Line 25 verifies that the Interaction postcondition implies the Goal state. Line 26 verifies

that the Interaction Role postcondition implies the Goal state. If both conditions are true,

then the tuple is added to the set of valid interaction tuples (Line 27). In the example

the algorithm iterates through all eight lines in Table 4.3 and the algorithm checks each

combination (only one is valid) of the possible valid output Bindings listed in Table 4.4.

4.3.2 Binding Functions

Understanding the algorithm that generates the binding map is essential to understand-

ing how the Binding Algorithm works. The Input Binding function (Algorithm 2) takes an

Agent, a Goal and an Interaction and returns a mapping from input variables to possible

values. Line 3 starts by iterating through the set of inputs for the Interaction. For the Sell

Interaction there the two inputs min and max. The algorithm looks up the type of each

input (Line 5). The types for both min and max are floating point. The algorithm takes

that type and looks up the set of bindable variables within the Agent knowledge (Line 6)

and Goals inputs (Line 7). For the auction the bindable variables in the Seller Agent are

listed in Table 4.5 and the bindable inputs for the Sell Item Goal are shown in Table 4.6.

Line 8 checks to see if both sets are empty (no bindable variables). If so then the algorithm

exits with a failure. If the sets are not empty then the algorithm maps each input to its

possible values. When the algorithm has iterated through all the inputs, it then returns the

mappings it has generated. The resulting map was shown in Table 4.1.

Table 4.5: Seller Agent Variables
1. typeOf(max) floating point
2. typeOf(increment) integer

The algorithm for the output pair binding is similar to the algorithm for the input binding

64

Algorithm 1 Getting Interaction Tuples

1: Set(PartialInteractionTuple) getTuples(Agent a)
2: Set(PartialInteractionTuple) result
3: for all Goal g ∈ a.getGoals() do
4: List(Set(Bindings),Interaction, InteractionRole)) validBindings
5: for all Interaction i ∈ a.getInteractions() do
6: Map(VariablePair,Set(VariablePair)) inputBindings = getInputBindings(a,g,i)
7: for all Set(Binding) inputBinding ∈ combinations(inputBindings) do
8: if validPrecondition(a,g,i,inputBinding) then
9: for all InteractionRole ir ∈ i.getInteractionRoles() do

10: if validPrecondtion(a,g,ir,inputBinding) then
11: vaildBindings.add(inputBinding, i , ir)
12: end if
13: end for
14: end if
15: end for
16: end for
17: {Now we have valid input bindings, proceed to outputbindings}
18: for all inputTuple ∈ validBindings do
19: Interaction i = inputTuple.interaciton
20: InteractionRole ir = inputTuple.interactionrole
21: InputBinding ib = inputTuple.inputBinding
22: Map(VariablePair,Set(VariablePair)) outputBindings = getOutputBindings(a,g,i)
23: {Iterate through the output bindings}
24: for all Set(Binding) ob ∈ combinations(outputBindings) do
25: if validPostcondition(a,g,i,ib,ob) then
26: if validPostcondition(a,g,ir,ib,ob) then
27: result.add(g,a,i,ir)
28: end if
29: end if
30: end for
31: end for
32: end for
33: return result

65

Algorithm 2 Getting the Input Binding Pairs for an Interaction

1: Map(VariablePair,Set(VariablePair)) getInputBindings(Agent a, Goal g, Interaction i)
2: Map(VariablePair,Set(VariablePair)) result
3: for all Variable input ∈ i.inputs do
4: Set(Bindings) inputBindings
5: Type inputType = input.getType();
6: Set(Variable) AgentVariables = a.getKnowledgeVar(inputType)
7: Set(Variable) GoalVariables = g.getInputVars(inputType)
8: if AgentVariables.isEmpty() and GoalVariables.isEmpty() then
9: exit(FAILURE)

10: else
11: result.put(input, AgentVariables ∪ GoalVariables)
12: end if
13: end for
14: return result

generation. The only major difference is that on Line 3 (Algorithm 3) the algorithm iterates

through the free variables and outputs in the Goal and not the inputs to the Interaction.

The algorithm gets the value for the variable from the Agent’s Knowledge (Line 6) and the

output variables of the Interaction (Line 7).

Algorithm 3 Getting the Output Binding Pairs for an Interaction

1: Map(VariablePair,Set(VariablePair)) getOutputBindings(Agent a, Goal g, Interaction
i)

2: Map(VariablePair,Set(VariablePair)) result
3: for all Variable output ∈ g.freeVariables do
4: Set(Bindings) outputBindings
5: Type outputType = output.getType();
6: Set(Variable) AgentVariables = a.getKnowledgeVar(outputType)
7: Set(Variable) InteractionVariables = i.getOutputVars(outputType)
8: result.put(output, AgentVariables ∪ InteractionVariables)
9: end for

10: return result

These algorithms are defined to generate all possible type correct bindings. These pos-

Table 4.6: Sell Item Goal Variables
1. typeOf(min) floating point

66

sible bindings must be run through the algorithms in the next section to determine if the

Interactions can achieve the Agents Goals.

4.4 Provability vs. Viability

Section 4.2 stated that there were two distinct proof modes: Provable and Viable. This

section provides the intuition and the formalization of these concepts.

4.4.1 Proof Mode

In Provable mode, the algorithm guarantees that the Goal’s state will be achieved if the

Interaction is performed by the Agent. The only assumption that must be made is the

assumption that the protocol operates without error. This algorithm is sound but the effect

of using it may lead to one of two design approaches. In the first type of design the designer

will create the goals such that they allow for the possibility of failure in the actions that

may be performed by the Agents. This may lead to correct systems, but the overhead of

designing such goals can be burdensome and the goals will be specific to the Interactions

and Protocols defined for that system. The second type of design is one where there are

no specified failure conditions within the Protocols. Unfortunately this is not realistic in a

multiagent system, where Agents have a reasonable chance of failure. While the Provable

mode does provide a satisfaction guarantee, it may not be the best choice in all situations.

Clearly a more flexible algorithm is needed for realistic multiagent systems.

4.4.2 Viable Mode

The Viable mode provides the agent with the possibility that some execution path may

lead to the achievement of the Agent’s Goal. This means that there may be failure, and

thus the Agent may need to repeat an Interaction or select some other Interaction, but

the achievement is possible. This type of algorithm allows designers to create very specific

Goals that are tailor made for an Agent. The designer can also have realistic, proven and

67

usable Protocols that work in theory and in practice. The Interactions provide a layer of

abstraction between the Goal and the Protocol. Thus Interactions are more specific than

the goals that they achieve, but they are less specific than the protocols that implement

them.

4.4.3 Differences

The difference between the Provable mode and the Viable mode lies in the postcondition

verification. For example, suppose that Protocol X has two properties as shown in Example

1.

Example 1 (Protocol X properties)

1. (a ∨ b)

2. (c ∨ d)

Now suppose that there is an Interaction Y with the postcondition as shown in Example 2.

Example 2 (Interaction Y postcondition)

(a ∧ c)

A proof to show that protocol X guarantees Interaction Y would yield the following proof

obligation.

Example 3 (Proof)

(a ∨ b) ∧ (c ∨ d) =⇒ (a ∧ c)

Running the above equation through a SAT solver returns the result of satisfiable. By

the definition of implication a result of satisfiable means that the implication does not hold.

Thus the Provable mode states that by using Protocol X, the Interaction Y is not always

satisfied.

The Viable mode algorithm takes the Protocol properties and converts them into dis-

junctive normal form (DNF). This conversion has the possibility of increasing the number

of terms exponentially, but there are ways to combat some of those problems (by caching

the results and pruning). A conversion of Protocol X’s properties into disjunctive normal

68

form yields the condition listed in Example 4. The Viable algorithm checks to see if any of

the clauses can used to prove Interaction Y’s postcondition.

Example 4 (Protocol X DNF)

(a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d)

There are four clauses in the Disjunctive Normal form of the protocol’s postcondition

and the first clause (a ∧ c) implies interaction Y’s postcondition. This existence of a case

where the postcondition implies the goal’s state gives the algorithm proof that the goal’s

state may be achieved. Agents can then use the Interactions that may achieve their goals.

The Binding System does not require agents to use one mode or another. The agents

can use the Provable mode for picking Interactions and Interaction Roles, and then use

the Viable mode for selecting Protocols that implement those Interactions and Interaction

Roles. The Viable mode was created to provide a more flexible system that can be used at

both design time and at runtime.

4.5 Binding Goals, Interactions and Protocols

Section 4.3 defined an algorithm that enumerates the set of all possible type correct bind-

ings from the Goal to the Interaction. This section defines an algorithm (Algorithm 4) that

creates bindings from the Interaction to the Protocol (Figure 4.5). There are two major dif-

ferences between the Interaction-Protocol binding and the Agent-Goal-Interaction binding.

The first difference is that when the algorithm checks the precondition or the post condition,

it must convert the protocol’s set of LTL properties into a set of properties that either hold

at the start of the protocol (precondition check) or at the end of the protocol (postcondition

check). The set of rules used for this conversion are given in Section 3.4. The second major

difference is that both Interactions and Protocols have compositional roles. To check for

valid bindings, the algorithm has to iterate through all the possible combinations of Inter-

action Roles (Line 7) and Protocol Roles (Line 8). Other than the conversion of properties,

this algorithm is similar to the algorithm for generating the Goal-Agent-Interaction bindings.

69

Definition 12 (Interaction-Protocol Tuple)

<Interaction, Protocol, Interaction Role, Protocol Role>

Algorithm 4 Getting Interaction-Protocol Tuples

1: Set(InteractionProtocolTuples) getProtocolInteractionTuples(Interaction i, Protocol p)

2: Set(InteractionProtocolTuples) result
3: Set(Bindings) inputBindings = getInputBindings(i, p)
4: Set(Set(Bindings), Interaction Role, ProtocolRole)) validBindings
5: for all Set(Bindings) inputBinding ∈ combinations(inputBindings) do
6: if validPrecondition(inputBinding,i,p) then
7: for all InteractionRole ir ∈ i.getInteractionRoles() do
8: for all ProtocolRole pr ∈ p.getProtocolRoles() do
9: if validPrecondition(inputbinding, ir,pr) then

10: vaildBindings.add(inputBinding, ir, pr)
11: end if
12: end for
13: end for
14: end if
15: end for
16: for all inputTuple ∈ validBindings do
17: InteractionRole ir = inputTuple.InteractionRole
18: ProtocolRole pr = inputTuple.ProtocolRole
19: Bindings inputBinding = inputTuple.inputBinding
20: for all Set(Bindings) outputBindings ∈ combinations(getOutputBindings(i,p)) do
21: if validPostcondition(i,p,inputBinding,outputBinding) then
22: if validPostcondition(ir,pr,inputBinding,outputBinding) then
23: result.add(i,p,ir,pr)
24: end if
25: end if
26: end for
27: end for
28: return result

4.6 Substitutions and Proofs

The Viable mode splits the postconditions into multiple proofs that the algorithm has to

check. This section defines the proof algorithm that is utilized by both the Provable mode

and the Viable mode.

70

Bindings are functions that map a Variable in one entity to a Variable in another entity.

The bindings are designed such that the output of one function can be used as an input to

another binding. This property allows the AutoBinding System to compose the bindings.

The AutoBinding system defines a binding that maps values from the Agent’s Knowledge

and the Goal to the Interaction inputs. This is a binding from the Interaction to Agent’s

Knowledge or a Goal’s inputs. The values flow in the opposite direction of the bindings,

from the Knowledge and the Goal into the Interaction. An example function is shown in

Table 4.7. There is another binding that maps inputs from the Interaction to inputs of the

Protocol (Table 4.8). The two bindings are composed to get the required inputs for the

Interaction and the Protocol.

Table 4.7: Goal-Knowledge-Interaction Input Function
Sell Item Goal.min → Sell Interaction.min
Seller Agent.max → Sell Interaction.max

Table 4.8: Interaction-Protocol Input Function
Sell Interaction.min → Dutch Auction.min
Sell Interaction.max → Dutch Auction.max

The Auction example system is used to show how the proof model can be used to check

bindings. The goal used in this proof demonstration is the Sell Item Goal (Equation 4.1)

and the Interaction is Sell Interaction (Equation 4.2). Below are the formal specifications

defined for the Goal and the Interaction. These specifications are also listed in Figure 4.3,

but are repeated for the readers convenience.

(price ≥ min) ∧ ¬(winner = null) (4.1)

(price ≥ min) ∧ ¬(winner = null) ∧(price ≤ max) ∧ (winner = this) (4.2)

The algorithm must prove that if the Sell Interaction is performed, then its postcondition

guarantees that the state for the Sell Item Goal will be achieved. This is done by testing

71

to see if the Interaction’s postcondition implies the Goal’s state. The algorithm must prove

that the implication holds. This implication, or proof obligation is shown in Equation 4.3.

1. (price ≥ min) ∧ ¬(winner = null) ∧(price ≤ max) ∧ (winner = this)
2. =⇒
3. (price ≥ min) ∧ ¬(winner = null)

(4.3)

The algorithm takes both the proof obligation and the set of bindings. The bindings are

used to relate or bind variables in one part of the proof to variables in another part of the

proof. In Equation 4.3 the variable price on Line 1 refers to the price in the Sell Interaction,

whereas the variable price on Line 3 refers to the price in the Sell Item Goal. Equation 4.4

defines the binding used in this example that identifies which variables are bound together.

The algorithm takes the bindings and substitutes bound variables with fresh Variables. The

fresh Variable for each binding is listed in the last column. A fresh Variable is a variable

that does not exist in any of the specifications of any of the entities in the system. Fresh

Variables are used to avoid variable capture and variable name collisions.

Sell Interaction.price → Sell Item Goal.price 0x1
Sell Interaction.winner → Sell Item Goal.winner 0x2

(4.4)

The algorithm then substitutes each bound variable with its associated fresh variable as

shown in Equation 4.5.

(0x1 ≥ min) ∧ ¬(0x2 = null) ∧(0x1 ≤ max) ∧ (0x2 = this)
=⇒

(0x1 ≥ min) ∧ ¬(0x2 = null)
(4.5)

After the bound variables are substituted with their fresh variables, the algorithm sub-

stitutes the inputs from the input binding. In the example, min has a value of 100 and max

has a value of ∞. The result of this substitution is shown in Equation 4.6.

(0x1 ≥ 100) ∧ ¬(0x2 = null) ∧(0x1 ≤ ∞) ∧ (0x2 = this)
=⇒

(0x1 ≥ 100) ∧ ¬(0x2 = null)
(4.6)

The AutoBinding Algorithm generates several possible preconditions. The number of

combinations is based on the number of variables that have the same type. In this example

72

the variables min and max have the same type. The algorithm checks each of these possible

bindings. There is only one binding that proves to be correct. This binding was previously

shown in Table 4.7. The algorithm takes the input values from the knowledge and goal

and propagates them using the input binding function. The algorithm substitutes all input

bindings that have a value and are not listed as outputs.

To solve our proof obligation, the AutoBinding algorithm runs it through a SAT solver to

verify that the proof is either satisfiable or it is not satisfiable. The algorithm converts each

Boolean expression into a Boolean variable. In this example characters are used to represent

each Boolean expression. These substitutions are listed in Table 4.9 and the substituted

proof obligation is shown in Equation 4.7.

Table 4.9: Substitution Table

0x1 ≥ 100 7→ a
0x2 = null 7→ b
0x1 ≤ inifinity 7→ c
0x2 = this 7→ d

(a) ∧ ¬(b) ∧ (c) ∧ (d) =⇒ (a) ∧ ¬(b) (4.7)

After the algorithm has converted each of the Boolean expressions to a Boolean variable,

it then runs the proof through the SAT solver. The algorithm proves that the state is

true through the postcondition (postcondition =⇒ state) by showing the satisfiability of

postcondition ∧ ¬state.

The conversion of the implication from Equation 4.7 is shown in Equation 4.8. The

algorithm then converts the Boolean formula to Conjunctive Normal Form (CNF), which

is the input format for a SAT solver. To prove that the implication holds, the algorithm

checks to see if the formula is unsatisfiable (per the definition given in98). If the formula is

satisfiable, then the implication does not hold and the Interaction will not achieve the Goal

for the Agent.

73

(a) ∧ ¬(b) ∧ (c) ∧ (d) ∧ ¬(b) ∧ ¬((a) ∧ ¬(b)) (4.8)

Given Equation 4.8 as input, the SAT solver returns an UNSAT result. Thus the Seller

Agent can achieve the Sell Item Goal using the Sell Interaction, given the set of bindings

in Table 4.7.

The results of running the entire auction example can be seen in Appendix D.1. These

results are consistent with the intuition given in the design. There are four results that are

verified at the finish of the algorithm. These results are listed below.

The Seller Agent can achieve the Sell Item Goal using the Sell Item Interaction playing

the Sell Item Interaction Role. The Sell Item Interaction can be implemented by the Dutch

Auction Protocol and the Sell Item Interaction Role is implemented by the Dutch Action

Seller Protocol Role. The Interaction and Interaction Role can also be implemented by the

English Auction Protocol using the English Auction Seller Protocol Role.

The Buyer Agent can achieve the Buy Item Goal using the Buy Item Interaction playing

the Buy Item Interaction Role. The Buy Item Interaction can be implemented by the Dutch

Auction Protocol and the Buy Item Interaction Role is implemented by the Dutch Action

Buyer Protocol Role. The Interaction and Interaction Role can also be implemented by the

English Auction Protocol using the English Auction Buyer Protocol Role.

4.7 Conclusion

This section has defined the FIA reasoning algorithms. These algorithms can be used to

creating bindings between entities within MAIM. These algorithms generate type correct

bindings based on a formal specifications defined in MAIM. The algorithms allow the

designer to verify properties at design time. Finding problems at design time is much

cheaper than finding them after the implementation has been created. The verification also

provides agents with a flexible system that can meet the needs of the agent. Agents can adapt

to changes in their capabilities and the addition new interactions and protocols. Agents can

74

learn new protocols and incorporate those protocols without having to be reprogrammed.

This section also defined the logic used for creating proofs, substituting bound variables

and a process for verifying that a proof holds. All of this logic has been completely automated

for use by system designers and agents within the system, as shown in Appendix D. The

automated system is used in the demonstration given in the next section.

75

Chapter 5

FIA Demonstration

T
his chapter presents a physical system that demonstrates the use of FIA at runtime.

The system was given both simulated and actual failures to show that FIA is both

useful and robust. This chapter defines the methodology used to create this system, the

configuration used to run the experiments, and presents the results that show how the

system adapted to capability failures. Additionally, a pair of simulations were designed to

show that FIA is more robust than typical multiagent systems.

5.1 Methodology

The process of integrating FIA into a multiagent system consists of three parts.

(I) Modeling the multiagent system using MAIM by defining Agents, Roles, Goals, In-

teractions and Protocols.

(II) Using the FIA algorithms for generating and verifying bindings.

(III) Demonstrating that the resulting multiagent system is more robust than typical mul-

tiagent systems, thus showing the usefulness of FIA.

5.1.1 Methodology Requirements

The configuration of the demonstration has to meet several requirements to show that the

system is both useful and robust. First there must be at least two agents for any multiagent

76

system. Secondly, the system must be able to adapt to failures. This requires that the

configuration has at least two Protocols. The final requirement is that the system must be

able to fail. The existence of failure shows that the system can adapt to these failures.

5.1.2 Physical Demonstration System

There are two agents in this system. The first agent is on a laptop and the second agent is

on a tablet running the Android operating system. Figure 5.1 depicts the configuration of

the system. The tablet possesses many capabilities that the laptop does not have, such as a

GPS, an accelerometer, a gyroscope and an ambient light sensor. There are three separate

protocols that use two different communication mediums. The first medium is wireless

communication (WiFi). The second communication medium is an optical system that uses

the camera on each device to capture images. The images are then run through Zxing7

(an open source library) to extract the encoded information. The information is encoded

in images using the Quick Response (QR)101 format. This format creates barcodes that are

both compact and robust. QR codes store information in two dimensions (space efficient)

and it uses Reed-Solomon codes for error correction (robustness).

Figure 5.1: Demonstration Configuration

This physical demonstration system provides three protocols that use the two different

communication mediums. The first protocol uses wireless for sending and receiving on both

the laptop and the tablet. The laptop wirelessly sends a request for the GPS location. The

tablet receives the request via its wireless receiver. The tablet then sends back the GPS

77

location of the tablet via wireless to the laptop.

The second protocol uses only optical capabilities for sending and receiving for both

devices. First, the laptop encodes the request for a GPS location into a QR code and

displays it on the monitor (Line 9 Listing 5.1). The tablet uses the camera to take a picture

as shown on Line 12 Listing 5.2. The tablet then processes the image looking for the request.

Once it decodes a request, it then encodes the GPS location of the tablet into an image

(Line 16 Listing 5.2). That image is displayed onto the tablet screen. The laptop uses its

built-in camera to take pictures. The laptop tries to decode the the images from the camera

looking for the encoded GPS location (Line 10 and 11 in Listing 5.1).

Listing 5.1: Physical Demonstration QR Protocol Laptop Excerpt
8 QR+WRITE
9 gps : 0 #Send GPS Goal Request

10 QR+READ
11 Lat i tude = 39.12 Longitude = −96.71 #Recieve GPS Locat ion
12 QR+ACK
13 QR+WAIT
14 QR+ACKTIMEOUT #FINISH

Listing 5.2: Physical Demonstration QR Protocol Tablet Excerpt
10 I /PHDCameraLog (10809) : 1320966421536 READ
11 I /PHDCameraLog (10809) : 1320966423910 WAIT
12 I /PHDCameraLog (10809) : 1320966427913 READDONE
13 I /PHDCameraLog (10809) : 1320966427933 gps : 0 #Recieve Request f o r GPS
14 I /PHDCameraLog (10809) : 1320966427933 PARSE! gps : 0
15 I /PHDCameraLog (10809) : 1320966427934 WRITE
16 I /PHDCameraLog (10809) : 1320966427934 TEXT=Lat i tude = 39.12 Longitude = −96.71 #WRITE GPS Locat ion
17 I /PHDCameraLog (10809) : 1320966442923 WAIT
18 I /PHDCameraLog (10809) : 1320966484936 TIMEOUT
19 I /PHDCameraLog (10809) : 1320966484947 DONE #FINISH

The third protocol uses wireless send on the laptop, wireless receive on the tablet, optical

send on the tablet, and optical receive on the laptop. The third protocol can be used when

the other two protocols cannot be used due to partial capability failures (such as the wireless

send on the tablet and the optical display on the laptop).

Two different methods for failure were developed for the physical demonstration system.

The first method was to use actual hardware failure. This was done by turning off the WiFi

on either device or by not pointing the cameras at the images to be scanned. The second

method emulates capability failure through software. Messages sent via failed capabilities

will not be received and thus the software emulates physical hardware failures.

78

5.1.3 Physical Demonstration Results

The running of this physical system allows the laptop and the tablet to interact with one

another. The tablet has the ability to acquire its location from its GPS receiver. The laptop

can acquire its location by interacting with the tablet. Information about the interactions

between the agents is logged by both the laptop and the Android tablet. Android provides

a logging facility named LogCat that logs messages on the tablet. This log can be streamed

from the tablet to the computer when the tablet is connected to the laptop via a USB cable.

Additionally, the tablet application presents the log as the application is running, so that

the system can be debugged without the USB cable being connected to the tablet (shown

in Figure 5.2). The desktop application uses a custom logging facility to log messages sent

and received. The full logs are shown in Appendix D.

Figure 5.2: Android Screen Shot

The laptop possesses a model of the entire system, which is defined using MAIM. Figure

5.3 shows a high level MAIM model of the system. The laptop runs the FIA Autobinding

algorithms on the model to obtain a list of valid interaction tuples. Listing 5.5 shows

the results of running FIA’s algorithms on the model for this system. This list of tuples

enumerates the valid interactions, protocols, interaction roles and protocol roles that the

laptop can use to communicate with the tablet.

79

Mobile AgentPCAgent

GPS Receiver Goal GPS Sender Goal

GPS Interaction

GPS Sender RoleGPS Receiver Role

Wifi Protocol

Wifi GPS Sender RoleWifi GPS Receiver Role

Optical Protocol

Optical GPS Sender

Role

Optical GPS Receiver

Role

Combination Protocol

Combo GPS Sender

Role

Combo GPS Receiver

Role

implements

implements

implements

Figure 5.3: Physical Demonstration Configuration Interaction Model

Normal Operation

The laptop also has a list of capabilities required for each protocol. Without failure, the

laptop uses each capability as designed. However, if the system is using software controlled

failure then the laptop must verify which protocols it is capable of using. If the laptop does

not have all of the required capabilities for a protocol, then that protocol is not used in the

negotiation. When the laptop commences negotiation, it broadcasts its preferred protocols

by sending their identifiers. Protocol identifier 0 is the optical protocol, identifier 1 is the

WiFi protocol and identifier 2 is the combination protocol. So, if the laptop does not have the

Optical Read capability, then it will not broadcast the identifier for the Optical Protocol

(0). In Listing 5.3 the system has had no capability failure and thus all three protocols

are broadcast. Line 5 in Listing 5.3 shows the laptop broadcasting the available protocols

(protocol: 0, 1, 2). Listing 5.4, Line 4 shows the tablet receiving the broadcast from

the laptop. Line 6 shows the tablet choosing protocol 0 from the list that it received. Line

7-14 in Listing 5.3 shows the laptop running the optical protocol and Lines 9-19 show the

tablet running the protocol. After the optical protocol finishes, the two agents will again

commence negotiating. The full listing of the simulation is listed in Listing D.1 and Listing

D.2.

80

Listing 5.3: Physical Demonstration 0 Laptop Log Excerpt
5 BROADCAST! p ro to co l : 0 , 1 , 2
6 Reading
7 SELECTED PROTOCOL!QRPROTOCOL
8 QR+WRITE
9 gps : 0 #Send GPS Goal Request

10 QR+READ
11 Lat i tude = 39.12 Longitude = −96.71 #Recieve GPS Locat ion
12 QR+ACK
13 QR+WAIT
14 QR+ACKTIMEOUT #FINISH

Listing 5.4: Physical Demonstration 0 Tablet Log Excerpt
1 I /PHDCameraLog (10809) : 1320966388451 READ
2 I /PHDCameraLog (10809) : 1320966389473 WAIT
3 I /PHDCameraLog (10809) : 1320966406481 PROCESS
4 I /PHDCameraLog (10809) : 1320966406501 DATA! p ro to co l : 0 , 1 , 2
5 I /PHDCameraLog (10809) : 1320966406502 WRITE
6 I /PHDCameraLog (10809) : 1320966406503 OUTPUT!0
7 I /PHDCameraLog (10809) : 1320966407123 DONE
8 I /PHDCameraLog (10809) : 1320966421521
9 I /PHDCameraLog (10809) : Opt ica l Protoco l

10 I /PHDCameraLog (10809) : 1320966421536 READ
11 I /PHDCameraLog (10809) : 1320966423910 WAIT
12 I /PHDCameraLog (10809) : 1320966427913 READDONE
13 I /PHDCameraLog (10809) : 1320966427933 gps : 0 #Recieve Request f o r GPS
14 I /PHDCameraLog (10809) : 1320966427933 PARSE! gps : 0
15 I /PHDCameraLog (10809) : 1320966427934 WRITE
16 I /PHDCameraLog (10809) : 1320966427934 TEXT=Lat i tude = 39.12 Longitude = −96.71 #WRITE GPS Locat ion
17 I /PHDCameraLog (10809) : 1320966442923 WAIT
18 I /PHDCameraLog (10809) : 1320966484936 TIMEOUT
19 I /PHDCameraLog (10809) : 1320966484947 DONE #FINISH
20 I /PHDCameraLog (10809) : 1320966485085

81

Listing 5.5: Physical Demonstration Computer Automatic Binding Computation Results
1 Agent : PCAgent Goal : GPSGoal
2 I : GPSInteraction IR : GPSReciever
3 P: QRProtocol PR: QRReciever
4

5

6 Agent : MobileAgent Goal : GPSSender
7 I : GPSInteraction IR : GPSSender
8 P: QRProtocol PR: QRSender
9

10

11 Agent : PCAgent Goal : GPSGoal
12 I : GPSInteraction IR : GPSReciever
13 P: WIFIProtocol PR: WIFIReciever
14

15

16 Agent : MobileAgent Goal : GPSSender
17 I : GPSInteraction IR : GPSSender
18 P: WIFIProtocol PR:WIFISender
19

20

21 Agent : PCAgent Goal : GPSGoal
22 I : GPSInteraction IR : GPSReciever
23 P: WIFIOpticalProtocol PR: WIFIOpticalReciever
24

25

26 Agent : MobileAgent Goal : GPSSender
27 I : GPSInteraction IR : GPSSender
28 P: WIFIOpticalProtocol PR: WIFIOpticalSender

Adapting to Failure

Adapting to failure at runtime is the fundamental problem that FIA solves. This next

example shows the system adapting to the failure of two critical capabilities. The full logs

for this example are shown in Listing D.3 and Listing D.4. Listing 5.6 shows an excerpt

of the log for the laptop and Listing 5.7 shows the log excerpt for the tablet. The tablet

has a failure of the optical write and the WiFi read capabilities (Lines 59-60 in Listing 5.6).

With this type of failure both the WiFi protocol and the optical protocols are not viable for

communication, but the combined WiFi/optical (Combination) protocol is viable. This can

be observed by looking at the Line 61 in Listing 5.6. The laptop only broadcasts protocol

identifier 2 which corresponds to the Combination Protocol. The negotiation process allows

the laptop to broadcast the set of valid protocols. After the tablet receives the broadcast,

it then chooses one protocol from this list. In this case, the tablet receives a list with only

one element in it (protocol: 2). This is shown in Listing 5.7 on Line 77.

82

Listing 5.6: Demonstration 1 Laptop Log Excerpt
59 Fai l ed MobileQRWrite
60 Fai l ed MobileWifiRead
61 BROADCAST! p ro to co l : 2
62 Reading
63 SELECTED PROTOCOL!PCQRMobileWIFI
64 OPTQR+WRITE
65 gps : 0
66 OPTQR+READ
67 EMPTY
68 OPTQR+ACK
69 OPTQR+WAIT
70 OPTQR+ACKTIMEOUT

Listing 5.7: Demonstration 1 Tablet Log Excerpt
74 I /PHDCameraLog (16699) : Negot iate
75 I /PHDCameraLog (16699) : 1321985052999 READ
76 I /PHDCameraLog (16699) : 1321985053973 WAIT
77 I /PHDCameraLog (16699) : 1321985058007 DATA! p ro to co l : 2
78 I /PHDCameraLog (16699) : 1321985058008 PROCESS
79 I /PHDCameraLog (16699) : 1321985058008 WRITE
80 I /PHDCameraLog (16699) : 1321985058049 OUTPUT!2
81 I /PHDCameraLog (16699) : 1321985058786 DONE
82 I /PHDCameraLog (16699) : 1321985065792
83 I /PHDCameraLog (16699) : Comp Opt Read , Tablet Wifi Read Protoco l
84 I /PHDCameraLog (16699) : 1321985065832 READ
85 I /PHDCameraLog (16699) : 1321985065910 WAIT
86 I /PHDCameraLog (16699) : 1321985067844 READDONE
87 I /PHDCameraLog (16699) : 1321985067867 gps : 0
88 I /PHDCameraLog (16699) : 1321985067868 PARSE! gps : 0
89 I /PHDCameraLog (16699) : 1321985067869 WRITE
90 I /PHDCameraLog (16699) : 1321985067889 TEXT=EMPTY
91 I /PHDCameraLog (16699) : 1321985082869 WAIT

The tablet then broadcasts that it chose protocol 2 (the Combination protocol) as shown

on Line 80 in Listing 5.7. Lines 83-91 in Listing 5.7 show the tablet running the protocol

while Lines 63-70 in Listing 5.6 show the laptop running the same protocol. After both

devices have finished the protocol, the negotiation starts all over again and the laptop

begins broadcasting the set of protocols that it wishes to use. This physical demonstration

clearly shows that a real system can adapt to capability failures.

5.2 Simulated Demonstration System

To provide a more rigorous test of FIA, a simulated system was developed. This system

was designed to test the reasoning and negotiation algorithms against all the possible ways

that the system can fail.

83

5.2.1 Simulation Algorithm

The simulation algorithm developed to test FIA is outlined in Algorithm 5. The algorithm

commences by generating all possible combinations of goals for each agent in the system

(Line 1). This ensures that every possible combination of goals is simulated. The simulation

iterates the number of failed capabilities from 0-4 (Line 2). Each protocol requires four of

the eight capabilities. When there are five failures, none of the protocols can work and thus

four failures was the limit used. Line 4 fails the capabilities in the system and Line 7 runs

the negotiation process. When the system is finished running the negotiation, it checks to

see if the negotiation was successful (Line 6) and, if is successful, runs the interaction. The

system then records the result of the process (Line 9).

Algorithm 5 Simulation Algorithm

1: for all agents : goalCombinations(Agent1 . . . Agentn) do
2: for failures = 0; failures ≤ 4; failures++ do
3: for runs = 0; runs ≤ max; runs++ do
4: model.failCapabilities(failures)
5: Boolean success = runNegotiation(agents)
6: if success then
7: success = runInteraction(agents)
8: end if
9: recordResult(success)

10: end for
11: end for
12: end for

In the negotiation process, there is one agent that initiates the interaction. This agent

uses its knowledge, current goals, interactions and protocols as inputs to the FIA algorithms.

The algorithms return a list of interaction tuples that can achieve that agents goals. The

Interaction tuples have the following structure.

<Interaction, Interaction Role, Protocol, Protocol Role>

The initiating agent then iterates through its list of known agents and tries to negotiate

with each one. During the negotiation process, the initiating agent sends over its list of

interaction tuples. The other agent then computes its own list of interaction tuples. If the

84

other agent finds a tuple that matches, it replies with the matching tuple. Otherwise the

other agent replies with a negotiation failure. If the negotiation is successful, the initiating

agent stops negotiating and agents commence interaction.

5.2.2 Simulated System

Figure 5.4 shows the configuration of the system used for this simulation. The setup for this

system is similar to the setup for the previous physical demonstration. The PC Agent always

initiates the negotiation with other agents in the system. The PC Agent can participate

in the GPS Interaction and the Sell Item Interaction. The GPS Interaction is the

same interaction that was used in Section 5.1.2. This interaction is implemented by three

protocols: WiFi Protocol, Optical Protocol and Combination Protocol. The Sell

Item Interaction is implemented by the Dutch Auction Protocol. The PC Agent has a

GPS Receiver Goal and a Sell Item Goal. The GPS Receiver Goal can be achieved by

using the GPS Interaction and the Sell Item Goal can be achieved by the Sell Item

Interaction.

Mobile Agent 1

Sell Item Goal GPS Sender Goal

GPS Interaction

GPS Sender RoleGPS Receiver Role

Wifi Protocol

Wifi GPS Sender RoleWifi GPS Receiver Role

Optical Protocol

Optical GPS Sender RoleOptical GPS Receiver Role

Combination Protocol

Combo GPS Sender RoleCombo GPS Receiver Role

implements
implements implements

Mobile Agent 2

Buy Item Goal

Sell Item Interaction

Buy Item Interaction Role

Dutch Auction Protocol

Dutch Auction Buyer RoleDutch Auction Seller Role

implements

Buy Item GoalGPS Receiver Goal

Required Capabilities

PC Wifi Send, PC Wifi Rec,
Tablet Wifi Send, Tablet Wifi Rec

Required Capabilities

PC Wifi Send, PC Wifi Rec,
Tablet Wifi Send, Tablet Wifi Rec

Required Capabilities

PC Camera, PC Screen,
Tablet Camera, Tablet Screen

Required Capabilities

PC Camera, PC Wifi Send,
Tablet Wifi Rec, Tablet Screen

PCAgent

performs

performs
performs

performs

performs

Sell Item Goal

PCAgent 2

performs

Sell Item Interaction Role

Figure 5.4: Simulation Setup

Mobile Agent 1 has the GPS Sender Goal and the Buy Item Goal. The GPS Sender

Goal can be achieved by the GPS Interaction and the Buy Item Goal can be achieved

by the Sell Item Interaction. Mobile Agent 2 has the Buy Item Goal which can be

85

achieved by the Sell Item Interaction. PC Agent 2 has the Sell Item Goal which can

be achieved by the Sell Item Interaction

Table 5.1 shows which goals are complementary, which occurs when an Interaction and

a Protocol can achieve two goals at the same time (one goal for each agent). The columns

represent the goals for the initiating agent (PC Agent). The rows show the other agents in

the system and goals that they can have. In the table, Mobile Agent 1 has two goals and

thus there are two rows for that agent. One row shows the interactions for the Buy Item

Goal and the other row for the GPS Sender Goal. The value in each cell denotes whether

the goals in the row and column are complementary. There may be multiple interactions

that enable the value to be true, but if the value is false, then there are no interactions that

can yield success.

Table 5.1: Interaction Success without Capability Failure
PC Agent’s Goals

Agent Goal GPS Receiver Goal Sell Item Goal

Mobile Agent 1
Buy Item Goal F T
GPS Sender Goal T F

Mobile Agent 2 Buy Item Goal F T
PC Agent 2 Sell Item Goal F F

When PC Agent begins negotiation, it first computes its set of interaction tuples that

can achieve its goals. As described in Algorithm 5, the PC Agent iterates through its list of

agents. The first agent in the list is the Mobile Agent 1 and thus the PC Agent sends the

list of interaction tuples to that agent. Once Mobile Agent 1 receives this list, it computes

its list of valid interaction tuples and selects the tuples that are valid for both it and the

PC Agent. If there are no tuples that are valid for both agents then the negotiation fails. If

there is at least one valid tuple then the negotiation will succeed and the agents will begin

interacting with each other.

For example, suppose that the PC Agent has both the GPS Receiver Goal and the

Sell Item Goal (Columns 1 & 2 in Table 5.1) and the Tablet Camera capability has

failed. The set of valid tuples for the PC Agent is given in Table 5.2. The protocols that

86

require the Tablet Camera have been eliminated as they are no longer valid. The valid

interaction tuples in Table 5.2 are sent to Mobile Agent 1, which in turn computes its list

of tuples to achieve its goals. In the example Mobile Agent 1 only has the Buy Item Goal.

Mobile Agent 1 proceeds by computing the list of valid interaction tuples given the current

capability failures. The FIA computation algorithms, defined in Section 4, have been used

to produce the results shown in Table 5.3. Tuple #3 in Table 5.2 is the only matching

(or complementary) tuple. When the agents have found complementary goals, each agent

looks up the set of roles that they should play in the interaction and the protocol. In this

simulated system each agent will play one interaction role and one protocol role.

Table 5.2: Valid Tuples For PC Agent when Tablet Camera fails
1. <GPS Interaction, GPS Receiver Role, Wifi Protocol, Wifi GPS Receiver Role>
2. <GPS Interaction, GPS Receiver Role, Combination Protocol, Combo GPS Receiver Role>
3. <Sell Item Interaction, Sell Item Interaction Role, Dutch Auction Protocol,

Dutch Auction Seller Role>

Table 5.3: Valid Tuples For Mobile Agent 1 when Tablet Camera fails
1. <Sell Item Interaction, Buy Item Interaction Role, Dutch Auction Protocol,

Dutch Auction Buyer Role>

If the PC Agent fails to negotiate with Mobile Agent 1, then the PC Agent would try

Mobile Agent 2 and PC Agent 2. PC Agent would try and send the same interaction tuple

to each agent, looking to interact with another agent.

5.2.3 Negotiation Failure

The previous section defined how the negotiation process works in the simulation. This sec-

tion defines how the negotiation process can fail. There are two basic reasons a negotiation

can fail: (I) there is a role mismatch or (II) the agents have no shared interactions. When

the agents have no shared interactions (II) there are two possible reasons: (IIa) the agents

do not have complementary goals or (IIb) they lack the required capabilities to participate

in an interaction.

87

A Role mismatch (Failure I) occurs when two agents are trying to play the same role in

the same interaction. In this system, this occurs when PC Agent is trying to achieve the

Sell Item Goal and PC Agent 2 is trying to achieve the Sell Item Goal. If these two

agents try and negotiate they will both be able to use the Sell Item Interaction and the

Dutch Auction Protocol but they will both try and play the Sell Item Interaction

Role and the Dutch Auction Seller Role. This mismatch violates the property that all

the roles must be played by an Agent in the system and thus this interaction will fail.

An example of agents with non-complementary goals (Failure IIa) is when the PC Agent

has the GPS Receiver Goal and Mobile Agent 1 has the Buy Item Goal. As shown in

Table 5.1, there are no interactions that will allow these two agents to achieve their goals.

In this case the PC Agent can only use the GPS Interaction to achieve its goal and the

Mobile Agent 1 can only use the Sell Item Interaction to achieve its goal. Clearly

these two interactions are not the same, and thus these two agents cannot interact with one

another to achieve their goals.

An example of capability failures (Failure IIb) is when PC Agent has the Sell Item Goal

and Mobile Agent 1 has the Buy Item Goal and it has lost the Tablet WiFi Send capa-

bility. While Table 5.1 indicates that interactions exist that can achieve the goals, without

the Tablet WiFi Send there are no protocols that implement the Sell Item Interaction.

Thus, there are no Interactions that can achieve PC Agent’s Sell Item Goal.

This section has defined the three basic ways that the negotiation can fail in FIA.

Knowing which capabilities have failed allows the agents to more accurately determine

failures before they commence the protocols used in an interaction. Without this knowledge,

the agent interactions would still fail, but they would fail during protocol execution. This

failure may require the agents to go through an expensive error recovery process.

88

5.2.4 Simulating Systems without the Interaction Framework

To show how FIA compares to other multiagent systems, an additional set of simulations has

been developed. These simulations emulate how most multiagent systems define interaction.

These simulations use the same agents, goals and interactions, as described above, but each

interaction only has one implementing protocol. The Sell Interaction still only has

the Dutch Auction Protocol and the GPS Interaction is only implemented by the WiFi

Protocol. The capabilities remain the same and the failures happen at the same rate.

Failure Success Robust Success
0 0.00% 100.00% 100.00%
1 0.00% 50.00% 100.00%
2 0.00% 21.40% 57.20%
3 0.00% 7.10% 21.40%
4 0.00% 1.40% 4.30%
5 0.00% 0.00% 0.00%

0" 1" 2" 3" 4" 5"

Failure" 0%" 0%" 0%" 0%" 0%" 0%"

Success" 100.00%" 50.00%" 21.40%" 7.20%" 1.40%" 0.00%"

0%"

20%"

40%"

60%"

80%"

100%"

120%"

Su
cc
es
s&
Ra

te
&

Number&of&Failures&

0" 1" 2" 3" 4" 5"

Failure" 0.00%" 0.00%" 0.00%" 0.00%" 0.00%" 0.00%"

Success" 100.00%" 50.00%" 21.40%" 7.20%" 1.40%" 0.00%"

Robust"Success" 100.00%" 100.00%" 57.20%" 21.40%" 4.30%" 0.00%"

0.00%"

20.00%"

40.00%"

60.00%"

80.00%"

100.00%"

120.00%"

Su
cc
es
s&
Ra

te
&

Number&of&Failures&

Figure 5.5: No Framework Simulation Results

The results of this simulation are summarized in Figure 5.5. This graph shows the

system running without FIA. The x axis shows number of failures and the y axis shows

the average success of the system. The system is successful if the the initiating agent

successfully negotiates with another agent. The table at the bottom of the graph shows the

actual success percentage at each point on the graph.

The first curve (Failure) shows what happens when the PC Agent cannot interact

because no other agents have complementary goals. This situation occurs when the PC

Agent has only the GPS Receiver Goal and Mobile Agent 1 only has the Buy Item Goal.

89

Neither the PC Agent 2 nor Mobile Agent 2 has the ability to participate in the GPS

Interaction, and thus the system fail no matter how many capabilities have failed. In

this example, there are no agents that have the complementary goal for the GPS Receiver

Goal.

The second curve (Success) shows what happens when there are other agents with

complementary goals and the PC Agent can interact with those agents. If there are no

capability failures, then the PC Agent can interact with another Agent to achieve its goals.

There are eight capabilities in the system and each protocol requires exactly four of them.

Thus, if there is a failure, there is a 50 percent chance that the Dutch Auction Protocol

or the WiFi Protocol will fail. Table 5.4 highlights (with grey cells) the intersection of the

goals for the agents in this configuration. Darker grey indicates no suitable interactions and

the lighter grey indicates that interaction is possible. Mobile Agent 1 is the only agent

capable of interacting with the PC Agent. This is highlighted by the light grey coloring in

Table 5.4. There is only one protocol for each interaction and both protocols require the

WiFi capability and the four WiFi capabilities makeup half of the capabilities of the system.

Thus, with one failure the system will fail 50 percent of the time (shown in Figure 5.5). As

the number of failures rises, the likelihood of a protocol failure increases. For example, with

three failures there is a 92 percent chance that the system will fail.

Table 5.4: Partial Success Situation
PC Agent’s Goals

Agent Goal GPS Receiver Goal Sell Item Goal

Mobile Agent 1
Buy Item Goal F T
GPS Sender Goal T F

Mobile Agent 2 Buy Item Goal F T
PC Agent 2 Sell Item Goal F F

A system that does not use FIA clearly cannot handle the failure gracefully. The next

section shows that the FIA degrades gracefully in the face of failures.

90

5.2.5 Simulating Results using FIA

The FIA simulation system designed has three protocols that implement the GPS Interaction.

These protocols allow the system to be robust against capability failure. The results of this

simulation are summarized in Figure 5.6. There are three different types of curves shown

in this graph. Failure and Success are the curves from Figure 5.5.

Failure Success Robust Success
0 0.00% 100.00% 100.00%
1 0.00% 50.00% 100.00%
2 0.00% 21.40% 57.20%
3 0.00% 7.10% 21.40%
4 0.00% 1.40% 4.30%
5 0.00% 0.00% 0.00%

0" 1" 2" 3" 4" 5"

Failure" 0%" 0%" 0%" 0%" 0%" 0%"

Success" 100.00%" 50.00%" 21.40%" 7.20%" 1.40%" 0.00%"

0%"

20%"

40%"

60%"

80%"

100%"

120%"

Su
cc
es
s&
Ra

te
&

Number&of&Failures&

0" 1" 2" 3" 4" 5"

Failure" 0.00%" 0.00%" 0.00%" 0.00%" 0.00%" 0.00%"

Success" 100.00%" 50.00%" 21.40%" 7.20%" 1.40%" 0.00%"

Robust"Success" 100.00%" 100.00%" 57.20%" 21.40%" 4.30%" 0.00%"

0%"

20%"

40%"

60%"

80%"

100%"

120%"

Su
cc
es
s&
Ra

te
&

Number&of&Failures&

Figure 5.6: Framework Simulation Results

The third curve (Robust Success) shows how FIA can be used to adapt to capability

failures. In the example given in the previous section (as shown in Table 5.4) the system fails

50 percent of the time. However, FIA allows the system to adapt and use protocols that has

not been affected by the capability failure. In the example in the previous section, when PC

Agent loses the PC WiFi Send capability, all interaction fails. In the system designed with

FIA, the agents can use either the Optical Protocol or the Combination Protocol,which

provides redundancy not found in the previous system. The graph shows that the FIA

system does not fail if only a single capability fails. It should be noted that the graph for

the FIA system is always greater than or equal to the graph for the system without FIA,

which clearly shows that FIA is more robust than traditional systems. Using FIA, if the

91

system has 3 failures then there is only a 79 percent chance that the system will fail, which

is much lower than the 92 percent chance that existed in the non-FIA system.

Adding more capabilities and protocols to the system will increase the ability of the

system to adapt. For example, a system designer could add a bluetooth protocol that im-

plements the GPS Interaction, which would allow the system to handle any two capability

failures. A system designed with FIA allows the system designers to design a working sys-

tem with a minimum number of protocols. As the agents acquire more capabilities, more

protocols and interactions can be added to the system and the robustness of the system will

increase.

5.3 Demonstration Conclusion

The systems presented in this chapter demonstrate how a designer can create a MAIM

model and then use FIA to adapt to capability failure. The physical demonstration also

shows that the FIA algorithms can be used to adapt to actual hardware failures at runtime,

thus FIA produces a system that is more robust than tradition multiagent systems. The

simulations show that FIA is more robust than a system designed without it. FIA had a

success rate that was always better than or equal to the success rate of a system designed

without the framework.

92

Chapter 6

Related Work

T
he Interaction Framework provides a runtime model that allows agents within a mul-

tiagent system to choose interactions that can achieve their goals. When an agent

encounters failure, the framework provides a runtime model that allows agents to choose

a new interaction. There are a variety of models, languages and frameworks that provide

different facets of what FIA provides. These related systems are grouped into similar cate-

gories. Section 6.1 shows models that can be used at runtime. Section 6.2 shows methods

for reasoning over protocols within multiagent systems. There are frameworks that generate

multiagent systems protocols from specifications. These are shown in Section 6.3. Section

6.4 enumerates the multiagent system languages that support interaction among agents.

Section 6.5 shows models and frameworks that allow system designers to verify that a mul-

tiagent system behaves as desired. FIA allows multiagent systems to be created that can

adapt to failure. Section 6.6 shows a variety of systems that incorporate fault tolerance to

create more robust systems. Section 6.7 describes ADL’s and it catalogs several multiagent

system metamodels.

6.1 Models at Runtime

Developing system models that can be used at both design and runtime is the ultimate

Model Driven Engineering (MDE) process. A system design can be abstracted in such a

manner that the design details will not overwhelm developers. A runtime component takes

93

the model and translates it into a language that can be interpreted or executed. In addition

to ease of use, a runtime model can be adapted to new requirements on the fly, without the

need for recompiling the entire system.

There are two main types of runtime models. The first type is a static model. Static

models do not change over the course of a system or process running within the system.

The second type of system is dynamic or self-adaptive model . Self-adaptive models can be

modified at runtime on the fly.

6.1.1 Static Models

Static runtime models are good for applications where the requirements do not change

rapidly over time. There are some programming languages that use a graphical model

to describe the behavior of the program. Some examples are the Scratch programming

language and LEGO MINDSTORMS Education NXT Software. These tools give users a

model that they can edit and the changes to the model are directly fed into the system.

Another example is the Java programming language, which supports dynamic class loading.

This allows the model (or a Class) to change at runtime without having to recompile and

restart the system.

6.1.2 Self-Adaptive Models

Self-adaptive models allow the running model to adapt to new requirements. Many self-

adaptive systems follow the monitor-analyze-plan-execute (MAPE) model for adaptation.

The goal of MAPE is to design“computing systems that can manage themselves”64. This

provides additional flexibility over the static runtime models. Lubbers et al.74 define a

network model that adapts to changes in the requirements of applications. Their example

application is of a device that uses a standard ethernet for communication. When the

application needs more throughput or encryption the model can adapt such that the network

provides these attributes. Thus the network model can change dynamically over the course

of the systems lifetime. Another self-adaptive model is the Rainbow framework53. This

94

framework implements the MAPE methodology by defining an architectural layer which

is an external control component. The architectural layer monitors the running system,

proposes adaptations and then uses an adaptation executor to affect the system. The

Rainbow architecture also provides a translation infrastructure to translate the commands

given by the adaptation executor into the actual effectors of the running system. The

separation of the system into layers allows the Rainbow architecture to adapt the behavior of

both new and legacy systems. However the layering of components may lead to undesirable

performance that may not be acceptable for systems with real time constraints.

6.1.3 Goal Models at Runtime

There have been several adaptive models that are goal oriented. Goals provide a level of

abstraction that allows details to hidden. A goal model provides a convenient method of

changing behavior at runtime. The background given in Section 2.5 gave a few multiagent

systems that use goal models at runtime. Some of these included the GMoDS, OMACS and

the Morandini et al. Goal Model82.

Mylopoulos et al.38 define an architecture that models requirements using the Tropos

goal model. The system monitors the environment and when changes occur the system

adapts to those changes. This architecture is similar in form to the Rainbow architecture.

The self-reconfiguration component uses a Context sensor to read information about the

system and the Context actuator and Support system modify the system at runtime. The

authors added a Contextual goal model manager to handle updates to the goal model for the

system. Their architecture allows the model to drive the system and when the environment

changes the goal model reflects those changes.

Runtime Model Benefits

These runtime models provide an abstract manner of controlling and/or modifying the

behavior of a system while it is running. FIA defines a runtime model that can dynamically

modify the behavior of a system while it is running. This provides a mechanism for making

95

an agent that can adapt to both capability and environmental changes.

6.2 Protocol Reasoning Methods

Formalizing protocols allows protocol designers to predict the behavior that a protocol will

exhibit. In addition to using tools that verify protocol properties, designers would like to

have protocols that self configure, adapt to the needed requirements and run in an efficient

manner. There have been several works that have solved different facets of this problem.

6.2.1 Commitments In Multiagent Systems

Event Calculus was created by Robert Kowalski and Marek Sergot in 198699. Event calculus

is a logic based formalism that models actions and the effects of those actions. Event calculus

defines events using first order logic and temporal operators. The three main entities in event

calculus are events, fluents and time points. Fluents are variables whose values change over

time. Events modify the values of fluents over time. The calculus also defines a set of axioms

that can be used to reason over the events, fluents and time. Figure 6.1 shows the model

event calculus defines.

4

Event
calculus
axioms

Initially , Happens
and temporal ordering

formulae

Initiates and
Terminates formulae

HoldsAt formulae

P

Figure 2: A More Precise Version of Figure 1

1.3 The Axioms of the Simple Event Calculus
We now require a suitable collection of axioms relating the various predicates together.
The following three, whose conjunction will be denoted SC, will do the job.4

HoldsAt(f,t) ! InitiallyP(f) " ¬ Clipped(0,f,t) (SC1)
HoldsAt(f,t2) ! (SC2)

Happens(a,t1) " Initiates(a,f,t1) " t1 < t2 " ¬ Clipped(t1,f,t2)
Clipped(t1,f,t2) # (SC3)
$ a,t [Happens(a,t) " t1 < t < t2 " Terminates(a,f,t)]

Axiom (SC1) says that a fluent holds at a time t if it held at time 0, and hasn’t been
terminated between 0 and t. Axiom (SC2) says that a fluent holds at time t if it was
initiated at some time before t and hasn’t been terminated between then and t.
Note that, according to these axioms, a fluent does not hold at the time of the event
that initiates it but does hold at the time of the event that terminates it. In other
words, the intervals over which fluents hold are open on the left and closed on the
right.
A superficial look at the logical machinery we’ve now assembled might be enough to
convince someone that it was sufficient for its intended role. But an important issue
has been neglected, namely the frame problem. In the next section, we’ll take a look
at the frame problem as it arises with the event calculus.

2 The Frame Problem in the Event Calculus
How do we use logic to represent the effects of actions, without having to explicitly
represent all their non-effects? This, in a nutshell, is the frame problem. First brought
to light by McCarthy and Hayes in the late Sixties [McCarthy & Hayes, 1969], it has
exercised the minds of numerous AI researchers over the years. To see how it arises in
the context of the event calculus, let’s consider an example, namely the well-known
Yale shooting scenario [Hanks & McDermott, 1987]. This will also serve to illustrate
the style in which event calculus formulae are usually written.
2.1 The Yale Shooting Scenario
In this version of the Yale shooting domain there are three types of action — a Load
action, a Sneeze action, and a Shoot action — and three fluents — Loaded, Alive and

4 Throughout the article, variables are assumed to be universally quantified with maximum
possible scope, unless otherwise indicated.

Figure 6.1: Event Calculus Model99

Systems designed using the event calculus model can derive any one of the three prop-

erties shown in Figure 6.1 given the other two properties. Event calculus allows a system to

96

reason about what actions the system needs to take to achieve a desired system state. Thus

if an agent has an action then the agent can predict the future state of the system if the

action were to be performed. Classical planning allows an agent to perform specific actions

to realize a goal in the distant future.

Yolum and Singh126 create an approach for specifying and executing protocols by using

event calculus and commitments. Commitments are a social contract between two agents.

An example of a commitment is C(x, y, p), which means that x commits to y that x will

make p true. The authors add axioms that relate actions of different agents. Protocols are

specified by defining a set of protocol axioms. These axioms are defined for each action that

an agent may take within that protocol. Protocols do not specify states and transitions and

agents are allowed to enter execution at any point where the precondition to the protocol

matches the current state. The authors define a Commitment Machine (CM) that can

reason about commitments and protocols. Agents can use the CM to automatically execute

protocols. In addition to executing a protocol, the system can skip unnecessary steps in the

protocol if such steps have already been done or those steps do not apply to the current

situation. The Commitment Machine lacks the ability to execute concurrent actions and the

protocol must specify which axioms (or properties) are associated with each action within

the protocol. This specification does not utilize the current state of the art protocol tools,

such as SPIN to verify protocols, therefore a protocol designer is required to add and verify

an additional specification to the protocol.

Winikoff120 extends Event Calculus for use in multiagent systems. Protocols are modeled

as fluents (or messages) and the protocol can specify the preconditions that are required

to enact the fluents. The agent can then use its current state to decide which fluent is

appropriate. This structure allows the protocol to be extended or short circuited based on

the needs of the agents in the system. The commitment-based protocol does allow a protocol

to be run based on the current state of the agent, but there is no automated method for

leveraging properties of a protocol such that a choice of protocols that achieve a goal can

97

be enumerated.

Another runtime model for agents, goals and protocols is defined by Mylopoulos et al.33.

This model is based on the Tropos multiagent model and it provides reasoning over protocols

and goals. The reasoning can either be used a priori or at runtime. The authors specify

protocol messages as commitments. The possible commitments and the agents goals are

used to establish a path through the agents goal model. The authors extend their model37

to allow agents in open systems to adapt at runtime to changes in the environment. This

model allows agents to proactively detect and trigger adaptations. The model uses the

agent’s knowledge to trigger new goals for the agent to achieve. The triggers represent

different strategies for dealing with commitment failures. Some example strategies were

goal alternatives, redundant goals, and commitment redundancy.

Commitment drawbacks

There are three major differences between the commitment based models and FIA. The first

is that they require the protocols to be specified in terms of commitments, whereas FIA uses

the standard LTL protocol properties. This means that FIA can leverage current protocol

tools. The commitment based models require additional specification. The second difference

is that the commitment based models focus on the commitment between a group of agents.

This commitment must be backed by some social structure for disciplining agents that do

not adhere to the commitments they have entered. FIA does not put such a restriction on

multiagent systems that use the framework. The third difference is that FIA helps agent

decide which interactions are appropriate for a goal. The Commitment based approach

reasons over protocols at the level of sending messages, not the selection of interactions.

6.2.2 Sharing State and Intent within Multiagent Systems

Agents in multiagent systems are typically seen as autonomous. Shared state allows a group

of agents to view a portion of the mental state (beliefs of agents) of other agents within the

group. The extra knowledge allows agents to reason about actions within that group, given

98

the shared state.

The Joint Intentions Theory73 was created by Levesque et al.. The Joint Intentions

theory describes both the internal state and the shared state (or Intention) of a group

of agents. The Joint Intentions Theory describes a formal language for specifying joint

intentions. This language includes first order, temporal and equality operators. The Joint

Intentions theory describes the shared belief that agents must have in order for them to

jointly act together. This theory by itself does not provide a very useful multiagent system;

it simply defines the theory behind Joint Intentions.

The Joint Action Model68 extends the Joint Intentions theory. In this model Kumar et

al. formalize the states within a protocol and then reason about those states and landmarks

within the protocols. They define that a landmark “represent[s] the state of affairs that must

be brought about during the goal-directed execution of a protocol.” The landmark based

approach requires that each protocol is tagged with landmarks, which in turn are labeled as

either required or optional. These landmarks allow protocols to be short circuited, but using

landmarks requires additional specification. Each agent in the multiagent system must use

and support the landmark based protocols for the protocols to work as designed.

The STAPLE language67 allows agent designers to include Joint Intentions in a multi-

agent system. STAPLE uses the formal joint intentions theory to derive provably correct

communication. STAPLE also provides a runtime model that can automatically execute

protocols. Similar to FIA, STAPLE requires each action to have a specification. But STA-

PLE also requires that there must be executable code that implements that specification.

Joint Intentions Shortfalls

The Joint Intentions theory and Joint Action theory based systems require a shared state.

This shared state may not be supported by agents in a heterogeneous multiagent system.

The landmark base model also requires that every agent in the multiagent system supports

protocol landmarks. The STAPLE runtime model requires access to executable code. FIA

works at a higher level of abstraction and thus it does not have any of these requirements.

99

6.3 Multiagent System Protocols from Specification

The creation of protocols for heterogeneous multiagent systems is not a trivial task. There

are multiple avenues for errors and failure. Implementations of low level protocols may be

different on various operating systems. Additionally, debugging protocols is difficult due to

latency, dropped and delayed traffic. These minor differences add extra complexity to the

difficult task of creating correct and flexible multiagent systems.

The Agent Unified Modeling Language (AUML) defines a set of specification diagrams

that allow multiagent system designers to graphically design interaction protocols. Odell

et. al.84 describe a way to design interactions (or protocols) for multiagent systems. They

define the AUML standard for designing protocols and interactions at a high level. The

diagrams allow designers to compose protocols and specify protocols as sequence diagrams.

They define templates for protocols that can be decomposed into more detailed diagrams.

These diagrams can be decomposed to the point that code can be generated from them.

The sequence diagrams are parameterized and they include constraints on permissible com-

municative acts. FIA allows protocols to be parameterized and protocols include temporal

specifications, but the details of the actual communicative acts are not required. In addition

to specifying protocols, AUML allows designers to specify collaboration diagrams. These

diagrams provide a high level overview of the interactions within a multiagent system.

Petri nets are a formal modeling language for creating distributed computer systems. A

Petri net consists of a graph (nodes and edges), transitions and tokens. Petri nets allow

concurrent execution, which is well suited for designing multiagent systems. Mazouzi et

al.76 defined a method of translating AUML protocol diagrams into a Petri net (specifically

a Colored Petri net[CPN]) that can implement a protocol within a multiagent system. Their

formalism also allows protocols to be used as actions. When this occurs, they require that

the protocol includes a set of parameters, preconditions and postconditions. These three

specifications are similar to the specifications required for FIA, although the conditions are

calculated in FIA. The translation of the AUML diagrams into the CPN is not an automated

100

process, thus there is required human intervention to create CPN from the specification.

Benefits

The creation of protocols from specifications is a useful tool. Developers can use both these

automated tools for creating protocols in multiagent systems, but FIA allows a more robust

and flexible mechanism than these systems can provide.

6.4 Multiagent Systems Languages

There have been a variety of programming languages devoted to multiagent systems. Many

of these languages explicitly define communication through language constructs. Using a

language that supports communication makes the task of creating a multiagent system

easier.

The Knowledge and Query and Manipulation Language (KQML)49 attempts to define

a method of transferring knowledge in a multiagent system. Finin et al. envisioned KQML

as a language that agent-based systems “spoke” when they were interacting. The authors

acknowledge the problems of sharing semantics, ontologies and knowledge, but they did not

efficiently address them. For example, they use the Knowledge Information Format (KIF)

as a format for exchanging knowledge. Understanding knowledge in KIF requires a shared

ontology among agents. However, current state of the art agents do not have any method

for understanding an ontology. KQML may have become more prevalent if advances in

artificial intelligence had led to agents with true reasoning capabilities.

One of the first agent based programming languages was AgentTalk69. AgentTalk defines

a coordination process as sequence of messages and a coordination protocol as a high-level

protocol. AgentTalk is not a formal language, but it merely describes the interactions

through protocols. Scripts are the implementation of protocols. Scripts are state diagrams

with guarded transitions. Agents are allowed to reuse and dynamically select scripts at

runtime.

101

The COOL21 programming language came out about the same time as AgentTalk.

COOL defines three levels of interaction (i) information content as specified by a language

like KIF, a language for expressing (ii) intentions (such as KQML) and the (iii) conventions

that the agents with in the interaction adhere to. The coordination model that COOL uses

is a Finite State Machine representation with a set of specialized interaction rules.

The Interaction Oriented Model by Textual representation (IOM/T) is description lan-

guage for specifying multiagent interactions45. IOM/T defines formal semantics for AUML

sequence diagrams. The formal AUML semantics allows an IOM/T model to be created

from an AUML diagram. IOM/T defines interaction based control structures to make un-

derstanding and management of interactions a more manageable task.

Each one of these models provides the programmer with a tool that can aid in the

development in a multiagent system. Models allow programmers and designers to create

multiagent systems quickly and correctly. However, there are three major downfalls to defin-

ing interactions at the language level. The first is that if the interaction falls outside of the

model that the language defines, then the programmer must come up with an ad-hoc design

to implement the interaction. The ad-hoc design leads at a variety of problems, such as

debugging issues and maintenance. The second major problem is that an interaction defi-

nition at the language level requires a homogenous multiagent system. In a heterogeneous

multiagent system the benefits of language level interactions shall be lost. The last problem

is that these languages do not provide any framework for choosing a protocol or interaction

at runtime.

6.5 Verifying Agent Behavior

To address some of the shortfalls of low level multiagent system languages, new models have

been devised. These models provide a higher level of abstraction and the allow the behavior

of a multiagent system to be verified.

The MABLE programming Language is a computer language designed for creating mul-

102

tiagent systems that support the Belief, Desire and Intention (BDI) paradigm. “MABLE is

essentially a conventional imperative programming language, enriched by constructs from the

agent-oriented programming paradigm.”122 The MABLE language is enriched by external

actions and constructs that support beliefs and desires.

if (Bel x j > 5) then x := x-1

else x := x+1 unsure x:= 0

The example above the shows some of the extra constructs, such as Bel and unsure. The

belief Bel x j > 5 tests if the current agent believes that Agent j believes that x > 5.

Designers can specify properties that should hold for a MABLE program by using the

MORA specification language. These properties can be then verified by a model checker

(such as SPIN). A multiagent system designed in MABLE is limited to a fixed set of agents

and MABLE restricts the agent’s autonomy. The designers of MABLE plan to implement

a Java compiler in future work, which would automate the process of creating a multiagent

system.

The MaSE methodology40 allows system designers to specify tasks that an agent per-

forms as state diagrams. In the MaSE methodology a protocol is implemented by two or

more tasks. DeLoach and Lacy define a systematic model for translating agent tasks into

Promela models that can be verified by SPIN71. This approach eliminates the need for

human translation of tasks and thus the task can be verified directly. This process thus

reduces errors in translation and reduces the time required to verify a multiagent system.

The authors extended the ability of the tool (agentTool)70, by incorporating the verification

into the user interface. This incorporation allows designers to more quickly locate and fix

design time errors.

Wang et al. use both a goal model and logs of the system to verify that the requirements

of the system match the actual running of the system117. The system is monitored to verify

that pre and post conditions in the running system are the same as the requirements given

in the goal model. If inconsistencies are found, the monitoring system adapts and monitors

103

the incorrect components in a more fine grained manner. A SAT solver is used to verify

that the multiagent system meets its requirements.

GroupLog is a coordination language for multiagent systems20. GroupLog is defined in

terms of “logic based programming abstractions”. GroupLog uses Extended Horn Clauses

(EHC) as representation of atoms and state. An example EHC clause is shown below.

obj(S) :: mess(M) :- method(M) | obj(NewS) :: true

In this example the EHC allows GroupLog to handle concurrency of multiagent systems.

GroupLog reasons on agents, groups and goals. In GroupLog a group is a dynamic set

of agents that share a goal. GroupLog is able to formally reason about actions and the

consequences of actions for both an agent and the agents groups.

These models suffer from many of the problems of their predecessors, such as language

or framework dependence. Each model allows a designer to verify a model where the agents

are heterogeneous and all agents use the same language or framework. Additionally these

languages do not aid developers to creating systems that can tolerate and adapt to failure.

FIA allows agents outside the framework bounds to utilize the framework.

6.6 Fault Tolerant Systems

Verifying the behavior of multiagent systems is only the first step in creating robust mul-

tiagent systems. Adapting to failure is the second major step. The novel part of FIA is

the ability to create multiagent systems that can both choose interactions and adapt to

interaction failure. Fault tolerance allows systems that have failed partially to recover and

possibly continue without interruption. Fault tolerant systems fall into one of two broad

categories: (i) replication and (ii) checkpointing85. Replication uses redundant systems,

agents, or services to ensure that if one goes down there is a replica to compensate for the

failure. In checkpointing, the system stores known good states and, when a failure occurs,

rolls back to a known good state.

104

6.6.1 Fault-Tolerant Protocols

The Fault-Tolerant Multi-Agent Development framework (FATMAD) uses checkpoints and

recovery techniques to adapt to failure116. FATMAD is specifically targeted toward and built

on top of the Jade platform. FATMAD provides protocol designers with tools for check-

pointing and recovery. After protocol designers have created such protocols, the application

designers can use the fault tolerant protocols in their multiagent systems.

FATMAD is designed for developing a multiagent system that uses a single platform

(Jade). A multiagent system that uses FATMAD will be more fault tolerant, but there is

no automated manner for selecting protocols based on the agent’s needs (goals) or abilities

(capabilities). Thus agents whose capabilities fail will not be able to use FATMAD to adapt

to such failures.

The Fault Tolerant Recovery Agent System (FRASystem) is designed to provide fault

tolerance to multiagent systems72. FRASystem is similar to the FATMAD framework in

the functionality that it provides, however FRASystem does not rely upon a particular

framework. A FRASystem requires four different types of agents that provide the rollback

and the recovery. There must be a recovery agent, information agent, facilitator agent and

garbage collection agent. Each process contains each of these agents, and each agent plays

a role that ensures that the system is tolerant to faults. FRASystem is not a multiagent

system methodology, but it uses a multiagent system to support distributed computing.

Quenum et al. introduced a protocol framework that allows agents to dynamically choose

interactions92. Their framework allows agents to begin interacting without agreeing on a

specific protocol. Each agent monitors the performatives, message structure and message

order to determine which protocols the other agent could be using. If there is more than

one protocol with the same pattern, the agent guesses which protocol is being used. If the

guess is wrong, then the agents can roll back the protocol to a known good state.

There are two major downfalls to the FATMAD, FRASystem and Quenum approaches.

First is that all actions must be reversible. Clearly there are actions in multiagent systems

105

that are not reversible (destroying a mine, dropping a victim or moving off a cliff). The

second problem is that each protocol requires strict monitoring of messages and possible

rollback. This overhead may be acceptable for an ad-hoc group of agents, but in an efficient

multiagent system this may not be acceptable.

6.6.2 Fault-Tolerance Framework

The Fault-Tolerance Framework is designed for mobile, heterogeneous multiagent systems85.

The Fault-Tolerance Framework relies upon a single checkpointing agent and a fault-tolerant

protocol that communicates checkpoints from the distributed agents to the checkpointing

agent. When a checkpoint occurs, the agent stops executing and saves its entire state. The

agent then communicates the saved state and resumes executing. The checkpointing that

the framework requires allows software agents to migrate across the network. Their model is

designed for mobile platforms which is well tailored for agents with small memory footprints.

This may be impractical for heavyweight mobile systems that have large memory footprints,

but low bandwidth.

6.6.3 Hermes

Hermes32 is a goal oriented interaction model. The Hermes model defines an Interaction

Goal hierarchy, a set of actions and a set of constraints. The messages that are sent are an

emergent behavior that rises out of the agents playing interaction roles. This goal hierarchy

allows designers to place temporal constraints on the goal model. The Interaction Goal

Hierarchy provides goals that each agent wishes to achieve and the agents use the actions

to achieve those goals. The actions are discrete steps, akin to FIA’s Atomic Actions. The

agents in Hermes use the actions to achieve leaf Interaction Goals. In addition to the

Interaction Goal model, they also have an action model. The action model defines roles

and the suitable actions, decisions and alternative paths of execution. Hermes also defines

a failure handling system. This system allows Hermes to handle action failures and goal

failures. Hermes allows Interaction Goals to be canceled or rolled back in the event of a

106

goal failure. This failure mechanism requires the designer to specify the details of how and

when a goal can be rolled back.

Unlike FIA, Hermes does not leverage the power of model checking to verify protocols.

The Hermes model requires goal designers to redesign a protocol in a non-message centric

model, but does not provide the current state of the art proof tools that are available to

current protocol designers. Hermes also requires goal specific error handling.

Each of the fault tolerant frameworks provides the designer with a process to adapt to

failure within a multiagent system. None of the fault tolerant systems use formal methods

for choosing interactions. Therefore FIA can be more flexible when faults occur, while at

the same time FIA ensures that agents select an appropriate interaction to achieve their

goals.

6.7 ADL and Meta models

Architecture Description Languages (ADL) and meta-models provide mechanisms for cre-

ating models that can be tailored to the requirements of a particular domain. These models

allow designers to use a common language for defining systems. The common language

allows new developers to quickly understand a systems architecture.

6.7.1 Architecture Description Languages

Architecture Description Languages (ADL) allows the architecture of a system to be explic-

itly defined. There are a variety of ADL’s that have been defined over the years, including

AADL48, C2 architecture108 and Acme54.

The Architecture Analysis & Design Language (AADL) was originally designed for avion-

ics systems. It is currently used to model both the hardware and software for embedded

and realtime systems. The Society of Automotive Engineers (SAE)111 has defined standard

AADL for use in modeling and creating complex systems in automobiles. As AADL’s model

both hardware and software, they can be used to generate the software used to control the

107

hardware.

The C2 architecture108 was developed to address the specification of User Interface (UI)

components. C2 is useful for defining systems that contain components that can and should

be reused. Message based communication allows the individual comments to be wired

together to create a computer system. C2 defines a graphical model that allows the archi-

tecture of the system to be visualized.

The Acme54 architecture, like all ADLs, defines a model for representing the structure

of a computer system. Acme defines the structure of a system using the entities such as

components, connectors and roles. Acme also defines abstract properties about behavior,

including nonfunctional behavior, system constraints and architectural style.

The above ADLs describe formal models for designing software systems. These models

provide a formal basis for designing, verifying and creating such systems. However, these

models cannot be applied to the multiagent paradigm due to the assumptions that these

ADL’s make. For example most ADL’s assume that a component has a set of ports that

can always be used for communication. Multiagent systems have the added complexity of

failure that can block communication from occurring.

6.7.2 Meta-models

A meta-model is a model that models how domain specific models should be created. Each

model for multiagent systems provides a different set of entities that can be modeled. The

meta-model defines the properties that a domain specific model should contain. For example

a meta-model for multiagent systems should, at the minimum, include the definition of an

agent. Three different meta-models are compared: ADELFE, GAIA and PASSI.

ADELFE24 is a model that model that defines agents within a cooperative environment.

ADELFE models the different attributes that an agent can possess, like aptitudes, communi-

cation ability and skills. ADELFE makes the argument that a solution to any “ functionally

adequate system” can be defined using a cooperative multiagent system. ADELFE defines

108

a set of Cooperative rules that define how agents should try to turn Non-Cooperative Sit-

uations (NCS) into cooperative situations. ADELFE’s meta-model is defined in terms of a

Software Process Engineering Meta-Model. This allows designers to create a tailored process

for creating a multiagent system.

The GAIA model defines a meta-model that includes organizational structures. These

structures include Organizational Rules, Communication systems (protocols) and agent roles

and responsibilities. GAIA provides these structures to constrain the behavior (hopefully

to only good behaviors) of the multiagent system.

PASSI36 defines a meta-model that allow practitioners to bridge the gap between tra-

ditional software systems and multiagent system designs. The PASSI meta-model aims to

allow software engineers to use off the shelf software as components within an Agent. The

PASSI agent then provides the multiagent system with services and the PASSI model defines

communication protocols through sequence diagrams.

Bernon et al.23 proposed a meta-model that combines the above meta-models into a

unified meta-model. Their analysis suggests that any agent-oriented meta-model should

have Agents and Interactions (defined as Protocols). Goals and Roles can be used in such

meta-models, but are not required. MAIM defines entities that are consistent with widely

accepted multiagent meta-model concepts. Therefore it should be relatively easy to create

a SPEM process for the FIA and MAIM.

Beydoun et al. defined FAML25, which is another meta-model for multiagent systems.

This meta-model does not combine all the aspects of other meta-model to create a model

that contains all other models. Instead, it selects the model components that can be used in

almost any multiagent system. This process yields a much smaller meta-model and allows

each methodology to create methodology-specific features (such as ADELFE’s adaptive

agents). FAML consists of four different meta-model definitions that define the aspects

of the system that are internal or external to the agent and includes both design time

and a runtime components. FAML defines the central concept of an Agent. It defines

109

Communication (Protocols), Actions, Agent Beliefs (Agent Knowledge) and Agent Goals.

They do not include the concept on an Interaction, but Interactions can be seen as a FIA

specific feature.

6.8 Summary

This chapter has shown a variety of models, frameworks and languages that provide similar

functionality to FIA. None of these works incorporate the formality and the flexibility that

FIA provides. FIA provides a formal model that allows agents to independently choose the

interactions that best fit their goals. FIA can be modeled using the meta-models applicable

to multiagent systems. When a failure occurs in an Interaction, an agent can then use the

runtime model to choose a new Interaction that meets its needs.

110

Chapter 7

Conclusion

7.1 Current State of Interactions in Multiagent Sys-

tems

T
he multiagent paradigm allows designers to model agents within an interconnected

distributed system. Agents have the ability to reason about themselves, their en-

vironment and their position with their organization. Multiagent systems are both dis-

tributed and interconnected and thus multiagent systems rely on communication protocols

to exchange information between different agents in the system. Computer scientists have

formalized communication protocols for quite some time. Multiagent systems designers

can use these formal tools and methods to design communication protocols. These formal

tools and methods allow designers to verify the correctness of protocols, using tools like

Promela and SPIN. However, most goal-oriented multiagent systems do not provide a for-

mal model for selecting protocols and, the ones that do, have a variety of restrictions on

how those protocols can be selected. Additionally, many goal-oriented multiagent systems

operate in environments where the likelihood of failure is far greater than in a computer lab.

This means that most goal-oriented multiagent systems statically define which protocols are

used and even though capabilities the protocols use are prone to failure. A formal model

for interaction would allow tools and algorithms to be created that could reason about the

situations where protocols and capabilities fail. This reasoning would allow agents to select

111

the appropriate interactions that can meet their goals.

Having a system that can determine which interactions can achieve an agent’s goals

is a powerful concept. Most goal-oriented multiagent systems require a direct mapping

between goals and the actions that can be used to achieve those goals. Some of these

systems use the notion of a role to provide a level of indirection between the goal and

the protocols used to achieve the goal. This mapping is done at design time and thus,

these systems have no inherent mechanism for adaptation when unexpected events occur.

Unexpected events include the addition of new goals and the failure of required capabilities

and protocols. Additionally, goal-oriented multiagent systems should be highly adaptive.

Goal-oriented systems allow the goals of the agents to change while the system is running.

These changes should reflect the agent’s current view of the environment and should alter

the state of the agent’s goals. Thus, systems that are designed with static goal-to-protocol

assignments do not reflect the ethos of a goal-oriented system. Goal-oriented systems allow

the goals of an agent to dynamically change, but the actual behavior of the Agent can not

dynamically adapt to those changes. The static mapping between goals and protocols also

makes updating the goal model a difficult task. Adding or modifying a goal can require

a protocol modification or the addition of a new protocol. The modification of a protocol

requires the designer to verify that the protocol still meets the specification. If that protocol

is used for other goals, the designer must verify that the protocol can still achieve those goals.

It is clear that a runtime model would provide a more dynamic goal-oriented system.

7.2 The Formal Interaction Framework

The Framework for Interacting Agents (FIA) developed in this thesis provides three major

contributions.

(I) It captures the concepts and relationships involved in agent interaction in a formal

model that supports automated tools.

112

(II) It defines a set of reasoning algorithms that can prove whether an interaction is

beneficial in achieving an agent’s goal.

(III) It defines a set of algorithms that can adapt an agent’s behavior at runtime to changes

in the agent’s capabilities.

The Framework for Interacting Agents (FIA) formalizes the concepts re-

quired for agent interaction . Agent interaction has been formalized in other models,

but each of these has major drawbacks. For example there are formal models based on

Event Calculus, such as the Commitment Machine and Joint Action Model. The Commit-

ment Machine requires that protocols be modeled at a low level instead of the high level

used by MAIM. The Joint Action Model requires that the protocols and the agents must

maintain a common shared state, which is not always possible. MAIM formally defines

entities like Agents, Goals, Atomic Actions, Interactions and Protocols. It also defines how

these entities are related to one another. For example, Agents have Goals, they perform

Atomic Actions and they participate in Interactions and Protocols. This model formally

defines these entities and the relationships between them. Current state-of-the-art protocol

specification techniques are performed using a formal model. The behavior of these pro-

tocols must be verified by automated tools (such as SPIN). MAIM’s formal definition also

allows automated tools to reason about the behavior of the model. The use of automated

tools reduces the risk that an error can be made. Systems that rely on humans to specify

and verify their correctness are error prone. However, once an automated tool is designed,

it can perform the verification task correctly every time. The use of automated tools allows

systems to be produced that are provably correct. For example, most programming lan-

guages provide a type system that ensures that programmers cannot do unsafe operations.

Thus, if a programmer uses a type safe language, the resulting system will be type safe.

Automated tools do the heavy lifting required to verify that a model behaves as desired

through every possible situation. Protocol verification tools allow designers to specify the

system in terms of messages, processes and states. Designers can then specify properties

113

and verify that the protocol has those properties. MAIM provides a model that can be used

to define interactions within a multiagent system.

Providing a useful model is the first step in advancing the current state of multiagent

system interaction. The second step is to develop the algorithms that can reason over

that model. For example, the Promela model is only useful when combined with the SPIN

model checker. The verification that SPIN provides makes the Promela model more useful.

In a similar way, the FIA algorithms make MAIM more useful. The FIA reasoning

algorithms can prove to an Agent that an interaction can achieve its Goal. The

FIA reasoning algorithms enumerate and create proofs based on the agents current state and

the MAIM model. These proofs are a mechanical but tedious process and thus are a good

candidate for automation. Such processes can be performed by humans, but humans can

easily err when performing the same task multiple times. The binding mechanism provides

a formal method for specifying how information flows within an Agent. The FIA reasoning

algorithms defines a process for enumerating the possible bindings within the system, which

increases rapidly with the addition of new protocols. This process is also time consuming

and thus automating it will make a designer’s job easier. After the possible bindings have

been enumerated, each of the bindings can be verified for correctness. The bindings that

cannot be verified will not help the Agent to achieve their goals. As agents are goal-oriented,

there is no reason for the Agent to perform actions that cannot achieve their goals.

The FIA algorithms can be used to adapt an agent’s behavior at runtime.

The FIA reasoning algorithms can be integrated into agents such that those agents can

dynamically determine which interactions will achieve their goals. This process can be

initiated by a goal change, a capability failure or a protocol failure. Goal-oriented multiagent

systems rely on the ability of the agents to accept new goals and achieve goals that they

possess. Thus, agents that use FIA at runtime can accurately select interactions that will

achieve their goals. This reasoning is automated so no additional work must be done by

system designers. Agents that have the ability to detect when their capabilities have failed,

114

gain even more robustness when using FIA. These agents can use FIA’s reasoning to find

interactions that meet their goals and they can weed out the associated protocols with failed

capabilities. This process reduces the likelihood that an agent chooses an interaction that

will fail and increases the likelihood that the interaction will achieve the agent’s goal. It

is clear that a runtime component will provides agents with a more robust mechanism for

choosing interactions and achieving their goals.

7.3 Future work enabled by FIA

FIA provides system designer with a powerful tool. Designers can elicit goals for agents and

then run the goals, agents, interactions and protocols through the FIA algorithms, which can

prove which combinations of interaction and protocols achieve the goals of those agents. If

goals do not have any interactions or protocols that achieve them, either the specification is

incorrect or new interactions and protocols need to be designed. This process gives designers

more flexibility and knowledge about how their systems will behave when executed. The

new research enabled by FIA include:

(I) The modification of the model at runtime

(II) The optimization of protocol selection

(III) The development of design tools

(IV) The development of practical negotiation methods

Designers can use FIA to create multiagent systems without having to map goals to

protocols a priori. This will allow designers to dynamically add and remove goals, protocols,

actions and interactions to agents at runtime. When the MAIM model is updated with new

specifications, the system can immediately use those protocols, actions and interactions to

achieve goals of the agents in the system. This allows the agents to run continuously and,

if errors are found, the components that are incorrect can be replaced at runtime. How to

easily integrate MAIM with executable code is an open research question.

115

Multiagent systems can extend MAIM to use performance functions to select from a set

of valid interactions and protocols. For example, performance functions can be defined for

the Bluetooth and WiFi protocols. One performance function may optimize for bandwidth

(choosing WiFi) while another may optimize for power efficiency (choosing Bluetooth).

Different protocols may be selected, depending on which performance function is chosen.

The process of creating applicable performance functions is an area with valuable research

opportunities.

FIA allows a goal to be defined without having to bind a specific protocol to the achieve-

ment of that goal. This allows goals and protocols to be specified independently and relies

on FIA to dynamically bind protocols to goals. The separation of goal and protocol speci-

fication will make designing interactions for goal-oriented multiagent systems more robust

and less tedious. There are many opportunities for work that can extend the results of this

thesis to make FIA even easier to use. For example, because MAIM is formally defined, a

language can be created to represent the model. This language can be modeled graphically

using tools that will make the specification easier and the visualization of MAIM better.

This will help designers to develop models much more rapidly than if they have to manually

encode the model using Java or XML. The Google Android platform uses just this type of

model56. While most resources within an Android project are specified through text editors,

some of the resources (such as layouts) can also be specified by graphical tools. These tools

speed up the design process, which in turn decreases the time required to deliver a product.

MAIM also requires a way for agents to negotiate protocol and interaction details. The

method used for the demonstration system was direct negotiation, but a brokering system or

a service discovery system could also be used. These methods are used in a variety of fields

where services may not be known in advance. The negotiation process can be provided by

the system or it can be developed for a specific application. A major benefit of FIA is that

not all agents in the system must use FIA for it to be useful. It is possible that only one

agent uses FIA to select interactions. This agent could register with an interaction brokering

116

service and other agents could use the brokering service to find appropriate interactions. How

this can be used to integrate legacy software into a multiagent system is another interesting

research topic.

7.4 FIA Limitations

FIA may not be the suitable for some systems. For example, the current set of FIA algo-

rithms requires access to XSB and a SAT Solver, which consumes many CPU cycles and

large amounts of power. This may not be feasible for systems that are limited in either of

these resources. In the physical demonstration system, the algorithms were not run on the

tablet due to these limitations. FIA algorithms are, however, composed of a large number

of parallel computations. This means that the required processing can be done quickly on

a distributed system or a cluster of computers. Redesigning these algorithms to use these

resources can lead to a significant decrease in the amount of time required to compute possi-

ble interactions and would be an interesting area of research. Another method of decreasing

the time required to select an interaction is to cache the results of previous runs of the

algorithms, which can help the agents to quickly locate possible interactions that achieve

their goals. The cache provides a fast method of determining results, but cached results

can lead to incorrect conclusions if the parameters of the goal change. To eliminate the

risk of incorrect results, care must be taken to include both the agent’s knowledge and the

parameters of the goal.

The final major limitation is that FIA can suggest interactions that will never succeed.

This is the case when a protocol has a disjunctive property or an interaction has a disjunctive

postcondition. In the viable mode, the disjunctive properties are broken down into multiple

proofs. It is possible for one agent to use one property to prove that their goal can be

achieved while another agent uses an opposing property to prove that their goal can be

achieved. It is possible that these two properties are mutually exclusive and thus at most

one agent may achieve their desired goal. However, this situation is unlikely to occur in

117

most system designs.

The simulation results shown in Section 5.2 shows that FIA can be used to create robust

multiagent systems. A FIA-based multiagent system can adapt to failures that typical

multiagent systems fail to handle. The formal model allows the FIA reasoning algorithms

to predict the behavior of the system. This reasoning allows the multiagent system to be

adaptive while at the same time maintaining the distributed nature of the agents.

118

Bibliography

[1] Computer animation. http://www.bbc.co.uk/dna/h2g2/A3421045.

[2] How to write a telegraph. http://www.telegraph-office.com/pages/telegram.

html, 2010.

[3] Nunit. http://www.nunit.org/.

[4] Xsb. http://xsb.sourceforge.net/.

[5] Two-character, single error-correcting system compatible with telegraph transmission,

1968. US Patent 3,412,380.

[6] Chanook helicopter, 07 2010.

[7] 11 2011.

[8] Facebook. http://www.facebook.com/, 02 2011.

[9] Java path finder. http://babelfish.arc.nasa.gov/trac/jpf, 08 2011.

[10] Junit website. http://www.junit.org/, 07 2011.

[11] Models at runtime conference. http://www.comp.lancs.ac.uk/~bencomo/MRT11/,

08 2011.

[12] Toyota: Software to blame for prius brake problems. http:

//articles.cnn.com/2010-02-04/world/japan.prius.complaints_1_

brake-system-anti-lock-prius-hybrid?_s=PM:WORLD, 07 2011.

[13] Twitter. http://twitter.com/, 02 2011.

119

http://www.bbc.co.uk/dna/h2g2/A3421045
http://www.telegraph-office.com/pages/telegram.html
http://www.telegraph-office.com/pages/telegram.html
http://www.nunit.org/
http://xsb.sourceforge.net/
http://www.facebook.com/
http://babelfish.arc.nasa.gov/trac/jpf
http://www.junit.org/
http://www.comp.lancs.ac.uk/~bencomo/MRT11/
http://articles.cnn.com/2010-02-04/world/japan.prius.complaints_1_brake-system-anti-lock-prius-hybrid?_s=PM:WORLD
http://articles.cnn.com/2010-02-04/world/japan.prius.complaints_1_brake-system-anti-lock-prius-hybrid?_s=PM:WORLD
http://articles.cnn.com/2010-02-04/world/japan.prius.complaints_1_brake-system-anti-lock-prius-hybrid?_s=PM:WORLD
http://twitter.com/

[14] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M.D. Mickunas. Cerberus: a

context-aware security scheme for smart spaces. In Pervasive Computing and Com-

munications, 2003.(PerCom 2003). Proceedings of the First IEEE International Con-

ference on, pages 489–496. IEEE, 2003.

[15] M. Alavi and D.E. Leidner. Review: Knowledge management and knowledge man-

agement systems: Conceptual foundations and research issues. MIS quarterly, pages

107–136, 2001.

[16] F. Appendix and G. Appendix. Artificial intelligence through prolog by neil c. rowe.

[17] C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe, and M. Yamamoto. Cache-

based model checking of networked applications: From linear to branching time. In

Proceedings of the 2009 IEEE/ACM International Conference on Automated Software

Engineering, pages 447–458. IEEE Computer Society, 2009.

[18] S. Baase. A gift of fire. 2003.

[19] T. Balch and R.C. Arkin. Communication in reactive multiagent robotic systems.

Autonomous Robots, 1(1):27–52, 1994.

[20] F. Barbosa and J.C. Cunha. A coordination language for collective agent based sys-

tems: Grouplog. In Proceedings of the 2000 ACM symposium on Applied computing-

Volume 1, pages 189–195. ACM, 2000.

[21] M. Barbuceanu and M.S. Fox. Cool: A language for describing coordination in multi

agent systems. In Proceedings of the First International Conference on Multi-Agent

Systems (ICMAS-95), pages 17–24. Citeseer, 1995.

[22] Bell Labs. Spin model checker. http://spinroot.com/spin/whatispin.html,

November 2008.

120

http://spinroot.com/spin/whatispin.html

[23] C. Bernon, M. Cossentino, M.P. Gleizes, P. Turci, and F. Zambonelli. A study of some

multi-agent meta-models. Agent-Oriented Software Engineering V, pages 62–77, 2005.

[24] C. Bernon, M.P. Gleizes, S. Peyruqueou, and G. Picard. Adelfe: A methodology for

adaptive multi-agent systems engineering. Engineering Societies in the Agents World

III, pages 70–81, 2003.

[25] G. Beydoun, G. Low, B. Henderson-Sellers, H. Mouratidis, J.J. Gomez-Sanz, J. Pavon,

and C. Gonzalez-Perez. Faml: a generic metamodel for mas development. Software

Engineering, IEEE Transactions on, 35(6):841–863, 2009.

[26] K. Birman, R. Friedman, and M. Hayden. The maestro group manager: A structuring

tool for applications withmultiple quality of service requirements. 1997.

[27] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An

agent-oriented software development methodology. Autonomous Agents and Multi-

Agent Systems, 8(3):203–236, 2004.

[28] Encyclopedia Britannica. Claude Chappe. Encyclopædia Britannica Online, 2011.

[29] DC Bunzli, S. Mena, and U. Nestmann. Protocol composition frameworks a header-

driven model. In Network Computing and Applications, Fourth IEEE International

Symposium on, pages 243–246. IEEE, 2005.

[30] P. Busetta, R. R

”onnquist, A. Hodgson, and A. Lucas. Jack intelligent agents-components for intelli-

gent agents in java. AgentLink News Letter, 2:2–5, 1999.

[31] Y. Cheon and G. Leavens. A simple and practical approach to unit testing: The jml

and junit way. pages 1789–1901, 2006.

[32] C. Cheong and M. Winikoff. Hermes: Designing goal-oriented agent interactions.

LECTURE NOTES IN COMPUTER SCIENCE, 3950:16, 2006.

121

[33] Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Reasoning

about agents and protocols via goals and commitments. In Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent Systems: volume 1 -

Volume 1, AAMAS ’10, pages 457–464, Richland, SC, 2010. International Foundation

for Autonomous Agents and Multiagent Systems.

[34] A. Colmerauer and P. Roussel. The birth of prolog. In History of programming

languages—II, pages 331–367. ACM, 1996.

[35] Survey Equipment Corp. Survey equipment, 2012.

[36] M. Cossentino. From requirements to code with the passi methodology. Agent-oriented

methodologies, pages 79–106, 2005.

[37] F. Dalpiaz, A. Chopra, P. Giorgini, and J. Mylopoulos. Adaptation in open systems:

Giving interaction its rightful place. Conceptual Modeling–ER 2010, pages 31–45,

2010.

[38] F. Dalpiaz, P. Giorgini, and J. Mylopoulos. An architecture for requirements-driven

self-reconfiguration. In Advanced Information Systems Engineering, pages 246–260.

Springer, 2009.

[39] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde. Grail/kaos: an environ-

ment for goal-driven requirements engineering. Proceedings of the 19th international

conference on Software engineering, pages 612–613, 1997.

[40] S. DeLoach. The mase methodology. Methodologies and software engineering for agent

systems, pages 107–125, 2004.

[41] S. DeLoach. Engineering organization-based multiagent systems. Software Engineering

for Multi-Agent Systems IV, pages 109–125, 2006.

122

[42] S. DeLoach. Omacs: A framework for adaptive, complex systems. Handbook of Re-

search on Multi-Agent Systems: Semantics and Dynamics of Organizational Models,

pages 76–98, 2009.

[43] S.A. DeLoach. Analysis and design using mase and agenttool, 2001.

[44] S.A. DeLoach and M. Miller. A goal model for adaptive complex systems. International

Journal of Computational Intelligence: Theory and Practice, 5(2), 2010.

[45] T. Doi, Y. Tahara, and S. Honiden. Iom/t: an interaction description language for

multi-agent systems. In Proceedings of the International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 778–785, 2005.

[46] S. Eker, J. Meseguer, and A. Sridharanarayanan. The maude ltl model checker and

its implementation. Model Checking Software, pages 623–624, 2003.

[47] fcc. Emergency alert system. http://transition.fcc.gov/pshs/services/eas/,

08 2011.

[48] P.H. Feiler. The architecture analysis & design language (aadl): An introduction.

Technical report, DTIC Document, 2006.

[49] T. Finin, R. Fritzson, D. McKay, and R. McEntire. Kqml as an agent communication

language. In Proceedings of the third international conference on Information and

knowledge management, pages 456–463. ACM, 1994.

[50] R. France and B. Rumpe. Domain specific modeling. Software and Systems Modeling,

4(1):1–3, 2005.

[51] X. Fu, T. Bultan, and J. Su. Wsat: A tool for formal analysis of web services. In

Computer Aided Verification, pages 394–395. Springer, 2004.

123

http://transition.fcc.gov/pshs/services/eas/

[52] J. Garcia-Ojeda, S. DeLoach, W. Oyenan, and J. Valenzuela. O-mase: a customizable

approach to developing multiagent development processes. Agent-Oriented Software

Engineering VIII, pages 1–15, 2008.

[53] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:

Architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):46–

54, 2004.

[54] D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-

based systems. Cambridge University Press, 2000.

[55] G. Gazdar and C.S. Mellish. Natural language processing in PROLOG: an introduction

to computational linguistics. Addison-Wesley Pub. Co., 1989.

[56] Google. Android website, 2012.

[57] K. Havelund, M. Lowry, S.J. Park, C. Pecheur, J. Penix, W. Visser, J.L. White, et al.

Formal analysis of the remote agent before and after flight. In Lfm2000: Fifth NASA

Langley Formal Methods Workshop. Citeseer, 2000.

[58] G.J. Holzmann and M.H. Smith. Automating software feature verification. Bell Labs

Technical Journal, 5(2):72–87, 2000.

[59] B. Huberman and S.H. Clearwater. A multi-agent system for controlling building

environments. In Proceedings of the First International Conference on Multi-Agent

Systems (ICMAS-95), pages 171–176, 1995.

[60] M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about

systems. Cambridge Univ Pr, 2004.

[61] Dell Hymes. Foundations of Sociolinguistics: An Ethnographic Approach. U of Penn-

sylvania, 1974.

124

[62] P. Kars. The application of promela and spin in the bos project. In The SPIN ver-

ification system: the second Workshop on the SPIN Verification System: proceedings

of a DIMACS workshop, August 5, 1996, volume 32, page 51. Amer Mathematical

Society, 1997.

[63] I. Keidar. Distributed computing column 42: game theory and fault tolerance in

distributed computing. ACM SIGACT News, 42(2):68–68, 2011.

[64] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,

36(1):41–50, 2003.

[65] P. Kruchten. The rational unified process: an introduction. Addison-Wesley Profes-

sional, 2004.

[66] S. Kumar and P.R. Cohen. Towards a fault-tolerant multi-agent system architecture.

In Proceedings of the fourth international conference on Autonomous agents, pages

459–466. ACM, 2000.

[67] S. Kumar and P.R. Cohen. Staple: An agent programming language based on the

joint intention theory. In Proceedings of the Third International Joint Conference

on Autonomous Agents and Multiagent Systems-Volume 3, pages 1390–1391. IEEE

Computer Society, 2004.

[68] Sanjeev Kumar, Marcus J. Huber, and Philip R. Cohen. Representing and executing

protocols as joint actions. In AAMAS ’02: Proceedings of the first international joint

conference on Autonomous agents and multiagent systems, pages 543–550, New York,

NY, USA, 2002. ACM.

[69] K. Kuwabara, T. Ishida, and N. Osato. Agentalk: Describing multiagent coordination

protocols with inheritance. pages 460–465, 1995.

125

[70] T. Lacey and S.A. DeLoach. Automatic verification of multiagent conversations. Tech-

nical report, NASA Center for AeroSpace Information, 7121 Standard Dr, Hanover,

Maryland, 21076-1320, USA, 2000.

[71] T.H. Lacey and S.A. DeLoach. Verification of agent behavioral models. In Proceedings

of the International Conference on Artificial Intelligence, pages 557–564. Citeseer.

[72] H.M. Lee, D.S. Park, H.C. Yu, and G. Lee. Frasystem: fault tolerant system using

agents in distributed computing systems. Cluster Computing, 14(1):15–25, 2011.

[73] H.J. Levesque, P.R. Cohen, and J.H.T. Nunes. On acting together. In Proceedings

of the Eighth National Conference on Artificial Intelligence (AAAI-90), pages 94–99.

Boston, MA, 1990.

[74] Enno Lubbers, Marco Platzner, Christian Plessl, Ariane Keller, and Bernhard Plat-

tner. Towards adaptive networking for embedded devices based on reconfigurable hard-

ware. Int. Conf. on Engineering of Reconfigurable Systems and Algorithms (ERSA),

2010.

[75] O. Marin, P. Sens, J.P. Briot, and Z. Guessoum. Towards adaptive fault-tolerance for

distributed multi-agent systems. In Proceedings of ERSADS, pages 195–201. Citeseer,

2001.

[76] H. Mazouzi, A.E.F. Seghrouchni, and S. Haddad. Open protocol design for complex

interactions in multi-agent systems. In Proceedings of the first international joint

conference on Autonomous agents and multiagent systems: part 2, pages 517–526.

ACM, 2002.

[77] Erin McKean, editor. New Oxford American Dictionary. Oxford University Press,

2005.

126

[78] K.L. McMillan. Symbolic model checking: an approach to the state explosion problem.

Technical report, DTIC Document, 1992.

[79] S. Mellor, K. Scott, A. Uhl, and D. Weise. Model-driven architecture. Advances in

Object-Oriented Information Systems, pages 233–239, 2002.

[80] S. Mena, X. Cuvellier, C. Grégoire, and A. Schiper. Appia vs. cactus: Comparing

protocol composition frameworks. In Reliable Distributed Systems, 2003. Proceedings.

22nd International Symposium on, pages 189–198. IEEE, 2003.

[81] Katherine Miller. Organizational Communication: Approaches and Processes.

Wadsworth Cengage Learning, fifth edition, 2009.

[82] M. Morandini, L. Penserini, and A. Perini. Operational semantics of goal models in

adaptive agents. In Proceedings of The 8th International Conference on Autonomous

Agents and Multiagent Systems-Volume 1, pages 129–136. International Foundation

for Autonomous Agents and Multiagent Systems, 2009.

[83] I. Nonaka. Takeuchi.(1995) the knowledge creating company. New York.

[84] J. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent interaction proto-

cols in uml. In Agent-Oriented Software Engineering, pages 201–218. Springer, 2001.

[85] T. Osman, W. Wagealla, and A. Bargiela. An approach to rollback recovery of col-

laborating mobile agents. Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, 34(1):48–57, 2004.

[86] L. Padgham and M. Winikoff. Prometheus: A methodology for developing intelligent

agents. In Proceedings of the 3rd international conference on Agent-oriented software

engineering III, pages 174–185. Springer-Verlag, 2002.

[87] Laurence Peter. How the poles cracked nazi enigma secret. http://news.bbc.co.

uk/2/hi/europe/8158782.stm, July 2009.

127

http://news.bbc.co.uk/2/hi/europe/8158782.stm
http://news.bbc.co.uk/2/hi/europe/8158782.stm

[88] Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.

[89] A. Pnueli. The temporal logic of programs. In Foundations of Computer Science,

1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[90] J.B. Postel, L.L. Garlick, R. Rom, and STANFORD RESEARCH INST MENLO

PARK CALIF AUGMENTATION RESEARCH CENTER. Transmission Control

Protocol Specification., 1976.

[91] Princeton. zchaff model checker. http://www.princeton.edu/~chaff/zchaff.html,

7 2011.

[92] J.G. Quenum, S. Aknine, O. Shehory, and S. Honiden. Dynamic protocol selec-

tion in open and heterogeneous systems. Proceedings of the IEEE/WIC/ACM In-

ternational Conference on Intelligent Agent Technology (IAT 2006 Main Conference

Proceedings)(IAT’06)-Volume 00, pages 333–341, 2006.

[93] A.S. Rao and M.P. Georgeff. Bdi agents: From theory to practice. In Proceedings of

the first international conference on multi-agent systems (ICMAS-95), pages 312–319.

San Francisco, 1995.

[94] I. Recommendation. 200 (1994)— iso/iec 7498-1: 1994. Information technology–Open

Systems Interconnection–Basic Reference Model: The basic model.

[95] P. Remagnino, T. Tan, and K. Baker. Multi-agent visual surveillance of dynamic

scenes. Image and Vision Computing, 16(8):529–532, 1998.

[96] M.B.D. Robby and J. Hatcliff. Bogor: an extensible and highly-modular software

model checking framework. In Proceedings of the 9th European software engineering

conference held jointly with 11th ACM SIGSOFT international symposium on Foun-

dations of software engineering, September, pages 01–05, 2003.

128

http://www.princeton.edu/~chaff/zchaff.html

[97] S. Rosenthal, J. Biswas, and M. Veloso. An effective personal mobile robot agent

through symbiotic human-robot interaction. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1,

pages 915–922. International Foundation for Autonomous Agents and Multiagent Sys-

tems, 2010.

[98] Peter Russell and Stuart Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2003.

[99] Murray Shanahan. Event calculus explained. urlhttp://www.doc.ic.ac.uk/ mpsha/E-

CExplained.pdf.

[100] CE Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile

Computing and Communications Review, 5(1):3–55, 2001.

[101] A.D. Smith and F. Offodile. Information management of automatic data capture: an

overview of technical developments. Information Management & Computer Security,

10(3):109–118, 2002.

[102] Spin. Promela modeling language. http://spinroot.com/spin/Man/promela.html,

12 2008.

[103] D. Stenmark. Information vs. knowledge: The role of intranets in knowledge man-

agement. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii

International Conference on, pages 928–937. IEEE, 2002.

[104] William Stewart. Arpanet. http://www.livinginternet.com/i/ii_arpanet.htm.

[105] M.E. Stickel. A prolog technology theorem prover: Implementation by an extended

prolog compiler. Journal of Automated Reasoning, 4(4):353–380, 1988.

[106] H. Sullivan. Data demodulator, 1970. US Patent 3,536,840.

129

http://spinroot.com/spin/Man/promela.html
http://www.livinginternet.com/i/ii_arpanet.htm

[107] F.W. Taylor. The principles of scientific management. Harper & brothers, 1919.

[108] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead Jr, and J.E. Robbins.

A component-and message-based architectural style for gui software. In Proceedings

of the 17th international conference on Software engineering, pages 295–304. ACM,

1995.

[109] Sarah Trenholm and Arthur Jensen. Interpersonal Communication. Oxford University

Press, 2004.

[110] I. Tuomi. Data is more than knowledge: Implications of the reversed knowledge

hierarchy for knowledge management and organizational memory. In System Sciences,

1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference on,

pages 12–pp. IEEE, 1999.

[111] Carnegie Mellon University. Aadl examples, 2008.

[112] R. Van Renesse, K.P. Birman, and S. Maffeis. Horus: A flexible group communication

system. Communications of the ACM, 39(4):76–83, 1996.

[113] M.B. Van Riemsdijk, M. Dastani, and M. Winikoff. Goals in agent systems: a unifying

framework. In Proceedings of the 7th international joint conference on Autonomous

agents and multiagent systems-Volume 2, pages 713–720. International Foundation for

Autonomous Agents and Multiagent Systems, 2008.

[114] ML Visinsky, JR Cavallaro, and ID Walker. Robotic fault detection and fault toler-

ance: A survey. Reliability Engineering & System Safety, 46(2):139–158, 1994.

[115] S. Wahl and H. Spada. Cognitive Science Quarterly, 1(1):3–32, 2000.

[116] L. Wang, H. Li, D. Goswami, and Z. Wei. A fault-tolerant multi-agent development

framework. Parallel and Distributed Processing and Applications, pages 126–135, 2005.

130

[117] Y. Wang, S.A. McIlraith, Y. Yu, and J. Mylopoulos. An automated approach to mon-

itoring and diagnosing requirements. In Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, pages 293–302. ACM,

2007.

[118] Max Weber. Economy and society. University of California Press, 1978.

[119] G. Weiss. Multiagent systems: a modern approach to distributed artificial intelligence.

The MIT press, 1999.

[120] M. Winikoff. Implementing commitment-based interactions. In Proceedings of the 6th

international joint conference on Autonomous agents and multiagent systems, pages

1–8. ACM, 2007.

[121] Michael Woodridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 2

edition, 2009.

[122] M. Wooldridge, M. Fisher, M.P. Huget, and S. Parsons. Model checking multi-agent

systems with mable. In Proceedings of the first international joint conference on

Autonomous agents and multiagent systems: part 2, pages 952–959. ACM, 2002.

[123] M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. The

knowledge engineering review, 10(02):115–152, 1995.

[124] M. Wooldridge, N.R. Jennings, and D. Kinny. The gaia methodology for agent-oriented

analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312,

2000.

[125] P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent coop-

eration: Model and experiments. In Proceedings of the fifth international conference

on Autonomous agents, pages 616–623. ACM, 2001.

131

[126] P. Yolum and M.P. Singh. Reasoning about commitments in the event calculus: An

approach for specifying and executing protocols. Annals of Mathematics and Artificial

Intelligence, 42(1):227–253, 2004.

[127] E.S.K. Yu. Towards modeling and reasoning support for early-phase requirements

engineering. re, page 226, 1997.

132

Appendix A

Additional Interaction Model
Definitions

This Appendix formally defines the basic Interaction Model elements in full.

A.1 Interaction Model and Definitions

The base of most formal models starts with types. A type system allows us make more

robust systems, as the types allow us to make assumptions on how the program will behave.

In Definition 13, a canonical definition of a type system is given.

Definition 13 (Type System)

Type System: A tractable syntactic method for proving the absence of certain pro-

gram behaviors by classifying phrases according to the kinds of values they compute88.

The Interaction Framework uses a type system to prove properties about program/-

mulitagent system behavior. These behavior characteristics allow the Interaction Frame-

work to prove whether or not an Interaction can achieve a Goal for an Agent (Chapter 4).

Definition 14 defines the Type entity, and a type has a name attribute. The name allows

the model to discriminate between different types.

Definition 14 (Type Attribute)

name String

133

In addition to discriminating between types, the Interaction Framework also defines that

each type is unique. This uniqueness guarantees that if two types have the same name, then

those types have the same semantic meaning. This restriction is codified below.

Restriction 4 (Type Uniqueness)

∀ type1: Type, type2: Type | type1.name = type2.name ⇔ type1 = type2

The Interaction Framework uses variables within the entity specifications. Definition 15

gives a loose definition of a variable. The value of the variables will change over time, but

the Type of the variable restricts the possible values.

Definition 15 (Variable)

Variable: a data item that may take on more than one value during or between

programs77.

Variables are used in the various parts of the Interaction Model, such as in Goals, Agents,

Interactions and Protocols. The variables may change over the course of the system, and

the system can adapt its behavior based on those changes. Definition 16 gives the formal

definition of the attributes that belong to variables.

Definition 16 (Variable Attributes)

name String
value unknown ∨ value

These attributes give the model the information required to discriminate between vari-

ables. Variables in multiagent systems may have an unknown value. This may be the case

if the agent that has the variable but they have not sensed the value from the environment.

The agent may also acquire the value of the variable via communication with another agent.

The value of a variable will be used in other parts of the Interaction Framework, such as

in Interactions or in the playing of roles. The value, or lack thereof, of the variable will

affect how the interactions and roles are carried out. The name of the variable allows us to

differentiate between variables. There is a relation (Relation 6) between the Variables and

the Types of those Variables.

134

Relation 6 (Type Variable)

typeof ⊆ Type× Variable

The above relation specifies that Types and Variables are related. This definition by its

self is very loose and by just this relation, there could be a Variable that is related to many

types. But this violates the premise that each variable has exactly one type. Therefore

there is a restriction on this relation in Restriction 5. This restriction guarantees the each

variable will have exactly one type.

Restriction 5 (Variable Types)

∀ type: Type, type1: Type, variable:Variable|((type,variable) ∈ typeof)∧((type1,variable) ∈

typeof) =⇒ type = type1

Now that Types and Variables have been defined for the Interaction Framework a lan-

guage can be defined that uses those Variables. The language is a specification language

that allows system designers to specify properties of different entities in our system. The

specification language allows formal properties to be defined. These properties will either

hold in the future, they at the current moment in time. This specification language is defined

in Definition 17. In some entities (Protocols and Protocol Roles) the properties given are

LTL formulas that specify safety and liveness properties. Other entities will not be required

to use LTL logic symbols.

Definition 17 (Specification Language)

Specification Language: First Order Logic formula with domain specific variables,

types and LTL logic symbols.

The List of specification language symbols (Definition 18) specifies the valid symbols

that can be used to write a sentence in the Specification Language.

135

Definition 18 (Specification Language Symbols)

Quantifiers ∀ ∃
Connectors ∧∨ =⇒ ¬ ⊃⊇
LTL Connectors 23UR
Punctuation (){}[]
Variables Set(Variable)
Equality = <>≥≤

An example of a valid sentence is a =⇒ b, where a and b are variables. Expressions

are statements that are either true, false or unknown. In the case of LTL properties the

expressions are statements that are true, false or unknown at the current moment, and the

truth of the statement is time dependent. The value of unknown comes in to play when you

have a variable that does not have a known value.An example of an unknown value would

be in a postcondition that states a property like x > 10. In this property the value of x

in not known, but it can be inferred that the value is greater than 10. Expressions will be

used in the specification of a variety of entities within the Interaction Framework.

Definition 19 (Expression)

Expression: A valid statement in the Specification Language (Definition 17) using

the specification language symbols in Definition 18.

A.2 Agent Relations

The Agents knowledge is information that an Agent possesses. Relation 7 defines knowledge

as a relation between Agents and Variables. Each Agent is allowed to add and remove

information at their own discretion. The definition of Knowledge abstracts many of the

details that an agent may associate with their knowledge.

Relation 7 (Agent Knowledge)

knowledge ⊆ Variable× Agent

As seen in Figure 3.1 there is a relation between the Agent an the Goal. This relation

is formally defined in Relation 8. The relation codifies the notion that an agent has a set

136

of goals that the agent may be trying to achieve. Each goal belongs to a single Agent in

the multiagent system. This restriction follows from the function definition that is given in

Section 3.1.1.

Relation 8 (Agent Goal)

has ⊆ Agent×Goal

The has relation a function from a Goal to an Agent, and thus the restriction below is

defined.

Restriction 6 (One Agent Per Goal)

∀a1, a2: Agent,goal:Goal|(a1, goal) ∈ has ∧ (a2, goal) ∈ has =⇒ a1 = a2

Restriction 6 ensures that each goal belongs to one Agent. Many agents may have the

same type of goal, but each goal belongs to a unique Agent.

Additionally there is a restriction that ensures that a single agent is allowed to play each

role. This is codified in Restriction 7.

Restriction 7 (Role Played By Single Agent)

∀ a,b : Agents , r: Roles | (a,r) ∈ plays ∧ (b,r) ∈ plays =⇒ a = b

A.3 Interaction Role Relation & Restrictions

For each Interaction in our system, there must exist at least distinct 2 Interaction Roles.

This is codified in Restriction 8.

Restriction 8 (Non-empty Interaction Role Composition)

∀ i ∈ Interaction ∃ r1, r2 : Role |

(i, r1) ∈ InteractionRoleComposition ∧ (i, r2) ∈ InteractionRoleComposition ∧ r1 6= r2

Relation 9 gives the range of the Interaction Roles. The first integer is the minimum

number of instances that a particular interaction must have and the second is the maximum

number of instances of the Interaction Role that can exist for a particular Interaction. The

137

Interaction Role Range relation allows the designer to be more expressive in the specification

of the role composition.

Relation 9 (Interaction Role Range)

InteractionRoleCompositionRange ⊆ Interaction × Interaction Role × Integer ×

Integer

There is restriction on the Interaction Role Range to ensure that the min is always less than

or equal to the max. This is listed in Restriction 9.

Restriction 9 (Interaction Role Range min ≤ max)

∀ i ∈ Interaction, ir ∈ Interaction Role, min,max ∈ Integer |

(i, ir,min,max) ∈ InteractionRoleCompositionRange =⇒ min ≤ max

Additionally there is restrict on the relation such that there is only one minimum and

maximum for each Interaction Role pair.

Restriction 10 (Interaction Role Composition Uniqueness)

∀ i ∈ Interaction ∀ ir : Interaction Role, ∀ min1,min2,max1,max2 : Integer |

(i, ir) ∈ InteractionRoleComposition ∧

(i, ir,min1,max1) ∈ InteractionRoleCompositionRange ∧

(i, ir,min2,max2) ∈ InteractionRoleCompositionRange =⇒

min1 = min2 ∧ max1 = max2

A.4 Protocol Role Relations & Restrictions

As stated above and shown in Diagram 3.1, each Protocol has two or more Protocol Roles

in its composition.

Restriction 11 (Non-empty Protocol Role Composition)

∀ p ∈ Protocol ∃ r1, r2 : Role |

(p, r1) ∈ ProtocolRoleComposition ∧ (p, r2) ∈ ProtocolRoleComposition ∧ r1 6= r2

138

Relation 5 defines that the composition is between Protocols and Protocol Roles. This

relation is defined when the protocol designers create the protocol definition. Protocol

Roles in literature may be called lifelines or processes.

In Relation 10 a range on the Protocol Roles is defined. This range is just like the range

on the Interaction Role range. The first integer is the minimum number of instances that a

particular role must have and the second integer is the maximum number of instances that

role can have. The Protocol Roles are designed to implement Interaction Roles.

Relation 10 (Protocol Role Range)

ProtocolRoleCompositionRange ⊆ Protocol× Protocol Role× Integer× Integer

Again, just as in the Interaction Role, there is a restriction on Relation 10 that the minimum

must be less than or equal to the maximum. This is shown in Restriction 12.

Restriction 12 (Protocol Role Range min ≤ max)

∀ p ∈ Protocol, pr ∈ Protocol Role, min,max ∈ Integer |

(p, pr,min,max) ∈ ProtocolRoleCompositionRange =⇒ min ≤ max

Additionally, we there is also the restriction on the range. This ensures that it is unique for

each Protocol-Protocol Role pair (Restriction 13).

Restriction 13 (Protocol Role Composition Uniqueness)

∀ p ∈ Protocol ∀ pr : Protocol Role, ∀ min1,min2,max1,max2 : Integer |

(p, pr) ∈ InteractionRoleComposition ∧

(p, pr,min1,max1) ∈ ProtocolRoleCompositionRange ∧

(p, pr,min2,max2) ∈ ProtocolRoleCompositionRange =⇒

min1 = min2 ∧ max1 = max2

The Protocol definition defines that there is a relationship between the Interaction and

the Protocol (Relation 4). This relationship is similar to relationship between the Interac-

tion Role and the Protocol Role. Relation 11 formally defines the implements relationship

between Interaction Roles and Protocol Roles.

139

Relation 11 (Protocol Role implements Interaction Role)

implements ⊆ Interaction Role× Protocol Role

A.5 Variable Definitions

Free Variables
FV (x) = {x}
FV (x =⇒ y) = FV (x) ∪ FV (y)
FV (∀ x : A | e) = FV (e)\{x}
FV (∃ x : A | e) = FV (e)\{x}
FV (x ∧ y) = FV (x) ∪ FV (y)
FV (x ∨ y) = FV (x) ∪ FV (y)
FV (x = y) = FV (x) ∪ FV (y)
FV (x < y) = FV (x) ∪ FV (y)
FV (x > y) = FV (x) ∪ FV (y)
FV (x ≥ y) = FV (x) ∪ FV (y)
FV (x ≤ y) = FV (x) ∪ FV (y)
FV (x ⊂ y) = FV (x) ∪ FV (y)
FV (x ⊆ y) = FV (x) ∪ FV (y)
FV (x U y) = FV (x) ∪ FV (y)
FV (x R y) = FV (x) ∪ FV (y)
FV (2x) = FV (x)
FV (3x) = FV (x)

The substitution is defined by a set of rules defined for variables and expressions, as

given in Table A.5.

A.6 Restrictions

The Interaction Model defines how each of the entities within the Interaction Framework

are related. This section defines some restrictions on those relations.

The first restriction that is defined is on the achieves relation between Goals and Actions.

Restriction 14 states that if a goal and action are in the achieves relation then there must

exist a possible GoalActionBindings. Given an input binding tuple (b1), the precondition

must be true. Also the post condition must imply the goals state given the input binding

140

Substitution Table
[e 7→ v]e = v
[e 7→ v](x =⇒ y) = ([e 7→ v]x) =⇒ ([e 7→ v]y)
[e 7→ v](∀ x : A | y) = if(e 6= x)(∀ x : A |[e 7→ v]y)
[e 7→ v](∀ x : A | y) = if(e = x)(∀ x : A |y)
[e 7→ v](∃ x : A | y) = if(e 6= x)(∃ x : A |[e 7→ v]y)
[e 7→ v](∃ x : A | y) = if(e = x)(∃ x : A |y)
[e 7→ v](x ∧ y) = ([e 7→ v]x) ∧ ([e 7→ v]y)
[e 7→ v](x ∨ y) = ([e 7→ v]x) ∨ ([e 7→ v]y)
[e 7→ v](x = y) = ([e 7→ v]x) = ([e 7→ v]y)
[e 7→ v](x < y) = ([e 7→ v]x) < ([e 7→ v]y)
[e 7→ v](x > y) = ([e 7→ v]x) > ([e 7→ v]y)
[e 7→ v](x ≤ y) = ([e 7→ v]x) ≤ ([e 7→ v]y)
[e 7→ v](x ≥ y) = ([e 7→ v]x) ≥ ([e 7→ v]y)
[e 7→ v](x ⊂ y) = ([e 7→ v]x) ⊂ ([e 7→ v]y)
[e 7→ v](x ⊆ y) = ([e 7→ v]x) ⊆ ([e 7→ v]y)
[e 7→ v](xUy) = ([e 7→ v]x)U([e 7→ v]y)
[e 7→ v](xRy) = ([e 7→ v]x)R([e 7→ v]y)
[e 7→ v](2x) = (2[e 7→ v]x)
[e 7→ v](3x) = (3[e 7→ v]x)

(b1) and the output binding (b2).

Restriction 14 (Action achieves Goal)

∀goal:Goal,action:Action|(goal,action) ∈ achieves ⇐⇒

∃ agent: Agent |(agent, goal) ∈ has ∧ (agent, action) ∈ performs ∧

(∃b1, b2 : binding|(goal, action, agent, b1, b2) ∈ GoalActionBindings)∧ (a.precondition{
→
b1}∧

a.postcondition{
→
b1,
←
b2} =⇒ g.state{

→
b2,
←
b1})

Restriction 15 defines that in an Interaction Role composition implies that the parame-

ters of the Interaction Role are a subset of the parameters for the Interaction. This restric-

tion gives the guarantee that if the input parameters are known for the interaction, then the

required input parameters for the Interaction Role are also known. The definition of param-

eters does not imply that the parameters must be used in the precondition or postcondition

of the Interaction or the Interaction Role.

Restriction 15 (Interaction Role Composition Parameters)

∀Interaction i, Interaction Role ir|(i, ir) ∈ InteractionRoleComposition =⇒

141

ir.parameters ⊆ i.parameters

A similar restriction is defined for the Protocol composition. The Protocol Role must have

a subset of the parameters define in the Protocol.

Restriction 16 (Protocol Role Composition Parameters)

∀Protocol p, Protocol Role pr|(p, pr) ∈ ProtocolRoleComposition =⇒

pr.parameters ⊆ p.parameters

The protocol must do as much or more than the interaction requires (may need meta

protocols to achieve the interaction).

Restriction 17 (Protocol and Protocol Role Imply Interaction and Interaction Role)

∀i:Interaction, ir:Interaction Role, pr:Protocol Role, p:Protocol, b1, b2:bindings|

(ir,pr) ∈ implements ∧

(i, p, b1, b2) ∈ InteractionProtocolBindings ∧

(p, pr) ∈ ProtocolRoleComposition ∧

(i, ir) ∈ InteractionRoleComposition

=⇒

(b1,b2
pr.properties =⇒ ir.postcondition

) ∧ (b1
ir.precondition∧pr.properties)

If an Interaction and a Protocol are in the implements relation, then there must exist

an input and an output binding such that a proof can be made. This proof will show that

if the precondition is true, then postcondition will hold.

Restriction 18 (Implements implies valid binding)

∀i : Interaction, p : Protocol |(i, p) ∈ implements =⇒

(∃b1, b2|(i, p, b1, b2) ∈ InteractionProtocolBindings) ∧

(b1,b2
p.properties =⇒ i.postcondition

) ∧ (b1
i.precondition∧p.properties))

If an Interaction implements a Protocol, then each Interaction Role has an associated

implementing Protocol Role.

142

Restriction 19 (Protocol Role for each Interaction Role)

∀i1 : Interaction, p1 : Protocol ir : Interaction Role |

(i1, p1) ∈ implements ∧ (i1, ir) ∈ InteractionRoleComposition =⇒

(∃ pr :Protocol Role |(p1, pr) ∈ ProtocolRoleComposition ∧ (ir, pr) ∈ implements)

Restriction 19 ensures that each Protocol Role has an Interaction Role that can implement

it. This guarantees that if the Protocol has a Protocol Role and that Protocol is implemented

by an Interaction, then there is an Interaction Role that implements that Protocol Role.

Restriction 20 (Interaction Role for each Protocol Role)

∀i1 : Interaction, p1 : Protocol pr : Protocol Role |

(i1, p1) ∈ implements ∧ (p1, pr) ∈ ProtocolRoleComposition =⇒

(∃ ir :Interaction Role |(i1, ir) ∈ InteractionRoleComposition ∧ (ir, pr) ∈ implements)

Restriction 19 and Restriction 20 ensure that if an Interaction and a Protocol are in the

implements Relation, then there is a mapping for each role. These roles are the roles in the

Interaction composition, or the roles in the Protocol composition.

A.7 Consistency

The binding algorithms put forth in Chapter 3 enables each agent to run the computations

independently, which allows the process of selecting interactions to be distributed. Each

agent runs the computation using its own local information and its own local goal possibly

using different inputs and different bindings to create the proofs. To ensure that there is

no conflict between these proofs, a consistently algorithm has been devised. An example

is provided to show the consistency problem and how an interaction can be checked for

consistency.

In the below example, Agent A and Agent B are both computing proofs for their desired

interaction. As illustrated in Figure A.1 Agent A has an Interaction-Protocol binding (Aip)

where q 7→ x and r 7→ y. However, Agent B has the binding in reverse q 7→ y and r 7→

x. This situation will produce compatible behavior if the agents are allowed to use these

143

bindings.

Agent A

a

x

q

b

y

r

Agent B

c

x

q

d

y

r

Agent-Goal

Interaction

Protocol

Figure A.1: Consistent Example

Algorithm 6 verifies that a group of bindings is consistent for a specific protocol and

interaction. Line 3 iterates through all the variables in the interaction-to-protocol binding

for AgentAip. In the example domain(AgentAip) = {q, r}. Line 4 verifies that the variable

is also bound in Agent B ’s interaction-to-protocol (AgentBip) binding and that each input

variable in the protocol is bound to the same input variable in the interaction. If this is

not the case, then the verification fails. The second half of the algorithm verifies the same

property for the output bindings (AgentApi and AgentBpi).

Algorithm 6 Verifying the Consistency of two bindings

1: consistent(Binding AgentAip, AgentBip, AgentApi, AgentBpi)
2: //Iterate through the input bindings
3: for all ∀ Variable q : domain(AgentAip) do
4: if ¬(q ∈ domain(AgentBip) and AgentBip(q) = AgentAip(q)) then
5: return false
6: end if
7: end for
8: //Iterate through the output bindings
9: for all ∀ Variable q : domain(AgentApi) do

10: if q 6∈ domain(AgentBpi) or AgentBpi(q)! = AgentApi(q) then
11: return false
12: end if
13: end for
14: return true

The consistency algorithm defined above ensures that a pair of agents bindings do not

144

have inconsistent interaction-to-protocol bindings. There are several methods that the

agents can use to perform this verification. The first method is for the initiating agent

to generate the input and output bindings for the protocol. The initiating agent can then

send those bindings to the other participants. These agents can these use these bindings in

their proofs. A second method is for each agent to run their computations independently

and then communicate their bindings during the negotiation process. Clearly agents must

communicate to negotiate the protocol details, but inputs to the interaction and protocol

must be communicated at some point for the interaction to commence.

145

Appendix B

Additional Functions

Algorithm 7 Getting Interaction-Protocol Input Bindings

1: Set<Bindings> getInputBindings(Interaction i, Protocol p)
2: Set<Bindings> result
3: for all Variable input ∈ p.getInputs() do
4: Type inputType = input.getType
5: Set<Variable> interactionVars = i.getInputs(inputType)
6: for all Variable interactionInput ∈ interactionVars do
7: result.add(new Binding(input, interactionInput))
8: end for
9: end for

10: return result

Algorithm 8 Getting Interaction-Protocol Output Bindings

1: Set<Bindings> getOutputBindings(Interaction i, Protocol p)
2: Set<Bindings> result
3: for all Variable output ∈ i.getOutputs() do
4: Type outputType = output.getType
5: Set<Variable> protocolVars = p.getOutputs(outputType)
6: for all Variable protocolOutput ∈ protocolVars do
7: result.add(new Binding(output, protocolOutput))
8: end for
9: end for

10: return result

B.1 LTL Example XSB Code

146

Listing B.1: ”XSB precondition Code”
1 p r e f o l (a (B,C)) :− property (Z) , Z=l t l (r ,A,B) , precond (C) .
2

3 p r e f o l (a (A,C)) :− property (Z) , Z=l t l (u ,A,B) , precond (C) .
4

5 p r e f o l (a (A,C)) :− property (Z) , Z=l t l (g ,A,Q) , precond (C) .
6

7 p r e f o l (C):− property (Z) , Z=l t l (n ,A,Q) , precond (C) .
8

9 p r e f o l (C):− property (Z) , Z=l t l (f ,A,Q) , precond (C) .

Listing B.2: ”XSB postcondition Code”
1 p o s t f o l (A) :− (property (Z) ; p o s t f o l (Z)) , Z=l t l (g ,A,Q) .
2

3 p o s t f o l (true) :− (property (Z) ; p o s t f o l (Z)) , Z=l t l (n ,A,Q) .
4

5 p o s t f o l (A) :− (property (Z) ; p o s t f o l (Z)) , Z=l t l (f ,B,Q) ,
6 B=l t l (g ,A,R) .
7

8 p o s t f o l (a (G, n(A))) :− (property (Z) ;
9 p o s t f o l (Z)) ,

10 (property (S) ; p o s t f o l (S)) ,
11 Z=l t l (r ,B,A) , B=l t l (g ,G,Q) , S=l t l (f , n (A) ,M) .
12

13 p o s t f o l (o (G,A)) :− (property (Z) ; p o s t f o l (Z)) ,
14 Z=l t l (r ,B,A) , B=l t l (g ,G,Q) .
15

16 p o s t f o l (o (G,A)) :− (property (Z) ; p o s t f o l (Z)) ,
17 Z=l t l (u ,A,B) , B=l t l (g ,G,Q) .
18

19 p o s t f o l (B) :− (property (Z) ; p o s t f o l (Z)) ,
20 Z=l t l (g , l t l n o t (A) ,Q) , property (Y) , Y=l t l (r ,A,B) .
21

22 p o s t f o l (A) :− (property (Z) ; p o s t f o l (Z)) ,
23 Z=l t l (g , l t l n o t (B) ,Q) , property (Y) , Y=l t l (u ,A,B) .

147

Appendix C

Binding Formal Definitions

The bindings are the key component responsible for information flow in the Interaction

Framework. Figure C.1 has been updated to include the types of the Variables in the

Interactive Move example. The format for Variables is a : b = c where a is the variable

name, b is the type and c is the value if it exists. The example bindings that will be given

are the bindings that lead to a valid proof. There are a vast number of bindings that can

be created. Each one of these can use the correct types, but the number of bindings that

lead to a valid proof are very few.

C.1 Variables and Expressions

Variables are one of the low level entities that are defined for the Interaction Framework.

Variables are inter-entity related within the Interactive Framework via a the Binding Sys-

tem. This section provides a brief overview of Variables which lays the groundwork for the

bindings system.

In Specification Expressions, there may be variables that are not bound to a value. The

Interaction Move in Figure C.1 has many unbound input Variables. These variables are

{currentlocation, startlocation, finishlocation, duration, starttime, time}. Each of these

inputs does not have a value. Running an Interaction or executing a Protocol requires

that the values of the inputs are known. The execution of the Interactive Move Interaction

requires a value for each of these variables. The variables that do not have values are

148

name:WorkerAgent
knowledge:

location:location=39.122833, -96.713652

time:time = 12:00

Agent

name:Move
inputs

location:location = 39.122833, -96.613652
duration:time = 15min
starttime:time = 12:00

state
finishlocation = location ⋀

starttime + duration > finishtime

outputs
finishtime:time
finishlocation:location

Goal

has/belongsto

name:Interactive Move
inputs

currentlocation:location
startlocation:location
finishlocation:location
duration:time
starttime:time
time:time

precondition
currentlocation = startlocation ⋀

currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time:time
finishlocation:location

Interaction

performs

achieves

name:Interactive Mover Role
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

precondition
currentlocation = startlocation ^
currentlocation != finishlocation

postcondition
currentlocation = finishlocation
starttime + duration > time

outputs
time
finishlocation

Interaction Role
name:Interactive Location Role
inputs

agentname
currentlocation
desiredlocation

precondition
currentlocation != desiredlocation

postcondition
currentlocation = desiredlocation

outputs
none

Interaction Role

1

1

1 1-2

name:GPS Move Protocol
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time
fail = false

properties
(currentlocation = startlocation ⋀

fail = false ⋀

currentlocation != finishlocation)
U
((currentlocation = finishlocation ⋀

starttime + duration > time)
⋁

(fail = true))

outputs
time
finishlocation

Protocol
name:NON-GPS Mover Role
inputs

currentlocation
startlocation
finishlocation
duration
starttime
time

properties
(currentlocation = startlocation ⋀

currentlocation != finishlocation)
U
((currentlocation = finishlocation ⋀

starttime + duration > time)
⋁

(fail = true))

outputs
time
finishlocation

Protocol Role
name:GPS Location Role
inputs

agentname
currentlocation

properties
sentlocation = agentname.currentlocation

outputs
none

Protocol Role

1
1

1

1

implements

implements

implements

Figure C.1: Move Specification with Types

149

known as free variables. This section defines free variables and shows how the set of free

variables can be derived. Intuitively a Free Variable is a Variable that is unbound within

a Specification Expression (Definition 17) and the definition of the free relation is shown

below.

Relation 12 (Free Variable)

free ⊆ Variable× Expression

The free relation is between variables and expressions. A Specification Expression has a

finite number of variables. A subset of those variables may actually be free and not bound

within a context (such as a quantification). For example in the Expression ∀x : Y |x =⇒ z,

there are two variables, x and z. In this example the variable x is bound by the universal

quantifier, and thus the only free variable is z.

Functions have been defined to take a Specification Expression and calculate the set of

free variables. This definition is located in Appendix A.5. In addition to the free variable

definition, there is also a set of substitution rules for each binary and unary operator in the

Specification Language.

C.2 Variable Convenience Functions

The following two algorithms (Algorithm 9 and 10) define the bindable Variables for each

entity in the Interaction Model. A bindable Variable is a variable that can be used in a

binding. Definition 20 defines that a variable of an Entity is the union of the inputs and

the outputs.

Definition 20 (Variables Fuction)

variables(Entity e) = inputVariables(e) ∪ outputVariables(e)

150

Algorithm 9 Input Variables

1: inputVariables (entity)
2: if entity is Goal then
3: return Goal.inputs
4: else if entity is Agent then
5: return Agent.knowledge
6: else if entity is Action then
7: return Action.inputs
8: else if entity is Interaction Role then
9: return Interaction Role.inputs

10: else if entity is Protocol then
11: return Protocol.inputs
12: else if entity is Protocol Role then
13: return Protocol Role.inputs
14: end if

Algorithm 10 Output Variables

1: outputVariables (entity)
2: if entity is Goal then
3: return Goal.outputs - Goal.inputs
4: else if entity is Agent then
5: return Agent.knowledge
6: else if entity is Action then
7: return Action.outputs - Action.inputs
8: else if entity is Interaction Role then
9: return Interaction Role.outputs - Interaction Role.inputs

10: else if entity is Protocol then
11: return Protocol.outputs - Protocol.inputs
12: else if entity is Protocol Role then
13: return Protocol Role.outputs - Protocol Role.inputs
14: end if

151

C.3 Binding formal definition

Binding are relation between Variables of the same equivalence class. Variables are of

the same equivalence class if they have the same type. The Type System definition gives

a guarantee that if the Variables have the same type then the variables have the same

semantics (Appendix A, Restriction 4). If two Variables are bound (in a binding) then

values at runtime will be the same for both Variables. In the Move Example in Figure C.1

a binding between Agent.location and Interaction Move.currentlocation would mean that

the initial value, at runtime, for the Variable Interaction Move.currentlocation would be

39.122833,−96.713652.

Relation 13 (Binding Definition)

binds ⊆ Set(Variable)× Set(Variable)

Restriction 21 defines that the types must match for elements of the binds relation. This

ensures that bindings are between equivalent Variables.

Restriction 21 (Binding Type)

∀b : binds, v1, v2 : Variable |(v1, v2) ∈ binds =⇒ v1.type = v2.type

Not every Variable in the system needs to be bound and thus the binding relation is a

partial function. An example of why a binding needs to be a function is as follows. Suppose

that there is a variable x that is bound to y and z. Now suppose that y = 10 and z = 20.

The variable x cannot have the same value as both y and z. Restriction 22 restricts the

binding relation to a partial function.

Restriction 22 (Binding Partial Function)

∀b : binds, v1, v2, v3 : Variable |(v1, v2) ∈ binds ∧ (v1, v3) ∈ binds =⇒ v2 = v3

C.3.1 Forming Bindings

The next few sections define how a binding is formed between specific entities within the

Interaction Model. These bindings are defined for both inputs and outputs of the associated

152

Goals, Agents, Actions and Protocols.

C.4 Action Bindings

The Action bindings are required in order for an Agent to perform an Action. The infor-

mation will flow from the Agent and the Goal, into the Action. When the Action has been

performed, the results of the Action flow into the Agents knowledge and the Agents Goal.

The result of the Action should satisfy a Goal of the Agent. These bindings are defined for

a given Action, Goal, and Agent.

C.4.1 Action Input Bindings

Agents are working to achieve Goals. Each Goal has a set of required inputs. The inputs

allow the Agent to tailor the Actions that they perform. The Action definition requires that

all inputs are known when that Action is performed. In addition to the values of the inputs,

the Action’s precondition must be satisfiable. One of the possible locations that the values

can be bound to is the Agent’s Knowledge. The relation between Actions and Knowledge

in defined in Relation 14. Restriction 23 ensures that the Action Knowledge relation is a

valid member of the Binding relation.

Relation 14 (A-K Relation)

ActionKnowledge ⊆ Action.inputs× Agent.knowledge

Restriction 23 (A-K is Binding)

ActionKnowledge ⊂ binds

In Figure C.1 the Interaction Interactive Move has several inputs. Some of those inputs

will be bound to the Agents Knowledge. For example the startlocation Variable can be

bound to one Variable in the Agent’s Knowledge. The type of the Variable startlocation

is location. The only Variable in the Agent’s Knowledge that has the type location is the

location Variable. Additionally the Interactive Move input time can only be bound to the

153

time in the Agent’s Knowledge (based on the type). Thus the ActionKnowledge relation

would be as follows.

{(startlocation, location), (time, time)} = ActionKnowledge

It should be noted that the relation is an ordered pair. Thus in the relation Action-

Knowledge, the first element in the binding pair is the Action input and the second element

in the pair is the Agent’s Knowledge.

In addition to the binding from the Action to the Knowledge of the Agent there is

a binding from the Agent’s Knowledge to the inputs of the Goal. These bindings allows

information to flow from the Goal into the Agent’s Knowledge. The KnowledgeGoal relation

is defined in Relation 15 and Restriction 24 restricts the KnowledgeGoal relation to be a

binding.

Relation 15 (K-G Relation)

KnowledgeGoal(K-G) ⊆ Agent.knowledge×Goal.inputs

Restriction 24 (K-G is Binding)

KnowledgeGoal ⊂ binds

In Figure C.1 there are two pairs of variables that could be bound. The two variables

in the Move Goal that have the type time are starttime and duration. In the successful

binding the WorkerAgents knowledge of time is bound to the Goals input starttime. Thus

the KnowledgeGoal relation would be as follows.

(time, starttime) = KnowledgeGoal

The previous two bindings defined how information can move from the Goal to the

Agent’s Knowledge and how information can move from the Agent’s Knowledge to the in-

puts of an Action. This section defines how these two bindings can be composed. The

compositional binding provides all the necessary inputs that are required for an Action. An

Agent can verify that an Action’s precondition is valid, if the Agent is given the composi-

tional binding. This binding will also be used in the proof that the Action will satisfy the

Goal of the Agent (postcondition proof). The ActionKnowledgeGoal relation is defined in

154

Relation 16. Restriction 25 ensures that the ActionKnowledgeGoal relation is a binding.

Relation 16 (A-K-G Relation)

ActionKnowledgeGoal ⊆ Action.inputs× (Agent.knowledge ∪Goal.inputs)

Restriction 25 (A-K-G is a Binding)

ActionKnowledgeGoal ⊂ binds

Restriction 26 ensures that the composition is part of the binding. This guarantees that

if the previous two bindings are defined then the composition will be part of the Action-

KnowledgeGoal relation.

Restriction 26 (A-K Composition)

ActionKnowledge ◦KnowledgeGoal ⊆ ActionKnowledgeGoal

The composition restriction (Restriction 26) gives the guarantee that if there is a binding

from x→ y in ActionKnowledge and y → z in Knowledge Goal, then the composition x→ z

must be in ActionKnowledgeGoal binding. Restriction 26, shows that the composition is a

subset, therefore there can be additional bindings that map Action inputs directly to the

Goal information.

The example ActionKnowledgeGoal binding for the Interactive Move example is as fol-

lows. In the ActionKnowledge there was a binding between InteractiveMove.time and Work-

erAgent.time. Also in the KnowledgeGoal binding there was a binding between WorkerA-

gent.time and Move.starttime. The composition [(InteractiveMove.time,Move.starttime)] is

part of the ActionKnowledgeGoal relation. The successful binding is shown below.

Example 5 (ActionKnowledgeGoal binding example)

{(InteractiveMove.currentlocation,Agent.location),

(InteractiveMove.startlocation,Agent.location),

(InteractiveMove.finishlocation,Move.location),

(InteractiveMove.duration,Goal.duration),

(InteractiveMove.starttime,Goal.starttime),

155

(InteractiveMove.time,Agent.time)}

= ActionKnowledgeGoal

C.4.2 Goal Output Bindings

The Goal state is the state that the agent is trying to reach. The Interaction Framework

provides a mechanism for creating proofs. These proofs can show whether or not a Goal can

be achieved by an Action. The required input to create a proof is an input binding and an

output binding. This section defines how the required output binding can be created. The

first output binding defined is from the Goal of the Agent to the Knowledge of the Agent

(Relation 17).

Relation 17 (G-K)

GoalKnowledge ⊆ Variables(Goal.state)× Agent.Knowledge

Restriction 27 (G-K is Binding)

GoalKnowledge ⊂ binds

In the Move Example (Figure C.1) there are two outputs for the goal and there are two

pieces of Knowledge in the Agent. The GoalKnowledge binding is as follows.

{(finishtime, time), (finishlocation, location)} = GoalKnowledge

The next binding binds the Knowledge of the Agent to the outputs of the Action. This

binding models how an Action can affect the Knowledge of the Agent. This binding is in

Relation 18 and it is also a binding (Restriction 28).

Relation 18 (K-A)

KnowledgeAction ⊆ Agent.knowledge× Variables(Action.postcondition)

Restriction 28 (K-A is Binding)

KnowledgeAction ⊂ binds

There are two outputs for the Interactive Move Interaction and there are two elements

in the Agent’s Knowledge. There is only one binding for the outputs, which is listed below.

156

{(time, time), (location, finishlocation)} = KnowledgeAction

The two above relations can be combined using a transitive binding function that goes

from the Action to the Goal. This relation is defined in Relation 19 and the valid binding

restriction is in Restriction 29.

Relation 19 (G-A)

GoalAction ⊆ Action.outputs× (Agent.knowledge ∪Goal.outputs)

Restriction 29 (G-A is Binding)

GoalAction ⊂ binds

The Goal Action binding includes the composition (Restriction 30), just as the Action-

KnowledgeGoal included the composition in the relation.

Restriction 30 (Goal Action Composition)

GoalAction ⊆ GoalKnowledge ◦KnowledgeAction

In The Interactive Move Example there are two transitively composed bindings. The

Goal Action binding, derived from the previous two bindings, is listed below.

Example 6 (Goal Action bindings for Interactive Move output binding)

{(Move.time, InteractiveMove.finishtime),

(Move.finishlocation, InteractiveMove.finishlocation)} = GoalAction

C.4.3 Goal-Action Bindings

The GoalActionBindings is a relation between Goals, Actions, and bindings. The first

binding is to bind the input binding. The second binding binds the output of the Action

to the desired state of the Goal. The tuple in Relation 20 defines a way to represent the

possible permutations of Goals, Actions and Agents. For each of these tuples, there exists

a pair of input and output bindings. An Agent can take a valid member of the Relation

GoalActionBindings and verify that the following is true: If the Agent performs the Action

then the Goal will be satisfied. The bindings provide Agents with the ability to prove

whether or not the Goal Satisfaction is true or false. The Autobindings Chapter (Section

157

4) relaxed this condition such that it reads: If the Agent performs the Action then the Goal

may be satisfied.

Relation 20 (Goal Action Agent Bindings Tuple)

GoalActionBindings ⊆ Goal× Action× Agent× ActionKnowledgeGoal×GoalAction

Section A.6 defines some additional restrictions on Relation 20. This restriction combines

additional relations, thus that restriction definition is deferred.

C.5 Interaction Role Bindings

The Interaction Role bindings are binding that are required in order to decide if an Inter-

action role will satisfy an Agents’ Goal. The information will flow from the agent and the

goal, into the Interaction Role. The results of the Interaction Role will flow to the agent

and satisfy a Goal, or a set of Goals. These bindings are defined under the assumption that

we are given an Interaction Role , a Goal, and an Agent. These bindings are essentially

the same as the bindings from the Action Bindings, but with the Interaction Role replacing

Action for the bindings.

C.5.1 InteractionRole Input Bindings

The Interaction Role Knowledge (IR-K) binding (Relation 21) provides a mapping from

the inputs of the Interaction Role to the Agents Knowledge. The binding restriction is in

Restriction 31.

Relation 21 (IR-K)

InteractionRoleKnowledge ⊆ InteractionRole.inputparameters× Agent.knowledge

Restriction 31 (IR-K is Binding)

InteractionRoleKnowledge ⊂ binds

In addition to the binding from the Interaction Role to the knowledge of the Agent, there

is also a need for a binding from the Agents knowledge to the input parameters of the goal.

158

This relation is defined in Relation 22. The binding restriction is defined in Restriction 32.

This binding will help to prove that the state of the Goal can be achieved.

Relation 22 (K-G)

KnowledgeGoal ⊆ Agent.knowledge×Goal.inputparameters

Restriction 32 (K-G is Binding)

KnowledgeGoal ⊂ binds

The binding in Relation 23 will map the inputs of the Interaction Role to inputs from

the agents knowledge and values from the goal.

Relation 23 (IR-K-G)

InteractionRoleKnowledgeGoal ⊆ InteractionRole.inputparameters×(Agent.knowledge∪

Goal.inputparameters)

There are two restrictions on the InteractionRoleKnowledgeGoal binding. The first is

that it is a valid binding.

Restriction 33 (IR-K-G is Binding)

InteractionRoleKnowledgeGoal ⊂ binds

The second is that the composition must be in the binding.

Restriction 34 (IR-K-G Composition)

InteractionRoleKnowledge ◦KnowledgeGoal ⊆ InteractionRoleKnowledgeGoal

C.5.2 Goal-Interaction Role Output Bindings

Relation 24 (G-K)

GoalKnowledge ⊆ Variables(Goal.state)× Agent.Knowledge

Restriction 35 (G-K is Binding)

GoalKnowledge ⊂ binds

Binding the knowledge of the Agent to the output of the Interaction Role defines how

the Interaction Role will affect the knowledge of the agent.

159

Relation 25 (K-IR)

KnowledgeInteractionRole ⊆ Agent.knowledge×Variables(InteractionRole.postcondition)

Restriction 36 (K-IR is Binding)

KnowledgeInteractionRole ⊂ binds

The above function can be combined to define a transitive function that goes from the

InteractionRole to the Goal.

Relation 26 (G-IR)

GoalInteractionRole ⊆ Variables(InteractionRole.postcondition)×Variables(Goal.state)

Restriction 37 (G-IR is Binding)

GoalInteractionRole ⊂ binds

Restriction 38 (G-IR Composition)

GoalInteractionRole ⊇ GoalKnowledge ◦KnowledgeInteractionRole

C.5.3 Goal-Interaction Role Bindings

The GoalInteractionRoleBindings is a relation from goals to Interactions , and a tuple of

bindings. The first binding is to bind the parameters of the Action to the Knowledge of the

Agent and the parameters of the Goal. The second binding binds the output of the Action

to the desired state of the Goal.

Relation 27 (Goal Interaction Role Bindings)

GoalInteractionRoleBindings ⊆ Goal× Interaction Role × Agent×

InteractionRoleKnowledgeGoal×GoalInteractionRole

The Goal Interaction Role tuple defined in Relation 27 returns the same type of tuple

as define in the Section on Goal-Action Bindings(Section C.4.3). This tuple states that if

the Agent plays the Interaction Role then the agent can verify the achievement of the Goal,

using the pair of bindings.

160

C.6 Interaction Protocol Bindings

In Sections C.4.1 and C.5 a binding was defined from the Goal to the Action/Interaction/In-

teraction Role and back again. A method to show how Interactions are realized through a

Protocol is needed. This section lays out the framework for this method.

C.6.1 Interaction Protocol Input Bindings

Each the Protocol has a set of input parameters. The input parameters define how the

Protocol will be tailored. When performing the Protocol, the values for all of the inputs is

required. Given the values for all the inputs, and the protocol’s properties are valid when

the protocol starts, then there are properties that will be true at the end of the protocol.

A binding for each of the input parameter in protocol is needed. This done through the

ProtocolInteraction Binding shown in Relation 28. The model also ensures that this relation

is a binding in Restriction 39.

Relation 28 (P-I)

ProtocolInteraction ⊆ Protocol.inputparamaters× Variables(Interaction)

Restriction 39 (P-I is Binding)

ProtocolInteraction ⊂ binds

C.6.2 Protocol Interaction Output Bindings

The outputs work in a similar manner as the inputs. The model does not require a binding

for every output variable in the Protocol. The Protocol is allowed to have extra infor-

mation(output parameters) that are not needed or bound to the output variables of the

Interaction.

Relation 29 (I-P)

InteractionProtocol(I-P) ⊆ Interaction.outputparameters×Variables(Protocol.properties)

161

Restriction 40 (I-P is Binding)

InteractionProtocol ⊂ binds

Relation 29 defines a way to prove that the properties of the protocol prove that the Inter-

action is achieved. There is a conversion that must be performed on the protocol properties

in order to derive a proof from those properties. In Section 3.4 roles were defined for the

conversion process. This process is also used in the valid precondition check for the Protocol

and Interaction.

C.7 Binding Proofs

The previous sections defined the bindings between the different entities within the Inter-

action Model. This section defines how a group of bindings can be used to modified a

specification expression by applying a substitution algorithm. The notation for the input

and output bindings uses the following format b1,b2
e1 =⇒ e2

.

To guide the reader a concrete example is given. This example should make the concepts

in this chapter more clear. In the example expression listed in Table C.7, there are two

expressions: e1 and e2. Expression e1 has the variables {a, b, c} and expression e2 has

variables {x, y} The bindings are listed it Table C.7. In binding b1 a maps to x. In binding

b2 y maps to b. Binding b1 is the input binding for the expressions, and binding b2 is the

output binding.

e1 = (a = 10) ∧ (b < 20) ∧ (c = 100)
e2 = (x = 10) ∧ (y < 20)

Table C.1: Example Expression

b1 a 7→ x
b2 y 7→ b

Table C.2: Example Binding

162

Given the above expressions, it should be possible to show that b1,b2
e1 =⇒ e2

holds. There are

a few restrictions that are placed on the expressions and bindings. Restriction 41 defines

the input binding restriction. This restriction ensures that the domain of the input binding

is a subset of the variables in the expression on the right hand side of the implication. In

the example the input binding b1 = x 7→ a. The domain of b1 is {a}, and the variables in

the expression e1 are {a, b, c}. Thus the first half of the restriction holds as {a} ⊆ {a, b, c}.

The range of b1 is {y} and and the variables in expression e2 are {x, y} and thus the second

half of the restriction also holds ({y} ⊆ {x, y}). This restriction ensures that the input

binding maps variables in e1 to variables in e2.

Restriction 41 (Input Binding)

Domain(b1) ⊆ V ariables(e1) ∧Range(b1) ⊆ V ariables(e2)

There is a similar restriction on the output binding. Restriction 42 lists this restriction.

This restriction ensure that the output binding maps variables from e2 to e1. In the example

the domain of binding b2 is {y} and the variables in expression e2 are {x, y}, and thus the

first half of the restriction holds ({y} ⊆ {x, y}). The range of binding b2 is {b} and the

variables in expression e1 are {a, b, c} and thus the second half of the restriction holds

({b} ⊆ {a, b, c}).

Restriction 42 (Output Binding)

Domain(b2) ⊆ V ariables(e2) ∧Range(b2) ⊆ V ariables(e1)

The binding notation allows allows the proof to utilize the input binding b1 and the

output binding b2. In order to take specification expressions from two different entities

there are two required steps. The first is the binding of variables, such that the variables

have the same meaning and value in both expressions. The second is the substitution of

those variables in the expressions. To provide this substitution, a method of generating

variables that are fresh must be defined. A fresh variable is a variable that has not already

been bound. In the example, the bound (or declared) variables are {x, y, a, b, c}. A function

can be defined that generates fresh variables for the substitution process. This definition is

163

shown in Definition 21.

Definition 21 (Fresh Variables)

fresh(e1 . . . en) = ∃x : V ariables|x 6∈ V ariables(e1 . . . en)

When trying to prove that the e1 =⇒ e2 there is a substitution process. This process

creates a new expression that can be used in a proof. The process begins by substituting

for each binding in b1 and then the binding b2. An example algorithm for the substitution is

shown in Algorithm 11. Definition 22 formally defined how to take a binding and substitute

a fresh variable for the pair of bound input variables. Definition 22 defines that if v1, v2 are

bound together, then a substitution with a fresh variable f for v1 in expression e1 should

be done. Additionally the same variable f should be used in the substitution for v2 in e2.

Definition 22 (Input Substitution)

∀v1, v2 : V ariables|(v1, v2) ∈ b1 =⇒ ∃e : Expression, f : fresh(e1, e2)|e = [v1 7→

f]e1 =⇒ [v2 7→ f]e2

Definition 23 formally defines how to take a binding and substitute a fresh variable for pair

of bound output variables. Definition 23 defines that if v1, v2 are bound together, then the

algorithm must substitute a fresh variable f for v1 in expression e2 and it must use that

same variable f to substitute for v2 in e1.

Definition 23 (Output Substitution)

∀v1, v2 : V ariables|(v1, v2) ∈ b2 =⇒ ∃e : Expression, f : fresh(e1, e2)|e = [v2 7→

f]e1 =⇒ [v1 7→ f]e2

Algorithm 11 iterates through all the input bindings (Lines 3 through 7). On Line 4 a fresh

variable f1 (fresh in the context of e1, e2) is generated. On Line 5 the algorithm substitutes

the fresh variable f1 for the variable v1 in expression e1. On Line 6 the algorithm substitutes

f1 for variable v2 in expression e2. The second half of the algorithm iterates through all

the output bindings (Lines 9 through 13). The algorithm then generates a fresh variable f2

on Line 10. On Line 11 the algorithm substitutes the fresh variable f2 for the value v2 in

expression e1. Line 12 substitutes f2 for v1 in expression e2. The pair of newly substituted

164

expressions is returned by the algorithm.

Algorithm 11 Substitution Algorithm

1: Substitute(e1, e2, b1, b2)
2: {Do the substitution for the input bindings}
3: for all (v1, v2) ∈ b1 do
4: f1 = fresh(e1, e2)
5: e1 = [v1 7→ f1] e1
6: e2 = [v2 7→ f1] e2
7: end for
8: {Do the substitution for the output bindings}
9: for all (v1, v2) ∈ b2 do

10: f2 = fresh(e1, e2)
11: e1 = [v2 7→ f2] e1
12: e2 = [v1 7→ f2] e2
13: end for
14: return e1, e2

The results of Algorithm 11 can be applied to the example proof. For simplicity, the

fresh variable generator will generate new strictly increasing hexadecimal variable names.

By applying the input substitution (Lines 3 through 7), using the fresh variable 0x1, the

following specification expressions is created (Table C.7).

e1 = (0x1 = 10) ∧ (b < 20) ∧ (c = 100)
e2 = (0x1 = 10) ∧ (y < 20)

Table C.3: Example Expression Input Binding Substitution

The output substitution (Lines 9 through 13) can then be applied to the expressions

e1, e2. The result is shown in Table C.7

e1 = (0x1 = 10) ∧ (0x2 < 20) ∧ (c = 100)
e2 = (0x1 = 10) ∧ (0x2 < 20)

Table C.4: Example Expression Input and Output Binding Substitution

The prove that e1 =⇒ e2 can be easily verified by hand.

165

C.7.1 Binding shorthand notation

In order to make some of the restrictions more readable, a short hand notation for the

bindings was created. If there is only one binding, then only the first substitution 22 is

required. For example in b1
e1 =⇒ e2

there is only substitute for the input b1. This type of

substitution is used to check that preconditions are satisfiable.

Expression that do not fit the above pattern, can be defined using the alternate notation.

This notation denotes which direction the expression derives its variables from.

Definition 24 (Directed Binding)

DirectedBinding = (
→
b ||
←
b)

In Definition 24 there can either be an input binding denoted by the right arrow or there

can be an output binding denoted by the left arrow. Definition 25 states that if there is an

expression e, then that expression can be followed with a set of directed bindings.

Definition 25 (Binding Set with Expression)

e{Set(DirectedBinding)}

The example expression (a{→x} ∧ b{←y} =⇒ c{→x}) has the following meaning: a and c

use the input binding x and expression b uses the output binding y.

166

Appendix D

Results

This chapter lists results that were found by running algorithms designed for this thesis.

D.1 Auction Example Verification

DutchAuctionBuyer and BuyerRole ARE compatible

GOAL Buy Item Goal and SellAnItemInteraction are compatible

BuyingAgent DutchAuctionBuyer and BuyerRole are compatible Buy Item Goal

BuyingAgent DutchAuctionSeller and BuyerRole NOT compatible

SellerAgent EnglishAuctionBuyer and SellerRole NOT compatible

EnglishAuctionSeller and SellerRole ARE compatible

GOAL Sell Item Goal and SellAnItemInteraction are compatible

SellerAgent EnglishAuctionSeller and SellerRole are compatible Sell Item Goal

EnglishAuctionBuyer and BuyerRole ARE compatible

GOAL Sell Item Goal and SellAnItemInteraction are compatible

SellerAgent EnglishAuctionSeller and BuyerRole NOT compatible

BuyingAgent EnglishAuctionBuyer and SellerRole NOT compatible

EnglishAuctionSeller and SellerRole ARE compatible

GOAL Buy Item Goal and SellAnItemInteraction are compatible

EnglishAuctionBuyer and BuyerRole ARE compatible

GOAL Buy Item Goal and SellAnItemInteraction are compatible

167

BuyingAgent EnglishAuctionBuyer and BuyerRole are compatible Buy Item Goal

BuyingAgent EnglishAuctionSeller and BuyerRole NOT compatible

Agent:SellerAgent Goal:Sell Item Goal Interaction:SellAnItemInteraction InteractionRole:SellerRole Protocol:DutchAuction ProtocolRole:DutchAuctionSeller

Agent:BuyingAgent Goal:Buy Item Goal Interaction:SellAnItemInteraction InteractionRole:BuyerRole Protocol:DutchAuction ProtocolRole:DutchAuctionBuyer

Agent:SellerAgent Goal:Sell Item Goal Interaction:SellAnItemInteraction InteractionRole:SellerRole Protocol:EnglishAuction ProtocolRole:EnglishAuctionSeller

Agent:BuyingAgent Goal:Buy Item Goal Interaction:SellAnItemInteraction InteractionRole:BuyerRole Protocol:EnglishAuction ProtocolRole:EnglishAuctionBuyer

Time: 473 seconds

Listing D.1: Simulation 0 Computer log
1 BROADCAST! p ro to co l : 0 , 1 , 2
2 Reading
3 BROADCAST! p ro to co l : 0 , 1 , 2
4 Reading
5 BROADCAST! p ro to co l : 0 , 1 , 2
6 Reading
7 SELECTED PROTOCOL!QRPROTOCOL
8 QR+WRITE
9 gps : 0 #Send GPS Goal Request

10 QR+READ
11 Lat i tude = 39.12 Longitude = −96.71 #Recieve GPS Locat ion
12 QR+ACK
13 QR+WAIT
14 QR+ACKTIMEOUT #FINISH
15 BROADCAST! p ro to co l : 0 , 1 , 2
16 Reading
17 BROADCAST! p ro to co l : 0 , 1 , 2
18 Reading
19 SELECTED PROTOCOL!QRPROTOCOL
20 QR+WRITE
21 gps : 0
22 QR+READ
23 Lat i tude = 39.12266577859547 Longitude = −96.71365547516562
24 QR+ACK
25 QR+WAIT
26 QR+ACKTIMEOUT
27 BROADCAST! p ro to co l : 0 , 1 , 2
28 Reading
29 BROADCAST! p ro to co l : 0 , 1 , 2
30 Reading
31

32 SELECTED PROTOCOL!PCQRMobileWIFI
33 OPTQR+WRITE
34 gps : 0
35 OPTQR+READ
36 BROADCAST! p ro to co l : 0 , 1 , 2
37 Reading
38 BROADCAST! p ro to co l : 0 , 1 , 2
39 Reading
40 SELECTED PROTOCOL!QRPROTOCOL
41 QR+WRITE
42 gps : 0
43 QR+READ

168

44 Lat i tude = 39.12271015460612 Longitude = −96.71367765800677
45 QR+ACK
46 QR+WAIT
47 QR+ACKTIMEOUT
48 BROADCAST! p ro to co l : 0 , 1 , 2
49 Reading
50

51 SELECTED PROTOCOL!WIFI
52 WIFI !WRITE
53 w i f i : gps : 0
54 WIFI !READ
55 Lat i tude = 39.12271015460614 Longitude = −96.71367765800676
56 BROADCAST! p ro to co l : 0 , 1 , 2
57 Reading
58 BROADCAST! p ro to co l : 0 , 1 , 2
59 Reading
60 WIFITIMEOUT
61 BROADCAST! p ro to co l : 0 , 1 , 2
62 Reading

Listing D.2: Simulation 0 Tablet log
1 I /PHDCameraLog (10809) : 1320966388451 READ
2 I /PHDCameraLog (10809) : 1320966389473 WAIT
3 I /PHDCameraLog (10809) : 1320966406481 PROCESS
4 I /PHDCameraLog (10809) : 1320966406501 DATA! p ro to co l : 0 , 1 , 2
5 I /PHDCameraLog (10809) : 1320966406502 WRITE
6 I /PHDCameraLog (10809) : 1320966406503 OUTPUT!0
7 I /PHDCameraLog (10809) : 1320966407123 DONE
8 I /PHDCameraLog (10809) : 1320966421521
9 I /PHDCameraLog (10809) : Opt ica l Protoco l

10 I /PHDCameraLog (10809) : 1320966421536 READ
11 I /PHDCameraLog (10809) : 1320966423910 WAIT
12 I /PHDCameraLog (10809) : 1320966427913 READDONE
13 I /PHDCameraLog (10809) : 1320966427933 gps : 0 #Recieve Request f o r GPS
14 I /PHDCameraLog (10809) : 1320966427933 PARSE! gps : 0
15 I /PHDCameraLog (10809) : 1320966427934 WRITE
16 I /PHDCameraLog (10809) : 1320966427934 TEXT=Lat i tude = 39.12 Longitude = −96.71 #WRITE GPS Locat ion
17 I /PHDCameraLog (10809) : 1320966442923 WAIT
18 I /PHDCameraLog (10809) : 1320966484936 TIMEOUT
19 I /PHDCameraLog (10809) : 1320966484947 DONE #FINISH
20 I /PHDCameraLog (10809) : 1320966485085
21 I /PHDCameraLog (10809) : Negot iate
22 I /PHDCameraLog (10809) : 1320966485085 READ
23 I /PHDCameraLog (10809) : 1320966486110 DATA! p ro to co l : 0 , 1 , 2
24 I /PHDCameraLog (10809) : 1320966486141 PROCESS
25 I /PHDCameraLog (10809) : 1320966486141 WRITE
26 I /PHDCameraLog (10809) : 1320966486142 OUTPUT!0
27 I /PHDCameraLog (10809) : 1320966486671 DONE
28 I /PHDCameraLog (10809) : 1320966487626 READ
29 I /PHDCameraLog (10809) : 1320966487654
30 I /PHDCameraLog (10809) : Opt ica l Protoco l
31 I /PHDCameraLog (10809) : 1320966488793 WAIT
32 I /PHDCameraLog (10809) : 1320966504799 READDONE
33 I /PHDCameraLog (10809) : 1320966504829 gps : 0
34 I /PHDCameraLog (10809) : 1320966504829 PARSE! gps : 0
35 I /PHDCameraLog (10809) : 1320966504829 WRITE
36 I /PHDCameraLog (10809) : 1320966504830 TEXT=Lat i tude = 39.12266577859547 Longitude = −96.71365547516562
37 I /PHDCameraLog (10809) : 1320966519815 WAIT
38 I /PHDCameraLog (10809) : 1320966549837 DONE
39 I /PHDCameraLog (10809) : 1320966549838 TIMEOUT
40 I /PHDCameraLog (10809) : 1320966549978
41 I /PHDCameraLog (10809) : Negot iate
42 I /PHDCameraLog (10809) : 1320966550023 READ
43 I /PHDCameraLog (10809) : 1320966551004 WAIT

169

44 I /PHDCameraLog (10809) : 1320966556013 PROCESS
45 I /PHDCameraLog (10809) : 1320966556040 WRITE
46 I /PHDCameraLog (10809) : 1320966556040 DATA! p ro to co l : 0 , 1 , 2
47 I /PHDCameraLog (10809) : 1320966556040 OUTPUT!2
48 I /PHDCameraLog (10809) : 1320966556541 DONE
49 I /PHDCameraLog (10809) : 1320966557236
50 I /PHDCameraLog (10809) : Comp Opt Read , Tablet Wif i Read Protoco l
51 I /PHDCameraLog (10809) : 1320966557260 READ
52 I /PHDCameraLog (10809) : 1320966557261 WAIT
53 I /PHDCameraLog (10809) : 1320966567247 gps : 0
54 I /PHDCameraLog (10809) : 1320966567247 READDONE
55 I /PHDCameraLog (10809) : 1320966567247 PARSE! gps : 0
56 I /PHDCameraLog (10809) : 1320966567247 WRITE
57 I /PHDCameraLog (10809) : 1320966567248 TEXT=Lat i tude = 39.122692877441295 Longitude = −96.71367846746864
58 I /PHDCameraLog (10809) : 1320966582245 WAIT
59 I /PHDCameraLog (10809) : 1320966618255 TIMEOUT
60 I /PHDCameraLog (10809) : 1320966618274 DONE
61 I /PHDCameraLog (10809) : 1320966618436
62 I /PHDCameraLog (10809) : Negot iate
63 I /PHDCameraLog (10809) : 1320966618437 READ
64 I /PHDCameraLog (10809) : 1320966619431 WAIT
65 I /PHDCameraLog (10809) : 1320966665510 PROCESS
66 I /PHDCameraLog (10809) : 1320966665550 DATA! p ro to co l : 0 , 1 , 2
67 I /PHDCameraLog (10809) : 1320966665550 WRITE
68 I /PHDCameraLog (10809) : 1320966665550 OUTPUT!0
69 I /PHDCameraLog (10809) : 1320966666054 DONE
70 I /PHDCameraLog (10809) : 1320966666962
71 I /PHDCameraLog (10809) : Opt ica l Protoco l
72 I /PHDCameraLog (10809) : 1320966666986 READ
73 I /PHDCameraLog (10809) : 1320966668149 WAIT
74 I /PHDCameraLog (10809) : 1320966676150 READDONE
75 I /PHDCameraLog (10809) : 1320966676174 gps : 0
76 I /PHDCameraLog (10809) : 1320966676174 PARSE! gps : 0
77 I /PHDCameraLog (10809) : 1320966676174 WRITE
78 I /PHDCameraLog (10809) : 1320966676175 TEXT=Lat i tude = 39.12271015460612 Longitude = −96.71367765800677
79 I /PHDCameraLog (10809) : 1320966691159 WAIT
80 I /PHDCameraLog (10809) : 1320966729171 TIMEOUT
81 I /PHDCameraLog (10809) : 1320966729228 DONE
82 I /PHDCameraLog (10809) : 1320966729361
83 I /PHDCameraLog (10809) : Negot iate
84 I /PHDCameraLog (10809) : 1320966729361 READ
85 I /PHDCameraLog (10809) : 1320966730355 WAIT
86 I /PHDCameraLog (10809) : 1320966735585 PROCESS
87 I /PHDCameraLog (10809) : 1320966735585 DATA! p ro to co l : 0 , 1 , 2
88 I /PHDCameraLog (10809) : 1320966735585 WRITE
89 I /PHDCameraLog (10809) : 1320966735586 OUTPUT!1
90 I /PHDCameraLog (10809) : 1320966736085 DONE
91 I /PHDCameraLog (10809) : 1320966736522
92 I /PHDCameraLog (10809) : WIFI Protoco l
93 I /PHDCameraLog (10809) : 1320966736523 READ
94 I /PHDCameraLog (10809) : 1320966736523 WAIT
95 I /PHDCameraLog (10809) : 1320966744521 READDONE
96 I /PHDCameraLog (10809) : 1320966744554 w i f i : gps : 0
97 I /PHDCameraLog (10809) : 1320966744555 WRITE
98 I /PHDCameraLog (10809) : 1320966744555 w i f i : Lat i tude = 39.12271015460614 Longitude = −96.71367765800676
99 I /PHDCameraLog (10809) : 1320966744555 WAIT

Listing D.3: Simulation 1 Computer log
1 BROADCAST! p ro to co l : 2
2 Reading
3 Fai l ed MobileQRRead
4 Fai l ed MobileWifiRead
5 Complete Fa i l u r e
6 Fai l ed MobileQRRead

170

7 Fai l ed MobileQRWrite
8 BROADCAST! p ro to co l : 1
9 Reading

10 SELECTED PROTOCOL!WIFI
11 WIFI !WRITE
12 w i f i : gps : 0
13 WIFI !READ
14 GyroEvent [x=0.16808061 , y=−0.1536889 , z=−0.14244157]
15 Fai l ed PCQRWrite
16 Fai l ed MobileWifiWrite
17 Complete Fa i l u r e
18 Fai l ed MobileQRWrite
19 Fai l ed PCQRRead
20 BROADCAST! p ro to co l : 1 , 2
21 Reading
22 SELECTED PROTOCOL!WIFI
23 WIFI !WRITE
24 w i f i : gps : 0
25 WIFI !READ
26 GyroEvent [x=−5.326322E−7, y=−5.326322E−7, z=−5.326322E−7]
27 Fai l ed MobileQRWrite
28 Fai l ed PCQRWrite
29 BROADCAST! p ro to co l : 1
30 Reading
31 BROADCAST! p ro to co l : 1
32 Reading
33 BROADCAST! p ro to co l : 1
34 Reading
35 SELECTED PROTOCOL!WIFI
36 WIFI !WRITE
37 w i f i : gps : 0
38 WIFI !READ
39 GyroEvent [x=−5.326322E−7, y=−5.326322E−7, z=−5.326322E−7]
40 Fai l ed MobileWifiRead
41 Fai l ed MobileWifiWrite
42 BROADCAST! p ro to co l : 0
43 Reading
44

45 SELECTED PROTOCOL!QRPROTOCOL
46 QR+WRITE
47 gps : 0
48 QR+READ
49 EMPTY
50 QR+ACK
51 QR+WAIT
52 QR+ACKTIMEOUT
53 Fai l ed MobileWifiRead
54 Fai l ed MobileQRRead
55 Complete Fa i l u r e
56 Fai l ed PCWifiRead
57 Fai l ed PCQRRead
58 Complete Fa i l u r e
59 Fai l ed MobileQRWrite
60 Fai l ed MobileWifiRead
61 BROADCAST! p ro to co l : 2
62 Reading
63 SELECTED PROTOCOL!PCQRMobileWIFI
64 OPTQR+WRITE
65 gps : 0
66 OPTQR+READ
67 EMPTY
68 OPTQR+ACK
69 OPTQR+WAIT
70 OPTQR+ACKTIMEOUT
71 Fai l ed PCWifiWrite

171

72 Fai l ed PCQRRead
73 BROADCAST! p ro to co l : 2
74 Reading
75 BROADCAST! p ro to co l : 2
76 Reading

Listing D.4: Simulation 1 Tablet log
1 I /PHDCameraLog (16699) : 1321984875892 READ
2 I /PHDCameraLog (16699) : 1321984876892 WAIT
3 I /PHDCameraLog (16699) : 1321984884942 PROCESS
4 I /PHDCameraLog (16699) : 1321984884949 DATA! p ro to co l : 1
5 I /PHDCameraLog (16699) : 1321984884960 WRITE
6 I /PHDCameraLog (16699) : 1321984884993 OUTPUT!1
7 I /PHDCameraLog (16699) : 1321984885821 DONE
8 I /PHDCameraLog (16699) : 1321984886189
9 I /PHDCameraLog (16699) : WIFI Protoco l

10 I /PHDCameraLog (16699) : 1321984886189 READ
11 I /PHDCameraLog (16699) : 1321984886189 WAIT
12 I /PHDCameraLog (16699) : 1321984894213 READDONE
13 I /PHDCameraLog (16699) : 1321984894235 w i f i : gps : 0
14 I /PHDCameraLog (16699) : 1321984894264 WRITE
15 I /PHDCameraLog (16699) : 1321984894264 w i f i : GyroEvent [x=0.16808061 , y=−0.1536889 , z=−0.14244157]
16 I /PHDCameraLog (16699) : 1321984894264 WAIT
17 I /PHDCameraLog (16699) : 1321984914633
18 I /PHDCameraLog (16699) : Negot iate
19 I /PHDCameraLog (16699) : 1321984914657 READ
20 I /PHDCameraLog (16699) : 1321984915692 WAIT
21 I /PHDCameraLog (16699) : 1321984919934 PROCESS
22 I /PHDCameraLog (16699) : 1321984919934 DATA! p ro to co l : 1 , 2
23 I /PHDCameraLog (16699) : 1321984919935 WRITE
24 I /PHDCameraLog (16699) : 1321984919935 OUTPUT!1
25 I /PHDCameraLog (16699) : 1321984920699 DONE
26 I /PHDCameraLog (16699) : 1321984920844
27 I /PHDCameraLog (16699) : WIFI Protoco l
28 I /PHDCameraLog (16699) : 1321984920893 READ
29 I /PHDCameraLog (16699) : 1321984920893 WAIT
30 I /PHDCameraLog (16699) : 1321984928906 READDONE
31 I /PHDCameraLog (16699) : 1321984928923 w i f i : gps : 0
32 I /PHDCameraLog (16699) : 1321984928948 WRITE
33 I /PHDCameraLog (16699) : 1321984928948 w i f i : GyroEvent [x=−5.326322E−7, y=−5.326322E−7, z=−5.326322E−7]
34 I /PHDCameraLog (16699) : 1321984928950 WAIT
35 I /PHDCameraLog (16699) : 1321984949205
36 I /PHDCameraLog (16699) : Negot iate
37 I /PHDCameraLog (16699) : 1321984949274 READ
38 I /PHDCameraLog (16699) : 1321984950252 WAIT
39 I /PHDCameraLog (16699) : 1321984954337 PROCESS
40 I /PHDCameraLog (16699) : 1321984954337 DATA! p ro to co l : 1
41 I /PHDCameraLog (16699) : 1321984954337 WRITE
42 I /PHDCameraLog (16699) : 1321984954338 OUTPUT!1
43 I /PHDCameraLog (16699) : 1321984955094 DONE
44 I /PHDCameraLog (16699) : 1321984955646
45 I /PHDCameraLog (16699) : WIFI Protoco l
46 I /PHDCameraLog (16699) : 1321984955688 READ
47 I /PHDCameraLog (16699) : 1321984955712 WAIT
48 I /PHDCameraLog (16699) : 1321984960727 READDONE
49 I /PHDCameraLog (16699) : 1321984960778 w i f i : gps : 0
50 I /PHDCameraLog (16699) : 1321984960814 WRITE
51 I /PHDCameraLog (16699) : 1321984960814 w i f i : GyroEvent [x=−5.326322E−7, y=−5.326322E−7, z=−5.326322E−7]
52 I /PHDCameraLog (16699) : 1321984960815 WAIT
53 I /PHDCameraLog (16699) : 1321984981122
54 I /PHDCameraLog (16699) : Negot iate
55 I /PHDCameraLog (16699) : 1321984981165 READ
56 I /PHDCameraLog (16699) : 1321984982154 WAIT
57 I /PHDCameraLog (16699) : 1321984989398 PROCESS

172

58 I /PHDCameraLog (16699) : 1321984989398 DATA! p ro to co l : 0
59 I /PHDCameraLog (16699) : 1321984989398 WRITE
60 I /PHDCameraLog (16699) : 1321984990201 DONE
61 I /PHDCameraLog (16699) : 1321984990202 OUTPUT!0
62 I /PHDCameraLog (16699) : 1321984990334
63 I /PHDCameraLog (16699) : Opt ica l Protoco l
64 I /PHDCameraLog (16699) : 1321984990365 READ
65 I /PHDCameraLog (16699) : 1321984991610 WAIT
66 I /PHDCameraLog (16699) : 1321985005629 gps : 0
67 I /PHDCameraLog (16699) : 1321985005663 READDONE
68 I /PHDCameraLog (16699) : 1321985005663 PARSE! gps : 0 I /PHDCameraLog (16699) : 1321985005687 WRITE
69 I /PHDCameraLog (16699) : 1321985005687 TEXT=EMPTY
70 I /PHDCameraLog (16699) : 1321985020682 WAIT
71 I /PHDCameraLog (16699) : 1321985052702 TIMEOUT
72 I /PHDCameraLog (16699) : 1321985052775 DONE
73 I /PHDCameraLog (16699) : 1321985052999
74 I /PHDCameraLog (16699) : Negot iate
75 I /PHDCameraLog (16699) : 1321985052999 READ
76 I /PHDCameraLog (16699) : 1321985053973 WAIT
77 I /PHDCameraLog (16699) : 1321985058007 DATA! p ro to co l : 2
78 I /PHDCameraLog (16699) : 1321985058008 PROCESS
79 I /PHDCameraLog (16699) : 1321985058008 WRITE
80 I /PHDCameraLog (16699) : 1321985058049 OUTPUT!2
81 I /PHDCameraLog (16699) : 1321985058786 DONE
82 I /PHDCameraLog (16699) : 1321985065792
83 I /PHDCameraLog (16699) : Comp Opt Read , Tablet Wif i Read Protoco l
84 I /PHDCameraLog (16699) : 1321985065832 READ
85 I /PHDCameraLog (16699) : 1321985065910 WAIT
86 I /PHDCameraLog (16699) : 1321985067844 READDONE
87 I /PHDCameraLog (16699) : 1321985067867 gps : 0
88 I /PHDCameraLog (16699) : 1321985067868 PARSE! gps : 0
89 I /PHDCameraLog (16699) : 1321985067869 WRITE
90 I /PHDCameraLog (16699) : 1321985067889 TEXT=EMPTY
91 I /PHDCameraLog (16699) : 1321985082869 WAIT

173

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Dedication
	Introduction
	Motivation
	Thesis Statement
	Research Approach
	Scope
	Thesis Organization

	Background
	Knowledge
	Interaction
	Computer Program Verification
	Unit Testing
	Model Checking

	Protocols
	Verifying Protocols
	Protocol Layering
	Protocol Composition

	Models at Runtime
	Requirements Elicitation
	KAOS
	The i* Framework

	Multiagent Systems
	Multiagent Methodologies

	Linear Temporal Logic (LTL)
	Logic Programming
	SAT Solvers and Zchaff
	Background Summary

	FIA Definition
	Model Overview
	Agents
	Goals
	Actions
	Atomic Actions
	Interactions
	Interaction Role
	Protocols
	Protocol Role

	Bindings
	MAIM Assumptions
	LTL Logic Conversion
	Preconditions
	Postcondition

	Interaction Model Summary

	FIA Algorithms
	Introduction
	AutoBinding System Overview
	Example System Details

	Automatic binding generation
	Binding Algorithm
	Binding Functions

	Provability vs. Viability
	Proof Mode
	Viable Mode
	Differences

	Binding Goals, Interactions and Protocols
	Substitutions and Proofs
	Conclusion

	FIA Demonstration
	Methodology
	Methodology Requirements
	Physical Demonstration System
	Physical Demonstration Results

	Simulated Demonstration System
	Simulation Algorithm
	Simulated System
	Negotiation Failure
	Simulating Systems without the Interaction Framework
	Simulating Results using FIA

	Demonstration Conclusion

	Related Work
	Models at Runtime
	Static Models
	Self-Adaptive Models
	Goal Models at Runtime

	Protocol Reasoning Methods
	Commitments In Multiagent Systems
	Sharing State and Intent within Multiagent Systems

	Multiagent System Protocols from Specification
	Multiagent Systems Languages
	Verifying Agent Behavior
	Fault Tolerant Systems
	Fault-Tolerant Protocols
	Fault-Tolerance Framework
	Hermes

	 ADL and Meta models
	Architecture Description Languages
	Meta-models

	Summary

	Conclusion
	Current State of Interactions in Multiagent Systems
	The Formal Interaction Framework
	Future work enabled by FIA
	FIA Limitations

	Bibliography
	Additional Interaction Model Definitions
	Interaction Model and Definitions
	Agent Relations
	Interaction Role Relation & Restrictions
	Protocol Role Relations & Restrictions
	Variable Definitions
	Restrictions
	Consistency

	Additional Functions
	LTL Example XSB Code

	Binding Formal Definitions
	Variables and Expressions
	Variable Convenience Functions
	Binding formal definition
	Forming Bindings

	Action Bindings
	Action Input Bindings
	Goal Output Bindings
	Goal-Action Bindings

	Interaction Role Bindings
	InteractionRole Input Bindings
	Goal-Interaction Role Output Bindings
	Goal-Interaction Role Bindings

	Interaction Protocol Bindings
	Interaction Protocol Input Bindings
	Protocol Interaction Output Bindings

	Binding Proofs
	Binding shorthand notation

	Results
	Auction Example Verification

