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ABSTRACT 

 

The rice cultivar Oryzica Llanos 5 (OL5) possesses a high level of resistance to 

the fungus Magnaporthe grisea. The number and chromosomal location of quantitative 

trait loci (QTL) conferring resistance against eight isolates of the blast fungus were 

tested in two different populations of recombinant inbred lines from the cross Fanny x 

OL5. Twenty one QTL were detected and associated with the resistance traits, disease 

leaf area and lesion type, on 9 rice chromosomes. Eight of these 21 resistance loci had 

significant resistance effects in both experiments, while the others had effects that were 

only statistically significant in one experiment. Most, but not all, of the QTL occurred in 

the same genomic regions as either genes with major race-specific effects or other 

resistance QTL that had been described in previous experiments. Most of the QTL 

appeared to be race-specific in their effects but it is possible some of the QTL with 

smaller effects were nonspecific. One of the blast isolates used was FL440, which 

causes limited disease on OL5 and was probably virulent on most or all of the major 

genes from OL5. Three QTL affected resistance to FL440 in both experiments, one of 

which mapped to a region on chromosome 9 where no blast resistance genes have yet 

been mapped. An advanced backcross strategy with marker-assisted selection for OL5 

alleles in QTL regions was used to generate five BC2F3 populations carrying five 

different target regions associated with partial resistance to rice blast disease. Three of 

five of these populations were analyzed for segregation for resistance to the M. grisea 

isolate FL440. One QTL designated qrbr-11.3 near the bottom of rice chromosome 11 

was found to be significantly associated with partial blast resistance in 120 lines of a 

BC2F3 population (P< 0.01). This QTL accounted for 12.4% and 8.0% of the phenotypic 

variation in diseased leaf area and lesion type observed under greenhouse inoculation. 

Examination of the genomic sequence at the qrbr-11.3 locus showed that twenty-nine 



candidate resistance genes are present at that locus (~1.8 Mb), twenty-seven of which 

are predicted NBS-LRR genes. Ultimately, the information from this study can be 

integrated into the development of improved lines with OL5-derived QTL for resistance. 
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appeared to be race-specific in their effects but it is possible some of the QTL with 

smaller effects were nonspecific. One of the blast isolates used was FL440, which 

causes limited disease on OL5 and was probably virulent on most or all of the major 

genes from OL5. Three QTL affected resistance to FL440 in both experiments, one of 

which mapped to a region on chromosome 9 where no blast resistance genes have yet 

been mapped. An advanced backcross strategy with marker-assisted selection for OL5 

alleles in QTL regions was used to generate five BC2F3 populations carrying five 

different target regions associated with partial resistance to rice blast disease. Three of 

five of these populations were analyzed for segregation for resistance to the M. grisea 

isolate FL440. One QTL designated qrbr-11.3 near the bottom of rice chromosome 11 

was found to be significantly associated with partial blast resistance in 120 lines of a 

BC2F3 population (P< 0.01). This QTL accounted for 12.4% and 8.0% of the phenotypic 

variation in diseased leaf area and lesion type observed under greenhouse inoculation. 

Examination of the genomic sequence at the qrbr-11.3 locus showed that twenty-nine 



candidate resistance genes are present at that locus (~1.8 Mb), twenty-seven of which 

are predicted NBS-LRR genes. Ultimately, the information from this study can be 

integrated into the development of improved lines with OL5-derived QTL for resistance. 
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INTRODUCTION 

Blast, caused by the fungus Magnaporthe grisea, is one of the most severe 

diseases of rice worldwide. The fungus colonizes leaves (leaf blast), panicles (panicle 

blast) and other parts of the rice plants, and causes crop loss in rice growing areas. To 

control the diseases, the use of resistant cultivars is an effective measure; thus, rice 

breeders have been developing resistant cultivars.  

Blast resistance in rice has been classified into two types, qualitative and 

quantitative or partial. The first type is controlled by single genes that provide high levels 

of resistance, but only to specific races of the blast fungus. Partial resistance allows 

lesions to form but they are typically fewer in number, reduced in size or slower to 

develop than those produced in highly susceptible lines.  

The wide scale deployment of the single genes in the rice growing areas has led 

to their breakdown due to the appearance of new virulent races. In contrast, partial 

resistance is more stable to different races of the pathogen and it is thought to be 

nonspecific; therefore it is promising for long-term blast control.  

 The rice cultivar Oryzica Llanos 5 (OL5) shows a stable and high level of partial 

resistance to rice blast in Colombia and other blast nurseries around the world. It is 

regarded that the partial resistance in OL5 to different blast isolates is derived from its 

parents and that a qualitative and might be some quantitative genes affect its level the 

resistance. Despite the usefulness of this partial resistance, its genetic analysis has not 

yet been performed.  

The concept of quantitative traits is fundamental in genetics and is also 

encountered in many other areas of biological sciences. Quantitative trait analyses have 

been performed for many decades. A modern type of study is to locate genes controlling 

a quantitative trait, or QTL mapping. Therefore, because the genetic OL5 is thought to 

be complex and unlikely to segregate in a Mendelian manner, a QTL mapping approach 
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was used to identify genes conferring partial resistance in OL5 to several isolates of the 

rice blast fungus M. grisea. In this study, I will work on the application of methodology for 

mapping QTL conferring blast resistance under certain situations such as different 

isolates and population size (Chapter 2). Then in Chapter III, the advanced backcross 

strategy using marker-assisted selection is applied to develop families segregating for a 

single QTL to facilitate its further verification, fine mapping and cloning. Finally, the 

finished sequence of the rice genome is use to identify possible candidate genes such 

defense and NBS-LRR type genes in the QTL regions that confer blast resistance to the 

blast isolate FL440, which was able to overcome the major genes in OL5, and could be 

nonspecific genes. But before I start a technical description of my work, some related 

concepts will be introduced (Chapter I). Previously proposed approaches and issues in 

QTL mapping are also summarized.  
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CHAPTER 1 

 

 

 

LITERATURE REVIEW: STRATEGIES FOR MAPPING QUANTITATIVE 

RESISTANCE GENES 
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 RICE: THE MODEL MONOCOT PLANT   

Rice, a member of the grass family, is one of the three cereals on which the 

human species largely subsists, along with wheat and corn. In the developing world as a 

whole, rice provides 27 percent of dietary energy supply and 20 percent of dietary 

protein intake. Rice began being cultured in Asia and now is cultivated in 113 countries 

and on all continents except Antarctica. It is grown in a large range of soil wetness 

regimes, from deep flood to dryland, and in diverse soil conditions 

(http://www.fao.org/rice2004/en/concept.htm). Two of 23 species from the genus Oryza 

are cultivated: Oryza sativa, which originated in the humid tropics of Asia is also the 

more widely used, and Oryza glaberrima, from West Africa. The two main strains of O. 

sativa are japonica and indica. The differences between these two evolved both 

geographically and culturally over several thousand years as farming groups relocated to 

diverse ecosystems. Over the millennia, different types of rice evolved under cultivation 

in different conditions. Today, there are four general ecosystems under which rice is 

grown: irrigated, rain-fed lowland, upland, and flood-prone 

(http://www.fao.org/rice2004/en/concept.htm). 

There are thousands of cultivars of japonica and indica rice grown around the 

world. Some of these cultivars carry different traits such as stiff straw stems to prevent 

lodging, and upright leaves, which take up and use solar energy more efficiently. Some 

cultivars are also adapted to the elevated temperatures and shorter days of the tropics. 

For example, Taichung Native 1, which was released in 1956, combined short stature 

with high-yield potential. When adopted by Taiwanese farmers, it yielded six to eight 

tons per hectare. During the 1960s the scientists at the consultative group on 

international agriculture research (CGIAR) further improved these varieties by using 38 

different crosses to eventually generate IR8, the earliest of the modern, high-yielding rice 
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varieties that became recognized as "miracle rice," for its high yields. IR8, which doubled 

rice production yields, initiated the Green Revolution in rice. Today, more than 60 

percent of the world's rice fields are cultivated with varieties with origins in the work of 

CGIAR scientists and breeders and their partners. More recently, another variety, IR36, 

with the ability to withstand a broad range of pests, has been planted on more than 27 

million acres, setting a world record for acreage of a single crop variety 

(http://www.fao.org/rice2004/en/world.htm). 

Rice is one of the most economically valueable crops in Colombia when 

compared to other crops that can be planted several seasons in the same year. In Latin 

America and the Caribbean, Colombia is the second largest rice producer. Colombia is 

also the host country of the Centro Internacional de Agricultura Tropical (CIAT) and the 

Latin American Fund for Irrigated Rice (FLAR). Rice and beans provide the principal 

supply of calories and protein for poor people. Colombia imports rice because its local 

production is insufficient to meet the high demand. 

(http://www.fao.org/rice2004/en/p3.htm). Breeders at CIAT have been developing rice 

cultivars with durable resistance. An exceptional case is the indica rice cultivar Oryzica 

Llanos 5 (OL5). Due to its excellent resistance to the blast fungus (M. grisea), genetic 

analysis of this cultivar will be the main topic of this thesis.  

The rice genome 

Among the cereal crops, such as maize, wheat, millet and sorghum, rice (Oryza 

sativa) has several attributes that make it the model monocot plant. Rice has a DNA 

content smaller than that of any crop plant (estimated at about 430 Mb); about three 

times the size of the Arabidopsis thaliana genome. The small genome of rice includes a 

large percentage (ca. 75%) of single-copy DNA (McCouch et al. 1988). A vast reservoir 

of germplasm (> 200,000 accessions) of both domestic and wild rice is available for 
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genetic and breeding research. Rice has proven to be the most readily transformable 

cereal crop (Hiei et al. 1994).  

In the last ten years, two high-density molecular linkage maps of rice containing 

about 3000 markers have been developed in the US and Japan, making the marker 

density in the rice genome, on average, one marker per cM (200-300 kb) (Causse et al. 

1994; Harushima et al. 1998). Over 300,000 expressed sequence tags (EST) have been 

deposited in the public database (Sasaki et al. 2005). The Rice Genome Program of 

Japan collaborated with the international community to sequence the rice genome with a 

high level of accuracy. With the completed sequence available from the International 

Rice Genome Sequencing Project (2005), it is expected that the genome sequence will 

facilitate pioneering research in functional and applied genomics. Integration of the 

genome sequence with the genetic map will help development of new varieties carrying 

agronomically important traits such as high yield potential and tolerance to both biotic 

and abiotic stresses. In addition to genome sequencing, assortments of other genomics 

projects have been initiated to produce important resources, which could serve as 

crucial tools in clarifying the structure and role of the rice genome. The next phase of 

rice genome research will focus on determining the function of approximately 35,000-

40,000 predicted genes which will advance both breeding and scientific discovery. 

THE PATHOGEN: MAGNAPORTHE GRISEA 

The fungus Magnaporthe grisea (Hebbert) Barr (anamorph = Pyricularia grisea) 

is the causal agent of rice blast. It is a haploid filamentous Ascomycete with a relatively 

small genome of ~40 Mb divided into seven chromosomes (Dean et al. 2005). M. grisea 

is becoming an excellent model organism for studying fungal phytopathogenicity and 

host-parasite interactions. In addition to rice, this fungus can attack more than fifty other 

species of grasses.  The fungus causes disease at seedling and adult stages on the 
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leaves, nodes, and panicles. In addition, Sesma and Osbourn (2004) reported a new 

facet of the M. grisea life cycle, where the fungus can undergo a different and previously 

uncharacterized set of programmed developmental events that are typical of root-

infecting pathogens. They also show that root colonization can lead to systemic invasion 

and the development of typical disease symptoms on the above ground parts of the 

plant. On the leaves, lesions are typically spindle-shaped; wide in the center and pointed 

toward either end. Large lesions usually develop a diamond shape with a grayish center 

and brown margin (Fig. 1-1). Under favorable conditions, lesions on the leaves of 

susceptible lines expand rapidly and tend to coalesce, leading to complete necrosis of 

infected leaves.  

 

 

 

 

Figure 1-1 Typical spindle-shaped leaf lesions caused by the rice blast fungus M. grisea. 
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The highly variable specific virulence of the fungus and its genetic plasticity make 

its control and management difficult. Thus, M. grisea is one of the most devastating 

threats to food security worldwide. Conservatively, each year enough rice is destroyed 

by rice blast disease to feed 60 million people (Zeigler et al. 1994).  Certain strains are 

able to attack other domesticated grasses, including barley, wheat, pearl millet and turf-

grasses. Limited outbreaks on wheat have been reported in South America (Valent and 

Chumley, 1994). Widespread damage of golf courses, particularly in the Midwest (USA) 

where it has been attacking cool season grasses, is of particular concern (Curley et al. 

2005). Indeed, the Centers for Disease Control and Prevention has recently recognized 

and listed rice blast as a potential biological weapon. Thus, no part of the world is now 

safe from this disease.  

Unlike many phytopathogenic fungi such as the mildews and rusts, the rice blast 

fungus can be cultured on defined media, facilitating biochemical and molecular 

analyses. Early stages of the infection process, including germination, appressorium 

formation and penetration, can be studied explanta. Tools for molecular genetic 

manipulation have been well-developed in the last decade. Many genomic resources 

such as EST, BAC, genetic methodology, a physical map and the draft sequence are 

now publicly accessible. One of the big issues resulting from the prediction of the genes 

encoded in the M. grisea genome was that this pathogen contains more genes than its 

non-pathogenic cousins, Neurospora crassa and Aspergillus nidulans (Dean et al. 2005).  

The life cycle 

Infection by the rice blast fungus starts when the three-celled conidium lands on 

a host leaf and anchors itself to the leaf cuticle with spore-tip mucilage (Fig. 1-2). 

Germination proceeds with the extension of a germ tube, which undergoes hooking and 
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swelling at its tip and then differentiates into an infection structure called the 

appressorium.  

During maturation, the appressorium becomes melanized, except for a well-

defined pore between the appressorium and the rice leaf (Howard and Valent, 1996). 

The formation of this infection structure on the host surface marks the onset of the 

disease. A penetration peg is then driven through the host surface and the infection 

hypha invades and grows through the rice leaf (Talbot et al. 2003). At this stage, the 

symptoms become evident and small oval lesions begin to appear, accompanied by 

local chlorosis. Eventually, the growing lesions become necrotic and may coalesce. 

Conidia are carried by air to neighboring plants, spreading the blast disease.  

 



Germination,4h

Infectious growth, ~72h

Sporulation

Penetration peg
24-48 h

Appressorium
formation, 4h

Appressorium
formation, 4h

Infection Cycle

Germination,4h

Infectious growth, ~72h

Sporulation

Penetration peg
24-48 h

AppressoriumAppressorium

Infection Cycle

Conidium landed 
on rice leaf tissue

Figure 1-2 The life cycle infection-related morphogenesis of the rice blast fungus M. grisea. 

Modified from www.btny.purdue.edu/ Faculty/Xu/
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PLANT DISEASE RESISTANCE  

Plants are attacked by several disease-causing organisms including bacteria, 

fungi, viruses, and nematodes. These pathogens cause huge crop losses and the 

control of disease is thus a main objective of plant breeding and pathology research. 

Plants resist pathogen attacks both with preformed defenses such as antimicrobial 

compounds and by induced defense responses (Hwang et al. 2005). Inducible 

defense mechanisms can be activated upon detection of general elicitors such as 

bacterial flagellin and even host cell fragments released by pathogen damage 

(Gomez-Gomez and Boller, 2002). In addition, plants have evolved diverse 

recognition systems to detect proteins produced during infection by specific strains of 

pathogens. These pathogen proteins, designated effectors proteins, are recognized 

by plant disease resistance (R) proteins in a specific manner first described 

genetically as the gene-for-gene interaction (Flor, 1971). Physical interactions 

between R proteins and effectors have been demonstrated only for PTO with AvrPto 

or AvrPtoB (Kim et al. 2002), Pi-ta with AVR-Pita (Jia et al. 2000), and RPS2 with 

AvrRpt2 and the noncognate effector AvrB (Leister and Katagiri, 2000). To 

understand the mechanism essential for recognition of the pathogen and induction of 

mutual defense reactions, more studies such as cloning and functional genomics are 

needed to accelerate research into the molecular basis of disease resistance. 

During the last few years, many dominant R genes conferring complete 

resistance to several pathogens have been characterized from a broad range of plant 

species. Comparative analysis of the predicted products of these cloned R genes 

reveals that they share various conserved functional motifs allowing their separation 

into distinct classes (Hammond-Kosack and Jones, 1997). The major class of R 

genes encodes proteins that contain a nucleotide-binding site plus leucine-rich repeat 

domains (NBS–LRR proteins) (Hulbert et al. 2001; Meyers et al. 2003; Howles et al. 

2005). These NBS-LRR genes represent a superfamily of R genes in both monocot 
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and dicot species. The NBS-LRR group can be further divided into two subclasses: 

those that show homology with the amino terminus of the Drosophila Toll protein and 

mammalian interleukin-1-receptor (the TIR domain); and those that do not contain 

that domain, but often have it substituted with a coiled-coil (CC) domain. The TIR 

class of genes has not been observed in monocot plants. Rather the non-TIR class 

appears to have amplified instead (Monosi et al. 2004). The NBS-LRR proteins are 

now widely understood as recognizing elicitors from different plant pathogens. Other 

identified classes encode R-gene proteins include the extracellular LRRs with 

transmembrane motifs and intracellular protein kinase domains; membrane spanning 

proteins with large extracellular LRRs; and those with cytoplasmic kinase domains 

(Ellis et al. 2000; Dangl and Jones 2001). By making use of the conserved motifs, it 

has been possible to design degenerate oligonucleotide primers that permit the 

amplification of conserved sequences from the genomes of diverse plant species 

using the polymerase chain reaction (PCR) (Aarts et al. 1998, Bai et al. 2002). This 

strategy provides a powerful tool that facilitates isolation of candidate R genes. 

Putative R gene fragments homologous to the conserved motifs can be rapidly 

identified by PCR and used as molecular markers to locate candidate R genes.  

One R protein that does not fit the above classes includes Hm1, which codes 

for a toxin reductase that confers resistance to a fungal pathogen of maize (Hayashi 

et al. 2005). Barley plants carrying loss-of-function alleles (mlo) are defective for the 

MLO plasma membrane protein, which has seven transmembrane motifs. The 

recessive mutant alleles confer resistance against all recognized isolates of the 

widespread powdery mildew fungus (Peterhansel and Lahaye, 2005). Another 

exclusive class of R genes is composed of RPW8.1 and RPW8.2, two similar 

proteins that have a putative N-terminal trans-membrane domain and a coiled-coil 

motif. These proteins confer broad-spectrum resistance in Arabidopsis to powdery 

mildew in a race-specific way (Xiao et al. 2005). Other R proteins may act in specific 

recognition, but have novel structures. For example, Hs1pro-1 for resistance to a 
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sugar beet nematode has a structure without obvious protein interaction domains and 

does not confer a hypersensitive response or systemic acquired resistance. The 

promoter region of this gene was found to control feeding-site-specific and 

nematode-responsive gene expression in Arabidopsis and sugar beet (Beta vulgaris 

L.) (Thurau et al. 2003). The RTM1 and RTM2 genes from Arabidopsis restrict 

systemic movement of tobacco etch potyvirus and do not involved in a hypersensitive 

response or systemic acquired resistance. These genes code for jacalin-like 

sequences and similarity to a small heat shock like protein, respectively (Chisholm 

et al. 2001). The Rpg1 gene for resistance to barley stem rust was found to encode a 

kinase-like protein containing two tandem protein kinase domains, a novel structure 

for a plant disease-resistance gene (Brueggeman, et al. 2002). Recently, the rice xa5 

gene for disease resistance to Xanthomonas oryzae pv oryzae (Xoo) was cloned and 

encodes the gamma subunit of transcription factor IIA (TFIIA). The TFIIA protein is 

commonly found in eukaryotes but has never been documented to be involved in 

resistance to other diseases (Iyer and McCouch, 2004).  

Disease resistance genes in rice 

In the last few years, several rice R genes acting in race-specific manners 

have been mapped, characterized and some of them cloned. For example, almost 50 

Pi genes (rice blast R genes) have been mapped in several rice cultivars. However, 

only the R genes Pib, Pi-ta and Pi-kh have been cloned and well-characterized. 

Together with rice blast, bacterial blight, caused by Xoo, is one of the two 

most important diseases of rice. So far, nearly thirty genes for bacterial blight 

resistance have been phenotypically identified in rice, most of them providing race-

specific resistance. Only four of them have been cloned (Gu et al. 2005). While most 

of these genes are dominant, six are recessive, including xa5, xa8, xa9, xa13, xa19 

and xa20 (Blair et al. 2003). Map-based cloning approaches have been successfully 

applied to isolate several of the dominant genes. A number of examples include 
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Xa21, which encodes a leucine-rich repeat (LRR)/kinase receptor protein; (Song et 

al. 1995), Xa1, encoding a nucleotide binding site (NBS)-LRR protein; (Yoshimura et 

al. 1996); Xa26, which has a structure similar to Xa21 (Sun, et al. 2004). Gu et al. 

(2005) reported the cloning of the Xa27 gene from rice and the corresponding avr 

gene avrXa27 from Xoo. Both the resistant and susceptible alleles of Xa27 encode 

similar proteins. However, the expression of the resistant allele is induced when 

challenged by bacteria carrying the corresponded avrXa27, whose product is a 

nuclear localized type-III effector.  

Using bioinformatics tools and comparative-sequence approaches, the 

finished sequences of the rice chromosomes 11 and 12 were analyzed to classify the 

type and distribution of predicted R genes as well as downstream defense-response 

genes (Choisne et al. 2005). A total of 837 genes containing LRR domains were 

identified. From the 837 R genes in the rice genome, a total of 201 R-like gene 

models were identified on chromosome 11. Of these, 73 have homology to the NBS-

LRR class of R-like genes and 38 show homology to the LRR-TM-like genes. They 

also predicted 17 downstream defense response genes including glucanases, 

chitinases and thaumatin-like proteins. Most of these R-like genes and defense 

response-like genes were present in large clusters of tandem arrays indicating their 

origin by duplication from a few ancestral genes. A large cluster of 14 defense 

response genes, 12 of which are chitinases, was present in tandem at 116.2 cM 

(between 28,056,455 and 28,122,601 bp). Several other R-like genes were also 

arranged in similar, but smaller, clusters. The full number of R-like genes on 

chromosome 12 was less than half of the number on chromosome 11. On 

chromosome 12, 88 predicted genes showed homology to R-like genes. However, 50 

of these 88 predicted genes coded for an LRR motif but no NBS, CC or LZ motifs. 

Thus, only 18 genes showed homology to the NBS-LRR category. As with 

chromosome 11, the R-like genes and defense response genes on chromosome 12 

were present in clusters. The R-like genes and defense response gene hot spots in 
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rice will be targets for future mapping and cloning of disease resistance genes. 

Knowing the structure of some of these gene families as well as the motifs they share 

will be helpful in applying reverse genetic approaches, such as virus- induced gene 

silencing, where a single gene or a gene family can be silenced and the function 

determined. A better knowledge of the effects of these individual R genes would also 

assist efforts in breeding cultivars with durable disease resistance. Thus both manual 

re-annotation of these R-like genes, as has been done for Arabidopsis (Meyers et al. 

2003; Haas et al. 2005) and functional confirmation of the candidate resistance 

genes would be important for drawing practical benefits from this information.  

Host specific R genes are typically effective against specific strains of 

pathogens and tend to lose their effectiveness due to shifts in the pathogen 

population (McDonald and Linde, 2002). Recently, Zhao et al. (2004) have shown 

that Rxo1, a non-host resistance gene from maize, triggers a resistant reaction in 

maize after challenge with Xanthomonas oryzae pv. oryzicola, which is the causal 

agent of bacterial leaf streak in rice. The same gene was also shown to confer a 

resistant reaction to some Burkholdaria andropogonis strains in maize and was also 

demonstrated to function in rice (Zhao et al 2005). This work presents the possibility 

of transferring genes from other grass species to rice to increase the arsenal of R 

genes. To achieve the goal of durable resistance in rice, more studies are required to 

characterize the R genes from rice or related species as well as resistance that is 

quantitatively inherited.   

Known rice blast resistance genes 

The genetics of blast resistance in rice has been extensively studied. The first 

Pi gene in rice was named by Kiyosawa (1966). The approach used several varieties 

that carried different, single resistance genes as differential cultivars (Flor, 1945) to 

characterize the specific virulence of different isolates of the pathogen. Using seven 

differential cultivars and several blast isolates, Yamasaki and Kiyosawa (1966) 
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described three resistance genes, Pi-a, Pi-i and Pi-k. Other investigators have used 

similar approaches, using different germplasm and blast isolates. The relationships 

between the different genes are sometimes difficult to determine when different blast 

isolates are used to characterize them. Determining their position on the rice physical 

map would be very helpful in this case.   

To date, approximately 50 major blast resistance genes have been named 

and mapped on rice chromosomes (Table. 1; review in Berruyer et al. 2003; Sallaud 

et al. 2003; Liu et al. 2005, Sharma et al. 2005). Although rice blast is a model 

pathosystem, only three blast R genes, Pi-b (Wang et al. 1999), Pi-ta (Bryan et al. 

2000) and Pi-kh (Sharma et al. 2005) and five Avr genes: PWL1 (Kang et al. 1995), 

PWL2 (Sweigard et al. 1995), Avr1-CO39 (Farman and Leong 1998), Avr-Pita 

(Orbach et al. 2000), and ACE1 (Böhnert et al. 2004) have been cloned and 

characterized. Of these, only the Pi-ta and Avr–Pita proteins have been 

demonstrated to interact directly (Jia et al. 2000). Several blast resistance genes 

have recently been fine-mapped, an essential starting point to map-based cloning 

approaches. Using random amplified polymorphic DNA (RAPD) and bacterial artificial 

chromosome (BAC) end markers, Liu et al. (2002) constructed a high-density map of 

the Pi9(t) locus, and demonstrated that Pi2(t) and Pi9(t) are physically linked in a 

~100-kb interval on rice chromosome 6. Jiang and Wang (2002) identified a 118-kb 

DNA fragment covering the Pi-2(t) locus by chromosome walking using BAC clones 

anchored by molecular markers tightly linked to the locus. Chauhan et al. (2002) 

genetically mapped a rice blast resistance locus Pi-CO39(t) to a region of 1.2 cM in 

length on the short arm of rice chromosome 11 using simple sequence repeat  

(SSR), restriction fragment length polymorphism (RFLP) and resistance gene analog 

(RGA) markers, and assembled three contigs of 180, 110 and 145-kb in the region by 

screening a genomic library of the donor cultivar (cv.) CO39 with the Pi-CO39(t) 

linked markers. Using rice genomic information and four mapping populations, Jeon 

et al. (2003) efficiently constructed a genetic and physical map of the Pi-5(t) locus, 

 16



locating it in a 170-kb binary bacterial artificial chromosome (BIBAC) contig on 

chromosome 9. In addition, they demonstrated that the Pi-5(t) locus is identical to the 

Pi-3(t) locus. Chen et al. (2005) reported the genetic and physical mapping of Pi-

37(t), a new gene conferring resistance to rice blast in the cultivar St. No. 1. This new 

R gene was assigned to a 374 kb interval flanked by markers RM543 and FPSM1 on 

chromosome 1. Using a bioinformatics approach, the location of Pi-37(t) was further 

refined to the vicinity of four candidate NBS-LRR genes on a DNA fragment of 60 kb. 

Using an F2 population and SSR markers, Liu et al. (2005) mapped a new blast 

resistance gene on the short arm on chromosome 8. This novel R gene was 

designated Pi-36(t). To physically map this locus, the Pi36(t)-linked markers were 

mapped on the rice genomic sequence, allowing the locus to be physically assigned 

to an interval of about 17.0 kb, based on the genomic sequence of Nipponbare. 

Sharma et al. (2005) reported the molecular mapping and cloning of a dominant gene 

Pi-kh present in the rice cultivar Tetep. This Pi-kh gene is the third Pi gene cloned so 

far in rice. The Pi-kh gene was mapped between two SSR markers estimated to be 

0.7 and 0.5 cM away. They identified a candidate blast-resistance gene in the region, 

and cloned the homologous sequence from Tetep. The Pi-kh belongs to the NBS-

LRR class of disease resistance genes. Interestingly, transcription of this gene was 

shown to be inducible by challenge with the blast fungus in a RT-PCR assay. 
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Table 1-1 Blast resistance (Pi) genes identified in rice. 

Gene Chr Markers Reference
Pi-t 1 Kiyosawa, 1972
Pi-24(t) 1 K5 Sallaud et al. 2003
Pi-37(t) 1 RM543 Chen et al.  2005
Pi-b (Pi-s) 2 RM208 Wang et al 1999; cloned
Pi-tq5 2 RG250 Tabien et al. 2000
Pi-14(t) 2 Pan et al. 1996, 1998
Pi-25(t) 2 RG250 Sallaud et al. 2003
Pi-16(t) 2 Pan et al.  1999
Pi-kur-1 4 Goto et al.  1970
Pi(t) 4 Causse et al. , 1994
Pi-(t)? 4 Tohme et al. 1993
Pi-5(t) 4 RG498-RG788 Wang et al. 1994
Pi-21 4 Fukuoka & Okuno 2001
Pi-10 5 OPF6-OPH18 Naqui and Chattou, 1996
Pi-26 5 RG313 Sallaud et al.  2003
Pi-i 6 Shinoda et al.  1971
Pi-zt (Pi-2) 6 RG64-RG456 Yokoo, 1970; Goto, 1981
Pi-8 6 Pan et al. 1996
Pi-9(t) 6 Pan et al. 1996
Pi-13(t) 6 Pan et al. 1996
Pi-22(t) 6 Pan et al. 1996
Pi-27 6 EST-2 Sallaud et al. 2003
Pi-3(t) 6 Mackill and Boman, 1992
Pi-tq1 6 Tabien et al.  2000
Pi-17(t) 7 Pan et al.  1996
Pi-11(t) 8 RZ617-RZ323 Causse et al.  1994
Pi-33 8 Berruyer et al. 2003
Pi-zh 8 Causse et al. 1994
Pi-29 8 RZ617-RZ323 Sallaud et al. 2003
Pi-36(t) 8 RM5647 Liu et al.  2005
Pi15 9 Pan et al.  2003
Pi5 (Pi3) 9 Jeon et al.  2003  
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Table 1-1 Cont. 

Gene Chr Markers Reference
Pi-28(t) 10 RZ500 Sallaud et al.  2003
Pi-a 11 Kiyosawa, 1967
Pi-f 11 Shinoda et al. 1971
Pi-k 11 Shinoda et al. 1971
Pi-k h 11 RM 2191 Sharma et al. 2005; cloned
Pi-is-1 11 Goto et al. 1970
Pi-kur-2 11 Goto et al. 1988
Pi-1 11 RG303-G181 Causse et al. 1994
Pi-7(t) 11 RG103A-RG16 Wang et al. 1994
Pi-18 11 RZ536 Sang et al. 1996
Pi-44 11 AF349-AF348 Chen et al. 1999
Pi-30(t) 11 OPZ11-f Sallaud et al. 2003
Pi-lm2 11 Tabien et al. 2000
Pi-sh 11 Imbe and Matsamuto, 1985
Pi-ta 12 RG869 Bryan et al. 2000 cloned
Pi-4(t) 12 RG869 Yu et al. 1991
Pi-6(t) 12 RG81 Causse et al. 1994
Pi-ta2 12 RG869 Jia et al . 2003
Pi-12(t) 12 RG869 Zhen et al. 1996
Pi-19(t) 12 RG241 Shinoda et al. 1971
Pi-20 12 Xnpb 88 Imbe et al. 1997
Pi-62(t) 12 Rz816 Imbe et al. 1997
Pi-157 12 RG341 Naqui and Chattou, 1996
Pi-31(t) 12 Sallaud et al. 2003
Pi-32(t) 12 Sallaud et al.  2003  

Quantitative resistance  

Plant disease resistance is recognized as either genetically simple 

(monogenic) or complex (polygenic). In most cases, monogenic resistance is race-

specific and functions in a gene-for-gene manner (Flor, 1971). Polygenic resistance 

involves quantitative trait loci (QTL), and some of them may be race-specific and 

others race-nonspecific (Fukuoka and Okuno, 2001). An approach for studying 

complex and polygenic forms of disease resistance is known as QTL mapping, which 

is based on the use of DNA markers (Tanksley, 1993). With QTL mapping, the roles 

of specific loci in genetically complex traits can be described, and fundamental 

questions that have intrigued researchers in the field of plant pathology for decades 

 19



can be addressed. Are genes that control race-nonspecific resistance the same as 

"defeated" race-specific genes? Are genes that control partial resistance race-

specific? What kinds of interaction exist between resistance genes, plant 

development, and the environment?  More research is necessary to answer these 

questions.  

Resistance to the bacterial blight pathogen, Xoo, has been reported to have 

both qualitative and quantitative components (Li et al. 2001). The qualitative 

components show strong effects typical of race-specific genes (Xa4 and Xa21) 

against the matching avirulent Xoo races. The same resistance genes also appeared 

to provide lower levels of resistance to races that did not carry the corresponding Avr 

genes. The quantitative role of components of resistance conditioned by these R 

genes was shown as their residual effect against matching virulent races. The xa13 

gene was completely recessive without noticeable residual effects against the 

virulent races but showed more pronounced specificity. An important result from this 

study was that interaction between some of the dominant genes such as Xa4 and 

Xa21 or between them and the recessive genes, xa5 and xa13, increased resistance 

to Xoo. This suggested that combinations of these genes in the same genetic pool 

would increase the resistance level and durability of resistance to Xoo.  

Currently, fine mapping and cloning of QTL responsible for variation in 

agronomic traits is a common objective in agricultural research. QTL mapping and 

high resolution mapping offers an entry point for the most ambitious goal of all, 

cloning genes known only by their small effects, in order to elucidate the genetic and 

molecular basis of quantitative trait variation. Examples include the cloned tomato- 

fruit-weight QTL, fw2.2 (Frary et al. 2000) and a salt tolerance QTL in rice (Ren et al. 

2005). Several other studies have used fine mapping of the region harboring a QTL 

to resolve and predict the genes responsible for the variation on the trait. These 

studies include the physical mapping of rolled leaf QTLs (Shao et al. 2005) and a 
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grain-weight QTL, gw3.1 in rice (Li et al. 2004). Isolation of these QTL holds great 

promise to improve world agriculture but is a challenging task.  

Quantitative resistance to M. grisea, the rice blast fungus 

One quantitative resistance system that has been especially well 

characterized in rice is resistance to the blast fungus (Wang et al. 1994; Sallaud et al. 

2003; Talukder et al. 2005). In most of these studies, the association of major genes 

and minor QTL, environment x QTL interactions and the issue of durable resistance 

were all considered. The bases of these studies were recombinant inbred lines (RIL) 

and doubled haploid populations. In the rice blast QTL study of Wang et al. (1994), a 

durable source of resistance known as Moroberekan was analyzed for both R genes 

and quantitative (partial) resistance loci. Two dominant loci associated with 

qualitative resistance to five isolates of the fungus were tentatively named Pi-5(t) and 

Pi-7(t). These genes were mapped on chromosomes 4 and 11 of rice, and both were 

different from previously identified qualitative blast resistance loci. In the QTL 

mapping study by Sallaud et al. (2003), five new blast resistance loci named Pi-24(t) 

to Pi-28(t) were identified using a QTL mapping approach.  

Another study tested the specificity of QTL for partial resistance to blast 

disease by using isolates for which no major R gene segregated in a mapping 

population (Talukder et al. 2004). Of the 18 QTL reported, eight were effective 

against only one isolate, seven were effective against two isolates and only three 

were predicted to be effective against all three isolates. Fourteen QTL mapped to 

previously identified QTL for blast resistance and 10 to previously identified major 

resistance genes. The conclusion from this study was that most of the QTL detected 

are race-specific and that quantitative resistance genes might be due the action of 

defeated R genes. More studies in dissecting the genes responsible for partial or 

quantitative resistance are necessary to distinguish the role of major genes, with 
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race-specific and possibly nonspecific effects, from genes that confer only small 

effects with unknown specificity.  

QTL MAPPING  

Traits 

In biology, a trait refers to a (partially) genetically determined characteristic, 

which could be anything from human blood type to susceptibility of plants to attack by 

pathogens. Two kinds of traits, Mendelian and quantitative, are distinguished. A 

Mendelian trait is determined by a single gene (or few genes), following classical 

Mendelian inheritance patterns, such as 3:1 for a phenotypic ratio from a trait 

controlled by a single dominant gene in an F2 family. In contrast, multiple genes could 

determine a quantitative trait and its value is continuous, such as plant height and 

human weight. Quantitative traits are very common and are important both in applied 

and theoretical studies. For example, increasing milk, meat or crop production or 

plant disease resistance all requires the manipulation of quantitative traits. 

Related issues in QTL mapping 

It is now common to study a quantitative trait by charactering QTL affecting it.  

Due to the complicated and variable features of QTL, such as magnitude of effect, 

genomic position, environmental effects, interactions, etc, their locations and effects 

are difficult to characterize. Therefore, an important task in QTL studies is to locate 

QTL along chromosomes; this process is generally called QTL mapping. The 

detection and location of QTL have applications in many aspects of biological 

studies. By locating and characterizing the effects of individual QTL; the genetic 

architecture for a trait and its related biological function can be refined. It can be 

applied to animal and plant breeding programs to perform selection of a desired trait 

more efficiently. In addition, knowing numbers, effects and potential interactions of 
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QTL could be helpful in making reasonable hypotheses concerning the inheritance of 

the trait in important elite cultivars for its further application on breeding.  

QTL mapping has been carried out for various traits in many species. The 

theory of QTL mapping was first described by Sax (1923), who noted that seed size 

in bean, a complex trait, was associated with seed coat color, a simple, 

monogenically-controlled trait. Modern QTL mapping is derived from this idea, with 

the key innovation being that defined sequences of DNA act as the linked monogenic 

markers. New interest was generated when studies with maize and tomatoes 

demonstrated that some markers explained much of the phenotypic variance of 

complex characters (Tanksley, 1993). As a consequence, vigorous research on QTL 

mapping for quantitative traits such as yield, quality, maturity, and resistance to biotic 

and abiotic stress was initiated in many crop species (Lee, 1996). With the 

development of comprehensive DNA marker maps (Tanksley, 1992; Causse et al. 

1994), it is now possible to search for QTL throughout the genomes of most species. 

For example, Frary et al. (2000) found that the tomato fw2.2 QTL changes fruit 

weight by up to 30% and Zeng et al. (2000) characterized the genetic architecture of 

the size and shape differences of the posterior lobe of the male genital arch between 

two species of Drosophila species. This has had the profound result of moving the 

focus in studies of polygenic traits to questions about the chromosomal locations, 

gene actions, and gene by genotypic interactions, also gene by environment 

interactions and biological roles of specific loci involved in complex phenotypes. 

In every QTL mapping study, experimental design issues need to be 

considered. Generally, there are two types of experimental units (individuals or lines) 

used in QTL mapping: individuals from natural populations or from designed 

experiments. QTL mapping in plants usually uses two parental homozygous lines if 

possible, aiming for two individuals that have very different gene composition and 

trait values. Simple line crosses are routinely used for QTL mapping in plant and 

laboratory animals. They could result from crosses between two F1 parents to give F2 
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families and then selfing several times resulting in recombinant inbred lines (RIL) or 

from a cross between an F1 plant and one of the parental lines (backcross design). 

Crosses developed between inbred lines have the fewest complications. RIL have 

been most commonly used in QTL studies over the F2 and backcross population. 

Taking an F1 plant through multiple rounds of self-fertilization can easily generate 

them. The resulting lines have little within-line genetic variance and only the genetic 

variance between lines is considered. These inbred lines are highly homozygous and 

always pass the same allele to all of their offspring. 

Data for QTL mapping usually have two components: marker data and trait 

values. Marker data includes marker genetic map position and marker genotype. 

Trait values can be continuous, such as disease leaf area, or they may be 

categorical, such as leaf size denoted by large, medium and small. Sample size 

needs to be considered when planning the experimental design. With a greater 

sample size, detection of QTL with smaller effect is more likely (Zeng 1994; Vales et 

al. 2005).  

Markers and maps 

As mentioned above, one component of observed data in QTL mapping 

experiments is the markers. Various properties of different types of markers are 

important to consider in QTL mapping experiments. 

Genetic markers 

In a broad sense, a genetic marker refers to any heritable character that can 

be used to distinguish one individual from another in a population. The distinction can 

be at different levels such as phenotype, protein or DNA. Phenotypic traits can be 

markers if the variation observed in the population of interest is entirely explained by 

a single Mendelian factor. At the protein level, allozymes can be used as markers. 

These are soluble proteins with different mobility on an electrophoresis gel. The 
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mobility difference is a result of unequally charged protein due to amino acid 

substitutions. In current QTL mapping practice, variation at the DNA level is typically 

used because it is the most abundant and easily scored type of variation due the 

rapid development of genome technology. Variation in DNA sequence is detected by 

hybridization and polymerase chain reaction (PCR) based methods. Commonly used 

DNA markers include restriction fragment length polymorphism (RFLP). The RFLP 

may result either from mutation in restriction endonuclease sites or from deletions or 

insertions of DNA between the sites. Polymorphisms detected by PCR result from 

insertion and deletions between, and mutation in primer binding sites. PCR based 

markers include sequence tagged sites (STS), random amplified polymorphic DNA 

(RAPD), amplified fragment length polymorphism (AFLP), simple sequenced repeats 

(SSR or microsatellites), variable number of tandem repeats (VNTR or minisatellites) 

and single nucleotide polymorphisms (SNP). Among these markers, RFLP, SSR and 

SNP are commonly used for mapping QTL. 

The term microsatellite refers to DNA sequences with repeating units of 1-6 

nucleotides. For example (GA)n and (CTG)n are microsatellites, where n is the 

number of repeating units. They are often multiallelic, are usually locus specific, and 

are evenly distributed along chromosomes and randomly distributed throughout the 

genome (Röder et al. 1998, McCouch et al. 2002). McCouch et al. (2002) reported 

that in a new set of 2240 rice SSR the largest proportion of SSR showed to poly(GA) 

motifs (36%), followed by poly(AT) (15%) and poly(CCG) (8%) motifs. AT-rich 

microsatellites had the longest average repeat tracts, while GC-rich motifs were the 

shortest. There is approximately one SSR every 157 kb in the rice genome. 

Microsatellites show high levels of polymorphism compared to other marker systems 

in rice.  
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Maps and map construction 

A genetic map describes orders and positions of identifiable landmarks on 

DNA. Theses landmarks might be genes or genetic markers. Two types of map are 

commonly used in practice, genetic and physical maps. For QTL studies both are 

extensively used for fine mapping and physical characterization of QTL. 

A genetic map and a physical map provide similar information on marker or 

gene order along the chromosomes. Estimating recombination frequency between 

two positions generates a genetic map. In contrast, having the complete sequence 

makes it possible to determine directly the order and spacing of the genes, which is a 

type of physical map (Weeks and Lange, 1987). Software has also been developed 

to construct genetic maps; a popular one is MAPMAKER by Lander et al. (1987). 

Assembling sequences or DNA fragments into contigs allows construction of a 

physical map. Two strategies are commonly used for genome sequencing: 

hierarchical sequencing and shotgun sequencing. Hierarchical sequencing works as 

a top-down approach: it starts with cutting and cloning the genome into large ordered 

DNA fragments. These are then sequenced, typically by sub-cloning many smaller 

overlapping fragments of each large clone, sequencing these and assembling the 

sequences into a large sequence contig representing the whole original clone. In 

contrast, shotgun sequence is a bottoms-up approach: small fragments of genomic 

DNA from the whole genome are sequenced and these are assembled into a 

genomic sequence using computer algorithms (Tammi et al. 2002).  

Molecular marker technologies permit plant geneticists to construct high-

density genetic maps for any species amenable to genetics and use them for 

detecting, mapping, and estimating the effects of QTL. The analysis involves testing 

DNA markers throughout a genome for the likelihood they are linked with a QTL. 

Individuals in an appropriate mapping population (F2, backcross, recombinant inbred) 

are analyzed for DNA marker genotypes and the phenotype of interest (Young, 
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1996). For each DNA marker, the individuals are split into classes according to 

marker genotype. Mean and variance parameters are calculated and compared 

among the classes. A significant difference between means suggests that there is a 

relationship between the DNA marker and the trait of interest. In other words, the 

DNA marker is probably linked to a QTL. Since the traits of interest are, by nature, 

genetically complex, environmental factors and genetic background potentially have 

an enormous impact on results. This is one of the most powerful applications of QTL 

mapping (i.e. analyzing gene x gene and gene x environment interactions), but it also 

means that many large, time-consuming experiments need to be carried out to 

analyze a system thoroughly.  

Finally, QTL mapping, like any genetic study, is only as good as its 

phenotypic scoring method. In studies of disease resistance, factors all the way from 

a suitable inoculum to difficulties in quantitative estimation of resistance make QTL 

mapping more challenging. Fortunately, powerful computer software programs are 

now available to analyze QTL mapping results (Nelson, 1997; Manly et al. 2001; 

Broman et al. 2003; Wang et al. 2005) and better DNA marker systems have been 

developed to simplify the technique and increase marker density. 

QTL mapping methods  

Various statistical methods have been developed for QTL mapping. The most 

commonly used methods for QTL mapping are based on the maximum-likelihood 

method. From simple to more complicated, four approaches are commonly used: 

single marker analysis (SMA), interval mapping (IM); composite interval mapping 

(CIM) and multiple interval mapping (MIM). 

Single marker analysis (SMA) 

SMA tests the association between marker genotypes and trait values using t-

tests, ANOVA models or regression. In other words, it tests trait value differences 
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among markers groups. SMA is the least informative of the analyses, because 

recombination (r), as well as the additive (a) and the dominant (d) effects of a QTL 

may be confounded. SMA often fails to give reliable estimates of numbers and 

positions of QTL and the magnitude of their effects (McMillan and Robertson, 1974, 

Lander and Botstein, 1989).   

Interval mapping (IM) 

Thoday, in 1961 introduced interval mapping and a mathematical treatment of 

this method was presented by Lander and Botstein (1989). IM uses two observable 

flanking markers to construct an interval within which to search for QTL along the 

chromosomes. A map function, either Haldane or Kosambi, is used to translate from 

recombination frequency to distance or vice visa. Then, a LOD score is calculated at 

each increment in the interval. Finally, the LOD score profile is calculated for the 

whole genome. When a peak has exceeded a threshold value, there is evidence that 

a QTL has been found at that location (Zeng, 1994). 

Composite interval mapping (CIM) 

Jansen and Stam (1994) and Zeng (1994) developed CIM. This method is an 

extension of IM that places certain markers into the model as cofactors. CIM fits 

parameters for a target QTL in one interval while simultaneously fitting partial 

regression coefficients for background markers to account for variance caused by 

non target QTL. In theory, CIM gives more power and accuracy than simple IM 

because the effects of other QTL are not present as residual variance.  

Multiple interval mapping (MIM) 

MIM uses multiple marker intervals simultaneously to fit various putative QTL 

directly into the model for mapping QTL. Kao and Zeng (1999) developed MIM. MIM 

tends to be more powerful than SMA and CIM. MIM leads to more accurate QTL 
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position and QTL effect estimates (Mayer, 2005). MIM is appropriate for the 

identification and estimation of genetic architecture parameters, including the 

number, genomic positions, effects and interactions of significant QTL and their 

contribution to the genetic variance.  

ADVANCED BACKCROSS QTL STRATEGY 

The advanced backcross (AB-QTL) mapping strategy integrates the 

processes of QTL detection and introgression from wild germplasm into elite material 

(Tanksley and Nelson 1996). Instead of an F2, F2-derived RIL or double haploid 

population, this approach uses BC2 or BC3 populations for the discovery and 

mapping of trait loci. Thus, molecular-marker and phenotypic analyses are performed 

at a more advanced generation when the recurrent parental line alleles are at higher 

frequency. Once favorable alleles for various loci or QTL are identified, only a few 

more backcrosses and/or selfs are necessary to develop near-isogenic lines that can 

be tested and possibly used for variety development. The AB-QTL method was first 

applied in tomato (Tanksley et al. 1996) and has since been adapted for use in rice 

(Xiao et al. 1995, 1998; wheat (Huang et al. 2003), maize (Ho et al. 2002) and 

pepper (Rao, et al. 2003). Simulations suggest that AB-QTL would be effective in 

detecting QTL that are additive, dominant, and partially dominant and over-dominant 

in effect. However, recessive QTL from the donor parent would go undetected in an 

AB-QTL analysis (Tanksley and Nelson, 1996). 

Advanced backcross QTL has several advantages over conventional QTL 

analysis. First, major negative QTL can be eliminated at early stages during 

population development by selection with specific markers. The probability of finding 

QTL with epistatic effects among alleles from the wild parent is reduced since lines 

are skewed towards alleles from the recurrent parent. Once putatively beneficial QTL 

are identified from such analysis, whole-genome marker selection can be used to 

identify the backcross lines from which quantitative trait loci-near isogenic lines (QTL-
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NIL) could be isolated. By using QTL-NIL and marker information, map based cloning 

of QTL is more feasible than using families derived from F2. 

Frary et al. (2004) used an AB-QTL mapping strategy to identify loci for yield, 

processing and fruit quality traits in tomato in BC2 and BC2F1 populations derived 

from the interspecific cross Lycopersicon esculentum E6203 × L. pennellii. They 

found a total of 84 different QTL. For 23 traits analyzed for which allelic effects could 

be deemed favorable or unfavorable, 26% of the identified loci had L. pennellii alleles 

that enhanced the performance of the elite parent.  

Advanced backcross QTL analysis was used by Li et al. (2004) to identify 

favorable loci affecting yield and yield components from Oryza sativa, cv. Jefferson x 

O. rufipogon. They used an isogenic population developed by advancing NIL lines 

through five generations of backcrossing to cv. Jefferson and seven generations of 

selfing. The NIL approach was used for fine mapping of a grain-weight QTL (gw3.1). 

The locus was associated with transgressive variation for grain size and grain weight 

in this population. Analysis of a syntenic region in maize showed a QTL affecting 

kernel size, suggesting that favorable alleles of this locus may have been selected in 

the early process of domestication in both cereals.  

Ho et al. (2002) applied an AB-QTL strategy to identify QTL of agronomic 

importance in a cross between two elite inbreds of maize. In wheat, AB-QTL analysis 

was used to identify QTL for yield and yield components in a BC2F2 derived 

population from a cross between a German winter wheat and spring-type synthetic 

hexaploid wheat (Huang et al.  2003). 
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MAPPING QTL CONTROLLING DURABLE RESISTANCE TO RICE BLAST
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ABSTRACT 

The rice cultivar Oryzica Llanos 5 (OL5) shows a high level of resistance to 

the blast fungus. The number and chromosomal location of quantitative trait loci 

(QTL) conferring resistance against eight isolates of the blast fungus, were tested in 

different experiments using two different populations of recombinant inbred lines from 

the cross Fanny/OL5. Twenty one QTL were detected and associated with the 

resistance traits, disease leaf area and lesion type in 9 rice chromosomes. Most, but 

not all, of the QTL mapped to genomic regions previously recognized to carry major 

blast R genes or QTL. Eight of these resistance loci were statistically significant in 

both populations while the others were significant in only one of the two experiments. 

Most of the QTL showed race-specificity to the different blast isolates since, they 

affected several but not all of the eight isolates. Resistance to the blast isolate 

FL440, which was partially virulent on the resistant parent, was controlled by QTL 

with small effects, some of which could be nonspecific.   
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INTRODUCTION 

Rice blast, caused by Magnaporthe grisea, is a devastating disease because 

of its wide distribution and its destructiveness under conductive conditions. The 

disease has been identified in 85 rice-producing countries in both tropical and 

temperate zones, destroying crops in Latin America, Africa and Asia (Roca et al. 

1996). Genetic resistance has been, and will continue to be, the major method of 

disease control of blast. However, varieties carrying genes that confer high levels of 

resistance (R genes) typically lose their resistance after a few years (Chen et al. 

2003).  These R genes function in a gene-for-gene fashion (Jia et al. 2000) so the 

pathogen can adapt by mutating or deleting the corresponding avirulence gene. 

Approximately 50 Pi genes (blast R genes) have been described and mapped in the 

rice genome (reviewed in Liu et al. 2005 and Sallaud et al. 2003) and at least three 

have been molecularly characterized; the Pi-ta (Bryan et al. 2000), Pi-b (Wang et al. 

1999) and Pi-kh (Sharma et al. 2005) genes on chromosomes twelve, two and 

eleven, respectively. Some genes contributing to blast resistance in rice have smaller 

quantitative effects (Wang et al. 1994, Fukuoka and Okuno 2001) and it is not clear 

whether they are functioning in a race-specific manner. One thing that is clear is that 

some genes with incomplete resistance effects can be race-specific; examples 

include Pif, Pb1 and Pi21 (review in Chen et al. 2005). Many rice geneticists believe 

that at least some genes affect quantitative resistance function in a nonspecific 

fashion (Chen et al. 2005, Fukuoka and Okuno 2001). Such a gene might include a 

transcription factor that controls the expression of defense genes or possibly a 

component of a defense-signaling pathway. Genetic analyses of resistance have 

identified resistance QTL in various germplasm and environments (Sallaud et al. 

2003, Chen et al. 2003, Talukder et al. 2004). The detection of QTL represents the 

first step toward dissecting their molecular basis and their individual phenotypic 

effects in different environments, and also the first step in their manipulation in 

breeding material by selection of linked markers.  
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Rice blast researchers have concentrated considerable effort on the 

classification of isolates of the pathogen into apparently asexually derived lineages 

and transfer of genes conferring resistance to those isolates into commercial rice 

cultivars. With the exception of the two commercial rice cultivars, Oryzica Llanos 5 

(OL5) released in 1989, and Fedearroz 50, released in 1998, the blast resistances in 

Colombian commercial rice varieties have typically broken down one to three years 

after release (Table. 2-1; Correa-Victoria and Martinez, 1995). The resistance in OL5 

is still effective today, not only in Colombian production fields where the disease is 

still very prevalent, but also in rice-blast nurseries in Colombia, Brazil, The 

Philippines, Thailand, Indonesia, China and Korea (Correa-Victoria, 2005 personal 

communication). In Colombia, its resistance has been evaluated to several hundred 

isolates of the fungus, which grouped into six lineages based on molecular marker 

analysis. OL5 was inoculated with 202 isolates from six lineages at the International 

Rice Research Institute in The Philippines. In both experiments it showed resistance 

to all the isolates (Correa-Victoria and Zeigler, 1993). The resistance genes in OL5 

were derived from five different progenitor cultivars through traditional breeding 

methods. Analysis of these and other cultivars with well-characterized blast isolates 

has indicated that all of them exhibit susceptibility to the different lineages of the 

pathogen and resistance to others (Fig. 2-1; Correa-Victoria et al., 2004). Based on 

its pedigree, OL5 could potentially carry the Pi-2 and Pi-z R genes on chromosome 

6, Pi-33 on chromosome 8, Pi-ta2 on chromosome 12, Pi-b on chromosome 2 and Pi-

k and Pi-sh on chromosome 11 (Table. 2-2). The durable resistance of the cultivar 

OL5 could therefore be the result of the complement of race specific R genes, which 

in combination may have conferred resistance to all Colombian lineages for more 

than 15 years. Alternatively, the resistance could in part be due to the accumulation 

of genes with smaller but potentially nonspecific effects. Because of its complex 

origin and the interaction of many genes, the genetic basis of its resistance durability 

is not clear.  
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119721971PetaCica 4

119751974IR-822-432Cica 6

219781976Colombia 1Cica 7

119771976C 46-15Cica 9

219801978TetepCica 8

119821981Colombia 1Metica 1

319851982C 46-15, Colombia 1Oryzica 1

119851984Colombia 1, TetepOryzica 3

> 15Not Yet1989IR36, Colombia 1, 5685, Cica9. Cica7O. Llanos 5

219951993Tetep, IR665, Colombia 1, Cica9O. Caribe-8

> 6Not Yet1998IR665, Colombia 1, 5685, Cica9Fedearroz 50

Years of 
Resistance

Resistance
breakdown

Year of
Release

Source of ResistanceCultivar

In the present study, we mapped QTL for two components of partial 

resistance to blast disease based on phenotypic data from 120 F6 recombinant 

inbred lines (RIL) and 231 independent F5 RIL from a Fanny x OL5 cross. Fanny is a 

highly susceptible japonica rice cultivar with no known genes conferring resistance to 

any rice blast isolate. Our objectives were to: (1) estimate the number, genomic 

position and genetic effects of the OL5 genes controlling resistance to eight different 

isolates of M. grisea, belonging to five different genetic lineages. (2) Determine the 

repeatability of resistance QTL by examining them in two different RIL populations, 

derived from the same parents, but inoculated in separate experiments and (3) 

compare our predicted loci with previous QTL and resistance loci reported for blast 

disease. We found that blast resistance in OL5 is due to the combined effects of 

multiple loci with major and minor effects. Some of these mapped to regions of 

previously identified Pi genes but two mapped to regions with no reported Pi genes.  

 

 

 

 

 

 

 

 

 

 

119721971PetaCica 4

119751974IR-822-432Cica 6

219781976Colombia 1Cica 7

119771976C 46-15Cica 9

219801978TetepCica 8

119821981Colombia 1Metica 1

319851982C 46-15, Colombia 1Oryzica 1

119851984Colombia 1, TetepOryzica 3

> 15Not Yet1989IR36, Colombia 1, 5685, Cica9. Cica7O. Llanos 5

219951993Tetep, IR665, Colombia 1, Cica9O. Caribe-8

> 6Not Yet1998IR665, Colombia 1, 5685, Cica9Fedearroz 50

Years of 
Resistance

Resistance
breakdown

Year of
Release

Source of ResistanceCultivar

Table. 2-1 Colombian rice cultivars, year of release, source of resistance and year in 

which virulent M. grisea isolates were observed. Modified from Correa-Victoria, et al. 

(2004) 

 



Figure 2-1 Genealogy of OL5 and the sources of its resistance to the blast fungus M. grisea. Progenitor cultivars and the complementary 

blast reaction of them to the Colombian blast lineages (SRL) are indicated. Modified from Correa-Victoria et al. (2004) 
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Table 2-2 Possible resistance genes present in commercial rice cultivars from 

Colombia inferred from inoculation with M. grisea isolates carrying the corresponding 

avirulence genes. Modified from Correa-Victoria et al. (2004) 

Rice Cultivar Pi-b (2) Pi-z (6) Pi-2 (6) Pi-33 (8) Pi-sh (11) Pi-k (11) Pi-kh (11) Pi-1 (11) Pi-ta2 (12)
Oryzica 2 X X X X X X X
Oryzica 3 X X
Cica-8 X X X X
Cica-9 X X
IR 22 X X X
Oryzica Llanos 4 X X X
Oryzica Caribe-8 X X X
Oryzica Llanos 5 X X X X X X X
Fedearroz-50 X X X X X X X

Resistance Genes
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MATERIALS AND METHODS 

EXPERIMENTAL MATERIALS 

Two recombinant inbred line (RIL) populations were used. The RIL 

populations were developed at the Centro International de Agricultura Tropical 

(CIAT) in Cali, Colombia and completed in 1997 and 1999. The first population 

consisted of 120 F6 RIL and the second one of 231 F5 RIL. The first population was 

examined for resistance in experiment 1 and the second in experiment 2. Both 

populations were derived from a cross between Fanny, a highly susceptible japonica 

rice cultivar and OL5, an Indica rice cultivar that has excellent blast resistance 

properties. 

PATHOGEN INOCULATION AND DISEASE SCORING 

Experiment 1 was carried out under greenhouse conditions at CIAT between 

June and July 2001. Experiment 2 was conducted over the same months in 2002. 

Eight M. grisea isolates from five different genetic lineages (Levy et al. 1993) were 

used in the study. All of them were highly virulent on Fanny, while only isolate FL440 

produced lesions on OL5. Ten rice seedlings of each line along with the parent were 

grown in individual pots (4 inches) for 21 days before inoculation. Groups of fifteen 

pots were then placed in 55 cm long by 35 cm wide by 40 cm tall aluminum-framed 

transparent plastic-covered mist chambers. The entire inoculation experiment was 

replicated twice for both populations for each of the eight M. grisea isolates. The 

blast inoculation was carried out as described by Correa-Victoria and Zeigler (1993). 

In brief, a conidial suspension of 1x105 spores ml  and 0.5% gelatin in sterile water 

was sprayed onto the rice seedlings (25 ml per chamber). The inoculated seedlings 

were placed in a greenhouse maintained at 25 °C and sprayed with water twice each 

day. The plants were scored for disease infection 7 days after inoculation. Two 

components of partial resistance, percentage disease leaf area (DLA) and lesion type 

–1
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(LT) were estimated and were considered separate traits. The most seriously 

diseased leaves from each plant of each line were used for visually estimating LT 

and DLA. Disease severity of 27 day old plants was scored using a rating from 0 to 

100% for DLA and from 0 (highly resistant: no symptoms), 1-2 (lesions 1-2 mm, no 

sporulation), 3 (round lesions 2-3 mm with little sporulation), and 4 (spindle shaped 

lesions of more than 3 mm with heavy sporulation) for LT (Fig. 2-2). The scoring of 

both traits, DLA and LT, was based on methods of Correa-Victoria and Zeigler, 

(1993).  
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Figure 2-2 Disease leaf area (DLA) and lesion type (LT) scale used to evaluate the 

blast infection. The picture was taken at 7 days after inoculation. (Courtesy of G. 

Prado, CIAT) 
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MOLECULAR MARKERS AND SSR DETECTION 

Plant DNAs were isolated from leaf tissue using a modified CTAB method 

(Hulbert and Bennetzen, 1991). The F6 RIL were examined using restriction fragment 

length polymorphisms (RFLP) and simple sequence repeat (SSR) markers, while the 

F5 RIL were examined only with SSR markers. RFLP probes were selected from the 

interspecific rice map (Causse et al. 1994). Five restriction enzymes were used for 

the RFLP probes: DraI, EcoRI, EcoRV, HindIII, and XbaI. Southern transfer and 

hybridization were performed as described by Gallego et al. (1995). The Megaprime 

DNA labeling system (Amersham Life Science, NJ) was used to label DNA probes. 

For both experiments marker surveys were first conducted to identify polymorphic 

markers from the available rice SSR (Fig. 2-3). Polymerase chain reaction (PCR) 

conditions for the SSR markers were as described in Panaud et al. (1996), Temnykh 

et al. 2000 and McCouch et al. 2002, with the following modifications: the total 

reaction was scaled down to 15 µl and the following thermal cycle profile was used: 

94°C for 4 min, followed by 11 cycles of 94°C for 45 s, 65°C for 45 s and 72°C for 45 

s. The annealing temperature was decreased 1°C per cycle for these initial 11 cycles. 

The initial cycles were followed by 24 cycles of 94°C for 45 s, 55°C for 45 s and 72°C 

for 45 s. The 72°C step was extended to 5 min for the last cycle. The PCR reaction 

was performed in PTC200 96U thermocycler (MJ Research, Watertown, Mass). The 

PCR products were run on 5% polyacrylamide gels containing 7 M urea, using a Bio-

Rad Sequi-Gen GT sequencing cell. When parental polymorphic fragments differed 

in migration by less than 2 cm, up to sixteen polymorphic markers were multiplexed 

on a single polyacrylamide gel. Each marker was loaded on the gel separately, 

starting with the one with the smallest amplified fragments, and run 10 min at 100 

watt before loading the next marker (Fig. 2-4). Amplified fragments were detected 

using a silver staining procedure (Promega, Madison, Wis.).  
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Figure 2-3 Screening for polymorphisms between Fanny and OL5 parents using rice 

SSR markers. Twenty-four SSR primer pairs were used to PCR amplify DNA from 

the two parents and the products separated on acrylamide gels as described in the 

text. The gel was stained with silver nitrate. The 20 bp ladder is included in the far left 

lane and between markers 238B and 541.  F and O are the Fanny and OL5 parents. 
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Figure 2-4 PCR products for three different rice microsatellite (RM) markers using 

DNA from the parents (F = Fanny and OLL5 = OL5) and experiment 1 progeny 

running in 6% of acrylamide gel and stained with silver nitrate. Only 60 samples plus 

the two parents for each SSR are shown.  
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LINKAGE MAPPING  

Two genetic maps, one consisting of 350 molecular markers (RFLP and SSR) 

for experiment 1 and 201 SSR for experiment 2, were constructed using the 

multipoint functions performed by Mapmaker/EXP v. 3.0 (Lander et al. 1987). The 

two-point LOD score threshold was set to 6, and rmax to 0.3. Ordering of markers was 

achieved using the 'order', 'try' and 'ripple' commands, which calculate likelihood 

ratios for the different possible multipoint orders. Graphical representations of the 

linkage groups were produced with Mapmaker (Macintosh ver. 2.0, Proctor et al. 

1993). Conversion of recombination fractions into centimorgans (cM) was performed 

using the Kosambi mapping function (Kosambi, 1944). Correspondence of linkage 

groups and the order of the markers on chromosomes were inferred based on the 

genetic linkage map of rice (Causse et al. 1994, Temnykh et al. 2000) and also from 

the rice physical map (www.gramene.org). Finally, an integrated genetic map with 

data from all the RFLP and SSR markers used was constructed to facilitate 

presentation of the locations of previous Pi genes, as well as QTL identified in this 

analysis.  

MAPPING QUANTITATIVE RESISTANCE LOCI 

QTL were identified using the composite interval mapping (CIM) and multiple 

interval mapping (MIM) approaches of Windows QTL Cartographer version 2.5 

(Wang et al. 2005). Both QTL mapping methods were used to localize loci with major 

or minor effects on resistance and to search for epistatic interactions between QTL. 

For CIM, automatic forward-backward stepwise regression was used for the selection 

of cofactors (forward P < 0.01, backward P < 0.01). Model 6 was used to scan the 

genome at 1-cM intervals, using a window size of 10 cM. The likelihood value of the 

presence of a QTL was expressed as the log10 likelihood ratio (LOD) score. We 

defined an experiment wise error threshold of P < 0.01. For each trait analyzed 
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among two experiments with each of the eight isolates, a significance threshold was 

evaluated by performing 1,000 permutations (Doerge and Rebai, 1996) to determine 

LOD significance levels at P < 0.01 (Table 2-3). The approximate proportion of the 

phenotypic variation explained by the QTL (R2) was estimated in both the CIM and 

MIM models. The QTL position was estimated as the point where the maximum LOD 

score was found by CIM. QTL detected in a single screen that were offset but 

overlapped by at least one marker were joined. When the same QTL interval was 

detected in both populations, either using CIM or MIM, we report the values with the 

higher R2 and LOD scores. MIM was performed in order to resolve inaccurate QTL 

and confirm positions of QTL identified by CIM as well as to identify epistatic 

interactions between QTL. The MIM analysis was performed as described in Wu et 

al. 2005, with the following modifications: for the initial model to be used in MIM 

analysis, we first scanned through composite interval mapping results as a starting 

point. The Akaike information criterion (AIC) was used and set to c (n) = 2 when 

searching for epistatic interactions as recommended for Windows Cartographer.  

 

Table 2-3 Level of significance threshold (LOD) obtained by permutation test at P < 

0.01for DLA and LT across the two experiments  
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DLA LT DLA LT
FL440 2.5 2.7 FL440 4.5 3.5
CARIBE-8 4.0 9.5 CARIBE-8 3.0 9.0
CEYSVONI 3.5 2.9 CEYSVONI 5.0 2.7
CICA9 4.0 3.5 CICA9 2.4 2.8
F47 20.4 5.5 F47 4.8 2.4
SELECTA 13.4 3.7 SELECTA 7.8 18.0
F-54 3.0 3.5 F-54 8.0 5.8
METICA 4.5 3.0 METICA 2.7 3.1

Exp. 1 Exp. 2

ISOLATE
Permutation

ISOLATE
Permutation

LOD LOD

DLA LT DLA LT
FL440 2.5 2.7 FL440 4.5 3.5
CARIBE-8 4.0 9.5 CARIBE-8 3.0 9.0
CEYSVONI 3.5 2.9 CEYSVONI 5.0 2.7
CICA9 4.0 3.5 CICA9 2.4 2.8
F47 20.4 5.5 F47 4.8 2.4
SELECTA 13.4 3.7 SELECTA 7.8 18.0
F-54 3.0 3.5 F-54 8.0 5.8
METICA 4.5 3.0 METICA 2.7 3.1

Exp. 1 Exp. 2

ISOLATE
Permutation

ISOLATE
Permutation

DLA LT DLA LT
FL440 2.5 2.7 FL440 4.5 3.5
CARIBE-8 4.0 9.5 CARIBE-8 3.0 9.0
CEYSVONI 3.5 2.9 CEYSVONI 5.0 2.7
CICA9 4.0 3.5 CICA9 2.4 2.8
F47 20.4 5.5 F47 4.8 2.4
SELECTA 13.4 3.7 SELECTA 7.8 18.0
F-54 3.0 3.5 F-54 8.0 5.8
METICA 4.5 3.0 METICA 2.7 3.1

Exp. 1 Exp. 2

ISOLATE
Permutation

ISOLATE
Permutation

DLA LT DLA LT
FL440 2.5 2.7 FL440 4.5 3.5
CARIBE-8 4.0 9.5 CARIBE-8 3.0 9.0
CEYSVONI 3.5 2.9 CEYSVONI 5.0 2.7
CICA9 4.0 3.5 CICA9 2.4 2.8
F47 20.4 5.5 F47 4.8 2.4
SELECTA 13.4 3.7 SELECTA 7.8 18.0
F-54 3.0 3.5 F-54 8.0 5.8
METICA 4.5 3.0 METICA 2.7 3.1

Exp. 1 Exp. 2

ISOLATE
Permutation

ISOLATE
Permutation

LOD LODLOD LOD



NOMENCLATURE 

QTL were designated as describe in Tabien et al. 2002 with the following 

modifications. A “qrbr” prefix indicates a QTL for rice blast resistance. This is followed 

after a hyphen by the number of the chromosome where the QTL was mapped. 

When multiple QTL are mapped in the same chromosome, an additional dot and 

numbers are added in ascending order from the top to the bottom of the chromosome 

name to distinguish between them. For example, a locus name qrbr-9.1 means a 

QTL for blast resistance located towards the top of chromosome 9 (Fig. 2-8) 
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RESULTS 

DISTRIBUTION OF RESISTANCE IN THE RI POPULATIONS 

The frequency distributions of DLA and LT scores obtained in the two 

experiments with the eight isolates were examined to determine if they approximated 

normality (Fig.2-5). Chi-square analyses (data not shown) indicated that no normal 

distributions were followed for any of the eight isolates for either trait in either 

experiment. In general, both experiments showed a high percentage of individuals 

with DLA below 20% among the eight isolates (Fig. 2-5a). In contrast, the frequency 

distributions for LT for both experiments were very dependent on the blast isolate 

used. A higher percentage of individuals in the two experiments had LT scores of 

either 4 or 0 depending on the blast isolate used (Fig. 2-5b). For example, when 

challenged with the FL440 and F-54 isolates, both experiments had a high proportion 

of individuals with LT scores of 3 and 4. However, when challenged with the Metica 

and F-47 isolates, most of the lines had LT scores of 0 and 1 (Fig. 2-5b). Other 

isolates such as Cica-9 and Selecta showed dissimilar frequency distributions in the 

two experiments (Fig. 2-5).  

The resistance segregation in both experiments varied dramatically 

depending on the blast isolate used. All of the isolates were virulent on Fanny with LT 

scores of 3 and 4 and DLA between 60 and 80%. In contrast, the LT scores were 0 

for OL5 in both experiments except for the FL440 isolate, which was able to produce 

some LT scores of 1, 2 and 3 but with a DLA that was typically less than 10% (Fig. 2-

6). Interestingly, only three lines in experiment 1 and five in experiment 2 were as 

resistant to the FL440 isolate as OL5, indicating that a combination of several genes 

was required to achieve this level of resistance.  

 

 

 



Figure 2-5 Frequency distributions of disease leaf area DLA (a) and lesion type LT (b) across the two experiments. 
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Figure 2-6 Rice cultivars OL5 (left) and Fanny (right) inoculated with isolate FL440 of 

M. grisea. Severe blast lesions are observed in Fanny and few lesions in OL5. The 

picture was taken at 7 days after inoculation. 
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TRAIT CORRELATIONS  

Correlations between the two components of partial resistance (DLA and LT) 

among the individuals in each experiment were calculated for each of the eight 

isolates (Fig. 2-7). There was a positive correlation for the two traits in both 

experiments with each isolate. However, the strongest correlations for DLA and LT 

were found with the Selecta and Metica isolates (0.74 and 0.71 respectively) in 

experiment 1. In general, the correlations were higher in experiment 1 than 

experiment 2. The weakest correlations were found for the FL440 isolate with values 

of 0.26 and 0.35 in experiment 1 and 2, respectively. The poor correlations were 

partly due to the presence of lines with few, but relatively large (LT of 3 and 4), 

lesions resulting in a DLA of less than 10%. The resistance exhibited by the different 

lines was quite different phenotypically and also depended on the blast isolate used.  

 

Figure 2-7 Correlation coefficients between disease lesion area (DLA) and lesion 

type (LT) for each of the eight isolates in both experiments 1 and 2. 
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QTL MAPPING 

A total of 21 different loci were mapped, each associated with one or more of 

58 statistically significant reductions in DLA or LT to one or more of the eight isolates 

used in this study. These loci were associated with LOD scores above the threshold 

value (equivalent to P < 0.01) determined by the permutation test for one of the traits 

in at least one of the two experiments. The resistance loci mapped to nine of the 12 

rice chromosomes, with none mapping to chromosomes 5, 7 or 10. Of the 58 

significant resistance traits identified, 36 (62%) were identified in experiment 1 and 

22 (38%) in experiment 2. Twenty (34%), corresponding to eight loci, occurred in 

both experiments (Table 2-4, Fig 2-8). Thirty eight were detected only in one of the 

two experiments; 23 from experiment 1 and 15 from experiment 2. QTL that are 

significant in only one of the two experiments are referred to as experiment-specific 

QTL.  

None of the QTL identified had statistically detectable effects on all eight 

isolates. However, some traits required high LOD scores to be statistically significant 

because of their abnormal distributions. For example, the lesion type trait in 

experiment 2 challenged with the Caribe-8 isolate required a LOD of 9.0. While at 

least 2 resistance loci were identified for each blast isolate in each experiment, these 

were often experiment-specific. For four of the 21 loci identified, the putative 

resistance allele was contributed by Fanny. These mapped on four chromosomes but 

all four were experiment-specific (Fig 2-8).  

LOCI ASSOCIATED WITH QUANTITATIVE RESISTANCE  

Three QTL, qrbr-8.1, qrbr-8.2 and qrbr-8.3, were identified on chromosome 8 

(Fig. 2-8). QTL qrbr-8.1 and qrbr-8.2 were clustered in the general region of the 

centromere or the short arm of chromosome 8 (Fig. 2-9). QTL qrbr-8.1, in the interval 

between RM38 and RM547, affected resistance to four isolates with five DLA or LT 

traits significant in both experiments. This locus controlled 57.3% of the phenotypic 

 59



 60

variance in resistance to the Selecta isolate in experiment 1 (Table 2-4; Fig 2-8). One 

trait, (LT to isolate Metica) that mapped to this locus was significant in experiment 2. 

QTL qrbr-8.2, with resistance effects for three isolates, was identified in the interval of 

markers RM72 and RM339, near the centromere. Resistance to isolate Caribe-8 DLA 

and LT as well as resistance to isolate Selecta were significant in both experiments. 

DLA after inoculation with isolate F-47 was significant only in experiment 1. At least 

five race-specific R genes have been mapped in this region in previous studies 

including Pi-11, Pi-33, Pi-29, Pi-GD-1(t) and Pi-36. Pi-33 was previously mapped 

close to the SSR marker RM72 (Berruyer et al. 2003).  The Pi-33 gene has been 

shown to confer resistance to isolates from lineage 1, 3, 4 and 6 but not 5 (Table 2-5, 

Correa-Victoria et al. 2004). Since isolates Caribe-8 (lineage 4), Selecta (lineage 6) 

and F-47 (lineage 5) were affected, it seems likely there are at least two R genes in 

this region in OL5. Our results support the idea that OL5 carries Pi-33 as proposed 

by Correa-Victoria et al. (2004), and this gene could account for the qrbr-8.1 locus. 

 QTL qrbr-8.3 on chromosome 8 was mapped in the region between SSR 

markers RM308 and RM230 (Fig. 2-8). No Pi genes have yet been reported in this 

region; however this QTL was experiment-specific and was inherited from the 

susceptible parent Fanny.  

 

  

 



Figure 2-8 Genetic map of rice linkage groups constructed using the two Fanny x OL5 RIL populations used in experiment 1 and 2. The map contains 265 markers. 
Approximate positions of Pi genes mapped in previous studies are indicated at the left of the chromosomes (see text for references). QTL were identified for LT and 
DLA against 8 different isolates as shown. For QTL designations in purple, the predicted resistant alleles were inherited from Fanny. Pi genes thought to be present in 
the pedigree of OL5 are shown in red.  Resistance traits that were statistically significant in both experiments are marked with an asterisk.  
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Figure 2-9 Location of the chromosome 8 QTL for DLA and LT blast resistance traits 

for six blast isolates with LOD scores above the threshold (2.5) using CIM in 

experiment 1. The bars represent the 1-LOD confidence interval. Most of the 

resistance traits mapped to two loci flanking the centromeric region (arrow).  
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Table 2-4. Genomic intervals associated with quantitative blast resistance traits (DLA 

and LT) in experiment 1 and/or experiment 2. Loci with statistically significant effects 

in both experiments are shown in bold. Only QTL with LOD values above the 

threshold obtained from the permutation test (P< 0.01) are shown. 

 

 

Isolate QTL Chromosome Trait a Interval Markers LOD e R2 b Effect c

Caribe-8 qrbr-1.2 1 DLA RZ14-RM14 11.6 22.2 8.2
qrbr-2.2 2 DLA RM106-RM263 5.3 14.7 2.0
qrbr-3.1 3 DLA RM251-RM282 5.2 4.4 -2.4
qrbr-4.1 4 DLA RM142-RM119 4.7 5.3 2.8
qrbr-4.2 4 DLA RM255-RM348 9.1 12.7 4.2
qrbr-12.2 12 DLA RM179-RM313 11 31.7 19.5
qrbr-4.2 4 LT RM255-RM348 10.5 22.8 1.4
qrbr-12.2 12 LT RM511-RM260 12.1 62.7 1.9

Ceysvonni qrbr-3.1 3 DLA RM251-RM282 3.9 8.7 -8.2
qrbr-6.1 6 DLA RM136-RM527 6.3 25.1 12.3
qrbr-8.1 8 DLA RM310-RM72 7.5 25.5 20.5

Epistaticd qrbr-6.1 x qrbr-8.1 11.1 12.8 8.8
qrbr-6.1 6 LT RM136-RM527 7.7 32.6 1.3
qrbr-6.2 6 LT RM345-RZ508 2.9 4.8 0.4
qrbr-8.1 8 LT RM310-RM72 5.1 8.9 0.5
qrbr-8.3 8 LT RM308-RM230 2.7 8.0 -0.7

Cica-9 qrbr-6.1 6 DLA RM238B-RM564C 2.7 5.0 3.2
qrbr-11.3 11 DLA RM1233-RM5766 4.7 9.5 5.8
qrbr-12.2 12 DLA RM465C-RM519 3.5 7.9 3.8
qrbr-8.1 8 LT RM25-RM544 2.9 5.8 0.3
qrbr-11.3 11 LT RM1233-RM5766 7.5 15.8 0.7
qrbr-12.1 12 LT RG341-RG869 4.1 11.2 0.6
qrbr-12.2 12 LT RM465C-RM519 4.3 10.2 0.5

F-47 qrbr-6.1 6 DLA RM557-RM539 6.5 15.9 3.5
qrbr-8.2 8 DLA RZ617-RM339 22.6 27.5 0.7
qrbr-8.3 8 DLA RM308-RM320 6.1 9.1 -2.9
qrbr-9.2 9 DLA RM107-RM201 5.8 11.5 3.1
qrbr-11.3 11 DLA RM1233-RM5766 6.3 16.1 3.4
qrbr-4.2 4 LT RM255-RM348 7.6 11.9 0.6
qrbr-6.1 6 LT RM136-RM465B 7.6 13.3 0.8

F-54 qrbr-2.1 2 DLA RM279-RM8 3.7 13.1 6.2
qrbr-3.2 3 DLA RM514-RM148 3.0 7.1 6.2
qrbr-8.2 8 DLA RM547-RM404 10.1 36.2 10.6
qrbr-12.2 12 DLA RM179-RM313 20.8 31.7 9.6

Epistaticd qrbr-8.2 x qrbr-12.2 10.1 9.9 8.9
qrbr-3.1 3 LT RM251-RM282 3.0 8.2 -0.3
qrbr-8.2 8 LT RM547-RM404 30.8 62.9 1.0
qrbr-11.1 11 LT RM479-RM536 28.1 19.2 1.0  
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Table 2-4 cont. 

 

Isolate QTL Chromosome Trait a Interval Markers LOD e
R2 b Effect c

qrbr-1.2 1 DLA RM3482-RM529 2.9 17.6 12.7
qrbr-4.2 4 DLA RM255-RM348 2.5 7.8 0.4
qrbr-9.2 9 DLA RM5765-RM215 3.0 9.3 9.2
qrbr-11.2 11 DLA RM229-RM21 3.1 4.6 4.2
qrbr-11.3 11 DLA RM1233-RM5766 2.9 15.1 12.1
qrbr-1.2 1 LT A RM3482-RM529 3.9 12.9 0.2
qrbr-11.1 11 LT RM167-RM479 2.5 10.0 0.3

Epistaticd qrbr-1.2 x qrbr-11.1 4.7 13.7 -0.5
Metica qrbr-6.1 6 DLA RM123-RM465B 5.8 13.1 9.1

qrbr-11.1 11 DLA RM479-RM536 2.6 3.8 1.5
qrbr-2.1 2 LT RM279-RM8 3.2 25.2 0.6
qrbr-3.2 3 LT RM514-RM148 3.9 8.7 0.4
qrbr-6.1 6 LT RM136-RM465B 2.6 11.5 0.5
qrbr-8.1 8 LT RM25-RM544 2.8 15.2 0.5

Epistaticd qrbr-6.1 x qrbr-8.1 2.0 6.0 0.4
Selecta qrbr-1.1 1 DLA RM243-RM292 8.3 8.1 0.4

qrbr-8.1 8 DLA RM38-RM72 10.1 27.4 14.7
qrbr-9.1 9 DLA RM321-RM257 7.7 15.5 -16.3
qrbr-9.2 9 DLA RM278-RM288 7.5 4.9 8.8
qrbr-12.1 12 DLA RM247-RM101 3.7 7.8 8.1
qrbr-12.2 12 DLA RM179-RM313 7.0 23.4 17.4

Epistaticd qrbr-8.1 x qrbr-9.2 7.3 4.6 7.8
qrbr-2.3 2 LT RM207-RM266 3.1 5.2 -0.4
qrbr-8.1 8 LT RM38-RM72 10.0 57.3 1.9
qrbr-8.2 8 LT RM344-RM404 5.7 10.1 0.7
qrbr-9.1 9 LT RM278-RM288 4.7 7.3 0.6

FL440

 

a DLA =  percentage diseased leaf area; LT = Lesion type. b R2 = percentage of 

variance explained in the experiment in which the locus had the largest effect c 

Additive effect: a > 0, resistant allele from OL5; a < 0, resistant allele from Fanny. d 

Epistatic = digenic interaction between QTLs for the same trait as predicted by 

multiple interval mapping (MIM).  e LOD = log10 of the odds ratio 
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Table 2-5 Resistance effects of different Pi genes to isolates of M. grisea from 

Colombia. The lineages of the different isolates (L1-L6) are listed below the isolate 

designations. Genes that are considered to be possibly present in OL5 as predicted 

by its pedigree are highlighted in gray. R = Resistant reaction.  
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Two loci (qrbr-6.1 and qrbr-6.2) were identified affecting resistance to isolates 

Ceysvonni, F-47, Cica-9 and Metica on chromosome 6. The qrbr-6.1 locus was 

located near the centromere between markers RM557 and RM465B (Fig 2-8). 

Resistance to isolate Ceysvonni was significant for both DLA and LT in both 

experiments and the phenotypic variance explained by the locus was 25.1% and 

19.4% of the DLA in experiments 2 and 1, and 32.6% and 23.8% of LT in the same 

experiments, respectively. The resistance trait lesion type with isolate F-47 was also 

affected by qrbr-6.1 in both experiments and explained 13.3% of the variation in 

experiment 1 (Table 2-4). At least 10 R genes conferring high levels of blast 

resistance have been mapped in the centromere region of chromosome 6. Two of 

those, Pi-2 and Pi-z, were reported to possibly be present in OL5 based on its 
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pedigree (Correa-Victoria, 2003). Pi-2 has been reported to be effective against 

isolates from lineage 5 like F-47, and Pi-z provided resistance to these as well as 

lineage 6 isolates like Ceysvonni (Table 2-2 and Table 2-5) but not lineage 1 (Cica-9) 

or 3 (Metica). The qrbr-6.2 locus was located in the interval between markers RM345 

and RZ508. A LT QTL to isolate Ceysvonni mapped to this interval but was 

significant in experiment 1 (Table. 2-3, Fig. 2-10).  

 

 

 

 

 



Figure 2-10 QTL mapped for the DLA and LT blast resistance traits in Fanny x OL5 above the threshold (LOD 3.0) identified on rice 
chromosome 6 using CIM in experiment 1 to four blast fungal isolates. The bars represent 1-LOD confidence interval. Most of the 
resistance traits mapped to one locus in the centromere region (arrow). The lower contour shows the additive effect where (+) values = 
allele from OL5 and (-) values = alleles from Fanny  
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Three loci, qrbr-11.1, qrbr-11.2 and qrbr-11.3, on chromosome 11 contributed to 

resistance to isolates FL440, Metica, F-54, F-47 and Cica-9. The qrbr-11.3 locus was 

located between markers RM1233 and RM5766 and affected resistance to three 

isolates, but only the DLA trait with isolate FL440 was significant in both experiments 

(Table 2-4; Fig. 2-8). At least seven R genes have been mapped around this locus and 

one of them, Pi-kh, was recently cloned (Table 2-2) (Sharma et al. 2005). Two of these R 

genes, Pi-k and Pi-sh have been predicted to possibly be present in OL5 (Table 2.2) 

based on the pedigree of the cultivar. Both Pi-k and Pi-sh confer resistance to isolates 

from genetic lineage 6. Pi-k also confers resistance to some lineage 4 isolates and Pi-sh 

confers resistance to Colombian lineage 5 isolates. Neither gene confers resistance to 

lineage 1 isolates like Cica-9 (Table 2-4). Thus, Pi-k or Pi-sh alone could explain the 

QTL and would also be necessary to postulate a second R gene in this region if the 

resistance effect on Cica-9 is real. A second locus (qrbr-11.2) conferring resistance to 

isolate FL440 was identified between the markers RM229 and RM21 (Fig. 2-8) but was 

significant in experiment 2. A third locus (qrbr-11.1) was located between the markers 

RM167 and RM536 in the short arm of chromosome 11. This locus affected isolates 

Metica, FL440 and F-54, but all of them occurred in only one of the two experiments (Fig 

2-8).  

Two QTL on chromosome 12 affected resistance to isolates Selecta, Cica-9, 

Caribe-8 and F-54 (Fig. 2-8). The qrbr-12.2 locus was identified between markers 

RM179 and RM 313 and affected resistance to four of the isolates, but only LT with 

isolate Caribe-8 was significant in both experiments. This QTL accounted for 62.7% of 

the variation in lesion type in experiment 2 and 21.1% in experiment 1 (Table 2-4). This 

was the largest effect estimated for any of the QTL for resistance traits for any of the 

eight isolates. The QTL qrbr-12.1 mapped near the centromere between markers 

RM247 and RM101. Effects on one Selecta DLA trait (experiment 2) and one Cica-9 LT 
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trait (experiment 1) were mapped in this locus but both were significant in only one 

experiment. Several race-specific blast resistance genes have been mapped in the 

centromeric region of chromosome 12. Pi-ta2 is one of the genes predicted to be 

potentially present in this region in OL5 (Bryan et al. 2000; Table 2-2). The large effect 

this QTL has on resistance to isolate Caribe-8 (lineage 4) is consistent with the 

possibility that Pi-ta2 is involved in the quantitative resistance. However, the physical 

position of Pi-ta2 has not been yet accurately determined so it would be premature to 

conclude that this gene controls the resistance observed fin this region.   

Two QTL affecting resistance to isolates Selecta, FL440 and F-47 were identified 

on chromosome 9 (Fig. 2-8). The QTL qrbr-9.2 mapped between the markers RM278 

and RM201 and had a significant effect on DLA for FL440 and Selecta in both 

experiments. They had relatively small effects, explaining 9.3% and 4.9% of the 

phenotypic variance in experiment 1 for isolates FL440 and Selecta, respectively (Table 

2-4). No Pi genes have yet been reported at this locus. QTL qrbr-9.1 was mapped 

between markers RM321 and RM257, and the resistant allele was inherited from the 

susceptible parent Fanny. The locus had a significant effect on Selecta LT in experiment 

1, explaining 15.5% of the variance but had no significant effect in experiment 2. 

Two QTL were identified on chromosome 4. QTL qrbr-4.1 mapped to the region 

between RM142 and RM177 and affected DLA after inoculation with Caribe-8 in both 

experiments (Fig. 2-8, Table. 2-3). The QTL qrbr-4.2 mapped to the region between 

RM255 and RM348 and affected resistance to FL440, Caribe-8 and F-47 isolates. Four  

resistance traits were affected by this QTL, DLA with FL440, DLA and LT with Caribe-8, 

and LT with F-47, and they were significant in both experiments (Fig. 2-8), explaining 

between 7.8% and 11.9% of the phenotypic variance.  

Partial resistance to isolates Caribe-8, F-54, Ceysvonni, and Metica was 

controlled by two QTL on chromosome 3. One of these QTL, qrbr-3.1 (between RM251 
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and RM282), affected resistance to three isolates and in all three cases the predicted 

resistant allele came from the Fanny parent but was significant only in experiment 1. The 

other QTL on chromosome 3 (qrbr-3.2), was mapped between the markers RM514 and 

RM148 and had an experiment-specific effect on isolate F-54, but the resistance allele 

was inherited from OL5. The locus also had a small effect on both traits for this isolate in 

experiment 2 but the effect was not statistically significant (LOD ~0.5; Fig. 2-11). No Pi 

genes have previously reported on chromosome 3. Thus, our results suggest that there 

are two loci conferring partial resistance to rice blast located on rice chromosome 3, but 

because their effects were experiment-specific, they require further analysis for 

verification. 
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Figure 2-11a. Identification of QTL on rice chromosome 3 for DLA and LT traits to four 

blast isolates in two experiments. (a) QTL mapped in experiment 1. The QTL at the first 

locus (left) was inherited from Fanny. The bars indicate the 1-LOD confidence interval of 

the two loci. The small graphic (bottom) show the additive effect where (+) values = 

allele from OL5 and (-) values = alleles from Fanny.  
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Figure 2-11 b QTL mapped in experiment 2 with low LOD values for isolates Metica and 

F-54 (right side in the figure) were found in the same region as QTL found in experiment 

1.   
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Two QTL affecting resistance to isolates Selecta, Caribe-8 and FL440 were 

identified on chromosome 1 (Fig 2-8). The QTL qrbr-1.2 mapped between markers 

RM3482 and RM5310 and affected resistance to the Caribe-8 and FL440 isolates. The 

locus explained 17.6% of the variation in DLA and 12.9% of the variation in LT for the 

FL440 isolate in experiment 1 but had no significant effect in experiment 2 (Table. 2-3, 

Fig. 2-12). Similarly, resistance to Caribe-8 was also identified in this locus in experiment 

1 and explained 22.2% of phenotypic variance but was not statistically significant in the 

experiment 2. There is no previous report of Pi genes in this region. QTL qrbr-1.1 was 

mapped between the markers RM259 and RM292 and confers resistance to the Selecta 

isolate, but its effect was also experiment-specific.    
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Figure 2-12a Likelihood plots of QTL associated with DLA and LT on rice chromosome 

1. QTL based on mapping populations in exp. 1 (a) and exp. 2 (b) using composite 

interval mapping. The bars indicate the most likely positions of the QTLs. The horizontal 

dashed lines represent the minimum LOD required for significance.  

a. 
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Figure 2-12 b 

b. 

 

 

POSSIBLE CONTRIBUTIONS OF PREVIOUSLY DESCRIBED, AND NOVEL, PI GENES 

Eight of the twenty-one loci had statistically significant effects in both 

experiments, two on chromosomes 8 and 4 and one on chromosomes 6, 9, 11 and 12. 

Most of these loci correspond to map positions to which Pi genes have already been 

mapped. QTL qrbr-8.1 on chromosome 8 affected resistance to isolates Cica-9, 

Ceysvonni, and Selecta from lineages 1, 3 and 6 respectively (Fig. 2-8). A closely linked 

QTL, qrbr-8.2, conferred partial resistance to isolates F-54 and Selecta, both from 

lineage 6. These results suggest that at least one gene is conferring partial resistance to 

different isolates from lineage 6, and a different gene (or genes) is affecting isolates from 
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lineages 1 and 3. A possible candidate for the qrbr-8.1 QTL is the Pi-33 gene since it is 

thought to be present in OL5 pedigree. The Pi-36 (t) and Pi11 genes are other 

possibilities, but they are not known to be present in Colombian germplasm. Pi-GD-1(t) 

and/or Pi-29 could possibly account for the resistance contributed by qrbr-8.2, since the 

genes have been mapped 5.4 cM and 8.9 cM from the RFLP marker RZ617, 

respectively, but neither gene was present in OL5 based on its pedigree. The QTL qrbr-

4.1 on chromosome 4 was unique in that it conferred quantitative resistance to only one 

isolate, Caribe-8 (Fig. 2-8). The other QTL (qrbr-4.2) on chromosome 4 conferred 

resistance to isolates FL440 and Caribe-8, both from lineage 4 and F-47 from lineage 5. 

No R genes have been described in Colombian germplasm on chromosome 4 that are 

effective against isolates from lineages 4 and 5 (Table 2-2, Table 2-4) but two Pi genes, 

Pi-kur1 and the recessive pi-21 gene, both from japonica cultivars, have previously been 

mapped near both loci (Goto et al.1988; Fukuoka and Okuno, 2001) (Fig.2-8, Table 2-5). 

Since the OL5 cultivar is an indica rice cultivar, it seems unlikely that these genes are in 

its pedigree. 

The QTL qrbr-6.1 on chromosome 6, conferred partial resistance to isolates F-47 

and Ceysvonni, from lineages 5 and 6, respectively (Fig. 2-8, Table 2-5), and also had 

experiment-specific effects on isolates from two other lineages. Based on the genes 

thought to be present in Colombian germplasm, (Table 2.4), this gene is likely to be Pi-z 

because it affects isolates from these two lineages (Correa-Victoria, et al. 2004).  

Several Pi genes have been mapped to the genetic region on chromosome 11 

where the resistance QTL qrbr-11.3 mapped in both experiments. The best candidate for 

this gene is probably Pi-k, which is thought to be present in the pedigree of OL5 and 

confers resistance to lineage 4 isolates like FL440 (Table 2-4, Table 2-6). The recently 

cloned Pi-kh gene also maps to this region but does not confer resistance to lineage 4 
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isolates. Its physical position on rice chromosome 11 is also approximately 2 Mb above 

the interval predicted for the QTL in OL5 (Sharma et al. 2005).  

The QTL qrbr-12.2 on chromosome 12 that conferred resistance to Caribe-8 in 

both experiments and had experiment-specific effects on resistance to several other 

isolates mapped near a region where many Pi genes have been mapped (Fig. 2-8). Of 

those Pi genes, Pi-ta2 is the best candidate to contribute to the resistance in OL5 

because it is present in its pedigree and confers resistance to isolates from lineage 4 

such as Caribe-8 as well as lineage 6 isolates such as F-54 and Selecta (Table 2-4, 

Table 2-6). QTL qrbr-9.2 on chromosome 9 was statistically significant in both 

experiments and mapped to a region where no Pi genes had been previously mapped 

(Fig. 2-8). The locus had a modest effect however, and did not have R2 values above 

15% for any of the isolate/experiments combinations (Table 2-3). Given the relatively 

small resistance effect of this locus, it is possible it affects resistance to the other 

isolates, but the effects were not detectable in the current experiment. 
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Table 2-6. Putative association between QTL with significant effects (R2 > 13%) and Pi 

genes predicted to be present in the OL5 parent. a Number in parentheses indicates the 

% of variation accounted for the locus in the experiment in which it had the largest effect. 

Pi gene names followed by question marks indicate that the gene has not been 

predicted to be in the OL5 pedigree or that no Pi genes have yet been mapped to that 

region. (*) Means that this QTL was experiment-specific but has a R2 > 13%.   

 

Chromosome Interval Isolate (%R2 )a Pi gene QTL
FL440 (17.6) Pi-? qrbr-1.2
Caribe-8  (22.2) Pi?
Metica (25.2) qrbr-2.1
F-54 (13.1)

RM106-RM263 Caribe-8 (14.7) Pi-b qrbr-2.3
4 RM255-RM348 Caribe-8 (22.8) Pi-kur1? qrbr-4.2

Ceysvonni (32.6) Pi-z qrbr-6.1
F-47 (13.3) Pi-2
Metica (13.1) Pi-2; Pi-z
Ceysvonni (25.1)  Pi-z
Selecta (53.7) Pi-33; Pi36(t)?; Pi11? qrbr-8.1
Ceysvonni (62.9) Pi-33; Pi36(t)?; Pi11?
F-54 (25.5) Pi-33; Pi36(t)?; Pi11?
Metica (15.2) Pi-33; Pi36(t)?; Pi11?

RZ617-RM339 F-47 (27.5) Pi-GD-1(t)? Pi29? qrbr-8.2
9 RM321-RM257 Selecta (15.5) Pi-5? qrbr-9.1

FL440(15.1) Pi-k? qrbr-11.3
Cica-9 (15.8) Pi-sh 
F-47 (16.1) Pi-sh
F-54 (31.7) Pi-ta 2

Selecta (23.4) Pi-ta 2

Caribe-8 (62.7) Pi-ta 2

qrbr-12.2

1 RM3482-RM529

RM279-RM8 Pi-tq5?

12 RM179-RM313

2

8

11 RM1233-RM5766

RM38-RM72

6 RM136-RM527

 

As mentioned above, most of the QTL detected in this study map to locations 

previously identified as containing Pi genes with large, race-specific resistance effects or 

QTL with smaller effects on blast disease (Fig. 2-8). This is consistent with the idea that 

the OL5 cultivar carries multiple Pi genes with major and minor effects, and that those 

account for at least part of the high level of resistance it has shown over time. Several 

other QTL mapped to positions where no Pi genes have yet been mapped, but this QTL 

was experiment specific (except for the locus on chromosome 9) so should be regarded 
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with caution. These include QTL on chromosomes 1 and 8 and two QTL on 

chromosome 3. QTL qrbr-1.2 affected three experiment-specific resistance traits and 

was mapped in experiment 1 in the RM3482-RM529 marker interval on chromosome 1, 

and two of them had R2 above 15% (Table 2-4). Isolates FL440 and Caribe-8, both from 

lineage 4, were affected by this QTL (Fig. 2-8; Table 2-6). Although this locus was 

significant in experiment 1, there was a low LOD value (< 0.7) observed with these 

isolates in the same region (Fig. 2-10). The predicted resistance allele from QTL qrbr-

8.3, on chromosome 8, was inherited from the susceptible Fanny parent and conferred 

resistance to isolates F-47 and Ceysvonni. Another experiment-specific locus (qrbr-3.1) 

on chromosome 3 was also inherited from Fanny and conferred resistance to isolates 

Ceysvonni, Caribe-8 and F-54 but the R2 values were modest. Another QTL qrbr-3.2 at 

the bottom of chromosome 3, also with low R2 values, was inherited from OL5, and 

conferred partial resistance to isolates F-54 and Metica. 

CANDIDATE GENES FOR THE QTL CONFERRING RESISTANCE TO THE FL440 ISOLATE 

Little is known about the molecular basis of genes that contribute quantitatively to 

resistance. Genes that act in a gene-for-gene fashion can have small effects or can have 

small resistance effects on isolates that do not carry the corresponding R genes (Hu et 

al. 1997; Li et al. 2001). Other defense response genes or defense signaling genes 

might also be good candidates. The DNA sequences corresponding to loci on 

chromosomes 4, 9 and 11 that confer partial resistance against isolate FL440 in both 

experiments and qrbr-1.2 on chromosome 1 were examined for possible candidate 

genes. QTL on chromosomes 6, 8 and 12 that had larger effects (R2 > 20%) and 

affected both DLA and LT in both experiments were not considered because they 

mapped to loci with R genes that have been cloned, such as Pi-ta on chromosome 12 

(Bryan et al. 2000) and Pi-kh on chromosome 11 (Sharma et al. 2005) or physically 
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mapped like Pi-2 and Pi-9 on chromosome 6 (Liu et al. 2002) and Pi-36 (Liu et al. 2005), 

Pi-GD-1(t) (Liu et al. 2004) and Pi-33 (Berruyer, et al. 2003) on chromosome 8; or they 

were located in regions with many predicted candidates, such as clusters of NBS-LRR 

genes (Monosi et al. 2004, Table 2-7).  

The microsatellite markers spanning four putative resistance loci were integrated 

with the Nipponbare DNA sequence in silico using the GRAMENE and TIGR 

databases. This was possible because the genetic map is linked to the rice physical map 

wherever sequence information is available for the markers. Predicted genes in these 

two databases, such as NBS-LRR genes, receptor kinases and other protein kinases 

were considered good candidates for race-specific R genes (Bai et al. 2002; Howles et 

al. 2005). Other genes, such as those coding for proteins commonly induced in defense 

reactions, were also considered as possible QTL (Ramalingam, et al 2003; Wisser et al. 

2005). The putative resistance QTL qrbr-1.2, located in the interval between RM6292 

and RM529 (~1.44 Mb) on chromosome 1, included one NBS-LRR gene and three 

possible defense genes (Table 2-7). The second QTL qrbr-9.2 mapped in the interval 

between RM278 and RM288 (~1.87 Mb) on chromosome 9 which included two NBS-

LRR and three possible defense genes (Table 2-7). The defense genes corresponded to 

one ascorbate peroxidase and two thaumatin-like proteins, typical of those induced by a 

variety of phytopathogens in many plants. The QTL qrbr-4.2 interval on chromosome 4 

contained 5 NBS-LRR proteins and four defense genes (Table2-6). Finally, the qrbr-11.3 

locus on chromosome 11 harbors 27 predicted NBS-LRR proteins, one defense gene 

and one JAMyb-family transcription factor (Table 2-7).   
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Table 2-7 Candidate NBS-LRR and defense genes in the QTL regions conferring 

resistance to isolate FL440 of M. grisea on chromosomes 1, 4, 9 and 11. The SSR 

markers used in this study are also shown. 

 

Marker Chr. bp Gene Protein QTL
RM6292 1 39202220

10449 1 39481144 LOC_Os01g67980 putative thiol protease
RM3482 1 39699704

10451 1 39856209 LOC_Os01g68660 oryzacystatin
10452 1 39858624 LOC_Os01g68670 oryzacystatin

RM104 1 40147548
10030 1 40541026 LOC_Os01g70080 NBS-LRR

RM529 1 40651364

RM255 4 30518352
10609 4 30579431 LOC_Os04g52210 diterpene cyclase
10610 4 30587813 LOC_Os04g52230 diterpene cyclase
10611 4 30595893 LOC_Os04g52240 diterpene cyclase
10612 4 30955956 LOC_Os04g52720 oxalate-oxidase
10098 4 31217547 LOC_Os04g53160 NBS-LRR
10096 4 31160979 LOC_Os04g53050 NBS-LRR
10094 4 31138740 LOC_Os04g53030 NBS-LRR
10093 4 31113927 LOC_Os04g52970 NBS-LRR
10099 4 31415285 LOC_Os04g53500 NBS-LRR

RZ590 4 32193711
RM349 4 32243656
RM348 4 32394720

RM278 9 19033543
RM107 9 19721560

10232 9 19814069 LOC_Os09g34150 NBS-LRR
10233 9 19819867 LOC_Os09g34160 NBS-LRR

RM201 9 19826860
RM5765 9 20442217

10778 9 20736410 LOC_Os09g36560 thaumatin-like protein
10779 9 20745831 LOC_Os09g36580 thaumatin-like protein

RM215 9 20837155
10780 9 20852557 LOC_Os09g36750 ascorbate peroxidase 

RM288 9 20912111  

 

  81



Table 2-7 cont.  

 

Marker Chr. bp Gene Protein QTL
10329 11 25831137 LOC_Os11g43700 NBS-LRR

G181 11 26132682
10330 11 26406046 LOC_Os11g44580 NBS-LRR

RM1233 11 26456128
10331 11 26672305 LOC_Os11g44960 NBS-LRR
10332 11 26684649 LOC_Os11g44970 NBS-LRR
10333 11 26711543 LOC_Os11g45050 NBS-LRR

RM224 11 27123770
10334 11 26720036 LOC_Os11g45060 NBS-LRR
10335 11 26732682 LOC_Os11g45090 NBS-LRR
10336 11 26769392 LOC_Os11g45130 NBS-LRR
10337 11 26785664 LOC_Os11g45160 NBS-LRR
10338 11 26792478 LOC_Os11g45180 NBS-LRR
10339 11 26800570 LOC_Os11g45190 NBS-LRR
10340 11 26878226 LOC_Os11g45330 NBS-LRR
10341 11 27056210 LOC_Os11g45620 NBS-LRR
10863 11 27123771 LOC_Os11g45740 JAMyb Oryza sativa
10342 11 27140738 LOC_Os11g45750 NBS-LRR
10343 11 27141649 LOC_Os11g45760 NBS-LRR
10344 11 27157662 LOC_Os11g45790 NBS-LRR
10345 11 27185021 LOC_Os11g45840 NBS-LRR
10346 11 27243159 LOC_Os11g45920 NBS-LRR
10347 11 27244227 LOC_Os11g45930 NBS-LRR
10348 11 27268880 LOC_Os11g45970 NBS-LRR
10349 11 27270758 LOC_Os11g45980 NBS-LRR
10350 11 27335825 LOC_Os11g46070 NBS-LRR
10351 11 27370513 LOC_Os11g46130 NBS-LRR
10352 11 27379180 LOC_Os11g46140 NBS-LRR
10353 11 27434046 LOC_Os11g46200 NBS-LRR
10354 11 27435146 LOC_Os11g46210 NBS-LRR

RM5766 11 28225397
10355 11 28169486 LOC_Os11g47780 NBS-LRR

RM144 11 28158704
10864 11 28179212 LOC_Os11g47810 metallothionein-like protein

RM6094 11 28284056 117.9  
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DISCUSSION  

Blast resistance in the cultivar OL5 was found to have very complex inheritance. 

Eight resistance QTL were identified that were statistically significant in both of the two 

mapping experiments conducted. The two experiments were conducted with separate, 

independently derived lines from the same cross allowing the verification of some loci 

with relatively small effects (e.g. R2 < 15%). Evidence for several other experiment- 

specific QTL was generated but the results were significant in only one of the two 

experiments. Some of these latter loci may represent genes with small effects, which are 

affected by the environment or near the threshold of significance in QTL mapping 

experiments. Differences in the frequency distributions of resistance to some of the 

isolates were observed between the two experiments indicating environmental 

differences between the two experiments. This presumably reflects the segregation of 

different resistance genes which may function at different stage in the infection process. 

This difference indicates that the environment where the disease assay was performed 

made an appreciable difference in resistance to some of the isolates. Similar 

experiment- or environment-specific effects have been observed in other QTL mapping 

analyses (Talukder, et al. 2005; Xu, et al. 2004).  

Many of the QTL identified in the present study mapped to regions where blast 

resistance traits had previously been mapped. Seven of eight QTL that were detected in 

both experiments mapped to regions of known Pi genes. Resistance traits mapped as 

QTL for blast resistance have also been mapped to several of these loci (Sallaud, et al. 

2003; Tabien et al. 2002; Wen et al. 2003, Chen et al. 2003). Several of the Pi genes 

that mapped to these areas are thought to be present in rice lines in the pedigree of OL5 

and are therefore good candidates for the genes controlling the resistance (Table 2-2). 

One QTL, qrbr-9.2, on chromosome 9 was in a region where no Pi genes had been 

designated, but a QTL had been reported for blast resistance (Chen et al. 2003). QTL 
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had been previously mapped to most of the other QTL identified in OL5; including 

putative OL5 QTL that only had significant effects in one experiment.  These regions 

include: QTL qrbr-1.2, qrbr-2.2, qrbr-3.1, qrbr-8.1 and qrbr-9.2 are located in the same 

five regions as QTL for resistance to rice blast identified in a cross between cultivars 

Zhenshan 97 and Minghui 63 (Chen et al. 2003). Nine QTL (qrbr-1.2, qrbr-3.1, qrbr-6.1, 

qrbr-6.2, qrbr-8.1, qrbr-9.2, qrbr-11.2, qrbr-11.3 and qrbr-12.1) coincided with nine QTL 

identified for blast in lines derived from a cross between the indica IR64 and the japonica 

cultivar Azucena (Ramalingam, et al. 2003). Four QTL (qrbr-6.1, qrbr-8.2, qrbr-11.1 and 

qrbr-12.1) were also identified in a double haploid (DH) population derived from an IR64 

by Azucena cross (Sallaud et al. 2003). The QTL qrbr-1.2, qrbr-4.2, qrbr-6.1 and qrbr-

12.1 occurred at the same positions as QTL for blast resistance in a RIL derived from a 

Bala x Azucena cross (Talukder, et al. 2004). Four QTL (qrbr-4.1, qrbr-4.2, qrbr-9.1 and 

qrbr-12.1) occurred at the same locations as the four blast resistance QTL mapped in a 

Nipponbare x Owarihatamochi cross (Fukuoka and Okuno, 2001). One of those four 

QTL (qrbr-4.1) occurred at the same interval as a recessive R gene (pi-21). The qrbr-4.1 

QTL was also identified in a Zhong 156 x Gumei 2 cross (Wu et al. 2005). Four QTL, 

qrbr-1.1, qrbr-11.1, qrbr-2.2 and qrbr-3.1 coincided with four QTL mapped in a cross 

between Zhong 156 and Gumei 2 (Wu et al. 2005).   

The genes controlling these resistances could be identical or allelic to those 

controlling the QTL in these other crosses, thus supporting the idea that at least some of 

them represent a real resistance QTL from the OL5 and Fanny lines. Most of the 

experiment- specific QTL in the present study were not significant in both experiments 

even when the statistical criterion was relaxed (e.g. P < 0.01 to P< 0.05). For example, 

QTL qrbr-1.2 had highly significant effects on resistance to FL440 and Caribe-8 in 

experiment 1 but an LOD score of less than 1.0 in experiment 2. When the combined 

effects of other QTL with larger effects account for the large proportion of the genotypic 
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variance, it can be difficult to detect additional QTL with small effects. Map coverage with 

genetic markers was thorough in both experiments, so this should not have had much of 

an effect on QTL detection. Another possible reason for inconsistent QTL detection 

across experiments could also be the different environmental conditions under which 

experiments were conducted. Different resistant mechanisms could be affected by 

different environmental conditions.  

Since blast resistance in many rice cultivars is short-lived, recent genetic 

analyses have focused on resistances that appear to have relatively durable or broad-

spectrum effects (Wang et al. 1994; Tabien, et al 2000; Jeon et al. 2003; Correa-Victoria 

et al. 2004; Wu et al. 2005). The molecular basis of this resistance is not well understood 

but genetic evidence indicates it may be controlled by successful combinations of genes 

with large race-specific effects or combinations of many genes with minor effects 

(Johnson 1981; Wang et al. 1994; Jeon et al. 2003). Race specific genes like Pi-1, Pi-2 

and Pi-9, Pi-z have been recognized to confer resistance to many isolates of the blast 

fungus from different geographical regions (Chen et al. 1996; Liu et al. 2002). These 

genes have been identified in cultivars whose resistance remained effective in the 

regions they were grown, like the African cultivar Moroberekan (Wang et al. 1994; Inukai 

et al. 1996), the Korean cultivar Suweon 365 (Ahn et al. 2000) and the Chinese cultivar 

Sanhuangzhan 2 (Liu et al. 2004). The molecular bases of Colombian rice cultivars 

conferring resistance to blast have not been documented. The OL5 cultivar was 

developed by combining resistances from several cultivars with different sources of 

resistance and selecting for high levels of resistance to different genetic lineages of the 

pathogen. The presence of multiple genes with large effects made thorough 

characterization of all the QTL difficult, and the use of multiple blast isolates was a 

critical component of the analysis. It is difficult to determine whether some of the QTL 

represent Pi-type genes with race- specific effects or genes with potential nonspecific 
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effects. Because OL5 carries so many resistance genes, there are typically several 

genes conferring resistance to each of the isolates. The presence of genes conferring 

large resistance effects to a given isolate obscures the effects of genes with smaller 

effects and may even make them impossible to detect.  

A nonspecific QTL with moderate affects may not show a statistically significant 

contribution to resistance in a population challenged with a blast isolate to which multiple 

genes with major effects were functioning. The blast isolate FL440 was selected for 

partial virulence on OL5 in an attempt to identify an isolate to which the genes with major 

race specific effects would not function. The QTL identified with this isolate had modest 

effects with none of them accounting for more than 17% of the genetic variation when 

averaged over the two experiments. Two of the three QTL that were significant in both 

experiments to isolate FL440 isolate mapped to regions where Pi genes have previously 

been mapped while no Pi genes have been mapped to the chromosome 9 locus. The 

resistance effects of these genes seems relatively small for major race-specific Pi genes, 

but if their resistance is controlled by typical R-gene like sequences they may simply 

have small race-specific effects or possibly residual effects that are nonspecific. The 

effects of these genes should be tested with multiple isolates in lines where they are 

isolated from the other QTL. Identification of genes with nonspecific effects would 

provide useful breeding tools even if the effect of each individual locus is small. 

The genes in each of the QTL regions that have been predicted from analyses of 

the rice genome sequence provide possible candidates for the genes underlying these 

traits.  A preliminary examination of these genes might shed light on whether the genes 

underlying specific QTL are race specific or potentially nonspecific. When the three 

genomic regions conferring resistance to isolate FL440 in both experiments were 

examined, NBS-LRR genes were found in all three regions, leading the idea that R 

genes would be involve in the QTL observed. In fact the qrbr-11.3 region contains 23 
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NBS-LRR in a genomic region of ~ 1.8 Mb and several race specific Pi and Xa (bacterial 

blight resistance) genes also map to this region. The NBS-LRR genes are known for 

their race specific effects on resistance, although some NBS-LRR genes or gene 

clusters may also have nonspecific effects. On the other hand, if any of these loci 

actually do have nonspecific effects, there are also other predicted genes that could 

account for the effects. These include an oxalate-oxidase gene and a family of diterpene 

cyclase encoding genes at the chromosome 4 QTL, Thaumatine like protein encoding 

genes at the chromosome 9 QTL and a JAMyb transcription factor at the chromosome 

11 QTL. Transcription of the latter gene was even shown to be up-regulated after blast 

infection in microarrays experiments (Gloria Mosquera, personal communication). 

Further genetic studies in those regions are needed to determine if any of these QTL is 

nonspecific and correspond to the genes that control these resistance effects.  
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CONCLUSIONS 

The large numbers of QTL identified conferring blast resistance demonstrate the 

durability of OL5 is due to many genes with variable effects. Eight of the QTL were 

identified in both experiments while others were experiment specific. Many of the 

experiment specific QTL, however, corresponded to positions of previously mapped 

QTL, lending credibility to their existence in OL5. The QTL with minor resistance effects 

to isolate FL440 could be nonspecific, since they had small effects and some mapped to 

regions with no Pi genes.   
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ABSTRACT 

An advanced backcross strategy with marker-assisted selection for donor alleles 

in QTL regions was used to generate five BC2F3 populations carrying five different target 

regions associated with partial resistance to rice blast disease. Three of five of these 

populations were analyzed for segregation for resistance to the M. grisea isolate FL440. 

One QTL designated qrbr-11.3 near the bottom of rice chromosome 11 was found to be 

significantly associated with partial blast resistance in 120 lines of a BC2F3 population 

(P< 0.01). This QTL accounted for 12.4% and 8.0% of the phenotypic variation in 

disease leaf area (DLA) and lesion type (LT) observed under greenhouse inoculation 

with blast isolate FL440, indicating that both traits are controlled by the same gene. 

Analysis of the qrbr-11.3 locus based on genomic sequence of the corresponding region 

of the reference japonica cv. Nipponbare, show that 29 candidate genes are present at 

that locus (~1.8 Mb), 27 of which are predicted NBS-LRR genes. Two other QTL, qrbr-

9.2 and qrbr-1.2, were not found to be significantly associated with resistance in their 

corresponding advance backcross mapping populations, suggesting that those QTL 

effects are difficult to reproduce because their resistance effects are small or because 

the environment plays an important role in their expression.    
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INTRODUCTION 

Disease resistant crops have been produced through traditional breeding 

methods for many years, but many varieties have failed due to their rapid loss of 

resistance. The use of molecular approaches has allowed genes conferring disease 

resistance to be analyzed at a more detailed level. Molecular approaches have been 

applied to examine the complexity of plant defense mechanisms and host–pathogen 

recognition. This knowledge has led to better use of marker-assisted selection (MAS) to 

refine breeding strategies.  

In the last few years, significant advances have been made in understanding the 

molecular basis of disease resistance in agronomically important species. However, 

there are still many aspects that need to be explored. In most studies of disease 

resistance, the focus has been on single, dominant genes with “Mendelian” inheritance 

because they are easy to genetically manipulate and map in a suitable segregating 

population. Flor’s "gene-for-gene" hypothesis states that a resistance gene in the plant 

has a corresponding avirulence gene in the pathogen (Flor, 1971). In some cases, plant 

resistance proteins interact directly with avirulence proteins from the pathogen (Tang et 

al. 1996; Jia et al. 2000), leading to recognition and a hypersensitive resistance 

response. Studies on crop plant-pathogen systems have revealed that when breeders 

introduce varieties carrying such resistance genes, pathogen isolates often arise that 

lose the protein that is recognized.  Once the pathogen population shifts to this new 

form, the resistance ‘breaks down’ because the resistance gene is no longer effective 

(Ohtsuki and Sasaki, 2005).  

Some resistances to plant pathogens are believed to be polygenic and 

quantitative. This type of resistance is complicated and poorly understood. Quantitative 

resistance is believed to be controlled by many genes that individually contribute a small 
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effect on the phenotype and resistance effectiveness is expressed on a continuous scale 

in a segregating population. Multiple efforts to understand the molecular bases of these 

complex mechanisms are underway using QTL analysis and map-based cloning 

approaches (Ayliffe and Lagudah, 2004).      

The use of molecular markers now provides the ability to understand the genetic 

basis of quantitative traits. Molecular markers and genetic maps allow one to detect 

quantitative trait loci (QTL) controlling a wide variety of traits, including, yield and yield 

components, aluminum tolerance, and also resistance to pathogens. They also offer a 

complementary approach to breeding, since selection can be based on genotype. 

Combining breeding methods and QTL mapping approaches allows partial resistance 

loci to be manipulated like major genes. Marker-assisted selection can be used to 

manipulate each target QTL in various breeding strategies, like pedigree or backcross 

breeding (Steele et al. 2005). Thus, the genetic markers can provide a way to 

successfully target R genes present in highly resistant lines, to be used in breeding 

programs for isolating those beneficial genes that are often lost when traditional methods 

of selection are used. Marker assisted selection in plant breeding programs is usually a 

two-stage process. In the first stage a QTL analysis is performed. The parental lines 

which differ for at least one quantitative trait are crossed to develop a segregating 

population such as an F2, recombinant inbred lines (RIL) or double haploid (DH) 

population in which molecular markers are used to identified linked QTL. The second 

stage is to take advantage of these QTL and use them in a breeding program to develop 

a superior variety. However, QTL discovery and variety development utilizing those QTL 

are both time consuming processes.  

Advance backcross QTL analysis (AB-QTL analysis), was proposed as a method 

for the simultaneous discovery and transfer of valuable wild germplasm into elite 
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cultivars (Tanskley and Nelson, 1996). The process is similar to marker-assisted back-

crossing (MABC; Steele et al. 2005). This approach integrates the process of marker-

based QTL detection with variety improvement while exploiting the potential of the 

natural genetic variation existing in adapted germplasm. In this method, BC2 or BC3 

populations are derived from an intercross allowing the identification and mapping of 

valuable donor QTL alleles. Thus, QTL are at once transferred to lines with the genetic 

background of the adapted parent, which are then tested. 

 By using the AB-QTL method, the breeder can accelerate crop improvement 

by allowing rapid development of near isogenic lines (NILs) containing the QTLs of 

interest, derived directly from the advanced backcross population where the positive 

QTL were identified (Goodstal et al. 2005). Superior lines can be developed from those 

NILs, where most of the genome is the same as the elite recurrent parent. AB-QTL has 

been employed in QTL studies of tomato (Frary et al. 2004; Foolad et al. 2002), and rice 

(Li et al. 2004; Steele et al. 2005).  

The highly resistant indica rice cultivar OL5 was released by CIAT breeders in 

Colombia in 1989. Its resistance is still effective, not only in Colombia but also around 

the world, where it has been tested with hundreds of isolates of the blast fungus (Correa-

Victoria, personal communication). The previous chapter described a QTL mapping 

approach that was used to identify several QTL that each affected resistance to one or 

more of eight isolates of the blast fungus (M. grisea). Most of the loci mapped to regions 

of known Pi genes, particularly on chromosomes 6, 8, 11 and 12. They were effective 

against several isolates and for some resistant traits the loci accounted for more than 

half of the genetic variation in the population. For isolates like FL440, which was the only 

one of the eight used that caused lesions on the resistant OL5 parent, six putative QTL 

were identified that affected resistance (Fig. 3-1). Only three of the QTL, on 
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chromosomes 4, 9 and 11, were statistically significant in two different experiments. The 

effects of these QTL were modest, with no R2 values above 20% in either experiment. 

The other three loci were experiment-specific, but one of them, qrbr-1.2 on chromosome 

1 explained 17.6% of DLA and 12.9% of LT in experiment 1 and occurred in the same 

interval as another experiment specific QTL for the Caribe-8 isolate. Two of the putative 

QTL, qrbr-9.2 and qrbr-1.2, affecting resistance to the FL440 isolate, mapped to regions 

on chromosomes 9 and 1 where no major race-specific genes had yet been reported; 

but QTL for blast resistance have been reported (Tabien et al. 2002, Chen et al. 2003). 

The QTL qrbr-11.3 mapped near the bottom of chromosome 11 and could therefore 

correspond to Pi-sh or Pi-k if these genes have a relatively small effect on resistance to 

FL440, or could be another gene in this region. It is therefore possible that the genes 

conferring resistance to FL440 are defeated R genes with residual effects. Alternatively, 

they may be other types of genes with small effects on resistance and these effects 

could, in theory, be nonspecific. To characterize the specificity of their effects they need 

to be isolated individually into lines with homogeneous backgrounds and tested with 

different blast isolates. An AB-QTL approach would be useful for this purpose.   

In the present study, an AB-QTL approach combined with marker-assisted 

selection was used to target five segments of four chromosomes for introgression and 

further fine mapping. All five segments were predicted to carry QTL for partial resistance 

to blast disease (disease leaf area and lesion type). BC2F3 populations were developed 

from an inter-specific cross between OL5, a worldwide recognized, highly resistant 

indica rice cultivar and Fanny, a highly susceptible japonica accession. I describe the 

selection in two backcross (BC) generations and three rounds of self-fertilization using 

MABC after challenge with the FL440 blast isolate. Ultimately, the information from this 

study can be integrated into the development of improved lines with OL5-derived QTL 

for resistance.  
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The objectives for this study were:  

1. To generate advanced lines using an AB-QTL strategy with marker-

assisted selection that can be used for dissecting QTL that confer 

resistance to the FL440 blast isolate. 

2. To validate the qrbr-1.2, qrbr-9.2, qrbr-11.3 QTL in BC2F3 families. 

3. To identify candidate genes in the five targets QTL regions using the 

rice genome sequence database. 
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MATERIALS AND METHODS 

BACKCROSSING AND SELECTION 

Five chromosomal regions with potential effects on resistance to isolate FL440 

were selected for introgression and further analysis using an AB-QTL strategy. The five 

target chromosome segments with QTL from OL5 are designated qrbr-1.2, qrbr-4.2, 

qrbr-9.2, qrbr-11.1 and qrbr-11.3 (Fig. 3-1) and were estimated to carry genes for 

resistance to the blast fungus as indicated by QTL analysis (Chapter 2).  

Population development was carried out at Kansas State University (KSU), 

Manhattan, Kansas, USA and the Centro Internacional de Agricultura Tropical (CIAT) in 

Cali, Colombia, beginning with a cross between the cultivar Fanny as the female parent 

and OL5 as the male parent (Fig. 3-2). The recurrent parent in this study was Fanny, a 

highly susceptible rice cultivar. Fanny was chosen for this study because it is highly 

susceptible and lacks any known major resistance genes for blast. The donor parent 

was the indica rice cultivar OL5. It has a high level of disease resistance against 

hundreds of isolates from M. grisea around the world and its resistance is still effective 

today and therefore provides a starting point for further improvement. All the inoculation 

assays with the FL440 isolate of M. grisea and the second BC were carried out at CIAT. 

The first BC and all of the genetic characterization was carried out at KSU.  

A MAS approach was carried out using simple sequence repeat (SSR or 

microsatellite) markers for introgression of OL5 alleles in the five target segments and to 

lose these alleles in several non-target regions. In the first backcross, selection was 

made with SSR that had previously been mapped in the Fanny /OL5 population and laid 

within the region containing the target QTL (Fig. 3-1). When RFLP markers were used in 

the previous mapping study, closely linked SSR markers were selected to replace them 

by comparing their positions on the genetic or physical rice maps 
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(http://www.gramene.org). SSR analysis was performed as described in Chapter 2. 

Individuals that were heterozygous at alleles in the target segment were selected.  
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Figure 3-1 Rice chromosomes 1, 4, 9 and 11 showing the five QTL regions (blue) that 

conferred partial blast resistance to isolate FL440 of M. grisea. Other isolates affected by 

the same locus are also shown. The Pi genes mapped in previous studies are indicated 

at the left of the chromosome. 
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The AB-QTL strategy began with selection of sixteen of 120 F6 RIL progeny 

chosen as carrying OL5 alleles in each of the five QTL regions and then backcrossed to 

Fanny (Table 3-1). About 10 seeds from each of these 16 initial RIL as well as seeds 

from Fanny (used as recurrent parent) were planted into 25 cm pots containing a 

greenhouse soil mixture in the summer of 2003 at KSU. When flowering coincided, 

emasculation of the Fanny plants was done by removing caryopses with scissors to 

expose the anthers and the stigma. An aspirator attached to a suction pump was used to 

suck the anthers from the flowers and also passed over the stigmas to suck away any 

pollen grains present on their surface. Pollen from each of the sixteen individual plants 

was shaken into different Fanny panicles to facilitate pollination by dispersing the pollen 

from the male (RIL) to the female parent (Fanny). Panicles containing emasculated 

flowers were covered with paper bags to prevent contaminating cross-pollination. Plants 

were maintained in a greenhouse with a day/night temperature set at 29/21°C.   

Plants resulting from this first BC (BC1) were self fertilized at KSU to produce 

BC1F2 families which were sent to CIAT. A total of 55 BC1F2 families were planted in the 

greenhouse at CIAT and inoculated with isolate FL440 21 days after planting (Fig. 3-2). 

The families were scored for resistance seven days after inoculation and any plants that 

were noticeably more resistant than the Fanny control plants were considered resistant. 

Plants that appeared more resistant than the control Fanny from 12 BC1F2 families, that 

carried OL5 alleles at the target locus, were backcrossed a second time to Fanny to 

generate BC2 plants in the fall of 2003 at CIAT. Plants resulting from this second BC 

(BC2) were planted in the greenhouse at CIAT, grown to maturity, and then self-fertilized 

to generate BC2F2 families, which were inoculated with FL440. From these, a subset of 

11 BC2F2 families, designated families A to K (Table 3-2), were selected based on the 

same criteria as the BC1 population. A total of 3900 individual seed derived from these 

eleven BC2F2 families were sown into 4-inch pots containing a greenhouse soil mixture 
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at KSU in the summer of 2005. Some of these 11 BC2F2 families derived from the same 

BC1F2 plant were combined for use in QTL mapping. For example, population AB was 

derived from pooling the A and B families, both of which segregated for locus qrbr-1.2; 

populations C, D and E, all segregated for qrbr-11.3; families F and G segregated for 

qrbr-9.2; families H, I and J all segregated for qrbr-11.1 and family K segregated for qrbr-

4.2. Finally, a subset of 120 random plants derived from the AB, CD and FG BC2F2 

families was used for SSR marker analysis and BC2F3 families derived from those BC2F2 

plants were sent to CIAT for inoculation and evaluation in fall of 2005.  

  

 

  104



Figure 3-2 Schematic representation of the backcrossing strategy used to transfer the 

OL5 alleles at the five putative QTL carrying regions for fine mapping of the QTL. MAS 

was employed in both BC(n) F2 generations to select the most desirable genotypes.     
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F 76 C-2-9 420
G 76 C-21-8 510
H 76 C-22-13 420
I 76 C-22-17 270
J 76 C-2-2 366
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Table 3-1 Selection of sixteen lines from the experiment 1 RIL family as carrying OL5 

alleles based on SSR markers across important regions of the rice chromosomes. The 

chromosome number and the segment with OL5 alleles are highlighted. 

RR Chr 5 11 25 30 41 60 62 76 87 91 92 105 107 110 124 126
RM246 1 S S R S S R R S R R R R S S S S
RM34 1 S S S S S S R S S R R R R R S R
RM106 2 S S R R S S S R R S S S R R R R
RM263 2 S R R R S R S S R S S S R R R R
RM130 3 S S S R S S R S R S R S R S S S
RM148 3 S R S S S R R R R S R R R S S R
RM203 3 R S S S R R S R R R R S S R S -
RM85 3 S S S S S R R R R S R S R S S -
RM124 4 S S R S S R R S R S R - R R R S
RM131 4 S S R S S R R S S S R S R R R S
RM255 4 - S R S R R R R - R R S R S S S
RM280 4 S S R S S R R S R S R S R R R S
RM303C 4 R R R R S R R R R S R S R S R R
RM348 4 S S R S R R R S S S R S R S S S
RM349 4 S S R S R R R S S S R R R S S S
RM136 6 S S S S S S R - S R S R S - S S
RM238B 6 S S S S S S R R S R S S R R R R
RM276 6 S S S R S R R R R R R R S R S R
RM3 6 S S S S S S R S S R R R R R R R
RM50 6 - S S R S R R R R R R R R R R R
RM38 8 S S S S S S R S R - - R S S R S
RM72 8 R S S S S S S R R S S S S S S S
RM126 8 R S S S S S S R R S S S S S S S
RM137A 8 R - S S S R R R R S - S - - R S
RM25 8 R S S S S S S R R S S S S S S S
RM310 8 R R S S - S S R R S R S S S S S
RM331 8 S R R R R S S R R S S S S S R S
RM339 8 S S R R R S S R R S S S S S R S
RM342A 8 S R R R R S S R R S S S R S R R
RM342B 8 S R R R R S R R R R R S R R R R
RM344 8 S R R R R S S R R S S S S S R S
RM350 8 S S R R R S S R R S S S R S R R
RM42 8 S S R R R S S R R S S S R S R R
RM44 8 S S R R R S S R R S S S S S R S
RM205 9 R R S S S S S R S S S S R R R S
RM215 9 S R S R S S S R S R S S R R R S
RM245 9 S R S S S S S R S S S S R R R S
RM244 10 S S S S R R R R S R R S R R S R
G181 11 R R R R S S R R S S R R R S S R
RG303 11 R S R R S R R R R S R S R - S R
RM144 11 R S R - - S R R S S R S R S S S
RM181 11 R R R R R R R R R R R R R R R R
RM224A 11 R R R R R S R R S S R R R S S R
RM224B 11 R S R R S S R R S S R S R S S R
RM224C 11 R S R R S R R R R R R S R R S S
RZ536 11 R S R R S S R R S S R S R S S R
RG9 12 S R R R R S R S R S S S R S S S
RM101 12 S S R R R R R R R R S R R S S S

RIL
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Table 3-2 Eleven BC2F2 derived families (A to K) selected by SSR markers as 

segregating at five QTL regions. R2 = percentage of the phenotypic variance to blast 

isolate FL440 explained by the QTL in the previous study (Chapter 2). Families 

segregating for the same locus are indicated by the same color. 

 

BC2F2 # Seed Chr QTL R2 (%) Trait Experiment
A 126 A-1-13 450 1 qrbr-1.2 17.6 DLA 1
B 126 A-1-7 231
C 107 A-24-13 387
D 107 A-24-21 345 11-q qrbr-11.3 15.1 DLA 1 and 2
E 107 A-24-18 72
F 76 C-2-9 420 9 qrbr-9.2 9.3 DLA 1 and 2
G 76 C-21-8 510
H 76 C-22-13 420
I 76 C-22-17 270 11-p qrbr-11.1 10.0 LT 1
J 76 C-2-2 366
K 107 C-2-14 330 4 qrbr-4.2 7.8 DLA 1 and 2  

 

PATHOGEN INOCULATION AND DISEASE SCORING 

M. grisea isolate FL440 was used to inoculate lines derived from BC1F2, BC2F2 

and BC2F3 families. Fanny and OL5 were also inoculate with FL440 and used as controls 

in the phenotypic scoring for resistance in the segregating families. Blast inoculations 

were carried out as described (Correa-Victoria and Zeigler, 1993) except that a 

concentration of 4x105 spores ml–1 was used. The scoring of the resistance traits, DLA 

and LT, were evaluated in the subset of 120 random plants derived from the AB, CD and 

FG BC2F2 families based on methods of Correa-Victoria and Zeigler, (1993). Because of 

the large number of lines and limited space in the greenhouse at CIAT, families E, H, I, J 

and K were not evaluated.  

MOLECULAR MARKERS AND QTL ANALYSIS 

The molecular marker scoring was preformed as described in Chapter 2.  QTL 

were identified using interval mapping (IM) and composite interval mapping (CIM). The 
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primary analysis using IM was performed using QGENE (Nelson, 1997). The QTL 

detected by IM and CIM corresponded well (data not shown). Therefore only the data 

from IM are presented. Parameters for CIM, from QTL Cartographer (Wang et al. 2005), 

were as used in Chapter 2. To identify the significance threshold for each trait, an 

empirical threshold was determined by permutation for IM and CIM using 1000 

permutations for both traits in each chromosome (Doerge and Rebai 1996). For IM, the 

experiment-wise significance level of P < 0.01 corresponded to an average LOD > 2.39 

across the traits, while the level of P < 0.05 corresponded to a LOD > 1.79. For CIM the 

experiment-wise level of P < 0.01 corresponded to an average LOD > 2.44, while the 

level of P < 0.05 corresponded to a LOD > 1.78. A putative QTL was reported if detected 

in at least at an experiment-wise significant threshold of P < 0.05.  
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RESULTS  

SSR MARKERS AND PHENOTYPIC SELECTION 

A total of 36 SSR markers that detected polymorphism between Fanny, the 

recurrent parent and OL5, the donor parent, were used to genotype 22 BC1F2 families in 

the five targets and several non-target QTL regions (Fig. 3-3 and Fig 3.4). The non-

target regions were those regions (chromosomes 6, 8, 12) where QTL with major effects 

were also found for isolates other than FL440. Families that carried OL5 alleles in the 

five QTL regions and that also appeared to be segregating for resistance were selected. 

A total of 12 BC1F2 families were selected and resistant plants from each of these 

families were backcrossed again to Fanny. The resulting BC2F1 progeny were grown to 

maturity and self-fertilized to produce BC2F2 families. A total of 36 BC2F2 families that 

appeared to segregate for resistance to FL440 were analyzed for OL5 alleles at target 

QTL. Eleven of those 36 families were selected. As mentioned in Material and Methods, 

they were designated families A to K (Fig. 3-5; Table. 3-2). 

 



Figure 3-3 SSR marker analysis in 22 BC1F2 derived families for target and non-target QTL regions. A total of 12 families carrying 

OL5 alleles that also were segregating for resistances to isolate FL440 were selected (pink box). Blue boxes indicate OL5 alleles 

were detected for that SSR.   

 

KSU CIAT RM236 RM203 RM8 RM527 RM557 RM136 RM247 RM512 RM313
1 126A-1
2 126A-11
3 126A-21
4 126B-12
5 126B-21
6 126B-22
7 126C-1
8 126C-21
9 126E*11
10 107-2 Line 10
11 107A-24 Line 11
12 107B-11 Line 12
13 107C-2 Line 13
14 107C-21 Line 14
15 107C-22 Line 15
16 107D-21 Line 16
17 110DX-1-21 Line 17
18 76C-1 Line 18
19 76C-2 Line 19
20 76C-3 Line 20
21 76C-21 Line 21
22 76C-22 Line 22

Locus 1 Locus 1
Chr 2  Chr 6 

Loci 1
Chr 12

BC2F1
KSU CIAT RM219 RM3912 RM524 RM242 RM107 RM3249 RM202 RM6897 RM21 RM5961 RM1233 RM224 RM5766 RM6094

1 126A-1
2 126A-11
3 126A-21
4 126B-12
5 126B-21
6 126B-22
7 126C-1
8 126C-21
9 126E*11

10 107-2
11 107A-24
12 107B-11
13 107C-2
14 107C-21
15 107C-22
16 107D-21
17 110DX-1-21
18 76C-1
19 76C-2
20 76C-3
21 76C-21
22 76C-22

Chr 9 Chr 11
Locus 1 Locus 2 Locus 1 Locus 2

KSU CIAT RM3836 RM348 RM6748 RM131 RM280 RM5608 RM431 RM3482 RM14 RM5310 RM26 RM274 RM31
1 126A-1 Line 1 Line 1
2 126A-11 Line2 Line2
3 126A-21 Line 3 Line 3
4 126B-12 Line 4 Line 4
5 126B-21 Line 5 Line 5
6 126B-22 Line 6 Line 6
7 126C-1 Line 7 Line 7
8 126C-21 Line 8 Line 8
9 126E*11 Line 9 Line 9

10 107-2 Line 10
11 107A-24 Line 11
12 107B-11 Line 12
13 107C-2 Line 13
14 107C-21 Line 14
15 107C-22 Line 15
16 107D-21 Line 16
17 110DX-1-21 Line 17
18 76C-1 Line 18
19 76C-2 Line 19
20 76C-3 Line 20
21 76C-21 Line 21
22 76C-22 Line 22

Locus 1 Locus 2
Chr 4 Chr 1 Chr 5

Locus 1Locus 1

BC1F2 SSR analysis for heterozygous Fanny/OL5 alleles
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Figure 3-4 Screening for OL5 alleles in 22 BC1F2 families using rice SSR markers. Thirty 

six primer pairs were used to PCR amplify DNA from Fanny, OL5 and the 22 families. 

Only six rice SSR markers are shown. Arrows indicate the Fanny and OL5 alleles 

(bands).  
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 Figure 3-5. Eleven BC2F2 families (A to K) selected with SSR markers as carrying OL5 alleles and also segregating for resistance to 

isolate FL440. Colored boxes indicate the presence of OL5 alleles. Families carrying the same locus are indicated with identical letter 

codes and highlighted with the same color.    
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ASSOCIATION OF SSR MARKERS AND PARTIAL RESISTANCE 

Partial resistance was evaluated in the A, B, C, D, F and G BC2F3 families by 

estimating percentage DLA and lesion type against the rice blast isolate FL440. The donor 

parent, OL5, showed good, but not complete, resistance to FL440 while Fanny, the 

recurrent parent, was susceptible. None of the 120 lines tested in each of the three 

families showed complete resistance to FL440. Significant differences in DLA and LT were 

observed among the families. Distribution of percentage of DLA and LT are shown in (Fig. 

3-6). Among these traits, DLA showed the widest range of variation. In contrast lesion type 

showed a distribution that was skewed towards the LT scores of 2 to 4. In general, a high 

percentage of individuals with DLA between 0% and 20% among the three populations 

were observed. When considering lesion type, values of 0 or 1 were not observed, less 

that 10 families showed average LT of 2, and most of them had values of 3 and 4. The 

lesion type scores indicated that the families were highly susceptible to FL440. It is 

important to note, however, that the A and B families were the most susceptible with LT 

scores of 4, but their DLA values were typically in the range of 0 to 10% and 10-20%. 

Under the inoculation conditions used, the fungus was therefore able to produce large 

lesions type 4 but the DLA scores were below 20 % (Fig. 3-7).       
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Figure 3-6 Frequency distributions of average DLA and LT of the combined AB, CD, and 

FG BC2F3 populations inoculated with blast isolate FL440. The arrows indicated the 

average scores in the parental cultivars.  
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Figure 3-7 Lesion type and DLA in two seedling leaves from a single plant from the A-30 

BC2F3 family after inoculation with blast isolate FL440. (a). Lesion type scores of 3 and 

DLA of 6%. (b). Scores of LT of 4 and DLA of 20%. The average score for the entire family 

was LT of 3 and DLA of 20%.   

 

 

-
a). A-30 LT 3, DLA 6%

b). A-30 LT 4, DLA 20%

-
a). A-30 LT 3, DLA 6%

b). A-30 LT 4, DLA 20%
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MAPPING SSR MARKERS ON BC2F2 FAMILIES 

The genetic maps resulting from the segregation of 120 progeny from each of the 

five selected BC2F2 populations (AB, CD, FG, HI and K) using SSR markers are shown in 

Fig. 3-8. Four of the five populations were made by combining two families derived from 

the same BC2F1 families which were predicted to carry the same QTL as follows: 

population AB included families A and B and both segregated for qrbr-1.2; population CD 

included families C and D segregating for qrbr-11.3; population FG included families F and 

G segregating for qrbr-9.2, population HI included families H and I segregating for qrbr-

11.1 and family K segregated for qrbr-4.2. The families J and E were not included in the 

mapping study because they carry the same QTL as the HI and CD populations, 

respectively. Thus, 120 progenies from population AB were analyzed with six SSR 

markers covering the qrbr-1.2 QTL on chromosome 1. These markers covered a region of 

~13 cM. A total of five SSR markers covering ~ 8 cM of the qrbr-11.3 QTL were mapped in 

the CD population. Seven SSR markers covering ~ 14 cM around the qrbr-9.2 QTL were 

mapped in population FG. Five SSR covering the QTL qrbr-11.1 were mapped using the 

HI population and finally six SSR markers were mapped around the QTL qrbr-4.2 using the 

K population. For all of the SSR markers evaluated in the BC2F2 families, the three 

expected genotypes were observed (Fig 3-9) and their segregation ratios were 

approximately of 1:2:1 as expected (data not shown).  
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Figure 3-8. Genetic map of the five chromosomal regions derived from the BC2F2 

populations, containing the five QTL.  
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Figure 3-9. PCR products stained with silver nitrate for 120 BC2F2 lines from family F and 

120 lines from family G amplified with the rice SSR marker RM107 near the qrbr-9.2 QTL. 

The expected genetic ratios were ~1:2:1 for Fanny, Fanny/OL5 and OL5 alleles. The 

arrows indicated the Fanny and OL5 parents’ bands.  
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F1= 61-120

G1= 121-180

G1= 181-240

F1= 1-60

F1= 61-120

G1= 121-180

G1= 181-240

Note: Because of the differences in flowering time for F and G families, only 120 were 

used for QTL mapping and segregation analysis.  
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QTL ANALYSIS 

QTL analysis of three target regions showed that only one QTL had a statistically 

significant effect on the resistance traits examined. Only the chromosome 11 QTL had an 

LOD score above 2.4, the empirically determined significance threshold equivalent to P < 

0.01 for interval mapping (Fig 3-10, Table 3-3) determined by a permutation test. This QTL 

was mapped for the resistance traits DLA and LT on chromosome 11 using the CD 

population and it explained 12.4% and 8.0% of the phenotypic variance, respectively. The 

QTL detected by IM (Q Gene) and CIM (QTL Cartographer) corresponded well (data not 

shown). This QTL coincided with the same location as the previously mapped QTL qrbr-

11.3. The results confirm that the qrbr-11.3 QTL is stable across different genetic 

backgrounds. Its effect is small, accounting for less than 15% of genetic variation in the 

BC2F3 families. It was surprising that it did not account for more of the variation in these 

families than it did among the original RIL population. Part of the reason may be due to the 

fact that the BC2F3 families were still segregating for resistance and approximately half the 

families were still segregating for the QTL.    

No QTL could be verified in the AB and FG populations. This result was not 

expected for QTL qrbr-9.2 since it was significant in both RIL populations in the previous 

study. Similarly, the chromosome 1 QTL (qrbr-1.2) represented in the AB population 

accounted for 17% of the phenotypic variance in one of the previous experiments, 

although its effect was not observed in the other experiment.  
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Marker D P Add
RM6094

Figure 3-10 Location of the QTL qrbr-11.3 on chromosome 11 for the blast resistance traits 

DLA and LT. A in the BC2F3 population CD above the threshold (LOD 2.4) using IM 

(Qgene) with FL440 blast isolate. 

 

 

 

 

 

 

 

Table 3-3 Main effects QTL detected for the resistance trait DLA in population CD based 

on interval markers analysis. Note that three of the five SSR markers (bold) have LOD 

values above of the significance threshold (LOD > 2.4). 

Chrom Source F RSq LO
11 A 8.36 0.1241 3.
11

48 0.0004 10.31
RM224 A 6.82 0.1036 2.

11
87 0.0016 10.16

RM1233 A 6.22 0.0954 2.
11 A 4.74 0.0744 2.
11

63 0.0027 9.95
RM6293 03 0.0105 8.46
RM5766 A 3.99 0.0633 1.72 0.0210 7.44

RM12330.4
RM2243.8
RM62931.7
RM57663.8
RM6094

11

RM12330.4
RM2243.8
RM62931.7
RM57663.8
RM6094

11

qrbr-11.3

chrom11

3.48

LOD
2.4

RM6094

RM5766

RM6293

RM224

RM1233

0.0

Interval analysis for traits
DLA/qrbr-11.3

chrom11

LT/qrbr-11.3

3.48

LOD
2.4

RM6094

RM5766

RM6293

RM224

RM1233

0.0

Interval analysis for traits
DLA/qrbr-11.3
LT/qrbr-11.3

 



1.82 Mb
qrbr-11.3 RM1233

RM224
RM6293
RM5766
RM6094

11

Marker Chr. bp Gene Protein QTL
10329 11 25831137 LOC_Os11g43700 NBS-LRR

G181 11 26132682
10330 11 26406046 LOC_Os11g44580 NBS-LRR

RM1233 11 26456128
10331 11 26672305 LOC_Os11g44960 NBS-LRR
10332 11 26684649 LOC_Os11g44970 NBS-LRR
10333 11 26711543 LOC_Os11g45050 NBS-LRR

RM224 11 27123770
10334 11 26720036 LOC_Os11g45060 NBS-LRR
10335 11 26732682 LOC_Os11g45090 NBS-LRR
10336 11 26769392 LOC_Os11g45130 NBS-LRR
10337 11 26785664 LOC_Os11g45160 NBS-LRR
10338 11 26792478 LOC_Os11g45180 NBS-LRR
10339 11 26800570 LOC_Os11g45190 NBS-LRR
10340 11 26878226 LOC_Os11g45330 NBS-LRR
10341 11 27056210 LOC_Os11g45620 NBS-LRR
10863 11 27123771 LOC_Os11g45740 JAMyb Oryza sativa
10342 11 27140738 LOC_Os11g45750 NBS-LRR
10343 11 27141649 LOC_Os11g45760 NBS-LRR
10344 11 27157662 LOC_Os11g45790 NBS-LRR
10345 11 27185021 LOC_Os11g45840 NBS-LRR
10346 11 27243159 LOC_Os11g45920 NBS-LRR
10347 11 27244227 LOC_Os11g45930 NBS-LRR
10348 11 27268880 LOC_Os11g45970 NBS-LRR
10349 11 27270758 LOC_Os11g45980 NBS-LRR
10350 11 27335825 LOC_Os11g46070 NBS-LRR
10351 11 27370513 LOC_Os11g46130 NBS-LRR
10352 11 27379180 LOC_Os11g46140 NBS-LRR
10353 11 27434046 LOC_Os11g46200 NBS-LRR
10354 11 27435146 LOC_Os11g46210 NBS-LRR

RM5766 11 28225397
10355 11 28169486 LOC_Os11g47780 NBS-LRR

RM144 11 28158704
10864 11 28179212 LOC_Os11g47810 metallothionein-like protein

RM6094 11 28284056 117.9

  

Figure 3-11. Candidate NBS-LRR and defense genes in the qrbr-11.3 locus 
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DISCUSSION 

An AB-QTL strategy and marker assisted selection was used to introgress 

selected genomic regions at five loci carrying QTL with minor resistance effects into the 

blast-susceptible cultivar Fanny. One of the QTL regions, designated qrbr-11.3 was 

associated with partial resistance to isolate FL440 in an advanced population. This QTL 

affected both DLA and LT and explained a modest amount 12.4% (DLA) and 8.0% (LT) 

of the phenotypic variance, indicating that the gene affects both traits. The gene(s) 

controlling the qrbr-11.3 resistance could be a typical R gene that acts in a gene-for-

gene interaction but with a very small effect on resistance. The resistance may also be 

the effect of a defeated major gene that is also involved in gene-for-gene interactions 

with other isolates, or it might be another type of defense gene. A very large number of 

NBS-LRR genes lie in this chromosomal region. The NBS-LRR genes are the biggest 

class of resistance genes and are typically involved in gene-for-gene interactions, 

including rice interactions with blast and bacterial blight pathogens (Chen et al. 2003, 

Ramalingam et al. 2003, Sun et al. 2003). It therefore seems likely that one, or a 

combination, of these may be causing the resistance effect. Certain combinations of 

NBS-LRR genes in the Rp1 complex of maize are thought to provide nonspecific 

resistance to rust fungi (Hu et al. 1997). Similarly, some of the bacterial blight resistance 

genes (Xa genes) in rice provide high levels of resistance to some pathogen isolates, 

presumably in a gene-for-gene type of interaction, but also are thought to provide a 

small level of resistance to ‘virulent’ isolates (Li et al. 1999).  At least five major Pi genes 

(R genes to blast) have been mapped at that locus including Pi-1, Pi-k, Pi-sh, Pi-f, Pi-

18(t),  (reviewed in Sallaud et al. 2003 and Tabien et al. 2002). Another type of possible 

candidate would be a pathogen defense-type gene, coding for a protein whose 

expression is induced after pathogen recognition. Although there are not many defense 

genes in this chromosomal region, gene predicted to encode a metallothionein-like 
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protein (Degenhardt et al. 2005) and a JA-regulated transcription factor (Lee et al. 2001) 

are present at that locus (www.tigr.org; Fig. 3-11). Blast resistance QTL affecting DLA 

and lesion number traits also have been mapped to this locus in previous studies 

(Ramalingam et al. 2003). Therefore, the consistencies of the results present in those 

studies, plus the results in this study confirm that this locus carries genes with major and 

minor effects on blast resistance.  

The qrbr-11.3 QTL on the bottom of the chromosome 11 is consistently 

detectable and presents the possibility that the minor gene responsible for the partial 

resistance to FL440 isolate might be molecularly characterized. Positional cloning 

approaches could be performed by fine mapping with all of the lines in families C, D and 

E, which also carry the same QTL, and by identifying additional recombinants and 

markers in the QTL region. Additional fine mapping experiments could determine which 

of the candidate genes in the region, such as the 27 NBS-LRR genes, one defense gene 

and one transcription factor (Fig 3-11), were the best candidates. One important 

question concerning the minor effects of qrbr-11.3 (R2 < 15%) is whether it is a race-

specific or nonspecific effect. In the previous study, this QTL affected resistance to only 

three of the eight isolates in a statistically significant manner. However, the number of 

different resistance factors segregating could have obscured its effects on the other 

isolates. Part of the reason may be due to the fact that the BC2F3 families were still 

segregating for resistance and approximately half the families were still segregating for 

the QTL.  

The molecular nature of the gene responsible for the minor effect observed in 

qrbr-11.3 is currently unknown, but the advanced BC2F3 population developed in this 

study could be used in tests to determine its specificity. The population consists of 

approximately 850 lines (combining families C, D and E) and could be used for fine 

mapping and eventual cloning of the qrbr-11.3 locus.  
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No resistance effects were associated with the other two predicted QTL regions 

in our advanced populations. The expression of the QTL could be affected by 

environment, or genetic background, or that the magnitude of its effect is sufficiently 

small that larger populations are needed to detect it. Only 120 families were analyzed 

and half of the individual families were segregating for the QTL region under analysis. If 

the expression of these genes is dependent on genetic background, they may require 

other factors from the OL5 parent for them to provide noticeable amounts of resistance. 

A larger sample of families, or possibly advancing the population to greater 

homozygosity should enhance the detection of QTL with smaller effects (Zeng, 1994). It 

is also possible that the QTL, especially the QTL on chromosome 1 which was only 

significant in one experiment, is not a real genetic effect and that the original association 

of the locus with resistance is due to chance.   

Why those QTL are not stable across different experiments would be also 

important to consider in further studies. In consistency of the QTL across years using the 

same population have been reported previously (Talukder et al. 2005; Fanizza et al. 

2005). It is not surprising that the qrbr-1.2 was not detected in the analysis of the 

advanced population, since its effect was only significant in experiment 1 in the previous 

study of RI lines. However, other studies have also reported QTL conferring blast 

resistance at the same locus (Tabien et al. 2002, Chen et al. 2003) so the qrbr-1.2 QTL 

probably does contribute to resistance. 

Similar analyses with the FL440 isolate and the advanced BC2F3 populations 

carrying the qrbr-4.2 and qrbr-11.1 QTL should be conducted. These putative QTL 

needed to be confirmed in a large BC2 population. The QTL qrbr-4.2 was significant in 

both QTL mapping populations (Chapter 2) but it had a small effect (R2 < 10%), similar to 

qrbr-11.3. Analysis of phenotypic segregation for resistance to the FL440 blast isolate in 

a population carrying the qrbr-4.2 locus is in progress.  
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The segregations of resistant and susceptible progenies in the different BC2F3 

populations were incompatible with a 3:1 ratio in the three populations analyzed 

indicating that a single QTL could not be scored as a Mendelian factor in these 

populations. The development of large BC3 populations may help to reduce other genetic 

variation from segregating, but it is not clear if the poor heritability of the individual QTL 

loci was due to the segregation of other genes in these families or due to other factors, 

like environmental effects.   
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CONCLUSIONS 

The study confirms that the QTL qrbr-11.3 confers partial resistance to the isolate 

FL440 and that it would be a good candidate for fine mapping and positional cloning 

studies. The most likely candidate gene for this QTL might be one or more of the NBS-

LRR genes since 27 of them are predicted to reside at that locus. The advanced 

backcross populations generated in this study segregating for qrbr-11.3 would be useful 

for fine mapping the locus and scrutinizing these candidate genes. The QTL that were 

not detected in advanced populations, such as qrbr-1.2 and qrbr-9.2, but have been 

mapped to regions of known QTL may still be useful for crop improvement by marker-

assisted transfer.  
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OVERALL CONCLUSIONS 

 

Resistance to blast in OL5 is very complex and is composed of a combination of 

Pi genes as well as some unknown genes that appear to contribute to partial resistance 

to some blast isolates. Most of the QTL identified in OL5 are race-specific with major 

effects in blast resistance. Other QTL with minor effects conferring resistance to blast 

isolate FL440 could be nonspecific.  

Most of the QTL identified mapped to region of known Pi genes except the qrbr-

9.2, which mapped to a locus where previous QTL for blast resistance have been 

reported.  The qrbr-9.2 QTL may be a minor gene. 

The qrbr-11.3 QTL has a small but consistent effect on resistance to isolate 

FL440 through three different experiments. Its effect on resistance always accounted for 

less that 15% of the total of the phenotypic variation but it was detectable in all three 

mapping populations analyzed. It had no detectable effect on several blast isolates in 

experiments where many resistance factors were segregating but it is possible that its’ 

effect was obscured by major genes. Its effect on these other blast isolates could be 

examined using the A and B BC2F3 families.    
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