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Abstract 

Wheat diseases cause significant economic losses every year. To ensure global food 

security, newly released cultivars must possess increased levels of broadly-effective resistance 

against wheat pathogens, acceptable end-use quality, and high yield potential. Genetic host 

resistance stands out from other management strategies as the most viable option for controlling 

diseases. New genotyping platforms allow whole genome marker discovery at a relatively low 

cost, favoring the identification of novel loci underlying traits of interest. The work presented 

here describes genomic approaches for mapping and predicting the resistance to Fusarium head 

blight (FHB) and wheat rusts. 

The first study used biparental mapping to identify quantitative trait loci (QTL) 

associated with Fusarium head blight (FHB) resistance. A doubled haploid population (DH) was 

originated from a cross of Everest and WB-Cedar, which are widely grown wheat cultivars in 

Kansas with moderately resistant and moderately susceptible reactions to FHB, respectively. We 

confirmed that neither of the parents carry known large-effect QTLs, suggesting that FHB 

resistance is native. Eight small-effect QTLs were identified as associated with multiple 

mechanisms of FHB resistance. All QTLs had additive effects, providing significant 

improvements in levels of resistance when they were found in combinations within DH lines. 

In the second study, a genome-wide association mapping (GWAS) and genomic selection 

(GS) models were applied for FHB resistance in a panel of 962 elite lines from the K-State 

Wheat Breeding Program. Significant single nucleotide polymorphisms (SNPs) associated with 

the percentage of symptomatic spikelets were identified but not reproducible across breeding 

panels tested in each year. The Accuracy of predictions ranged from 0.25 to 0.51 depending on 

GS model, indicating that it can be a useful tool to increase levels of FHB resistance. 

GWAS and GS approaches were also applied to a historical dataset to identify loci 

underlying resistance to leaf and stem rust at seedling stage in a panel of elite winter wheat lines. 

Infection types of multiple races of wheat rusts from the last sixteen years of the Southern 

Regional Performance Nursery (SRPN) were used in this study. A total of 533 elite lines 

originating from several breeding programs were tested in the SRPN during this period of time. 

GWAS identified significant SNP-trait associations for wheat rusts, confirming the effectiveness 

of already known genes and revealing potentially novel loci associated with resistance.  
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Abstract 

Wheat diseases cause significant economic losses every year. To ensure global food 

security, newly released cultivars must possess increased levels of broadly-effective resistance 

against wheat pathogens, acceptable end-use quality, and high yield potential. Genetic host 

resistance stands out from other management strategies as the most viable option for controlling 

diseases. New genotyping platforms allow whole genome marker discovery at a relatively low 

cost, favoring the identification of novel loci underlying traits of interest. The work presented 

here describes genomic approaches for mapping and predicting the resistance to Fusarium head 

blight (FHB) and wheat rusts. 

The first study used biparental mapping to identify quantitative trait loci (QTL) 

associated with Fusarium head blight (FHB) resistance. A doubled haploid population (DH) was 

originated from a cross of Everest and WB-Cedar, which are widely grown wheat cultivars in 

Kansas with moderately resistant and moderately susceptible reactions to FHB, respectively. We 

confirmed that neither of the parents carry known large-effect QTLs, suggesting that FHB 

resistance is native. Eight small-effect QTLs were identified as associated with multiple 

mechanisms of FHB resistance. All QTLs had additive effects, providing significant 

improvements in levels of resistance when they were found in combinations within DH lines. 

In the second study, a genome-wide association mapping (GWAS) and genomic selection 

(GS) models were applied for FHB resistance in a panel of 962 elite lines from the K-State 

Wheat Breeding Program. Significant single nucleotide polymorphisms (SNPs) associated with 

the percentage of symptomatic spikelets were identified but not reproducible across breeding 

panels tested in each year. Accuracy of predictions ranged from 0.25 to 0.51 depending on GS 

model, indicating that it can be a useful tool to increase levels of FHB resistance. 

GWAS and GS approaches were also applied to a historical dataset to identify loci 

underlying resistance to leaf and stem rust at seedling stage in a panel of elite winter wheat lines. 

Infection types of multiple races of wheat rusts from the last sixteen years of the Southern 

Regional Performance Nursery (SRPN) were used in this study. A total of 533 elite lines 

originating from several breeding programs were tested in the SRPN during this period of time. 

GWAS identified significant SNP-trait associations for wheat rusts, confirming the effectiveness 

of already known genes and revealing potentially novel loci associated with resistance.
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Chapter 1 - Literature Review 

The genetic gain of cultivated crops has been around 1% per year during the last century 

which is on pace to feed the world population in the coming decades. Along with that, the rise of 

global temperatures will not only affect the adaptability of crops but can also favor the 

occurrence of certain crop diseases. Consequently, this represents the key challenge that a new 

generation of researchers will face to ensure global food security. Among all cultivated species, 

wheat stands out as one of the most widely grown crop in the world and it is considered a staple 

food in developing countries providing nearly 20% of the daily protein and food calories for 

almost half of the human population (FAO, 2017). The global wheat production and annual 

stocks increased respectively from to 233.4 and 82.8 million metric tons in 1960 to 753.8 and 

267.5 million metric tons in 2017. It represents 3.2-fold increase whereas the global acreage 

remained relatively at the same level (USDA, 2017). 

Wheat diseases cause substantial losses in grain yield and end-use quality. Fortunately, 

new advances in sequencing and genomic analysis has provided new tools to understand and 

assist disease resistance breeding. Sequencing-based genotyping platforms are generating 

abundant single nucleotide polymorphisms (SNPs) at relatively low cost while allowing 

simultaneous genotyping and discovery (Poland & Rife, 2012; Thomson, 2014). As a result, 

genotyping has become relatively more cost-effective than field phenotyping. 

SNP-based genotyping has been extensively used for QTL mapping, genome-wide 

association studies, and genomic predictions and are being integrated into breeding programs and 

genetic studies to dissect the mechanisms underlying wheat agronomic traits in wheat such as: 

adaptability traits, yield components, abiotic stresses, and disease resistance. Moreover, breeding 
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for disease resistance indirectly impacts grain yield and leads to more stable wheat production 

over growing seasons. 

 

 1.0 Breeding for Disease Resistance in Wheat 

Breeding exclusively by phenotypic selection limits the improvement of disease 

resistance because it relies on the evaluator’s ability to rate wheat lines. Experimental errors such 

as uneven infection, hotspots, race variations, and genotype-by environment (G×E) interactions 

often lead to biased conclusions, while the genes controlling resistance remain unknown. 

Therefore, the use of genomic tools such as marker-assisted selection, biparental mapping, 

association studies, and genomic selection come into to play aiming to improve the genetic gain 

of agronomic traits by increasing the frequency of desirable alleles within breeding populations. 

Disease resistance in plants has been long categorized into two distinct classes with 

different and confusing terms in the literature such as horizontal or vertical, major or minor 

genes, complete or partial resistance, etc. These categories refer to resistance conferred by one or 

a few genes and the resistance provided by multiple genes, respectively. Trying to overcome all 

these inadequate definitions Poland et al. (2009) advocated the use of the terms qualitative 

resistance when R-genes are controlling resistance following the gene-for-gene theory (Flor, 

1942) and quantitative resistance when multiple quantitative resistant loci (QRL) and/or small-

effect genes are governing resistance. 

Each wheat disease has its own characteristics that affect the way we breed for resistance. 

For instance, so far significant race variation has not been identified amongst Fusarium head 

blight (FHB) isolates. As a result, durable resistance can be simply achieved with a single gene. 

In contrast, wheat rusts are characterized by the presence of multiple races that can rapidly 
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evolve and overcome deployed genetic resistance. Therefore, achieving durable rust resistance is 

substantiality more complex since the pathogen is constantly evolving and often overcoming the 

resistant genes present in the host. 

In this review chapter, the importance and specific concerns of four wheat diseases are 

briefly discussed: Fusarium head blight, leaf rust, stem rust, and stripe rust. The following 

chapters contain separate studies where different strategies for increasing the host resistance of 

wheat to these diseases are discussed in detail. 

 

 1.1 Fusarium Head Blight 

Fusarium head blight (FHB) is one of the most important wheat diseases in warm and 

humid environments. Weather conditions of high relative humidity and temperatures between 12 

- 22 oC are ideal for the development of Fusarium graminearum sensu lato. This pathogen is 

classified as hemibiotrophic, since it behaves as a biotroph in the early stages of infection, then 

acts as a necrotroph while colonizing the spikes of the host around 72 hours after infection, then 

causing FHB (Trail, 2009). This fungus has asexual conidia as the main type of spores (Wegulo 

et al., 2015) and survives saprophytically overwinter in crop residue of wheat, barley, and corn 

in the form of chlamydospores or hyphae structures (Parry et al., 1990). In the spring, spores 

(mainly ascospores) are windblown or water-splashed onto wheat spikes (McMullen et al., 2012) 

causing the initial infections. FHB occurs primarily during anthesis and due to this short period 

ideal for the pathogen development, the disease is considered monocyclic. Symptoms appear in 

the spikes right after infection as small brown, water-soaked spots, that leads to a white-bleached 

color as the pathogen spreads throughout the spikes. 



 

 

4 

Another concern regarding FHB is the accumulation of mycotoxins in Fusarium-infected 

grains. The trichothecene deoxynivalenol (DON) is the most prevalent toxin produced by this 

pathogen, acting as a virulence factor facilitating disease spread within wheat spikes (Gunupuru 

et al., 2017; Shah et al., 2017). Ingestion of wheat grains or wheat-based products contaminated 

with DON may cause diarrhea, vomiting, (Moazami & Jinap, 2009), and even carcinogenic 

effects (Shephard, 2011). For these reasons, most countries have established limits of DON in 

food products derived from wheat. For instance, currently in the United States, the recommended 

limit of DON is 1 ppm in wheat products for human consumption (FDA, 2014). 

Integrated management strategies are required to control of FHB and reduction of DON 

levels on wheat-derived products. Agronomic practices such as tillage, crop rotation, avoiding 

irrigation during anthesis, and preventive fungicide applications before anthesis can greatly 

contribute in controlling FHB epidemics (McMullen et al., 2012; Dweba et al., 2017). 

Nonetheless, genetic resistance seems to be one of the most effective forms to control this 

disease, since this resource is inexpensive and effortless for the wheat growers, and it can still be 

combined with other management practices. 

FHB Resistance 

According to Mesterhazy (1995), the genetic resistance to FHB can be classified into five 

types: initial infection/incidence (type I), spread within spike/severity (type II), DON 

accumulation in grain (type III), Fusarium kernel damage (type IV), and tolerance (type V). 

However, there are contradictions in the literature for what types III and IV are supposed to be. 

As a result, Sneller et al. (2012), decided to rename it as resistance to toxin accumulation (RTA) 

and resistance to kernel infection (RKI), respectively. FHB resistance can also be categorized 

based on its origin: native (present in adapted elite materials, i.e. Everest, Overland, Truman, 
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etc.,), exotic (varieties from other countries, i.e. Sumai #3 and Frontana), and alien 

(translocations introgressed from wild wheat relatives, i.e. E. tsukushiensis, T. ponticum).  

FHB is a quantitative trait with relative complex inheritance (Buerstmayr et al., 2009) 

and gene effects are predominantly additive, which contributes to an effective gene pyramiding 

schemes. Due to the laborious phenotyping of FHB resistance, finding reliable and tightly linked 

markers to resistant loci has been the fundamental goal of the majority of studies. Mapping 

quantitative trait loci (QTL) in biparental populations has been the most popular method for 

identifying new genomic regions associated with FHB resistance. So far, hundreds of QTLs 

associated with FHB resistance have been reported in the literature (Liu et al., 2009) covering all 

wheat chromosomes with effects varying depending on the genetic background. Among all these 

mapped QTLs, seven with a larger effect on phenotype and validated across multiple studies 

have been formally named as: Fhb1, Fhb2, Fhb3, Fhb4, Fhb5, Fhb6, and Fhb7. Each one of 

these large-effect QTLs is briefly detailed in the following section. 

 Large-Effect QTLs and MAS for FHB Resistance 

Fhb1 is the most well-known QTL and confers moderate levels of FHB resistance 

(especially type II) in different genetic backgrounds. It is located on the short arm of the 

chromosome 3B and can easily be detected by the tightly linked markers unm10 (Liu et al., 

2008) and/or Xsnp3BS-8 (Bernardo et al., 2012). This QTL was first identified and mapped in 

the Chinese cultivar Sumai #3 and later also found in other Chinese materials. Currently, Fhb1 

has been transferred into several breeding programs but fewer commercial cultivars were 

released due to its association with yield penalties, especially in winter wheat backgrounds. So 

far, Fhb1 is the only QTL associated with FHB resistance that has been cloned. A single gene 

called pore-forming toxin-like (PFT) was identified as the putative candidate for the QTL Fhb1. 
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This gene was expressed constitutively in resistant near-isogenic lines with the highest 

expression in pre-emerging spikes (Rawat et al., 2016). However, PFT did not significantly 

decrease DON levels, suggesting that an independent locus in the same genomic region may be 

controlling DON detoxification. 

Another well-known QTL originated from Sumai #3 is Fhb2, which is associated with 

limited disease severity (type II) and low DON accumulation (type IV/RTA). This QTL is 

located on the short arm of 6B and is flanked by the microsatellites gwm133 and gwm644 in a 2 

cM interval near to the centromere (Cuthbert et al., 2007). Several studies have identified a QTL 

in the same genomic region, suggesting that Fhb2 is a true QTL and the most likely candidate 

located in this region of 6BS. Alone this QTL is capable of explaining up to 56% of the severity 

variation in the field, depending on the genetic background (Yang et al., 2003; Cuthbert et al., 

2007). Recently, six putative genes were identified in the Fhb2 interval revealing the underlying 

mechanisms of resistance, using integrated metabolon-transcriptomics (Dhokane et al., 2016). 

These genes were involved in cell wall reinforcement (decreasing the spread of pathogen within 

spike), and DON detoxification. 

Fhb3 is an alien introgression from L. racemosus that was transferred onto the short arm 

of the chromosome 7A of wheat. The levels of FHB resistance provided by this translocation can 

be similar to Sumai #3 (Qi et al., 2008). Translocations, such as Fhb3, have the advantage of 

triggering a large effect on phenotype with a simple inheritance that facilitates its deployment in 

wheat breeding programs. Although combining multiple alien segments tend to cause deleterious 

effects on end-use quality. Using a maker assisted selection backcrossing approach, Brar et al. 

(2015) reported that pyramiding Fhb1+Fhb2+Fhb3 reduced FHB severity by nearly 50% 

proving the additive nature of these QTL when they are combined together. 
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Fhb4 is another large-effect QTL that was first mapped in the Chinese landrace 

Wangshuibai (Lin et al., 2006) that confers type I resistance (barrier against initial infection). 

This QTL is located on the long arm of chromosome 4B in a 1.7 cM interval between the 

markers Xhbg226 and Xgwm149 (Xue et al., 2010). Using a biparental population from a cross 

between the winter cultivars Everest × Art, Clinesmith (2015) found a QTL from Art in the same 

region of Fhb4 explaining 8.31- 17.80% of the percentage of symptomatic spikelets variation. 

Yet, in the same study, the microsatellite Xgwm149 was located within the QTL interval 

suggesting that it could be in fact Fhb4. Several other studies have been repeatedly mapping 

QTL on Fhb4 interval, indicating that this QTL is present in a relatively high frequency in wheat 

cultivars such as Ernie, Chockwang, Wuhan1, and Haiyanzhong (Cai et al., 2016). 

Fhb5 is large-effect QTL found in Wangshuibai associated with type I resistance. It is 

located on the centromeric region of 5AS in a 0.3 cM interval flanked by the markers Xgwm304 

and Xgwm415 (Xue et al., 2011). The same authors also verified that the genetic variation 

conferred by this QTL was significantly larger than the variation caused by G×E interactions. 

Steiner et al., (2004) also mapped a QTL from Frontana associated with FHB severity that may 

likely be Fhb5. Since pericentromeric regions usually have lower recombination, cloning this 

region near to the centromere might be challenging (Xue et al., 2011) as well as transferring it to 

a small genetic block from the donors to elite breeding materials. 

Recently, Fhb6 was transferred from E. tsukushiensis to the proximal part of 

chromosome 1AS via ph1b-induced homoeologous recombination and it can be followed with 

the Kompetitive Allele Specific PCR (KASP) marker wg1S_snp (Cainong et al., 2015). Yet in 

the same study, it was observed that plants homozygous for Fhb6 presented on average 7 % of 

FHB severity in the field while null progenies averaged 35 % and the resistant check Everest was 
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rated at 27%. This segment confers resistance to type I and type II and it was released as a novel 

source of germplasm named KS14WGRC61 (Cainong et al., 2015). Currently, several 

combinations of Fhb6 with other QTLs are being made aiming to improve FHB resistance. 

Just as Fhb3 and Fhb6, Fhb7 it is also an alien introgression. Fhb7 was transferred from 

T. ponticum to the chromosome 7D of wheat and it mapped closely linked to marker Xcfa2240, 

conferring resistant type II (Guo et al., 2015). Besides mapping and shortening the interval 

carrying Fhb7, the same study also investigated the effect of pyramiding Fhb1+Fhb7. However, 

none of the lines carrying both QTLs were significantly more resistant than the donor parent 

Ning 7840 (Fhb1), or the newly developed introgressions with Fhb7. Nevertheless, other QTL 

combinations should be made and tested targeting to improve FHB resistance. 

So far, we have seen that significant progress of FHB resistance can be made through 

marker-assisted selection (MAS) of few QTLs as long as the effects are large, stable, with tightly 

linked markers. For instance, Eckard et al. (2015) were able to identify 15 QTLs of native FHB 

resistance while combining it with Fhb1 into winter wheat cultivars, through identity-by-descent 

based linkage mapping in early generations. In the meantime, at the International Maize and 

Wheat Improvement Center (CIMMYT), resistant alleles from Chinese landraces have been 

introgressed since 1980 (Steiner et al., 2017) and currently, the QTLs 2DLc, Fhb4, and Fhb5 are 

the most frequently resistant loci found on their elite germplasm (Lu et al. 2013). 

 Minor-Effect QTLs Associated with FHB Resistance 

Although marker-assisted selection (MAS) has been successfully applied for a few large-

effect QTLs (Lu et al. 2013; Brar et al. 2015), more modest progress has been made in breeding 

programs where the FHB resistance is predominantly controlled by small-effect QTLs. In these 
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cases, resistance is being controlled primarily by small-effect genes, being relatively complex to 

breed for due to its quantitative nature and low heritability. 

Increasing FHB resistance with minor-effect QTLs/genes has the advantage of avoiding 

introgression of large genetic blocks and/or alien segments from unadapted materials which often 

have yield penalties and not relying on biased marker associations. Besides, major well-known 

QTLs could still be easily combined with small-effect QTLs via MAS. Furthermore, resistance is 

rarely deployed by itself, but rather in combination with several other traits, such as yield 

potential and end-use quality, and finding the perfect balanced combination is the endless 

challenge of breeding. 

Genome-wide association studies (GWAS) have been broadly used to identify small-

effect loci underlying traits of interest in panels of non-pedigree related individuals. For instance, 

in a recent GWAS study, Wang et al. (2017) found six highly significant QTLs that were 

associated with FHB resistance in the Pacific Northwest Region of the United States and 

CIMMYT breeding program. The same authors also verified a QTL located on 5B was 

associated with low DON accumulation that could potentially be a novel gene. Another ten 

significant SNP-trait associations with FHB resistance were reported in an association study by 

Arruda et al. (2016a). Several minor-effect QTLs controlling FHB resistance were reported by 

Cai et al. (2016) while mapping and transferring it to American wheat background. Similar 

results have been also reported in Europe (Kollers et al., 2013). 

In the second chapter of this dissertation, it was mapped several components of FHB 

resistance using a biparental doubled haploid population originating from a cross between 

Everest and WB-Cedar. These cultivars have been widely grown in Kansas in the last growing 

seasons and have a moderate level of native FHB resistance and are believed to carry native FHB 
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resistance. Likewise, the third chapter consists of an association study and genomic predictions 

of FHB resistance evaluated in a panel of winter wheat lines. 

 

 1.2 Wheat Rusts 

The pathogens Puccinia triticina (Pt), Puccinia graminis f. sp. tritici (Pgt), and Puccinia 

striiformis f. sp. tritici (Pst) are known for causing leaf rust (LR), stem rust (SR), and stripe rust 

(YR) in wheat, respectively. These biotrophic fungi represent a major threat to wheat production 

worldwide. Pt is the least aggressive of all three species causing minor yield losses (Roelfs et al., 

1992), while Pgt occurs predominantly in warm climate conditions with highly aggressive races, 

such as Ug99 (TTKSK), capable of destroying entire crops (Juliana et al., 2017). In contrast, Pgt 

epidemics happens mainly in temperate regions, such as the Great Plains of United States, 

causing smaller economic losses. 

Cereal rusts produce five type of spores in a complete life cycle: spermatia, aeciospore, 

basidiospore, urediniospore, and teliospore. The first two spore types only occur during the 

sexual phase in alternate host species whereas urediniospores and teliospores are asexual 

structures formed by the pathogen while infecting wheat (Schumann & Leonard, 2000). Wheat 

rusts are polycyclic diseases since urediniospores are able to cause secondary infections. These 

spores are produced within uredinias and by the end of the wheat cycle, the uredinias also start to 

produce teliospores which are dikaryotic thick-walled spores capable of surviving overwinter in 

wheat residues (Leonard & Szabo, 2005). The symptoms of wheat rusts are characterized by 

round-shaped, orange, brown or black pustules caused by the uredinia structure that infects 

adaxial surface of leaves, stems, and even spikes in case of SR. Lesions caused by YR are 
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arranged in linear stripe patterns along leaves whereas LR pustules are relatively bigger and 

occur at random on wheat leaves. 

Wheat rusts have relatively complex life cycles including asexual and sexual 

reproduction, multiple spore types, race variations, and off-season alternate hosts. For instance, 

barberry (Barberis vulgaris) was identified in mid-1910’s as the alternative host for the sexual 

reproduction of Pgt in the United States. Since then collaborative efforts almost eradicated this 

secondary host species that consequently prevented the occurrence of the sexual phase of Pgt and 

Pst in North America (Roelfs & Bushnell, 1985). Although epidemics temporarily decreased, 

every year early infections in wheat fields of southern U.S. and northern Mexico produces 

urediniospores that are windblown to the north, going all the way to Canada. This process of 

spore migration was named as the ‘Puccinia Pathway’ (Kolmer, 2001). 

New races of wheat rusts are constantly emerging and evolving (Singh et al., 2015). 

Although, fungicides have been proven to be an effective form to control these races, it is not a 

viable option economically in developing countries. As a result, genetic resistance has been the 

preferred management strategy to prevent widespread epidemics. Therefore, it is required 

constant deployment of cultivars possessing multiple combinations of resistance genes to keep 

resistance moving ahead of new virulent races. 

 Genetics of Wheat Rust Resistance 

Confusing terminologies are reported in the literature to classify genetic mechanisms of 

wheat rust resistance, which not always are synonyms. Regardless of having fewer genes 

controlling rust resistance than FHB resistance, achieving durable resistance is challenging due 

to the evolutionary nature of Puccinia pathogen species. Besides, the levels of resistance may 

vary depending plant developmental stages: seedling or adult plant resistance (APR). In addition, 
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gene interactions may occur; for instance, the APR gene Lr34 is known to interact with other 

genes such as Lr13, resulting in lower infection types (Kolmer, 1996). Pleiotropic gene effects 

(or tight linkage) are also present in the wheat rust pathosystem, meaning that a single gene is 

able to control more than one phenotypic trait. For example, Sr2 and Lr34 not only confer APR 

resistance but also cause pseudo-black chaff (PBC) and leaf tip necrosis (LTN) onto wheat 

spikes and flag leaves, respectively. PBC and LTN are secondary traits controlled by the same 

genes that are associated with yield penalties and undesirable appearance (Juliana et al., 2015). 

To date, 77 Lr genes, 78 Yr genes, and more than 50 Sr genes have been characterized 

(McIntosh et al., 2017), mapped, and classified into two main categories: resistance at seedling 

stage or adult plant resistance (discussed in details in following topics). These genes come from 

different sources including exotic accessions, landraces, and wild wheat relatives. However, 

reliable diagnostic markers are not available for all these genes and only a few have been cloned: 

Lr10 (Feuillet et al., 1997), Lr21 (Huang et al., 2003), Lr34 (Krattinger et al., 2009), Yr36 (Fu et 

al., 2009), Sr33 (Periyannan et al., 2013), Sr35 (Saintenac et al., 2013), Lr67 (Moore et al., 

2015), Sr22 and Sr45 (Steuernagel et al., 2016), and Lr22a (Thind et al., 2017). 

Durable resistance is a recurring concept in the wheat rust pathosystem. It refers to 

resistance that remains effective while a cultivar possessing it is widely cultivated over time 

(Johnson, 1983). Several strategies have been proposed to extend the durability of resistance. 

The most relevant are: regional deployment throughout the pathogen path (i.e. The Puccinia 

Pathway), multi-lines, mixtures, gene rotation, releasing one gene at a time, and perhaps the most 

effective of all - gene pyramids (Mundt, 2014). Pyramiding refers to combining multiple genes 

within breeding lines to increase levels resistance, providing that the genes have additive effects. 
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From a breeding perspective, backcrossing followed by MAS and phenotypic selections 

have been a successful strategy for pyramiding genes associated with wheat rust resistance at 

CIMMYT (Singh et al., 2005). This strategy may be effective even when genes conferring 

resistance are unknown, as long as precise phenotyping is achieved in early generations. 

However, phenotypic selection can be confounded by the race structure presented in the target 

environment when selections were made. This confounding effect also might lead to mistaken 

genomic predictions if phenotypic data are from the training set that was only phenotyped for 

wheat rust resistance in a single or related environment. 

 Resistance at Seedling Stage 

The seedling resistance of wheat rusts is predominantly monogenic, race-specific, and 

more effective on early developmental stages (Ellis et al., 2014), although some resistant genes 

(R-genes) may confer ‘all-stage resistance’ (Chen, 2005; Riaz et al., 2016). These R-genes 

segregate in a Mendelian fashion following the gene-for-gene theory, where for each R-gene in 

the host, there is a corresponding avirulence effector gene in the pathogen (Flor, 1942). Often 

these loci are also referred as ‘major effect’ genes. In general, the R-genes encode for immune 

receptors of the nucleotide-biding leucine-rich repeat class (NB-LRR), causing a hypersensitive 

reaction in the host (Van der Biezen & Jones, 1998; Marone et al., 2013). 

Monogenic resistance deployed by itself creates a selection pressure in the fitness of 

certain races and favorable mutations and recombination events in the pathogens are naturally 

selected and resistance is defeated over time. For example, the race TTKSK (Ug99) became 

virulent to Sr31 and after that, new variations of this race defeated several other resistant genes. 

In this case, genes were defeated mainly because they were deployed as a single race-specific 

gene within cultivars, rather than in pyramids. Currently, the most useful race-specific genes 
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against stem rusts are: Sr22, Sr25, Sr26, Sr33, Sr35, Sr45, and Sr50 (Singh et al., 2015) and 

breeders are thoroughly advised to use them in combinations to avoid new gene breakdowns. 

Seedling resistance is commonly assessed at early stages by inoculating pure single races 

or mixtures in a greenhouse, then rating infection types (IT) using the Stakman scale. This scale 

is semi-quantitative with a few possible phenotypic classes ranging from 0 to 4 which may be 

combined with the symbols ‘;’, ‘+ or –’, ‘X’, ‘C’, ‘N’ representing respectively: hypersensitive 

reaction, upper and lower limits of a given IT score, heterogeneous reaction, exceptionally 

pronounced chlorosis, and necrosis (Stakman, 1962). To simplify data analysis, Zhang et al. 

(2014) proposed a method to convert Stakman IT scores scale into a linear scale (0-9). Recently, 

a pipeline in Perl was created to automate this data conversion (Gao et al., 2016) facilitating data 

analysis of seedling resistance, especially for genome association studies. 

 Adult Plant Resistance 

Adult plant resistance (APR) refers to genes that are effective in the host only at the adult 

plant stage. These APR genes are also referred as ‘minor effect’, partial resistance, and slow-

rusting genes since it allows limited disease progress without causing significant damage in the 

host (Singh et al., 2005). Most of APR genes confer race-nonspecific resistance, meaning that 

they offer an acceptable level of resistance to a wide range of known races, rather than strong 

resistance against one or only a few specific races. Some of the well-known APR genes are co-

localized, tightly linked, or pleiotropic to other genes that appear to convey race-nonspecific 

resistance, for example Sr2/Yr30, Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55 (Singh et 

al., 2016; Riaz et al., 2016). Furthermore, recent studies have reported several QTLs conferring 

minor APR effects that could potentially be novel APR genes (Yu et al., 2014; Gao et al., 2016). 
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It has been hypothesized that APR genes encode a more heterogeneous range of proteins 

that R-genes, which could help to explain its durability (Ellis et al., 2014). Sr2 and Lr34 are the 

most well-known APR genes and have been providing partial, but durable resistance in wheat 

varieties for more than 50 years (Ellis et al., 2014). Besides, combinations of race-specific and 

race-nonspecific such as Lr13+Lr34 and Lr16+Lr34 result in lower infection types (Kolmer, 

1996, Kassa et al., 2017). Although gene combinations tend to make resistance more durable, 

underlying mechanisms of gene pyramids are somewhat unclear. However, it is speculated that 

the degree of host genotype×pathogen specificity may be lower for minor gene than major gene 

resistance (Mundt, 2014), meaning that APR genes are less likely to naturally selected more 

virulent races even when a cultivar containing it is widely grown. Besides, the probability of an 

asexual pathogen mutating to virulence against all resistance genes in a pyramid would be the 

product of all probabilities of each gene alone, thus making the probability of a new virulent race 

arising highly unlikely (Mundt, 2014). 

In the fourth chapter, sixteen years of historical data from the Southern Regional 

Performance Nursery (SRPN) were compiled together to identify loci underlying wheat rust 

resistance across several races in elite breeding lines from several breeding programs in the US. 

 

 1.3 Genomic Tools for Improving Disease Resistance 

During the last decade, advances in the next-generation of sequencing technologies 

enabled the use of sequencing-based genotyping platforms on a large scale at relatively low cost. 

For instance, the genotyping-by-sequencing (GBS) method developed by Poland et al. (2012) 

has been widely adopted in wheat genetic research. This approach uses two restriction enzymes 
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for targeted complexity reduction followed by multiplex sequencing which produces abundant 

SNP polymorphisms for discovery and genotype DNA samples, simultaneously. 

GBS is a flexible genotyping method that allows to combine and re-call SNPs with new 

datasets compiled in databases (Poland & Rife, 2012). Yet, GBS reduces ascertainment bias 

when compared with array-based platforms such as SNPchip arrays (Thomson, 2014), being 

considered by many authors as an ultimate tool to accelerate breeding (He et al., 2014). As a 

result, this method of genotyping has been broadly applied in wheat genetic research, especially 

for biparental mapping, association studies, and genomic-based predictions. 

 Biparental Mapping 

Biparental populations have been extensively used for mapping QTLs (quantitative trait 

loci) associated with disease resistance in wheat. This strategy provides information on the 

chromosome location and effect of a given loci in the genetic variation of a particular trait. There 

are three main statistical methods to perform QTL mapping analysis: standard interval mapping 

(SIM), composite interval mapping (CIM), and multiple QTL mapping (MQM). 

SIM considers a single-QTL model at a time while accounting for missing data. 

However, it has limited ability to separate linked QTL and estimate possible interactions. To 

overcome some of SIM limitations, CIM enables to detect multiple loci of more modest effect 

and its interactions by using markers near to a putative QTL as a covariate. These covariate 

markers remove the effect of the major QTL allowing to identify others with smaller effects. 

Meanwhile, the MQM method is capable of fitting several QTLs into a regression model while 

accounting for QTL×QTL interactions, adjusting positions, estimating intervals and effects on 

phenotype, as well as, determining which parent is the donor of the desirable alleles at the QTL 

interval (Broman, 2009). 
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Nevertheless, the genetic variation exploited in these biparental mapping populations is 

often limited, because only alleles segregating between parents are captured in the analysis 

(Arruda et al., 2016a). As a result, mapping small-effect QTLs is challenging because these QTL 

often do not generate significant statistical differences. In addition, QTL locations and their 

effects on phenotype are specific to the particular population where they were mapped and often 

cannot be extrapolated to other non-related populations. Besides, QTL are mapped within 

relatively large confidence intervals that generally contain several candidate genes underlying a 

trait of interest (Kearsey, 2002; Broman, 2009). Furthermore, the phenotypic effect of 

genes/QTLs in common among parents cannot be estimated in the population, since it is not 

segregating. 

 Association Mapping 

Genome-wide associations study (GWAS) appeared as an alternative to surpass the 

limitations of biparental mapping presented above. GWAS was initially developed for mapping 

studies with human data in early 2000’s and was rapidly applied in plant genetics studies, as well 

(Thomas et al., 2005; Ikegawa, 2012). GWAS has the advantages of exploiting natural 

recombination events from diverse panels, without the upfront cost of funds, time, and effort 

associated with population development (Korte & Farlow, 2013). 

Nonetheless, unbalanced populations and relatedness among individuals can lead to false 

marker-trait associations. Hence, it is reasonable to use statistical models that fit the population 

structure and the kinship matrix of genetic effects as covariates to reduce the false discovery rate 

of genetic markers (Tang et al., 2016). Several statistical methods have been developed and 

tested to minimize these confounding effects while optimizing computing speed. Among these 

methods, the compressed mixed linear model (CMLM) and its enriched version (ECMLM) 
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stands out with one of the highest statistical power (Lipka et al., 2012; Li et al., 2014) and can be 

easily implemented using the Genomic Association and Prediction Integrated Tool (GAPIT) in R 

environment with a minimal amount of code (Tang et al., 2016). 

GWAS has been extensively applied in wheat genetics to identify significant marker-trait 

associations with quantitative resistance for FHB (Kollers et al., 2013; Wang et al., 2017), stem 

rust (Zhang et al., 2014; Juliana et al., 2015), stripe rust (Maccaferri et al., 2015; Liu et al., 

2017), and leaf rust (Gao et al., 2016; Pasam et al., 2017). Regardless of its broad adoption, 

GWAS still has its own limitations such as spurious associations and failure to detect rare 

variants. Unfortunately for the GWAS aficionados, plant breeders are usually interested in 

discovering rare variations that could potentially make the next leading variety (Bernardo, 2016). 

However, another strategy to overcome these limitations, it is the use of genome-wide 

predictions which is detailed in the following section. 

 Genomic-based Predictions 

In the early 2000’s Meuwissen et al. (2001) proposed that with the increase of genomic 

marker density, it would be possible to estimate the genetic variance attributed to loci and predict 

phenotypic performance. It was the birth of genomic selection (GS). This analysis attempts to 

capture the total additive variance from all markers distributed across the whole genome rather 

than relying on performing significance tests at every single locus as done by GWAS models. 

Using genome-wide markers, every trait locus is likely to be in linkage disequilibrium (LD) with 

a minimum of one marker locus in the target population (Dreisigacker et al., 2016). As result, GS 

generally is more capable of accounting for small-effect loci associated with complex 

quantitative traits such as FHB and wheat rust resistance (Poland & Rutkoski, 2016).  
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GS uses a ‘training population’ of individuals that have been genotyped and phenotyped 

for traits of interest in a target environment to predict the performance of a non-phenotyped but 

genetically related ‘testing set’ that only have been genotyped (Jannik et al., 2010). This 

procedure produces genomic estimated breeding values (GEBV). These GBEVs are not 

identifying loci nor indicating genomic regions underlying genes/QTLs, but they summarize the 

presence of favorable alleles from a genome-wide markers analysis, that can be used a selection 

criterion. Several statistical models can be used to estimate GEBV. Here we focused on four of 

GS models: Ridge Regression Best Linear Unbiased Predictor (rrBLUP), Partial Least Squares 

Regression (PLSR), Elastic Net (ELNET), and Random Forest (RF). 

rrBLUP is a mixed linear model developed by Elderman (2011) that considers random 

effects for markers where the marker variance is the quotient of total genetic variance divided by 

the number of markers, assuming that each locus contributes equally to the phenotype 

expression. The PLSR model (Mevik et al., 2013) takes into account principal components and 

multivariate regression on its predictions. ELNET is a generalized linear model (Friedman et al., 

2010) that sets a mixing and tuning parameter to create a grid selection technique that allows 

markers to have variable and null effects at loci. The RF model (Breiman, 2011) is considered a 

machine-learning algorithm (Poland & Rutkoski, 2016) capable of capturing non-additive 

effects. Predictions from this model are based on a multiple decision trees that accounts for 

relatedness of individuals allowing the effect of markers depending on alleles present at each 

locus. It has been reported that RF generates higher prediction accuracies than other models 

when predicting quantitative traits that are controlled by multiple small-effect QTLs such as 

disease resistance (Rutkoski et al, 2012). 



 

 

20 

Recent studies are allowing to run multiple statistical models simultaneously, while 

estimating average prediction across different GS models (Gaynor, 2015), others included 

covariates to account for G×E interaction (Crossa et al., 2017), pedigree distance matrix (Juliana 

et al., 2017) and even crop growth modeling as covariates (Rincent et al., 2017) aiming to 

increase the accuracy of GS prediction. Others are reporting significant improvements made 

through the incorporation of fixed effect markers (Spindel et al., 2016). GS models that treat 

known QTLs as fixed effects may increase accuracy predictions by more than 30% when 

compared to conventional models with all SNPs treated as random effects (Arruda et al., 2016b). 

 Cross Predictions 

Perhaps more important than using genome-wide marker data of make forward 

predictions of non-phenotyped elite lines in unknown environments, this resource could be also 

applied to predict which individuals would generate the most promising progeny when crossed. 

Consider a typical wheat breeding program that includes ~300 elite lines in the crossing block 

from where around a 1000 crosses are made every year. This number of crosses represent only 

2.23% of the total number of the 44850 possible combinations, meaning that it would take nearly 

40 years of work to generate all possible combinations from one season of the crossing block. 

Cross-prediction refers to the ability to estimate and simulate cross combinations from a 

set of elite parents aiming to identify the ones that are more likely to generate a superior progeny. 

Although, crossing elite parents ensures the desired population mean, it does not guarantee that 

sufficient genetic variance will be created from which to select progeny (Bernardo et al., 2010). 

Several studies have recently proposed to predict the genetic variance of the progeny by 

simulating crosses where linkage structure and recombination is accounted for, and after that, the 

performance of the segregating population is simulated and predicted (Bernardo, 2014). Based 
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on these principles, Mohammadi et al. (2015) were pioneers in the development of the R 

package ‘PopVar’ which is capable of estimating the genetic variance in simulated populations 

based on phenotypic and genotypic data from a list of potential parents. 

In general, most of the wheat breeding programs plan crosses exclusively based on the 

phenotypic data available from prior years and MAS data for a few genes. However, many 

crosses end up being discarded in early generations when superior progeny are not identified 

(Heslot et al., 2015). Cross-predictions have been applied to predict wheat crosses aiming 

superior grain yield and baking quality at CIMMYT and INIA (Lado et al., 2017), as well as 

FHB resistance traits in wheat and barley (Tiede et al., 2015; Mohammadi et al., 2015).  

Although some progress has been reported in the literature, more cross validations for 

this approach are needed, as well as the integration of fixed effect markers that often explain a 

larger proportion of the genetic variance. Furthermore, a more complex cross design must be 

considered, since in wheat breeding programs the majority of progenies come from three-way 

crosses, instead of relying solely on biparental cross predictions, as currently done by ‘PopVar’. 
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Chapter 2 - QTL Mapping of Fusarium Head Blight Resistance and 

Deoxynivalenol Accumulation in Kansas Wheat 

 

 Abstract 

Fusarium head blight (FHB) is a wheat disease that reduces grain yield and accumulates 

mycotoxins in wheat-derived products. Deoxynivalenol (DON) is the most prevalent toxin and it 

has an advisory limit of 1 ppm in products for human consumption. The objective of this study 

was to map QTLs associated with components of native FHB resistance in Kansas wheat. A 

doubled haploid (DH) population was developed from a cross between Everest and WB-Cedar, 

which are moderately resistant and moderately susceptible to FHB, respectively. DH lines, 

parents, and checks were evaluated in the field for two years in a randomized complete block 

design with three replications. The evaluation of percentage of symptomatic spikelets (PSS) 

started 14 days after heading and repeated every three days. Genotypes were also evaluated for 

thousand kernel weight, DON accumulation, Fusarium-damaged kernels (FDK), and grain 

protein content. All DH lines and parents were genotyped using genotyping-by-sequencing. 

Standard, composite, and multiple QTL mapping was performed using Haley-Knott regression. 

Five QTLs from Everest were identified on 1BS, 3BS, 5AS, 5DS, and 6BS indicating that this 

cultivar is a source of native FHB resistance with multiple mechanisms of resistance. Another 

three QTLs from WB-Cedar were mapped on 1AS, 5BL, and 7AL. Additive QTL effects were 

confirmed by a contrasting analysis which showed that individuals containing all resistant alleles 

were significantly more resistant than lines with one or no favorable alleles at peak loci. A 67% 

reduction in DON content was observed in lines carrying all mapped QTLs for DON. 
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 2.0 Introduction 

Fusarium head blight (FHB), also known as scab, is a wheat disease caused by Fusarium 

graminearum that significantly reduces grain yield and produces mycotoxins that contaminate 

wheat grains and flour. Given the rise of global temperatures, major epidemics are likely to occur 

in the future, particularly in warm regions with high humidity (Dweba et al., 2017). Economic 

losses were ~$7.5 billion in the period from 1993 and 2001 in the United States alone due to 

severe FHB epidemics(Nganje et al., 2004). FHB also lead to accumulation of deoxynivalenol 

(DON) which is the most prevalent toxin produced by this pathogen being unsafe for human and 

animal health when consumed in concentrations higher than 1 ppm. 

In Kansas, FHB occurs predominantly in the Eastern third of the state, where losses can 

be substantial, with occasional epidemics also occurring in central part of the state. Growers 

from these regions have access and are adopting, moderately resistant varieties, such as Everest, 

which has led the state in acreage for five consecutive years. In the South east district, 58.6% of 

the acreage was planted with Everest in the 2015-2017 growing seasons (Kansas Ag Statistics, 

2017). As a result, an estimated ~$30 million are saved every year by the simple practice of 

using resistant varieties (Bockus et al., 2015). 

QTL mapping of biparental populations has been the most popular method for identifying 

new genomic regions associated with FHB resistance. Hundreds of QTLs for FHB resistance 

have been reported covering all wheat chromosomes with varying effects (Liu et al., 2009). In 

addition, the quantitative nature and complex inheritance often complicate efficient mapping 

(Buerstmayr et al., 2009). FHB resistance has multiple components, of which the most important 

are: resistance to initial infection (Type I), disease spread after infection (Type II), resistance to 
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toxin accumulation (RTA or Type III), and resistance to kernel infection (RKI or Type IV) 

(Mesterhazy, 1995; Sneller et al., 2012). 

In breeding programs where the FHB resistance is primarily based on native small-effect 

QTLs from phenotypic selection, mapping these loci and further selection by MAS is more 

challenging. Yet, breeding for FHB resistance with these type QTLs has its own advantages, 

such as avoiding introgression of large genetic blocks and/or alien segments from unadapted 

materials, which often have yield penalties and not relying on biased marker associations. 

Besides, major well-known QTLs could still easily be integrated with small-effect QTL in order 

to improve FHB resistance. Furthermore, it is important to point out that resistance is not 

deployed by itself, but rather in combination with other traits, such as yield potential and end-use 

quality, and finding the perfect balanced combination is the endless challenge of breeding. 

In this study, a DH-biparental population was made with the goal of mapping the native 

FHB resistance of Everest in a single cross with WB-Cedar. Both parents are currently among of 

the most planted varieties in Kansas, representing nearly 20 % of the area grown with wheat the 

last three growing seasons (Kansas Ag Statistics, 2017). Therefore, the objective of this chapter 

was to: (1) map QTLs associated with FHB resistance types II, III, and IV; (2) perform a contrast 

grouping analysis to examine the effect of stacking QTLs within breeding lines; (3) and select 

the most resistant DH-lines to move forward in the K-State hard red winter wheat breeding 

Program. A better understanding of the genetic mechanisms underlying FHB resistance will 

allow breeders to build on the native resistance levels of Everest and assist in the development of 

even more resistant varieties for Kansas farmers in the near future. 
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 2.1 Materials and Methods 

 Genetic Material 

A doubled haploid (DH) population with 202 lines was developed from a cross between 

the cultivars Everest and WB-Cedar, which are moderately resistant and moderately susceptible 

to FHB, respectively (De Wolf et al., 2015). Everest was developed and released by Kansas State 

University in 2009, whereas WB-Cedar was developed by the company WestBred and released 

in 2011. The pedigree of Everest (PI 659807) is HBK1064-3/JAGGERW//X960103 whereas 

WB-Cedar (PI 661996) came from a cross of TAM-302/PIONEER-2180//EXP (NPGS, 2017). 

Both parents are hard red winter wheats and have the same alleles at the Rht-B1, Rht-D1, and 

Ppd-D1 and Ppd-B1 loci (unpublished data). As a result, this DH population is fairly 

homogenous in terms of plant height and maturity, which is a desirable characteristic for QTL 

mapping studies of FHB resistance since these traits may cause confounding effects. 

 Experimental Design 

The study was conducted in the field at Rocky Ford FHB Nursery of the Department of 

Plant Pathology (Kansas State University) during the growing seasons of 2014/2015 and 

2015/2016. The experiment was set up in a randomized complete block design with three 

replications, where each experimental unit was formed by a one-meter long single row plot. 

These were planted in sets of six rows where the susceptible and resistant checks (Overley and 

Everest, respectively) were planted as borders flanking sets of four genotypes. Full sets of checks 

(three consecutive rows) were also repeated three times within each block, with the goal of 

getting more accurate data for further comparative analysis. 
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 Field Inoculations 

The isolate GZ 3639 of F. graminearum which is native to Kansas was used as the 

primary inoculum source. The pathogen was isolated and purified in the lab. After that, corn 

kernels were autoclaved and colonized with this isolate to be further distributed in the field and 

cause disease. A homogeneous inoculation was achieved by scattering corn kernels infected with 

the pathogen in the field two weeks before heading. The field was then irrigated using misting 

sprinklers running three minutes per hour at night from the beginning of flowering to early 

dough stage, as described by Jin et al. (2013). 

 Phenotypic Evaluations of FHB 

Heading date was recorded on plot basis when 50% of the spikes were exposed. Visual 

evaluation of the percentage of symptomatic spikelets (PSS) started 14 days after heading and 

was repeated every 3 days for a total of 5 evaluations in each year. This data was later used to 

estimate the spread intensity of the disease between different days of evaluation by calculating 

the area under the disease progress curve (AUDPC) as described by Madden et al. (2007).  

Plant height (PH) was measured in centimeters from the soil surface to the top of spikes, 

excluding the awns, at maturity. Additionally, stripe rust notes were taken in the first year using 

a linear 1 to 9 scale where 1 is resistant and 9 is highly susceptible. Thousand kernel weight 

(TKW) was estimated by counting a sample of 300 kernels from each plot using an automated 

seed counter model 805-3 (International Marketing and Design, USA). 

A representative sample of 100 grains from each harvested plot was collected to estimate 

DON and Fusarium-damaged kernel (FDK) using single kernel near-infrared spectroscopy 

(SKNIR). This automated system was developed by the USDA-ARS, CGAHR, Engineering and 

Wind Erosion Research and is capable of collecting and analyzing individual wheat kernels 
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using a spectrometer with an indium-gallium-arsenide detector that measures absorbance at 950–

1650 nm (Dowell et al., 1999; Dowell et al., 2006). The SKNIR collects spectra values for each 

single wheat kernel and later different calibration curves are used to predict the trait of interest 

such as DON, FDK, protein content, and grain hardiness. 

The DON calibration curve predicts the amount of mycotoxin in parts per million in each 

individual kernel. An average of all 100 kernels was calculated for each sample, as well as DON 

values for each sorted bin. FDK was calculated using the sorting feature, which sorts the kernels 

into different bins. Kernels with predicted values between -1.00 and 1.50 are classified as sound 

kernels whereas kernels with predicted values greater than 1.50 are considered FDK, which was 

expressed in percentage (FDK / FDK + sound) for each sample (Dowell et al., 2009; Peiris et al., 

2010). 

 Genotyping and SNP Filtering 

Leaf tissue from seedlings of all DH lines and the parents were collected at two-leaf 

stage. DNA was extracted and purified using the “BS96 DNA Plant” protocol for the Biosprint 

96 workstation and the Biosprint 96 DNA plant kit (Qiagen, Hilden, Germany). The DNA 

samples were digested with the restriction enzymes PstI and MspI which are a rare-cuter and a 

common-cutter, respectively. After that, the samples were amplified and sequenced with an 

Illumina HiSeq equipment as described by Poland et al. (2012). A bioinformatics pipeline on 

TASSEL 4 was used to call and filter SNP markers. Only single nucleotide polymorphisms 

(SNPs) that were polymorphic between the parents and less than 50% of missing data were 

retained. A total of 13,752 SNPs were originally discovered. 

The remnant SNP markers were filtered again using mapping construction functions of 

the R/qtl package (Broman, 2009) in R environment. Typically, it is expected that, on average, 
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50% of alleles come from each parent in a DH population originating from a single cross. Thus 

DH-lines with more than 90% matching markers were considered duplicates and removed using 

the function comparegeno(). Likewise, SNP markers were filtered for minor allele frequency 

greater than 20% while duplicate genotypes were removed by the function findDupMarkers(). 

Subsequently, markers that showed significant segregation distortion were also identified and 

discarded. The genotypic frequency of the parental alleles was assessed for each DH line and 

potentially switched alleles (estimated recombination fraction > 0.5) were discarded. 

The DH population, parents, along with positive and negative controls were genotyped 

with three SSR markers: gwm133 (Cuthbert et al., 2007), Xgwm149 (Xue et al., 2010), and 

Xgwm304 (Xue et al., 2011) which are respectively linked to Fhb2, Fhb4, and Fhb5. Based on 

results of prior genotyping (unpublished data) neither parent carries Fhb1, eliminating the need 

to screen the population for this gene. 

 Linkage Map Construction 

The genotypic data was loaded into JoinMap 4.1 (Van Ooijen, 2006) to create a linkage 

map using the Kosambi mapping function, which estimates genetic distances between markers 

along with a maximum likelihood independence LOD for grouping. A total of 34 linkage groups 

were initially identified. When multiple linkage groups were assigned to the same chromosome, 

PopSeq positions were used to recalculate the genetic distances between markers for that 

chromosome (Chapman et al., 2015). This resource was also used to re-order the markers, from 

short arm to long arm, within each wheat chromosome. 

 Statistical Analysis of Phenotypic Traits 

All the phenotypic data was analyzed using the software SAS version 9.4 (SAS Institute 

Inc., 2012). Initially, PROC UNIVARIATE was used to check the normality and distribution of 
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the phenotypic traits. The experimental factors were: genotype, block, year, block within year, 

and genotype by year (G×Y) interaction. The analysis of variance was conducted using the SAS 

procedure PROC GLM where the factors year and block were treated as random effects while 

genotype was considered fixed. 

Plant height (PH) was included in the model as a covariate of fixed effect, since PH may 

be a confounding factor as shorter genotypes have greater exposure to the source of inoculum 

present in the ground. Ultimately, each year was analyzed separately due to the significant G×Y 

interaction for the majority of evaluated traits. The broad sense heritability (H2) of all traits was 

calculated on an entry-mean basis using the following formula: 𝐻2 = σ𝐺
2 /(σ𝐺

2 +
σ𝐺×𝑌

2

𝑛
+

σ𝐸 
2

𝑛𝑟
), 

where σ𝐺
2 = genetic variance, σ𝐺×𝑌

2 = genotype-by-year interaction variance, σ𝐸 
2 = error variance, 

𝑛= number of experiments, and 𝑟= number of replications (Holland et al., 2002). 

Mean comparisons between all DH lines and parents were calculated using the Tukey-

Kramer test (Tukey, 1949) at 5% of probability of error. Pearson correlations and its graphic 

representations were estimated and drawn using the scatterplotMatrix function in R. DH lines 

were also sorted according to their QTL combinations, then the QTL effects on phenotypic traits 

were tested by a contrast grouping analysis in SAS with genotype groups considered as random. 

The adjust LSmeans of all traits were then used to perform further QTL mapping analysis.  

 QTL Mapping Analysis 

The parental alleles of Everest and WB-Cedar were coded as ‘E’ and ‘C’ in the linkage 

map, respectively. Then, all QTL mapping analysis for the phenotypic traits was performed with 

the package ‘R/qtl’ (Broman et al., 2003; Broman et al., 2009) in Rstudio v. 0.98.1027 (Rstudio 

Team, 2017) using Haley-Knott regression. The significance of all mapped QTLs was 
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determined at p<0.05 probability of error using genome-wide LOD thresholds set using 1000 

permutations. 

Initially, standard interval mapping (SIM) analysis was used to identify the largest effect 

QTLs, which were then used as covariates to run composite interval mapping (CIM). Significant 

QTLs from CIM analyses were submitted to multiple QTL mapping (MQM) analysis to adjust 

positions, detect flanking and peak markers, determine confidence intervals, quantify individual 

and cumulative effects on regarding percent phenotypic variation explained, and identify parental 

origin of all mapped QTLs. Confidence intervals for each QTL were determined using the 95% 

Bayesian interval and genetic maps of chromosomes with the most significant QTLs and their 

flanking markers were drawn using MapChart version 2.1 (Voorrips, 2002). 

 

 2.2 Results and Discussion 

 Phenotypic Traits 

The joint analysis of variance (Table 2-1) identified significant effects (p < 0.01) of 

genotype for all traits evaluated in this study. Similarly, the interaction of genotype by year 

(G×Y) was significant for all traits, except for protein content (PRO) in sound kernels. Since the 

effect of year was significant for all traits, except thousand kernel weight (TKW), initially each 

year was analyzed separately, and the two-year average was also considered. 

Although this population does not segregate for the two major dwarfing genes (Rht-B1, 

Rht-D1), variation in plant height (PH) was observed. Therefore, PH was included as a covariate 

in the analysis variance since shorter plants are more exposed to the ground-based inoculum than 

taller plants. A significant effect of this covariate was observed for TKW, Fusarium-damaged 

kernel (FDK), and PRO in the joint analysis. A significant effect of these traits, as well as DON, 
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was associated with the PH in 2016. Coefficients of variation ranged from 4.83 to 20.91%, which 

can be considered acceptable for field experiments (Table 2-1). All six evaluated traits appeared 

to be normally distributed in both years (Figure2-1). Although the distribution of the final 

evaluation of symptomatic spikelets (PSS) and the area under the disease progress curve 

(AUDPC) was slightly skewed to the left, data transformation was not implemented. 

The significant effect of the G×Y interaction shown in Table 2-1, and in the adjusted 

mean comparison across years presented in Table 2-2, demonstrates that a significantly more 

severe epidemic was achieved in 2015 than in 2016. Meanwhile, PRO was the only trait that did 

not show significant differences for the G×Y interaction, indicating that genotypes performed 

similarly across years for this trait. The broad sense heritability ranged from 0.25 to 0.69 with the 

lowest values for FDK and the highest for PSS. Graphical dispersion of Person correlations 

between FHB traits are shown in Figure 2-2 while correlations values for each individual year is 

presented in Table 2-3. Highly significant correlations with DON accumulation were observed 

for AUDPC (0.62***), PSS (0.61***) and FDK (0.53***) in the two-year average. 

Parents were statistically different from each other for PSS and AUDPC (Table 2-2), 

these results also confirmed that Everest is significantly more resistant to FHB than WB-Cedar. 

The average of the population fell close to the mid-parent mean for the majority of the traits, as 

expected. Transgressive segregation (presence of extreme phenotypes that significantly differ 

from the parents) was also observed. For instance, KS12DH0296-74 (DH074) and 

KS12DH0296-143 (DH143) presented significantly higher values of FDK, DON, and PSS, 

AUDPC indicating that these lines were significantly more susceptible than WB-Cedar (Table 2-

2 and Figure 2-5), however, none of the DH lines were significantly more resistant than Everest. 

In contrast, KS12DH0296-208 (DH208) and KS12DH0296-147 (DH147) presented significantly 
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higher values of TKW and PRO than both parents, respectively (Table 2-2). These results 

suggest these both parents contain genes that influenced susceptibility and resistance. 

 The Genetic Map of the Everest/Cedar Population 

After filtering the genotypic data and grouping makers within linkage groups based on 

marker distance and its segregation, our final linkage map contained 2,839 SNP markers 

spanning 3,040 cM and covering all the wheat chromosomes (Figure 2-3). The average marker 

spacing was 1.08 cM with the largest gap (43.7cM) being found chromosome 7D (Table 2-4). 

Strong linkage disequilibrium (LD) between markers within, but not across chromosomes was 

observed, indicating that the genetic map was well constructed (Figure 2-4). 

The genetic map was compared against PopSeq positions (Chapman et al., 2015) to order 

markers from short to long arm within each chromosome and recalculate marker positions when 

more than one linkage group was assigned per chromosome. The majority of SNP markers were 

located on the A (42.9%) and B (47.1%) genomes, while only 10% of the polymorphism was 

detected on the D genome (Table 2-4). The low diversity on the D genome has been repeatedly 

reported in the literature and is mainly due to the fact that a limited number of ancestral 

genotypes of the D genome donor (Aegilops tauschii) contributed to the origin of hexaploid 

wheat (Wang et al., 2013; IWGSC, 2014; Jordan et al., 2015). This effect was obvious in this 

population as only 3 and 28 loci were identified as segregating between Everest and WB-Cedar 

on chromosomes 4D and 5D, respectively (Table 2-4). This also highlights the drawbacks of 

biparental mapping, since only loci segregating between the parents are taken into account. 

Results from the SSR markers linked with the large- effect QTL Fhb4 and Fhb5 were 

monomorphic, indicating that these QTLs are not present in the current population. For Fhb2, the 

resistant allele consists of a 120-123 base pair (bp) product produced by the marker gwm133 
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(Cuthbert et al., 2007) and Sumai#3 was used as standard positive control. Everest and a few 

DH-lines yielded a 127 bp signal that was initially speculated to be associated with the presence 

of Fhb2, since this band size was just slightly larger than the positive control, Sumai#3. 

However, when data from this marker was included in the linkage map, it did not group within 

any linkage group. Calling the size of SSR markers is often challenging, and in these case, the 

appearance of an allele associated with Fhb2 was the result of erroneous SSR peak calls. 

Moreover, based on pedigree, it is unlikely that any of the three known-QTLs are segregating 

within the DH population Everest/WB-Cedar. 

 QTL Mapping of FHB Resistance Components 

Standard interval mapping (SIM) followed by composite interval mapping (CIM) (Figure 

2-6) analyses were performed for all traits. Loci that were significant on prior analyses were then 

re-analyzed with a multiple QTL mapping analysis (MQM) to identify possible interactions and 

their combined effect on phenotypes. The MQM analysis releveled that all mapped loci have 

additive effects while no significant QTL×QTL interactions were identified. The predominance 

of additive effects is in agreement with the literature (Buerstmayr et al., 2009; Islam et al., 2016) 

and indicates that significant progress for FHB resistance can be made by stacking multiple 

QTLs within breeding lines. A total of 11 QTLs were mapped in this study, from which eight 

were associated with two or more resistance traits and/or both years of the experiment (Table 2-

5). Everest was the donor for five of the eight reproducible loci. No significant QTLs were found 

for TKW and DON in the 2016 growing season which is likely due to the lower levels of disease 

infections observed in these second year of the experiment. 

The last evaluation of PSS and the AUDPC measures the disease evolution within spikes 

over time after the initial infection, therefore these traits represent type II resistance. Three QTLs 
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(located on 1AS, 3BS, 7AL) were associated with disease spread within spikes were found in 

2015 and together explained 31.76% of the phenotypic variation of PSS (Table 2-5). The allele 

associated with resistance on 3BS was from Everest and explained 15.32% of the PSS variation. 

This QTL also was remapped within the same interval for AUDPC15, AUDPC16, 

AUDPC15&16, FDK15 (type IV/RKI), DON15&16 (type III/RTA), and TKW15&16 (Figure 2-

7). The association with TKW is likely an effect cofounded with FDK since lines with less 

damaged kernels tend to have higher TKW. Although, Fhb1 is located on this same interval of 

3BS (Cuthbert et al., 2006; Liu et al., 2009; Rawat et al., 2016), based on results from prior 

genotyping (unpublished data) neither parents carry resistant alleles at the Fhb1 locus. Likewise, 

Islam et al. (2016) also reported a QTL in the same region of 3BS associated with FHB severity 

(Type II) in the cultivar Truman, a soft red winter wheat from the University of Missouri which 

is well-known for its native resistance. Everest contains several soft red winter wheat parents 

from the eastern US in its pedigree making it likely that this resistant locus in Everest has the 

same origin as the Truman QTL. The position of this QTL in relation to Fhb1 will make 

pyramiding the two QTLs together more challenging since the will be likely linked in repulsion 

phase. 

Two additional QTLs from Everest, located on 5DS and 6BS, were repeatedly mapped 

within the same confidence interval and were associated with significantly lower values for 

AUDPC15, AUDPC15&16, DON15, and DON15&16. The 5DS QTL explained from 4.15 to 

11.65% of the phenotypic variation for these traits (Table 2-5). The QTL on 6BS mapped close 

to the interval of Fhb2 (9 – 15cM) reported by Cuthbert et al. (2007). However, based on the 

results from the SSR marker associated with Fhb2, it is not present in our population. Thus the 
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genomic regions on 5DS and 6BS found in this study being associated with FHB resistance are 

likely novel native QTL present in North American winter wheat. 

Another QTL on 5A from Everest was associated with increased TKW in 2015 and lower 

values for FDK15, FDK15&16, DON15, and DON15&16 (Figure 2-8). This QTL explained 

from 5.82 to 15.36% of the phenotypic variation for these traits, with the largest effect on 

reduced DON accumulation in 2015 and the average of DON over both years combined (Table 

2-5). In a recent study, Cai et al. (2016a) found several minor-effect QTL from the Chinese 

landrace Haiyanzhong contributing to FHB resistance. The QTL with the largest effect in that 

study was mapped to 5A in an interval similar to the one identified in the present study. Everest 

and Haiyanzhong have little to no relatedness, by pedigree, making it less likely they would have 

a common QTL. These two cultivars have no pedigree connection in the history of modern 

breeding which makes the presence of a common QTL very unlikely.  

The QTL on 1B from Everest was significantly associated with TKW15, TKW15&16, 

FDK15, FDK15&16, and DON15 (Table 2-5). It mapped within the interval 55.59 – 99.96 cM 

explaining from 3.50 to 6.96% of the phenotypic variation. In similar studies, Eckard et al. 

(2015) and Islam et al. (2016) reported a QTL on 1B associated with disease spread 21 days after 

the initial infection. These authors also verified that the QTL was present in the hard red winter 

cultivars Overland and Lyman, which increases the likelihood it is the same QTL that we 

detected on Everest in the current study. 

Only three QTLs from WB-Cedar were associated with FHB resistance. The first one was 

located on the short arm of 1A and was significantly associated with lower values of PSS15, 

AUDPC15, FDK15, FDK15&16, and DON15&16 (Table 2-5). Other studies have also identified 

QTL on 1A associated with FHB resistance in the cultivars Lyman and Overland (Eckard et al., 
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2015), Bess (Petersen, 2015), and Massey (Liu et al., 2013). All these cultivars were developed 

in the US and are well-known for having native resistance to FHB. Although the 1RS-1AL 

translocation is located on this genomic region, which is positively associated with FHB 

resistance (Costa et al., 2010), neither Everest nor WB-Cedar carries this alien segment. 

Another locus from WB-Cedar was mapped on the long arm of 5B within the interval 

113.51 – 180.29 cM (Table 2-5). The presence of this genomic region was associated with lower 

values of PSS and AUDPC in the average of both years of the experiment. Likewise, a QTL 

from WB-Cedar associated with PSS15, PSS15&16, AUDPC15, AUDPC15&16, and FDK16 

was found on 7AL, explaining from 5.15 to 13.29% of the phenotypic variation (Table 2-5). This 

association with multiple traits in both years increases confidence in the validity of this QTL 

(Figure 2-9). Several QTLs associated with FHB resistance were identified on this genomic 

region of 7AL in the cultivars Wangshuibai and Spark (Liu et al., 2009), Huangfangzhu (Li et 

al., 2012) and NK93604 (Semagn et al., 2007), yet there is not pedigree relatedness between 

these materials and the Everest/Cedar population. 

This study confirmed that FHB resistance is a complex trait with multiple loci 

contributing to resistance. Although resistance can be classified into different types, phenotypic 

traits are often highly correlated (Figure 2-2), leading to co-localization of QTLs. For example, 

QTLs for PSS and AUDPC frequently mapped to the same confidence interval. We also 

observed that the sum of all individual loci seldom explained more 40% of the phenotypic 

variation for the evaluated traits. The remaining non-explained variation is most likely due to 

experimental errors and other small-effect loci that the QTL mapping analysis does not have 

enough statistical power to capture. In addition, the small proportion of variation explained by 

mapped QTLs can yet be overestimated, as observed by Arruda et al. (2016). 
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 Effect of QTL Combinations 

A ‘genotype group’ refers to a set of alleles from different loci that are inherited together 

from a given parent and expressed in the progeny, thus individuals carrying most of the favorable 

alleles are expected to be significantly more resistant. In our study, DH lines were classified 

based on the parental allele present at the peak marker of all QTLs that were significantly 

associated with FHB resistance in the two-year average of the experiment (Table 2-5). Therefore, 

each QTL combination was considered as one genotype group and, since no more than one QTL 

was found per chromosome, loci were named after the chromosome on which they were found. 

Three QTLs from Everest located on 3BS, 5DS, and 6BS, along with another two from 

WB-Cedar, located on 5BL and 7AL, were significantly associated with initial disease infection 

(last evaluation of PSS) in the average of both years. A total of 32 genotype groups were found 

in the population from these five loci, varying from 10 lines without any favorable allele to two 

lines (DH014, DH037) carrying all favorable alleles from both parents. Lines carrying all QTLs 

presented significantly lower PSS in 2015, 2016, and the two-year average than those lines 

without any of the mapped loci (Table 2-6). These results indicate the viability of stacking 

multiple QTLs together to increase Type II resistance of FHB. 

AUDPC is estimated from multiple PSS evaluations over time, therefore it measures how 

fast the disease spreads after the initial infection and it is associated with type II resistance. Four 

loci located on 3BS, 5DS, 6BS, and 7AL mapped within the same confidence interval that was 

previously associated with PSS. In addition, another QTL on 1AL from WB-Cedar was also 

associated with lower AUDPC values. The contrast analysis for QTL combinations was 

statistically significant for the year 2015 and the across-experiment analysis, but not in 2016 

(Table 2-7). Only one line (DH186) had all resistant alleles at the five QTLs associated with 
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AUDPC, presenting significantly lower values for this trait in 2015 and in the average of both 

years indicating that FHB spread slowly on this DH line. 

Three QTLs explained 26.27% of FDK variation in the average of two years of the 

experiment (Table 2-5). A QTL on 1AL from WB-Cedar mapped in the same interval as the 

QTL associated with AUDPC suggesting that this genomic region is simultaneously associated 

with type II and type IV resistance. Another two QTLs from Everest, located on 1B and 5A, 

were also associated with low values of FDK. The genotype analysis identified 19 DH lines 

having all resistant alleles from both parents at these three loci. These lines had significantly 

lower values of FDK in 2015 and in the average of both years (Table 2-8). DH lines without any 

resistant allele at these QTLs presented 68.1% of FDK in the two-year average whereas 19 lines 

containing all resistant alleles averaged 51.9% which was statistically different from each other. 

Four QTLs associated with low DON accumulation were mapped on 1A, 3B, 5A, 5D 

chromosomes. Together these loci explained 35.42% of the DON variation in the two-year 

average (Table 2-5). The QTL on 1A was the same one from WB-Cedar previously associated 

with AUDPC and FDK, while the loci on 3B and 5A from Everest were also mapped for PSS, 

AUDPC, and FDK, suggesting that these genomic regions affect FHB resistance through 

different physiological mechanisms. In contrast, the QTL on 5DS from Everest was exclusively 

associated with low DON values. The genotype grouping analysis identified five lines containing 

all resistant alleles at these four loci. These lines presented significantly lower values of DON in 

2015 and in the average of both years, but not in 2016 (Table 2-9). Lines without any resistant 

allele at these QTLs averaged 6.5 ppm DON over the two years of the experiment while lines 

containing all resistant alleles averaged 4.37 ppm, representing a reduction of 67%. 
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Two QTLs from Everest were found on 1B and 3B explaining 15.62% of phenotypic 

variation for TKW (Table 2-4). However other QTL associated with PSS, AUDPC, FDK, DON 

mapped to these regions. Therefore, the effect on TKW is likely cofounded, since more 

susceptible lines tend to have lighter kernels than resistant lines due to increase damage from 

FHB. The group of lines containing favorable alleles at these two loci showed statistically higher 

values for TKW (Table 2-10). In contrast, the protein content could be estimated exclusively on 

sound kernels using the sorting features of the SKNIR system, avoiding the occurrence of 

confounding effects. As a result, four QTLs were significantly associated with PRO were found. 

Only one (5B) mapped in the same confidence interval as FHB resistant traits. The other loci 

were located on 2AL, 2BL and 7BL, and explained 42.3% of the grain protein variation. Only 

nine lines carried the favorable alleles for each of the QTLs and had significantly higher values 

for PRO than lines with zero or one favorable QTL (Table 2-11). 

In summary, the presence of multiple QTLs within breeding lines significantly influenced 

the values of all phenotypic traits, confirming that additive effects are predominant in the genetic 

control of FHB resistance. Therefore, our results are in agreement with the majority of studies 

reported in the literature (Buerstmayr et al., 2009; Cai, 2016b). Substantial progress in FHB 

resistance can be achieved by having multiple significant QTLs stacked within breeding lines, as 

was also observed by Clinesmith (2016), suggesting that even when resistance is controlled by 

several minor-effect QTLs, pyramiding them together improved FHB resistance. Field notes of 

PSS and AUDPC relied on visual notes which led to larger error variance (Table 2-1) and 

generated only two or three groupings in the contrast analysis (Tables 2-6 and 2-7) whereas traits 

estimated by the SKNIR system presented smaller error variance and more statistically different 
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groups in the genotype group analysis. It highlights the need for automated phenotyping tools 

that would be able to distinguish minor phenotypic in further studies. 

 

 2.3 Conclusions and Future Prospects 

Five QTLs from Everest were identified on 1BS, 3BS, 5AS, 5DS, and 6BS being 

repeatedly associated with FHB components indicating that this cultivar is a source of native 

FHB resistance with multiple mechanisms of resistance. Likewise, another three QTLs from 

WB-Cedar were discovered on 1AS, 5BL, and 7AL chromosomes. Transgressive segregation for 

resistance was not observed which indicates that these parents likely share genes associated with 

FHB resistance. Moreover, these eight mapped QTLs that were segregating in the progeny were 

not capable of generating any individual statistically more resistant than Everest. 

The genotype grouping analysis confirmed the predominance of additive effects 

controlling FHB resistance traits. Although the percentage of phenotypic variation explained by 

small-effect QTLs were occasionally modest (less than 5%) when these loci were found in 

combinations within the population the level of resistance was improved. In general, DH lines 

containing all resistant alleles were significantly more resistant than lines with one or no 

favorable alleles at peak loci. It was verified an 67% reduction in DON content in those lines 

with all mapped QTLs compared to the ones without any QTL for DON. DH lines containing 

multiple QTL combinations were selected and included in the crossing block of the K-State Hard 

Red Winter Wheat Breeding Program. 

The QTL on 3BS mapped in the same interval as Fhb1 whereas the QTL on 6BS overlaps 

the interval of Fhb2, although results from tightly linked markers confirmed that they are likely 

not the same QTL. It also suggests that they could be linked in repulsion phase. Therefore, 
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combining these two QTL from Everest with the these well-known QTLs will require extra-large 

progenies and MAS to be able to identify crossovers events between these pairwise loci. 

Several QTL were found in genomic regions where other loci associated with native FHB 

resistance were mapped in prior studies. It suggests that U.S. winter wheat cultivars likely share 

multiple genes of native FHB resistance indicating that limit genetic progress can be made by 

only breeding within this gene pool. Consequently, moving beyond the current levels of 

resistance will require pyramiding large-effect QTLs from exotic and alien sources with these 

minor-effect QTLs of native resistance. There are U.S. springs wheats that already carry such 

QTL and could be used as novel sources of FHB resistance, eliminating the need of crossing 

with unadapted sources that often carry undesirable agronomic traits.  

These novel sources can be backcrossed into an elite winter wheat background such as 

Everest or its derivatives aiming to generate large progenies which could be then selected 

through MAS (since reliable markers are known) in early BC generations to increase the 

frequency of desirable alleles. After that, phenotypic selections could be performed under FHB 

inoculated conditions. Other breeding techniques may also be implemented such doubled 

haploids or single seed descent for fast generation advancement and whole-genome genotyping 

analysis to assist selection of recurrent genetic background, predict FHB resistance within and 

across families, as well as, identifying superior cross combinations among half-sib lines. 
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Figure 2-1. Normal distribution of all phenotypic traits evaluated in 2015 and 2016 growing 

seasons in the DH population Everest/Cedar. Red and blue vertical lines represent parent 

means.  
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Figure 2-2. Graphical dispersion of Pearson correlations between phenotypic traits of the 

two-year average of the experiment and plotted using the R package 

‘performanceanalytics’. 
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Figure 2-3. Genetic map of the Everest/Cedar DH population with 2839 GBS SNP markers 

distributed across the wheat genome. 

 

 

 

Figure 2-4. Heat map of pairwise recombination fractions between markers and their 

pairwise LOD scores drawn with the R package ASmap. 
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Figure 2-5. Visual aspects of samples evaluated by the SKNIR system. After evaluation 

samples are sorted in four bins based on the estimated DON content. 
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Figure 2-6. Genome-wide LOD scores from the Composite Interval Mapping analysis for 

six FHB components in the growing seasons of 2015, 2016, and the two-year average. 

Dotted horizontal lines represent p<0.05 probability of error using genome-wide LOD 

thresholds set using 1000 permutations for each trait.
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Figure 2-7. Chromosomal positions (in cM) of QTLs associated with percentage of symptomatic spikelets (PSS), area under de 

disease progress curve (AUDPC), thousand kernel weight (TKW), Fusarium-damaged kernels (FDK), deoxynivalenol 

accumulation (DON), and protein content (PRO). Bars to the right of the chromosome represent the 95% Bayesian interval of 

QTL with a different color for each trait. SNP marker flanking QTL are color coded in respective to each trait with larger 

font size for the marker at peak loci.  
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Figure 2-8. Chromosomal positions (in cM) of QTLs associated with percentage of symptomatic spikelets (PSS), area under 

the disease progress curve (AUDPC), thousand kernel weight (TKW), Fusarium-damaged kernels (FDK), deoxynivalenol 

accumulation (DON), and protein content (PRO). Bars to the right of the chromosome represent the 95% Bayesian interval of 

QTL with a different color for each trait. SNP marker flanking QTL are color coded in respective to each trait with larger 

font size for the marker at peak loci.  
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Figure 2-9. Chromosomal positions (in cM) of QTLs associated with percentage of symptomatic spikelets (PSS), area under 

the disease progress curve (AUDPC), thousand kernel weight (TKW), Fusarium-damaged kernels (FDK), deoxynivalenol 

accumulation (DON), and protein content (PRO). Bars to the right of the chromosome represent the 95% Bayesian interval of 

QTL with a different color for each trait. SNP marker flanking QTL are color coded in respective to each trait with larger 

font size for the marker at peak loci.
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Table 2-1. Means squares from the joint and individual analysis of variance of a DH population and parents conducted in the 

field during the growing seasons of 2015 and 2016. 

Year Source of variation d.f. † PSS AUDPC TKW FDK DON PRO 

2015 

Genotype 177 187.97** 12001.99** 16.37** 0.039** 7.40** 1.78** 

Block 1 256.19* 1341.46ns 0.08ns 0.015ns 14.29** 3.75ns 

Covariate PH 1 35.56ns 2.78.39ns 0.42ns 0.001ns 0.19ns 0.08ns 

Error 161 56.78 2126.6 3.14 0.097 1.81 0.42 

Mean - 55.1 376.1 21.58 0.58 6.44 13.44 

C.V. (%) - 13.68 12.26 8.5 16.8 20.91 4.83 

2016 

Genotype 177 265.17** 6836.12** 22.78** 0.033** 0.62** 1.42** 

Block 2 371.55** 1991.60* 0.64ns 1.45** 22.36** 3.23* 

Covariate PH 1 30.11ns 1804.23ns 122.20** 0.15** 2.48* 4.18* 

Error 354 27.38 678.97 12.12 0.015 0.42 0.77 

Mean - 30.13 163.37 21.48 0.63 4.74 14.41 

C.V. (%) - 17.36 15.94 16.2 19.38 13.66 6.09 

Combined 

Genotype 177 317.30** 12663.27** 26.21** 0.04** 3.44** 2.12** 

Year 1 133400.11** 9525671.16** 0.88ns 0.50** 600.32** 22.53** 

Genotype*Year 177 104.84** 5444.59* 13.03** 0.02** 4.52** 0.73ns 

Block(Year) 3 341.26** 1781.43ns 0.56ns 0.96** 19.85** 73.87** 

Covariate PH 1 56.27ns 955.55ns 93.56** 0.13** 2.18ns 5.30** 

Error 515 36.57 1136.73 9.46 0.013 0.85 0.75 

Mean - 39.75 245.82 21.52 0.61 5.40 14.03 

C.V. (%) - 15.21 13.71 14.29 18.82 17.08 6.20 
† d.f: degrees of freedom, C.V.: coefficient of variation, last evaluation of percentage of symptomatic spikelets (PSS), area under de disease progress curve 

(AUDPC), thousand kernel weight (TKW), Fusarium damaged kernels (FDK), average deoxynivalenol content (DON), plant height (PH), and protein content in 

sound kernels (PRO). ** and *** represents respectively significance at p<0.05 and p<0.01 of probability of error, while ns indicates absence of statistical 

significance.
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Table 2-2. Adjusted means, minimum and maximum values, 95% confidence limits, and 

broad-sense heritability (H2) for last evaluation of percentage of symptomatic spikelets 

(PSS), area under de disease progress curve (AUDPC), thousand kernel weight (TKW), 

Fusarium-damaged kernels (FDK), average deoxynivalenol accumulation (DON), and 

protein content in sound kernels (PRO). 

Trait Year Everest WB-Cedar DH pop. Minimum Maximum H2 

PSS 

2015 43.05±10.8
† 66.47±10.5

†  55.43 39.31±10.9 DH062 83.05±10.6 DH161 

0.69 2016 19.67±5.9
† 31.69±6.0

† 29.28 18.35±5.9 DH201 77.06±5.9 DH143* 

Combined 31.12±5.47
† 49.01±5.43

† 42.67 30.26±5.5 DH056 79.71±5.47 DH143* 

AUDPC 

2015 277.98±66.4
† 504.82±64.4

† 376.44 251.96±69.1 DH026 609.39±64.8 DH167 

0.67 2016 99.27±29.7
† 173.94±29.7

† 162.63 99.27±29.7 Everest 412.44±29.6 DH143* 

Combined 190.68±30.5
† 339.55±30.3

† 269.27 181.88±34.9 DH056 505.21±30.5 DH143* 

TKW 

2015 24.6±2.7 23.19±2.6 21.39 12.88±3.7 DH074* 29.77±2.6 DH183 

0.38 2016 22.03±3.9 21.42±3.9 21.49 15.86±3.9 DH136 30.92±4.1 DH208* 

Combined 23.02±2.78 22.31±2.76 21.51 16.94±2.76DH209 29.10±2.76 DH183 

FDK 

2015 0.35±0.14 0.59±0.13 0.59 0.25±0.14 DH188 0.94±0.05 DH074* 

0.25 2016 0.54±0.14 0.58±0.14 0.63 0.39±0.14 DH189 0.86±0.15 DH077 

Combined 0.45±0.10 0.59±0.10 0.61 0.38±0.10 DH188 0.86±0.11 DH077 

DON 

2015 3.08±1.94 6.12±1.88 6.53 1.15±1.92 DH009 12.8±2.7 DH074* 

0.37 2016 4.06±0.74 4.71±0.74 4.74 3.35±0.73 DH183 5.98±0.74 DH089 

Combined 3.60±0.84 5.41±0.83 5.62 3.09±1.05 DH009 8.71±0.84DH209* 

PRO 

2015 12.23±0.47 13.33±0.92 13.45 10.87±0.95DH135* 16.35±0.98DH147* 

0.66 2016 14.68±1.1 15.16±1.0 14.39 12.69±1.0DH163 15.92±1.0 DH026 

Combined 13.88±0.81 14.43±0.81 14.09 12.63±0.81 DH094 15.71±0.80 DH028 

* Indicate lines that that were significantly different from the parents by a 95% confidence interval where maximum 

values were compared with susceptible parent and minimum values were compared with the resistant parent Everest. 
† indicates traits where parents statistically differ from each other. 

 

Table 2-3. Values of Person correlations between phenotypic traits evaluated in the DH 

population Everest/Cedar during the 2015 and 2016 growing seasons. 

Traits Year AUDPC TKW FDK DON PH PRO 

PSS 
2015 0.88 *** -0.52 *** 0.60 *** 0.54 *** -0.29 ** 0.40 *** 

2016 0.98 *** -0.09 ns 0.18 ns -0.06 ns -0.30 ** 0.09 ns 

AUDPC 
2015 - -0.38 ** 0.48 *** 0.49 *** -0.28 ** 0.35 ** 

2016 - -0.08 ns 0.02 ns -0.04 ns 0.11 ns 0.11 ns 

TKW 
2015 - - -0.78 *** -0.61 *** 0.45 *** -0.56 *** 

2016 - - -0.33 ** -0.37 ** -0.16 ns -0.16 * 

FDK 
2015 - - - 0.86 *** -0.33 ** 0.67 *** 

2016 - - - 0.59 *** 0.28 ** 0.28 ** 

DON 
2015 - - - - -0.36 ** 0.62 *** 

2016 - - - - 0.39 ** 0.39 *** 

PH 
2015      -0.42*** 

2016      0.04 ns 
ns represents non-significant correlations while ***, **, and * indicates significance at p>0.001, p>0.01, and p>0.05 

respectively.  
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Table 2-4. Summary of genetic map of the Everest/Cedar DH population including number 

the markers, length, average spacing, and maximum spacing between markers within each 

wheat chromosome. 

Wheat chromosomes Number of Markers Length (cM) Ave. Spacing (cM) Max. spacing (cM) 

1A 159 108.12 0.68 22.85 

1B 209 199.45 0.96 35.59 

1D 58 82.38 1.45 19.61 

2A 234 180.24 0.77 27.52 

2B 287 201.18 0.7 32.11 

2D 45 159.95 3.64 24.1 

3A 148 120.42 0.82 15.0 

3B 360 153.3 0.43 12.45 

3D 33 134.21 4.19 26.65 

4A 110 176.85 1.62 16.16 

4B 45 112.17 2.55 31.6 

4D 3 17.56 8.78 12.61 

5A 192 236.4 1.24 29.61 

5B 151 180.3 1.2 34.03 

5D 28 158.93 5.89 36.7 

6A 179 143.55 0.81 25.35 

6B 109 120.75 1.12 42.6 

6D 77 145.22 1.91 32.9 

7A 196 169.77 0.87 26.35 

7B 175 151.15 0.87 28.3 

7D 41 88.69 2.22 43.7 

Overall 2,839 3,040.59 1.08 43.7 

cM: centimorgans. 
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Table 2-5. Significant QTL from the Multiple QTL Mapping (MQM) analysis associated 

with FHB resistance using adjusted phenotypic means calculates within and across years. 

Trait Chr. Position 95% Bayesian interval Peak marker LOD§ %var. Source 

QTL effect at peak  

marker ± SE 

EE CC 

PSS15 

1AS 5.2 0.00 - 32.70 snp11896 4.43*** 9.16 Cedar 58.95 ± 1.08 52.67 ± 0.99 

3BS 6.0 2.98 - 11.45 snp12041 7.11*** 15.32 Everest 51.37 ± 1.08 58.81 ± 0.95 

7AL 103.9 64.96 - 109.44 snp12886 3.56*** 7.28 Cedar 57.65 ± 1.04 53.28 ± 1.08 

PSS16 
3BS 5.4 0.00 - 72.59 snp00727 2.52** 6.19 Everest 27.19 ± 1.01 32.03 ± 0.89 

4BL 53 34.91 - 91.48 snp00386 3.12*** 7.74 Everest 27.68 ± 0.87 32.9 ± 1.01 

PSS15&16 

3BS 6.0 2.98 - 11.45 snp12041 7.63*** 14.31 Everest 39.23 ± 0.90 45.39 ± 0.79 

5BL 174 164.55 - 179.69 snp03237 4.81*** 8.65 Cedar 44.89 ± 0.84 40.19 ± 0.91 

5DS 12 0.00 - 24.11 snp00063 4.17*** 7.45 Everest 40.66 ± 0.85 45.20 ± 0.93 

6BS 3.3 0.00 - 120.74 snp06814 3.31*** 5.84 Everest 40.88 ± 0.90 44.37 ± 0.86 

7AL 69.6 60.70 - 106.42 snp11649 3.46*** 6.11 Cedar 44.17 ± 0.92 41.35 ± 0.87 

AUDPC15 

1AS 0.0 0.00 - 24.17 snp10627 3.40*** 6.07 Cedar 404.21 ± 9.16 356.76 ± 8.09 

3BS 8.4 2.98 - 11.45 snp00081 6.18*** 11.05 Everest 347.31 ± 8.94 401.71 ± 7.96 

5DS 11 0.00 - 27.25 snp00063 3.74*** 6.72 Everest 354.43 ± 8.23 4.06.08 ± 9.05 

6BS 5.3 0.00 - 98.44 snp10941 3.50*** 6.28 Everest 357.94 ± 8.92 395.31 ± 8.45 

7AL 103.9 33.74 - 110.98 snp12886 3.84*** 6.92 Cedar 395.52 ± 8.50 358.18 ± 8.87 

AUDPC16 3BS 4.8 0.00 - 72.59 snp13441 3.13*** 8.37 Everest 147.80 ± 5.04 174.02 ± 4.48 

AUDPC15&16 

3BS 6.0 2.98 - 11.45 snp12041 7.41*** 13.6 Everest 247.77 ± 6.03 286.90 ± 5.31 

5BL 166.4 113.51 - 180.29 snp06779 3.24*** 5.6 Cedar 281.83 ± 5.98 258.52 ± 5.81 

5DS 11.0 0.00 - 24.11 snp00063 5.28*** 9.41 Everest 253.54 ± 5.51 289.81 ± 6.06 

6BS 3.3 0.00 - 12.82 snp06814 4.27*** 7.49 Everest 255.75 ± 5.97 282.75 ±5.72 

7AL 103 60.70 - 109.44 snp12126 2.99** 5.15 Cedar 281.90 ± 5.74 256.67 ± 5.99 

TKW15 

1B 77.5 55.59 - 83.86 snp09507 6.96*** 12.52 Everest 22.80 ± 0.29 20.07 ± 0.29 

3BS 11.5 0.00 - 13.52 snp12923 5.02*** 8.81 Everest 22.67 ± 0.33 20.47 ± 0.29 

3D 70 59.52 - 86.92 snp05382 3.96*** 6.83 Everest 22.25 ± 0.32 20.60 ± 0.32 

5A 66.3 40.93 - 84.69 snp00508 3.40*** 5.82 Everest 22.50 ± 0.34 20.65 ± 0.29 

TKW15&16 
1B 72 55.59 - 99.96 snp00247 4.72*** 11.32 Everest 22.39 ± 0.22 20.74 ± 0.20 

3BS 5.4 0.00 - 153.30 snp00727 1.87** 4.3 Everest 22.22 ± 0.23 20.98 ± 0.21 

FDK15 

1AS 5.2 0.00 - 13.47 snp11896 3.63*** 6.57 Cedar 0.63 ± 0.01 0.55 ± 0.01 

1B 82.7 55.59 - 93.27 snp02900 4.32*** 7.88 Everest 0.53 ± 0.01 0.64 ± 0.01 

3BS 6.0 0.00 - 11.45 snp12041 5.19*** 9.6 Everest 0.53 ± 0.01 0.63 ± 0.01 

5A 61 55.74 - 77.42 snp01770 4.61*** 8.45 Everest 0.53 ± 0.01 0.63 ± 0.01 

FDK16 
2A 66.7 41.66 - 82.04 snp04743 2.93*** 7.09 Cedar 0.66 ± 0.01 0.60 ± 0.01 

7AL 91.1 33.74 - 99.84 snp13735 3.55*** 8.67 Everest 0.59 ± 0.01 0.66 ± 0.01 

FDK15&16 

1AS 3.9 0.00 - 8.91 snp07585 4.75*** 10.15 Cedar 0.63 ± 0.01 0.58 ± 0.00 

1B 82.7 55.59 - 94.48 snp02900 4.59*** 9.8 Everest 0.57 ± 0.00 0.64 ± 0.01 

5A 68.4 40.93 - 77.42 snp07755 3.21*** 6.72 Everest 0.57 ± 0.01 0.63 ± 0.00 

DON15 

1B 68.1 55.59 - 90.82 snp01977 3.50*** 6.98 Everest 6.00 ± 0.22 6.98 ± 0.20 

5A 58 54.48 - 67.58 snp12458 5.64*** 11.59 Everest 5.63 ± 0.21 7.20 ± 0.19 

5DS 26 8.99 - 37.66 snp01397 5.67*** 11.65 Everest 5.87 ± 0.20 7.27 ± 0.21 

DON15&16 

1AS 5.0 0.00 - 32.70 snp11896 3.08*** 5.43 Cedar 5.93 ± 0.11 5.36 ± 0.10 

3BS 7.8 0.00 - 11.45 snp01392 4.04*** 7.21 Everest 5.29 ± 0.11 5.88 ± 0.10 

5A 57 55.12 - 66.25 snp12458 8.12*** 15.36 Everest 5.14 ± 0.11 5.99 ± 0.09 

5DS 26 17.19 - 74.26 snp01397 4.15*** 7.42 Everest 5.30 ± 0.10 5.99 ± 0.11 

PRO15 

2AL 103 12.8 -108.86 snp02988 5.33*** 8.28 Everest 13.65 ± 0.10 13.24 ± 0.09 

2BL 120 100.93 - 134.48 snp12925 3.32*** 5.01 Cedar 13.27 ± 0.09 13.65 ± 0.11 

2DL 157 146.71 - 159.95 snp01069 6.06*** 9.52 Cedar 13.11 ± 0.10 13.68 ± 0.09 

5AS 61 56.95 - 66.25 snp01770 9.97*** 16.63 Cedar 12.98 ± 0.10 13.77 ± 0.08 

7BL 148.5 139.77 - 151.14 snp06733 8.18*** 13.29 Everest 13.78 ± 0.10 13.12 ± 0.09 

PRO16 

2AL 71.4 12.80 - 82.04 snp01700 3.67*** 7.95 Everest 14.63±0.07 14.24±0.07 

2BL 103 97.95 - 117.81 snp09736 4.46*** 9.78 Cedar 14.20±0.06 14.68±0.07 

5AS 82 8.55 - 108.79 snp04340 2.96*** 6.36 Cedar 14.23±0.08 14.56±0.06 

PRO15&16 

2AL 49 40.32 - 82.04 snp09392 6.36*** 11.44 Everest 14.30±0.07 13.94±0.06 

2BL 106 100.93 - 117.81 snp07103 6.92*** 12.55 Cedar 13.93±0.06 14.33±0.07 

5AS 57 40.93 - 77.42 snp12458 5.42*** 9.61 Cedar 13.84±0.07 14.31±0.06 

7BL 149.7 131.66  - 151.14 snp03162 4.94*** 8.7 Everest 14.30±0.07 13.94±0.06 

QTL: quantitative trait loci, LOD: logarithm of odds, %var: percentage of variation explained by each QTL, SE: 

standard errors. EE and CC represent respectively the parental alleles of Everest and WB-Cedar at a given genomic 

location.  
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Table 2-6. Genotype groups containing QTL combinations associated with PSS. Adjusted 

means followed by different letters are statistically different by Tukey grouping test 

(p<0.05).  

Genotypes #lines Line names PSS15 PSS16 PSS1516 

5B 4 DH023, DH167, DH189, DH206 64.05 abc 43.63 a 53.93 a 

No QTL 10 
DH031, DH036, DH050, DH108, DH132, DH137, DH143, 

DH160, DH219, DH223 
68.98 a 36.81 ab 52.93 a 

7A 8 
DH059, DH066, DH077, DH119, DH131, DH157, DH161, 

DH190 
65.61 ab 34.19 ab 49.83 a 

3B 5 DH007, DH020, DH048, DH181, DH211 65.88ab 30.20 ab 48.12 ab 

6B+7A 11 
DH013, DH052, DH058, DH082, DH091, DH117, DH123, 

DH149, DH155, DH159, DH214 
61.30 abc 33.16 ab 47.21 ab 

5B+5D+7A 3 DH001, DH177, DH210 62.43 abc 30.66 ab 46.47 ab 

5B+7A 9 
DH035, DH076, DH086, DH088, DH098, DH129, DH135, 

DH174, DH215 
59.04 abc 32.75 ab 45.82 ab 

6B 6 DH019, DH021, DH028, DH080, DH093, DH162 55.63 abc 35.24 ab 45.44 ab 

5D+6B 6 DH106, DH136, DH151, DH178, DH180, DH201 59.60 abc 30.29 ab 44.97 ab 

5D 5 DH043, DH147, DH176, DH188, DH191 53.38 abc 36.54 ab 44.88 ab 

5B+5D 6 DH049, DH168, DH171, DH175, DH198, DH204 62.03 abc 27.52 ab 44.82 ab 

5B+6B 4 DH010, DH068, DH092, DH164 54.09 abc 35.05 ab 44.78 ab 

3B+5D 9 
DH047, DH072, DH094, DH115, DH138, DH146, DH185, 

DH187, DH194 
56.38 abc 30.41 ab 43.37 ab 

5B+5D+6B 4 DH002, DH009, DH101, DH220 55.11 abc 31.05 ab 42.97 ab 

3B+6B 5 DH030, DH103, DH107, DH113, DH195 52.37 abc 30.57 ab 41.41 ab 

5D+6B+7A 10 
DH033, DH054, DH060, DH065, DH078, DH096, DH114, 

DH116, DH197, DH203 
53.69 abc 27.40 ab 40.48 ab 

3B+6B+7A 4 DH041, DH090, DH109, DH224 50.26 abc 28.75 ab 39.35 ab 

3B+7A 6 DH042, DH051, DH121, DH141, DH173, DH200 47.12 bc 29.97 ab 38.48 ab 

5D+7A 3 DH011, DH017, DH148 48.78 bc 28.30 ab 38.48 ab 

5B+6B+7A 6 DH045, DH069, DH079, DH179, DH196, DH208 51.69 abc 24.78 ab 38.13 ab 

3B+5B+6B+7A 4 DH008, DH046, DH140, DH207 50.42 abc 25.25 ab 37.82 ab 

3B+5B 2 DH122, DH127 49.21 abc 25.44 ab 37.42 ab 

3B+5D+7A 5 DH029, DH073, DH139, DH153, DH183 49.23 abc 25.84 ab 37.28 ab 

3B+5D+6B 5 DH056, DH067, DH172, DH199, DH209 50.69 abc 22.8 ab 36.80 ab 

3B+5B+6B 4 DH038, DH156, DH165, DH184 46.10 bc 25.60 ab 35.77 ab 

3B+5B+7A 4 DH057, DH095, DH102, DH202 47.88 bc 23.75 ab 35.72 ab 

3B+5B+5D 4 DH062, DH089, DH120, DH205 46.09 bc 24.67 ab 35.38 ab 

3B+5D+6B+7A 2 DH158, DH186 48.79 abc 21.90 ab 35.10 ab 

5B+5D+6B+7A 3 DH110, DH118, DH163 47.52 bc 22.64 ab 35.01 ab 

3B+5B+5D+7A 3 DH026, DH087, DH097 45.27 bc 24.50 ab 34.65 ab 

3B+5B+5D+6B 3 DH084, DH130, DH212 44.99 c 21.35 bc 33.09 b 

3B+5B+5D+6B+7A 2 DH014, DH037 46.08 bc 19.44 c 32.64 b 
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Table 2-7. Genotype groups containing QTL combinations associated with AUDPC. 

Adjusted means followed by different letters are statistically different by Tukey grouping 

test (p<0.05). 

Genotypes #lines Line names AUDPC15 AUDPC16 AUD1516 

No QTL 7 
DH066, DH077, DH129, DH143, DH190, 

DH219, DH223 
476.41 a 206.90 a 341.85 a 

6B 5 DH013, DH021, DH086, DH093, DH123 466.28 a 189.35 a 327.43 a 

1A 10 
DH023, DH031, DH050, DH119, DH132, 

DH135, DH160, DH167, DH189, DH206 
458.39 a 191.98 a 323.50 a 

1A+7A 3 DH036, DH076, DH157 431.75 ab 199.06 a 316.73 ab 

5D 3 DH171, DH175, DH191 447.07 ab 180.89 a 313.93 ab 

7A 8 
DH035, DH059, DH088, DH098, DH108, 

DH131, DH161, DH174 
442.91 ab 182.15 a 313.07 ab 

3B 7 
DH007, DH020, DH048, DH141, DH181, 

DH211, DH215 
445.29 ab 173.57 a 307.66 ab 

5D+6B 2 DH078, DH114 428.93 ab 179.28 a 303.45 ab 

5D+6B+7A 5 DH065, DH116, DH136, DH151, DH220 390.65 ab 164.15 a 278.09 ab 

1A+3B 5 DH051, DH122, DH137, DH164, DH173 374.58 ab 185.21 a 277.52 ab 

1A+6B 8 
DH010, DH058, DH068, DH080, DH082, 

DH091, DH155, DH159 
377.80 ab 177.51 a 275.87 ab 

3B+5D 6 
DH029, DH047, DH073, DH089, DH187, 

DH194 
380.47 ab 161.70 a 270.98 ab 

6B+7A 10 
DH019, DH028, DH045, DH052, DH092, 

DH149, DH179, DH207, DH208, DH214 
360.11 ab 170.98 a 265.70 ab 

5D+7A 6 
DH001, DH011, DH049, DH138, DH148, 

DH176 
365.25 ab 160.08 a 263.52 ab 

1A+3B+5D 10 
DH062, DH072, DH094, DH115, DH139, 

DH146, DH147, DH183, DH185, DH205 
357.79 ab 159.23 a 257.83 ab 

3B+6B 2 DH113, DH184 368.82 ab 141.95 a 257.07 ab 

1A+5D+7A 6 
DH017, DH043, DH096, DH188, DH198, 

DH210 
363.76 ab 148.25 a 255.80 ab 

3B+6B+7A 5 DH008, DH090, DH109, DH140, DH156 346.30 ab 160.88 a 253.08 ab 

1A+3B+6B 4 DH038, DH103, DH165, DH195 344.09 ab 161.65 a 251.70 ab 

3B+5D+6B 5 
DH037, DH067, DH101, DH172, DH209, 

DH110 
361.31 ab 134.75 a 247.56 ab 

1A+5D+6B 6 
DH002, DH009, DH033, DH178, DH180, 

DH201 
339.05 ab 154.47 a 245.98 ab 

1A+5D+6B+7A 8 
DH014, DH054, DH060, DH106, DH118, 

DH163, DH197, DH203 
347.56 ab 142.93 a 245.22 ab 

1A+5D 4 DH158, DH168, DH177, DH204 340.32 ab 146.96 a 243.65 ab 

1A+6B+7A 4 DH069, DH079, DH117, DH196 340.51 ab 142.90 a 241.76 ab 

3B+7A 3 DH030, DH057, DH202 337.93 ab 143.33 a 241.25 ab 

1A+3B+6B+7A 4 DH041, DH046, DH107, DH162 331.56 ab 128.74 a 231.66 ab 

1A+3B+7A 7 
DH042, DH095, DH102, DH121, DH127, 

DH200, DH224 
309.53 ab 133.35 a 221.98 ab 

1A+3B+5D+7A 5 DH026, DH087, DH097, DH120, DH153 292.90 b 133.61 a 215.49 ab 

3B+5D+7A 1 DH110 303.27 ab 126.11 a 214.71 ab 

1A+3B+5D+6B 5 DH056, DH084, DH130, DH199, DH212 293.07 b 119.08 a 206.25 b 

1A+3B+5D+6B+7A 1 DH186 281.46 c 119.77 a 201.29 b 
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Table 2-8. Genotype groups containing QTL combinations associated with FDK. Adjusted 

means followed by different letters are statistically different by Tukey grouping test 

(p<0.05). 

Genotypes #lines Line names FDK15 FDK16 FDK1516 

No QTL 24 

DH001, DH020, DH037, DH048, DH052, DH066, DH073, DH082, 

DH086, DH088, DH093, DH103, DH109, DH110, DH123, DH129, 

DH136, DH141, DH149, DH171, DH174, DH175, DH207, DH209, 

DH215 

0.683 a 0.684 a 0.681 a 

5A 12 
DH011, DH047, DH065, DH067, DH077, DH078, DH098, DH108, 

DH114, DH181, DH191, DH202 0.663 ab 0.686 a 0.675 ab 

1A 32 

DH002, DH010, DH023, DH031, DH033, DH042, DH043, DH050, 

DH051, DH054, DH060, DH068, DH079, DH084, DH091, DH096, 

DH106, DH115, DH118, DH121, DH146, DH147, DH159, DH167, 

DH173, DH178, DH186, DH189, DH195, DH198, DH199, DH206 

0.649 ab 0.630 ab 0.634 abc 

1B 22 
DH007, DH013, DH019, DH029, DH030, DH045, DH049, DH059, 

DH089, DH090, DH097, DH113, DH116, DH137, DH140, DH143, 

DH156, DH187, DH194, DH203, DH214, DH223 
0.595 ab 0.649 ab 0.620 abc 

1B+5A 21 
DH008, DH021, DH035, DH057, DH062, DH092, DH101, DH131, 

DH148, DH151, DH158, DH161, DH172, DH176, DH179, DH184, 

DH190, DH208, DH211, DH219, DH220 
0.572 ab 0.603 ab 0.587 bcd 

1A+1B 20 
DH014, DH028, DH038, DH072, DH087, DH102, DH117, DH130, 

DH155, DH160, DH163, DH165, DH177, DH185, DH196, DH197, 

DH200, DH201, DH212, DH224 
0.538 bc 0.608 ab 0.572 cd 

1A+5A 14 
DH009, DH036, DH041, DH046, DH069, DH080, DH127, DH132, 

DH157, DH164, DH168, DH180, DH183, DH205 0.553 abc 0.555 b 0.551 cd 

1A+1B+5A 19 
DH017, DH026, DH056, DH058, DH076, DH094, DH095, DH107, 

DH119, DH120, DH122, DH135, DH138, DH139, DH153, DH162, 

DH188, DH204, DH210 
0.431 c 0.603 ab 0.519 d 
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Table 2-9. Genotype groups containing QTL combinations associated with DON. Adjusted 

means followed by different letters are statistically different by Tukey grouping test 

(p<0.05). 

Genotypes #lines Line names DON15 DON16 DON1516 

No QTL 18 
DH019, DH031, DH059, DH066, DH088, DH091, DH108, DH123, 

DH129, DH143, DH149, DH196, DH198, DH207, DH214, DH219 8.121 a 4.933 a 6.522 a 

1A 9 
DH002, DH010, DH023, DH028, DH033, DH079, DH160, DH167, 

DH206 8.066 a 4.983 a 6.489 a 

3B 15 
DH008, DH029, DH030, DH048, DH084, DH090, DH102, DH109, 

DH113, DH141, DH156, DH162, DH202, DH209, DH215 7.153 abc 4.893 a 6.0196 ab 

5D 18 
DH001, DH049, DH052, DH082, DH086, DH093, DH116, DH117, 

DH136, DH140, DH148, DH155, DH159, DH163, DH171, DH174, 

DH175, DH187 
7.357 ab 4.605 a 5.965 ab 

1A+5D 9 
DH043, DH054, DH060, DH068, DH096, DH106, DH177, DH178, 

DH203 6.956 abc 5.001 a 5.953 abc 

5A 11 
DH013, DH021, DH045, DH077, DH092, DH098, DH131, DH157, 

DH161, DH190, DH208 6.993 abc 4.736 a 5.862 abc 

3B+5D 8 DH020, DH037, DH067, DH073, DH089, DH110, DH137, DH224 6.446 abc 4.950 a 5.669 abc 

1A+3B 9 
DH007, DH038, DH046, DH120, DH121, DH153, DH185, DH195, 

DH200 6.666 abc 4.508 a 5.584 abc 

1A+5A 9 
DH036, DH058, DH076, DH119, DH132, DH135, DH164, DH189, 

DH197 6.588 abc 4.579 a 5.555 abc 

5A+5D 15 
DH009, DH011, DH035, DH065, DH069, DH078, DH114, DH118, 

DH130, DH151, DH176, DH179, DH191, DH210, DH220 5.630 abc 4.754 a 5.200 abc 

1A+3B+5D 11 
DH014, DH051, DH072, DH087, DH097, DH115, DH146, DH147, 

DH173, DH199, DH212 5.565 abc 4.714 a 5.126 abc 

1A+3B+5A 6 DH095, DH101, DH103, DH122, DH165, DH186 5.712 abc 4.322 a 5.021 abc 

3B+5A 3 DH138, DH184, DH211 5.544 abc 4.358 a 4.960 abc 

1A+5A+5D 7 DH017, DH080, DH168, DH180, DH188, DH201, DH204 4.892 bc 4.648 a 4.759 bc 

3B+5A+5D 12 
DH026, DH041, DH047, DH057, DH062, DH094, DH107, DH127, 

DH158, DH172, DH181, DH194 4.678 c 4.790 a 4.735 c 

1A+3B+5A+5D 5 DH042, DH056, DH139, DH183, DH205 4.201 c 4.541 a 4.379 c 
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Table 2-10. Genotype groups containing QTL combinations associated with TKW. 

Adjusted means followed by different letters are statistically different by Tukey grouping 

test (p<0.05). 

Genotypes #lines Line names TKW15 TKW16 TKW1516 

No QTL 61 

DH001, DH002, DH009, DH011, DH019, DH023, 

DH031, DH033, DH035, DH036, DH043, DH049, 

DH050, DH052, DH054, DH059, DH060, DH065, 
DH066, DH068, DH069, DH077, DH078, DH079, 

DH080, DH082, DH086, DH088, DH091, DH093, 

DH096, DH098, DH106, DH108, DH114, DH117, 
DH118, DH123, DH132, DH135, DH136, DH149, 

DH157, DH159, DH164, DH167, DH168, DH171, 

DH174, DH175, DH176, DH177, DH178, DH179, 
DH180, DH189, DH191, DH198, DH204, DH206, DH220 

19.86 c 21.10 a 20.58 c 

3B 31 

DH020, DH037, DH041, DH047, DH048, DH056, 

DH067, DH072, DH073, DH095, DH103, DH109, 
DH110, DH115, DH121, DH127, DH141, DH146, 

DH147, DH173, DH181, DH183, DH194, DH195, 

DH199, DH202, DH205, DH207, DH209, DH212, DH215 

20.98 bc 21.44 a 21.32 bc 

1B 35 

DH010, DH013, DH017, DH021, DH028, DH030, 
DH045, DH051, DH058, DH076, DH092, DH101, 

DH116, DH119, DH129, DH131, DH138, DH143, 

DH148, DH151, DH155, DH160, DH161, DH163, 
DH188, DH190, DH196, DH197, DH201, DH203, 

DH208, DH210, DH214, DH219, DH223 

22.04 b 21.65 a 21.87 ab 

1B+3B 38 

DH007, DH008, DH014, DH026, DH029, DH038, 
DH042, DH046, DH057, DH062, DH084, DH087, 

DH089, DH090, DH094, DH097, DH102, DH107, 

DH113, DH120, DH122, DH130, DH137, DH139, 
DH140, DH153, DH156, DH158, DH162, DH165, 

DH172, DH184, DH185, DH186, DH187, DH200, 

DH211, DH224 

23.74 a 21.99 a 22.85 a 
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Table 2-11. Genotype groups containing QTL combinations associated with PRO. Adjusted 

means followed by different letters are statistically different by Tukey grouping test 

(p<0.05). 

Genotypes #lines Line names PRO15 PRO16 PRO1516 

No QTL 11 
DH076, DH080, DH114, DH119, DH130, DH135, 

DH138, DH148, DH180, DH188, DH205 
12.36 e 13.72 c 13.28 e 

2A 12 
DH042, DH047, DH058, DH095, DH103, DH131, 

DH132, DH139, DH168, DH190, DH201, DH210 
12.49 de 14.03 bc 13.56 de 

5A 11 
DH029, DH037, DH048, DH079, DH096, DH110, 

DH120, DH163, DH177, DH209, DH212 
13.10 bcde 14.04 bc 13.67 cde 

7B 11 
DH062, DH117, DH118, DH122, DH127, DH151, 

DH162, DH172, DH184, DH186, DH191 
12.98 cde 14.02 bc 13.78 bcde 

2B 13 
DH008, DH041, DH051, DH065, DH078, DH092, 

DH094, DH121, DH175, DH183, DH189, DH211, DH220 
12.96 cde 14.35 abc 13.90 bcde 

2A+2B+7B 3 DH179, DH181, DH208 13.56 abcde 14.40 abc 14.11 abcde 

2A+5A 11 
DH014, DH073, DH084, DH086, DH089, DH136, 

DH156, DH160, DH173, DH178, DH206 
13.57 abcde 14.36 abc 14.13 abcd 

2B+7B 7 DH017, DH045, DH069, DH161, DH165, DH194, DH197 13.61 abcde 14.50 abc 14.21 abcd 

2A+7B 13 
DH011, DH013, DH026, DH035, DH057, DH060, 

DH098, DH101, DH107, DH157, DH158, DH176, DH204 
13.44 bcde 14.56 abc 14.24 abcd 

5A+7B 15 
DH002, DH019, DH038, DH043, DH049, DH116, 

DH123, DH153, DH155, DH159, DH167, DH171, 
DH174, DH202, DH203 

13.82 abc 14.35 abc 14.24 abcd 

2B+5A 14 
DH001, DH030, DH033, DH072, DH088, DH091, 
DH113, DH129, DH140, DH143, DH207, DH215, 

DH223, DH224 
13.42 bcde 14.71 ab 14.26 abcd 

2A+2B 7 DH009, DH021, DH036, DH056, DH077, DH097, DH164 13.98 abc 14.55 abc 14.40 abcd 

2B+5A+7B 9 
DH020, DH023, DH031, DH054, DH090, DH137, 

DH146, DH187, DH214 
14.14 abc 14.74 ab 14.43 abc 

2A+5A+7B 11 
DH010, DH066, DH068, DH082, DH102, DH106, 

DH108, DH141, DH147, DH196, DH219 
14.21 ab 14.63 abc 14.43 abc 

2A+2B+5A 8 
DH007, DH046, DH087, DH115, DH149, DH195, 

DH198, DH200 
13.67 abcd 14.96 ab 14.58 ab 

2A+2B+5A+7B 9 
DH028, DH050, DH052, DH059, DH067, DH093, 

DH109, DH185, DH199 
14.66 a 15.16 a 14.98 a 
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Chapter 3 - A Genome-Wide Association Study and Genomic 

Selection for FHB Resistance in Winter Wheat 

 

 Abstract 

Fusarium head blight (FHB) is one of the most important wheat diseases and its 

resistance is essentially controlled by quantitative small-effect loci. The objective of this chapter 

was to perform a genome-wide association study (GWAS) and test genomic selection (GS) 

models to map and predict FHB resistance. For three years, a total of 962 breeding lines from the 

K-State Wheat Breeding Program were phenotyped for FHB in a non-replicated design. 

Genotyping-By-Sequencing (GBS) was used to identify 23,157 single nucleotide polymorphisms 

(SNPs) which spanned more than 85% of the physical reference genome. Lines were evaluated 

for percentage of symptomatic spikelets, starting 14 days after heading. Grain samples were 

collected to estimate levels of deoxynivalenol (DON) and Fusarium-damaged kernels (FDK). 

Significant marker-associations were identified for FHB in each breeding panel tested within 

year but not across panels. This lack of consistency across years is likely due to variability in the 

frequency of resistance alleles based on changing parental germplasm from year to year. 

Although no significant differences were observed among GS models and training population 

sizes, the accuracy of predictions was relatively high (>0.45) when 80% of the data was assigned 

to the training set. Our results suggest that GS can be successfully implemented in wheat 

breeding programs to improve the levels of FHB resistance. 
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 3.0 Introduction 

Fusarium head bight is a wheat disease caused by Fusarium graminearum, that occurs 

under conditions of high humidity and warm temperatures during anthesis, leading to substantial 

economic losses in epidemic years. In Kansas alone, 7.1 million bushels of wheat were lost in 

2008 due to FHB (McMullen et al., 2012) and more recently an estimated of 11.6 million 

bushels of wheat were lost to FHB in Kansas in 2015 (Bockus et al., 2015). Genetic resistance, 

used in conjunction with management practices, has been shown to be the most effective strategy 

to control FHB. As result, wheat breeders and pathologists are constantly working to discover, 

map, and introgress new sources of resistance into elite cultivars. 

Although biparental populations have been broadly used for QTL mapping of FHB 

resistance, this approach exploits limited genetic variation and produces linkage maps with low 

resolution that consequently has low statistical power to detect minor-effect loci. Genome-wide 

association studies (GWAS) are an alternative that can overcome these limitations. GWAS uses 

all natural recombination events from diverse panels, without the upfront cost, time, and effort 

associated with population development (Korte & Farlow, 2013). Additionally, the relatedness of 

individuals, population structure, and covariates can be taken into account in the analysis. 

During the last decade, markers availability and cost were the main restrictions for 

GWAS studies. Consequently, a limited number of association studies aiming to identify 

genomic regions associated with components of FHB resistance was found in the literature. For 

instance, Miedaner et al. (2011) used only 115 SSR markers for an association study while in a 

similar study Kollers et al. (2013) used 732 SSRs to perform a GWAS of FHB resistance in 

European wheat. Yet, both studies were able to identify significant marker-trait associations. For 

a short period of time fixed genotyping arrays such as the 90K SNPchip array (Wang et al., 
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2014) became relevant to obtain a large number of markers. However due to its expensive 

design, ascertainment bias, and failure to detecting rare and unique variants (Thomson, 2014) 

fixed genotyping platforms were not widely adopted for breeding. Then the development of the 

genotyping-by-sequencing (GBS) protocol (Poland et al., 2012) has resulted in an unprecedented 

capability to discovering and utilize genome-wide SNP markers at a relatively low cost. The 

majority of recent mapping studies in wheat have adopted GBS for genotyping in wheat genetic 

research (He et al., 2014). Likewise, the number of markers in the genetic maps and the number 

of QTLs associated with disease resistance increased substantially as a result. 

Significant marker-trait associations with FHB resistance were reported by Arruda et al. 

(2016b) where eight QTLs were identified in a diverse panel of U.S. cultivars. Similarity, Wang 

et al. (2017) found another six highly significant QTLs associated with multiple components of 

FHB resistance in the Pacific Northwest Region of the United States and CIMMYT breeding 

program. Yet in the same study, it was found a QTL on 5B which was speculated to potentially 

be a novel locus of FHB resistance and explained a large proportion of DON accumulation. 

Nevertheless, GWAS has its own limitations as it often fails to detect rare variants and 

spurious associations may occur (Bernardo, 2016). Thus, another approach to assist breeding 

disease resistance is the use of genome-wide markers to calculate genomic estimated breeding 

values (GEBVs). This approach, known as genomic selection (GS), attempts to capture the total 

additive variance from markers distributed throughout the entire genome, rather than relying on 

performing significance tests at every single locus. GS uses genome-wide marker data from 

related materials to predict the performance of another set of individuals that have not yet been 

phenotyped. Therefore, GS has more power to account for small-effect loci associated with 

complex traits such as FHB resistance (Poland & Rutkoski, 2016), although genomic regions 
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associated with the trait of interest remain unknown. Rutkoski et al. (2012) were pioneers in the 

application of GS for FHB resistance in wheat, by testing several GS models. Since then, other 

studies have investigated alternative ways to increase the prediction accuracies of GS for FHB 

resistance in wheat breeding (Arruda et al., 2016; Jiang et al., 2017). 

The literature is lacking studies that simultaneously use multiple genomic approaches to 

improve disease resistance. Here in this chapter, we use an integrated strategy to combine results 

from biparental QTL mapping and GWAS to genomic selection. For this purpose, three large 

panels of elite wheat lines from the Kansas State Hard Red Winter Wheat Program that were 

tested in an FHB nursery from 2015-2017 were used. 

 

 3.1 Materials and Methods 

 Panel of Breeding Lines 

The K-State Hard Red Winter Wheat Breeding Program is based on a modified bulk 

selection method where single plants are selected within populations up until F4 or F5. After 

selection and harvest of derived lines, DNA is collected for genotyping. Derived lines are tested 

in Individual Plant Short Rows (IPSRs) where selections are made and the superior candidates 

advanced to yield trails. At this stage, all breeding lines are also tested in short head-row plots in 

disease nurseries. 

Breeding for FHB resistance is primarily based on the phenotypic selection of minor 

genes associated with native resistance in the K-State Breeding Program. Every year, preliminary 

and advanced lines are tested at Rocky Ford FHB Nursery of the Department of Plant Pathology. 

Panels of 377, 349, and 163 breeding lines were evaluated in 2015, 2016 and 2017, respectively. 

A total of 21 lines initially evaluated in 2015 were re-tested in 2016 whereas another 42 lines 
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evaluated in 2016 were advanced to 2017, and only 10 lines from 2015 were included in 2017 

panel. Susceptible (Overley) and moderately resistant (Everest) checks were also included in 

every set of six individual rows in the FHB nursery to facilitate rating comparisons in the non-

replicated design. Each experimental unit consisted of one breeding line planted in a one-meter 

long single row plot. 

 Evaluations of Phenotypic Traits 

Details of FHB inoculation and nursery conduction were performed according to the 

methodology described by Jian et al. (2013) previously described in Chapter 2. Heading date was 

recorded as when 50% of the spikes emerged from the boot. The evaluation of the percentage of 

symptomatic spikelets (PSS) started 14 days after heading and was repeated at 21 and 28 days 

after heading, depending on the year. Additionally, in 2015 a stripe rust epidemic occurred and 

notes were taken using a 1-9 linear scale where 1 represents resistance and 9 refers to a highly 

susceptible reaction. 

After the last PSS evaluation, a total of 38, 45, and 112 lines were selected, based on 

lower PSS ratings, to be evaluated for secondary components of FHB resistance in 2015, 2016, 

and 2017, respectively. For this purpose, a random sample of 100 grains was taken from each 

breeding line to estimate Fusarium-damaged kernels (FDK) and accumulation (DON) using the 

single kernel basis using the SKNIR system which was described in Chapter 2 (Dowell et al., 

1999; Peiris et al., 2010). 

 Genotypic Data 

Leaf tissue of all breeding lines and the biparental mapping population (Chapter 2) were 

collected from 3-5 plants and pooled together at the seedling stage for DNA extraction. The 

complete panel consisted of 986 unique individuals. The “BS96 DNA Plant” protocol was used 
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for DNA extraction (Qiagen, Hilden, Germany). All DNA samples were normalized and 

genotyping-by-sequencing (GBS) libraries were prepared using the protocol described by Poland 

et al. (2012). GBS libraries were then sequenced on an Illumina HiSeq equipment. 

A bioinformatic pipeline on TASSEL 5.0 (Trait Analysis by Association, Evolution and 

Linkage Software) was used to call and filter single nucleotide polymorphism (SNPs). From the 

141,193 SNPs initially discovered, only those with minor allele frequency (MAF) greater than 

1% and less than 25% missing genotypes were retained. Markers that yielded multi-allelic calls 

and/or heterozygosity higher than 10% were discarded. Breeding lines with more than 50% 

missing makers were also removed from the dataset. Unanchored SNPs were retained in the 

genotypic data and assigned to an unknown chromosome (UN). Physical positions of SNP 

markers were corrected based on the reference genome and ordered from the telomere region of 

the short arm to the long arm of each chromosome using the 161010_Chinese_Spring_v1.0 

pseudomolecule reference (IWGSC, 2017). After filtering, a total of 23,157 SNP markers and 

962 lines were retained in the final data set. 

 Genome-Wide Association Analysis 

No marker imputation was performed for the genome-wide association study (GWAS). 

Association analysis was performed in R using the Genome Association and Prediction 

Integrated Tool (GAPIT) (Tang et al., 2016) with an enhanced compression of the mixed linear 

model (ECMLM) (Li et al., 2014). A Bayesian information criterion (BIC) was estimated by 

setting the parameter Model.selection as ‘TRUE’ in order to determine the optimal number of 

principal components (PCs) that should be included in the association analysis. An additional 

GWAS analysis was run with the rrBLUP package (Endelman, 2013) using the EMMA model 

(Kang et al., 2008) by setting the population parameter ‘P3D’ as false to avoid overestimation of 
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marker significance. The kinship matrix and the first three principal components were included 

in the GAPIT and rrBLUP analysis as covariates to account for the population structure. 

Significant trait-marker associations were detected using multiple test correction with 

three different thresholds of significance: 5% and 10% false discovery rate (FDR 5% and FDR 

10%) and Bonferroni correction. FDR values were obtained from the GWAS analysis with 

rrBLUP whereas the default option of GAPIT determined significant associations by the 

Bonferroni correction test. This last method is highly conservative, limiting the identification of 

significant marker-trait associations as reported by several authors (Sham & Purcell, 2014; Gao 

et al., 2016), therefore a less stringent test (FDR) was also implemented in our study. 

A pairwise linkage disequilibrium analysis (LD) between all SNP markers was calculated 

using the R package ‘Genetics’ for each wheat chromosome. The extent of LD was determined 

to decay when the r2 < 0.2. Subsets of wheat lines from each year were analyzed separately for 

the GWAS analysis. GWAS results from GAPIT and rrBLUP were used to reconstruct 

Manhattan plots using the ‘qqman’ R package. 

 Genomic Selection Models 

SNP markers from prior analysis were numerically coded as 1, -1, 0, and NA respectively 

for major allele, minor allele, heterozygosity, and missing data. Loci with missing data were 

imputed using the EM method with the A.mat function of the ‘rrBLUP’ package in R 

(Endelman,2011). Four genomic selection models (GS) were estimated using the R package 

‘GSwGBS’ (Gaynor, 2015). The first GS model was the ridge regression best linear unbiased 

predictor (rrBLUP) obtained using the package ‘rrBLUP’ while partial least squares regression 

(PLSR), elastic net (ELNET), and random forest (RF) were calculated using the R packages ‘pls’ 

(Mevik & Wehrens, 2007), ‘glmnet’ (Friedman et al., 2009), and ‘randomForest’ (Liaw & 
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Wiener, 2002), respectively. The average prediction (AVE) across these four prediction models 

was calculated using standardized values to avoid overly weighting the average towards any 

single prediction model as described in detail by Battenfield (2015). 

Cross-validation of accuracy predictions was conducted within years considering four 

training population sizes, where 20%, 40%, 60%, 80% of the data were randomly masked to 

predict the remnant data, and replicated 100 times. The accuracies of predictions were obtained 

by dividing the correlation coefficient by the square root of broad-sense heritability in the 

average of 100 replications, as described by Battenfield et al. (2016). Forward predictions were 

conducted using data from prior years to predict the following year, (i.e., 2015 predicts 2016 and 

2015 and 2016 predict 2017, etc.). In these case, the relationship between predicted and observed 

values was assessed by Pearson correlation. Additionally, these data were also used as a ‘training 

set’ to predict FHB resistance in F5:6 lines (IPSRs) in the K-State Wheat Breeding Program. 

 

 3.2 Results and Discussion 

 Distribution of SNPs on the Physical Map 

The filtered genotypic dataset consisted of 23,157 SNP markers on 787 breeding lines 

and 175 DH lines from the biparental DH population studied in Chapter 2. The majority of the 

marker polymorphism was found on the A (37.1%) and B (40.8%) genomes while only 19.4% of 

the markers were located on the D genome (Table 3-1). SNPs present on unanchored contigs 

represented only 2.7% of the total number of markers and were kept apart in the genotypic 

dataset as ‘UN’. 

The SNP markers spanned 14.5 gigabases (Gb) of the physical map representing a 

complete coverage of the wheat reference genome. The average marker spacing was 0.63 
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megabases (Mb) with the largest gap (55.9 Mb) being found in the centromeric region of 

chromosome 3D (Table 3-1). SNPs were more densely distributed towards the telomeres (Figure 

3-2), which confirms the trend reported by several studies of higher recombination rates 

occurring in those regions (IWGSC, 2014). Likewise, Avni et al. (2017) reported that the density 

of genes was up to 14-fold higher in the distal, compared to pericentromeric, regions of 

chromosome arms of wild emmer (T. turgidum ssp. dicoccoides). Moreover, since the restriction 

enzymes used in the GBS protocol are methylation sensitive, it discriminates against highly 

methylated regions such near to centromeres. 

 Identifying Significant SNP-trait Associations 

The percentage of symptomatic spikelets (PSS) was normally distributed in all three 

breeding panels tested within each year (Figure 3-2). Spurious associations between markers and 

traits may occur when the population structure is not accounted for in the GWAS analysis. To 

minimize this issue, the level of stratification was assessed via principal components analysis 

(PCA) using all 23,157 SNPs. A moderate level of population structure was detected with the 

clear formation of three clusters within each panel, and also when all panels were analyzed 

together (Figure 3-3). The first three PCA explained the majority of the genetic variance in the 

wheat panels and they were further included in the GWAS analysis as covariates along with the 

kinship matrix. 

The association analysis for the Everest/Cedar population identified nine SNPs on 3BS 

2DL, 6BS, 7AL, 7BL that were significantly associated with the percentage of symptomatic 

spikelets (PSS1516) and area under the disease progress curve (AUDPC1516) using the average 

over the two years of the experiment (Figure 3-4). The SNPs S7A_PART2_259768092 and 

S7B_PART2_286166114 showed the highest significance of p-values for PSS1516 and 
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AUDPC1516, simultaneously (Table 3-2). Apart from one SNP on 2DL, all other SNP-trait 

associations mapped in the same genomic regions where QTL were found in the biparental 

mapping analysis of Chapter 2. Several studies have reported the presence of a QTL associated 

with FHB resistance (typically type II) on the long arm of 2D from Wuhan1, Wangshuibai, 

Sumai #3 (Liu et al., 2009) and CJ9306 (Jiang et al., 2007). Likewise, Clinesmith (2015) 

identified a QTL from Art in the same interval of 2DL, explaining more than 10% of the PSS, 

FDK, and DON variation, indicating that it could be the same QTL previously mapped. 

Only two SNPs (S4A_PART2_208236032 and S1B_PART2_200695538) were 

associated with the first and second evaluation of PSS in the panel of 377 breeding lines 

phenotyped in the 2015 growing season (Figure 3-5). These loci are located on long arm of 4A 

and 1B and together explained 7.3% of the phenotypic variation of PSS (Table 3-2). Other 

studies have reported the presence of QTL associated with FHB resistance in these genomic 

regions. For example, Arina and Pirat are European cultivars known for their high level of 

resistance and both carry QTL associated with FHB resistance type II in these chromosomal 

regions (Holzapfel et al., 2008; Liu et al., 2009). 

A severe stripe rust epidemic occurred in 2015 and field notes were taken for all breeding 

lines. Based on the GWAS analysis, several SNPs on the short arm of 2A were significantly 

associated with stripe rust resistance (Table 3-2 and Figure 3-5). The translocation 2NS·2AS 

from Ae. ventricosa is located in this genomic region and is associated with disease resistance 

against multiple wheat pathogens (Mondal et al., 2016), The gene cluster Yr17/Lr37/Sr38 resides 

in this region (Helguera et al., 2003). Therefore, Yr17 is likely explaining the majority of the 

stripe rust resistance in the breeding panel evaluated in 2015, since the 2NS·2AS translocation is 

present at a relatively high frequency within the K-State Wheat Breeding Program (MAF>0.40). 
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In the panel of 349 breeding lines phenotyped in 2016, significant SNP associations with 

PSS1 were detected on 1DS, 2AL, 3DS, 4DS, and 5DS whereas only one SNP located on 1AL 

was significantly associated with PSS2. The presence of a QTL on 4DS associated with FHB 

resistance is often reported in the literature, since this region harbors the dwarfing gene Rht-D1 

where the short allele (Rht-D1b) is associated with susceptibility to FHB (Type I) and low anther 

extrusion (Buerstmayr et al., 2016; Steiner et al., 2017). The underlying mechanisms of Rht 

genes on FHB are speculated to be a tight linkage, pleiotropy, or disease escape (He et al., 

2016a). The QTL on 5DS mapped within the same interval as the one found in Chapter 2, thus it 

is likely the same locus. The other significant loci are in regions where other QTL have been 

reported in European material (Holzapfel et al., 2008), North American germplasm (Liu et al., 

2009) and synthetic accessions from CIMMYT (He et al., 2016b). 

In the panel of 163 breeding lines phenotyped in 2017, two SNPs on 2BL and 7DL were 

associated with lower values of PSS2 and PSS3, respectively. An SNP located on 6AL fell just 

below the FDR>10% threshold, suggesting a weak association with PSS2 and PSS3. A QTL on a 

similar region of 6A associated with FHB resistance has been repeatedly reported in the 

literature, with resistant alleles present in the European varieties Apache (Holzapfel et al., 2008) 

and ‘Dream’ (Kollers et al., 2013). Likewise, a QTL on 2BL associated with type II resistance 

has been recently identified in the cultivar Truman (Islam et al., 2016), which was used as a 

source of native FHB resistance in the K-State Wheat Breeding program. Truman is the potential 

donor of the QTL found in this study. Additionally, 109 lines were harvested and tested for FDK 

and DON accumulation using the SKNIR system in the 2017 growing season. Data collected in 

2015 and 2016 were not included in the GWAS analysis due to the small number of samples that 
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were collected in those years. Only two SNPs, located on 3BL, were associated with FDK and no 

significant associations were found for DON accumulation. 

Although a less conservative test of significance (FDR 5% and FDR 10%) was chosen to 

declare significant trait to genotype associations, no significant markers associated with FHB 

resistance were found across breeding panels tested within each year. Similar results are reported 

in the literature where Arruda et al. (2016) and Wang et al. (2017) also used FDR<10% and 

p<0.001 to declare significance of markers. It suggests that the highly quantitative nature of FHB 

resistance makes it difficult to find strong SNP-trait associations. Another explanation for these 

findings is based on the structure of the breeding program. Relatively few lines are advanced 

from one year to the next and are not exclusively selected for FHB resistance. Therefore, the 

frequency and origin of alleles associated with FHB resistance can change drastically from year 

to year. Moreover, rare variants, are often associated with traits of interest, especially in less 

diverse panels such as elite breeding lines and are difficult to detect in GWAS (Bernardo, 2016). 

FHB resistance has been shown to be a quantitative trait with many minor genes controlling 

expression on the phenotype. Therefore, even if a set of SNPs were positively associated with 

lower FHB severity, their modest effect may not be able to generate a –log10 p-value high 

enough to meet the threshold of significance. 

These results suggest the allele frequency of resistance alleles varied from one panel to 

the other as parental germplasm used in the breeding program changes from year to year. 

Furthermore, SNP positions were obtained by direct alignment against the Chinese Spring v1.0 

pseudomolecule however, this variety used as a reference does not represent well the genetic 

diversity present in modern cultivars as recently reported by (Montenegro et al., 2017). These 

authors observed that more than 12,000 genes absence un the Chinese Spring reference were 
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present in all 18 modern wheat cultivars sequenced in their study. Moreover, recombination 

events and linkage among markers were not taken into account in the association analysis since 

SNPs were exclusively ordered within chromosomes according to their physical positions and it 

may have affected the GWAS results.  

Recently an innovative GWAS procedure was proposed to overcome some of these 

limitations by accounting for historical linkage disequilibrium (LD) blocks that have been 

accumulated in breeding lines throughout multiple cycles of selection (He et al., 2017). This 

approach initially groups tightly linked sequential SNPs into LD blocks to form markers with 

multi-allelic haplotypes, then the markers are preselected as single-loci followed by multi-locus, 

multi-allele model stepwise regression during the association analysis. This procedure tends to 

generate a larger number of significant associations, suggesting that it could also be implemented 

in wheat to identify minor-effect loci underlying FHB resistance. 

 Applying Genomic Prediction Models  

Five genomic selection models (rrBLUP, RF, PLSR, ELNET, and their average 

prediction AVE) were tested for each year of data considering four training population (TP) sizes 

(20, 40, 60, and 60%). Only phenotypic data from the last evaluation of PSS of each panel was 

used to test these models. The cross-validation was performed within years using the prior 

proportions that were randomly selected to predict the FHB resistance in the remnant individuals 

with 100 replications. Broad-sense heritability was calculated for each GS model and across all 

four TP sizes and it is presented in Table 3-2. 

Accuracy predictions ranged from 0.37 to 0.51 in 2015, 0.34 to 0.47 in 2016, and 0.25 to 

0.51 in 2017. However, no significant differences between GS models were observed in any 

breeding panel (Figure 3-8) considering 100 iterations. The large 95%-confidence error bars 
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verified for all GS models are likely due to the unbalanced nature of the breeding panels. In 

contrast to the majority of studies reported in the literature, our study used data from an actual 

wheat breeding program. Therefore, when less genetically related individuals were randomly 

assigned to the training and testing set, lower prediction accuracies were obtained due to the 

population structure previously discussed (Figure 3-3). The necessity of accounting for genetic 

relatedness between training and testing sets to optimize GS accuracy predictions has been 

reported in the literature. (Akdemir et al., 2015; Akdemir, 2017) and should be further 

implemented in the K-State Wheat Breeding Program. 

Overall rrBLUP, PLSR, and AVE tended to give numerically higher prediction accuracy 

values across all three years (Figure3-8), although none of the models significantly differed from 

each other. Model averaging (AVE) has been considered ideal when performing forward 

predictions (Raftery, et al., 2010). Additionally, higher prediction accuracies with rrBLUP and 

AVE were observed previously in the K-State Wheat Breeding Program for grain yield (Gaynor, 

2015) and end-use quality (Battenfield et al., 2016). Further research is needed in order to 

increase the accuracy of predictions for FHB. Specifically, obtaining more precise phenotypic 

assessment such as aerial image analysis, testing genetic algorithms to account for the 

relatedness of training and target sets, replicated trials of disease nurseries, and including 

covariate variables in the GS models should be explored. 
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 3.3 Conclusions  

Significant SNP associations were verified for all three breeding panels with two, six and 

our QTLs found respectively for the panels tested in 2015, 2016, and 2017. However, no 

significant marker associations were observed across panels, suggesting the allele frequency of 

resistance may have changed from one year to the other as there is a limited number of favorable 

loci controlling FHB resistance in the K-State Wheat Breeding program and parental germplasm 

used in the breeding program changes from year to year. Although significant loci have been 

reported in similar genomic regions as other studies, we were not able to confirm whether these 

QTLs were the same. 

The genomic selection models resulted in moderately high values of prediction 

accuracies, especially when only 20% of the data was masked in the training set. This indicates 

that levels of FHB resistance can be improved using genomic-based predictions, regardless of the 

GS method chosen. The absence of statistical differences for the accuracy of predictions between 

GS models and training population sizes was greatly influenced by the level of population 

structure present in the wheat breeding panels. 
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Figure 3-1. Normal distribution for the first, second, and third evaluation of percentage of 

symptomatic spikelets (PSS1, PSS2, PSS3) evaluated in the breeding panels phenotyped in 

2015, 2016, and 2017. 
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Figure 3-2. Physical map positions of 23,157 SNP markers identified in panel of 962 wheat 

lines. Map was drawn using the ‘plotMap’ function from the R/qtl package. 
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Figure 3-3. Principal components analysis of a wheat association panel based on 23,157 

SNP markers drawn using the ‘autoplot’ function from the ggfortify R package. Red, green, 

blue and gray dots represent breeding lines tested in 2015, 2016, 2017, and the 

Everest/Cedar population, respectively.  
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Figure 3-4. Manhattan plots showing association results for the population Everest/Cedar 

based on 23,157 common SNPs for AUDPC and PSS. The x-axis represents physical 

positions of the SNPs in the wheat genome and the y-axis represents the –log10 of P-values. 

 

 

Figure 3-5. Manhattan plots showing association results for breeding panel phenotyped in 

2015 based on 23,157 common SNPs for AUDPC and PSS. The x-axis represents physical 

positions of the SNPs in the wheat genome and the y-axis represents the –log10 of P-values. 
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Figure 3-6. Manhattan plots showing association results for breeding panel phenotyped in 

2016 based on 23,157 common SNPs for the first and second evolution of percentage of 

symptomatic spikelets (PSS1 and PSS2). The x-axis represents physical positions of the 

SNPs in the wheat genome and the y-axis represents the –log10 of P-values. 
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Figure 3-7. Manhattan plots showing association results for breeding panel phenotyped in 

2017 based on 23,157 common SNPs for the first and second evolution of percentage of 

symptomatic spikelets (PSS1 and PSS2), Fusarium-damaged kernels, and deoxynivalenol 

content in ppm (DON). The x-axis represents physical positions of the SNPs in the wheat 

genome and the y-axis represents the –log10 of P-values. 
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Figure 3-8. Prediction accuracies of four GS models assessed in elite breeding lines. 

RRBLUP: ridge regression best linear unbiased predictor; RF: random forest; PLSR: 

partial least squares regression; ELNET: elastic net; and AVE: average prediction across 

all four GS methods.  
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Table 3-1. Summary of the physical map of 23,157 SNP markers found in a panel of 962 

wheat lines. Distances are measured in base pairs (bp). 

Wheat chromosomes Number of Markers Length (bp) Ave. Spacing (bp) Max. spacing (bp) 

1A 1,261 592,644,648 470,352.9 27,957,004 

1B 1,428 687,224,147 481,586.6 21,024,379 

1D 769 493,966,030 643,184.9 37,660,377 

2A 1,310 779,984,717 595,863.0 24,793,520 

2B 1,689 800,987,430 474,518.6 22,454,577 

2D 1,046 650,089,090 622,094.8 43,165,540 

3A 1,264 750,402,957 594,143.3 37,950,092 

3B 1,724 829,321,630 481,324.2 9,263,962 

3D 732 613,718,297 839,559.9 55,925,809 

4A 1,113 743,640,867 668,741.8 17,679,614 

4B 514 672,893,047 1,311,682.4 32,447,334 

4D 229 506,896,734 2,223,231.3 27,857,968 

5A 1,035 709,619,497 686,285.8 48,768,904 

5B 1,229 712,388,397 580,120.8 37,170,534 

5D 498 563,584,484 1,133,972.8 23,710,188 

6A 1,025 617,227,849 602,761.6 17,013,863 

6B 1,486 720,602,263 485,254.0 15,409,092 

6D 520 472,863,651 911,105.3 40,233,947 

7A 1,573 736,384,301 468,437.9 41,407,438 

7B 1,374 749,497,273 545,882.9 30,390,060 

7D 710 636,711,965 898,042.3 40,831,073 

UN 628 479,274,591 764,393.3 16,029,401 

Overall 23,157 14,519,923,865 627,617.2 55,925,809 

 

Table 3-2. Values of broad-sense heritability (H2) of percentage of symptomatic spikelets 

(PSS2) evaluated in three panels of elite winter wheat breeding lines. 

GS Models Panels 
Training Population Sizes 

20% 40% 60% 80% 

RF 

2015 0.76 0.72 0.67 0.66 

2016 0.63 0.57 0.55 0.52 

2017 0.67 0.90 0.95 0.97 

ELNET 

2015 0.74 0.74 0.71 0.66 

2016 0.65 0.60 0.55 0.52 

2017 0.64 0.89 0.92 0.96 

PLSR 

2015 0.76 0.76 0.71 0.66 

2016 0.69 0.60 0.55 0.52 

2017 0.64 0.88 0.95 0.96 

rrBLUP 

2015 0.74 0.73 0.68 0.66 

2016 0.67 0.60 0.55 0.52 

2017 0.81 0.85 0.93 0.96 

AVE 

2015 0.74 0.73 0.69 0.65 

2016 0.61 0.60 0.54 0.52 

2017 0.70 0.90 0.93 0.97 
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Table 3-3. Details of single nucleotide polymorphisms (SNPs) significantly associated PSS, 

AUDPC and stripe rust detected by the enhanced compression of the mixed-linear model.  

Panel Trait SNP  Chr. Position  p-values MAF R2 

EveCed 

AUDPC1516 

S7A_PART2_259768092 7A 709815078 1.51E-06 0.006 0.107 

S7B_PART2_286166108 7B 739988745 3.17E-05 0.020 0.078 

S7B_PART2_286166114 7B 739988751 3.17E-05 0.020 0.078 

S6B_PART1_159139004 6B 159139004 3.72E-05 0.023 0.077 

S2D_PART1_426927369 2D 426927369 6.52E-05 0.186 0.072 

PSS1516 

S7A_PART2_259768092 7A 709815078 8.69E-06 0.057 0.093 

S6B_PART1_159139004 6B 159139004 1.77E-05 0.023 0.086 

S3B_PART1_17625393 3B 17625393 6.04E-05 0.429 0.075 

S3B_PART1_17994913 3B 17994913 8.19E-05 0.434 0.072 

Panel FHB15 

PSS1 S4A_PART2_208236032 4A 660791124 4.41E-05 0.126 0.037 

PSS2 S1B_PART2_200695538 1B 639415692 5.07E-05 0.023 0.036 

SR 

S2A_PART1_24002751 2A 24002751 6.35E-07 0.459 0.042 

S2A_PART1_24002749 2A 24002749 1.39E-06 0.462 0.039 

S2A_PART1_2800603 2A 2800603 4.85E-06 0.432 0.035 

S2A_PART1_2800562 2A 2800562 4.85E-06 0.432 0.035 

S2A_PART1_2800596 2A 2800596 4.85E-06 0.432 0.035 

S2A_PART1_15449240 2A 15449240 6.28E-06 0.473 0.034 

Panel FHB16 
PSS1 

S2A_PART2_89346135 2A 551722308 4.63E-06 0.072 0.050 

S5D_PART1_116655089 5D 116655089 4.86E-06 0.074 0.050 

S2A_PART2_90900748 2A 553276921 9.51E-06 0.063 0.047 

S1D_PART1_372880513 1D 372880513 2.50E-05 0.103 0.042 

S3D_PART1_350667570 3D 350667570 7.17E-05 0.139 0.037 

S4D_PART1_57896297 4D 57896297 9.99E-05 0.153 0.036 

S4D_PART1_57896305 4D 57896305 9.99E-05 0.153 0.036 

PSS2 S1A_PART1_15325346 1A 15325346 1.14E-04 0.493 0.035 

Panel FHB17 

PSS2 S2B_PART2_182562323 2B 635781247 2.11E-05 0.276 0.082 

PSS3 S7D_PART2_158473918 7D 612286186 7.34E-05 0.064 0.082 

FDK 
S3B_PART2_210340155 3B 658495424 6.68E-05 0.261 0.145 

S3B_PART2_210340154 3B 658495423 6.68E-05 0.261 0.145 

MAF: minor allele frequency; R2: proportion of phenotypic variance explained by SNPs; FDR: false discovery rate. 
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Chapter 4 - A Genome-Wide Association Study of Stem and Leaf 

Rust Resistance in a Historical Dataset of Elite Breeding Lines 

 

 Abstract 

Stem rust (SR) and leaf rust (LR) are wheat diseases that cause substantial economic 

losses to global wheat production. New races of these of pathogens are constantly emerging 

which makes breeding for resistance more challenging. Therefore, the objective of this study was 

to identify genomic regions associated with resistance to wheat rusts at the seedling stage. For 

this purpose, we used historical data of advanced breeding lines from the Southern Regional 

Preliminary Nursery (SRPN). This nursery tests dozens of advanced wheat lines from public and 

private breeding programs every year. Genotyping-By-Sequencing (GBS) was used to identify 

35,467 single nucleotide polymorphisms (SNPs) in 533 unique breeding lines were tested in the 

SRPN nursery from 2000 to 2015. A total of 51 LR races and 34 races SR races were separately 

inoculated under controlled conditions during this period of time. A QTL on 2AS was repeatedly 

found associated with low infection types for multiple races of stem and leaf rust. After 

comparing SNPs at this QTL peak with the SSR marker ventriup-ln2, we confirmed that this 

locus corresponds to the 2NS·2AS translocation from Ae. ventricosa. Two loci located on 2DS 

and 4AL were highly associated with resistance to the stem rust races TPMKC and TTTTF, 

respectively. Another four QTLs on 1BS, 2DS, 3AL, and 3BL were also associated with broad-

spectrum resistance to stem and leaf rust. Another three QTLs located on 4AL, 4BL, and 7AS 

are possibly novel loci associated with stem and leaf rust resistance at seedling stage. 
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 4.0 Introduction 

Wheat rusts are among the most destructive wheat diseases causing significant economic 

losses globally. In addition, the recurrent emergence of new races complicates deployment of 

durable resistance. Stem (SR), leaf (LR), and stripe rust (YR) are caused by the pathogen species 

Puccinia graminis f. sp. tritici (Pgt), P. triticina (Pt), and P. striiformis f. sp tritici (Pst) 

respectively. There are two main strategies to control cereal rusts: genetic resistance and use of 

fungicides. Host plant resistance has economic and environmental advantages (Ellis et al., 2014) 

and, for these reasons, it is widely used as a management practice to control wheat rusts. 

Stem rust (SR) is undeniably the most aggressive of all three rusts, with the emergence of 

highly aggressive races. For instance, the race TTKSK (Ug99) became virulent against the gene 

Sr31 and since then variants of this race defeated the resistance provided by several genes 

deployed in Africa and Asia, (Singh et al., 2015), representing a threat to global wheat 

production and food security. Extensive efforts have been made to find and map new sources 

resistance for these highly virulent races, as a result, several minor effect-loci have been recently 

identified (Mohammadi et al., 2013; Singh et al., 2014). 

Deployment of cultivars containing multiple resistance genes has proven to be the most 

effective strategy to prevent widespread epidemics of wheat rusts (Singh et al., 2016). Hence, 

wheat breeders and pathologists are constantly developing and testing new sources of germplasm 

and elite lines to find resistance genes that are broadly effective against all rust species and their 

race variations. Other breeding and research approaches have included backcrossing, combining 

genes of race-nonspecific and race-specific resistance (Singh et al., 2005), association studies 

with elite lines and global collections (Zhang et al., 2014; Gao et al., 2017), and genomic 
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prediction of resistance to wheat rusts (Rutkoski et al., 2011; Rutkoski et al., 2015; Juliana et al., 

2017). 

The Southern Regional Performance Nursery (SRPN) is a public nursery established by 

the USDA-ARS in 1932 to characterize the performance of advanced winter wheat lines from 

multiple breeding programs in the Central Plains of the United States (Reitz and Salmon, 1959). 

Every year, between 35 and 50 new entries are tested in this nursery for grain yield, end-use-

quality and wheat diseases with phenotypic data being collected across more than 20 locations. 

In addition, all lines are inoculated for multiple races of wheat rusts in greenhouse conditions at 

the USDA Cereal Disease Lab in Saint Paul, MN. In the meantime, these breeding lines were 

also screened for important known genes at the USDA Small Grain Genotyping Lab in 

Manhattan, KS. The majority of samples submitted to the nursery since 2000 have been 

genotyped via GBS (Rife, 2016). Therefore, the SRPN can be considered one of the most 

valuable resources to study the genetics of winter wheat cultivars and elite lines in the United 

States. 

In this chapter, sixteen years of historical data from the SRPN (2000-2015) were used to 

perform a genome-wide association study of seedling resistance for multiple races of Pgt and Pt. 

This effort should effectively identify genomic regions associated with race-specific and broadly 

effective resistance in early stage of development while the effect of adult plant resistance (APR) 

genes such as Lr34, Lr46, Lr67, and Lr68 will likely not be detected. Afterward, identifying 

QTLs/genes broadly effective at the seedling stage will assist breeding for rust resistance since 

these loci may be used in combinations with the well-known APR genes. 
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 4.1 Materials and Methods 

 The SRPN Historical Dataset  

A total of 687 unique winter wheat breeding lines from multiple breeding programs were 

submitted to the (SRPN) from 2000 to 2015. All the historical data is available online at 

https://www.ars.usda.gov/Research/docs.htm?docid=16642. For this study, we used a subset of 

533 breeding lines that were inoculated for wheat rusts. A few lines were submitted to the SRPN 

for more than one year and, in some cases, tested for more than one race of wheat rust. Infection 

types were averaged across years in these cases. 

 Inoculation and Infection Types 

The inoculation of multiple races of wheat rusts was conducted under controlled 

conditions at the USDA Cereal Disease Laboratory in St. Paul, MN. A total of 51 races of Pt and 

34 races of Pgt were inoculated onto breeding lines submitted to the SPRN in the time period 

under consideration (2000-2015) (Table 4-1). Only field notes of stripe rusts from unknown 

races were available, thus it was not included in the association analysis. Each race of Pt and Pgt 

was separately inoculated onto wheat lines in the greenhouse. Then, two weeks after inoculation, 

the infection types (ITs) were scored using the Stakman scale (Stakman, 1962). Screening with 

the Pgt race TTKSK (Ug99) began in 2008. 

The IT scores can be converted into a linear scale using the algorithm proposed by Zhang 

et al., (2014). A more recent study developed a fully automated pipeline in Perl (Gao et al., 

2016) to facilitate the conversion of IT scores using the prior algorithm with slight modifications. 

This more recent algorithm was implemented in our study. Subsequently, IT scores were 

averaged across races for each pathogen, with the exception of TTKSK which was analyzed 

separately. 
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 Genotyping-by-Sequencing 

All breeding lines tested in the SRPN were genotyped using the genotyping-by-

sequencing (GBS) protocol described by Poland et al. (2012). Single nucleotide polymorphisms 

(SNPs) were called using an automated pipeline in Tassel 5. Only those SNP markers with minor 

allele frequency (MAF) greater than 1%, heterozygosity lower than 15%, and less than 50% 

missing values across genotypes were retained. Markers that yielded multi-allelic calls were 

discarded. A total of 35,467 SNPs and 687 wheat lines remained in the genotypic dataset after 

filtering. The physical positions of SNP markers were corrected for each chromosome using the 

161010_Chinese_Spring_v1.0 pseudomolecule reference (IWGSC, 2017). SNP markers were 

ordered from the distal region of short arm to the distal part of the long arm within each 

chromosome. 

 Genome-Wide Association Analysis 

The association mapping analysis (GWAS) was conducted in R using the Genome 

Association and Prediction Integrated Tool (GAPIT) (Tang et al., 2016). We used an enhanced 

compression of the mixed linear model (ECMLM) (Li et al., 2014). The Bayesian information 

criterion (BIC) was estimated by setting the parameter ‘Model.selection=TRUE’ to determine the 

optimal number of principal components (PCs) for the association analysis. The kinship matrix 

and the first two principal components were included in the model as covariates to account for 

the population structure. 

GWAS results from GAPIT were reloaded into R using the package ‘qqman’ to generate 

Manhattan plots. To declare significant SNP-trait associations, we use a multiple correction test 

with three different thresholds of significance: false discovery rate (FDR) at 5% and 10%, and 

the Bonferroni correction. FDR values were obtained from the GWAS analysis run with rrBLUP 
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whereas values for the Bonferroni correction was obtained with the default output from GAPIT. 

This last method is highly conservative, limiting the identification of significant marker-trait 

associations, as reported by several authors (Sham & Purcell, 2014; Gao et al., 2016) which 

justified the adoption of a less stringent test such as the FDR. 

 

 4.2 Results and Discussion 

 Genotypic Data of SRPN 

The genotypic data consisted of 35,467 SNP markers and 687 breeding lines from 

multiple breeding programs that were tested in the Southern Regional Performance Nursery 

(SRPN) from 2000 to 2015. A larger proportion of single nucleotide polymorphisms (SNPs) was 

identified on the A genome (37.5%) and B (44%) while only 18.5% of SNPs were assigned to 

the D genome (Table 4-2). The average distance between markers was 0.39 megabases (Mb) 

with the largest gap (34.9 Mb) found near to the centromere of chromosome 2B (Table 4-2). 

SNPs were more densely distributed towards the telomeres (Figure 4-2) which confirms the trend 

reported by several studies of higher recombination rates and gene density being more 

concentrated in distal regions (IWGSC, 2014; Avni et al., 2017). Although the average of 

infection types (ITs) for all races within rust species tended to be normally distributed, ITs of 

individual races were observed to fit a bimodal distribution with a large frequency of lines falling 

into the susceptible (9) and resistant (1) classes (Figure 4-1). Phenotypic data were not 

transformed prior association mapping analysis. The first two principal components explained 

the majority of genetic variation and a strong population structure was not observed (Figure 4-3). 
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 GWAS Results for Stem Rust 

A total of 34 unique races of Pgt were separately inoculated on the entries submitted to 

the SRPN between 2000 and 2015. TTTTF, TPMKC, and TTKSK were the most commonly 

inoculated races of Pgt and were analyzed separately (Table 4-1). The IT scores of all races, 

except TTKSK, were also averaged (bulk) with the goal of identifying SNPs associated with 

broad-spectrum seedling resistance. The number of QTLs identified varies according to the 

multiple correction tests used to declare the significance of SNP-trait associations (Table 4-4). 

For the Bonferroni correction threshold which is the most conservative, we only identified two 

QTLs (2AS, 2DS) significantly associated with the average IT scores of 33 races of Pgt, whereas 

another nine QTLs were identified when using a false discovery rate of 5% (Figure 4-4 and 

Table 4-4). 

The minor alleles of two SNPs at the QTL peak on 2AS (S2A_PART1_2800562 and 

S2A_PART1_2336941) matched with the results of the marker ventriup-ln2 for the translocation 

2NS·2AS, confirming that the QTL on 2AS corresponds to this alien segment. Additionally, the 

physical position of these SNPs (at ~23 and ~28Mb away from the distal end of 2AS) indicates 

that they are in fact within the 2NS segment. The MAF for these two SNPs ranged from 0.36 to 

0.40, showing that this translocation is present in a high frequency in elite winter wheat lines 

across several breeding programs in the United States. This translocation carries the 

Yr17/Lr37/Sr38 gene cluster and is widely known for conferring resistance to multiple wheat 

pathogens at seedling and adult stages, including stripe rust (Helguera et al., 2003), leaf rust 

(Kolmer, 2017), stem rust (Mohammadi et al., 2013), wheat blast (Cruz et al., 2016), and even 

nematode resistance (Williamson et al., 2013). Jagger, a highly successful hard winter wheat 

variety that is prominent in the pedigree of many U.S. hard winter wheat lines developed in the 
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Central and Southern Plains, was the primary source of the 2NS·2AS translocation in the SRPN 

materials (Table 4-1). The QTL on 2DS mapped in the interval where the genes Lr2a and Sr6 are 

located. These two genes are well-known for conferring resistance to leaf and stem rust at 

seedling stages (Tsilo et al., 2014) and are commonly present in U.S. winter wheat lines (Kolmer 

et al., 2007; Zhang et al., 2014). Therefore, these genes are the most likely candidates for the 

QTL associated with broad stem rust resistance (average of all races) at seedling stage found in 

this study on the distal region of 2DS. 

TTTTF is one of the most widely virulent Pgt races to be identified in the United States 

and produces high infection types on all stem rust differential lines (Roelfs & Martens, 1988) 

whereas TPMKC was the predominant race in all regions of the United States during the late 

1990’s (McVey et al., 2002). In contrast, TTKSK (Ug99) emerged in Uganda and has currently 

spread to several countries within Africa and Asia but is not yet present in North nor South 

America. A highly significant QTL was identified on the distal end of 4AL, which was 

particularly associated with low infection types of the race TTTTF. Sr7a and SrND643 were 

previously reported in this genomic region (Zhang et al., 2014; Tsilo et al., 2014). The gene in 

this study is most likely Sr7a since it was recently confirmed to confer resistance to SR in the 

cultivar Jagger (Turner et al., 2016). As noted previously, Jagger was extensively used as a 

parent in the hard winter wheat region of the U.S (Table 4-4). Also, this region has been recently 

reported to confer resistance to TTKSK (Basnet et al., 2015; Yu et al., 2017). These results were 

verified in our study (Figure 4-4) when a less stringent threshold of significance (FDR 10%) was 

considered. 

A strong association was identified on 4AL for resistance to race TPMKC. As previously 

noted, this region contains the genes Sr7a and SrND643 (Figure 4-4). At least two independent 
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dominant genes were reported to confer resistance to TPMKC, but these genes are not effective 

against TTTTF (Oliveira et al., 2008). These results were partially confirmed in our study, since 

the QTL detected on 2DS was significantly associated with resistance to both races. Considering 

the results from the avirulence/virulence formula (Roelfs & Martens, 1988), the gene Sr6 the 

most likely candidate for this locus (Table 4-3). Four QTLs associated with resistance to TTTTF 

(1AS, 1BS, 2AL, 4AL) were identified using FDR 5% as the significance threshold whereas only 

two QTLs (1AS, 2DS) were associated with resistance to TPMKC. 

Regarding TTKSK, the most significant association was verified on the distal end of 3AL 

(Figure 4-4). This genomic region contains the genes Sr27 and Sr35. However, Sr27 is present in 

a rye translocation that is not present in this panel of wheat lines. Similarly, Sr35, which has been 

recently cloned, and it is known for conferring near immunity to Ug99 and related races 

(Saintenac et al., 2013) but is an improbable candidate as it has not been widely deployed in the 

hard winter wheat region of the U.S. Therefore, the significant locus found in our study on this 

genomic region is likely novel. Another five QTLs associated with TTKSK were found on 1AL, 

1BS, 1DS, 3DL and 7BL which can potentially correspond to 1RSAmigo, Sr31, Sr33/Sr45, 

Lr24/Sr24 and Lr68, respectively. The linked genes Lr24/Sr24 came from translocation from Ag. 

elongatum to the long arm of 3D and are known for providing resistance to multiple races of Pgt 

and Pt, including TTKSK (Smith et al., 1968; Mago et al., 2005; Imbaby et al., 2014).  However, 

comparing the genotypes results of the SNPs at peak locus found in our study with marker 

Sr24#12 which is linked to Lr24/Sr24, it was not observed a clear trend, suggesting the 

occurrence of marker failure to detect this alien segment, or spurious associations since the gene 

Sr24 was considered effective against the races TTTTF, TPMKC, and TTKSK according to the 

avirulence/virulence postulation (Roelfs & Martens, 1988) presented in Table 4-3. 
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Lr68 is an APR race-nonspecific gene known for conferring durable resistance to all 

three rusts and frequently found in spring wheats originated from CIMMYT (Herrera-Fosessel et 

al., 2012). Although further evidence is required to confirm whether the QTL we identified on 

7BL actually is Lr68. It would be the first time that this gene was found associated with broad 

spectrum stem rust resistance in the U.S winter wheat. Several of these genes, especially those 

effective against TTKSK, were previously found in a relatively high frequency in U.S. wheat 

cultivars (Zhang et al., 2014). Similar SNP- trait associations for Ug99 races in spring wheat (Yu 

et al., 2017) corroborate with our findings. Considering the SNP associations for the bulk of Pgt 

races (average of all IT scores) at FDR<10%, another four QTLs were identified on 1BL, 2BL, 

5DL, and 6DL. Three of these loci associated with broad-spectrum stem rust resistance at the 

seedling stage are potentially novel since the locus on 1BL is likely the 1BL·1RS translocation. 

A locus on 2BL associated stem rust resistance have been recently identified in a global spring 

wheat germplasm collection (Gao et al., 2017) and it is speculated to be novel. 

 GWAS Results for Leaf Rust 

A total of 51 unique races of Pt were separately inoculated on the entries submitted to the 

SRPN between 2000 and 2015. The Pt races THBJ, TNRJ, and KFBJ were repeatedly inoculated 

during multiple years, therefore they were analyzed separately. The average of IT scores of all 

races (bulk) were used in the GWAS analysis to identify SNPs associated with resistance against 

multiple races of leaf rusts (Figure 4-5 and Table 4-4). Only one QTL on 2DS was found 

associated with resistance to multiple races of Pgt using the Bonferroni multiple correction test. 

As discussed in the stem rust section, Sr6 have been previously mapped to this region. 

Additionally, another three seedling-resistant Lr genes (Lr2a, Lr15, and Lr39) and one APR gene 

(Lr22a) have been detected on the short arm of 2D (Lan et al., 2017). According to the 
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avirulence/virulence formula (Long & Kolmer, 1989), all these three Pt races are virulent to Lr2a 

(Table 4-3). Therefore, the genes Lr15 and/or Lr39 are the most likely candidate(s) found in our 

study on this genomic region. 

Using the SNP significance of FDR<5% allowed identification of another five QTLs 

located on 2AS, 3BS, 7AS, 7DS, 4BL (Figure 4-5 and Table 4-4). The genes Lr37 (located on 

the 2NS·2AS segment), Lr27/Sr2, Lr47, and Lr34 are the most likely candidates for the first four 

QTLs, whereas the QTL on 4BL is potentially a novel locus for leaf rust resistance. Gao et al. 

(2016) also reported a QTL located in a similar region of 4BL which was associated with APR 

but not seedling resistance against Pt races. The locus on 7AS may also be novel as Lr47 was 

introgressed from Ae tauschii and is unlikely to be common in U.S wheat cultivars. Similar 

findings were also recently reported in a spring wheat core collection (Turner et al., 2017). 

No significant marker associations were observed for the Pt races THBJ, TNRJ, and 

KFBJ when using the multiple test correction of Bonferroni and FDR at 5% as the threshold for 

significance (Figure 4-5). THBJ was commonly found in the Great Plains during early 2000’s 

(Kolmer et al., 2004) and is virulent against Lr16, Lr9, and Lr24 (Oelke & Kolmer, 2004). Five 

QTLs associated with low infection types for the race THBJ (Figure 4-5) and another eleven 

QTLs associated with resistance to race TNRJ were identified in this work. TNRJ is virulent to 

Lr9, Lr10, Lr11, Lr24, and Lr41 and occurs primarily found in the southern Great Plains 

(Kolmer et al., 2007) while KFBJ is virulent to Lr26 and it is considered one of most virulent 

races of Pt in the United States (German & Kolmer, 2012; Bruce et al., 2014). A total of five 

QTL were identified for KFBJ in our study. Although several of these loci mapped within the 

interval of known rust resistance genes, a larger proportion of this loci are speculated to be novel 

genes. 
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All IT scores were averaged across 34 races of Pgt and 51 races of Pt to identify genomic 

regions associated with race-nonspecific resistance at seedling stage (Figure 4-6). The GWAS 

results revealed a highly significant (Bonferroni 5%), single locus located on 2AS which was 

associated with the broad spectrum resistance of stem and leaf rust at seedling stage. As 

previously discussed, we confirmed that this locus corresponds to the 2NS·2AS translocation, 

which is widely known for providing resistance to multiple wheat diseases (Helguera et al., 

2003; Mondal et al., 2016). Another four QTLs on 1BS, 2DS, 3AL, and 3BL were also 

associated with average IT over races when a significant threshold of FDR 5% was used. So far, 

there is no of evidence in the literature whether seedling resistance genes can be expected to 

provide durable resistance. However, finding the ones that are effective against multiple races 

has its importance reported by other studies (Mago et al., 2005) in terms of designing and 

deploying combinations with APR genes that can lead to more durable resistance. 

 

 4.3 Conclusions 

The number of QTLs detected in the GWAS analysis varied from 1 to 15 according to the 

strictness of the multiple correction test applied. Several loci were identified in the interval of 

previously characterized genes, confirming the effectiveness of these prior reported genes against 

multiple races of Pgt and Pt pathogen species. Occasionally, significant loci were mapped near 

newly introgressed genes which are unlikely to be commonly found in winter wheat elite lines. 

A locus on 2AS was repeatedly found associated with low infection types for multiple 

races of stem and leaf rust. After comparing genotypes from SNPs at this locus with the SSR 

marker ventriup-ln2, we confirmed that this locus corresponds to the 2NS·2AS translocation 

from Ae. ventricosa. This segment is universally known among wheat breeders and pathologists 
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for conferring resistance against multiple wheat diseases. So far, no yield or quality penalties 

have been reported in the literature due to the presence of 2NS·2AS, demonstrating that this alien 

segment brings multiple benefits breeding programs. 

Another two loci located on 2DS and 4AL were highly associated with resistance to Pgt 

races TPMKC and TTTTF, respectively. These loci were also significantly associated with low 

infection types for the bulk of races Pgt and Pt. There are several Lr and Sr genes located in 

these genomic regions. However, due to the absence of marker data, it was not possible to 

identify the actual genes conferring resistance at these loci.  Moreover, several other potentially 

novel loci associated with rust resistance at seedling resistance were identified in this study. 

Further research is needed for validation of these loci. From a breeding perspective, identifying 

novel resistant loci in elite winter lines is advantageous in that sources of resistance are available 

in adapted backgrounds without deleterious effects on yield and end-use quality.  
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Figure 4-1. Normal distribution infection types of the three most commonly inoculated 

races of stem rust and leaf rust, and the average of all races inoculated in the SRPN from 

2000 to 2015. 

 

 

 
Figure 4-2. Physical map positions of 35,467 SNP markers identified in panel of 687 wheat 

lines tested in the SRPN from 2000 to 2015. Map was drawn using the ‘plotMap’ function 

from the R/qtl package. 
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Figure 4-3. Principal components analysis of 687 wheat lines constructed with 35,467 SNP 

markers.  
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Figure 4-4. Manhattan plots showing association results for infection types of stem rust 

races based on 35,467 common SNPs. The x-axis represents physical positions of the SNPs 

in the wheat genome and the y-axis represents the –log10 of p-values. 
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Figure 4-5. Manhattan plots showing association results for infection types of leaf rust 

races based on 35,467 common SNPs. The x-axis represents physical positions of the SNPs 

in the wheat genome and the y-axis represents the –log10 of p-values. 
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Figure 4-6. Manhattan plots showing association results for the average of infection types 

of 34 races of stem rust and 51 races of leaf rust based on 35,467 common SNPs. The x-axis 

represents physical positions of the SNPs in the wheat genome and the y-axis represents the 

–log10 of p-values. 

 

Table 4-2. Summary of entries tested in the Southern Regional Preliminary Nursery 

(SRPN) from 2000 to 2015 and inoculate for wheat rust at seedling stage in greenhouse. 

Year 
Number of 

Entries 

Races of Wheat Rusts 

Leaf Rust (LR) Stem Rust (ST) 

2000 45 
(8) KBBM, MLPR, MFDM, TFPM, TDDM, 

TBQM, TFGM, KCBM 
(7) QTHJ, PTHS, TPMKC, TTRS, RKRQ, RTQQ, 

RCRS 

2001 45 (6) MLRT, MFBP, TKBP, TDGT, MFBP, KBQT (5) RTQQ, QTHJ, TTRS, RTHJ, TPMKC 

2002 46 - (6) TPMKC, RTQQ, RRTS, QTHJ, PTHS, TTTTF 

2003 46 (4) THBJ, MCDS, TNRJ, KFBJ (4) TTTTF, TPMKC, RTQQ, QTHJ. 

2004 50 - (5) TPMKC, QTHJ, TTTTF, RCRS, QFCS 

2005 48 
(7) KDBG, MCDS, TCTD, MFBJ, THBJ, MJBJ, 

TNRJ 
(5) TPMKC, QFCS, TTTTF, RCRS, RKQQ 

2006 50 
(7) MCDS, KFBJ, THBJ, TNRJ, KDBG, TLGF, 

MJBJ 

(7) QFCS, MCCF, RKQQ, TPMKC, QTHJ, TTTTF, 

TTKS 

2007 50 
(9) MCRK, THBJ, MJBJ, TGBG, MHDS, KFBJ, 

TNRJ, MFPSC, MLDSB 

(7) QFCS, QTHJ, RCRS, RKQQ, TPMKC, TTTTF, 

TTKS 

2008 50 
(8) MLDS, THBJ, MJBJ, MFPS, TDBJ, TDBG, 

MHDS, KFBJ 

(11) QFCS, QTHJ, RCRS, RKQQ, TPMKC, TTTTF, 

TTKSK, TTKS, TTKST, TTTSK, TRTT 

2009 46 
(8) MFPS, MHDS, TNRJ, MLDS, THBJ, KFBJ, 

TDBG, TMGJ 

(13) QFCS, QTHJ, MCCF, RCRS, RKQQ, TPMKC, 
TTTTF, TTKSK, QCCSM, TTKST, TTTSK, TRTT, 

RFCS 

2010 48 
(8) TMGJ, MFPS, TNRJ, TDBG, HDS, KFBJ, 

MLDS, THBJ 

(13) QFCS, QTHJ, MCCF, RCRS, RKQQ, TPMKC, 

TTTTF, RFCS, TTKSK, TTKST, TTTSK, TRTT, 
SCCSC 

2011 38 
(8) TMGJ, TDBG, MFPS, MHDS, MLDS, TNRJ, 

TFBJ, KFBJ 

(12) QFCSC, QTHJC, MCCFC, RCRSC, RKQQC, 

TPMKC, TTTTF, TTKSK, TTKST, TTTSK, TRTTF, 
SCCSC 

2012 44 
(10) TDBGG, TBBGJ, TCRKG, MBDSD, TNRJJ, 

TFBJQ, MHDSB, KFBJG, TGBGG, MLDSD 

(13) QFCSC, QTHJC, MCCFC, RCRSC, RKQQC, 

TPMKC, TTTTF, TRTTF, RRTTF, TTKSK, TTKST, 

SCCSC, TTTSK 

2013 43 
(9) TDBGG, TBBGJ, MBDSD, TFBJQ, MHDSB, 

KFBJG, MLDSD, TCRKG, TNRJJ  

(12) QFCSC, QTHJC, MCCFC, RCRSC, RKQQC, 

TPMKC, TTTTF, TTKSK, TTKST, TTTSK, TRTTF, 

SCCSC 

2014 40 
(9) TNBGJ, MCTNB, MFPSB, KFBJG, MBDSD, 

TFBJQ, MHDSB, TCRKG, PBLRG 

(15) QFCSC, QTHJC, MCCFC, RCRSC, RKQQC, 
TPMKC, TTTTF, SCCSC, TTKSK, TTKST, 

TTTSK, GFMNC, TRTTF, RRTTF, TKTTF 

2015 42 
(11) TNBGJ, TNRJ, MCTNB, TBBGJ, KFBJG, 
MBDSD, TFBJQ, MJBJG, TCRKG, PLBRG, 

TBBGS 

(15) QFCSC, QTHJC, MCCFC, RCRSC, RKQQC, 
TPMKC, TTTTF, TKTTF, TRTTF, TKKTP, 

TTKSK, QCCSM, TTKST, TTTSK, TTKTT 

Total 731* 51 races  34 races 

*Out of 731 breeding lines 687 were unique and 533 had disease data available. 
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Table 4-3. Summary of the physical map of 35,467 SNP markers identified in panel of 687 

wheat lines tested in the SRPN from 200 to 2015. Distances are measured in base pairs (bp). 

Wheat chromosomes Number of Markers Length (bp) Ave. Spacing (bp) Max. spacing (bp) 

1A 1,956 592,038,631 302,833.06 13,618,692 

1B 2,429 687,265,770 283,058.39 11,056,157 

1D 1,028 449,197,921 437,388.43 20,902,583 

2A 2,050 780,357,174 380,847.82 19,535,754 

2B 2,621 800,782,797 305,642.29 34,942,402 

2D 1,650 651,112,066 394,852.68 31,491,912 

3A 1,841 750,100,719 407,663.43 25,039,334 

3B 2,785 828,074,948 297,440.71 7,576,284 

3D 951 614,934,427 647,299.40 32,491,856 

4A 1,682 743,133,265 442,078.09 12,665,164 

4B 833 672,808,430 808,663.98 33,157,972 

4D 299 507,803,682 1,704,039.20 21,820,594 

5A 1,591 709,647,995 446,319.49 21,216,708 

5B 2,150 712,221,813 331,420.11 13,259,725 

5D 652 562,634,450 864,261.83 12,914,193 

6A 1,710 617,367,234 361,244.72 14,841,500 

6B 2,546 720,118,785 282,954.34 12,898,215 

6D 966 473,049,027 490,206.25 15,680,336 

7A 2,483 735,492,876 296,330.73 16,524,583 

7B 2,233 750,094,085 336,063.66 32,311,225 

7D 1,011 637,809,028 631,494.09 19,415,041 

Overall 35,467 13,996,045,123 394,855.41 34,942,402 

 

 

Table 4-4. Results from the avirulence/virulence formula for gene postulation based on the 

inoculation of differential sets as described by Roelfs & Martens (1988) and Long & 

Kolmer (1989) for Pgt and Pt races, respectively. 

Rust Races Avirulent On Genes Virulent On Genes 

Leaf 

(Pt) 

THBJ Lr9, Lr3ka, Lr11, Lr17, Lr18, Lr24, Lr30, LrB Lr1, Lr2a, Lr2c, Lr3,Lr10, Lr14a, Lr16, Lr26 

TNRJ Lr16, Lr17, Lr18, Lr26, LrB 
Lr1, Lr2a, Lr2c, Lr3, Lr3ka, Lr9, Lr11,  Lr10, Lr14a, Lr24, 

Lr30 

KFBJ 
Lr1, Lr3ka, Lr9, Lr11, Lr16, Lr17, Lr18, Lr30, 

LrB 
Lr2a, Lr2c, Lr3, Lr10, Lr14a, Lr24, Lr26 

Stem 

(Pgt) 

TTTTF Sr24, Sr31, 1A·1R 
Sr5, Sr6, Sr7b, sr8a, Sr9a, Sr9b, Sr9d, Sr2, Sr9g, Sr10, Sr11, 

Sr17, Sr21, Sr30, Sr36, Sr38, SrMcN 

TPMKC Sr6, Sr9a, Sr9b, Sr24, Sr30, Sr31, Sr38, 1A·1R 
Sr5, Sr7b, Sr8a, Sr9a, Sr9d, Sr9e, Sr9g, Sr10, Sr11, Sr17, 

Sr21, Sr36, SrTmp, SrMcN 

TTKSK Sr24, Sr36, SrTmp, 1A·1R 
Sr5, Sr6, Sr7b, Sr8a, Sr9b, Sr9d, Sr9e, Sr9g, Sr10, Sr11, 

Sr17, Sr21, Sr30, Sr31, Sr38, SrMcN 
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Table 4-5. Number Significant SNP- trait associations and quantitative trait loci (QTL) 

identified in the GWAS analysis according three different multiple correction tests. 

Rusts Races 
Bonferroni correction<5% False Discovery Rate (FDR) <5% False Discovery Rate (FDR) <10% 

# SNPs # QTL # SNPs # QTL # SNPs # QTL 

Stem Rust 
(Pgt) 

TTTTF 7 
1 

(4AL) 
48 

4 

(1AS, 1BS, 2AL, 

4AL) 

70 

7 

(1AS, 1BS, 2AL, 2DL, 3AL, 

3DL, 4AL, 5AL) 

TPMK 39 
1 

(2DS) 
28 

2 

(1AS, 2DS) 
51 

9 
(1AS, 1BS, 2AS, 2BL, 2DL, 

3AS, 5BL, 6BS, 7DL) 

TTKSK - - 22 

6 

(1AL, 1BS,1DS, 3AL, 
3DL, 7BL) 

36 

16 (1AL, 1BS, 1DS, 2BS, 2BL, 
3AL 3BL, 3DL, 4AL, 4BL,  

5DL, 6BL, 6DS, 7AS, 7AL, 

7BL) 

Bulk of 33 

Pgt races 
3 

2 

(2AS, 2DS) 
117 

11 (1AS, 1BS, 1BL, 
1DL, 2AS, 2DS, 3AL, 

3BL, 4AL, 5AL, 

7AS) 

77 

15 (1AS, 1BS, 1BL, 1DS, 2AS, 

2BL, 2DS, 3AS, 3BL, 3DL, 
4AL, 5AL, 6DL, 7AL, 7BL) 

Leaf Rust 

(Pt) 

THBJ - - - - 10 5 (1AS, 2AS, 2AL, 7AS, 7DS) 

TNRJ - - - - 18 
11 (1AS, 1AL, 1BS, 2AL, 2DS, 

4BS, 5AS, 5BL, 6BS, 6DL, 

7BL) 

KFBJ - - - - 10 5 (2AS, 2AL, 2DS, 6BL, 7BL) 

Bulk of 51 

Pt races 
2 

1 

(2DS) 
51 

6 (2AS, 2DS, 3BS, 

4BL, 7AS, 7DS) 
43 

15 (1BS, 1BL, 2AS, 2DS, 2DL, 

3AS, 3BS, 3BL, 5AS, 5BS, 
5BL, 6AS, 7AS, 7DS, 7DL) 

SR+LR 

Bulk of all 

races of Pgt 
and Pt 

1 
1 

(2AS) 
29 

5 (1BS, 2AS, 2DS, 

3AL, 3BL) 
66 

12 (1AS, 1BS, 1BL, 1DS, 

2ASa, 2ASb, 2BL, 2DS, 3AL, 
3BL, 7AL, 7DS) 

FDR: False Discovery Rate. 
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Table 4-6. Details of the five resistant and ten susceptible entries submitted to SRPN from 2000 to 2015 and inoculated for 

stem and leaf rust. The five selected SNPs are the ones located at peak loci associated with resistance to multiple races of Pgt 

and Prt.  

SRPN ID Entry Pedigree 

SNPs found at peak loci SRPN Marker Data Postulated 

gene(s) 

based on 

IT 

reactions 

Average 

of all IT 

scores of 

Pgt and 

Pt 

A/G A/T C/G T/C G/C 2NS-2AS 
Sr24/Lr24 

(3DL) 

1RS 

trasnloc. 

S2A_PART

1_2800562 

S1B_PART1_

5234750 

S3A_PART2_

292817024 

S2D_PART1_6

1759932 

S3B_PART2_

361378376 ventriup-ln2 Sr24#12 TSM0120 

2004SRPN022 KS950811-5-1 Ogallala/KS95WGRC33//Jagger G T G T C - - non-1RS - 0.00 

2005SRPN032 HV9W99-558 Freedom/Tomahawk//Jagger G - - T - 2NS+ - non-1RS - 0.00 

2005SRPN045 AP02T4342 Coronado//1174-27-46/X960210 G A - T G 2NS+ - non-1RS - 0.00 

2009SRPN032 TX05A001822 2145/X940786-6-7 G T G T C 2NS+ Sr24+ non-1RS 
Lr24/Sr24 

Lr41 
0.82 

2008SRPN021 HV9W02-942R 
53/3/ABL/1113//K92/4/JAG/5/

KS89180B 
G T G T C 2NS+ Sr24+ 1BL.1RS Lr34 0.94 

2009SRPN013 KS0603A-58-1 Overley*3/Amadina G - C T G 2NS+ non-Sr24 1BL.1RS - 0.05 

2009SRPN044 HV9W04-1594R 
KS89180B-2-1-1/ 

CMBW91M02959T//JGR 
G - - T G 2NS+ non-Sr24 1BL.1RS Lr41 0.13 

2011SRPN013 KS020638-5-1 KS940786-17-2/Jagalene//Trego G T G T C 2NS+ Sr24+ non-1RS Lr24/Sr24 0.69 

2012SRPN020 HV9W07-1942 
JAGALENE//W99-331/ 

X940786-6-4 
G - - T - 2NS+ non-Sr24 1BL.1RS - 0.15 

2012SRPN031 NE09517 
W96x1080-21 

=(Jagger/Thunderbolt)/Jagalene 
G T G T C 2NS+ Sr24+ non-1RS Lr24/Sr24 1.39 

2014SRPN022 LCH10-187 B88/2180//T81-1 A A C T G non-2NS Sr24+ 1RS:1AL - 7.02 

2011SRPN011 OK06336 Magvars/2174//Enhancer F4:12 A A C T G non-2NS Sr24+ non-1RS - 7.38 

2007SRPN027 KS970093-8-9-#1 
HBK1064-3/KS84063-9-39-3-

4W//X960103 
A A C T G non-2NS non-Sr24 non-1RS 

Lr1, 

Lr14a 
7.64 

2005SRPN026 CO00796 
Transvaal/Arlin/2/CO910424/Ha

lt 
A A C T G non-2NS non-Sr24 1AL.1RS 14a 7.69 

2007SRPN031 CO02W280 
98HW521(93HW91/93HW255)/

98HW165(ARL/WGRC15) 
A A C T G non-2NS non-Sr24 non-1RS 

 
7.71 

2007SRPN033 CO03W239 KS01-5539/CO99W165 A A C T G 2NS+ non-Sr24 non-1RS Lr14a 8.16 

2007SRPN034 CO03W269 KS01-5539/CO99W191 A A C T G 2NS+ non-Sr24 non-1RS - 8.00 

2006SRPN013 T150 T81/T201 A A C T G non-2NS non-Sr24 non-1RS - 8.21 

2015SRPN010 CO11D446 CO050270/Byrd A A C T G non-2NS non-Sr24 non-1RS - 8.36 

2014SRPN010 CO11D174 TAM 112/Byrd A A C T G non-2NS non-Sr24 non-1RS - 8.83 
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Chapter 5 - Final Remarks and Future Prospects 

 

 5.1 Overall Conclusions  

The biparental mapping revealed eight small-effect QTLs located on 1AS, 1BS, 3BS, 

5AS, 5BL, 5DS, 6BS and 7AL, which were associated with multiple mechanisms of FHB 

resistance. All these mapped QTLs presented additive effects. A significant reduction of 67% in 

DON content was observed in lines carrying all mapped QTLs for DON in comparison to lines 

without any of the mapped loci. We found that three DH lines (DH014, DH026, and DH130) 

carried seven of the eight alleles for resistance, whereas only one line (DH108) possessed all 

susceptible alleles for the mapped QTLs. Since all these loci explained a relatively small 

proportion of phenotypic variation, converting GBS sequences flanking QTLs into markers to 

assist wheat breeding via MAS is not viable. Instead, we recommend the implementation of 

genomic selection strategies, as shown in Chapter 3, which can lead to more significant progress 

of FHB resistance in wheat breeding programs. 

The GWAS identified significant SNP associations with the percentage of symptomatic 

spikelets in all three breeding panels but the results were not reproducible across years. This 

likely indicates the frequency of resistant alleles associated FHB resistance is low, especially 

since selections are not exclusively based on FHB resistance in the K-State Wheat Breeding 

program. Allele frequencies change from one year to the other based on parents used in a given 

crossing cycles and this changing set of germplasm likely contributed to the inability to 

consistently identify regions associated with resistance. Although significant loci are reported in 

similar genomic regions as other studies, based on the pedigree information, they are unlikely the 

same as the ones described in the literature. Accuracy predictions of genomic selection (GS) 
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models were relatively high (>0.45) when only 20% of the data was masked in the training set. 

However, GS models did not statistically differ from each other, indicating that, in this case, 

improvements in FHB resistance can be made regardless of the model adopted. Upcoming 

studies must investigate alternatives to increase prediction accuracies. Examples include the 

development of tools to obtain more precise PSS ratings, testing of genetic algorithms to account 

for the genetic relatedness between training and target sets, and the inclusion of covariates such 

as heading date, plant height and anther extrusion in the GS models. Furthermore, GWAS 

analysis could be performed in training populations to identify SNPs associated with the trait of 

interest, such as FHB. These SNPs could then be further considered as fixed effect markers in 

GS models to increase the accuracy of GS predictions.  

In chapter 4, the association mapping with historical data from the SRPN revealed 

multiple loci conferring stem and leaf rust resistance at seedling stages. A highly significant 

locus was repeatedly detected on 2AS, which was associated with resistance to multiple races 

and the overall bulk average of Pgt and Pt. We confirmed that this loci, in fact, corresponds to 

the 2NS·2AS translocation and nearly 40% of the lines submitted to the SRPN from 2000-2015 

carries this alien segment. Another two highly significant loci were found on 2DS and 4AL. 

There are multiple candidate genes on these genomic regions, therefore further research will be 

needed to confirm which genes are putative candidates. Evaluation of wheat rusts in natural 

conditions is often confounded with the predominant race in a given environment. Here, we have 

shown the viability of using data from individual race inoculations and their combinations to 

map loci associated with resistance to rusts at seedling stage. Future studies may use GWAS to 

identify the most significant loci associated with traits of interest in breeding panels that could be 

used as training sets in GS schemes that consider significant QTLs as fixed effect factors, aiming 
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to increase prediction accuracies. Finally, GS models must be considered as a tool to assist 

breeding, not necessary a replacement for phenotypic selections. Genomic tools discussed in in 

this dissertation may be integrated into wheat breeding programs aiming to increase genetic 

gains for disease resistance breeding. 

 

 5.2 The Future of Disease Resistance Breeding 

The cost of genotyping has significantly decreased in the past few years and it is no 

longer a limiting factor for wheat genetic research. Hereafter, the availability of a complete 

annotation reference (IWGSC, 2017) and the pangenome of hexaploid wheat (Montenegro et al., 

2017) will enable more extensive studies of genetic mechanisms underlying traits of interest. For 

instance, the tools now exist to investigate how selection pressure operates across homoeologous 

genes at different ploidy levels, facilitate gene cloning (especially the ones involved in host 

resistance) and understand gene expression (Uauy, 2017). Multiplex targeted sequencing (Rife et 

al., 2015) research must be extended to other important genes as a fast, low-cost strategy 

allowing the assay of the whole-genome profile of elite lines while following specific genes. 

Moreover, other genotyping approaches, such as exome capture and RNA-sequencing can be 

used for high-resolution mapping in early generations (Liu et al., 2012; Ramirez-Gonzalez et al., 

2015) whereas reverse genetics resources such as TILLING populations may be used to identify 

gene functions (Krasileva et al., 2017). Furthermore, recent advances in genome-editing, such as 

CRISPR/Cas9 (Cong et al., 2013), have been speculated as a promising tool not only for 

switching on or turning off genes, but also for guiding recombination events which could 

potentially double the gain from selection in the near future (Bernardo, 2017). 
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Regarding field data collection, the key challenge for genetic studies in the coming years 

will be the development of precise phenotyping tools. Exclusive reliance on visual notes that are 

evaluator-dependent and often inaccurate is a large limitation. Progress needs to be made 

towards the development of high-throughput image-sensing platforms able to measure disease-

infected areas on leaves and spikes at plant and plot levels. It would allow us to distinguish 

minor phenotypic variations that even a trained evaluator cannot differentiate and collect more 

data-points per unit of area in a reasonable time. Fully automated pipelines will be required for 

rapid, real-time data analysis to assist breeder’s decision-making prior to phenotypic selection 

and/or harvest. Likewise, more effective mapping results, genome-wide associations, and 

genomic predictions will be achieved with high quality of phenotypic data available. 

Training the next-generation of “genomics-enabled researchers/breeders” is also crucial. 

It will ensure that advances in wheat genomics will be translated into higher genetic gains and 

delivered to farmers’ fields as higher-yielding and disease-resistant varieties (Uauy, 2017). 

Having these multidisciplinary skills also will be fundamental for the new scientists, including 

automated data collection, genotyping, programming, and big data analysis. Undoubtedly, 

professionals with these skills could be the bridge between classical breeders and 

bioinformaticians, helping to develop/integrate complex genomic approaches to surpass the 

current levels of disease resistance, end-use quality, and grain yield in wheat breeding.  
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