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We demonstrate coherent control over the photoelectron circular dichroism in randomly oriented chiral
molecules, based on quantum interference between multiple photoionization pathways. To significantly
enhance the chiral signature, we use a finite manifold of indistinguishable (1þ 10) resonantly enhanced
multiphoton ionization pathways interfering at a common photoelectron energy but probing different
intermediate states. We show that this coherent control mechanism maximizes the number of molecular
states that constructively contribute to the dichroism at an optimal photoelectron energy and thus
outperforms other schemes, including interference between opposite-parity pathways driven by bichro-
matic (ω, 2ω) fields as well as sequential pump-probe ionization.
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Chiral molecules are nonsuperimposable mirror images
of each other, referred to as enantiomers. Recent advances
in measuring enantiomer-sensitive observables in gas phase
tabletop experiments [1–4] have brought chiral molecules
into the spotlight of current atomic, molecular and optical
(AMO) research. One of these observables is photoelectron
circular dichroism (PECD), i.e., the differential photo-
electron angular distribution obtained by ionizing randomly
oriented molecules with left-circularly and right-circularly
polarized light [1,5–9]. PECD is a purely electric dipole
effect, yielding much stronger signals than traditional
absorption circular dichroism, which involves also the
magnetic dipole of the probed transition. It can be quanti-
fied by the odd-moment coefficients in the expansion of the
photoelectron angular distribution into Legendre polyno-
mials. The simplest explanation for PECD is provided by
perturbation theory for one-photon ionization [10]: It is the
small difference in magnitude between dipole matrix
elements with opposite sign m quantum number, occurring
only for chiral molecules, that results in a net effect when
averaging over all molecular orientations. More intuitively,
two nonparallel vectors are needed to provide an orienta-
tion with which to probe the handedness of the molecular
scaffold and create a pseudoscalar observable. While in
traditional circular dichroism these are the electric and
magnetic dipole moment, the photoelectron momentum
provides the second vector in PECD. This picture connects
PECDwith the general framework for electric-dipole-based
chiral observables [11]. Perturbation theory can also
explain the PECD observed in resonantly enhanced multi-
photon ionization (REMPI) [1], in terms of the electroni-
cally excited intermediate state of the REMPI process [12].
Dependence of the chiral signal on excitation wavelength is
then understood in terms of probing different intermediate
states [13]. Whether PECD is amenable to coherent

control by suitably shaping the ionizing pulses is an open
question [14].
Here, we address this question by making use of optimal

control theory and show that, for a chiral methane deriva-
tive, CHBrClF, quantum interference between distinct two-
photon ionization pathways significantly enhances PECD.
To this end, we combine an optimization technique [18]
with a many-body description of the electron dynamics,
scattering theory to efficiently describe the photoelectron
continuum [15–17], and second-order time-dependent per-
turbation theory with an optimization technique [18]. We
use this approach to maximize the PECD for CHBrClF
while fully accounting for the chiral nature of the potential
experienced by the photoelectron. We use CHBrClF as one
of the simplest chiral molecules that has featured promi-
nently in recent experiments [3] but expect our findings to
be relevant for larger molecules as well.
We first detail our methodology to calculate the photo-

electron spectrum and PECD. Keeping the nuclei fixed and
neglecting relativistic effects, the Schrödinger equation for
the many electron system reads

i
∂
∂t jΨ

NðtÞi ¼ ½Ĥ0 þ Ĥ1 − EðtÞ · r̂�jΨNðtÞi; ð1Þ

where Ĥ0 and Ĥ1 refer to the mean-field Fock operator and
the residual Coulomb interaction, respectively. Accounting
for one-particle one-hole excitations only, the many-body
wave function is described by the manifold [19]

jΨNðtÞi ¼ α0ðtÞe−iεotjΦ0i þ
X
i;a

αai ðtÞe−iεai tjΦa
i i

þ
X
i

Z
dkαki ðtÞe−iεki tjΦk

i i; ð2Þ

PHYSICAL REVIEW LETTERS 122, 013204 (2019)

0031-9007=19=122(1)=013204(6) 013204-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.013204&domain=pdf&date_stamp=2019-01-10
https://doi.org/10.1103/PhysRevLett.122.013204
https://doi.org/10.1103/PhysRevLett.122.013204
https://doi.org/10.1103/PhysRevLett.122.013204
https://doi.org/10.1103/PhysRevLett.122.013204


where α0ðtÞ, αai ðtÞ, and αki ðtÞ are time-dependent coeffi-
cients, and jΦ0i refers to the Hartree-Fock ground state.
jΦa

i i ¼ ĉ†aĉijΦ0i and jΦk
i i describe one-particle one-hole

excitations from an initially occupied orbital i to a bound
unoccupied orbital a or a continuum state with energy
jkj2=2. To model an ensemble of randomly oriented
molecules, we average over all Euler angles γR ¼
ðα; β; γÞ; see Supplemental Material [20] for a detailed
description. The orientation-averaged photoelectron
momentum distribution is obtained upon integration over
γR and incoherent summation over the initially occupied
contributing orbitals i in the Hartree-Fock ground state,

d2σ
dϵkdΩk0

¼
X
i∈occ

Z
jαk0i ðt; γRÞj2d3γR; ð3Þ

for t → ∞ and with k0 denoting the momentummeasured in
the laboratory frame, defined by the propagation direction
of the light beam along z0, as indicated in Fig. 1(a). The
photoionization process is captured by the coefficients
αk

0
i ðt; γRÞ. It requires an accurate description of the scatter-

ing portion of the wave function, which presents a
formidable computational challenge for a many-electron
system with no symmetry. To reduce the computational
cost, we resort to solving Eq. (1) perturbatively. A second-
order treatment allows us to manipulate quantum interfer-
ences between conventional opposite-parity, as well as
same-parity (two-photon), pathways. These interferences
can be exploited to control the differential and integral
cross section in systems with no inversion center of

symmetry [28,29]. Restricting the maximum field ampli-
tude and the ionization yield to ensure the validity of the
perturbation approximation, Eq. (3) simplifies to

d2σ
dϵkdΩk0

≈
Z

jαk0ð1Þi0
ðt; γRÞ þ αk

0ð2Þ
i0

ðt; γRÞj2d3γR; ð4Þ

for t → ∞ and with αk
0ð1;2Þ
i0

ðt; γRÞ, the first-order (second-
order) correction [20]. Second-order terms account for two-
photon ionization pathways, from i0 to k0 via different
unoccupied orbitals a.
We restrict the electron dynamics to be influenced by the

mean-field molecular electrostatic potential and time-
dependent field only. The orbitals participating during
the photoionization are described by the manifold of the
HOMO (labeled i0, with ionization potential ω0) and
unoccupied orbitals defined by the eigenfunctions of the
field-free Fock operator together with the scattering states
defined by the excitation jΦk0

i0
i. The Hartree-Fock orbitals

were obtained using the MOLPRO [26,27] program package
with the aug-cc-pVDZ basis set [30]. The scattering portion
φ−
k ðrÞ of the total wave function is an eigenfunction of the

scattering problem,

�
−
∇2

2
−
1

r
þ V̂ −

k2

2

�
φ−
k ðrÞ ¼ 0; ð5Þ

where V̂ðrÞ is the short-range part of the electron-ion
interaction. Equation (5) is solved using a locally modified
version of the ePolyScat program package [15–17];
see the Supplemental Material [20] for more details.
PECD is calculated by expanding Eq. (4) into Legendre
polynomials Pm

l ,

d2σð�Þ

dϵkdΩk0
¼

X
l;m

βð�Þ
l;mðϵkÞPm

l ðcos θ0Þeimφ0
; ð6Þ

where � distinguishes the momentum distribution obtained
with left-circularly (þ) and right-circularly (−) polarized

light. The anisotropy parameters βð�Þ
l;mðϵkÞ are decomposed

into contributions from the one- and two-photon ionization
pathways and their interference:

βð�Þ
l;mðϵkÞ ¼ βð�Þ1ph

l;m ðϵkÞ þ βð�Þ2ph
l;m ðϵkÞ þ βð�Þint

l;m ðϵkÞ: ð7Þ

PECD is the nonvanishing component that remains after
subtracting Eq. (6) obtained with left- and right-circularly
polarized light [1,5–9] and reads [20], for ϕ ¼ π=2,

PECDðϵk; θ;ϕ ¼ π=2Þ ¼ 2
X
n;k

βðþÞnph
2kþ1;0ðϵkÞP02kþ1ðcos θÞ

þ 6Im½βðþÞint
2;1 ðϵkÞ� sinð2θÞ: ð8Þ

(a) (b)

FIG. 1. (a) A randomly oriented ensemble of CHBrClF
molecules (orange ball) is ionized with left-circularly (þ) or
right-circularly (−) polarized light, and the emitted electron is
measured in the ðz0; y0Þ plane. The polarization plane (P) defines
the ðx0; y0Þ plane and the vector z0 normal to P is given by the
laser propagation direction. (b) Maximum PECD over all angles
as a function of the photoelectron energy after ionization by a
Gaussian pulse with central frequency ω denoted in terms of
photon energy. The photon order is determined using the
anisotropy parameters in Eq. (8).
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Anisotropy parameters and PECD are expressed in percent-
age of the peak photoelectron intensity. The driving electric
field is parametrized,

ϵðtÞ ¼
X
j¼1

ϵje
−ðt−τjÞ2=2σ2j cos½ωjðt − τjÞ þ ϕj�; ð9Þ

with ϵj,ωj,ϕj the amplitude, frequency, and carrier envelope
phase of the jth pulse with full width at half maximum
FWHM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
σj and time delay τj, which are opti-

mized following Ref. [18]. To ensure the validity of the
perturbation approximation, we constrain the maximal peak
intensity to values not exceeding 1.0 × 1011 W=cm2, which
was found to be an appropriate upper limit in bichromatic
photoionization studies [31].
We first resolve the PECD as a function of the photon

energy using a 25 fs (FWHM) monochromatic laser field
[single frequency component in Eq. (9)] with peak intensity
I0 ¼ 5 × 1010 W=cm2. The resulting single- and two-
photon PECD as a function of the photoelectron energy
are shown in Fig. 1(b). Figure 2(a) shows the angularly
resolved PECD for a photon energy of 18.4 eV. We now
address the question of whether the PECD can be enhanced
by allowing for more ionization pathways including their
interference to contribute.
The use of quantum interference between one- and two-

photoionization pathways is a general, well-documented
control mechanism [28,29,31,32], and bichromatic pulses
have been suggested to realize this scenario for atoms using

linearly [32] and circularly [31] polarized light. Control of
anisotropy after bichromatic ionization is also predicted for
randomly oriented chiral molecules [33]. In this Letter, we
demonstrate, however, that interference between distinct
two-photon ionization pathways results in a more efficient
control mechanism to maximize PECD.
To this end, we first optimize driving fields constraining

the frequency components to bichromatic (ω, 2ω) pulses.
The PECD resulting from the optimized bichromatic
(ω, 2ω) pulse reaches a maximum PECD of 20% at a
photoelectron energy of 10 eV. This is comparable to
asymmetries predicted for (ω, 2ω) bichromatic fields,
linearly polarized in two mutually orthogonal directions
employing rotationally tailored laser pulses for control
[33]. In a second step, we allow complete freedom for the
photon energies of the driving field. With a maximal peak
intensity of 3.5 × 1010 W=cm2 (for a total ionization yield
of 6%), the fully optimized field is found to significantly
enhance the PECD to 68%. The corresponding photo-
electron spectrum peaks at an energy of 6.5 eV.
PECD is known to strongly depend on the final continuum

states. It is therefore important to disentangle the kinetic
energy effects, i.e., contributions arising from the final
continuum state—here with energy 6.5 and 10 eV—and
those from different photoionization pathways leading to the
same final state. We therefore compare the PECD obtained
with a reference field driving one-photon ionization, the
optimized bichromatic (ω, 2ω), and fully optimized pulses
resulting in the same photoelectron kinetic energy.

(a) (b) (c)

(d) (e) (f)

FIG. 2. (a)–(c) Angularly resolved PECD obtained with (a) a monochromatic reference field driving one-photon ionization, (b) an
optimized bichromatic (ω, 2ω) pulse, and (c) making use of interference in even-parity two-photon pathways. (d)–(f) Corresponding
ionization schemes. The control mechanism for two-photon pathway interference (f) is based on probing different intermediate states
that interfere constructively at a common continuum photoelectron energy within the spectral bandwidth. Restricting the control
mechanism to the pump-probe scenario with time-delayed pulses results in a maximum PECD of 62% (10%), whereas pulses
overlapping in time realize the maximum PECD of 68%.
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The results for a photoelectron kinetic energy of 6.5 eV
are shown in Fig. 2, whereas those for 10 eV are found in
the Supplemental Material [20]. At a photoelectron energy
of 6.5 eV, the PECD is enhanced from 12% using one-
photon ionization to 14% using an interfering two-photon
ionization pathway, i.e., bichromatic control, whereas a
single two-photon ionization pathway that does not include
interference reaches 16.2% PECD at 6.5 eV, as shown in
Fig. 1(b).
All of these are significantly smaller than 68% obtained

for the fully optimized pulse where only two-photon
pathways, but many more of them, cf. Fig. 2(f), interfere.
This picture holds also at a photoelectron kinetic energy of
10 eV, where the maximum PECD for the reference field,
optimized bichromatic (ω, 2ω), and fully optimized pulses
amounts to 8.5%, 20%, and 64%, respectively [20].
The control mechanism for the fully optimized field of

Fig. 2(f) is further analyzed in Fig. 3, with Fig. 3(a) showing
the different anisotropy parameters for the fully optimized
pulse. In contrast to the reference and optimized bichromatic
(ω, 2ω) pulses, neither single-photon ionization nor inter-
ference between one- and two-photon pathways contributes

for the fully optimized pulse. In fact, both βðþÞ1ph
1;0 and βðþÞint

2;þ1

vanish over the entire energy domain. Furthermore, the one-
photon ionization pathway is completely suppressed, even

for the symmetric part, since βðþÞ1ph
0;0 ¼ 0. Instead, the

remarkable enhancement of the PECD is indeed solely
due to even-parity, i.e., two-photon ionization, pathways

because both βðþÞ2ph
1;0 and βðþÞ2ph

3;0 are nonzero.
Analyzing the spectrum of the fully optimized field,

shown in Fig. 3(b), we identify the interference between
different two-photon ionization pathways to give rise to the
control observed in Fig. 2(c). The spectrum contains peaks at

ω1 ¼ 7.24 eV, ω2 ¼ 10.70 eV, and ω3 ¼ 11.35 eV and
overlaps with transitions from the HOMO to the first
unoccupied orbitals, namely, ω10 ¼ 7.07 eV, ω20 ¼
10.90 eV, ω30 ¼ 11.06 eV, and ω40 ¼ 11.47 eV, which
need to be compared to the calculated ionization threshold
of 11.88 eV. The two-photon ionization pathway 2 × ω10

promotes the photoelectron to 2.27 eVand explains the small
peak at 2.39 eV in Fig. 3(a). Conversely, the pathways
2 × ω2;ω2 þ ω3;ω2 þ ω4;… explain the small PECD at
11 eV. However, these pathways do not contribute much to
PECD, which is mainly due to the peak at 6.5 eV. The most
important pathways leading to 6.5 eV, cf. Fig. 2(f), are
ω20 þ ðω10 þ δω1Þ and similarly ðω10 þ δω1Þ þ ω20 with
an offset of δω1 ¼ 0.4 eV as well as ω40 þ ðω10 − δωÞwith
δω ¼ 0.12 eV. The latter probes the LUMOþ 3, whereas
the former two probe the LUMOþ 1 and LUMO. The
required offsets are available within the spectral bandwidth.
The pathways ω30 þ ω10 and ω10 þ ω30, probing the
LUMOþ 2, are also compatible with the pulse spectrum;
however, the frequency ω30 is suppressed, and removing the
LUMOþ 2 decreases the PECD by only 0.4%. In other
words, the high-frequency components of the optimized field
correspond to photon energies which resonantly excite the
first LUMOþ j orbitals ðj ¼ 1; 2;…Þ, while the peak
centered at ω1 can either excite the LUMO from the ground
state or ionize the LUMOþ j population, cf. Fig. 2(f). Its
bandwidth guarantees interference at a common photoelec-
tron energy. Thus, the width and peak position at ω1 are key
for the constructive interference among a finite manifold of
two-photon ionization pathways at a common final photo-
electron energy to significantly enhancePECD.Constraining
ω1 to be exactly ω10 while reducing its spectral bandwidth
results in a smaller PECD ð≈50%Þ. Conversely, allowingω1

to be further blueshifted with respect toω10 while increasing

(a) (b) (c)

FIG. 3. (a) Anisotropy parameters for the fully optimized field as used in Fig. 2(c). (b) Spectrum (blue) and spectral phase (solid
orange line) of the fully optimized pulse. The frequencies ωj0 denote the transition energies between the HOMO and LUMO þ j − 1
orbitals. Modifying the spectral phase (orange solid versus blue dashed lines) while keeping the spectrum unchanged dramatically alters
the PECD. (c) Maximum PECD as a function of the time delay between the ω1 component and the higher-frequency components of the
optimized pulse shown in (b). In regions S1 and S2, the subpulses are temporally separated (pump-probe scenario) with S1

corresponding to ionization via the LUMO only [cf. right-hand part of Fig. 2(f)], whereas in S2, ionization proceeds via a superposition
of different excited states without the LUMO [cf. left-hand part of Fig. 2(f)]. In S3, pump and probe pulses overlap in time such that
interference between all two-photon ionization pathways can be exploited.
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the spectral bandwidth such that it still overlaps with ω10

results in a PECD of about 70% (not shown due to the large
bandwidth of the field).
The coherent nature of the control mechanism is further

confirmed by modifying the spectral phase of the optimized
pulse while keeping the spectral amplitude unaffected,
cf. dashed lines in Fig. 3(b). This corresponds to intro-
ducing a time delay between the high- and low-frequency
components of the pulse. Figure 3(c) shows the variation
of the PECD, between 68% to 6%, as a function of this time
delay. Positive (negative) delays correspond to the high-
frequency components arriving before (after) the low-
frequency components, as verified by inspecting the
Wigner distribution function of the pulses. For negative
time delays, highlighted in red in Figs. 2(f) and 3(c), only
the LUMO is excited. PECD thus does not depend on the
time delay and reflects the chiral signature of the LUMO
only, which amounts to about 10%. For positive time
delays, highlighted in blue in Figs. 2(f) and 3(c), the high-
frequency components of the pulse prepare a superposition
of higher excited states, such that the PECD depends on the
time delay and contains the chiral fingerprints of the
LUMOþ j (j ≥ 1) with a maximum of 55%. These two
scenarios correspond to pump-probe control [34,35], where
the pump pulse spectrum selects the manifold of inter-
mediate states that contribute. PECD can be pushed to 62%
by further optimization of time-separated pump and probe
pulses for positive delays. However, the maximal value of
PECD, 68%, is obtained when pump and probe overlap, as
highlighted in yellow in Figs. 2(f) and 3(c). This can be
rationalized by exploiting interference of all the pathways,
including the two-photon ionization through the LUMO,
depicted in Fig. 2(f).
In conclusion, we have identified constructive interfer-

ence in two-photon photoionization to significantly
enhance PECD of randomly oriented CHBrClF molecules.
Control is achieved via various (1þ 10) REMPI pathways
leading to a common final photoelectron state but probing
different intermediate states. Separating pump and probe
photons in time slightly reduces the number of pathways
that may interfere and thus the PECD. In this excitation
scheme based on interference of same-parity pathways, we
find significantly larger PECD than can be obtained with
optimized bichromatic circularly polarized fields where
opposite parity pathways are made to interfere construc-
tively. It will be straightforward to extend this type of
control to molecules other than CHBrClF, with only the
central frequencies and spectral widths depending on the
specific chiral molecule. Higher-order terms in the pertur-
bation expansion, while requiring larger amplitudes, are
likely to facilitate even more pathway interference and
could also be used to drive photoionization with optical
instead of extreme ultraviolet pulses. Whether an upper
bound to PECD exists and what type of driving field would
saturate it is yet unknown.
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