# Using sUAS for high resolution characterization of harmful algal



Deon van der Merwe (Diagn Med/Pathobiol)

Kevin P. Price (Agronomy)

Kansas State University

#### What are cyanobacteria?

- Carbon-fixing, oxygenic photosynthesizing bacteria
- Among the oldest organisms (oldest fossils c. 3.5 billion years old)
- Not always a bad thing
  - Important primary producers in aquatic ecosystems
  - Food: eg. spirulina
  - Biofuels

Fossilized cyanobacteria



Green algae and cyanobacteria



# Biology

- Photosynthetic
  - Need light and nutrients
- Certain types can fix nitrogen
  - Symbiotic relationships with plants
- Not always a bad thing
  - Important primary producers in many aquatic ecosystems
  - Human food: eg. spirulina
  - Biofuels







## Harmful algal blooms (HABs)

- HABs refer to unchecked, exponential growth
  - Toxin production
  - Oxygen depletion
- HAB risk conditions
  - Sunlight
  - High temperature
  - Nutrients
  - Slow-moving or stagnant water
  - Low competition/predation



#### **Impacts**

- Health effects
  - Animals and people
  - Need to provide alternative water
- Recreational access to affected waters may have to be restricted
- Expensive water treatment



#### Risk assessment

How to sample?
Where to sample?
How many samples?
Sampling frequency?



Traditional methods are inefficient

# HABs are highly variable and rapidly changing in space and time





A potentially lethal risk not detected by traditional sampling

We need efficient, high resolution sampling!

# Monitoring by air massively increases efficiency and resolution





500 acres/20 minutes at 6 cm resolution

Smaller areas at mm resolution

#### Visible and NIR reflectance



$$NDVI = \frac{(NIR - VIS)}{(NIR + VIS)}$$

## Sensor options



#### Livestock pond example

Normal image (red/green/blue)



Calibration panel

Sample marker

**Cloud reflections** 

Note: No obvious algae gradient

Bright cloud reflections

# Microscopy





Aphanizomenon flos-aquae



## Agisoft surface model



Averaged color-infrared image (NIR/green/blue)



Note: Visible algae gradient No cloud reflections

Blue NDVI image (NIR-blue)/(NIR+blue)



NDVI image generated in AgPixel

# Buoyant packed cell volume (BPCV)

expressed as a percentage of total water volume



BPCV = a/b



Blue NDVI = (NIR-blue)(NIR+blue)

Note: Blue NDVI values were transformed to a 0-255 scale

#### Conclusion

- Traditional sampling:
  - High cost; long delay
  - Uncertain local risk assessment
- sUAS remote sensing:
  - Virtually complete surface sampling; efficient
  - High spatial and temporal resolution

Ideally suited for rapid, local risk assessment



Questions?