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Abstract

The focus of this report is to study fourth-order tensors and generalize some results from

the linear algebra of second-order tensors to fourth-order tensors. A fourth-order tensor can

be viewed as a linear map from second-order tensors to second-order tensors. We provide

an orthonormal basis for the vector space of fourth-order tensors and use it to represent

any fourth-order tensor by a fourth-dimensional array, which represents its component form.

An inner product and norm are provided for this vector space. Composition of linear maps

gives rise to multiplication of fourth-order tensors, which we present in component form. We

study different kinds of symmetries for fourth-order tensors, in particular, major symmetry

and minor symmetry. We provide an isomorphism between the vector space of fourth-

order tensors and the vector space of second-order tensors of the same dimension. We use

this isomorphism to prove a spectral theorem for fourth-order tensors that possess major

symmetry.
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Chapter 1

Introduction

In this report, we study fourth-order tensors, certain notions of their symmetry, and provide

a spectral theorem for fourth-order tensors. Higher-order tensors and, in particular fourth-

order tensors, have been studied in the literature including1–4. Our approach to generalize

some results from the linear algebra of second-order tensors to fourth-order tensors follows

that given in5. In particular,5 provides a spectral theorem for symmetric fourth-order ten-

sors, but without providing a proof or reference in the literature where a proof can be found.

In this report, we provide a proof for a spectral theorem for symmetric fourth-order tensors.

Moreover, we present a spectral decomposition of symmetric fourth-order tensors of the form

A = QDQT ,

where A is a symmetric fourth-order tensor, D a diagonal fourth-order tensor, Q is an or-

thogonal fourth-order tensor, and T denotes the fourth-order tensor transpose.

This report is organized as follows. In Sections 1.1 and 1.2, we define second-order tensors

as bilinear maps and provide an identification between second-order tensors and matrices

for a fixed orthonormal basis. Symmetric second-order tensors are described in Section 1.3,

where we present the spectral theorem for symmetric second-order tensors. In Section 1.4,

we provide a bijection between second-order tensors and vectors. In Section 2.1, we define
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fourth-order tensors as multilinear maps and provide an identification between fourth-order

tensors and four-dimensional arrays. On the vector space of fourth-order tensors, we provide

an inner product and norm. Moreover, We define operations of multiplication, trace, and

transpose of fourth-order tensors. In Section 2.2, we provide a representation for fourth-order

tensors as second-order tensors and define the eigenvalues and eigentensors of fourth-order

tensors. In Chapter 3, we provide certain notions of symmetry of fourth-order tensors, and

present and prove a spectral theorem for major-symmetric fourth-order tensors.

1.1 Second-Order Tensors

Let V = Rn, the real coordinate space of dimension n, and B := {ei}i=1,··· ,n be the standard

orthonormal basis for V . Then, any vector u ∈ V can be written as u = uie
i, where the

scalars ui are the components of u with respect to the basis B. The dot product is defined

by

u · v := uTv = uivi.

In this report, we adopt the summation convention for repeated indices. In addition, we

adopt the following notation: vectors are denoted by boldface lowercase letters (for example,

u), second-order tensors are denoted by a boldface uppercase letters (for example, A), and

we use script uppercase letters to denote fourth-order tensors (for example, A). The outer

product is denoted by ⊗ (for example, u ⊗ v). Moreover, superscripts are used to label

different tensors or vectors, while subscripts are only used to denote components of tensors

or vectors.

1.2 Second-Order Tensors as Bilinear Maps

A bilinear map T,

T : V × V → R,
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is called a second-order tensor. Associated with T, there is a unique two-dimensional array

(matrix) A = AT such that

T(u,v) = u ·Av,

for all u,v ∈ V . The matrix A is given by

Aij = T(ei, ej).

To see this, we observe that

T(u,v) = T(uie
i , vje

j)

= uivjT(ei, ej)

=: uivjAij

= u ·Av.

Conversely, given a matrix A, define a bilinear map T = TA by

T(u,v) = u ·Av.

With respect to a fixed basis of V , the above provides a one-to-one identification between

second-order tensors and two-dimensional arrays (matrices). Therefore, we interchangeably

refer to a matrix as a second-order tensor and vice versa.

Let Lin(V) be the set of all second-order tensors. This set forms a vector space of

dimension n2. The inner product on this vector space is given by

〈A,B〉 := A : B = AijBij,

3



and the norm on Lin(V) is given by the induced norm

‖A‖ =
√
A : A.

For any A ∈ Lin(V), let

Aij := ei ·Aej = A : ei ⊗ ej = 〈A, ei ⊗ ej〉.

We note that the set {ei ⊗ ej}i,j=1,...,n forms an orthonormal set in Lin(V), since

ei ⊗ ej : ek ⊗ el =

 1, if i = k, j = l,

0, otherwise.

Moreover, A has the representation

A = Aije
i ⊗ ej,

and therefore the set {ei ⊗ ej}i,j=1,...,n forms an orthonormal basis for second-order tensors.

The product AB of two second-order tensors, is a second order tensor, defined by com-

position

(AB)u = A(Bu),

for all u ∈ V . Viewing AB as a bilinear map from V × V to R given by 〈(AB)u,v〉, we

conclude that the product of two second-order tensors is also a second-order tensor. In
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components, we have

(AB)ij = ei · (AB)ej

= ei ·A(Bej)

= eik(A(Bej))k

= eikAkl(Bej)l

= eikAklBlpe
j
p

= AilBlj.

The transpose of A ∈ Lin(V) is the second-order tensor denoted AT and defined by

u ·ATv = v ·Au,

for all u,v ∈ V . In components,

(AT )ij = ei ·ATej

= ej ·Aei

= Aji.

Hence, the transpose of second order tensor

A = Aije
i ⊗ ej,

is given by

AT = Ajie
i ⊗ ej.
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1.3 Symmetric Second-Order Tensors

Let Sym(V) = {A ∈ Lin(V) | A = AT}, be the set of all symmetric second-order tensors. A

second-order tensor A is said to be antisymmetric if A = −AT , or in components,

Aij = −Aji. Every second-order tensor A can be decomposed uniquely as A = As + Aa,

where

As =
1

2
(A + AT ),

is the symmetric part of A and

Aa =
1

2
(A−AT ),

is the antisymmetric part of A.

The set of all symmetric second-order tensors Sym(V) is a subspace of Lin(V) of dimension

n(n+ 1)/2. The symmetric second-order tensors

{2− 1
2
(1+δij)(ei ⊗ ej + ej ⊗ ei)}1≤i≤j≤n,

where δij is the Kronecker delta, form an orthonormal basis of Sym(V).

Theorem 1.3.1 (The spectral theorem for second-order tensors). If A ∈ Sym(V), then there

exists {λk}1≤k≤n ∈ R and {uk}1≤k≤n an orthonormal basis of V such that

Auk = λkuk, k = 1, . . . , n.

Moreover, let Q = [u1 . . .un] be the matrix with uk as the k-th column, and let D be the

diagonal matrix with Dkk = λk, for k = 1, . . . , n. Then

A = QDQT . (1.1)

The real number λk is the eigenvalue of A associated with the eigenvector uk. Such a

representation is called the spectral decomposition of A.
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Proposition 1.3.2. The spectral decomposition of A ∈ Sym(V) is given by

A =
n∑
k=1

λkuk ⊗ uk. (1.2)

Proof. Writing (1.1) in components

Aij = (QDQT )ij

=
n∑
k=1

Qik(DQT )kj

=
n∑

l,k=1

QikDkl(Q
T )lj

=
n∑
k=1

Qikλ
k(QT )kj

=
n∑
k=1

(uk)iλ
k(uk)j

=
n∑
k=1

λk(uk ⊗ uk)ij.

Thus,

A =
n∑
k=1

λkuk ⊗ uk.

Using (1.2), we have

tr(A) =
n∑
k=1

λktr(uk ⊗ uk)

=
n∑
k=1

λk(uk · uk)

=
n∑
k=1

λk.
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And by using (1.1), we have

det(A) = det(QDQT )

= det(Q) det(D) det(QT )

= det(D)

=
n∏
k=1

λk.

1.4 Second-Order Tensors as Vectors

We consider a bijection map ψ that assigns to each pair of indices (i, j), 1 ≤ i, j ≤ n, a single

index ψ(i, j) that ranges from 1 to n2:

ψ : [[1, n]]× [[1, n]]→ [[1, n2]], (i, j)→ ψ(i, j),

with the notation [[1, n]] = {1, 2, . . . , n}. We refer to such map ψ as a correspondence map.

For n = 3, an example of such maps is

(i, j) (1, 1) (2, 2) (3, 3) (2, 3) (1, 3) (1, 2) (3, 2) (3, 1) (2, 1)

ψ(i, j) 1 2 3 4 5 6 7 8 9

Let Ṽ := Rn2
. Then, given A ∈ Lin(V), define ã ∈ Ṽ by

ãψ(i,j) := Aij. (1.3)

Equivalently,
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A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ψ−→ ã =



a11

a22

a33

a23

a13

a12

a32

a31

a21



.

In particular, let ei ⊗ ej
ψ−→ ẽψ(i,j). For example,

e1 ⊗ e2 =


0 1 0

0 0 0

0 0 0

 ψ−→ ẽψ(1,2) =



0

0

0

0

0

1

0

0

0



.

Then, the set {ẽψ(i,j)}1≤i,j≤n forms an orthonormal basis for Ṽ . Therefore, any A ∈ Lin(V)

can be viewed as an n-dimensional second-order tensor A = Aije
i⊗ej or as an n2-dimensional

vector

ã = ãψ(i,j)ẽ
ψ(i,j).
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We observe that

tr(ATB) = 〈A,B〉 = ã · b̃ (1.4)

and, consequently, that ‖A‖ = ‖ã‖. Therefore, the two-way map A ↔ ã is an isometry

between Lin(V) and Ṽ .
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Chapter 2

Fourth-Order Tensors

2.1 Fourth-Order Tensors as Linear Maps

A fourth-order tensor is a map

T : V × V × V × V → R,

which is linear in each component. Associated with T, there is a unique four-dimensional

array A = AT such that

T(u,v,w,m) = A : u⊗ v ⊗w ⊗m.

The four-dimensional array A is given by

Aijkl = T(ei, ej, ek, el).

To show this, we have
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T(u,v,w,m) = T(uie
i, vje

j, wke
k,mle

l)

= uivjwkmlT(ei, ej, ek, el)

= Aijkl(u⊗ v ⊗w ⊗m)ijkl

= A : u⊗ v ⊗w ⊗m.

Conversely, given a four-dimensional array A, define a multilinear map T = TA by

T(u,v,w,m) = A : u⊗ v ⊗w ⊗m,

for all u,v,w,m ∈ V .

A fourth-order tensor A can also be viewed as a linear map

A : Lin(V)→ Lin(V).

In components,

(A : U)ij = AijklUkl,

for any U ∈ Lin(V).

The set of all fourth-order tensor (the set of all linear maps from Lin(V) to Lin(V)), is a

linear space of dimension n4 and is denoted by L(V).

On L(V), we define the inner product

〈A,B〉 := A : B = AijklBijkl, (2.1)

and the induced norm

‖A‖ = (A : A)
1
2 .
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Any fourth-order tensor A has the representation

A = Aijkle
i ⊗ ej ⊗ ek ⊗ el,

where,

Aijkl = A : ei ⊗ ej ⊗ ek ⊗ el = ei ⊗ ej : (A : (ek ⊗ el)).

With respect to the inner product (2.1), the set {ei ⊗ ej ⊗ ek ⊗ el}1≤i,j,k,l≤n forms an or-

thonormal basis of L(V).

The product AB of two fourth-order tensors is defined by composition

(AB) : U = A : (B : U), for all U ∈ Lin(V).

In components, we have

(AB)ijkl = AijpqBpqkl.

To see this, we observe that

(AB)ijkl = ei ⊗ ej : (AB : (ek ⊗ el))

= ei ⊗ ej : (A : (B : (ek ⊗ el)))

= (ei ⊗ ej)rs(A : (B : (ek ⊗ el)))rs

= eire
j
sArspq(B : (ek ⊗ el))pq

= Aijpq(B : (ek ⊗ el))pq

= AijpqBpqrs(e
k ⊗ el)rs

= AijpqBpqrse
k
re
l
s

= AijpqBpqkl.

The transpose of A ∈ L(V) is a fourth-order tensor denoted by AT and is defined by
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〈U,AT : V〉 = 〈V,A : U〉, for all U,V ∈ Lin(V).

We observe that

〈U,AT : V〉 = U : (AT : V)

= Uij(AT : V)ij

= Uij(AT )ijklVkl.

On the other hand,

〈V,A : U〉 = V : (A : U)

= Vkl(A : U)kl

= VklAklijUij.

Therefore, the transpose of a fourth-order tensor, is given in component form by

(AT )ijkl = (A)klij.

Equivalently, the transpose of a fourth-order tensor

A = Aijkle
i ⊗ ej ⊗ ek ⊗ el,

is given by

AT = Aklije
i ⊗ ej ⊗ ek ⊗ el.

The trace of a fourth-order tensor A is defined by

trA := Aijij.
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We observe that the inner product can also be represented by

〈A,B〉 = tr(ATB).

2.2 Fourth-order tensors as second-order tensors

Let ψ be a correspondence map that assigns to each pair of indices (i, j), 1 ≤ i, j ≤ n, a

single index ψ(i, j) that ranges from 1 to n2, as in Section 1.4. Then, given a fourth-order

tensor A ∈ L(V), define a second-order tensor Ã ∈ Lin(Ṽ) by

Ãψ(i,j)ψ(k,l) := (A)ijkl = Aijkl. (2.2)

We say that the fourth-order tensor A corresponds to the second-order tensor Ã under the

map ψ.

Lemma 2.2.1. Let A and B be fourth-order tensors in L(V) and M a second-order tensor

in Lin(Ṽ). Let Ã and B̃ be the corresponding second-order tensors to A and B, respectively,

as defined in (2.2) and let m̃ be the corresponding vector to M as defined in (1.3). Then,

under the map ψ:

1. The fourth-order tensor αA + β B corresponds to the second-order tensor αÃ + βB̃,

for any α, β ∈ R.

2. The second-order tensor A : M corresponds to the vector Ãm̃.

3. The fourth-order tensor AB corresponds to the second-order tensor ÃB̃.

4. 〈A,B〉 = 〈Ã, B̃〉.

5. ‖A‖ = ‖Ã‖.

6. trA = trÃ.
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Proof. 1. Follows from linearity.

2. In component form, we have

(A : M)ij = AijklMkl

= Ãψ(i,j)ψ(k,l)m̃ψ(k,l)

= (Ãm̃)ψ(i,j).

3. In component form, we have

(AB)ijkl = AijpqBpqkl

= Ãψ(i,j)ψ(p,q)B̃ψ(p,q)ψ(k,l)

= (ÃB̃)ψ(i,j)ψ(k,l).

4. We observe that

〈A,B〉 = AijklBijkl

= Ãψ(i,j)ψ(k,l)B̃ψ(i,j)ψ(k,l)

= Ã : B̃ = 〈Ã, B̃〉.

5. Follows directly from 4.

6. Using the definition of the trace of a fourth-order tensor, we obtain

trA = Aijij

= Ãψ(i,j)ψ(i,j)

= trÃ.
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It follows from Lemma 2.2.1 that the bijection map A↔ Ã defined by (2.2) is an isometry.

Lemma 2.2.2. Given a correspondence map ψ and a fourth-order tensor A ∈ L(V) with

the corresponding second-order tensor Ã ∈ Lin(Ṽ ). Then under the map ψ, the fourth-

order tensor AT corresponds to the second-order tensor ÃT . Consequently, if A = AT , then

Ã = ÃT .

Proof. We observe that

(AT )ijkl = Aklij

= Ãψ(k,l)ψ(i,j)

= ÃT
ψ(i,j)ψ(k,l).

Lemma 2.2.3. Let λ ∈ C, A ∈ L(V), and U ∈ Lin(V), with the corresponding Ã ∈ Lin(Ṽ)

and ũ ∈ Ṽ, respectively. Then, A : U = λU if and only if Ãũ = λũ.

Proof. Observe that

(λU)ij = λUij

= λ(A : U)ij

= λAijklUkl

= λÃψ(i,j)ψ(k,l)ũψ(k,l)

= λ(Ãũ)ψ(i,j).

For A : U = λU, the scalar λ is called the eigenvalue of A associated with the eigentensor

U.
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Chapter 3

Symmetries of Fourth-Order Tensors

Symmetry of tensors can be described by the invariance of the tensor components (or compo-

nents of its multi-dimensional array representation) under a change of order of indices. Since

second-order tensors are represented by two-dimensional arrays, there is only one type of such

symmetry, which is given by Aij = Aji. However, for fourth-order tensors, there are different

types of symmetries in which the components are invariant under certain permutations of

four indices.

For fourth-order tensors, there are several notions of symmetry such as major, minor and

total symmetries that represent constant under exchanging pairs of indices. On the other

hand, For second-order tensors, there is one notion of symmetry that represents constant

under changing the order of the two indices. These notions of symmetries are generally used

in elasticity theory.

3.1 Major Symmetry

In elasticity theory, the symmetry of a fourth-order tensor is called major symmetry, when

this symmetry represents invariance of Aijkl under changing the pair of indices (i, j) and (k, l).

Equivalently, for A ∈ Lin(V), we say that A is symmetric (or possesses major symmetry) if

18



A = AT . In components,

Aijkl = Aklij, 1 ≤ i, j, k, l ≤ n.

A fourth-order tensor A is skew-symmetric if A = −AT . In components

Aijkl = −Aklij, 1 ≤ i, j, k, l ≤ n.

Any fourth-order tensor can be decomposed uniquely into a symmetric part and a skew-

symmetric part given by

A =
1

2
(A + AT ) +

1

2
(A− AT ).

The set of all major-symmetric fourth-order tensors

S(V) := {A ∈ L(V) | A = AT},

is a subspace of L(V) of dimension n2(n2 + 1)/2.

Using the results of Chapter 2 on the correspondence between fourth-order tensors and

second-order tensors, we present and prove a spectral theorem for major-symmetric fourth-

order tensors.

Theorem 3.1.1. Let A = AT . Then, there exist {λm}m=1,··· ,n2, and {Um}m=1,··· ,n2 an

orthonormal basis for Lin(V) such that

A : Um = λm Um.

Moreover,

A =
n2∑
m=1

λm Um ⊗Um.

Proof. Using Lemma (2.2.2), since A = AT then Ã = ÃT . By the spectral theorem, Theorem
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1.1, there exist {λm}m=1,··· ,n2 , and {ũm}m=1,··· ,n2 an orthonormal basis for Ṽ = Rn2
such that

Ãũm = λmũm,

and

Ã =
n2∑
m=1

λmũm ⊗ ũm.

Define {Um}m=1,··· ,n2 in Lin(V) by

Um
ij = ũmψ(i,j) , i, j = 1, · · · , n.

Then, by (1.4), {Um}m=1,··· ,n2 forms an orthonormal basis for Lin(V). In addition, by Lemma

(2.2.3)

A : Um = λmUm, m = 1, · · · , n2.

Moreover,

Ã =
n2∑
m=1

λmũm ⊗ ũm,

which in component form is given by

Aijkl = Ãψ(i,j)ψ(k,l)

=
n2∑
m=1

λm(ũm ⊗ ũm)ψ(i,j)ψ(k,l)

=
n2∑
m=1

λmũmψ(i,j)ũ
m
ψ(k,l)

=
n2∑
m=1

λmUm
ij U

m
kl

=
n2∑
m=1

λm(Um ⊗Um)ijkl.
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The spectral theorem for fourth-order tensors can also be written in terms of fourth-order

tensor multiplication as follows.

Theorem 3.1.2. Given the spectral decomposition

A =
n2∑
m=1

λmUm ⊗Um.

Define D ∈ L(V), by

Dijkl =

 λψ(i,j), if i = k and j = l,

0, otherwise.

and define Q ∈ L(V), by

Qijkl = U
ψ(k,l)
ij .

Then,

A = QDQT .

Proof.

(QDQT )ijkl = Qijpq(DQT )pqkl

= QijpqDpqrsQklrs

= QijpqDpqpqQklpq

= U
ψ(p,q)
ij λψ(p,q)U

ψ(p,q)
kl

=
n2∑
m=1

λm(Um ⊗Um)ijkl

= (A)ijkl.
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Such a representation is called the spectral decomposition of A. Since trA = trÃ, then

tr(A) =
n2∑
m=1

λm.

The spectral theorem for symmetric fourth-order tensors can be used to define a notion of

determinant for such tensors as follows

det(A) :=
n2∏
m=1

λm. (3.1)

Using Lemma 2.2.1 and (3.1), it follows that this notion of determinant satisfies

det(AB) = det(A) det(B).

3.2 Minor Symmetry

Minor symmetry is the second type of symmetry of fourth-order tensors and is defined by

〈U,AV〉 = 〈UT ,AV〉 = 〈U,AVT 〉, for all U,V ∈ Lin(V).

In component form, we have

Aijkl = Ajikl (3.2)

= Aijlk, (3.3)

for 1 ≤ i, j, k, l ≤ n. To see this, we observe that

〈U,A : V〉 = U : (A : V)

= Uij(A : V)ij

= UijAijklVkl.
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and on the other hand,

〈UT ,A : V〉 = UT : (A : V)

= (UT )ji(A : V)ji

= UijAjiklVkl.

Thus,

Uij(Aijkl − Ajikl)Vkl = 0,

for all U,V ∈ Lin(V), from which (3.2) follows. Moreover,

〈U,A : VT 〉 = U : (A : VT )

= Uij : (A : VT )ij

= UijAijlkV
T
lk

= UijAijlkVkl.

Thus,

Uij(Aijkl − Aijlk)Vkl = 0,

for all U,V ∈ Lin(V), from which (3.3) follows.

The first minor symmetry is the invariance under exchange of the first pair of indices, and

the second minor symmetry is the invariance under exchange of the second pair of indices.
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