
UTILIZATION OF DATABASES AND EXPERT SYSTEMS

IN THE DESIGN PROCESS/ v >•

by

G. BENTON GIBBS

B.S., Kansas State University, 1985

A MASTERS REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTERS OF SCIENCE

College of Agriculture

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

Approved by: iKht/i /YvAxj CJsC^-lfkyxA
Stanley J. Clam, Major Professor



ACKNOWLEDGEMENTS
A112D7 3D311?

vjn
"oi

I would like to take this opportunity to thank the members of my graduate

committee, Dr. Gene Grosh, Dr. Dennis Kuhlman, Dr. Mark Schrock, and especi-

ally my major professor, Dr. Stanley Clark, for the encouragement, support, and

the freedom that they gave me in the pursuit of my masters degree.

Most of all, for their support, both financially and morally, I wish to thank

my family and my wife, Rebecca for encouraging me to get the "thing" done.



TABLE OF CONTENTS
Page

INTRODUCTION 1

LITERATURE REVIEW 3

Background 3

Database Systems 5

Expert Systems/Knowledge Based Systems 6

Present Applications Using Knowledge Based Management Systems 10

DACON Expert System 12

AIR-CYL Expert System 13

HI-RISE Expert System 14

CARTER Expert System 15

INVESTIGATION 19

Objectives 19

Background 19

Overview of Engineering Design 21

Overview of Knowledge Based Systems 24

Problem Solving and Search Strategies in AI 27

Forward and Backward Reasoning 29

Means-ends Analysis 31

AO* Graph Search (Problem Reduction) 31

Hill Climbing 34

Breadth-First, Depth-First, and Best-First Search 36

Languages And Tools For Building Knowledge Based 40

General Purpose Programming Languages 40

General Purpose Representation Languages 40

Domain Independent Knowledge Based System Formulation

Language 4

1

AIR-CYL: Air Cylinder Design System 42

Design Layout 43

Routine Design Example of AIR-CYL 46

System Failure Handling 49

Conclusions 50

DACON: Design for Assembly Consultation System 51

POLYCOAT - Design for Coating 53

The CARTER System 56

Knowledge Base Structure 59

Inference Engine 61

CONCLUSIONS 62

REFERENCES 64

APPENDIX 66



LIST OF FIGURES

Figure 1-1. Components of Knowledge Based Systems

Figure 1-2. DENDRAL Graph

Figure 1-3. Breadth-First Search

Figure 1-4. Depth-First Search

Figure 1-5. Design Activity Phases

Figure 1-6. Sample Air Cylinder

Figure 1-7. Conceptual Structure

Figure 1-8. Sample DACON Rule

Figure 1-9 Sample POLYCOAT Dialogue

Figure 1-10. System Representation

Figure 1-11. Plane Slicing

Figure 1-12. Plane Graph

Figure 1-13. Solution Graph

Figure 1-14. Conceptual Designed Crankcase

Page
25

33

37

39

44

46

47

51

54

55

57

57

58

58



INTRODUCTION

As the computer industry moves towards the next century, the advance-

ments continue along unabated. Not many years ago, all the designer had in his

toolkit was pencils, paper, ruler and a slide rule. Now, regardless of the dis-

cipline, the computer has become the principal tool for completing the design

task.

The computer has relieved the designer of many of the mundane, tedious,

error-prone jobs, therefore reducing the amount of time required to complete the

design process. Engineers can now focus their concentration on the more

creative aspects of design. The use of the computer also allows the engineer to

evaluate further concepts quickly and efficiently.

The building and testing of prototypes is considered by many to be the

most time consuming aspect of engineering. This function is extremely suscep-

tible to improvements in productivity through the use of computer automation.

In mechanical design, prototypes can be tested by generating a 3-Dimensional

model of the design. Some of the modeling techniques available to the engineer

include solids modeling and finite element analysis. In solids modeling, the

engineer receives a more realistic view of the design. In finite element analysis,

the model is created, whether it is a crankshaft, piston, or the entire engine,

and the simula-tion is begun to evaluate its performance. An application, for

example, lets the simulation calculate the breaking points and stress areas.

Research and testing has been carried out in the area of Artificial Intel-

ligence with respect to using Knowledge Based Systems as a "intelligent front-

end" to large design databases. Some of this work dates back to the late 1960's

and early 1970's, but as it turned out, practical advances were severely limited
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by a lack of hardware powerful enough to test the theories with large-scale

databases. Due to ever increasing advancements in computer technology, it is

now possible to access and implement large databases of design criterion effi-

ciently. With Knowledge Based Systems we can interface with the databases to

provide knowledge-assisted design schemes. The implementation of Knowledge

Based Systems and Database Management Systems is referred to as Knowledge

Based Management Systems.

The development and testing of Knowledge Based Management Systems has

been done more extensively in Australia and Great Britain. In Holland, Knowl-

edge Base Systems have been incorporated into a design database that aids the

engineer in the preliminary design of high rise buildings. In the United States,

Digital Equipment Corporation has begun to use Knowledge Based Management

Systems in the configuration of it's VAX line of computers. Promising results

have been obtained from the use of Knowledge Based Systems and Database

Management Systems, but development of these products are still in the infancy

stage.

The purpose of this study was to establish and identify developers of

Knowledge Based Management Systems. This work is to determine how Knowl-

edge Based Systems are utilized with design databases in obtaining Knowledge

Based Management Systems. In particular, the study is to address three major

inquiries:

1. Type of inference engine used in the Knowledge Based Management
System.

2. Type of search method used in the Knowledge Based Management System.

3. The knowledge representation method used in the Knowledge Based
Management System.



LITERATURE REVIEW

Background

The evolution of Knowledge Based Systems has brought about a means of

automating the answer to problems that have resisted being formalized as algo-

rithms. Maher (1985) stated that Knowledge Based Systems have developed into

practical problem-solving tools that can reach a level of performance comparable

to that of a human expert in some specific way.

Recently there has been an increasing amount of research on design or

design related problem-solving systems. This work includes Birmingham and

Siewiorek (1984), Grinberg (1980), Dixon et al (1984), Bowen (1985), Kowalski and

Thomas (1983), Latombe (1979), McDermott (1982), Mitchell (1983) and Sussman

(1977). Much of the work in this area has been concentrated in electronics, but

efforts are now turning to research on design in other areas.

The design activity in general has many components; such as problem

definition, planning, the use of prestored plans, and the refinement of descrip-

tions and the use of large amounts of knowledge. The work that is the focus of

this study is concerned with the last activity, which requires that at every stage

of the design the designer knows both what sequences of design steps are

appropriate and also what knowledge is required.

The complete design process using a knowledge based system proceeds by

first obtaining and checking the requirements. A rough design is rendered to

establish whether a full design is worth pursuing. If the rough design proves

successful, then the full design is attempted by requesting a design from the

topmost specialist. A specialist is considered to be a concept about some

subproblem of the design. Each specialist may select from its own set of plans.

3
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Selection depends on the current state of the design. Each plan is a sequence

of design actions. An action may be a request to attempt portions of the design

using another specialist lower in the hierarchy.

This theory has been used to construct an expert problem-solver for the

design of a type of air cylinder. The system, called AIR-CYL, has been reported

in Brown (1985) and Brown and Chandrasekaran (1985). In this system, it only

takes a few minutes to design an air cylinder that involves about 120 design

decisions.

Matthews and Swift (1983) reported on the work preformed at Hull Univer-

sity in England, in 1981. Work had begun there on a computer-based consulta-

tion system in design for economic manufacture. The researchers realized the

problem that is facing the designer, if the engineer is to design for economic

manufacture and optimum functionality, the engineer needs to assimilate informa-

tion of considerable breadth and complexity and have the necessary experience

and judgmental skills to make the correct design decisions from a range of

possibilities. A further difficulty is that, in general, the assessments are so

complex and diffuse that they defy the mathematical treatments that have been

developed in the domains of engineering science.

The idea considered by the Hull University team is that the task of "design

for economic manufacture" (DEM) might be amenable to solution by using

computers operating on artificial intelligence principles. The questions that

researchers raised were: can knowledge based expert systems be used to solve

open-ended design problems and can such systems be successfully applied in

industry? It was found that these systems offer the potential to explain the line

of reasoning behind their deductions. Knowledge based systems can also offer

useful advice in open-ended and inexact domains. These systems can acquire
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knowledge, and be made readily usable by a design or production engineer who is

not familiar with computing.

Rehak and Howard (1985) reported the importance of knowledge based

systems on future integrated computer-aided design (CAD) systems. Flexibility

and adaptability are of prime importance in incorporating such components into a

CAD system. They placed emphasis on a flexible interface in which multiple

knowledge based systems and multiple design databases communicate as indepen-

dent, self-descriptive components within an integrated CAD system composed of

heterogeneous components operating in a distributed computing environment.

Database Systems

A Database Management System (DBMS) is a software tool for developing

applications that require access to shared information. A Database Management

System is needed and used when multiple users or application programs require

access to the same collection of data or knowledge. A separate software facil-

ity is required between the users and the database to protect the shared infor-

mation. This type of facility provides security control, consistency control,

recovery control, and concurrency control.

A Database Management System provides these functions via a high-level

transaction specification language tailored to fit that particular system. Users

generate transactions in this language and the Database Management System

assumes the responsibility for managing physical data access, interleaving of

overlapped operations, recovery from system failures, and managing access rights.

Smith (1984) stated that to insulate users from the details of the physical data

representations, the Database Management System should provide a special

knowledge representation language called a data model.
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As more and more data is stored in machine-readable formats, engineers

will increasingly access computer databases for the technical information they

currently find in books and reports. This is encouraged by the availability of

powerful and inexpensive computers (e.g., personal computers); individuals, trade

associations, professional societies, government agencies, and private concerns

are beginning to offer various machine-readable databases to the engineering

community. The databases that are being developed generally fall into two

categories: databases that consist primarily of text (bibliographic), and databases

that consist of numbers (numeric).

The American Society for Metals began computerizing bibliographic informa-

tion on metals and other related engineering materials in 1966 when Metadex,

the machine-readable version of the published Metals Abstract, was developed.

This database was expanded in 1974 when material from Alloy Index was added.

The Metadex database is a computerized bibliographic index of the worlds

literature on metals and related metallurgical processes. The Metadex database

consists of more than 600,000 abstracts; approximately 3,500 new abstracts are

added monthly. Table A.l in the appendices contains a list of currently avail-

able databases used in engineering applications.

Expert Systems/Knowledge Based Systems

Knowledge based systems cover the area of human ability concerned with

the problem solving and application of expertise. They are the computer systems

that blend knowledge and inference or reasoning procedures to solve problems

that are normally handled by experts. Expert knowledge is a collection of

policies, procedures, and methods used by human experts in solving a certain

domain of problems. A knowledge based system (KBS) is an application system
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built around a direct representation of such expert knowledge.

There are generally three main components involved with knowledge based

systems: the user interface, the inference mechanism or engine, and the knowl-

edge base. The user interface allows the user to interact with the system to

present the problem and see the conclusions. The inference engine, or rea-

soning mechanism, is similar to the control structure in a conventional program;

it operates deductively and selects the relevant knowledge to reach a conclu-

sion. This allows the system to answer users' queries even when the answer is

not explicitly stored in the knowledge base. The knowledge base is perhaps the

most important component as it contains the experts' knowledge and expertise.

Knowledge based systems represent expert knowledge generally in diminutive

pieces; as logic rules, production rules, frames, and scripts. Pure logic rules

have very simple semantics and are effective for representing knowledge that

does not involve side-effects (influence from outside data). The following

example shows an example of a pure logic rule system:

Given the statement: FeS is a sulfide, it is a dark-gray

compound and it is brittle.

Produces in logic rules:

sulfide(FeS) && compound(FeS) && darkgray(FeS) && brittle(FeS)

where the characters && in logic represents a conjunctive and.

Production rules are similar to logic rules in form and are necessary to

handle side effects. For example, the following example depicts the use of

production rules:

Given the statement: // X works in department Y, and Z is the

manager of Y. then Z is the boss of X.



Produces a production rule:

work in(X,Y) && manager(z.y) => boss_of(z,x)

This form separates itself from a pure logic rule by the fact that production

rules need additional information from the outside world. Frames are well suited

to clustering rules based on their applicability at different stages of the problem

solving process. Researchers in the field of Artificial Intelligence have different

ideas concerning what a frame actually is, but basically, a frame is a structure

of data that includes declarative or procedural information in predefined internal

relationship. Frames often are used to describe a collection of attributes that a

given object, such as a hydraulic cylinder, normally possesses. In a frame-like

language such as Knowledge Representation Language (KRL) an equipment-frame

might look like this:

(cylinder (a-kind-of (value hydraulic))

(length (value 24))

(cyl bore (value 3.00))

(rod_dia (value 1.25))

(sys_psi (default 3000))

(cycle time (value 4.59))

(hyd_hp (value 13.99)))

Scripts like frames provide this same type of clustering of data and knowledge.

Scripts are used to describe common sequences of events, such as what happens

when one goes into a restaurant. The following script depicts this event:

EAT_AT_RESTAURANT Script

Props: (Restaurant, Money. Food. Menu, Tables, Chairs)

Roles: (Hungry-Persons, Wait-Persons. Chef-Person)

Point-of-View: (Hungry-Persons)

Time-of-Occurrence: (Times-of-Operation of Restaurant)

Place-of-Occurrence: (Location of Restaurant)



Event-Sequence:

first: Enter-Restaurant Script

then: if (Wait-To-Be-Seated-Sign or Reservations)

then Cet-Maitre-d's-Attention Script

then: Please-Be-Seated Script

then: Order-Food-Script

then: Eat-Food-Script unless (Long-Wait)

then Exit-Restaurant-Angry Script

then: if (Food-Quality was better than Palatable)

then Compliments-To-The-Chef Script

then: Pay-For-It-Script

finally: Leave-Restaurant Script

This is an example extracted from Barr and Feigenbaum (1981) and is a rough

rendition in English of the type of Restaurant script described by Schank and

Abelson (1977). The script specifies a normal or default sequence of events as

well as exceptions and possible error situations. The script also requires the use

of a few static descriptions such as Props and Roles that refer to other frames.

In the field of Artificial Intelligence, frames are the most widely used

primitives for Knowledge Representation (Minsky 1975). Although frames were

widely conceived independently of the object-oriented paradigm they were in fact

consistent with it, and provide an excellent demonstration of its power and

flexibility. Frames are capable of representing both specific and general

knowledge, and of accommodating both descriptive and prescriptive computations.

In a frame system, the properties of both specific objects and generic objects

(classes) are described by their slots, which may contain references to other

frames (defining their relationships), actual values or procedural attachments to

compute them.

One major difference between knowledge based systems and conventional

programs is the separation of the expert knowledge (the rules) from the general

reasoning mechanism. Knowledge based systems cover the area of human ability
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concerned with problem solving and applying expertise. Knowledge based systems

are computer systems that use knowledge and inference which determines how

the system interacts with the users.

Knowledge Based Management Systems

Knowledge Based Management Systems (KBMS) can be defined as a tool for

developing custom applications requiring both a Database Management System and

one or more Expert Systems/Knowledge Based Systems. A Knowledge Based

Management System can be defined as "a system for developing applications

requiring knowledge-assisted processing of information in a specific domain."

Brodie (1986) defined knowledge base management systems as "A system providing

highly efficient management of large, shared knowledge bases for knowledge-

directed systems".

The necessity of integrating Artificial Intelligence and database techno-

logies has been widely recognized, particularly in projects that build tools for

developing knowledge-directed applications. Table A.2 in the appendices contains

a list of such tools and projects. Although all projects, claim some form of

database, most of them use simple file system concepts.

There are three different components that exist between the user and the

information that is stored in the database: Knowledge Based Systems for the

knowledge-assisted processing, unique processors for the handling of formatted

data, and a Database Management System. There needs to be the distinction

made between database management systems and knowledge based management

systems. A database consists of mathematical structures together with a

computational theory that states how the structures can be implemented effi-

ciently. A knowledge base contains symbolic structures with a notion of
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interpretation of a specific subject matter. The different emphasis on computa-

tion versus interpretation has always distinguished database and AI research.

Approaches to integrating AI and Database technology must accommodate

distinctions between them. Many distinctions have been observed: semantic

versus computational theories of information, intentional versus extensional state-

ments, complex versus simple statements, general versus specific statements,

complex versus simple update semantics, propositional versus quantified logic, and

proof theory versus model theory. The distinctions are useful if they suggest

how to integrate AI and Database technologies or how to design knowledge base

management systems. A knowledge based management system is intended to be a

high-level tool that provides knowledge management for knowledge-directed

applications, just as a database management system provides data management for

data intensive applications.

The key research issues concern how to integrate the selected AI and data-

base management systems functions. The most challenging issues fall according

to Brodie (1986) into two levels: the knowledge level and the computational level.

The knowledge level requires an integration of AI knowledge representation

concepts in order to meet requirements for expressive power, reasoning, and

truth management, with concepts from database data models if it is to meet

requirements for data/knowledge management. This research should take

advantage of the common interest in what the database area calls semantic

integrity constraints.

The central issues of research in the conceptual level are concerned with

performance. Existing processing techniques must be applied and new techniques

must be developed to efficiently support the function of knowledge based

management systems. Currently optimal database search techniques are being
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extended to include recursion. This leads to the fact that the database manage-

ment system must perform all the theoretic deduction in the knowledge based

management system. Brodie (1986) further stated that it is an open issue

whether proof theoretic deduction can be handled by the knowledge-directed

systems being supported, by the knowledge based management system, or through

some cooperation between the two. Clearly, database research can bring a lot to

research at the computational level.

Present Applications using Knowledge Based Management Systems

DACON Expert System

The design for assembly consultation system (DACON 1981) is aimed at

tackling the problems of assembly rationalization, component optimization for

handling and assembly processes, selection of a target assembly system and the

optimum level of automation. The costs that are likely to accrue from a variety

of systems are reported to illustrate DACON's decisions. DACON uses a depth-

first search method of determining it's decision process. This means that as the

dialogue progresses, if evidence obtained rules out one hypothesis the system

continues by trying to backtrack to prove another goal. When DACON has

drawn a conclusion the system will display a rule chain it has used to reach the

deduction.

Having used it's knowledge base to diagnose assembly problems and make

decisions on design modifications, the system can be used to compute assembly

costs. As mathematical models can easily be applied to cost estimating, this

element of DACON is a conventional program. The knowledge based elements

are used where the decision making defies scientific treatment. Having evaluated
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costs, DACON displays handling and assembly process costs for all the com-

ponents in the product. The DACON knowledge base has been built up from

published material and case studies and, most importantly, by discussions with

domain experts; it currently embodies 120 rules. However it is only by applying

the system on industrial problems that its value can be fully judged. Work is

also being carried out to determine how well DACON performs, compared to a

human expert, when used by a designer of lesser expertise. Applications of

DACON to assembly redesign studies, (Ellison and Boothroyd 1980) have shown

that it can produce at least as good a result as the teams involved in these

studies. The following is a sample rule used in the DACON system.

IF: 1. Part will tangle with other parts when in bulk supply

2. A force and a manipulation is required to separate the parts.

THEN: 1. There is strong evidence (.96) that the part requires manual

feeding.

2. Consider redesign options.

AIR-CYL Expert System

Brown and Chandrasekaran (1985) reported on a knowledge based system

that they developed for a company that manufactures air cylinders. The air

cylinders had to be redesigned for each customer. This was done to account for

the particular space it had to fit in or the intended operating temperatures and

pressures. The AIR-CYL design problem-solving system was developed with the

task-level Design Specialists and Plans Language (DSPL), that was developed by

Brown and Chandrasekaran using the Rutgers Elisp language on a DECsystem-20;
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which currently involves approximately 120 decision rules. DSPL is a language

specifically tailored for writing design problem-solvers of this type.

AIR-CYL is unique in the fact that it incorporates the use of failure

handling of the system (Brown 1985). Each design phase or specialist in the

system should be able to detect their own failure, and be able to determine what

went wrong and then attempt to correct the problem. As mentioned previously,

a specialist is a concept or module that is used in the system. In the AIR-CYL

system, the top-most specialist is responsible for the whole design. Specialists

lower down in the hierarchy make the more detailed decisions. Every specialist

has some local design knowledge, some of which is expressed as constraints.

The constraints capture the major things that must be true of a specialist's

design before it can be considered successfully completed. Other constraints,

embedded in the specialist's plans, check the correctness of intermediate design

decisions and check the compatibility of sub-problem solutions.

HI-RISE Expert System

HI-RISE is an knowledge based system that configures and evaluates several

alternative structural systems for a given three dimensional grid. The expertise

in HI-RISE is derived primarily from a recent book on preliminary structural

design containing approximate analysis techniques and applicable design heuristics

(Maher 1985).

HI-RISE addresses the preliminary structural design phase which involves

the selection of a feasible structural configuration satisfying a few key con-

straints. HI-RISE divides the preliminary design process into two major com-

ponents; each component addresses the design of a functional system. The

functional systems are designed in a fixed order; first the lateral load resisting



15

system is designed, followed by the design of the gravity load resisting system.

After the previous functional system design has successfully completed, only then

will the design of a new functional system be started. In the above mentioned

component order, results from the design of the gravity system, namely, the

depth, type, and weight of the floor system, are needed for the design of the

lateral system.

Each of the two major components are broken down into a set of similar

sub-components. The sub-components have the same goals for each functional

system; however, the details of reaching these goals differ. For example, the

first sub-component uses a depth-first search through the knowledge base to

select a set of alternatives for the functional system under consideration. The

purpose of the analysis sub-component or specialist is to evaluate the feasibility

of an alternative and to define its component groups.

On completion, HI-RISE presents the user with all the structurally feasible

systems that were developed and indicates which system was determined to be

the "best", selected as the system with the minimum value assigned by the

system evaluation function. The user has the option of accepting the recom-

mended design or selecting one of the other structurally feasible systems that

HI-RISE produced.

CARTER Expert System

Reynier and Fouet (1984) reported that CARTER is an expert system that

designs crankcases without any intervention from the user (other than setting

the problem by describing the mechanism to be encased). It uses several

algorithmic specialists or modules such as hamiltonian path in a graph, plate

theory, and finite elements.
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As inputs to the system, the user describes the shafts, giving the length

and diameters of each cylindrical or conical subsection. The user then describes

the gears and bearings supported by these shafts, the torques and power. Many

additional indications can be supplied, such as clamping points, lubrication,

boundary values of strains, precisions, security ratios, manufacturing method and

heat sources.

To model the huge amounts of knowledge required, Reynier and Fouet

(1984) felt that conventional programming languages - however sophisticated-

were completely inaccurate. The knowledge needed was sometimes quite fuzzy,

and had to be constantly updated. Production rules were formed and a pattern-

directed inference system was built (Watterman and Hayes-Roth 1978). This type

of system that uses production rules, is a system that needs to be told what to

do, and not how to do it. For example, production rules follow the following

syntax:

// P t
and P2 and ...and Pn Then P\ ; P\ ; ...; P'm

where the P
}
are predicates and the P'

t
are either predicates or calls to routines

provided by the user. An example of a rule used in the Carter System is as

follows:

IF SEARCH IS INSIDE THE ZONE, AND THERE ARE TWO BEARINGS IN

THE ZONE. AND ONE MAY WORK ON THIS SIDE. AND IF THERE IS

ONLY ONE SHAFT IN THE ZONE. AND IF OVERCROWDING ALLOW

AXIAL CONNECTING OF THE HOUSINGS OF THE ZONE. AND IF

MOUNTING OF THE SHAFT IS O-LIKE'. THEN BUILD A SHARED
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HOUSING IN THE ZONE.

In the previous example, BUILD... is not a call to a routine, but a predicate

(BUILD-SHARED-HOUSING) of the variable ZONE that comes true, so that rules

testing it will now fire. The fewer the calls to routines there are, the better,

since the inference engine cannot organize its work efficiently if there are too

many specialists or modules. There are currently approximately 300 such rules in

the Carter System, dealing mainly with:

1) technological options

2) shapes and thicknesses

3) tools and costs

4) Setting the hypotheses for mechanical computings

5) piloting these computings

The system that runs this knowledge base is called GOSSEYN, was devel-

oped in the same manner as EMYCIN (Van Melle 1980) with some enhancements

which have been discussed at length by Fouet (1982). The system has two

primary components; a rule compiler for reading rules, checking for syntactical

errors, build up the network of pointers from variables to the predicates

containing them, and then pointers from the predicates to the rules. The second

component is the inference engine; this is the pattern matcher that explores the

short term memory to find facts that will satisfy all the conditions of the rule.

It was found that development of design tools incorporating knowledge

based systems and databases is still in the infancy stage. A majority of the

work in this area has dealt with electronics, mainly in the Very Large Scale

Integration (VLSI) area. Subrahmanyam (1986) reported on SYNAPSE, which is

an expert system developed at Bell Laboratories for VLSI design. The distin-

guishing features of the SYNAPSE architecture include a cohesive formal
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algebraic framework that supports input specifications at a very high abstraction

level, the use of conventional knowledge based system tools and special-purpose

theorem provers, and accommodation of machine learning techniques, including

rote learning. SYNAPSE is a means to explore language and expert systems

issues in VLSI design, and is part of a long-term research project. Future work

will be directed at enriching the knowledge base of the system and augmenting

its learning capabilities.

Although work on knowledge based systems incorporating databases towards

design processes has been limited in the field of electronics, work in the

mechanical design area is beginning to take form. This can be credited to the

fact that more and more engineers are making use of present computer technology.



INVESTIGATION

Objectives

The objectives of this investigation were:

1. To define and critique knowledge based systems

2. To establish and identify developers and users of three Knowledge Based

Management Systems.

During the critique of the three knowledge based systems, the following

topic areas will be covered:

* Heuristic Search Method

* Computer language(s) used for development of the system

* Number of rules presently in system

* How external databases are interfaced to system

* What stage of development is system currently in

Background

Today many of the human mental activities such as solving mathematical

problems, writing computer programs, design, understanding natural language are

said to require some sort of intelligence. Over the past few decades, several

researchers have developed computer systems that can perform tasks such as

these. These systems have the capability of diagnosing diseases, discover mineral

deposits, understand limited amounts of human speech and natural language text,

and solve complex equations in symbolic form. We might say that such systems

possess some degree of artificial intelligence.

19
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Most of the work on building these kinds of systems has taken place in the

field called Artificial Intelligence (AI), a sub-branch of the Computer Science

field. This work has had largely an empirical and engineering orientation.

Drawing from a loosely structured, but growing body of computational techniques.

AI systems are developed, undergo experimentation, and are improved. This

process has produced and refined several general AI principles of wide ap-

plicability.

The emergence of Knowledge Based Expert Systems provides a means for

the engineer to use the computer as an aid in the solution of ill-structured

problems. Knowledge based expert systems are interactive computer programs that

incorporate the knowledge and judgement of experts in appropriate domains. The

development of a knowledge based system presently involves the cooperative

effort between one or more experts who possess the domain-dependent knowledge

and a knowledge engineer. A knowledge engineer elicits the knowledge and uses

either an expert system building tool or a general purpose language to represent

and manipulate it. The representation of knowledge in a knowledge based system

is dependent on the selection of the tool or language to be used. The knowl-

edge engineer must make a choice among several available tools before embarking

into a major developmental task; the ease of building a knowledge based system

depends in part on the choice of the tool. This report will cover the structures

and techniques used in knowledge based system design and will discuss their

applicability to engineering design. The nature of engineering design will be

briefly presented in the next section, which will be followed by an introduction

to knowledge based system structures and techniques. In the latter sections

three domain independent tools used in design will be described.
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Overview of Engineering Design

Preiss (1980) defined design as the process in which an idea is developed,

refined and elaborated into the detailed instructions for manufacturing. The

design process may be divided into phases, where each phase may be handled by

different individuals from different disciplines. The design process starts by a

recognition of a need. This may come from different sources such as customer

reports, competition, patents, or government agencies. After a need has been

recognized, specifications and requirements of the design are developed. These

specifications should be as specific as possible and care must be taken to include

safety, health, and legal requirements. In addition they should meet with

government, commercial and industrial standards.

After the specifications and requirements are determined, then a feasibility

study is developed to verify the possible success or failure of a proposal both

from a technical and economic standpoint. Considerations include, are there any

natural laws being violated, are specifications realistic in terms of current

technology, is there a dependency on scarce materials and will the end product

cost be too high. It is this phase of design that can be well suited for applica-

tions of knowledge based systems. For instance, some of the tools required for

a feasibility study include a knowledge of the engineering sciences, have a good

grasp of material usage, production methods and sales department requirements.

It is also in this phase that modifications to the specifications be performed to

improve the success of the design. Incorporating this knowledge into a knowledge

based system can serve as a tool to aid the engineer in this phase by relieving

the engineer of the mundane, tedious, and error-prone tasks associated with

developing mathematical models, analysis, and therefore reducing the time

required to complete the design process. This allows the engineer to evaluate
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further concepts quickly and efficiently.

By using the computer to perform those tasks mentioned above, this allows

the engineer to spend more time in the next phase of the design called creative

design synthesis. This is perhaps the most challenging and interesting part of

the design process. Here the engineer can act as engineer, inventor, and artist.

This is where the creativity occurs. By using computerized tools such as

computer aid design, prototypes can be developed and tested at the engineer's

workstation instead of the research and development shop. Tools of this nature

allow the engineer to perform what-if situations, therefore increasing the

engineer's creativity potential. The next phase of design is preliminary design

and development. Usually there may be one or more designs that will meet the

specifications. The engineer will select one design using decision tools such as

matrix tables, and probability theory. Lay out drawings are prepared showing the

overall configuration and functional relations between parts of the machine.

Further development work may be needed to prove and idea, determine critical

material properties, or to evaluate a device. The use of knowledge based

systems in this phase can further aid the engineer and result in reduced lead

time towards final production.

The detailed design phase is concerned with part sizing and dimensioning,

special processes are specified and materials are selected. With the aid of a

draftsman, complete drawings are made. Using a knowledge based system that

interfaces with currently available design databases such as Metadex allows the

engineer to pull-up the necessary information quickly and efficiently. After

detailed drawings, sub-assembly and assembly drawings including materials and

parts lists are complete, the design is ready to enter the prototype building and

testing phase. During this phase the prototype is constructed and tested, and
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any modifications necessary are added. Modifications are made as required during

the prototype testing.

Any changes that are compatible with the best methods of production are

made in the design for production phase. This phase is sometimes referred to as

value analysis. Value analysis is becoming an ever growing and more important

consideration in design. Knowledge based systems developed for this stage of

development would include decision structures for manufacturing methods such as

stamping, casting, forging, and welded assembly. One of the systems that will be

studied later covers this area of design. During this phase product release

production prototypes are built and tested. This includes solving production

problems and changes are made to the design as required.

The design process as outlined above, starts with the visualization of the

product at the highest abstract level, and as design progresses, this abstraction

is refined into smaller subsystems. Such an approach is referred to as hierarch-

ical planning. Depending on the complexity of the product, the design process

may become very complex, requiring different problem solving strategies at

different levels of the design. For example, the overall approach to machinery

design requires working from the abstract to the detailed, but some aspects of

the building design may require proposing details and working toward more

general abstractions. Also, the design process rarely follows the indicated order

of tasks without backtracking. It is necessary to make assumptions during

design that may lead to inconsistencies or contradictions as the design progres-

ses. In such cases it is necessary to backtrack to a previous task and revise the

assumption.

In addition to the description of engineering design in terms of the solution

process, it is important to describe the design problem in terms of the con-
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straints on the solution. Engineering design is constraint oriented: much of the

design process involves the recognition of applicable constraints and the satisfac-

tion of these constraints. There are many sources of constraints and the

satisfaction of these constraints, ranging from subjective constraints imposed by

individuals to constraints imposed by the fundamental laws of nature. The

efficient and knowledgeable handling of the potentially large number of con-

straints can expedite the design process.

Overview of Knowledge Based Systems

The range of tasks performed by experts consist of a spectrum bounded by

derivation and formation tasks (Amarel 1978). In derivation tasks, the problem

conditions are described as parts of a solution description; this description is

completed by using the rules so that the given facts are well integrated into the

solution. In formation tasks, the problem conditions are given in the form of

properties that the solution as a whole must satisfy; the possible candidate

solutions are generated and tested against the given conditions or constraints.

In real life, most tasks fall between these two extreme categories. Tasks

normally encountered at the derivation end of the spectrum are: interpretation

diagnosis, monitoring, control and repair. Planning and design are typical of

tasks at the formation end (Maher et al. 1984).

Knowledge based systems are interactive computer programs which are

designed to emulate the reasoning of an expert in a given domain. This provides

the user of the system with the expertise and advice for a wide range of

problems such as those described above. The technology of knowledge based

systems is presently characterized by the management of complex objects (the



25

COMPONENTS OF A KNOWLEDGE BASED SYSTEM

INFERENCE ENGINE

KNOWLEDGE

BASE

USER

INTERFACE

Figure l-l: Components of Knowledge Based System

knowledge) organized into relative simple structures (Barr 1981). Knowledge

based systems basically have three main components outlined in Figure 1-1.

These components are typically the knowledge base, the user interface, and the

inference engine (rule interpreter).

The knowledge base is the area where the system stores and retrieves it's

knowledge. This can either be declarative knowledge such as general facts or

heuristics, or procedural knowledge (the course of action to take) which can be

in the form of scripts, frames, production rules or logic. The inference engine

controls the processing of the information that is stored in the knowledge base.

The inference engine uses heuristic search techniques to determine how the rules

in the knowledge base are to be applied to the task at hand. It is the inference

engine that governs the knowledge based system by accessing the appropriate

rules, then executing the rules and then determining the acceptable solution.

The user interface is the component of a knowledge based system that communi-
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cates with the user. The user must have the capability of communicating with

the system in order to define the problem and to receive the results.

A knowledge base for a knowledge based system is constructed through a

process of iterative development. After the initial design is implemented, the

system begins to grow incrementaly both in breadth and depth. While other

large software systems are sometimes built by accretion, the style of construc-

tion is inescapable for knowledge based systems because the requisite knowledge

is impossible to define as one complete block.

One of the key principles in constructing a knowledge based system is

transparency- making the system understandable despite the complexity of the

task. Buchanan and Shortliffe (1984) suggested a knowledge based system must be

understandable for the following reasons:

1. The system matures through incremental improvements, which require

thorough understanding of previous versions and of the reasons for

good and poor performance on test cases.

2. The system improves through criticism from persons who are not (or

need not be) familiar with the implementation details.

3. The system uses heuristic methods and symbolic reasoning because

mathematical algorithms do not exist (or are inefficient) for the

problems it solves.

Hayes-Roth et al., (1983) divided applications using knowledge based systems into

ten separate categories listed on the following page.
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Category

Interpretation

Prediction

Diagnosis

Design

Planning

Monitoring

Debugging

Repair

Instruction

Control

Problem Addressed

Infers situation descrip-

tion from sensor data

Infers likely consequences

of given situations

Infers system malfunctions

from observations

Configures objects under
constraints

Designs actions

Compares observations in

order to plan vulnera-

bilities

Prescribes remedies for

malfunctions

Executes a plan to admin-
ister a prescribed remedy

Diagnoses, debugs, and
corrects student behavior

Interprets, predicts,

repairs, and monitors

system behaviors

Types of Systems

Speech understanding,

image analysis,

surveillance

Weather forecasting,

Crop estimation

Medical, electronic,

machinery, automotive

Circuit layout, budgeting

Automatic programming,
military planning

Nuclear power plant

regulation, fiscal

management

Computer software

Automobile, computer

Tutorial, remedial

Air traffic control,

battle management

Problem Solving and Search Strategies in Artificial Intelligence

Problem solving involves the search for a solution through a state space by

the application of operators, where the state space consists of an initial stale, a

goal state and intermediate states. The solution path consists of all states that

lead from the initial state to the goal state. Domain independent problem-

solving strategies are commonly referred to as weak methods and may lead to
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combinatorial explosions. Knowledge based systems can be considered strong

problem solvers since they employ domain knowledge in the solution strategy

(Mayer et al., 1984). The overall computational efficiency of a knowledge based

system depends upon where along the informed/uniformed spectrum the control

strategy lies. There are generally two costs associated with computational costs;

costs applied to the application of rules and the application control costs. A

control system that is uninformed incurs only a small application control cost

because rule selection is arbitrary and does not depend upon costly computations.

However, such a strategy results in high rule application costs because it needs

to try a large number of rules to find the optimum solution. To inform a

control system about the problem domains of interest in Artificial Intelligence

typically involves a high-cost control strategy, both in terms of storage and the

number of computations required. Control systems of this type, however, results

in minimal rule application costs; they tend to guide the production system

directly for a solution.

The total computational costs of a knowledge based system is the summa-

tion of all rule application costs and the control strategy costs. A goal of the

system designer is to decide how to efficiently balance these two costs. The

procedures that the control system follows as it makes rule selections can be

regarded as a search process. The choice of a control strategy affects the

contents and how the knowledgebase is organized. In general, the goal is to

reach the optimum result by applying an appropriate sequence of operators to an

initial task-domain situation. Each occurrence of an operator modifies the

situation in the same way.
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Forward and Backward Reasoning

The application of operators and procedures to those structures in the

knowledgebase that describe the task-domain situation-start with an initial state

and progress to a goal state is called forward reasoning or forward chaining.

This system contains an initial global knowledgebase of representations for a

given set of facts. The control structure of this system then manipulates those

facts through formal logic procedures into the optimal goal state. Rule-based

problem-solving systems are built around rules which consists of an if part and a

then part. Rule-based systems provide an excellent example of forward reason-

ing. The following example depicts the structure of a rule in a rule-based

system:

Rn If condition I

condition 2

condition n

Then action I

action 2

When all the conditions in a particular rule are satisfied by the current

situation, the rule is said to be triggered. When the actions are performed, the

rule is said to be fired. Triggering however, does not always mean firing,

because the condition of several rules may be satisfied simultaneously, triggering

them all, making it necessary for a conflict resolution procedure to decide which

rule actually fires.

The main drawback of this strategy is that it is extremely wasteful to

require as input data all the possible facts for all conditions; in many cir-
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cumstances all possible facts are not known or relevant. This strategy is useful

however in situations where the knowledgebase contains a large number of

hypotheses and few data that is input. The forward reasoning strategy is not

appropriate for a design oriented problem if possible goal states of the design

problem are not easily represented by a discrete number of hypotheses. Forward

reasoning may be used for certain subtasks of the design process, such as

selecting the appropriate modeling options for the analysis of a specified

configuration.

An alternative strategy, reasoning backward or backward chaining involves

another type of operator (implication), which is applied, not to a current task-

domain situation, but to the goal. Backward reasoning starts with the goal state

and tries to chain backward by proving the initial states. Most human problem-

solving behavior is observed to involve backward chaining; the human sets goals

and then starts to perform the necessary tasks to accomplish particular goal(s).

Many Artificial Intelligence techniques are based on this type of search strategy.

Backward reasoning, in its pure form, is not appropriate for the engineering

design process, since the possible goal states of the design process are not easily

represented by theory. However, certain subtasks of the design process may be

suitable for backward reasoning. Subtasks of the design process that involve

mathematical computation merit using backward reasoning. The following

example depicts an example for determining the motion of a projectile using

backward reasoning:

position(x.y) :- ([va cos(theta)]t && [v sin(thela)t

- [/ (g (O
2

) 2)

In this example, if the position and the velocity (v ) were known to the system,

the system could determine at what angle the projectile's path was at time l.
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Means-ends Analysis

The means-ends analysis process centers around the detection of differences

between the current state and the goal state. When a difference is determined,

an operator that can reduce the difference must be found. Sometimes an

operator cannot be applied to the current state and requires the setup of a

subproblem of reaching the appropriate state in which it can be applied. In

addition, the operator may be incapable of producing the exact goal that is

sought. This requires a second sub-problem of getting from the current state it

produces to the correct goal. Means-ends analysis utilizes both the forward and

backward reasoning techniques. This strategy however, can only be applied to

those tasks where the measures of difference between the various states and the

operators can reduce these differences, by formulating from cause to effect.

The first knowledge based system to use means-ends analysis was the

General Problem Solver (Newell 1963). The design of this system was inspira-

tional by the observation that people often use this technique when they solve

problems. The General Problem Solver provides an understanding of the fuzzi-

ness of the boundary between designing programs that simply solve algebraic

problems and those that simulate the human thought process. Means-ends

analysis relies on a set of rules that allow it to transfer one problem state to

another. The use of means-ends analysis requires the formulation of possible

states in the solution path and of the operators required to move from one state

to another. At this time, most engineering design processes are not sufficiently

formalized for this representation.

AO* Graph Search (Problem Reduction)

The factoring of problems into smaller subproblems is called problem
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reduction. In the problem reduction approach, the principle data structures are

problem descriptions or goals. An initial problem description is given; it is

solved by a sequence of transformations that ultimately change it into a set of

subproblems, whose solutions are immediate. The transformation that result are

defined as operators. An operator has the ability to change a single problem

into several subproblems; to solve the initial problem, all subproblems must be

solved. A problem whose solution is immediate is called a primitive problem.

Therefore, a problem representation using problem reduction is defined by the

following components; 1) an initial problem description, 2) a set of operations for

transforming problems into subproblems, and 3) a set of primitive problem

descriptions. Reasoning proceeds in this case backward from the initial goal

state.

A tree notation can be generalized if it is to represent the full variety of

situations that may occur in problem reduction. The generalized notation for

problem reduction is the AND/OR graph. Rules for the formation of an AND/OR

graph is as follows:

1) All nodes on the tree must represent either a single problem
state or a set of problems to be solved. The root node is at

the top of the tree graph and will not have any parent nodes.

2) When a particular node has no decedents, this is referred to

as a terminal node. This node represents a primitive problem.

3) For each possible application of an operator to a problem,
transforming it to a set of subproblems, there is a directed

arc from the root node to a node(s) that represent a resulting

subproblem set.
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Figure 1-2: Partial DENDRAL Graph

DENDRAL, a system that can propose plausible structures for rather

complex chemical compounds, would when presented with a chemical formula

might produce the AND/OR graph in Figure 1-2. The actual DENDRAL system

drastically prunes the candidate nodes by using other chemical knowledge. In

Figure 1-2 the paths that are connected by a horizontal arcs are considered AND

nodes and all nodes must be solved before the parent node is proven. The

remaining nodes in the graph are referred to as OR nodes, and at least one of

these nodes must prove to be true in order for the parent node to be proven.

In summary, for AND/OR graphs to find the solution to the initial problem,

the system needs only to build enough of the graph to demonstrate that the root

node can be solved. The following rules apply to the solving of a AND/OR
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graph (Barr 1981).

A node is solvable if -

1. it is a terminal node (a primitive problem),

2. it is a nonterminal node whose successors are AND nodes
that are all solvable, or

3. it is a nonterminal node whose successors are OR nodes
and at least one of them is solvable.

Similarly, a node is unsolvable if -

1. it is a nonterminal node that has no successors (a non-
primitive problem to which no operator applies),

2. it is a nonterminal node whose successors are AND nodes
and at least one of them is unsolvable, or

3. it is a nonterminal node whose successors are OR nodes
and all of them are unsolvable.

The use of AND/OR graphs is easily applied to the design process, as

current design practice typically reduces the design problem into subproblems.

For use in a knowledge based system for design would require the development

of an appropriate graph to represent a particular design problem.

Hill Climbing

Hill climbing is a search procedure that uses feedback from the testing

procedure to help the inference engine decide which direction to move in the

search space. This uses a plan-generate-test procedure that generates all

possible solutions in the search space and tests each solution until it finds the

solution that satisfies the appropriate goal condition. This procedure uses

constraint-satisfaction techniques that create lists of recommended and contrain-

dicated sub-structures. It uses those lists so that it can explore only a fairly

limited set of structures. Constrained in this way, this procedure has proved to
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be highly effective.

In a pure generate and test procedure, the returned value is either yes or

no. But if the test function is changed to include a heuristic function that

provides an estimate of how close a given state is to the goal state. This

provides the procedure with the ability to select the best possible path.

The hill climbing procedure begins by generating the first proposed solution

in the same way as would be done in a generate test procedure. If the result is

a solution the procedure terminates. If the result is not the solution then some

number of applicable rules generate a new set of proposed solutions. For each

of the proposed solutions, the test function determines if it is an acceptable

solution. If the proposed solution is found not to be the appropriate solution,

then the procedure determines if that solution is the closest to a solution of any

of the elements tested so far. If so the procedure remembers it, if not it is

discarded. Next it takes the best element that it found above and uses that

element as the next proposed solution. This step corresponds to a move through

the problem space in the direction that appears to be leading the most quickly

towards a goal.

One problem that may occur with hill climbing, namely what to do if the

process gets to a position that is not a solution but from which there is no

move that will improve things. This will happen if the system has reached a

local maximum, a plateau, or a ridge. A local maximum is a state that is a

better solution when compared to its neighboring solutions, but is not better

than some other states that are further away. At this point all moves appear to

make things worse. This problem can be frustrating because they often occur

almost when a final solution is about to be reached.

A plateau is reached when a whole set of neighboring states have the same
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value. When this occurs, it is not possible to determine the best direction in

which to move by making local comparisons. A ridge is reached when the area

of the search space is higher than surrounding areas, but single moves in any

one direction cannot be made. A mechanism that is used whenever one of these

above problems occur is backtracking, not to be confused with backward

reasoning or chaining. The system simply backtracks to some earlier node,

which is determined by the system in an attempt to solve the problem along a

different path. In order for the inference engine to accomplish this task it must

maintain a list of the paths that it took to reach this point. The hill climbing

strategy is appropriate for the design process if appropriate tests can be

formulated. Typically, there is no unique solution to a design problem; therefore

it can be said there exists no absolute test for a solution. This strategy would

be well suited for the preliminary design phase, provided that the testing stage

of design be restructured into ranking each solution generated by relative values.

Breadth-First, Depth-First Search and Best-First Search

Breadth-first search looks for the goal node among all nodes at a given

level before using the children of those nodes to push on. A breadth first

search procedure is guaranteed to find a solution if one exists, provided that

there are a finite number of branches of the tree. The breadth-first method

expands nodes in order of their proximity to the starting node, measured by the

number of arcs between them. In other words, this method considers every

possible operator sequence at a level n before solving any state conditions at

level n+1. Figure 1-3 depicts a tree graph representing the breadth-first search.

The dashed line represents the flow of control in this search process. There are

three major problems associated with the breadth-first search; it requires a
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Figure IS: Breadth-First Search

lot of computer memory, resulting in long periods of compute-bound processing.

The number of nodes at each level of the tree increases exponentially with the

level number, and each node in the tree must be stored in memory all at once.

A lot of work is also required, particularly if the shortest solution path is quite

long, since the number of nodes that need to be examined increases exponentially

with the length of the path. Problems also occur from irrelevant or redundant

operators that will greatly increase the number of nodes that must be explored.

Breadth-first search will be particularly inappropriate in situations in which

there are many paths that lead to solutions but each of them is quite long. If

this presents a problem, depth-first search is likely to find the solution sooner.

Depth-first search is characterized by the expansion of the most recently

generated, or deepest node first. The depth of a node is defined as follows; the

depth of the root node is zero (0), and the depth of any other node is one more

than the depth of it's predecessor. As a result of expanding the deepest node
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first, the search process follows along a single path through the state condition

downward from the root node; only when it reaches a condition that has no

successors does it consider an alternative path. Depth-first search can be

dangerous. As the inference engine expands nodes downward away form the root

node, it is possible to slip past levels at which the goal node appears and this

results in wasteful energy in exhaustively exploring parts of the tree lower

down. To prevent consideration of paths that may be too long, a maxima is

often placed on the depth of nodes to be expanded. This is referred to as being

depth bound. The hill-climbing search strategy outlined above incorporates

depth-first search techniques. Figure 1-4 represents a tree graph in depth-first

search. The dashed line represents the flow of control through the tree. It

should be noted that depth-first search follows in most systems a left-to-right

order.

Best-first search provides a way of combining the advantages of both the

breadth-first search and the depth first search into a single search strategy. At

each level of the search process, the system selects the most promising of the

nodes that have been generated thus far. This is accomplished by applying an

appropriate heuristic function to each of the nodes. The system then expands

that node by using rules that will generate the successor nodes. If one of the

successor nodes is the goal, then the search process is terminated. If not, all of

the new generated nodes are added to the set of nodes that have been generated

thus far. Once again the most promising node is selected and the process

continues. The path found by the best-first search is likely to be shorter than

those found with other methods, because best-first search always moves forward

from the node that seems closest to the goal node.
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Presented above are some of the more popular search methods used in the

field of Artificial Intelligence. It should be noted that no one search strategy is

considered ideal, rather the system designer needs to be able to determine which

search process will best fit the application. The inference engine may be

designed using different modules or subroutines that perform different search

strategies based on the intended function of that module or subroutine. In

addition, if the knowledge engineer is considering the purchase of commercially

available packages, attention should be paid to the type of search strategy that

is incorporated in that package. It can be frustrating to reach a certain point

in the development of a knowledge based system and then realize that the search

strategy of that package is unsuitable for the type of application being at-

tempted. An understanding of all search strategies is invaluable to the knowl-

edge engineer.
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Languages And Tools For Building Knowledge Based Systems

There are currently a number of languages and tools available for building

knowledge based systems. These packages may be grouped into three major

categories:

1) General Purpose Programming Languages

2) General Purpose Representation Languages

3) Domain Independent Knowledge Based System Formulation
Languages

General Purpose Programming Languages

Projects in Artificial Intelligence are usually implemented in a high level

language. These high level languages need to contain planning and reasoning

strategies. A number of knowledge based systems have been developed using a

number of different languages, of which LISP and PROLOG seem very popular.

The C language has been the choice of some researchers in the development of

knowledge based systems applied to diagnostics.

General Purpose Representation Languages

General purpose representation languages are programming languages

developed specifically for knowledge engineering. These languages are not

restricted to implementing any particular control strategy, but facilitate the

implementation of a wide range of problems that involve the derivation-formation

spectrum. Some of the general purpose languages available are KEE, SRL, OPS,

IRIS. ROSIE and LOOPS. Systems such as these which attempt to facilitate the

construction of knowledge based systems, are an important area of current

research.
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Domain Independent Knowledge Based System Formulation Languages

This type of system provides the knowledge engineer with an inference

mechanism, from which a number of applications can be built by adding domain

specific knowledge. Systems that fall under this category include: KES, EMYCIN,

HEARSAY-III and EXPERT. These systems also provide knowledge acquisition and

explanation modules to simplify the construction of knowledge based system.

EMYCIN for example, is a system for building expert systems in any domain and

contains a module for the acquisition of knowledge. The EMYCIN system for

example is used to construct a consultation program, by which is meant a

program that offers advice on problems within its domain of expertise. The

consultation program elicits information relevant to the case by asking questions.

It then applies its knowledge to the specific facts of the case and informs the

user of its conclusions. The user is free to ask the program questions about its

reasoning in order to better understand or validate the advice given. The

EMYCIN system is developed in LISP and a listing of the source code for the

knowledge acquisition module is in the appendix. EMYCIN's representation of

knowledge is in attribute-object-value triples, with an associated certainty factor.

Facts in the knowledge base are associated in production rules.

Provided above are just a few of the systems and languages available for

the development of knowledge based system. It is beyond the scope of this

report to go into detail as to the function of each system and how each may be

implemented into a knowledge based system. There are several reference books

available to provide the reader with information on the different systems and

languages available. In the next section of this report three knowledge based

system applications applied to the design process will be covered.
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AIR-CYL: Air Cylinder Design System

AIR-CYL uses the architecture of a hierarchically organized community of

design agents called specialists. These specialists are actually modules or

subroutines. This type of hierarchy reflects the hierarchical structure of the

component being designed. The language used for the development of this

system was DSPL, which stands for Design Specialists and Plans Language. DSPL

captures domain knowledge much more lucidly by using primitives that are

appropriate to the task. DSPL also makes appropriate classes of control behavior

available to the designer in the form of constraints. The DSPL language was

developed with the Rutgers ELISP language on a DECsystem-20.

Each specialist in the architecture of AIR-CYL has a list of design plans to

accomplish certain design tasks at its level of abstraction. The specialists select

choices from plans, makes some commitments, and direct the specialists at lower

abstraction levels that refine the design. Failures that occur with the system,

cause different kinds of actions, such as choosing alternative plans and transfer-

ring control to the parent specialist.

The upper level specialists in the hierarchy deal with the more general

aspects of the component that is being designed, while the lower levels deal with

the more specific subsystems or components. There are several types of agents

or active problem-solver modules that exist in the decision-making structure.

These agents include specialists, plans, steps, tasks, and constraints.

The specialists are designed to refine the design. Each specialist is

responsible for the design of a major section of the component. This is

accomplished through the use of a collection of plans. A plan is a sequence of

calls to specialists or tasks. A plan therefore represents one method to design

the section of the component that is represented by the specialist. A plan
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specifies the order in which each agent is involved. The step is the basic design

module. Steps make design decisions and decide on a value for some attribute of

the component. The values that are formulated are stored in a design database.

The decisions that are made depend upon the present state of the design, taking

into account any constraints. As an example, one step would decide the material

to be used for some sub-component, while another step would specify its length

or thickness.

A task is a sequence of steps which design a logically, structurally, or

functionally coherent section of the component being designed. Constraints are

used by the system to test for relationships between two or more attributes at

particular design stages. Constraints can occur nearly anywhere in the hierar-

chy. An example constraint would check to see if a hole for a bolt is too small

to be machinable in the material used.

The top-most specialist is responsible for the total design. The detailed

decisions of the design are handled by other specialists lower in the system's

hierarchy. Each specialist can make design decisions about the components and

functions in its specialty. These decisions are reached on the basis of previous

design decision from the other specialists in the system. These specialists may

design the components themselves or use the services of other specialists that

are below them in the hierarchy. Specialists that reside in the hierarchy

attempt to refine the design independently, using their plans. The tasks that are

attached to the specialists produce results using groups of steps, while con-

straints check the integrity and validity of the decisions being made.

Design Layout

The design activity associated with the system is broken down into four
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phases. These phases are shown in Figure 1-5 and are describe below.

Requirement Phase. At this phase, requirements are obtained from the user and

are verified both individually and collectively. Once the requirements are

validated, the system attempts a rough design.

AIR-CYL DESIGN PHASES

REqUIREUENTS PHASE

SOUGH DESIGN PHASE

DESIGN PHASE

Figure 1-5: Design Activity Phases

Rough Design Phase. During this phase those values on which much of the rest

of the design depends will be decided and checked. The actual attributes

decided depend upon the component being designed and the domain. It is likely

that the decision for the higher-level attributes, such as the material to be used

will be chosen during this phase. Specialists have both design and rough-design

plans to select from, depending upon the current phase of design. Not all

specialists will need both plans.

Design Phase. When the system has completed the rough design phase, the
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design phase can be initiated. The design phase starts with the top-most

specialist and works down to the lowest levels of the hierarchy. A child

specialist begins receiving a design request from its parent specialist. It also

refers to the specification database for relevant specifications and then selects a

plan using that data and the current design state.

The specialist can fill in some of the design and can call its successors in

plan-determined order with requests to refine a substructure's design. The

knowledge in the specialist assigns priorities to the plan and invokes alternative

plans in case a later specialist fails. When all of a specialist's plans fail, the

specialist informs its parent specialist.

Redesign Phase. If any failures occur during design, a redesign phase begins. If

a redesign phase succeeds, the design phase will continue where it left off. The

system is designed to try to handle all failures at the point where the failures

occur before giving up and passing failure information to the parent specialist.

A step, for example, may be able to examine the cause of failure and then

produce another value to satisfy a failing constraint while still retaining local

integrity. The system passes information and control messages between special-

ists across the connections forming the hierarchy. This provides communication

within the system for controlled flow, and the system exhibits clear, well-focused

problem-solving activity. This information could represent requests for action,

report any failures, ask for assistance, or make suggestions. In addition to

dependencies from specialists inside the hierarchy, the system may have depen-

dencies from specialists outside the hierarchy. These outside agencies may be

functions or modules that may be needed by several of the specialists within the

hierarchy. For example, there may be modules for stress calculation or a

database function. A human can also act as an outside agent or problem-solver,
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since any requests for help from the system will occur at well-defined points in

the design.

Routine Design Example of AIR-CYL

AIR-CYL was designed and implemented to aid a company in designing air

cylinders. Each air cylinder that the company manufactures had to be redesigned

for every new customer. This was done to account for the particular space it

had to fit in or the intended operating temperatures and pressures. The air

cylinder that is shown in Figure 1-6, has roughly 15 parts.

PJSTO\ And Miff

Spring Jimturn Mr Jctmtad

AN AIR CYLINDER

Figure 1-6: Sample Air Cylinder

Before designing AIR-CYL, Brown and Chandrasekaran interviewed an air

cylinder designer, analyzed the design protocols, and obtained a trace of the

design process to establish the underlying conceptual structure in making an air
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cylinder. The partial conceptual structure established is shown in Figure 1-7.

As an example, the structure shows that the cylinder head was treated as a

separate conceptual entity. The spring was a parallel activity, while the rest of

the design was treated by the designer as a third major activity. Because

specialists could be fairly easily identified and plans for each specialist were few

and identifiable, designing an air cylinder appeared strongly to be a routine

design activity. In the examples that follow are simplified forms of the DSPL

language. This task-based language allows expression of design agents, including

specialists, and plans to carry out design objectives.

A plan consists of a set of actions, some of which may be run in parallel.

The example shown on the following page depicts a plan with a task called

Validate and Process Requirements, a constraint called Head and Spring Com-

patible?, and a specialist called Rest. Placed together, they form the design

plan. Some of the specialists will also have rough design plans.

AIR CYLINDER DATABASE

SPECS PARTS
SPRING HEAD REST DATABASE DATABASE

CAP PISTON and ROD

PISTON ROD

PARTIAL AIR-CYL STRUCTURE

Figure 1-7: Conceptual Structure
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PLAN
NAME Air Cylinder Design Plan
TYPE Design
USED BY Air Cylinder SPECIALIST
USES Spring Head Rest SPECIALISTS
QUALITY Reliable BUT Expensive
FINAL CONSTRAINTS Design details OK?
TO DO

Validate and Process Requirements
Rough DESIGN Air Cylinder
PARALLEL DESIGN Spring AND Head
TEST Head and Spring Compatible?
DESIGN Rest

A task consists of the sequential use of steps, each of which obtains

required information, makes calculations, and makes a decision about the value of

a single attribute. The program segment shown below is a step that decides the

seat width for the piston seal.

STEP
NAME Piston Seal Seat Width
USED BY Piston Seal

COMMENT Written by DCB
ATTRIBUTE NAME Seal Seat Width
FAILURE SUGGESTION INCREASE Piston Thickness
REDESIGN NOT POSSIBLE
TO DO

KNOWNS FETCH Piston Thickness

FETCH Piston Material

FETCH Minimum Thickness OF Piston Material

FETCH Spring Seat Depth
DECISIONS Available IS

(Piston Thickness

MINUS DOUBLE Minimum Thickness)

Seal Seat Width is 0.156

COMMENT Using one size only
TEST Available > Seat Seal Width?
STORE Seal Seat Width

In this step, Piston Seal Seat Width is the name of a task. Seal Seat Width

is the name of the attribute being decided, Increase Piston Thickness is what the

step will then suggest if it cannot make a decision. Redesign is not possible for
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this step. Piston Thickness is a previously designed attribute, and Available >

Seat Seal Width? is the name of a constraint. The FETCH'S used in this step

obtain the various values that it needs from the design database. Values are

placed into the database with a command such as STORE Seal Seat Width.

System Failure Handling

In theory all design agents detect their own failures, try to determine what

went wrong, try to fix it locally, do so if they can, and report failures only if

all attempts fail. Agents that have some control over other agents can use

those agents when trying to correct the detected problem.

There may be different reasons why an agent might fail. As an example, a

step finds that a decision violates some constraint, a task discovers that a step's

failure can not be handled locally, a plan can fail if it's not applicable to the

situation, and a specialist can fail if all of it's plans fail. For every kind of

failure, a message giving details is generated and passed back to the calling

agent. This message may include if possible, suggestions about what might be

done to alleviate the problem.

There are usually many kinds of problems that can occur, an agent will

first look at the message to decide what went on below and what to do next.

For some conditions, an immediate failure may be specified, while for others a

redesign might be attempted. A redesign is associated with an agent and

contains knowledge of how to change a design according to suggestions.

Provided in the appendices in an annotated trace of the AIR-CYL system

performing the design of an air cylinder.
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Conclusions

There remains much work that needs to be done in the construction of

knowledge based systems for this type of routine design activity. There is also

a need for tools that represent knowledge at the task level. DSPL is an example

of such a tool. DSPL is being studied and refined to make it more powerful,

flexible, and easy to use. The designers expect to provide a graphical interface

to show the development of the design as it progresses. Finally, work on the

failure handling facility is required. It may be possible for the system itself to

choose the requirements to relax, but a lot of special knowledge would be

required to implement this.

The approach of using a hierarchically structured system with plan selection

captures the essential qualities of routine design.



51

DACON: Design for Assembly Consultation System

The design for assembly consultation system (DACON) is aimed at tackling

the problems of assembly rationalization, component optimization for handling

and assembly process selection of a target assembly system and the optimum

level of automation.

This system starts by trying to satisfy its goals and requests from the user

information regarding component design relevant to assembly and its automation.

DACON was designed in such a way that it attempts to create designs which can

be readily handled and assembled. For example, when considering automatic

handling the system will ensure that the component, if possible, can be fed

automatically. If a problem arises and is diagnosed, appropriate design modifica-

tion^) will be suggested and assigned appropriate levels of confidence. DACON

uses a scale from to 1.00 to represent the level of certainty. The rule

implications may also have an associated design comment or piece of cost

information for use in subsequent assembly cost models. The rule in Figure 1-8

is a sample DACON rule and shows both the certainty factor and the design

comment, Consider redesign options.

IF: 1) Parts will tangle with other parts when in

bulk supply.

2) A force and a manipulation is required to

separate the parts.

THEN: 1) There is strong evidence (.95) that the part

requires manual feeding.

2) Consider redesign options.

Figure 1-8: Sample DACON Rule
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When appropriate, the certainty of the users response is requested by the

system and these certainties are manipulated to modify the hypothesis certainty

factors and provide evidence to support the selection of conclusions. When the

evidence obtained rules out one hypothesis, the system continues by attempting

to prove another goal.

DACON provides interactive communication between the system and the

user. DACON can be asked why? it is following a line of questioning and can

display the rule it is trying to use. In addition, when DACON has reached a

conclusion, the user can request to see the rule chain that was used to reach

that conclusion.

Once the system has used its knowledge base to diagnose assembly problems

and make decisions on design modifications, the system can be used to compute

the costs of assembly. Mathematical models are used to compute the cost

estimates. This module of DACON's hierarchy is actually a conventional program.

The knowledge-based elements are used where the decision making defies

scientific treatment. Having evaluated the costs associated with the assembly,

DACON displays handling and assembly costs for all the components in the

product.

Coding systems are used to analyze the processes involved in the two areas,

distinct systems being needed for each area in both manual and automatic

assemblies - four codes in total. These coding systems provide the engineer with

feedback on the relative ease or difficulty with which the design can be handled

and assembled, compared with the ideal or optimum design. The design-analysis

procedure also involves the calculation of an assembly-design efficiency, which

prompts the engineer to question the number of components in their design.

This efficiency is obtained by determining the theoretical maximum number of
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parts that can be handled.

The DACON knowledge base has been constructed from published material,

case studies, and with discussions with domain experts; it currently embodies 120

rules. It is planned to explore the capabilities of DACON in advising the

professional engineer by applying the system to products in the electrical

engineering industry.

The work that has been carried out on cost estimation has indicated that

the DACON system can yield estimates within 10% of recorded costs for both

automatic and manual assembly systems provided company-specific cost data is

used. Work is also being carried out to determine how well DACON performs, as

compared to a human expert, when used by an engineer of lesser expertise.

Application of the DACON system to assembly redesign studies have shown that

it can produce at least as good a result as the teams involved in the studies.

POLYCOAT - Design for Coaling

In developing a coatings expert system to go with the DACON system,

POLYCOAT is a polymeric coating knowledge based system. Using rules pertain-

ing to operating temperatures, abrasive conditions, component flexing, adhesion

requirements, color retention, solvent contact, environment acidity/alkalinity etc.,

it recommends the optimum polymeric coating material.

POLYCOAT currently incorporates roughly 50 rules and like DACON, was

developed with the PROLOG language. The system investigates its hypothesis

(coating materials) and asks the user for information regarding the part design

and its environmental and operational requirements. Therefore, the knowledge-

base is built up interactively by the design engineer. As with the DACON

system, the confidence of user responses is requested and the system will
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Please would you tell me if:

'part comes into contact with acetic acid'

is true, false, or don't know (or why if you wish me to explain my
line of reasoning)?

==> false

Please tell me your confidence of this

==> 5

Please would you tell me if
'environmental temperature < 200 deg C

is true, false, or don't know (or why if you wish me to explain my
line of reasoning)?

==> why

I am trying to use rule 20
IF.NOT.part comes into contact with acetic acid

and, environmental temperature < 200 deg C
and, NOT, part requires color retention
and, NOT, part is required to flex during service

THEN, there is evidence (0.85) that an epoxy ester coating is

suitable.

Please would you tell me if....

[The consultation continues with many additional questions and
resultant deductions]

Figure 1-9: Sample POLYCOAT Dialogue

indicate hose processes which are like to be suitable, allocating a suitability

rating on confidence to each conclusion. Figure 1-9 shows an example of the

dialogue used between the system and the engineer.
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POLYCOAT is still in its initial stages. It uses data which is readily

available and has a comparatively small number of rules in comparison with other

knowledge-based systems. A simplified system representation of the factors

considered in building the knowledge base is shown in Figure I- 10.

Figure 1-10: System Representation

The knowledge base is a key factor in the success of a consultation system,

after all it is the knowledge of the human expert. In general, expert design

assessment and cost estimating is a time consuming problem that can span weeks

of intensive effort. DACON and POLYCOAT should have the capability to reduce

this activity duration giving an instantaneous response.
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The CARTER System

Carter is an expert system that designs crankcases without any intervention

from the user (other than setting the problem by describing the mechanism to be

encased). To reduce the cost of algorithms such as plate theory, hamiltonian

path in a graph, and finite element analysis, the system relies mainly on the

engineer's knowledge to infer solutions, or at least to set the boundary condi-

tions and limit the search space.

The user supplies as inputs the shafts, which at this time, must all be

parallel or perpendicular to each other; giving the length and diameters of each

cylindrical or conical subsection. Next the user inputs descriptions of the gears

and bearings supported by these shafts, and the torques and powers. In

addition, other indications can be supplied, such as clamping points, lubrication,

boundary values of strains, precisions, safety factors, manufacturing method and

heat sources.

The first step is to determine the frame thickness. Space required for the

drive shafts can be divided by planes such that the slice of the mechanism that

lies between two consecutive planes is entirely described by its projection onto

those planes (Figure 1-11). From the three slices shown in Figure 1-11, the

external tangents to the projections mentioned above are combined, giving the

intersections of the required frame with all planes (Figure 1-12). Those inter-

sections are then linked together by means of planes, and bits of cones or

cylinders. Figure 1-13 shows the completed solution graph.

Design of the bearing housing is the next phase. The problem that occurs

is finding the minimal set of bearing housings and thin walls needed. This type

of problem is the same as finding the minimal path within a graph, where nodes

are the bearings and the external case. Valuation or the arc between two nodes



57

is the surface (cost) of the minimal wall that might link the two corresponding

objects (Figure 1-14).

Figure 1-11: Plane Slicing

Figure 1-12: Plane Graph
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Figure 1-13: Solution Graph

Figure 1-14: Conceptual Designed Crankcase
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The minimal path that goes once and only once through every node

(hamiltonian path) is found by using the Little algorithm. When the system has

found a suitable shape for the crankcase, the system will switch from geometry

to mechanics, and dress up the skeleton.

An assumption is made that the engineer who has designed the mechanism

computed the bearings under the hypothesis that they would be held by housings

of infinite stiffness. Seeking the lightest possible solution, no provision is made

for infinite stiffness. The concern of the engineer is really the fatigue life of

the bearings. Therefore the main concern of the system is to compute the

thickness of the housing so that it will guarantee the expected endurance.

Once the system has found a solution, it tests that solution. The test deals

with strains, stresses and the first eigen-frequency. This employs the use of

finite element analysis. The crankcase shell is modelled as an assembly of plane

elements. The basic elements chosen are rather sophisticated, and ensure edge

continuity, so providing as few elements as possible.

The eigen-vectors and the deformed shape returned by the structural

analysis provide the system with information about local and global modes. To

alter these, the system must decide where to put the reinforcing ribs. The

finite element modules is then called interactively until a satisfying compromise

is found; if this results in too many ribs being placed on the structure, some

thicknesses are increased in the crankcase.

Knowledge Base Structure

To model the huge amounts of knowledge needed, the system designers felt

that conventional programming languages - however sophisticated - were

completely inaccurate. The knowledge required was quite fuzzy, and needed to
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be constantly updated. Therefore a production rule-based system was used to

build a pattern-directed inference system.

In order for the system to be easily modified, the system designers placed

guidelines upon how to formulate rules in the knowledge base. The rules should

be placed in random disorder so that no rule has priority over another rule. In

addition, rules should not refer to other rules in the knowledge base. The user

is responsible for providing chunks of knowledge, and must not be concerned

with how that knowledge will be put into action. The basic syntax of a

production rule is:

IF />! and P2 and ... and Pn THEN P\ ; P\ ; ... ; />'„

where the Pj are predicates and the P'- are either predicates or calls to routines

provided by the user. An example of a rule used in the CARTER system is as

follows:

IF SEARCH IS INSIDE THE ZONE, AND THERE ARE TWO BEARINGS IN
THE ZONE. AND ONE MAY WORK ON THIS SIDE. AND IF THERE IS
ONLY ONE SHAFT IN THE ZONE. AND IF OVERCROWDING ALLOWS
AXIAL CONNECTING OF THE HOUSINGS OF THE ZONE. AND IF
MOUNTING OF THE SHAFT IS O-LIKE'

THEN BUILD A SHARED HOUSING IN THE ZONE

There are currently 300 such rules in the Carter system, that deal mainly

with:

* Technological Options
* Shapes and Thicknesses
* Tools and Costs
* Setting the hypothesis for mechanical computings
* Piloting these computings

The principles of independence allows the user to modify this set of rules,

and run time is almost independent of the number of rules in the knowledge base

(approximately 20 ms per inference, on a 32-bit mini-computer).
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Inference Engine

The multipurpose system that runs this knowledge base is called GOSSEYN.

It comprises of a rule compiler, and the engine proper. The rule compiler:

1) reads the rules, checks for syntactical errors and gives out

various listings (source, object, cross-reference, etc.)

2) builds up a network of pointers from the variables to the

predicates containing them, then from the predicates to the

rules (this network will enable the inference engine to be

much more efficient than an ordinary rule interpreter.

3) translates the French source code into a first-order prefixed
internal representation (this translation uses a dictionary

and a set of rewriting rules, both provided by the system
designer)

The Engine itself:

1) can be seen as a pattern matcher that explores the working
zone (short-term memory) to find facts that will satisfy all

the conditions of a rule.

2) is fully data driven because of the compilation mentioned
above (ie., the advent of a new situation immediately fires

the appropriate rule)

GOSSEYN is domain dependent and is being used for various computer-aided

design systems (CAD). It is composed of approximately 20,000 Fortran state-

ments and runs on a NORSK Data 560 mini-computer; routines that are specific

to the CARTER system amount to roughly 5000 statements (1000 of which are

borrowed from NASTRAN).

The design of the system involves some rather sophisticated computing.

This includes the use of finite element analysis, plate theory, etc., combined into

one package. The amount of calculations that is needed however, can be

reduced considerably if the knowledge, the expertise, and the tricks retained by

the design engineers are called upon. This system is enhanced by the use of a

natural language interface, which in this case is French.
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CONCLUSIONS

1) Design is a highly creative activity involving diverse problem-solving tech-

niques, and many kinds of knowledge. Design is also a complex activity, one

that artificial intelligence has only relatively weak theories of, especially for

more creative design activity.

2) The distinction between databases and knowledge bases, is based on the

distinction between data and knowledge. A database consists of mathematical

structures together with a computational theory that states how the struc-

tures can be implemented efficiently. A knowledge base contains symbolic

structures with a notion of interpretation of a specific subject matter.

3) Logic rules can already be processed in a database management system. These

correspond to the definitions in a database management systems knowledge

representation. These definitions however are not recursive, and recursive

definition would provide a dramatic increase in the knowledge representation

power of database management systems. This would allow more processing to

be off-loaded from the knowledge based system.

4) Several semantic problems remain to be resolved, and performance issues are

largely unexplored. Most work on spatial databases has been application

specific and involved ad-hoc extensions to a database management system.

5) Artificial Intelligence and Database research has a fundamental difference in

time frames. The artificial intelligence timeframe is at least a decade away.

Rather than discussing how to improve and integrate existing AI and Database



63

technology now, AI researchers concentrate on longer term issues such as

developing the next generation of AI systems. The database timeframe is

tomorrow.

6) The solution to integrating AI and Database technology is not to simply stick

them together now. Researchers in this area must determine how the two

technologies might fit together. Knowledge based systems can be readily

extended over a period of time by researchers refining old rules and adding

new ones.

7) Systems can be developed to be introspective, provided that they can check

the consistency of their own rules, and evoluntionary, if they have the

capability to modify their own rules and add new ones.

8) These systems can give explanations of their line of reasoning. For example,

the rules being used can be displayed and the rule chain leading to a

conclusion can be explored.

9) The analysis of the applications in the previous section identified three

capabilities of using knowledge based systems and database management

systems. A deeper analysis of these, and other applications will doubtlessly

reveal additional capabilities. The full impact of moving capabilities to the

database management systems will be understood only when processing and

optimization techniques have been developed.
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Machine-Readable Files of Materials Engineering Data
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TABLE A.I: DATABASES OF ENGINEERING MATERIALS
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Manufacturer and Model Year

Xerox 1100 series 1981

Comments

Personal workstation supporting the

Interlisp programming environment, with

bytecode emulation facilities.

Symbolics 3600 series 1983 Provides direct hardware execution of

data type checking at runtime, garbage

collection, and instruction pipeline with

prefetch.

Lisp Machines Inc. (LMI),

Lambda
1983 Modularly expandable multiprocessor

centered around a fast NuBus; provides

almost unlimited virtual memory space.

Fujitsu ALPHA 1983 Hardware support for multiple processes

through virtual stacks augmented by a

cache that stores stack addresses of free

variables.

Tektronix 4400 series 1984 Lower end workstations built around
conventional Motorola 68010/20 pro-

cessors.

Texas Instruments Explorer 1984 32-bit-NuBus-based open architecture,

with a dedicated Lisp processor and
multiprocessor expansion capabilities.

C-Lisp Machine
University of Kyoto,
Japan

1984 Shared memory multiprocessor with a

master-slave control. Stack with medium
and course execution granularity.

SNAP (UCLA) 1985 Semantic-net processing; production

systems; and discrete relaxation for

vision.

TABLE A.2: ARTIFICIAL INTELLIGENCE TOOLS
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LISTING A.1: AN ANNOTATED TRACE OF AIR-CYL

This is a trace generated by the AIR-CYL system. It has been highly
edited for brevity and for presentation in this format. The trace is of a
successful design with step redesign and selection of alternative plans. The final
design has been omitted.

*•**» A jR _Cyl Air-cylinder Design System ******

*** Requirements input

From file DCB:AC-Requirements-Test

!!!NOTE: There are about 20 values given as requirements, including the maximum
operating temperature and pressure and the size of the envelope in which the
air-cylinder must fit.

* Do you wish to alter the requirements? »>????> yes

EnvelopeLength
EnvelopeHeight
EnvelopeWidth
MaxTemperature
OperatingMedium
OperatingPressureMax
OperatingPressureMin
RodLoad
Stroke

RodThreadType
RodThreadLength
RodDiameter
Environment
Quality

MTBF
AirlnletDiameter

MountingScrewSize
MountingHoleToHole
MaxFaceToMountingHoles

7.83

1.5

1.75

250

Air

60

30

1.4

1.75

UNF24
1.031

(LNGTH 0.312 0.0 2.e-3)

Corrosive

Reliable

100000

0.374

(LNGTH 0.19 5.e-3 5.e-3)

(LNGTH 0.625 5.e-3 5.e-3)

(LNGTH 0.31 5.e-3 5.e-3)
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* Alterations from user

System name for requirement is »>????> EnvelopeWidth
Current value is 1.75

New value is >»????> 1.35

!!!Note: We have cut down the width of the envelope without altering any other

requirement to make the design harder.

System name for requirement is >»????> quit

* End of alterations from user
*** Requirements Input Complete

— Entering Specialist

...AirCylinder... Mode = Design

— Entering Plan

...AirCylinderDPl... Type = Design

— Entering Task
...CheckRequirements

— Entering Step

...CheckEnvelope

— Leaving Step

...CheckEnvelope... Result Success Msg

!!!Note: Here, the system continues to check requirements. Next, the design plan

being followed specifies the use of the AirCylinder specialist in rough design

mode. A rough design plan is selected and followed, leading to a successful

rough design. The AirCylinder specialist then leaves rough design mode and
continues in design mode. After quite a lot of decision making involving

subspecialists, we get to this point.

Entering Specialist

...Rest... Mode = Design

Entering Plan

...RestDPl... Type = Design
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— Entering Specialist

...PistonAndRod... Mode = Design

!!!Note: At this point the system is working on the design of the piston and rod

assembly. This is where the trouble starts.

— Entering Plan

...PistonAndRodDPl... Type = Design

Entering Task
...PistonSeal

Entering Step

...PistonSealType

Leaving Step

...PistonSealType

...Result = Success Msg

Entering Step

...PistonSealSeatWidth

!!!Note: The constraint test that follows will discover that there isn't enough
space in the piston for the seat for the seal that will go around the piston. Its

failure produces a message that shows in detail how the failure occured. Here is

shown only a part of the message.

Entering TEST-CONSTRAINTS
...(Available > Width)

Leaving TEST-CONSTRAINTS
...(Available > Width)... Result = Failure "Constraint Failure"

Explanation "Seal width is greater than available space
in piston"

Suggest (INCREASE PistonThickness BY 1.517e-2)

Suggest (DECREASE PistonSealSeatWidth BY 1.517e-2)
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HINote: The step failure handlers, which are built into the system, determine that

a domain specific failure handler will be able to decide what to do. Domain
specific failure handlers are written in DSPL by the expert or knowledge
engineer.

Entering FailureHandler
...PistonSealSeatWidthFH

HINote: The domain specific failure handler says to try redesign.

Entering Redesigner

...PistonSSWRedesigner

Step = PistonSealSeatWidth

Suggest = (DECREASE PistonSealSeatWidth BY 1.517e-2)

Leaving Redesigner

...PistonSSWRedesigner

...Result = Success Msg

HINote: The piston seal seat width redesigner was able to decrease the width as

suggested.

Leaving FailureHandler

...PistonSealSeatWidthFH

...Result = Success Msg

!!!Note: We leave the failure handler and return to the step. The redesign was
successful, so the step is successful and acts as if no problems were
encountered.

— Leaving Step

...PistonSealSeatWidth

...Result = Success Msg

Leaving Plan

...PistonAndRodDPl

...Result = Success Msg
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Leaving Specialist

...PistonAndRod...Result = Success Msg

Entering Specialist

...Cap... Mode = Design

!!!Note: Now the attempt is made to design the cap - and discover another
problem.

— Entering Plan

...CapDPl... Type - Design

— Entering Task
...Caplnternal

— Entering Step

...Caplnternal Diameter

!!!Note: The constraint tests to see if the internal diameter of the cap is larger

than the outside diameter of the spring (one must fit in the other). It fails.

— Entering TEST-CONSTRAINTS
...(CapID > SpringOD)

— Leaving TEST-CONSTRAINTS
...(CapID > SpringOD)...Result Failure "Constraint Failure"

Explanation "Cap internal diameter too small for spring

Suggest (DECREASE SpringOD BY 9.9e-2)

Suggest (INCREASE CapInternalDiameter BY 9.9e-2)

— Entering FailureHandler

...CapIDFH

!!!Note: The domain specific failure handler says to try redesign.
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Entering Redesigner

...CapIDRcdesigner

Step = CapInternalDiameter
Suggest = (INCREASE CapInternalDiameter BY 9.9e-2)

Entering TEST-CONSTRAINT
...(CapID > SpringOD)
...Result = Success Msg

Leaving Redesigner
...CapIDFH

...Result = Success Msg

!!!Note: The step is successful, since the failure was handled.

— Leaving Step

...CapInternalDiameter

...Result = Success Msg

Leaving Plan

...CapDPl...Result = Success Msg

Leaving Specialist

...Cap...Result = Success Msg

-- Entering Specialist

...Bumper...Mode = Design

!!!Note: The bumper flange diameter must be large enough to support the spring
The constraint tests this and fails.

— Entering TEST-CONSTRAINTS
...(BFD > SpringOD)
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— Leaving TEST-CONSTRAINTS
...(BFD > SpringOD)
...Result = Failure "Constraint Failure"

Explanation "Bumper flange is to small for spring"

Suggest (DECREASE SpringOD BY 2.995e-2)

Suggest (INCREASE BumperFlangeDiameter BY 2.995e-2)

— Entering FailureHandler

...BumperFDFH

!!!Note: The domain specific failure handler says to try redesign.

— Entering Redesigner
...BumperFDRedesigner

Step = BumperFlangeDiameter
Suggest = (INCREASE BumperFlangeDiameter BY 2.995e-2)

!!!Note: The redesigner fails because there is no knowledge about increasing the

value of that attribute.

Leaving Redesigner
...BumperFDRedesigner
...Result = Failure "Redesigner action section fails"

!!!Note: The failure handler reports failure and eventually the step gets told the

bad news.

— Leaving FailureHandler

...BumperFDFH...Result = Failure "Redesigner action section fails"

Leaving Step

...BumperFlangeDiameter

...Result = Failure "Step failure"

!!!Note: The task passes the failure message from the step to its failure handler.

It will determine if the task can do anything about the step failure.
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— Entering FailureHandler

...BumperFIangeFH

!!!Note: The failure handler for the task discovers that no suggestions have been

passed up from below. This means that no redesign can be considered. The
failure handler fails because it couldn't handle the problem.

Leaving FailureHandler
...BumperFIangeFH
...Result = Failure "No relevant suggestions for task redesigned

!!!Note: The step failure and subsequent failing redesign attempt leads to a

failure in the task.

Leaving Task
...BumperFlange

...Result = Failure "Task failure"

!!!Note: The plan fails due to the failing task.

— Leaving Plan

...BumperDPl

...Result = Failure "Plan failure"

!!!Note: The next plan is selected since the last one failed.

Entering Plan

...BumperDP2... Type = Design

Entering Task
...BumperFlange2

Entering Step

...BumperFlangeDiameter2

Entering TEST-CONSTRAINTS
,..(BFD < CapID)
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!!!Note: This is the same constraint that failed in the last plan. This time it is

OK. The step succeeds.

Leaving TEST-CONSTRAINTS
...(BFD < CapID)
...Result Success Msg

Leaving Step

. .Rumpcr Flange Dia mete r2

...Result = Success Msg

— Leaving Plan

...BumperDP2

...Result = Success Msg

— Leaving Specialist

...Bumper...ResuIt = Success Msg

— Leaving Plan

...RestDPl...Result = Success Msg

Leaving Specialist

...Rest...Result - Success Msg

— Leaving Plan

...AirCylinderDPl...Result = Success Msg

Leaving Specialist

...AirCylinder...Result = Success Msg

..Design attempt succeeds
****** AIR-CYL Air-Cylinder Design System ******
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LISTING A.2: KNOWLEDGE ACQUISITION MODULE FOR EMYCIN

*****************************************************************************

This is the Knowledge Acquisition Module for the CRIB Implementation Project

This function is the routine that decides who is calling the KA (knowledge
acquisition) module and then invokes the specific routine which responds
to the contents of args.

*************•************************+•****************•*******************

(declare (special tunit Subunit-list) (*fexpr MIS) (macros t))

(eval-when (load) (MIS-SET-REAL 'KA))

(defun KA (who &rest args)

(cond ((eq who 'UI) (cond ((eq (car args) 'edit)

(prog (t-list)

(setq t-list (get-subunit-list))

(cond ((eq t-list nil)

(return 'done))

(t (print (edit-subunit t-list))

(terpri)

(return 'done))

)

))

((eq (car args) 'add) 'add-subunit-HOOK)
(t 'ERROR->invalid-KA-request)

)

)

(t 'unrecognized-calling-module)

)

)

***************************************************************************

When the UI -user interface- module edit request is received by the KA ;

(knowledge acquisition) module this function will edit the Subunit-list ;

that was requested by Subunit Number

***************************************************************************

(defun edit-subunit (Subunit-list Last-Subunit-list)

(cond ((eq Subunit-list nil)

(patom '|ERROR->Subunit List Exhausted, Press 't' to Continuel)
(terpri)

(continue)

(edit-subunit (car Last-Subunit-list) (cdr Last-Subunit-list)))

(t (list-subunit Subunit-list)
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(caseq (get-option)

(d (edit-subunit (cdr Subunit-list)

(cons Subunit-list Last-Subunit-list)))

(u (cond ((eq Last-Subunit-list nil)

(patom '|Top of List, Press 't' to Continuel)

(terpri)

(continue)

(edit-subunit Subunit-list nil))

(t (edit-subunit (car Last-Subunit-list)

(cdr Last-Subunit-list)))))

(h (help-list)

(edit-subunit Subunit-list Last-Subunit-list))

(q 'quit)

(s (MIS KA MON 'Include 'add)

(MIS KA KB 'add))

(t (patom '|ERROR->IUegal Command Press Y to Continuel)

(terpri)

(continue)

(edit-subunit Subunit-list Last-Subunit-list))))))

(defun edit-subunit (Subunit-list)

(do ((current-list Subunit-list)

(last-list)

(option 'go (get-option)))

((eq option 'q))

(list-subunit current-list)

(caseq option

(d (setq last-list (cons current-list last-list))

(setq current-list (cdr current-list)))

(u (cond ((null last-list)

(msg "Top of List, Press 't' to Continue" N)
(continue)

(setq current-list Subunit-list))

(t (setq current-list (car last-list))

(setq last-list (cdr last-list)))))

(h (help-list))

(s (MIS KA MON 'Include 'add)

(MIS KA KB 'update-the-rules Subunit-list))

(go) ; for first time through

(t (patom "ERROR->Illegal Command Press 't' to Continue" N)
(continue)))))

************************************************************************** .

Input the Subunit Number and Retrieve the Key Group, and Sub-group data
for the Subunit

************************************************************************** .

(defun get-subunit-list ()
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(prog (tunit)

(patom '|Enter the Subunit you wish to Edit |)

(setq tunit (read))

(MIS K.A MON 'Include 'retrieve tunit)

(return (MIS K.A KB 'retrieve tunit))

)

**************************************************************************

Utility functions

**************************************************************************

(defun els ()

(Swipescreen)

)

(defun continue ()

(cond ((neq (read) 't) (continue))

(t)

)

)

***************************************************************************

; List processes

; List out current Subunit list

****************************************************************************

(defun list-subunit (Subunit-list)

(els)

(print '<EDIT>) (terpri) (terpri)

(patom 'ICurrent Sub Unit List|) (terpri)

(patom '| =>
|) (print Subunit-list) (terpri) (terpri)

(patom '| Code Description <HOOK>[) (terpri)

(patom
'J
—

1) (terpri)

(patom *|
|) (print (car Subunit-list))

(terpri)

(msg "<EDIT>" (N 2) "Current Sub Unit Info." N " => "

($prpr Subunit-list) (N 2))

(msg "
" N)

(cond ((atom (car Subunit-list))

(let ((decode (Decode (car Subunit-list))))

(cond (decode (msg decode N))

(t (msg (car Subunit-list) N))))))
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***************************************************************************

; List out current Edit Options

***************************************************************************

(defun get-option ()

(terpri)

(patom '|Options -> u, d, h (help), q, s|)

(patom '| Enter Option =>
|) (read)

)

*************************************************************************** .

; This function prints the descriptions of the edit commands when a h command
; is issued to the editor

*************************************************************************** .

(defun help-list ()

(els)

(terpri)(terpri)

(patom '|
|)

(terpri)

(patom 'ICommand Descriptionn|)

(terpri)

(patom '|====================|)

(terpri)

(patom '| u Output Previous Subunit List Level|)

(terpri)

(patom '| d Go To Next Subunit List Level|)

(terpri)

(patom '| q Quit the Knowledge Acquisition Editor|)

(terpri)

(patom '| s Save the Current Subunit List in the Knowledge Basel)

(terpri)

(patom '|
|)

(terpri)

(patom '| Press Y to Continue |)

(continue)

)
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The computer has relieved the engineer of many of the mundane, tedious,

and error-prone jobs required to complete the design process. Using a combina-

tion of present technology for knowledge based systems development and

database management systems may prove to be beneficial to future design

systems. By the 1990's knowledge based management systems are expected to

become one of the most important application development tools. Already an

increasing number of applications, including military projects, office automation,

diagnostic, and CAD/CAM have a need for this technology. With the use of

knowledge based management systems a database can be more efficiently and

intelligently enhanced. The merging of databases and knowledge based system

technology should produce systems capable of managing a large database of

complex knowledge in a integrated way.

Knowledge based systems are interactive computer programs which are

designed to emulate the reasoning process of a specialist or expert in a par-

ticular domain. These knowledge based systems contain either declarative

knowledge or procedural knowledge in their knowledge base. The inference

engine of the system in turn controls the processing of the information that is

stored in the knowledge base. Together this provides the user of the system with

the expertise and advice for a wide range of problems.

One major difference between knowledge based systems and conventional

programs is the separation of the expert knowledge (the rules) from the general

reasoning mechanism. Knowledge based systems use a variety of search techni-

ques such as forward and backward reasoning, means-ends analysis, AO* graphs,

and Hill-climbing. Although knowledge can be formulated to accommodate

anyone of these techniques, care must be taken to insure that the appropriate

search techniques efficiently and successfully matches the task at hand.



Frames are the most widely used primitives for knowledge representation in

the field of Artificial Intelligence. Frames are capable of representing both

general and specific knowledge, and representing both descriptive and prescrip-

tive computations. Domain independent knowledge based system formulation

languages provide the knowledge engineer with an inference mechanism from

which a number of applications can be built. These systems may also provide

knowledge acquisition and explanation modules to simplify the construction of

knowledge based systems.

Three design-oriented knowledge based system applications were reviewed;

namely AIR-CYL, DACON, and the CARTER System. AIR-CYL is a knowledge

based system that is used to design air cylinders for a manufacturing system.

DACON is a design for assembly consultation system that is aimed at tackling

the problems of assembly rationalization, component optimization for handling

and assembly processes. The Carter System is a knowledge based system that is

used to design crankcases for engines without any intervention from the user,

with the exception of supplying inputs and constraints.

Conclusions are drawn on the fact that knowledge based system tools are

now available and that techniques are now perfected for the use in early

applications. The development of knowledge based systems is recognized

internationally and funding for these applications are now being committed here

in the United States and abroad.


